Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis
Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai
2010-01-01
The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817
Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.
Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru
2017-04-18
Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.
A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification
Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.
2016-01-01
The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544
Fixed-Gap Tunnel Junction for Reading DNA Nucleotides
2015-01-01
Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505
Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus.
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-07-28
The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.
DNAzyme based gap-LCR detection of single-nucleotide polymorphism.
Zhou, Li; Du, Feng; Zhao, Yongyun; Yameen, Afshan; Chen, Haodong; Tang, Zhuo
2013-07-15
Fast and accurate detection of single-nucleotide polymorphism (SNP) is thought more and more important for understanding of human physiology and elucidating the molecular based diseases. A great deal of effort has been devoted to developing accurate, rapid, and cost-effective technologies for SNP analysis. However most of those methods developed to date incorporate complicated probe labeling and depend on advanced equipment. The DNAzyme based Gap-LCR detection method averts any chemical modification on probes and circumvents those problems by incorporating a short functional DNA sequence into one of LCR primers. Two kinds of exonuclease are utilized in our strategy to digest all the unreacted probes and release the DNAzymes embedded in the LCR product. The DNAzyme applied in our method is a versatile tool to report the result of SNP detection in colorimetric or fluorometric ways for different detection purposes. Copyright © 2013 Elsevier B.V. All rights reserved.
Method for producing labeled single-stranded nucleic acid probes
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-10-19
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
Yuri, Tamaki; Kimball, Rebecca T.; Harshman, John; Bowie, Rauri C. K.; Braun, Michael J.; Chojnowski, Jena L.; Han, Kin-Lan; Hackett, Shannon J.; Huddleston, Christopher J.; Moore, William S.; Reddy, Sushma; Sheldon, Frederick H.; Steadman, David W.; Witt, Christopher C.; Braun, Edward L.
2013-01-01
Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions. PMID:24832669
Method for introducing unidirectional nested deletions
Dunn, J.J.; Quesada, M.A.; Randesi, M.
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.
Method for introducing unidirectional nested deletions
Dunn, John J.; Quesada, Mark A.; Randesi, Matthew
1999-07-27
Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.
Amplified fragment length polymorphism (AFLP) markers can be developed more quickly and at a lower cost than microsatellite and single nucleotide polymorphism markers, which makes them ideal markers for large-scale studies of understudied taxa — such as species at risk. However,...
Nelson, Chase W; Moncla, Louise H; Hughes, Austin L
2015-11-15
New applications of next-generation sequencing technologies use pools of DNA from multiple individuals to estimate population genetic parameters. However, no publicly available tools exist to analyse single-nucleotide polymorphism (SNP) calling results directly for evolutionary parameters important in detecting natural selection, including nucleotide diversity and gene diversity. We have developed SNPGenie to fill this gap. The user submits a FASTA reference sequence(s), a Gene Transfer Format (.GTF) file with CDS information and a SNP report(s) in an increasing selection of formats. The program estimates nucleotide diversity, distance from the reference and gene diversity. Sites are flagged for multiple overlapping reading frames, and are categorized by polymorphism type: nonsynonymous, synonymous, or ambiguous. The results allow single nucleotide, single codon, sliding window, whole gene and whole genome/population analyses that aid in the detection of positive and purifying natural selection in the source population. SNPGenie version 1.2 is a Perl program with no additional dependencies. It is free, open-source, and available for download at https://github.com/hugheslab/snpgenie. nelsoncw@email.sc.edu or austin@biol.sc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band
NASA Astrophysics Data System (ADS)
Zou, Quan; Shan, Xiao; Jiang, Yi
Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.
Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.
NASA Astrophysics Data System (ADS)
Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan
2017-02-01
Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.
Seamless Insert-Plasmid Assembly at High Efficiency and Low Cost
Benoit, Roger M.; Ostermeier, Christian; Geiser, Martin; Li, Julia Su Zhou; Widmer, Hans; Auer, Manfred
2016-01-01
Seamless cloning methods, such as co-transformation cloning, sequence- and ligation-independent cloning (SLIC) or the Gibson assembly, are essential tools for the precise construction of plasmids. The efficiency of co-transformation cloning is however low and the Gibson assembly reagents are expensive. With the aim to improve the robustness of seamless cloning experiments while keeping costs low, we examined the importance of complementary single-stranded DNA ends for co-transformation cloning and the influence of single-stranded gaps in circular plasmids on SLIC cloning efficiency. Most importantly, our data show that single-stranded gaps in double-stranded plasmids, which occur in typical SLIC protocols, can drastically decrease the efficiency at which the DNA transforms competent E. coli bacteria. Accordingly, filling-in of single-stranded gaps using DNA polymerase resulted in increased transformation efficiency. Ligation of the remaining nicks did not lead to a further increase in transformation efficiency. These findings demonstrate that highly efficient insert-plasmid assembly can be achieved by using only T5 exonuclease and Phusion DNA polymerase, without Taq DNA ligase from the original Gibson protocol, which significantly reduces the cost of the reactions. We successfully used this modified Gibson assembly protocol with two short insert-plasmid overlap regions, each counting only 15 nucleotides. PMID:27073895
Generation of DNA single-strand displacement by compromised nucleotide excision repair
Godon, Camille; Mourgues, Sophie; Nonnekens, Julie; Mourcet, Amandine; Coin, Fréderic; Vermeulen, Wim; Mari, Pierre-Olivier; Giglia-Mari, Giuseppina
2012-01-01
Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas. We show that the observed γH2AX signal can be explained by the presence of longer single-strand gaps possibly generated by strand displacement. Our in vivo measurements also indicate a strongly reduced TFIIH-XPG binding that could promote single-strand displacement at the site of UV lesions. This finding not only highlights the crucial role of XPG's interactions with TFIIH for proper NER, but also sheds new light on how a faulty DNA repair process can induce extreme genomic instability in human patients. PMID:22863773
Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui
2016-01-01
The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.
Wienholz, Franziska; Vermeulen, Wim
2017-01-01
Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761
Kozlov, Konstantin N.; Kulakovskiy, Ivan V.; Zubair, Asif; Marjoram, Paul; Lawrie, David S.; Nuzhdin, Sergey V.; Samsonova, Maria G.
2017-01-01
Annotating the genotype-phenotype relationship, and developing a proper quantitative description of the relationship, requires understanding the impact of natural genomic variation on gene expression. We apply a sequence-level model of gap gene expression in the early development of Drosophila to analyze single nucleotide polymorphisms (SNPs) in a panel of natural sequenced D. melanogaster lines. Using a thermodynamic modeling framework, we provide both analytical and computational descriptions of how single-nucleotide variants affect gene expression. The analysis reveals that the sequence variants increase (decrease) gene expression if located within binding sites of repressors (activators). We show that the sign of SNP influence (activation or repression) may change in time and space and elucidate the origin of this change in specific examples. The thermodynamic modeling approach predicts non-local and non-linear effects arising from SNPs, and combinations of SNPs, in individual fly genotypes. Simulation of individual fly genotypes using our model reveals that this non-linearity reduces to almost additive inputs from multiple SNPs. Further, we see signatures of the action of purifying selection in the gap gene regulatory regions. To infer the specific targets of purifying selection, we analyze the patterns of polymorphism in the data at two phenotypic levels: the strengths of binding and expression. We find that combinations of SNPs show evidence of being under selective pressure, while individual SNPs do not. The model predicts that SNPs appear to accumulate in the genotypes of the natural population in a way biased towards small increases in activating action on the expression pattern. Taken together, these results provide a systems-level view of how genetic variation translates to the level of gene regulatory networks via combinatorial SNP effects. PMID:28898266
Exonuclease of human DNA polymerase gamma disengages its strand displacement function.
He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney
2013-11-01
Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.
Surussawadee, Janjira; Jindamorakot, Sasitorn; Nakase, Takashi; Lee, Ching-Fu; Limtong, Savitree
2015-07-01
Five strains representing one novel anamorphic yeast species were isolated from plant leaves collected in Thailand (strains DMKU-SP186(T), ST-111 and ST-201) and Taiwan (strains FN20L02 and SM13L16). On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics and sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, they were assigned to a single novel species of the genus Hannaella. The sequences of the D1/D2 regions of the LSU rRNA genes of four of the strains (DMKU-SP186(T), ST-111, FN20L02 and SM13L16) were identical, while differing from strain ST-201 by 2 substitutions and 2 gaps. The nucleotide sequence of the ITS regions of the five strains differed from each other by between 0 and 3 nucleotide substitutions. The novel species was most closely related to Hannaella luteola, but showed 1.0-1.3% nucleotide substitutions (between 6 substitutions out of 568-606 nt and 8 substitutions, and 2 gaps out of 597 nt) in the D1/D2 region of the LSU rRNA gene and 1.4-2.0% nucleotide substitutions (6-9 substitutions out of 435 nt) in the ITS region. Ballistospores were produced by three of the strains on cornmeal agar at 15 and 20 °C after 4 weeks, while H. luteola did not produce ballistospores. The name Hannaella phyllophila sp. nov. is proposed. The type strain is DMKU-SP186(T) ( = BCC 69500(T) = NBRC 110428(T) = CBS 13921(T)).
Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant
2017-11-28
Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.
Guo, Xiaoge; Jinks-Robertson, Sue
2013-12-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.
Guo, Xiaoge; Jinks-Robertson, Sue
2013-01-01
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148
Zhang, Jing; Nie, Huagui; Wu, Zhan; Yang, Zhi; Zhang, Lijie; Xu, Xiangju; Huang, Shaoming
2014-01-21
A simple and sensitive gap-electrical biosensor based on self-catalytic growth of unmodified gold nanoparticles (AuNPs) as conductive bridges has been developed for amplifying DNA hybridization events. In this strategy, the signal amplification degree of such conductive bridges is closely related to the variation of the glucose oxidase (GOx)-like catalytic activity of AuNPs upon interaction with single- and double-stranded DNA (ssDNA and dsDNA), respectively. In the presence of target DNA, the obtained dsDNA product cannot adsorb onto the surface of AuNPs due to electrostatic interaction, which makes the unmodified AuNPs exhibit excellent GOx-like catalytic activity. Such catalytic activity can enlarge the diameters of AuNPs in the glucose and HAuCl4 solution and result in a connection between most of the AuNPs and a conductive gold film formation with a dramatically increased conductance. For the control sample, the catalytic activity sites of AuNPs are fully blocked by ssDNA due to the noncovalent interaction between nucleotide bases and AuNPs. Thus, the growth of the assembled AuNPs will not happen and the conductance between microelectrodes will be not changed. Under the optimal experimental conditions, the developed strategy exhibited a sensitive response to target DNA with a high signal-to-noise ratio. Moreover, this strategy was also demonstrated to provide excellent differentiation ability for single-nucleotide polymorphism. Such performances indicated the great potential of this label-free electrical strategy for clinical diagnostics and genetic analysis under real biological sample separation.
Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.
Wood-Bouwens, Christina M; Ji, Hanlee P
2018-01-01
Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.
Im, JongOne; Sen, Suman; Lindsay, Stuart; Zhang, Peiming
2018-06-28
In the present study, we demonstrate a tunneling nanogap technique to identify individual RNA nucleotides, which can be used as a mechanism to read the nucleobases for direct sequencing of RNA in a solid-state nanopore. The tunneling nanogap is composed of two electrodes separated by a distance of <3 nm and functionalized with a recognition molecule. When a chemical entity is captured in the gap, it generates electron tunneling currents, a process we call recognition tunneling (RT). Using RT nanogaps created in a scanning tunneling microscope (STM), we acquired the electron tunneling signals for the canonical and two modified RNA nucleotides. To call the individual RNA nucleotides from the RT data, we adopted a machine learning algorithm, support vector machine (SVM), for the data analysis. Through the SVM, we were able to identify the individual RNA nucleotides and distinguish them from their DNA counterparts with reasonably high accuracy. Since each RNA nucleoside contains a hydroxyl group at the 2'-position of its sugar ring in an RNA strand, it allows for the formation of a tunneling junction at a larger nanogap compared to the DNA nucleoside in a DNA strand, which lacks the 2' hydroxyl group. It also proves advantageous for the manufacture of RT devices. This study is a proof-of-principle demonstration for the development of an RT nanopore device for directly sequencing single RNA molecules, including those bearing modifications.
Structural basis for the D-stereoselectivity of human DNA polymerase β
Vyas, Rajan; Reed, Andrew J.; Raper, Austin T.; Zahurancik, Walter J.; Wallenmeyer, Petra C.
2017-01-01
Abstract Nucleoside reverse transcriptase inhibitors (NRTIs) with L-stereochemistry have long been an effective treatment for viral infections because of the strong D-stereoselectivity exhibited by human DNA polymerases relative to viral reverse transcriptases. The D-stereoselectivity of DNA polymerases has only recently been explored structurally and all three DNA polymerases studied to date have demonstrated unique stereochemical selection mechanisms. Here, we have solved structures of human DNA polymerase β (hPolβ), in complex with single-nucleotide gapped DNA and L-nucleotides and performed pre-steady-state kinetic analysis to determine the D-stereoselectivity mechanism of hPolβ. Beyond a similar 180° rotation of the L-nucleotide ribose ring seen in other studies, the pre-catalytic ternary crystal structures of hPolβ, DNA and L-dCTP or the triphosphate forms of antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP) provide little structural evidence to suggest that hPolβ follows the previously characterized mechanisms of D-stereoselectivity. Instead, hPolβ discriminates against L-stereochemistry through accumulation of several active site rearrangements that lead to a decreased nucleotide binding affinity and incorporation rate. The two NRTIs escape some of the active site selection through the base and sugar modifications but are selected against through the inability of hPolβ to complete thumb domain closure. PMID:28402499
DNA barcoding a nightmare taxon: assessing barcode index numbers and barcode gaps for sweat bees.
Gibbs, Jason
2018-01-01
There is an ongoing campaign to DNA barcode the world's >20 000 bee species. Recent revisions of Lasioglossum (Dialictus) (Hymenoptera: Halictidae) for Canada and the eastern United States were completed using integrative taxonomy. DNA barcode data from 110 species of L. (Dialictus) are examined for their value in identification and discovering additional taxonomic diversity. Specimen identification success was estimated using the best close match method. Error rates were 20% relative to current taxonomic understanding. Barcode Index Numbers (BINs) assigned using Refined Single Linkage Analysis (RESL) and barcode gaps using the Automatic Barcode Gap Discovery (ABGD) method were also assessed. RESL was incongruent for 44.5% of species, although some cryptic diversity may exist. Forty-three of 110 species were part of merged BINs with multiple species. The barcode gap is non-existent for the data set as a whole and ABGD showed levels of discordance similar to the RESL. The viridatum species-group is particularly problematic, so that DNA barcodes alone would be misleading for species delimitation and specimen identification. Character-based methods using fixed nucleotide substitutions could improve specimen identification success in some cases. The use of DNA barcoding for species discovery for standard taxonomic practice in the absence of a well-defined barcode gap is discussed.
Electron tomographic analysis of gap junctions in lateral giant fibers of crayfish.
Ohta, Yasumi; Nishikawa, Kouki; Hiroaki, Yoko; Fujiyoshi, Yoshinori
2011-07-01
Innexin-gap junctions in crayfish lateral giant fibers (LGFs) have an important role in escape behavior as a key component of rapid signal transduction. Knowledge of the structure and function of characteristic vesicles on the both sides of the gap junction, however, is limited. We used electron tomography to analyze the three-dimensional structure of crayfish gap junctions and gap junctional vesicles (GJVs). Tomographic analyses showed that some vesicles were anchored to innexons and almost all vesicles were connected by thin filaments. High densities inside the GJVs and projecting densities on the GJV membranes were observed in fixed and stained samples. Because the densities inside synaptic vesicles were dependent on the fixative conditions, different fixative conditions were used to elucidate the molecules included in the GJVs. The projecting densities on the GJVs were studied by immunoelectron microscopy with anti-vesicular monoamine transporter (anti-VMAT) and anti-vesicular nucleotide transporter (anti-VNUT) antibodies. Some of the projecting densities were labeled by anti-VNUT, but not anti-VMAT. Three-dimensional analyses of GJVs and excitatory chemical synaptic vesicles (CSVs) revealed clear differences in their sizes and central densities. Furthermore, the imaging data obtained under different fixative conditions and the immunolabeling results, in which GJVs were positively labeled for anti-VNUT but excitatory CSVs were not, support our model that GJVs contain nucleotides and excitatory CSVs do not. We propose a model in which characteristic GJVs containing nucleotides play an important role in the signal processing in gap junctions of crayfish LGFs. Copyright © 2011 Elsevier Inc. All rights reserved.
Maltseva, Ekaterina A.
2018-01-01
Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA. PMID:29320546
Krasikova, Yuliya S; Rechkunova, Nadejda I; Maltseva, Ekaterina A; Lavrik, Olga I
2018-01-01
Replication protein A (RPA) and the xeroderma pigmentosum group A (XPA) protein are indispensable for both pathways of nucleotide excision repair (NER). Here we analyze the interaction of RPA and XPA with DNA containing a flap and different size gaps that imitate intermediates of the late NER stages. Using gel mobility shift assays, we found that RPA affinity for DNA decreased when DNA contained both extended gap and similar sized flap in comparison with gapped-DNA structure. Moreover, crosslinking experiments with the flap-gap DNA revealed that RPA interacts mainly with the ssDNA platform within the long gap and contacts flap in DNA with a short gap. XPA exhibits higher affinity for bubble-DNA structures than to flap-gap-containing DNA. Protein titration analysis showed that formation of the RPA-XPA-DNA ternary complex depends on the protein concentration ratio and these proteins can function as independent players or in tandem. Using fluorescently-labelled RPA, direct interaction of this protein with XPA was detected and characterized quantitatively. The data obtained allow us to suggest that XPA can be involved in the post-incision NER stages via its interaction with RPA.
Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.
2016-01-01
The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325
Functional analysis of regulatory single-nucleotide polymorphisms.
Pampín, Sandra; Rodríguez-Rey, José C
2007-04-01
The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
Chen, Zhongxue; Ng, Hon Keung Tony; Li, Jing; Liu, Qingzhong; Huang, Hanwen
2017-04-01
In the past decade, hundreds of genome-wide association studies have been conducted to detect the significant single-nucleotide polymorphisms that are associated with certain diseases. However, most of the data from the X chromosome were not analyzed and only a few significant associated single-nucleotide polymorphisms from the X chromosome have been identified from genome-wide association studies. This is mainly due to the lack of powerful statistical tests. In this paper, we propose a novel statistical approach that combines the information of single-nucleotide polymorphisms on the X chromosome from both males and females in an efficient way. The proposed approach avoids the need of making strong assumptions about the underlying genetic models. Our proposed statistical test is a robust method that only makes the assumption that the risk allele is the same for both females and males if the single-nucleotide polymorphism is associated with the disease for both genders. Through simulation study and a real data application, we show that the proposed procedure is robust and have excellent performance compared to existing methods. We expect that many more associated single-nucleotide polymorphisms on the X chromosome will be identified if the proposed approach is applied to current available genome-wide association studies data.
USDA-ARS?s Scientific Manuscript database
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...
Oligonucleotide gap-fill ligation for mutation detection and sequencing in situ
Mignardi, Marco; Mezger, Anja; Qian, Xiaoyan; La Fleur, Linnea; Botling, Johan; Larsson, Chatarina; Nilsson, Mats
2015-01-01
In clinical diagnostics a great need exists for targeted in situ multiplex nucleic acid analysis as the mutational status can offer guidance for effective treatment. One well-established method uses padlock probes for mutation detection and multiplex expression analysis directly in cells and tissues. Here, we use oligonucleotide gap-fill ligation to further increase specificity and to capture molecular substrates for in situ sequencing. Short oligonucleotides are joined at both ends of a padlock gap probe by two ligation events and are then locally amplified by target-primed rolling circle amplification (RCA) preserving spatial information. We demonstrate the specific detection of the A3243G mutation of mitochondrial DNA and we successfully characterize a single nucleotide variant in the ACTB mRNA in cells by in situ sequencing of RCA products generated by padlock gap-fill ligation. To demonstrate the clinical applicability of our assay, we show specific detection of a point mutation in the EGFR gene in fresh frozen and formalin-fixed, paraffin-embedded (FFPE) lung cancer samples and confirm the detected mutation by in situ sequencing. This approach presents several advantages over conventional padlock probes allowing simpler assay design for multiplexed mutation detection to screen for the presence of mutations in clinically relevant mutational hotspots directly in situ. PMID:26240388
NASA Astrophysics Data System (ADS)
Wang, Quan; Serban, Andrew J.; Wachter, Rebekka M.; Moerner, W. E.
2018-03-01
Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ˜0.1 s-1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.
Wang, Quan; Serban, Andrew J; Wachter, Rebekka M; Moerner, W E
2018-03-28
Oligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis. We directly observed monomers, dimers, and a tetramer/hexamer mixture and extracted their fractional abundance as a function of protein concentration. We show that the oligomerization pathway of Nt-Rca is nucleotide dependent: ATPγS binding strongly promotes tetramer/hexamer formation from dimers and results in a preferred tetramer/hexamer population for concentrations in the 1-10 μM range. Furthermore, we directly observed dynamic assembly and disassembly processes of single complexes in real time and from there estimated the rate of subunit exchange to be ∼0.1 s -1 with ATPγS. On the other hand, ADP binding destabilizes Rca complexes by enhancing the rate of subunit exchange by >2 fold. These observations provide a quantitative starting point to elucidate the structure-function relations of Nt-Rca complexes. We envision the method to fill a critical gap in defining and quantifying protein assembly pathways in the small-oligomer regime.
Choudhry, Shweta; Baskin, Laurence S; Lammer, Edward J; Witte, John S; Dasgupta, Sudeshna; Ma, Chen; Surampalli, Abhilasha; Shen, Joel; Shaw, Gary M; Carmichael, Suzan L
2015-05-01
Estrogenic endocrine disruptors acting via estrogen receptors α (ESR1) and β (ESR2) have been implicated in the etiology of hypospadias, a common congenital malformation of the male external genitalia. We determined the association of single nucleotide polymorphisms in ESR1 and ESR2 genes with hypospadias in a racially/ethnically diverse study population of California births. We investigated the relationship between hypospadias and 108 ESR1 and 36 ESR2 single nucleotide polymorphisms in 647 cases and 877 population based nonmalformed controls among infants born in selected California counties from 1990 to 2003. Subgroup analyses were performed by race/ethnicity (nonHispanic white and Hispanic subjects) and by hypospadias severity (mild to moderate and severe). Odds ratios for 33 of the 108 ESR1 single nucleotide polymorphisms had p values less than 0.05 (p = 0.05 to 0.007) for risk of hypospadias. However, none of the 36 ESR2 single nucleotide polymorphisms was significantly associated. In stratified analyses the association results were consistent by disease severity but different sets of single nucleotide polymorphisms were significantly associated with hypospadias in nonHispanic white and Hispanic subjects. Due to high linkage disequilibrium across the single nucleotide polymorphisms, haplotype analyses were conducted and identified 6 haplotype blocks in ESR1 gene that had haplotypes significantly associated with an increased risk of hypospadias (OR 1.3 to 1.8, p = 0.04 to 0.00001). Similar to single nucleotide polymorphism analysis, different ESR1 haplotypes were associated with risk of hypospadias in nonHispanic white and Hispanic subjects. No significant haplotype association was observed for ESR2. The data provide evidence that ESR1 single nucleotide polymorphisms and haplotypes influence the risk of hypospadias in white and Hispanic subjects, and warrant further examination in other study populations. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Compositions and methods for detecting single nucleotide polymorphisms
Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.
2016-11-22
Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi
2017-01-01
Background: Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. Aims: To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Study Design: Case-control study. Methods: The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Results: Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. Conclusion: The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients. PMID:28443596
Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi
2017-05-05
Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Case-control study. The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients.
Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.
Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A
2010-08-01
Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on clinicopathological data can be significantly improved by including patient genetic information. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Wu, Lei; He, Yao; Zhang, Di
2015-11-01
To systematically evaluate the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout in East Asian population. The literature retrieval was conducted by using English databases (Medline, EMbase), Chinese databases (CNKI, Vip, Wanfang, SinaMed) and others to collect the published papers on the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout by the end of December 2014. Meta-analysis was performed with software Stata 12.0. Nine studies were included. There were significant associations between increased risk of gout and single nucleotide polymorphism of rs2231142, the combined OR was 2.04 (95%CI: 1.82-2.28) for A allele and C allele, 1.97 (95%CI: 1.57-2.48) for CA and CC, 3.71 (95%CI: 3.07-4.47) for AA and CC. Sex and region specific subgroup analysis showed less heterogeneity. There is significant association between gout and single nucleotide polymorphism of rs2231142 in East Asian population, and A allele is a high risk gene for gout.
CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population.
Zhao, Yun-Jing; Wang, Yue-Ping; Yang, Wen-Zhu; Sun, Hong-Wei; Ma, Hong-Wei; Zhao, Ya-Ru
2015-11-01
Speech sound disorder is the most common communication disorder. Some investigations support the possibility that the CNTNAP2 gene might be involved in the pathogenesis of speech-related diseases. To investigate single-nucleotide polymorphisms in the CNTNAP2 gene, 300 unrelated speech sound disorder patients and 200 normal controls were included in the study. Five single-nucleotide polymorphisms were amplified and directly sequenced. Significant differences were found in the genotype (P = .0003) and allele (P = .0056) frequencies of rs2538976 between patients and controls. The excess frequency of the A allele in the patient group remained significant after Bonferroni correction (P = .0280). A significant haplotype association with rs2710102T/+rs17236239A/+2538976A/+2710117A (P = 4.10e-006) was identified. A neighboring single-nucleotide polymorphism, rs10608123, was found in complete linkage disequilibrium with rs2538976, and the genotypes exactly corresponded to each other. The authors propose that these CNTNAP2 variants increase the susceptibility to speech sound disorder. The single-nucleotide polymorphisms rs10608123 and rs2538976 may merge into one single-nucleotide polymorphism. © The Author(s) 2015.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Grotegut, Chad A; Ngan, Emily; Garrett, Melanie E; Miranda, Marie Lynn; Ashley-Koch, Allison E; Swamy, Geeta K
2017-09-01
Oxytocin is a potent uterotonic agent that is widely used for induction and augmentation of labor. Oxytocin has a narrow therapeutic index and the optimal dosing for any individual woman varies widely. The objective of this study was to determine whether genetic variation in the oxytocin receptor (OXTR) or in the gene encoding G protein-coupled receptor kinase 6 (GRK6), which regulates desensitization of the oxytocin receptor, could explain variation in oxytocin dosing and labor outcomes among women being induced near term. Pregnant women with a singleton gestation residing in Durham County, NC, were prospectively enrolled as part of the Healthy Pregnancy, Healthy Baby cohort study. Those women undergoing an induction of labor at 36 weeks or greater were genotyped for 18 haplotype-tagging single-nucleotide polymorphisms in OXTR and 7 haplotype-tagging single-nucleotide polymorphisms in GRK6 using TaqMan assays. Linear regression was used to examine the relationship between maternal genotype and maximal oxytocin infusion rate, total oxytocin dose received, and duration of labor. Logistic regression was used to test for the association of maternal genotype with mode of delivery. For each outcome, backward selection techniques were utilized to control for important confounding variables and additive genetic models were used. Race/ethnicity was included in all models because of differences in allele frequencies across populations, and Bonferroni correction for multiple testing was used. DNA was available from 482 women undergoing induction of labor at 36 weeks or greater. Eighteen haplotype-tagging single-nucleotide polymorphisms within OXTR and 7 haplotype-tagging single-nucleotide polymorphisms within GRK6 were examined. Five single-nucleotide polymorphisms in OXTR showed nominal significance with maximal infusion rate of oxytocin, and two single-nucleotide polymorphisms in OXTR were associated with total oxytocin dose received. One single-nucleotide polymorphism in OXTR and two single-nucleotide polymorphisms in GRK6 were associated with duration of labor, one of which met the multiple testing threshold (P = .0014, rs2731664 [GRK6], mean duration of labor, 17.7 hours vs 20.2 hours vs 23.5 hours for AA, AC, and CC genotypes, respectively). Three single-nucleotide polymorphisms, two in OXTR and one in GRK6, showed nominal significance with mode of delivery. Genetic variation in OXTR and GRK6 is associated with the amount of oxytocin required as well as the duration of labor and risk for cesarean delivery among women undergoing induction of labor near term. With further research, pharmacogenomic approaches may potentially be utilized to develop personalized treatment to improve safety and efficacy outcomes among women undergoing induction of labor. Copyright © 2017 Elsevier Inc. All rights reserved.
Kovaliov, Marina; Weitman, Michal; Major, Dan Thomas; Fischer, Bilha
2014-08-01
To expand the arsenal of fluorescent cytidine analogues for the detection of genetic material, we synthesized para-substituted phenyl-imidazolo-cytidine ((Ph)ImC) analogues 5a-g and established a relationship between their structure and fluorescence properties. These analogues were more emissive than cytidine (λem 398-420 nm, Φ 0.009-0.687), and excellent correlation was found between Φ of 5a-g and σp(-) of the substituent on the phenyl-imidazolo moiety (R(2) = 0.94). Calculations suggested that the dominant tautomer of (Ph)ImC in methanol solution is identical to that of cytidine. DFT calculations of the stable tautomer of selected (Ph)ImC analogues suggested a relationship between the HOMO-LUMO gap and Φ and explained the loss of fluorescence in the nitro analogue. Incorporation of the CF3-(Ph)ImdC analogue into a DNA probe resulted in 6-fold fluorescence quenching of the former. A 17-fold reduction of fluorescence was observed for the G-matched duplex vs ODN(CF3-(Ph)ImdC), while for A-mismatched duplex, only a 2-fold decrease was observed. Furthermore, since the quantum yield of ODN(CF3-(Ph)ImdC):ODN(G) was reduced 17-fold vs that of a single strand, whereas that of ODN(CF3-(Ph)ImdC):ORN(G) was reduced only 3.8-fold, ODN(CF3-(Ph)ImdC) appears to be a DNA-selective probe. We conclude that the ODN(CF3-(Ph)ImdC) probe, exhibiting emission sensitivity upon single nucleotide replacement, may be potentially useful for DNA single nucleotide polymorphism (SNP) typing.
Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet
2017-04-15
Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca 2+ influx by opening CNG channels in a cAMP-dependent manner. Ca 2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
A short review of variants calling for single-cell-sequencing data with applications.
Wei, Zhuohui; Shu, Chang; Zhang, Changsheng; Huang, Jingying; Cai, Hongmin
2017-11-01
The field of single-cell sequencing is fleetly expanding, and many techniques have been developed in the past decade. With this technology, biologists can study not only the heterogeneity between two adjacent cells in the same tissue or organ, but also the evolutionary relationships and degenerative processes in a single cell. Calling variants is the main purpose in analyzing single cell sequencing (SCS) data. Currently, some popular methods used for bulk-cell-sequencing data analysis are tailored directly to be applied in dealing with SCS data. However, SCS requires an extra step of genome amplification to accumulate enough quantity for satisfying sequencing needs. The amplification yields large biases and thus raises challenge for using the bulk-cell-sequencing methods. In order to provide guidance for the development of specialized analyzed methods as well as using currently developed tools for SNS, this paper aims to bridge the gap. In this paper, we firstly introduced two popular genome amplification methods and compared their capabilities. Then we introduced a few popular models for calling single-nucleotide polymorphisms and copy-number variations. Finally, break-through applications of SNS were summarized to demonstrate its potential in researching cell evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q
2010-11-01
Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.
Electrical detection and quantification of single and mixed DNA nucleotides in suspension
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al; Panicker, Neena G.; Rizvi, Tahir A.; Mustafa, Farah
2016-09-01
High speed sequential identification of the building blocks of DNA, (deoxyribonucleotides or nucleotides for short) without labeling or processing in long reads of DNA is the need of the hour. This can be accomplished through exploiting their unique electrical properties. In this study, the four different types of nucleotides that constitute a DNA molecule were suspended in a buffer followed by performing several types of electrical measurements. These electrical parameters were then used to quantify the suspended DNA nucleotides. Thus, we present a purely electrical counting scheme based on the semiconductor theory that allows one to determine the number of nucleotides in a solution by measuring their capacitance-voltage dependency. The nucleotide count was observed to be similar to the multiplication of the corresponding dopant concentration and debye volume after de-embedding the buffer contribution. The presented approach allows for a fast and label-free quantification of single and mixed nucleotides in a solution.
Analysis of correlation structures in the Synechocystis PCC6803 genome.
Wu, Zuo-Bing
2014-12-01
Transfer of nucleotide strings in the Synechocystis sp. PCC6803 genome is investigated to exhibit periodic and non-periodic correlation structures by using the recurrence plot method and the phase space reconstruction technique. The periodic correlation structures are generated by periodic transfer of several substrings in long periodic or non-periodic nucleotide strings embedded in the coding regions of genes. The non-periodic correlation structures are generated by non-periodic transfer of several substrings covering or overlapping with the coding regions of genes. In the periodic and non-periodic transfer, some gaps divide the long nucleotide strings into the substrings and prevent their global transfer. Most of the gaps are either the replacement of one base or the insertion/reduction of one base. In the reconstructed phase space, the points generated from two or three steps for the continuous iterative transfer via the second maximal distance can be fitted by two lines. It partly reveals an intrinsic dynamics in the transfer of nucleotide strings. Due to the comparison of the relative positions and lengths, the substrings concerned with the non-periodic correlation structures are almost identical to the mobile elements annotated in the genome. The mobile elements are thus endowed with the basic results on the correlation structures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Revisiting the Roco G-protein cycle.
Terheyden, Susanne; Ho, Franz Y; Gilsbach, Bernd K; Wittinghofer, Alfred; Kortholt, Arjan
2015-01-01
Mutations in leucine-rich-repeat kinase 2 (LRRK2) are the most frequent cause of late-onset Parkinson's disease (PD). LRRK2 belongs to the Roco family of proteins which share a conserved Ras-like G-domain (Roc) and a C-terminal of Roc (COR) domain tandem. The nucleotide state of small G-proteins is strictly controlled by guanine-nucleotide-exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because of contradictory structural and biochemical data, the regulatory mechanism of the LRRK2 Roc G-domain and the RocCOR tandem is still under debate. In the present study, we solved the first nucleotide-bound Roc structure and used LRRK2 and bacterial Roco proteins to characterize the RocCOR function in more detail. Nucleotide binding induces a drastic structural change in the Roc/COR domain interface, a region strongly implicated in patients with an LRRK2 mutation. Our data confirm previous assumptions that the C-terminal subdomain of COR functions as a dimerization device. We show that the dimer formation is independent of nucleotide. The affinity for GDP/GTP is in the micromolar range, the result of which is high dissociation rates in the s-1 range. Thus Roco proteins are unlikely to need GEFs to achieve activation. Monomeric LRRK2 and Roco G-domains have a similar low GTPase activity to small G-proteins. We show that GTPase activity in bacterial Roco is stimulated by the nucleotide-dependent dimerization of the G-domain within the complex. We thus propose that the Roco proteins do not require GAPs to stimulate GTP hydrolysis but stimulate each other by one monomer completing the catalytic machinery of the other.
Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li
2009-03-01
The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.
Aspergillus and Penicillium identification using DNA sequences: Barcode or MLST?
USDA-ARS?s Scientific Manuscript database
Current methods in DNA technology can detect single nucleotide polymorphisms with measurable accuracy using several different approaches appropriate for different uses. If there are even single nucleotide differences that are invariant markers of the species, we can accomplish identification through...
2013-01-01
Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216
Nucleotide cleaving agents and method
Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.
2000-01-01
The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.
New t-gap insertion-deletion-like metrics for DNA hybridization thermodynamic modeling.
D'yachkov, Arkadii G; Macula, Anthony J; Pogozelski, Wendy K; Renz, Thomas E; Rykov, Vyacheslav V; Torney, David C
2006-05-01
We discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes. One version of our metric gives the maximum number of stacked pairs of hydrogen bonded nucleotide base pairs that can be present in any secondary structure in a hybridized DNA duplex without pseudoknots. Thermodynamic distance functions are important components in the construction of DNA codes, and DNA codes are important components in biomolecular computing, nanotechnology, and other biotechnical applications that employ DNA hybridization assays. We show how our new distances can be calculated by using a dynamic programming method, and we derive a Varshamov-Gilbert-like lower bound on the size of some of codes using these distance functions as constraints. We also discuss software implementation of our DNA code design methods.
The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B
NASA Astrophysics Data System (ADS)
Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth; Zhang, Jian
2016-02-01
Ras mediates cell proliferation, survival and differentiation. Mutations in K-Ras4B are predominant at residues G12, G13 and Q61. Even though all impair GAP-assisted GTP → GDP hydrolysis, the mutation frequencies of K-Ras4B in human cancers vary. Here we aim to figure out their mechanisms and differential oncogenicity. In total, we performed 6.4 μs molecular dynamics simulations on the wild-type K-Ras4B (K-Ras4BWT-GTP/GDP) catalytic domain, the K-Ras4BWT-GTP-GAP complex, and the mutants (K-Ras4BG12C/G12D/G12V-GTP/GDP, K-Ras4BG13D-GTP/GDP, K-Ras4BQ61H-GTP/GDP) and their complexes with GAP. In addition, we simulated ‘exchanged’ nucleotide states. These comprehensive simulations reveal that in solution K-Ras4BWT-GTP exists in two, active and inactive, conformations. Oncogenic mutations differentially elicit an inactive-to-active conformational transition in K-Ras4B-GTP; in K-Ras4BG12C/G12D-GDP they expose the bound nucleotide which facilitates the GDP-to-GTP exchange. These mechanisms may help elucidate the differential mutational statistics in K-Ras4B-driven cancers. Exchanged nucleotide simulations reveal that the conformational transition is more accessible in the GTP-to-GDP than in the GDP-to-GTP exchange. Importantly, GAP not only donates its R789 arginine finger, but stabilizes the catalytically-competent conformation and pre-organizes catalytic residue Q61; mutations disturb the R789/Q61 organization, impairing GAP-mediated GTP hydrolysis. Together, our simulations help provide a mechanistic explanation of key mutational events in one of the most oncogenic proteins in cancer.
Chen, Sherry Xi; Seelig, Georg
2016-04-20
Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.
Mustafa, Saima; Fatima, Hira; Fatima, Sadia; Khosa, Tafheem; Akbar, Atif; Shaikh, Rehan Sadiq; Iqbal, Furhan
2018-01-01
To find out a correlation between the single nucleotide polymorphisms in cluster of differentiation 28 and cluster of differentiation 40 genes with Graves' disease, if any. This case-control study was conducted at the Multan Institute of Nuclear Medicine and Radiotherapy, Multan, Pakistan, and comprised blood samples of Graves' disease patients and controls. Various risk factors were also correlated either with the genotype at each single-nucleotide polymorphism or with various combinations of genotypes studied during present investigation. Of the 160 samples, there were 80(50%) each from patients and controls. Risk factor analysis revealed that gender (p=0.008), marital status (p<0.001), education (p<0.001), smoking (p<0.001), tri-iodothyronine (P <0.001), thyroxin (p<0.001) and thyroid-stimulating hormone (p<0.000) levels in blood were associated with Graves' disease. Both single-nucleotide polymorphisms in both genes were not associated with Graves' disease, either individually or in any combined form.
Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E
2015-01-01
The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.
Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue
2016-01-01
DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962
Germline contamination and leakage in whole genome somatic single nucleotide variant detection.
Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C
2018-01-31
The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.
Li, Su-Xia
2004-12-01
Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
USDA-ARS?s Scientific Manuscript database
High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki
2013-09-23
Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.
Re-Assembly and Analysis of an Ancient Variola Virus Genome.
Smithson, Chad; Imbery, Jacob; Upton, Chris
2017-09-08
We report a major improvement to the assembly of published short read sequencing data from an ancient variola virus (VARV) genome by the removal of contig-capping sequencing tags and manual searches for gap-spanning reads. The new assembly, together with camelpox and taterapox genomes, permitted new dates to be calculated for the last common ancestor of all VARV genomes. The analysis of recently sequenced VARV-like cowpox virus genomes showed that single nucleotide polymorphisms (SNPs) and amino acid changes in the vaccinia virus (VACV)-Cop-O1L ortholog, predicted to be associated with VARV host specificity and virulence, were introduced into the lineage before the divergence of these viruses. A comparison of the ancient and modern VARV genome sequences also revealed a measurable drift towards adenine + thymine (A + T) richness.
Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai
2010-01-01
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705
USDA-ARS?s Scientific Manuscript database
Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...
Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms
USDA-ARS?s Scientific Manuscript database
We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants from important onion populations from major production regions world-wide and the likely progenitor of onion, Allium vavilovii. Genotypes at 1226 SNPs were used to estimate genetic relati...
USDA-ARS?s Scientific Manuscript database
Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphism...
Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
Laopichienpong, Nararat; Muangmai, Narongrit; Supikamolseni, Arrjaree; Twilprawat, Panupon; Chanhome, Lawan; Suntrarachun, Sunutcha; Peyachoknagul, Surin; Srikulnath, Kornsorn
2016-12-15
DNA barcodes of mitochondrial cytochrome c oxidase I (COI), cytochrome b (Cytb) genes, and their combined data sets were constructed from 35 snake species in Thailand. No barcoding gap was detected in either of the two genes from the observed intra- and interspecific sequence divergences. Intra- and interspecific sequence divergences of the COI gene differed 14 times, with barcode cut-off scores ranging over 2%-4% for threshold values differentiated among most of the different species; the Cytb gene differed 6 times with cut-off scores ranging over 2%-6%. Thirty-five specific nucleotide mutations were also found at interspecific level in the COI gene, identifying 18 snake species, but no specific nucleotide mutation was observed for Cytb in any single species. This suggests that COI barcoding was a better marker than Cytb. Phylogenetic clustering analysis indicated that most species were represented by monophyletic clusters, suggesting that these snake species could be clearly differentiated using COI barcodes. However, the two-marker combination of both COI and Cytb was more effective, differentiating snake species by over 2%-4%, and reducing species numbers in the overlap value between intra- and interspecific divergences. Three species delimitation algorithms (general mixed Yule-coalescent, automatic barcoding gap detection, and statistical parsimony network analysis) were extensively applied to a wide range of snakes based on both barcodes. This revealed cryptic diversity for eleven snake species in Thailand. In addition, eleven accessions from the database previously grouped under the same species were represented at different species level, suggesting either high genetic diversity, or the misidentification of these sequences in the database as a consequence of cryptic species. Copyright © 2016 Elsevier B.V. All rights reserved.
A novel MALDI–TOF based methodology for genotyping single nucleotide polymorphisms
Blondal, Thorarinn; Waage, Benedikt G.; Smarason, Sigurdur V.; Jonsson, Frosti; Fjalldal, Sigridur B.; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V.
2003-01-01
A new MALDI–TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3′-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708
Biological nanopore MspA for DNA sequencing
NASA Astrophysics Data System (ADS)
Manrao, Elizabeth A.
Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.
Kurushima, J. D.; Lipinski, M. J.; Gandolfi, B.; Froenicke, L.; Grahn, J. C.; Grahn, R. A.; Lyons, L. A.
2012-01-01
Summary Both cat breeders and the lay public have interests in the origins of their pets, not only in the genetic identity of the purebred individuals, but also the historical origins of common household cats. The cat fancy is a relatively new institution with over 85% of its 40–50 breeds arising only in the past 75 years, primarily through selection on single-gene aesthetic traits. The short, yet intense cat breed history poses a significant challenge to the development of a genetic marker-based breed identification strategy. Using different breed assignment strategies and methods, 477 cats representing 29 fancy breeds were analysed with 38 short tandem repeats, 148 intergenic and five phenotypic single nucleotide polymorphisms. Results suggest the frequentist method of Paetkau (accuracy single nucleotide polymorphisms = 0.78, short tandem repeats = 0.88) surpasses the Bayesian method of Rannala and Mountain (single nucleotide polymorphisms = 0.56, short tandem repeats = 0.83) for accurate assignment of individuals to the correct breed. Additionally, a post-assignment verification step with the five phenotypic single nucleotide polymorphisms accurately identified between 0.31 and 0.58 of the mis-assigned individuals raising the sensitivity of assignment with the frequentist method to 0.89 and 0.92 single nucleotide polymorphisms and short tandem repeats respectively. This study provides a novel multi-step assignment strategy and suggests that, despite their short breed history and breed family groupings, a majority of cats can be assigned to their proper breed or population of origin, i.e. race. PMID:23171373
New insights into the phylogenetics and population structure of the prairie falcon (Falco mexicanus)
Doyle, Jacqueline M.; Bell, Douglas A.; Bloom, Peter H.; Emmons, Gavin; Fesnock, Amy; Katzner, Todd; LePre, Larry; Leonard, Kolbe; SanMiguel, Phillip; Westerman, Rick; DeWoody, J. Andrew
2018-01-01
BackgroundManagement requires a robust understanding of between- and within-species genetic variability, however such data are still lacking in many species. For example, although multiple population genetics studies of the peregrine falcon (Falco peregrinus) have been conducted, no similar studies have been done of the closely-related prairie falcon (F. mexicanus) and it is unclear how much genetic variation and population structure exists across the species’ range. Furthermore, the phylogenetic relationship of F. mexicanus relative to other falcon species is contested. We utilized a genomics approach (i.e., genome sequencing and assembly followed by single nucleotide polymorphism genotyping) to rapidly address these gaps in knowledge.ResultsWe sequenced the genome of a single female prairie falcon and generated a 1.17 Gb (gigabases) draft genome assembly. We generated maximum likelihood phylogenetic trees using complete mitochondrial genomes as well as nuclear protein-coding genes. This process provided evidence that F. mexicanus is an outgroup to the clade that includes the peregrine falcon and members of the subgenus Hierofalco. We annotated > 16,000 genes and almost 600,000 high-quality single nucleotide polymorphisms (SNPs) in the nuclear genome, providing the raw material for a SNP assay design featuring > 140 gene-associated markers and a molecular-sexing marker. We subsequently genotyped ~ 100 individuals from California (including the San Francisco East Bay Area, Pinnacles National Park and the Mojave Desert) and Idaho (Snake River Birds of Prey National Conservation Area). We tested for population structure and found evidence that individuals sampled in California and Idaho represent a single panmictic population.ConclusionsOur study illustrates how genomic resources can rapidly shed light on genetic variability in understudied species and resolve phylogenetic relationships. Furthermore, we found evidence of a single, randomly mating population of prairie falcons across our sampling locations. Prairie falcons are highly mobile and relatively rare long-distance dispersal events may promote gene flow throughout the range. As such, California’s prairie falcons might be managed as a single population, indicating that management actions undertaken to benefit the species at the local level have the potential to influence the species as a whole.
USDA-ARS?s Scientific Manuscript database
The objective of this study is to investigate single nucleotide polymorphism (SNP) genotypes imputation of Hereford cattle. Purebred Herefords were from two sources, Line 1 Hereford (N=240) and representatives of Industry Herefords (N=311). Using different reference panels of 62 and 494 males with 1...
USDA-ARS?s Scientific Manuscript database
Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...
USDA-ARS?s Scientific Manuscript database
Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...
Prospects for inferring pairwise relationships with single nucleotide polymorphisms
Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody
2003-01-01
An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...
USDA-ARS?s Scientific Manuscript database
Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...
USDA-ARS?s Scientific Manuscript database
Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...
Yu, Hong; Liu, Jun; Yang, Aiping; Yang, Guohui; Yang, Wenjun; Lei, Heyue; Quan, Jianjun; Zhang, Zengyu
2016-04-01
Genetic factors play an important role in childhood autism. This study is to determine the association of single-nucleotide polymorphisms in dopa decarboxylase (DDC) and dopamine receptor-1 (DRD1) genes with childhood autism, in a Chinese Han population. A total of 211 autistic children and 250 age- and gender-matched healthy controls were recruited. The severity of disease was determined by Children Autism Rating Scale scores. TaqMan Probe by real-time polymerase chain reaction was used to determine genotypes and allele frequencies of single-nucleotide polymorphism rs6592961 in DDC and rs251937 in DRD1. Case-control and case-only studies were respectively performed, to determine the contribution of both single-nucleotide polymorphisms to the predisposition of disease and its severity. Our results showed that there was no significant association of the genotypes and allele frequencies of both single-nucleotide polymorphisms concerning childhood autism and its severity. More studies with larger samples are needed to corroborate their predicting roles. © The Author(s) 2015.
Single-molecule comparison of DNA Pol I activity with native and analog nucleotides
NASA Astrophysics Data System (ADS)
Gul, Osman; Olsen, Tivoli; Choi, Yongki; Corso, Brad; Weiss, Gregory; Collins, Philip
2014-03-01
DNA polymerases are critical enzymes for DNA replication, and because of their complex catalytic cycle they are excellent targets for investigation by single-molecule experimental techniques. Recently, we studied the Klenow fragment (KF) of DNA polymerase I using a label-free, electronic technique involving single KF molecules attached to carbon nanotube transistors. The electronic technique allowed long-duration monitoring of a single KF molecule while processing thousands of template strands. Processivity of up to 42 nucleotide bases was directly observed, and statistical analysis of the recordings determined key kinetic parameters for the enzyme's open and closed conformations. Subsequently, we have used the same technique to compare the incorporation of canonical nucleotides like dATP to analogs like 1-thio-2'-dATP. The analog had almost no affect on duration of the closed conformation, during which the nucleotide is incorporated. On the other hand, the analog increased the rate-limiting duration of the open conformation by almost 40%. We propose that the thiolated analog interferes with KF's recognition and binding, two key steps that determine its ensemble turnover rate.
Intermediate introns in nuclear genes of euglenids - are they a distinct type?
Milanowski, Rafał; Gumińska, Natalia; Karnkowska, Anna; Ishikawa, Takao; Zakryś, Bożena
2016-02-29
Nuclear genes of euglenids contain two major types of introns: conventional spliceosomal and nonconventional introns. The latter are characterized by variable non-canonical borders, RNA secondary structure that brings intron ends together, and an unknown mechanism of removal. Some researchers also distinguish intermediate introns, which combine features of both types. They form a stable RNA secondary structure and are classified into two subtypes depending on whether they contain one (intermediate/nonconventional subtype) or both (conventional/intermediate subtype) canonical spliceosomal borders. However, it has been also postulated that most introns classified as intermediate could simply be special cases of conventional or nonconventional introns. Sequences of tubB, hsp90 and gapC genes from six strains of Euglena agilis were obtained. They contain four, six, and two or three introns, respectively (the third intron in the gapC gene is unique for just one strain). Conventional introns were present at three positions: two in the tubB gene (at one position conventional/intermediate introns were also found) and one in the gapC gene. Nonconventional introns are present at ten positions: two in the tubB gene (at one position intermediate/nonconventional introns were also found), six in hsp90 (at four positions intermediate/nonconventional introns were also found), and two in the gapC gene. Sequence and RNA secondary structure analyses of nonconventional introns confirmed that their most strongly conserved elements are base pairing nucleotides at positions +4, +5 and +6/ -8, -7 and -6 (in most introns CAG/CTG nucleotides were observed). It was also confirmed that the presence of the 5' GT/C end in intermediate/nonconventional introns is not the result of kinship with conventional introns, but is due to evolutionary pressure to preserve the purine at the 5' end. However, an example of a nonconventional intron with GC-AG ends was shown, suggesting the possibility of intron type conversion between nonconventional and conventional. Furthermore, an analysis of conventional introns revealed that the ability to form a stable RNA secondary structure by some introns is probably not a result of their relationship with nonconventional introns. It was also shown that acquisition of new nonconventional introns is an ongoing process and can be observed at the level of a single species. In the recently acquired intron in the gapC gene an extended direct repeats at the intron-exon junctions are present, suggesting that double-strand break repair process could be the source of new nonconventional introns.
Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J
2011-12-01
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Xu, Zhi; Reynolds, Gavin P; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-11-01
Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Reynolds, Gavin P.; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-01-01
Background: Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). Methods: A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks’ antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Results: Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. Conclusions: These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. PMID:27521242
Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott
2015-01-01
The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928
Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott
2015-01-01
The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.
Oxidized nucleotide insertion by pol β confounds ligation during base excision repair
Çağlayan, Melike; Horton, Julie K.; Dai, Da-Peng; Stefanick, Donna F.; Wilson, Samuel H.
2017-01-01
Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. PMID:28067232
Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder
ERIC Educational Resources Information Center
Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.
2012-01-01
Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…
USDA-ARS?s Scientific Manuscript database
Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
USDA-ARS?s Scientific Manuscript database
Previously, a candidate gene approach identified 51 single nucleotide polymorphisms (SNP) associated with genetic merit for reproductive traits and 26 associated with genetic merit for production in dairy bulls. We evaluated association of the 77 SNPs with days open (DO) for first lactation in a pop...
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond
Arjmandi-Tash, Hadi; Belyaeva, Liubov A.
2016-01-01
Graphene and other two dimensional (2D) materials are currently integrated into nanoscaled devices that may – one day – sequence genomes. The challenge to solve is conceptually straightforward: cut a sheet out of a 2D material and use the edge of the sheet to scan an unfolded biomolecule from head to tail. As the scan proceeds – and because 2D materials are atomically thin – the information provided by the edge might be used to identify different segments – ideally single nucleotides – in the biomolecular strand. So far, the most efficient approach was to drill a nano-sized pore in the sheet and use this pore as a channel to guide and detect individual molecules by measuring the electrochemical ionic current. Nanoscaled gaps between two electrodes in 2D materials recently emerged as powerful alternatives to nanopores. This article reviews the current status and prospects of integrating 2D materials in nanopores, nanogaps and similar devices for single molecule biosensing applications. We discuss the pros and cons, the challenges, and the latest achievements in the field. To achieve high-throughput sequencing with 2D materials, interdisciplinary research is essential. PMID:26612268
Demirci, Berna; Lee, Yoosook; Lanzaro, Gregory C; Alten, Bulent
2012-05-01
Culex theileri Theobald (Diptera: Culicidae) is one of the most common mosquito species in northeastern Turkey and serves as a vector for various zoonotic diseases including West Nile virus. Although there have been some studies on the ecology of Cx. theileri, very little genetic data has been made available. We successfully sequenced 11 gene fragments from Cx. theileri specimens collected from the northeastern part of Turkey. On average, we found a Single nucleotide polymorphism every 45 bp. Transitions outnumbered transversions, at a ratio of 2:1. This is the first report of genetic polymorphisms in Cx. theileri and Single nucleotide polymorphism discovered from this study can be used to investigate population structure and gene-environmental interactions.
Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro
2016-01-01
Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874
Barlev, Adam; Sekhon, Gurpreet S; Bennet, Andrew J; Sen, Dipankar
2016-11-01
UV1C, a 42-nt DNA oligonucleotide, is a deoxyribozyme (DNAzyme) that optimally uses 305 nm wavelength light to catalyze photoreactivation of a cyclobutane thymine dimer placed within a gapped, unnatural DNA substrate, TDP. Herein we show that UV1C is also capable of photoreactivating thymine dimers within an authentic single-stranded DNA substrate, LDP. This bona fide UV1C substrate enables, for the first time, investigation of whether UV1C catalyzes only photoreactivation or also the de novo formation of thymine dimers. Single-turnover experiments carried out with LDP and UV1C, relative to control experiments with LDP alone in single-stranded and double-stranded contexts, show that while UV1C does modestly promote thymine dimer formation, its major activity is indeed photoreactivation. Distinct photostationary states are reached for LDP in its three contexts: as a single strand, as a constituent of a double-helix, and as a 1:1 complex with UV1C. The above results on the cofactor-independent photoreactivation capabilities of a catalytic DNA reinforce a series of recent, unexpected reports that purely nucleotide-based photoreactivation is also operational within conventional double-helical DNA.
High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling
Till, Bradley J.; Zerr, Troy; Bowers, Elisabeth; Greene, Elizabeth A.; Comai, Luca; Henikoff, Steven
2006-01-01
Human individuals differ from one another at only ∼0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease. PMID:16893952
Volkán-Kacsó, Sándor; Marcus, Rudolph A
2016-10-25
A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.
Wakasugi, Mitsuo; Sasaki, Takuma; Matsumoto, Megumi; Nagaoka, Miyuki; Inoue, Keiko; Inobe, Manabu; Horibata, Katsuyoshi; Tanaka, Kiyoji; Matsunaga, Tsukasa
2014-10-10
Histone H2A variant H2AX is phosphorylated at Ser(139) in response to DNA double-strand break (DSB) and single-stranded DNA (ssDNA) formation. UV light dominantly induces pyrimidine photodimers, which are removed from the mammalian genome by nucleotide excision repair (NER). We previously reported that in quiescent G0 phase cells, UV induces ATR-mediated H2AX phosphorylation plausibly caused by persistent ssDNA gap intermediates during NER. In this study, we have found that DSB is also generated following UV irradiation in an NER-dependent manner and contributes to an earlier fraction of UV-induced H2AX phosphorylation. The NER-dependent DSB formation activates ATM kinase and triggers the accumulation of its downstream factors, MRE11, NBS1, and MDC1, at UV-damaged sites. Importantly, ATM-deficient cells exhibited enhanced UV sensitivity under quiescent conditions compared with asynchronously growing conditions. Finally, we show that the NER-dependent H2AX phosphorylation is also observed in murine peripheral T lymphocytes, typical nonproliferating quiescent cells in vivo. These results suggest that in vivo quiescent cells may suffer from NER-mediated secondary DNA damage including ssDNA and DSB. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C
2014-06-01
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection.
Zhao, Y; Mette, M F; Gowda, M; Longin, C F H; Reif, J C
2014-01-01
Based on data from field trials with a large collection of 135 elite winter wheat inbred lines and 1604 F1 hybrids derived from them, we compared the accuracy of prediction of marker-assisted selection and current genomic selection approaches for the model traits heading time and plant height in a cross-validation approach. For heading time, the high accuracy seen with marker-assisted selection severely dropped with genomic selection approaches RR-BLUP (ridge regression best linear unbiased prediction) and BayesCπ, whereas for plant height, accuracy was low with marker-assisted selection as well as RR-BLUP and BayesCπ. Differences in the linkage disequilibrium structure of the functional and single-nucleotide polymorphism markers relevant for the two traits were identified in a simulation study as a likely explanation for the different trends in accuracies of prediction. A new genomic selection approach, weighted best linear unbiased prediction (W-BLUP), designed to treat the effects of known functional markers more appropriately, proved to increase the accuracy of prediction for both traits and thus closes the gap between marker-assisted and genomic selection. PMID:24518889
The Single Nucleotide Polymorphism Consortium
NASA Technical Reports Server (NTRS)
Morgan, Michael
2003-01-01
I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.
Analysis of single nucleotide polymorphisms in case-control studies.
Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer
2011-01-01
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.
Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen
2012-09-04
A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.
A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms
ERIC Educational Resources Information Center
Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.
2016-01-01
The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…
USDA-ARS?s Scientific Manuscript database
The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...
Winterhagen, Patrick; Wünsche, Jens-Norbert
2016-05-01
Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population.
MaxAlign: maximizing usable data in an alignment.
Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G
2007-08-28
The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.
Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V
2015-03-04
Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.
Single nucleotide polymorphism analysis using different colored dye dimer probes
NASA Astrophysics Data System (ADS)
Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter
2006-09-01
Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.
Kochanowski, N; Blanchard, F; Cacan, R; Chirat, F; Guedon, E; Marc, A; Goergen, J-L
2006-01-15
Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed, allowing the direct and simultaneous detection and quantification of some essential nucleotides and nucleotide sugars. After a perchloric acid extraction, 13 molecules (8 nucleotides and 5 nucleotide sugars) were separated, including activated sugars such as UDP-glucose, UDP-galactose, GDP-mannose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. To validate the analytical parameters, the reproducibility, linearity of calibration curves, detection limits, and recovery were evaluated for standard mixtures and cell extracts. The developed method is capable of resolving picomolar quantities of nucleotides and nucleotide sugars in a single chromatographic run. The HPLC method was then applied to quantify intracellular levels of nucleotides and nucleotide sugars of Chinese hamster ovary (CHO) cells cultivated in a bioreactor batch process. Evolutions of the titers of nucleotides and nucleotide sugars during the batch process are discussed.
USDA-ARS?s Scientific Manuscript database
Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...
ERIC Educational Resources Information Center
Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli
2010-01-01
Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…
USDA-ARS?s Scientific Manuscript database
The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...
Keith R. Merrill; Craig E. Coleman; Susan E. Meyer; Elizabeth A. Leger; Katherine A. Collins
2016-01-01
Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the...
ERIC Educational Resources Information Center
Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui
2017-01-01
Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…
Brimacombe, M.; Hazbon, M.; Motiwala, A. S.; Alland, D.
2007-01-01
A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs. PMID:17846140
Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.
2016-01-01
Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524
Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.
Black, W C; Gorrochotegui-Escalante, N; Duteau, N M
2006-03-01
Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.
2003-01-01
We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.
Yamada, Yoshiji; Sakuma, Jun; Takeuchi, Ichiro; Yasukochi, Yoshiki; Kato, Kimihiko; Oguri, Mitsutoshi; Fujimaki, Tetsuo; Horibe, Hideki; Muramatsu, Masaaki; Sawabe, Motoji; Fujiwara, Yoshinori; Taniguchi, Yu; Obuchi, Shuichi; Kawai, Hisashi; Shinkai, Shoji; Mori, Seijiro; Arai, Tomio; Tanaka, Masashi
2017-06-13
We have performed exome-wide association studies to identify genetic variants that influence body mass index or confer susceptibility to obesity or metabolic syndrome in Japanese. The exome-wide association study for body mass index included 12,890 subjects, and those for obesity and metabolic syndrome included 12,968 subjects (3954 individuals with obesity, 9014 controls) and 6817 subjects (3998 individuals with MetS, 2819 controls), respectively. Exome-wide association studies were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of genotypes of single nucleotide polymorphisms to body mass index was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to obesity or metabolic syndrome was evaluated with Fisher's exact test. The exome-wide association studies identified six, 11, and 40 single nucleotide polymorphisms as being significantly associated with body mass index, obesity (P <1.21 × 10-6), or metabolic syndrome (P <1.20 × 10-6), respectively. Subsequent multivariable logistic regression analysis with adjustment for age and sex revealed that three and five single nucleotide polymorphisms were related (P < 0.05) to obesity or metabolic syndrome, respectively, with one of these latter polymorphisms-rs7350481 (C/T) at chromosome 11q23.3-also being significantly (P < 3.13 × 10-4) associated with metabolic syndrome. The polymorphism rs7350481 may thus be a novel susceptibility locus for metabolic syndrome in Japanese. In addition, single nucleotide polymorphisms in three genes (CROT, TSC1, RIN3) and at four loci (ANKK1, ZNF804B, CSRNP3, 17p11.2) were implicated as candidate determinants of obesity and metabolic syndrome, respectively.
Dai, Weiran; Ye, Ziliang; Lu, Haili; Su, Qiang; Li, Hui; Li, Lang
2018-02-23
The results showed that there was a certain correlation between the single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease, but there was no systematic study to verify this conclusion. Systematic review of the association between single nucleotide polymorphism of IL-10-1082G/A locus and rheumatic heart disease. Computer retrieval PubMed, EMbase, Cochrane Library, CBM, CNKI, VIP and Data WanFang, the retrieval time limit from inception to June 2017. A case control study of single nucleotide polymorphisms and rheumatic heart disease in patients with rheumatic heart disease in the IL-10-1082G/A was collected. Two researchers independently screened the literature, extracted data and evaluated the risk of bias in the study, and using RevMan5.3 software for data analysis. A total of 3 case control studies were included, including 318 patients with rheumatic heart disease and 502 controls. Meta-analysis showed that there was no correlation between IL-10-1082G/A gene polymorphism and rheumatic heart disease [AA+AG VS GG: OR = 0.62, 95% CI (0.28, 1.39), P = 0.25; AA VS AG+GG: OR = 0.73, 95% CI (0.54, 1.00), P = 0.05; AA VS GG: OR = 0.70, 95% CI(0.47, 1.05), P = 0.08; AG VS GG: OR = 0.65, 95% CI (0.22, 1.92), P = 0.43; A VS G: OR = 0.87, 95% CI (0.71, 1.06), P = 0.17]. When AA is a recessive gene, the single nucleotide polymorphism of IL-10-1082G/A is associated with the presence of rheumatic heart disease. Due to the limitations of the quantity and quality of the included literatures, the further research results were still needed.
OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities
NASA Astrophysics Data System (ADS)
Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.
2016-09-01
The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.
Single-Molecule Counting of Point Mutations by Transient DNA Binding
NASA Astrophysics Data System (ADS)
Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan
2017-03-01
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer
Kwok, Pui-Yan; Chen, Xiangning
1999-01-01
A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.
USDA-ARS?s Scientific Manuscript database
In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body we...
Eliakim, Alon; Ben Zaken, Sigal; Meckel, Yoav; Yamin, Chen; Dror, Nitzan; Nemet, Dan
2015-12-01
We present an adolescent elite water polo player who despite a genetic predisposition to develop exercise-induced severe muscle damage due to carrying the IL-6 174C allele single-nucleotide polymorphism, developed acute rhabdomyolysis only after a vigorous out-of-water training, suggesting that water polo training may be more suitable for genetically predisposed athletes.
Olsen, Randall J.; Sitkiewicz, Izabela; Ayeras, Ara A.; Gonulal, Vedia E.; Cantu, Concepcion; Beres, Stephen B.; Green, Nicole M.; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P.; Montgomery, Charles A.; Cartwright, Joiner; McGeer, Allison; Low, Donald E.; Whitney, Adeline R.; Cagle, Philip T.; Blasdel, Terry L.; DeLeo, Frank R.; Musser, James M.
2010-01-01
Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis (“flesh-eating disease”). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the ΔmtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research. PMID:20080771
Olsen, Randall J; Sitkiewicz, Izabela; Ayeras, Ara A; Gonulal, Vedia E; Cantu, Concepcion; Beres, Stephen B; Green, Nicole M; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P; Montgomery, Charles A; Cartwright, Joiner; McGeer, Allison; Low, Donald E; Whitney, Adeline R; Cagle, Philip T; Blasdel, Terry L; DeLeo, Frank R; Musser, James M
2010-01-12
Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the DeltamtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.
Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei
2017-08-01
Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
The sequence and de novo assembly of the giant panda genome
Li, Ruiqiang; Fan, Wei; Tian, Geng; Zhu, Hongmei; He, Lin; Cai, Jing; Huang, Quanfei; Cai, Qingle; Li, Bo; Bai, Yinqi; Zhang, Zhihe; Zhang, Yaping; Wang, Wen; Li, Jun; Wei, Fuwen; Li, Heng; Jian, Min; Li, Jianwen; Zhang, Zhaolei; Nielsen, Rasmus; Li, Dawei; Gu, Wanjun; Yang, Zhentao; Xuan, Zhaoling; Ryder, Oliver A.; Leung, Frederick Chi-Ching; Zhou, Yan; Cao, Jianjun; Sun, Xiao; Fu, Yonggui; Fang, Xiaodong; Guo, Xiaosen; Wang, Bo; Hou, Rong; Shen, Fujun; Mu, Bo; Ni, Peixiang; Lin, Runmao; Qian, Wubin; Wang, Guodong; Yu, Chang; Nie, Wenhui; Wang, Jinhuan; Wu, Zhigang; Liang, Huiqing; Min, Jiumeng; Wu, Qi; Cheng, Shifeng; Ruan, Jue; Wang, Mingwei; Shi, Zhongbin; Wen, Ming; Liu, Binghang; Ren, Xiaoli; Zheng, Huisong; Dong, Dong; Cook, Kathleen; Shan, Gao; Zhang, Hao; Kosiol, Carolin; Xie, Xueying; Lu, Zuhong; Zheng, Hancheng; Li, Yingrui; Steiner, Cynthia C.; Lam, Tommy Tsan-Yuk; Lin, Siyuan; Zhang, Qinghui; Li, Guoqing; Tian, Jing; Gong, Timing; Liu, Hongde; Zhang, Dejin; Fang, Lin; Ye, Chen; Zhang, Juanbin; Hu, Wenbo; Xu, Anlong; Ren, Yuanyuan; Zhang, Guojie; Bruford, Michael W.; Li, Qibin; Ma, Lijia; Guo, Yiran; An, Na; Hu, Yujie; Zheng, Yang; Shi, Yongyong; Li, Zhiqiang; Liu, Qing; Chen, Yanling; Zhao, Jing; Qu, Ning; Zhao, Shancen; Tian, Feng; Wang, Xiaoling; Wang, Haiyin; Xu, Lizhi; Liu, Xiao; Vinar, Tomas; Wang, Yajun; Lam, Tak-Wah; Yiu, Siu-Ming; Liu, Shiping; Zhang, Hemin; Li, Desheng; Huang, Yan; Wang, Xia; Yang, Guohua; Jiang, Zhi; Wang, Junyi; Qin, Nan; Li, Li; Li, Jingxiang; Bolund, Lars; Kristiansen, Karsten; Wong, Gane Ka-Shu; Olson, Maynard; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun
2013-01-01
Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes. PMID:20010809
Walther, Dirk; Bartha, Gábor; Morris, Macdonald
2001-01-01
A pivotal step in electrophoresis sequencing is the conversion of the raw, continuous chromatogram data into the actual sequence of discrete nucleotides, a process referred to as basecalling. We describe a novel algorithm for basecalling implemented in the program LifeTrace. Like Phred, currently the most widely used basecalling software program, LifeTrace takes processed trace data as input. It was designed to be tolerant to variable peak spacing by means of an improved peak-detection algorithm that emphasizes local chromatogram information over global properties. LifeTrace is shown to generate high-quality basecalls and reliable quality scores. It proved particularly effective when applied to MegaBACE capillary sequencing machines. In a benchmark test of 8372 dye-primer MegaBACE chromatograms, LifeTrace generated 17% fewer substitution errors, 16% fewer insertion/deletion errors, and 2.4% more aligned bases to the finished sequence than did Phred. For two sets totaling 6624 dye-terminator chromatograms, the performance improvement was 15% fewer substitution errors, 10% fewer insertion/deletion errors, and 2.1% more aligned bases. The processing time required by LifeTrace is comparable to that of Phred. The predicted quality scores were in line with observed quality scores, permitting direct use for quality clipping and in silico single nucleotide polymorphism (SNP) detection. Furthermore, we introduce a new type of quality score associated with every basecall: the gap-quality. It estimates the probability of a deletion error between the current and the following basecall. This additional quality score improves detection of single basepair deletions when used for locating potential basecalling errors during the alignment. We also describe a new protocol for benchmarking that we believe better discerns basecaller performance differences than methods previously published. PMID:11337481
Calhoun, Eric S; Hucl, Tomas; Gallmeier, Eike; West, Kristen M; Arking, Dan E; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Chakravarti, Aravinda; Hruban, Ralph H; Kern, Scott E
2006-08-15
Recent advances in oligonucleotide arrays and whole-genome complexity reduction data analysis now permit the evaluation of tens of thousands of single-nucleotide polymorphisms simultaneously for a genome-wide analysis of allelic status. Using these arrays, we created high-resolution allelotype maps of 26 pancreatic cancer cell lines. The areas of heterozygosity implicitly served to reveal regions of allelic loss. The array-derived maps were verified by a panel of 317 microsatellite markers used in a subset of seven samples, showing a 97.1% concordance between heterozygous calls. Three matched tumor/normal pairs were used to estimate the false-negative and potential false-positive rates for identifying loss of heterozygosity: 3.6 regions (average minimal region of loss, 720,228 bp) and 2.3 regions (average heterozygous gap distance, 4,434,994 bp) per genome, respectively. Genomic fractional allelic loss calculations showed that cumulative levels of allelic loss ranged widely from 17.1% to 79.9% of the haploid genome length. Regional increases in "NoCall" frequencies combined with copy number loss estimates were used to identify 41 homozygous deletions (19 first reports), implicating an additional 13 regions disrupted in pancreatic cancer. Unexpectedly, 23 of these occurred in just two lines (BxPc3 and MiaPaCa2), suggesting the existence of at least two subclasses of chromosomal instability (CIN) patterns, distinguished here by allelic loss and copy number changes (original CIN) and those also highly enriched in the genomic "holes" of homozygous deletions (holey CIN). This study provides previously unavailable high-resolution allelotype and deletion breakpoint maps in widely shared pancreatic cancer cell lines and effectively eliminates the need for matched normal tissue to define informative loci.
Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P; Niesen, Willem; Vodicka, Pavel; Delle Fave, Gianfranco; Bueno-de-Mesquita, H Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico
2016-08-30
The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation*
Kistler, Samantha; George, Samuel D.; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K.; Lammers, Michael; Der, Channing J.; Campbell, Sharon L.
2017-01-01
The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. PMID:28154176
Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1.
Bischoff, F R; Krebber, H; Smirnova, E; Dong, W; Ponstingl, H
1995-01-01
RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins. Images PMID:7882974
2013-10-01
identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in cytokine genes, as well demographic, clinical, and...Center. The purpose of the proposed project is to identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in...research team continues to meet monthly to discuss progress with regards to recruitment, enrollment, and data collection. Training in Genetics In year
Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Sharpe, H.; Brown, N.
1994-07-01
The authors have investigated the distribution of mutant mtDNA molecules in single cells from a patient with Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease that is characterized by a sudden-onset bilateral loss of central vision, which typically occurs in early adulthood. More than 50% of all LHON patients carry an mtDNA mutation at nucleotide position 11778. This nucleotide change converts a highly conserved arginine residue to histidine at codon 340 in the NADH-ubiquinone oxidoreductase subunit 4 (ND4) gene of mtDNA. In the present study, the authors used PCR amplification of mtDNA from lymphocytes to investigate mtDNAmore » heteroplasmy at the single-cell level in a LHON patient. They found that most cells were either homoplasmic normal or homoplasmic mutant at nucleotide position 11778. Some (16%) cells contained both mutant and normal mtDNA.« less
Tian, Kai; Chen, Xiaowei; Luan, Binquan; Singh, Prashant; Yang, Zhiyu; Gates, Kent S; Lin, Mengshi; Mustapha, Azlin; Gu, Li-Qun
2018-05-22
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
Electron attachment to DNA single strands: gas phase and aqueous solution.
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F
2007-01-01
The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage.
Genetic risk profiling and gene signature modeling to predict risk of complications after IPAA.
Sehgal, Rishabh; Berg, Arthur; Polinski, Joseph I; Hegarty, John P; Lin, Zhenwu; McKenna, Kevin J; Stewart, David B; Poritz, Lisa S; Koltun, Walter A
2012-03-01
Severe pouchitis and Crohn's disease-like complications are 2 adverse postoperative complications that confound the success of the IPAA in patients with ulcerative colitis. To date, approximately 83 single nucleotide polymorphisms within 55 genes have been associated with IBD. The aim of this study was to identify single-nucleotide polymorphisms that correlate with complications after IPAA that could be utilized in a gene signature fashion to predict postoperative complications and aid in preoperative surgical decision making. One hundred forty-two IPAA patients were retrospectively classified as "asymptomatic" (n = 104, defined as no Crohn's disease-like complications or severe pouchitis for at least 2 years after IPAA) and compared with a "severe pouchitis" group (n = 12, ≥ 4 episodes pouchitis per year for 2 years including the need for long-term therapy to maintain remission) and a "Crohn's disease-like" group (n = 26, presence of fistulae, pouch inlet stricture, proximal small-bowel disease, or pouch granulomata, occurring at least 6 months after surgery). Genotyping for 83 single-nucleotide polymorphisms previously associated with Crohn's disease and/or ulcerative colitis was performed on a customized Illumina genotyping platform. The top 2 single-nucleotide polymorphisms statistically identified as being independently associated with each of Crohn's disease-like and severe pouchitis were used in a multivariate logistic regression model. These single-nucleotide polymorphisms were then used to create probability equations to predict overall chance of a positive or negative outcome for that complication. The top 2 single-nucleotide polymorphisms for Crohn's disease-like complications were in the 10q21 locus and the gene for PTGER4 (p = 0.006 and 0.007), whereas for severe pouchitis it was NOD2 and TNFSF15 (p = 0.003 and 0.011). Probability equations suggested that the risk of these 2 complications greatly increased with increasing number of risk alleles, going as high as 92% for severe pouchitis and 65% for Crohn's disease-like complications. In this IPAA patient cohort, mutations in the 10q21 locus and the PTGER4 gene were associated with Crohn's disease-like complications, whereas mutations in NOD2 and TNFSF15 correlated with severe pouchitis. Preoperative genetic analysis and use of such gene signatures hold promise for improved preoperative surgical patient selection to minimize these IPAA complications.
Schermerhorn, Kelly M.; Gardner, Andrew F.
2015-01-01
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179
O'Toole, Amanda S.; Miller, Stacy; Haines, Nathan; Zink, M. Coleen; Serra, Martin J.
2006-01-01
Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented. PMID:16820533
Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
Bao, Zehua; HamediRad, Mohammad; Xue, Pu; Xiao, Han; Tasan, Ipek; Chao, Ran; Liang, Jing; Zhao, Huimin
2018-07-01
We developed a CRISPR-Cas9- and homology-directed-repair-assisted genome-scale engineering method named CHAnGE that can rapidly output tens of thousands of specific genetic variants in yeast. More than 98% of target sequences were efficiently edited with an average frequency of 82%. We validate the single-nucleotide resolution genome-editing capability of this technology by creating a genome-wide gene disruption collection and apply our method to improve tolerance to growth inhibitors.
RhoA GTPase inhibition organizes contraction during epithelial morphogenesis
Mason, Frank M.; Xie, Shicong; Vasquez, Claudia G.; Tworoger, Michael
2016-01-01
During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058
StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.
Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A
2015-11-01
Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.
Lühr, B; Scheller, J; Meyer, P; Kramer, W
1998-02-01
We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.
Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome
Leppert, Tami; Anex, Deon S.; Hilmer, Jonathan K.; Matsunami, Nori; Baird, Lisa; Stevens, Jeffery; Parsawar, Krishna; Durbin-Johnson, Blythe P.; Rocke, David M.; Nelson, Chad; Fairbanks, Daniel J.; Wilson, Andrew S.; Rice, Robert H.; Woodward, Scott R.; Bothner, Brian; Hart, Bradley R.; Leppert, Mark
2016-01-01
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts. PMID:27603779
Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K
2017-04-01
There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.
A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.
Yin, Guowei; Kistler, Samantha; George, Samuel D; Kuhlmann, Nora; Garvey, Leslie; Huynh, Minh; Bagni, Rachel K; Lammers, Michael; Der, Channing J; Campbell, Sharon L
2017-03-17
The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Sequence of a cDNA encoding pancreatic preprosomatostatin-22.
Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E
1982-01-01
We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673
Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC.
Nakajima, Kazuki; Kitazume, Shinobu; Angata, Takashi; Fujinawa, Reiko; Ohtsubo, Kazuaki; Miyoshi, Eiji; Taniguchi, Naoyuki
2010-07-01
Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.
Generalization of Associations of Kidney-Related Genetic Loci to American Indians
Haack, Karin; Almasy, Laura; Laston, Sandra; Lee, Elisa T.; Best, Lyle G.; Fabsitz, Richard R.; MacCluer, Jean W.; Howard, Barbara V.; Umans, Jason G.; Cole, Shelley A.
2014-01-01
Summary Background and objectives CKD disproportionally affects American Indians, who similar to other populations, show genetic susceptibility to kidney outcomes. Recent studies have identified several loci associated with kidney traits, but their relevance in American Indians is unknown. Design, setting, participants, & measurements This study used data from a large, family-based genetic study of American Indians (the Strong Heart Family Study), which includes 94 multigenerational families enrolled from communities located in Oklahoma, the Dakotas, and Arizona. Individuals were recruited from the Strong Heart Study, a population-based study of cardiovascular disease in American Indians. This study selected 25 single nucleotide polymorphisms in 23 loci identified from recently published kidney-related genome-wide association studies in individuals of European ancestry to evaluate their associations with kidney function (estimated GFR; individuals 18 years or older, up to 3282 individuals) and albuminuria (urinary albumin to creatinine ratio; n=3552) in the Strong Heart Family Study. This study also examined the association of single nucleotide polymorphisms in the APOL1 region with estimated GFR in 1121 Strong Heart Family Study participants. GFR was estimated using the abbreviated Modification of Diet in Renal Disease Equation. Additive genetic models adjusted for age and sex were used. Results This study identified significant associations of single nucleotide polymorphisms with estimated GFR in or nearby PRKAG2, SLC6A13, UBE2Q2, PIP5K1B, and WDR72 (P<2.1 × 10-3 to account for multiple testing). Single nucleotide polymorphisms in these loci explained 2.2% of the estimated GFR total variance and 2.9% of its heritability. An intronic variant of BCAS3 was significantly associated with urinary albumin to creatinine ratio. APOL1 single nucleotide polymorphisms were not associated with estimated GFR in a single variant test or haplotype analyses, and the at-risk variants identified in individuals with African ancestry were not detected in DNA sequencing of American Indians. Conclusion This study extends the genetic associations of loci affecting kidney function to American Indians, a population at high risk of kidney disease, and provides additional support for a potential biologic relevance of these loci across ancestries. PMID:24311711
Yang, Yong; Wu, Zhihong; Zhao, Taimao; Wang, Hai; Zhao, Dong; Zhang, Jianguo; Wang, Yipeng; Ding, Yaozhong; Qiu, Guixing
2009-06-01
The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.
Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing
2014-12-01
Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Detecting Single-Nucleotide Substitutions Induced by Genome Editing.
Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R
2016-08-01
The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells. © 2016 Cold Spring Harbor Laboratory Press.
Seal, B S; Neill, J D; Ridpath, J F
1994-07-01
Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.
Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases
Zajac, Pawel; Islam, Saiful; Hochgerner, Hannah; Lönnerberg, Peter; Linnarsson, Sten
2013-01-01
Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells. PMID:24392002
Urschitz, Johann; Sultan, Omar; Ward, Kenneth
2011-01-01
Objective Various Asian and Pacifific Islander groups have higher prevalence rates of type 2 diabetes and gestational diabetes. This increased incidence is likely to include genetic factors. Single nucleotide polymorphisms in the retinol binding protein 4 gene have been linked to the occurrence of type 2 diabetes. Hypothesizing a link between retinol binding protein 4 and gestational diabetes, we performed a candidate gene study to look for an association between an important retinol binding protein gene polymorphism (rs3758539) and gestational diabetes. Study Design Blood was collected from Caucasian, Asian, and Pacific Islander women diagnosed with gestational diabetes and from ethnically matched non-diabetic controls. DNA was extracted and real time PCR technology (TaqMan, Applied Biosystems) used to screen for the rs3758539 single nucleotide polymorphism located 5′ of exon 1 of the retinol binding protein 4 gene. Results Genotype and allele frequencies in the controls and gestational diabetes cases were tested using chi-square contingency tests. Genotype frequencies were in Hardy-Weinberg equilibrium. There was no association between the rs3758539 retinol binding protein 4 single nucleotide polymorphism and gestational diabetes in the Caucasian, Filipino, or Pacific Islander groups. Conclusion Interestingly, the rs3758539 retinol binding protein 4 single nucleotide polymorphism was not found to be associated with gestational diabetes. The absence of association suggests that gestational and type 2 diabetes may have more divergent molecular pathophysiology than previously suspected. PMID:21886308
Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.
Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E
2016-11-18
Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10 -8 ). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10 -4 . Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.
Gu, Hong; Sun, Erdan; Cui, Lei; Yang, Xiufen; Lim, Apiradee; Xu, Jun; Snellingen, Torkel; Liu, Xipu; Wang, Ningli; Liu, Ningpu
2012-10-01
To investigate the association between single-nucleotide polymorphisms in the pi isoform of glutathione S-transferase (GSTP1) gene and the risk of exudative age-related macular degeneration (AMD) in a Chinese case-control cohort. A total of 131 Chinese patients with exudative AMD and 138 control individuals were recruited. Genomic DNA was extracted from venous blood leukocytes. Two common nonsynonymous single-nucleotide polymorphisms in GSTP1 (rs1695 and rs1138272) were genotyped by polymerase chain reaction followed by allele-specific restriction enzyme digestion and direct sequencing. Significant association with exudative AMD was detected for single-nucleotide polymorphism, rs1695 (P = 0.019). The risk G allele frequencies were 21.8% in AMD patients and 12.7% in control subjects (P = 0.007). Compared with the wild-type AA genotype, odds ratio for the risk of AMD was 1.91 (95% confidence interval, 1.09-3.35) for the heterozygous AG genotype and 2.52 (95% confidence interval, 0.6-10.61) for the homozygous GG genotype. In contrast, rs1138272 was not associated with exudative AMD (P = 1.00). The risk G allele frequencies of rs1138272 were 0.4% in AMD patients and 0.4% in control subjects (P = 1.00). Our data suggest that the GSTP1 variant rs1695 moderately increases the risk of exudative AMD. The variant rs1138272 was rare and was not associated with exudative AMD in this Chinese cohort.
Arnedo, Mireia; Taffé, Patrick; Sahli, Roland; Furrer, Hansjakob; Hirschel, Bernard; Elzi, Luigia; Weber, Rainer; Vernazza, Pietro; Bernasconi, Enos; Darioli, Roger; Bergmann, Sven; Beckmann, Jacques S; Telenti, Amalio; Tarr, Philip E
2007-09-01
HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.
Electron attachment to DNA single strands: gas phase and aqueous solution
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F.
2007-01-01
The 2′-deoxyguanosine-3′,5′-diphosphate, 2′-deoxyadenosine-3′,5′-diphosphate, 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3′,5′-dTDP (0.17 eV) and 3′,5′-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3′,5′-dTDP > 3′,5′-dCDP > 3′,5′-dGDP > 3′,5′-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3′-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3′-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3′,5′-dADP− (0.26 eV) and 3′,5′-dGDP− (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage. PMID:17660189
USDA-ARS?s Scientific Manuscript database
Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...
Fraley, Stephanie I; Hardick, Justin; Masek, Billie J; Jo Masek, Billie; Athamanolap, Pornpat; Rothman, Richard E; Gaydos, Charlotte A; Carroll, Karen C; Wakefield, Teresa; Wang, Tza-Huei; Yang, Samuel
2013-10-01
Comprehensive profiling of nucleic acids in genetically heterogeneous samples is important for clinical and basic research applications. Universal digital high-resolution melt (U-dHRM) is a new approach to broad-based PCR diagnostics and profiling technologies that can overcome issues of poor sensitivity due to contaminating nucleic acids and poor specificity due to primer or probe hybridization inaccuracies for single nucleotide variations. The U-dHRM approach uses broad-based primers or ligated adapter sequences to universally amplify all nucleic acid molecules in a heterogeneous sample, which have been partitioned, as in digital PCR. Extensive assay optimization enables direct sequence identification by algorithm-based matching of melt curve shape and Tm to a database of known sequence-specific melt curves. We show that single-molecule detection and single nucleotide sensitivity is possible. The feasibility and utility of U-dHRM is demonstrated through detection of bacteria associated with polymicrobial blood infection and microRNAs (miRNAs) associated with host response to infection. U-dHRM using broad-based 16S rRNA gene primers demonstrates universal single cell detection of bacterial pathogens, even in the presence of larger amounts of contaminating bacteria; U-dHRM using universally adapted Lethal-7 miRNAs in a heterogeneous mixture showcases the single copy sensitivity and single nucleotide specificity of this approach.
3'-End labeling of nucleic acids by a polymerase ribozyme.
Samanta, Biswajit; Horning, David P; Joyce, Gerald F
2018-06-13
A polymerase ribozyme can be used to label the 3' end of RNA or DNA molecules by incorporating a variety of functionalized nucleotide analogs. Guided by a complementary template, the ribozyme adds a single nucleotide that may contain a fluorophore, biotin, azide or alkyne moiety, thus enabling the detection and/or capture of selectively labeled materials. Employing a variety of commercially available nucleotide analogs, efficient labeling was demonstrated for model RNAs and DNAs, human microRNAs and natural tRNA.
Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics.
Solan, Joell L; Lampe, Paul D
2018-01-01
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (<1000Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP 3 ) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.
A DNA 3′-phosphatase functions in active DNA demethylation in Arabidopsis
Martínez-Macías, María Isabel; Qian, Weiqiang; Miki, Daisuke; Pontes, Olga; Liu, Yunhua; Tang, Kai; Liu, Renyi; Morales-Ruiz, Teresa; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang
2012-01-01
SUMMARY DNA methylation is an important epigenetic mark established by the combined actions of methylation and demethylation reactions. Plants use a base excision repair pathway for active DNA demethylation. After 5-methylcytosine removal, the Arabidopsis DNA glycosylase/lyase ROS1 incises the DNA backbone and part of the product has a single-nucleotide gap flanked by 3′- and 5′-phosphate termini. Here we show that the DNA phosphatase ZDP removes the blocking 3′-phosphate, allowing subsequent DNA polymerization and ligation steps needed to complete the repair reactions. ZDP and ROS1 interact in vitro and co-localize in vivo in nucleoplasmic foci. Extracts from zdp mutant plants are unable to complete DNA demethylation in vitro, and the mutations cause DNA hypermethylation and transcriptional silencing of a reporter gene. Genome-wide methylation analysis in zdp mutant plants identified hundreds of hypermethylated endogenous loci. Our results show that ZDP functions downstream of ROS1 in one branch of the active DNA demethylation pathway. PMID:22325353
Detecting and Analyzing Genetic Recombination Using RDP4.
Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev
2017-01-01
Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.
Smith, Katharine R; Rajgor, Dipen; Hanley, Jonathan G
2017-12-08
Brain ischemia causes oxygen and glucose deprivation (OGD) in neurons, triggering a cascade of events leading to synaptic accumulation of glutamate. Excessive activation of glutamate receptors causes excitotoxicity and delayed cell death in vulnerable neurons. Following global cerebral ischemia, hippocampal CA1 pyramidal neurons are more vulnerable to injury than their cortical counterparts, but the mechanisms that underlie this difference are unclear. Signaling via Rho-family small GTPases, their upstream guanine nucleotide exchange factors, and GTPase-activating proteins (GAPs) is differentially dysregulated in response to OGD/ischemia in hippocampal and cortical neurons. Increased Rac1 activity caused by OGD/ischemia contributes to neuronal death in hippocampal neurons via diverse effects on NADPH oxidase activity and dendritic spine morphology. The Rac1 guanine nucleotide exchange factor Tiam1 mediates an OGD-induced increase in Rac1 activity in hippocampal neurons; however, the identity of an antagonistic GAP remains elusive. Here we show that the Rac1 GAP breakpoint cluster region (BCR) associates with NMDA receptors (NMDARs) along with Tiam1 and that this protein complex is more abundant in hippocampal compared with cortical neurons. Although total BCR is similar in the two neuronal types, BCR is more active in hippocampal compared with cortical neurons. OGD causes an NMDAR- and Ca 2+ -permeable AMPAR-dependent deactivation of BCR in hippocampal but not cortical neurons. BCR knockdown occludes OGD-induced Rac1 activation in hippocampal neurons. Furthermore, disrupting the Tiam1-NMDAR interaction with a fragment of Tiam1 blocks OGD-induced Tiam1 activation but has no effect on the deactivation of BCR. This work identifies BCR as a critical player in Rac1 regulation during OGD in hippocampal neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Extension of the COG and arCOG databases by amino acid and nucleotide sequences
Meereis, Florian; Kaufmann, Michael
2008-01-01
Background The current versions of the COG and arCOG databases, both excellent frameworks for studies in comparative and functional genomics, do not contain the nucleotide sequences corresponding to their protein or protein domain entries. Results Using sequence information obtained from GenBank flat files covering the completely sequenced genomes of the COG and arCOG databases, we constructed NUCOCOG (nucleotide sequences containing COG databases) as an extended version including all nucleotide sequences and in addition the amino acid sequences originally utilized to construct the current COG and arCOG databases. We make available three comprehensive single XML files containing the complete databases including all sequence information. In addition, we provide a web interface as a utility suitable to browse the NUCOCOG database for sequence retrieval. The database is accessible at . Conclusion NUCOCOG offers the possibility to analyze any sequence related property in the context of the COG and arCOG framework simply by using script languages such as PERL applied to a large but single XML document. PMID:19014535
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, M.W.
1994-12-27
A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.
Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
Wanlass, Mark W.
1994-01-01
A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.
Obesity-Related Genomic Loci Are Associated with Type 2 Diabetes in a Han Chinese Population
Zhao, Qi; He, Jiang; Chen, Li; Zhao, Zhigang; Li, Qiang; Ge, Jiapu; Chen, Gang; Guo, Xiaohui; Lu, Juming; Weng, Jianping; Jia, Weiping; Ji, Linong; Xiao, Jianzhong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Zhou, Zhiguang; Shan, Guangliang; Yang, Wenying
2014-01-01
Background and Aims Obesity is a well-known risk factor for type 2 diabetes. Genome-wide association studies have identified a number of genetic loci associated with obesity. The aim of this study is to examine the contribution of obesity-related genomic loci to type 2 diabetes in a Chinese population. Methods We successfully genotyped 18 obesity-related single nucleotide polymorphisms among 5338 type 2 diabetic patients and 4663 controls. Both individual and joint effects of these single nucleotide polymorphisms on type 2 diabetes and quantitative glycemic traits (assessing β-cell function and insulin resistance) were analyzed using logistic and linear regression models, respectively. Results Two single nucleotide polymorphisms near MC4R and GNPDA2 genes were significantly associated with type 2 diabetes before adjusting for body mass index and waist circumference (OR (95% CI) = 1.14 (1.06, 1.22) for the A allele of rs12970134, P = 4.75×10−4; OR (95% CI) = 1.10 (1.03, 1.17) for the G allele of rs10938397, P = 4.54×10−3). When body mass index and waist circumference were further adjusted, the association of MC4R with type 2 diabetes remained significant (P = 1.81×10−2) and that of GNPDA2 was attenuated (P = 1.26×10−1), suggesting the effect of the locus including GNPDA2 on type 2 diabetes may be mediated through obesity. Single nucleotide polymorphism rs2260000 within BAT2 was significantly associated with type 2 diabetes after adjusting for body mass index and waist circumference (P = 1.04×10−2). In addition, four single nucleotide polymorphisms (near or within SEC16B, BDNF, MAF and PRL genes) showed significant associations with quantitative glycemic traits in controls even after adjusting for body mass index and waist circumference (all P values<0.05). Conclusions This study indicates that obesity-related genomic loci were associated with type 2 diabetes and glycemic traits in the Han Chinese population. PMID:25093408
Gu, Xin; Na, Rong; Huang, Tao; Wang, Li; Tao, Sha; Tian, Lu; Chen, Zhuo; Jiao, Yang; Kang, Jian; Zheng, Siqun; Xu, Jianfeng; Sun, Jielin; Qi, Jun
2013-08-01
Common treatments for benign prostatic hyperplasia include 5α-reductase inhibitors and α-adrenergic receptor antagonists. However, these treatments can only partially decrease the risk of benign prostatic hyperplasia progression. SRD5A1 and SRD5A2 are 5α-reductase inhibitor targets. We investigated the association between drug efficacy and single nucleotide polymorphisms in the SRD5A1 and SRD5A2 genes in a Chinese population. We genotyped 11 tagging single nucleotide polymorphisms in the SRD5A1 and SRD5A2 genes in a total of 426 benign prostatic hyperplasia cases and 1,008 controls from Xinhua Hospital, Shanghai, People's Republic of China. Cases were treated with type II 5α-reductase inhibitors and α-adrenergic receptor antagonists. We tested the association of tagging single nucleotide polymorphisms with benign prostatic hyperplasia risk/progression, clinical characteristics at baseline, including the I-PSS (International Prostate Symptom Score) and total prostate volume, and changes in clinical characteristics after treatment. The 11 tagging single nucleotide polymorphisms were not significantly associated with benign prostatic hyperplasia risk or progression (each p >0.05). In the SRD5A1 gene rs6884552 and rs3797177 were significantly associated with baseline I-PSS (p = 0.04 and 0.003, respectively). In the SRD5A2 gene rs523349 (V89L) and rs9332975 were significantly associated with baseline total prostate volume (p = 0.01 and 0.001, respectively). In SRD5A1 rs166050 was significantly associated with the posttreatment change in total prostate volume (p = 0.04). In SRD5A2 rs523349 and rs612224 were significantly associated with the posttreatment I-PSS change (p = 0.03 and 0.009, respectively). SRD5A1 and SRD5A2 single nucleotide polymorphisms are significantly associated with the clinical characteristics of benign prostatic hyperplasia and the efficacy of benign prostatic hyperplasia treatment. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Pappas, Derek J; Marin, Wesley; Hollenbach, Jill A; Mack, Steven J
2016-03-01
Bridging ImmunoGenomic Data-Analysis Workflow Gaps (BIGDAWG) is an integrated data-analysis pipeline designed for the standardized analysis of highly-polymorphic genetic data, specifically for the HLA and KIR genetic systems. Most modern genetic analysis programs are designed for the analysis of single nucleotide polymorphisms, but the highly polymorphic nature of HLA and KIR data require specialized methods of data analysis. BIGDAWG performs case-control data analyses of highly polymorphic genotype data characteristic of the HLA and KIR loci. BIGDAWG performs tests for Hardy-Weinberg equilibrium, calculates allele frequencies and bins low-frequency alleles for k×2 and 2×2 chi-squared tests, and calculates odds ratios, confidence intervals and p-values for each allele. When multi-locus genotype data are available, BIGDAWG estimates user-specified haplotypes and performs the same binning and statistical calculations for each haplotype. For the HLA loci, BIGDAWG performs the same analyses at the individual amino-acid level. Finally, BIGDAWG generates figures and tables for each of these comparisons. BIGDAWG obviates the error-prone reformatting needed to traffic data between multiple programs, and streamlines and standardizes the data-analysis process for case-control studies of highly polymorphic data. BIGDAWG has been implemented as the bigdawg R package and as a free web application at bigdawg.immunogenomics.org. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; Prata, Mara de Moura Gondim; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira
2016-02-01
This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (p<0.05). We observed a significant association between the presence of the alleles T-13910 and A-22018 and the lactose-tolerant phenotype (p<0.05). After evaluation of the biochemical blood test results for lactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was <15 mg/dL, presenting an area under the receiver operating characteristic curve greater than 80.3%, with satisfactory values for sensitivity and specificity. These data corroborate the association of these single nucleotide polymorphisms (C>T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL.
Adib-Samii, Poneh; Rost, Natalia; Traylor, Matthew; Devan, William; Biffi, Alessandro; Lanfranconi, Silvia; Fitzpatrick, Kaitlin; Bevan, Steve; Kanakis, Allison; Valant, Valerie; Gschwendtner, Andreas; Malik, Rainer; Richie, Alexa; Gamble, Dale; Segal, Helen; Parati, Eugenio A.; Ciusani, Emilio; Holliday, Elizabeth G.; Maguire, Jane; Wardlaw, Joanna; Worrall, Bradford; Bis, Joshua; Wiggins, Kerri L.; Longstreth, Will; Kittner, Steve J.; Cheng, Yu-Ching; Mosley, Thomas; Falcone, Guido J.; Furie, Karen L.; Leiva-Salinas, Carlos; Lau, Benison C.; Khan, Muhammed Saleem; Sharma, Pankaj; Fornage, Myriam; Mitchell, Braxton D.; Psaty, Bruce M.; Sudlow, Cathie; Levi, Christopher; Boncoraglio, Giorgio B.; Rothwell, Peter M.; Meschia, James; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S.
2013-01-01
Background and Purpose Recently, a novel locus at 17q25 was associated with white matter hyperintensities (WMH) on MRI in stroke-free individuals. We aimed to replicate the association with WMH volume (WMHV) in patients with ischemic stroke. If the association acts by promoting a small vessel arteriopathy, it might be expected to also associate with lacunar stroke. Methods We quantified WMH on MRI in the stroke-free hemisphere of 2588 ischemic stroke cases. Association between WMHV and 6 single-nucleotide polymorphisms at chromosome 17q25 was assessed by linear regression. These single-nucleotide polymorphisms were also investigated for association with lacunar stroke in 1854 cases and 51 939 stroke-free controls from METASTROKE. Meta-analyses with previous reports and a genetic risk score approach were applied to identify other novel WMHV risk variants and uncover shared genetic contributions to WMHV in community participants without stroke and ischemic stroke. Results Single-nucleotide polymorphisms at 17q25 were associated with WMHV in ischemic stroke, the most significant being rs9894383 (P=0.0006). In contrast, there was no association between any single-nucleotide polymorphism and lacunar stroke. A genetic risk score analysis revealed further genetic components to WMHV shared between community participants without stroke and ischemic stroke. Conclusions This study provides support for an association between the 17q25 locus and WMH. In contrast, it is not associated with lacunar stroke, suggesting that the association does not act by promoting small-vessel arteriopathy or the same arteriopathy responsible for lacunar infarction. PMID:23674528
Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura
2015-01-01
Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342
Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; de Moura Gondim Prata, Mara; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira
2016-01-01
OBJECTIVE: This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. METHOD: A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. RESULTS: Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (p<0.05). We observed a significant association between the presence of the alleles T-13910 and A-22018 and the lactose-tolerant phenotype (p<0.05). After evaluation of the biochemical blood test results for lactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was <15 mg/dL, presenting an area under the receiver operating characteristic curve greater than 80.3%, with satisfactory values for sensitivity and specificity. CONCLUSIONS: These data corroborate the association of these single nucleotide polymorphisms (C>T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL. PMID:26934237
Marq, Jean-Baptiste; Hausmann, Stéphane; Veillard, Nicolas; Kolakofsky, Daniel; Garcin, Dominique
2011-02-25
Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.
Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast
Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora
2006-01-01
Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318
Pightling, Arthur W.; Petronella, Nicholas; Pagotto, Franco
2014-01-01
The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances, and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ∼0.82% distant from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors. Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence and assembler. In total, this study demonstrates that researchers should test a variety of conditions to achieve optimal results. PMID:25144537
Genetics of Oxidative Stress in Obesity
Rupérez, Azahara I.; Gil, Angel; Aguilera, Concepción M.
2014-01-01
Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications. PMID:24562334
Genetics of oxidative stress in obesity.
Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M
2014-02-20
Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.
A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.
Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie
2011-06-15
A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
WEB-server for search of a periodicity in amino acid and nucleotide sequences
NASA Astrophysics Data System (ADS)
E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.
2017-12-01
A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.
Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.
Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B
2017-09-01
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
Nucleotide Selectivity in Abiotic RNA Polymerization Reactions
NASA Astrophysics Data System (ADS)
Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.
2017-09-01
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
StarD13 is a tumor suppressor in breast cancer that regulates cell motility and invasion
HANNA, SAMER; KHALIL, BASSEM; NASRALLAH, ANITA; SAYKALI, BECHARA A.; SOBH, RANIA; NASSER, SELIM; EL-SIBAI, MIRVAT
2014-01-01
Breast cancer is one of the most commonly diagnosed cancers in women around the world. In general, the more aggressive the tumor, the more rapidly it grows and the more likely it metastasizes. Members of the Rho subfamily of small GTP-binding proteins (GTPases) play a central role in breast cancer cell motility and metastasis. The switch between active GTP-bound and inactive GDP-bound state is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). We studied the role of StarD13, a recently identified Rho-GAP that specifically inhibits the function of RhoA and Cdc42. We aimed to investigate its role in breast cancer proliferation and metastasis. The levels of expression of this Rho-GAP in tumor tissues of different grades were assayed using immunohistochemistry. We observed that, while the level of StarD13 expression decreases in cancer tissues compared to normal tissues, it increases as the grade of the tumor increased. This was consistent with the fact that although StarD13 was indeed a tumor suppressor in our breast cancer cells, as seen by its effect on cell proliferation, it was needed for cancer cell motility. In fact, StarD13 knockdown resulted in an inhibition of cell motility and cells were not able to detach their tail and move forward. Our study describes, for the first time, a tumor suppressor that plays a positive role in cancer motility. PMID:24627003
Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai
2009-01-01
SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241
Quantum-Sequencing: Fast electronic single DNA molecule sequencing
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.
Korshoj, Lee E; Afsari, Sepideh; Chatterjee, Anushree; Nagpal, Prashant
2017-11-01
Electronic conduction or charge transport through single molecules depends primarily on molecular structure and anchoring groups and forms the basis for a wide range of studies from molecular electronics to DNA sequencing. Several high-throughput nanoelectronic methods such as mechanical break junctions, nanopores, conductive atomic force microscopy, scanning tunneling break junctions, and static nanoscale electrodes are often used for measuring single-molecule conductance. In these measurements, "smearing" due to conformational changes and other entropic factors leads to large variances in the observed molecular conductance, especially in individual measurements. Here, we show a method for characterizing smear in single-molecule conductance measurements and demonstrate how binning measurements according to smear can significantly enhance the use of individual conductance measurements for molecular recognition. Using quantum point contact measurements on single nucleotides within DNA macromolecules, we demonstrate that the distance over which molecular junctions are maintained is a measure of smear, and the resulting variance in unbiased single measurements depends on this smear parameter. Our ability to identify individual DNA nucleotides at 20× coverage increases from 81.3% accuracy without smear analysis to 93.9% with smear characterization and binning (SCRIB). Furthermore, merely 7 conductance measurements (7× coverage) are needed to achieve 97.8% accuracy for DNA nucleotide recognition when only low molecular smear measurements are used, which represents a significant improvement over contemporary sequencing methods. These results have important implications in a broad range of molecular electronics applications from designing robust molecular switches to nanoelectronic DNA sequencing.
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
Lavoie, Mathieu; Abou Elela, Sherif
2008-08-19
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
NASA Astrophysics Data System (ADS)
Kasim, Muhammad; Irasari, Pudji; Hikmawan, M. Fathul; Widiyanto, Puji; Wirtayasa, Ketut
2017-02-01
The axial flux permanent magnet generator (AFPMG) has been widely used especially for electricity generation. The effect of the air gap variation on the characteristic and performances of single rotor - single stator AFPMG has been described in this paper. Effect of air gap length on the magnetic flux distribution, starting torque and MMF has been investigated. The two dimensional finite element magnetic method has been deployed to model and simulated the characteristics of the machine which is based on the Maxwell equation. The analysis has been done for two different air gap lengths which were 2 mm and 4 mm using 2D FEMM 4.2 software at no load condition. The increasing of air gap length reduces the air-gap flux density. For air gap 2 mm, the maximum value of the flux density was 1.04 T while 0.73 T occured for air gap 4 mm.. Based on the experiment result, the increasing air gap also reduced the starting torque of the machine with 39.2 Nm for air gap 2 mm and this value decreased into 34.2 Nm when the air gap increased to 4 mm. Meanwhile, the MMF that was generated by AFPMG decreased around 22% at 50 Hz due to the reduction of magnetic flux induced on stator windings. Overall, the research result showed that the variation of air gap has significant effect on the machine characteristics.
USDA-ARS?s Scientific Manuscript database
One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...
A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, G K; Hillier, L; Brandstrom, M
2005-02-20
We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to theirmore » wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.« less
A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.
Zeng, Lingwen; Xiao, Zhuo
2017-01-01
A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.
Carpentier, Jean; Grenier, Eric; Esquibet, Magalie; Hamel, Louis-Philippe; Moffett, Peter; Manzanares-Dauleux, Maria J; Kerlan, Marie-Claire
2013-04-19
The Ran GTPase Activating Protein 2 (RanGAP2) was first described as a regulator of mitosis and nucleocytoplasmic trafficking. It was then found to interact with the Coiled-Coil domain of the Rx and GPA2 resistance proteins, which confer resistance to Potato Virus X (PVX) and potato cyst nematode Globodera pallida, respectively. RanGAP2 is thought to mediate recognition of the avirulence protein GP-RBP-1 by GPA2. However, the Gpa2-induced hypersensitive response appears to be relatively weak and Gpa2 is limited in terms of spectrum of efficiency as it is effective against only two nematode populations. While functional and evolutionary analyses of Gp-Rbp-1 and Gpa2 identified key residues in both the resistance and avirulence proteins that are involved in recognition determination, whether variation in RanGAP2 also plays a role in pathogen recognition has not been investigated. We amplified a total of 147 RanGAP2 sequences from 55 accessions belonging to 18 different di-and tetraploid Solanum species from the section Petota. Among the newly identified sequences, 133 haplotypes were obtained and 19.1% of the nucleotide sites were found to be polymorphic. The observed intra-specific nucleotide diversity ranges from 0.1 to 1.3%. Analysis of the selection pressures acting on RanGAP2 suggests that this gene evolved mainly under purifying selection. Nonetheless, we identified polymorphic positions in the protein sequence at the intra-specific level, which could modulate the activity of RanGAP2. Two polymorphic sites and a three amino-acid deletion in RanGAP2 were found to affect the timing and intensity of the Gpa2-induced hypersensitive response to avirulent GP-RBP-1 variants even though they did not confer any gain of recognition of virulent GP-RBP-1 variants. Our results highlight how a resistance gene co-factor can manage in terms of evolution both an established role as a cell housekeeping gene and an implication in plant parasite interactions. StRanGAP2 gene appears to evolve under purifying selection. Its variability does not seem to influence the specificity of GPA2 recognition but is able to modulate this activity by enhancing the defence response. It seems therefore that the interaction with the plant resistance protein GPA2 (and/or Rx) rather than with the nematode effector was the major force in the evolution of the RanGAP2 locus in potato. From a mechanistic point of view these results are in accordance with a physical interaction of RanGAP2 with GPA2 and suggest that RBP-1 would rather bind the RanGAP2-GPA2 complex than the RanGAP2 protein alone.
Detecting and Removing Ascertainment Bias in Microsatellites from the HGDP-CEPH Panel
Eriksson, Anders; Manica, Andrea
2011-01-01
Although ascertainment bias in single nucleotide polymorphisms is a well-known problem, it is generally accepted that microsatellites have mutation rates too high for bias to be a concern. Here, we analyze in detail the large set of microsatellites typed for the Human Genetic Diversity Panel (HGDP)-CEPH panel. We develop a novel framework based on rarefaction to compare heterozygosity across markers with different mutation rates. We find that, whereas di- and tri-nucleotides show similar patterns of within- and between-population heterozygosity, tetra-nucleotides are inconsistent with the other two motifs. In addition, di- and tri-nucleotides are consistent with 16 unbiased tetra-nucleotide markers, whereas the HPGP-CEPH tetra-nucleotides are significantly different. This discrepancy is due to the HGDP-CEPH tetra-nucleotides being too homogeneous across Eurasia, even after their slower mutation rate is taken into account by rarefying the other markers. The most likely explanation for this pattern is ascertainment bias. We strongly advocate the exclusion of tetra-nucleotides from future population genetics analysis of this dataset, and we argue that other microsatellite datasets should be investigated for the presence of bias using the approach outlined in this article. PMID:22384358
Campa, Daniele; Pastore, Manuela; Gentiluomo, Manuel; Talar-Wojnarowska, Renata; Kupcinskas, Juozas; Malecka-Panas, Ewa; Neoptolemos, John P.; Niesen, Willem; Vodicka, Pavel; Fave, Gianfranco Delle; Bueno-de-Mesquita, H. Bas; Gazouli, Maria; Pacetti, Paola; Di Leo, Milena; Ito, Hidemi; Klüter, Harald; Soucek, Pavel; Corbo, Vincenzo; Yamao, Kenji; Hosono, Satoyo; Kaaks, Rudolf; Vashist, Yogesh; Gioffreda, Domenica; Strobel, Oliver; Shimizu, Yasuhiro; Dijk, Frederike; Andriulli, Angelo; Ivanauskas, Audrius; Bugert, Peter; Tavano, Francesca; Vodickova, Ludmila; Zambon, Carlo Federico; Lovecek, Martin; Landi, Stefano; Key, Timothy J.; Boggi, Ugo; Pezzilli, Raffaele; Jamroziak, Krzysztof; Mohelnikova-Duchonova, Beatrice; Mambrini, Andrea; Bambi, Franco; Busch, Olivier; Pazienza, Valerio; Valente, Roberto; Theodoropoulos, George E.; Hackert, Thilo; Capurso, Gabriele; Cavestro, Giulia Martina; Pasquali, Claudio; Basso, Daniela; Sperti, Cosimo; Matsuo, Keitaro; Büchler, Markus; Khaw, Kay-Tee; Izbicki, Jakob; Costello, Eithne; Katzke, Verena; Michalski, Christoph; Stepien, Anna; Rizzato, Cosmeri; Canzian, Federico
2016-01-01
The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk. PMID:27486979
NASA Astrophysics Data System (ADS)
Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.
2015-11-01
Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.
Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.
2014-01-01
Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324
Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.
da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos
2013-12-01
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.
Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data
da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos
2013-01-01
The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862
Kondo, Jiro; Westhof, Eric
2011-10-01
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.
NASA Technical Reports Server (NTRS)
Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.
2003-01-01
The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.
CNG and HCN channels: two peas, one pod.
Craven, Kimberley B; Zagotta, William N
2006-01-01
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
Structure of a eukaryotic cyclic nucleotide-gated channel
Li, Minghui; Zhou, Xiaoyuan; Wang, Shu; Michailidis, Ioannis; Gong, Ye; Su, Deyuan; Li, Huan; Li, Xueming; Yang, Jian
2018-01-01
Summary Cyclic nucleotide-gated (CNG) channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5 Å-resolution single-particle electron cryomicroscopy structure of a CNG channel from C. elegans in the cGMP-bound open state. The channel has an unusual voltage-sensor-like domain (VSLD), accounting for its deficient voltage dependence. A C-terminal linker connecting S6 and the cyclic nucleotide-binding domain interacts directly with both the VSLD and pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of CNG channels and cyclic nucleotide modulation of related channels. PMID:28099415
Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS).
Studer, Jacqueline; Bartsch, Christine; Haas, Cordula
2014-07-01
Failure in the regulation of homeostatic water balance in the brain is associated with severe cerebral edema and increased brain weights and may also play an important role in the pathogenesis of sudden infant death syndrome (SIDS). We genotyped three single-nucleotide polymorphisms in the aquaporin-4 water channel-encoding gene (AQP4), which were previously shown to be associated with (i) SIDS in Norwegian infants (rs2075575), (ii) severe brain edema (rs9951307), and (iii) increased brain water permeability (rs3906956). We also determined whether the brain/body weight ratio is increased in SIDS infants compared with sex- and age-matched controls. Genotyping of the three AQP4 single-nucleotide polymorphisms was performed in 160 Caucasian SIDS infants and 181 healthy Swiss adults using a single-base extension method. Brain and body weights were measured during autopsy in 157 SIDS and 59 non-SIDS infants. No differences were detected in the allelic frequencies of the three AQP4 single-nucleotide polymorphisms between SIDS and adult controls. The brain/body weight ratio was similarly distributed in SIDS and non-SIDS infants. Variations in the AQP4 gene seem of limited significance as predisposing factors in Caucasian SIDS infants. Increased brain weights may only become evident in conjunction with environmental or other genetic risk factors.
Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.
Shevidi, Saba; Uchida, Alicia; Schudrowitz, Natalie; Wessel, Gary M; Yajima, Mamiko
2017-12-01
A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.
2018-06-01
The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.
2013-01-01
Background Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Results Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li’s D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li’s D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. Conclusions This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens. PMID:23497218
Cornman, Robert Scott; Boncristiani, Humberto; Dainat, Benjamin; Chen, Yanping; vanEngelsdorp, Dennis; Weaver, Daniel; Evans, Jay D
2013-03-07
Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li's D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li's D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens.
Naidu, Hariprasad; Subramanian, B Mohana; Chinchkar, Shankar Ramchandra; Sriraman, Rajan; Rana, Samir Kumar; Srinivasan, V A
2012-05-01
The antigenic types of canine parvovirus (CPV) are defined based on differences in the amino acids of the major capsid protein VP2. Type specificity is conferred by a limited number of amino acid changes and in particular by few nucleotide substitutions. PCR based methods are not particularly suitable for typing circulating variants which differ in a few specific nucleotide substitutions. Assays for determining SNPs can detect efficiently nucleotide substitutions and can thus be adapted to identify CPV types. In the present study, CPV typing was performed by single nucleotide extension using the mini-sequencing technique. A mini-sequencing signature was established for all the four CPV types (CPV2, 2a, 2b and 2c) and feline panleukopenia virus. The CPV typing using the mini-sequencing reaction was performed for 13 CPV field isolates and the two vaccine strains available in our repository. All the isolates had been typed earlier by full-length sequencing of the VP2 gene. The typing results obtained from mini-sequencing matched completely with that of sequencing. Typing could be achieved with less than 100 copies of standard plasmid DNA constructs or ≤10¹ FAID₅₀ of virus by mini-sequencing technique. The technique was also efficient for detecting multiple types in mixed infections. Copyright © 2012 Elsevier B.V. All rights reserved.
Silva-Junior, Orzenil B; Grattapaglia, Dario
2015-11-01
We used high-density single nucleotide polymorphism (SNP) data and whole-genome pooled resequencing to examine the landscape of population recombination (ρ) and nucleotide diversity (ϴw ), assess the extent of linkage disequilibrium (r(2) ) and build the highest density linkage maps for Eucalyptus. At the genome-wide level, linkage disequilibrium (LD) decayed within c. 4-6 kb, slower than previously reported from candidate gene studies, but showing considerable variation from absence to complete LD up to 50 kb. A sharp decrease in the estimate of ρ was seen when going from short to genome-wide inter-SNP distances, highlighting the dependence of this parameter on the scale of observation adopted. Recombination was correlated with nucleotide diversity, gene density and distance from the centromere, with hotspots of recombination enriched for genes involved in chemical reactions and pathways of the normal metabolic processes. The high nucleotide diversity (ϴw = 0.022) of E. grandis revealed that mutation is more important than recombination in shaping its genomic diversity (ρ/ϴw = 0.645). Chromosome-wide ancestral recombination graphs allowed us to date the split of E. grandis (1.7-4.8 million yr ago) and identify a scenario for the recent demographic history of the species. Our results have considerable practical importance to Genome Wide Association Studies (GWAS), while indicating bright prospects for genomic prediction of complex phenotypes in eucalypt breeding. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The nucleotide sequence and genome organization of Plasmopara halstedii virus.
Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar
2011-03-17
Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates. Insignificant viral sequence variation indicated that the virus did not account for differences in pathogenicity of the oomycete P. halstedii.
Uncovering drug-responsive regulatory elements
Luizon, Marcelo R; Ahituv, Nadav
2015-01-01
Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224
Parker, Glendon J.; Leppert, Tami; Anex, Deon S.; ...
2016-09-07
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 singlemore » nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). Furthermore, this study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.« less
Association of α-, β-, and γ-Synuclein With Diffuse Lewy Body Disease
Nishioka, Kenya; Wider, Christian; Vilariño-Güell, Carles; Soto-Ortolaza, Alexandra I.; Lincoln, Sarah J.; Kachergus, Jennifer M.; Jasinska-Myga, Barbara; Ross, Owen A.; Rajput, Alex; Robinson, Christopher A.; Ferman, Tanis J.; Wszolek, Zbigniew K.; Dickson, Dennis W.; Farrer, Matthew J.
2016-01-01
Objective To determine the association of the genes that encode α-, β-, and γ-synuclein (SNCA, SNCB, and SNCG, respectively) with diffuse Lewy body disease (DLBD). Design Case-control study. Subjects A total of 172 patients with DLBD consistent with a clinical diagnosis of Parkinson disease dementia/dementia with Lewy bodies and 350 clinically and 97 pathologically normal controls. Interventions Sequencing of SNCA, SNCB, and SNCG and genotyping of single-nucleotide polymorphisms performed on an Applied Biosystems capillary sequencer and a Sequenom MassArray pLEX platform, respectively. Associations were determined using χ2 or Fisher exact tests. Results Initial sequencing studies of the coding regions of each gene in 89 patients with DLBD did not detect any pathogenic substitutions. Nevertheless, genotyping of known polymorphic variability in sequence-conserved regions detected several single-nucleotide polymorphisms in the SNCA and SNCG genes that were significantly associated with disease (P=.05 to <.001). Significant association was also observed for 3 single-nucleotide polymorphisms located in SNCB when comparing DLBD cases and pathologically confirmed normal controls (P=.03-.01); however, this association was not significant for the clinical controls alone or the combined clinical and pathological controls (P>.05). After correction for multiple testing, only 1 single-nucleotide polymorphism in SNCG (rs3750823) remained significant in all of the analyses (P=.05-.009). Conclusion These findings suggest that variants in all 3 members of the synuclein gene family, particularly SNCA and SNCG, affect the risk of developing DLBD and warrant further investigation in larger, pathologically defined data sets as well as clinically diagnosed Parkinson disease/dementia with Lewy bodies case-control series. PMID:20697047
Refactoring the Genetic Code for Increased Evolvability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pines, Gur; Winkler, James D.; Pines, Assaf
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Glendon J.; Leppert, Tami; Anex, Deon S.
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 singlemore » nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). Furthermore, this study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.« less
Refactoring the Genetic Code for Increased Evolvability
Pines, Gur; Winkler, James D.; Pines, Assaf; ...
2017-11-14
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
Transient state kinetics of transcription elongation by T7 RNA polymerase.
Anand, Vasanti Subramanian; Patel, Smita S
2006-11-24
The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.
Nitiyon, Sukanya; Khunnamwong, Pannida; Lertwattanasakul, Noppon; Limtong, Savitree
2018-05-24
Three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) representing a single novel anamorphic and d-xylose-fermenting yeast species were obtained from three peat samples collected from Khan Thulee peat swamp forest in Surat Thani province, Thailand. The strains differed from each other by one to two nucleotide substitutions in the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene and zero to one nucleotide substitution in the internal transcribed spacer (ITS) region. Phylogenetic analysis based on the combined sequences of the ITS and the D1/D2 regions showed that the three strains represented a single Candida species that was distinct from the other related species in the Lodderomyces/Candida albicans clade. The three strains form a subclade with the other Candida species including Candida sanyaensis, Candida tropicalis and Candida sojae. C. sanyaensis was the most closely related species, with 2.1-2.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, and 3.8-4.0 % nucleotide substitutions in the ITS region. The three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) were assigned as a single novel species, which was named Candida kantuleensis sp. nov. The type strain is DMKU-XE11 T (=CBS 15219 T =TBRC 7764 T ). The MycoBank number for C. kantuleensis sp. nov. is MB 824179.
IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes.
Dumoutier, L; Van Roost, E; Ameye, G; Michaux, L; Renauld, J C
2000-12-01
IL-TIF is a new cytokine originally identified as a gene induced by IL-9 in murine T lymphocytes, and showing 22% amino acid identity with IL-10. Here, we report the sequence and organization of the mouse and human IL-TIF genes, which both consist of 6 exons spreading over approximately 6 Kb. The IL-TIF gene is a single copy gene in humans, and is located on chromosome 12q15, at 90 Kb from the IFN gamma gene, and at 27 Kb from the AK155 gene, which codes for another IL-10-related cytokine. In the mouse, the IL-TIF gene is located on chromosome 10, also in the same region as the IFN gamma gene. Although it is a single copy gene in BALB/c and DBA/2 mice, the IL-TIF gene is duplicated in other strains such as C57Bl/6, FVB and 129. The two copies, which show 98% nucleotide identity in the coding region, were named IL-TIF alpha and IL-TIF beta. Beside single nucleotide variations, they differ by a 658 nucleotide deletion in IL-TIF beta, including the first non-coding exon and 603 nucleotides from the promoter. A DNA fragment corresponding to this deletion was sufficient to confer IL-9-regulated expression of a luciferase reporter plasmid, suggesting that the IL-TIF beta gene is either differentially regulated, or not expressed at all.
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Millard, Glenda M; O'Brien, Helen; Roulis, Eileen V; Liew, Yew-Wah; Martin, Jacqueline R; McGrath, Kelli A; Powley, Tanya; Flower, Robert L; Hyland, Catherine A
2017-04-01
Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting. © 2017 AABB.
DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae
Boiteux, Serge; Jinks-Robertson, Sue
2013-01-01
DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164
Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level
Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.
2012-01-01
Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804
Gulvik, Christopher A.; Effler, T. Chad; Wilhelm, Steven W.; Buchan, Alison
2012-01-01
Development and use of primer sets to amplify nucleic acid sequences of interest is fundamental to studies spanning many life science disciplines. As such, the validation of primer sets is essential. Several computer programs have been created to aid in the initial selection of primer sequences that may or may not require multiple nucleotide combinations (i.e., degeneracies). Conversely, validation of primer specificity has remained largely unchanged for several decades, and there are currently few available programs that allows for an evaluation of primers containing degenerate nucleotide bases. To alleviate this gap, we developed the program De-MetaST that performs an in silico amplification using user defined nucleotide sequence dataset(s) and primer sequences that may contain degenerate bases. The program returns an output file that contains the in silico amplicons. When De-MetaST is paired with NCBI’s BLAST (De-MetaST-BLAST), the program also returns the top 10 nr NCBI database hits for each recovered in silico amplicon. While the original motivation for development of this search tool was degenerate primer validation using the wealth of nucleotide sequences available in environmental metagenome and metatranscriptome databases, this search tool has potential utility in many data mining applications. PMID:23189198
[The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].
Bai, Peng; Tian, Li; Zhou, Xue-ping
2005-05-01
DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.
Testing for genetic association taking into account phenotypic information of relatives.
Uh, Hae-Won; Wijk, Henk Jan van der; Houwing-Duistermaat, Jeanine J
2009-12-15
We investigated efficient case-control association analysis using family data. The outcome of interest was coronary heart disease. We employed existing and new methods that take into account the correlations among related individuals to obtain the proper type I error rates. The methods considered for autosomal single-nucleotide polymorphisms were: 1) generalized estimating equations-based methods, 2) variance-modified Cochran-Armitage (MCA) trend test incorporating kinship coefficients, and 3) genotypic modified quasi-likelihood score test. Additionally, for X-linked single-nucleotide polymorphisms we proposed a two-degrees-of-freedom test. Performance of these methods was tested using Framingham Heart Study 500 k array data.
Shirasu, Naoto; Kuroki, Masahide
2014-01-01
We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.
Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif
2015-05-15
Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.
Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun
2015-01-01
Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.
Keshari, Pankaj K; Harbo, Hanne F; Myhr, Kjell-Morten; Aarseth, Jan H; Bos, Steffan D; Berge, Tone
2016-04-14
Multiple sclerosis is a chronic inflammatory, demyelinating disease of the central nervous system. Recent genome-wide studies have revealed more than 110 single nucleotide polymorphisms as associated with susceptibility to multiple sclerosis, but their functional contribution to disease development is mostly unknown. Consistent allelic imbalance was observed for rs907091 in IKZF3 and rs11609 in IQGAP1, which are in strong linkage disequilibrium with the multiple sclerosis associated single nucleotide polymorphisms rs12946510 and rs8042861, respectively. Using multiple sclerosis patients and healthy controls heterozygous for rs907091 and rs11609, we showed that the multiple sclerosis risk alleles at IKZF3 and IQGAP1 are expressed at higher levels as compared to the protective allele. Furthermore, individuals homozygous for the multiple sclerosis risk allele at IQGAP1 had a significantly higher total expression of IQGAP1 compared to individuals homozygous for the protective allele. Our data indicate a possible regulatory role for the multiple sclerosis-associated IKZF3 and IQGAP1 variants. We suggest that such cis-acting mechanisms may contribute to the multiple sclerosis association of single nucleotide polymorphisms at IKZF3 and IQGAP1.
Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru
2015-01-01
Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257
Method and Apparatus for Separating Particles by Dielectrophoresis
NASA Technical Reports Server (NTRS)
Pant, Kapil (Inventor); Wang, Yi (Inventor); Bhatt, Ketan (Inventor); Prabhakarpandian, Balabhasker (Inventor)
2014-01-01
Particle separation apparatus separate particles and particle populations using dielectrophoretic (DEP) forces generated by one or more pairs of electrically coupled electrodes separated by a gap. Particles suspended in a fluid are separated by DEP forces generated by the at least one electrode pair at the gap as they travel over a separation zone comprising the electrode pair. Selected particles are deflected relative to the flow of incoming particles by DEP forces that are affected by controlling applied potential, gap width, and the angle linear gaps with respect to fluid flow. The gap between an electrode pair may be a single, linear gap of constant gap, a single linear gap having variable width, or a be in the form of two or more linear gaps having constant or variable gap width having different angles with respect to one another and to the flow.
Heinz, Eva; Hacker, Christian; Dean, Paul; Mifsud, John; Goldberg, Alina V.; Williams, Tom A.; Nakjang, Sirintra; Gregory, Alison; Hirt, Robert P.; Lucocq, John M.; Kunji, Edmund R. S.; Embley, T. Martin
2014-01-01
Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis. PMID:25474405
Using of methods of speckle optics for Chlamydia trachomatis typing
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey S.; Zaytsev, Sergey S.; Ulianova, Onega V.; Saltykov, Yury V.; Feodorova, Valentina A.
2017-03-01
Specific method of transformation of nucleotide of gene into speckle pattern is suggested. Reference speckle pattern of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci as well is generated. Perspectives of proposed technique in the gene identification and detection of natural genetic mutations as single nucleotide polymorphism (SNP) are demonstrated.
USDA-ARS?s Scientific Manuscript database
Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...
Structures with negative index of refraction
Soukoulis, Costas M [Ames, IA; Zhou, Jiangfeng [Ames, IA; Koschny, Thomas [Ames, IA; Zhang, Lei [Ames, IA; Tuttle, Gary [Ames, IA
2011-11-08
The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.
"Gap hunting" to characterize clustered probe signals in Illumina methylation array data.
Andrews, Shan V; Ladd-Acosta, Christine; Feinberg, Andrew P; Hansen, Kasper D; Fallin, M Daniele
2016-01-01
The Illumina 450k array has been widely used in epigenetic association studies. Current quality-control (QC) pipelines typically remove certain sets of probes, such as those containing a SNP or with multiple mapping locations. An additional set of potentially problematic probes are those with DNA methylation distributions characterized by two or more distinct clusters separated by gaps. Data-driven identification of such probes may offer additional insights for downstream analyses. We developed a procedure, termed "gap hunting," to identify probes showing clustered distributions. Among 590 peripheral blood samples from the Study to Explore Early Development, we identified 11,007 "gap probes." The vast majority (9199) are likely attributed to an underlying SNP(s) or other variant in the probe, although SNP-affected probes exist that do not produce a gap signals. Specific factors predict which SNPs lead to gap signals, including type of nucleotide change, probe type, DNA strand, and overall methylation state. These expected effects are demonstrated in paired genotype and 450k data on the same samples. Gap probes can also serve as a surrogate for the local genetic sequence on a haplotype scale and can be used to adjust for population stratification. The characteristics of gap probes reflect potentially informative biology. QC pipelines may benefit from an efficient data-driven approach that "flags" gap probes, rather than filtering such probes, followed by careful interpretation of downstream association analyses. Our results should translate directly to the recently released Illumina EPIC array given the similar chemistry and content design.
Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.
Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Masaru; Kojima, Seiji; Homma, Michio; Fukuda, Toshio
2012-03-01
In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.
Yang, Young Geun; Kim, Jong Yeol; Park, Su Jeong; Kim, Suhng Wook; Jeon, Ok-Hee; Kim, Doo-Sik
2007-08-31
Apolipoprotein E (APOE) plays a critical role in lipoprotein metabolism by binding to both low-density lipoprotein and APOE receptors. The APOE gene has three allelic forms, epsilon2, epsilon3, and epsilon4, which encode different isoforms of the APOE protein. In this study, we have developed a new genotyping method for APOE. Our multiplex tetra-primer amplification refractory mutation system (multiplex T-ARMS) polymerase chain reaction (PCR) was performed in a single reaction tube with six primers consisting of two common primers and two specific primers for each of two single nucleotide polymorphism (SNP) sites. We obtained definitive electropherograms that showed three (epsilon2/epsilon2, epsilon3/epsilon3, and epsilon4/epsilon4), four (epsilon2/epsilon3 and epsilon3/epsilon4), and five (epsilon2/epsilon4) amplicons by multiplex T-ARMS PCR in a single reaction tube. Multiplex T-ARMS PCR for APOE genotyping is a simple and accurate method that requires only a single PCR reaction, without any another treatments or expensive instrumentation, to simultaneously identify two sites of single nucleotide polymorphisms.
Krasheninina, Olga A; Novopashina, Darya S; Lomzov, Alexander A; Venyaminova, Alya G
2014-09-05
The synthesis and properties two series of new 2'-O-methyl RNA probes, each containing a single insertion of a 2'-bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21-fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5'-side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3'-side are important: CC, CG, and UC dinucleotide units on the 3'-side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2'-bispyrene-labeled 2'-O-methyl RNA probes might be useful tools for detection of RNAs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe
2015-05-30
Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.
El-Sabrout, Karim; Aggag, Sarah A.
2017-01-01
Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458
Method of manufacture of atomically thin boron nitride
Zettl, Alexander K
2013-08-06
The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.
Probing Gαi1 Protein Activation at Single Amino Acid Resolution
Sun, Dawei; Maeda, Shoji; Matkovic, Milos; Mendieta, Sandro; Mayer, Daniel; Dawson, Roger; Schertler, Gebhard F.X.; Madan Babu, M.; Veprintsev, Dmitry B.
2016-01-01
We present comprehensive single amino acid resolution maps of the residues stabilising the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and of the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-6. Key residues in this cluster are Y320, crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the inter-domain interface and release of GDP. PMID:26258638
Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett
2017-01-01
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.
Reciprocal uniparental disomy in yeast.
Andersen, Sabrina L; Petes, Thomas D
2012-06-19
In the diploid cells of most organisms, including humans, each chromosome is usually distinguishable from its partner homolog by multiple single-nucleotide polymorphisms. One common type of genetic alteration observed in tumor cells is uniparental disomy (UPD), in which a pair of homologous chromosomes are derived from a single parent, resulting in loss of heterozygosity for all single-nucleotide polymorphisms while maintaining diploidy. Somatic UPD events are usually explained as reflecting two consecutive nondisjunction events. Here we report a previously undescribed mode of chromosome segregation in Saccharomyces cerevisiae in which one cell division produces daughter cells with reciprocal UPD for the same pair of chromosomes without an aneuploid intermediate. One pair of sister chromatids is segregated into one daughter cell and the other pair is segregated into the other daughter cell, mimicking a meiotic chromosome segregation pattern. We term this process "reciprocal uniparental disomy."
Time-lapse crystallography snapshots of a double-strand break repair polymerase in action.
Jamsen, Joonas A; Beard, William A; Pedersen, Lars C; Shock, David D; Moon, Andrea F; Krahn, Juno M; Bebenek, Katarzyna; Kunkel, Thomas A; Wilson, Samuel H
2017-08-15
DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PP i . The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.
Rho proteins of plants--functional cycle and regulation of cytoskeletal dynamics.
Mucha, Elena; Fricke, Inka; Schaefer, Antje; Wittinghofer, Alfred; Berken, Antje
2011-11-01
Rho-related ROP proteins are molecular switches that essentially regulate a wide variety of processes. Of central interest is their influence on the plant cytoskeleton by which they affect vital processes like cell division, growth, morphogenesis, and pathogen defense. ROPs switch between GTP- and GDP-bound conformations by strictly regulated nucleotide exchange and GTP-hydrolysis, and only the active GTP-form interacts with downstream effectors to ultimately provoke a biological response. However, the mode of action of the engaged regulators and effectors as well as their upstream and downstream interaction partners have long been largely unknown. As opposed to analogous systems in animals and fungi, plants use specific GTPase activating proteins (RopGAPs) with a unique domain composition and novel guanine nucleotide exchange factors (RopGEFs) with a probable link to cell surface receptors. Moreover, plants comprise novel effector molecules and adapters connecting ROPs to mostly unknown downstream targets on the route to the cytoskeleton. This review aims to summarize recent knowledge on the molecular mechanisms and reaction cascades involved in ROP dependent cytoskeletal rearrangements, addressing the structure and function of the unusual RopGAPs, RopGEFs and effectors, and the upstream and downstream pathways linking ROPs to cell receptor-like kinases, actin filaments, and microtubules. Copyright © 2010 Elsevier GmbH. All rights reserved.
Genomic diversity of the human intestinal parasite Entamoeba histolytica
2012-01-01
Background Entamoeba histolytica is a significant cause of disease worldwide. However, little is known about the genetic diversity of the parasite. We re-sequenced the genomes of ten laboratory cultured lines of the eukaryotic pathogen Entamoeba histolytica in order to develop a picture of genetic diversity across the genome. Results The extreme nucleotide composition bias and repetitiveness of the E. histolytica genome provide a challenge for short-read mapping, yet we were able to define putative single nucleotide polymorphisms in a large portion of the genome. The results suggest a rather low level of single nucleotide diversity, although genes and gene families with putative roles in virulence are among the more polymorphic genes. We did observe large differences in coverage depth among genes, indicating differences in gene copy number between genomes. We found evidence indicating that recombination has occurred in the history of the sequenced genomes, suggesting that E. histolytica may reproduce sexually. Conclusions E. histolytica displays a relatively low level of nucleotide diversity across its genome. However, large differences in gene family content and gene copy number are seen among the sequenced genomes. The pattern of polymorphism indicates that E. histolytica reproduces sexually, or has done so in the past, which has previously been suggested but not proven. PMID:22630046
Ghedira, Rim; Papazova, Nina; Vuylsteke, Marnik; Ruttink, Tom; Taverniers, Isabel; De Loose, Marc
2009-10-28
GMO quantification, based on real-time PCR, relies on the amplification of an event-specific transgene assay and a species-specific reference assay. The uniformity of the nucleotide sequences targeted by both assays across various transgenic varieties is an important prerequisite for correct quantification. Single nucleotide polymorphisms (SNPs) frequently occur in the maize genome and might lead to nucleotide variation in regions used to design primers and probes for reference assays. Further, they may affect the annealing of the primer to the template and reduce the efficiency of DNA amplification. We assessed the effect of a minor DNA template modification, such as a single base pair mismatch in the primer attachment site, on real-time PCR quantification. A model system was used based on the introduction of artificial mismatches between the forward primer and the DNA template in the reference assay targeting the maize starch synthase (SSIIb) gene. The results show that the presence of a mismatch between the primer and the DNA template causes partial to complete failure of the amplification of the initial DNA template depending on the type and location of the nucleotide mismatch. With this study, we show that the presence of a primer/template mismatch affects the estimated total DNA quantity to a varying degree.
Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.
Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A
2018-06-01
Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hein, David W.
2009-01-01
Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) exhibit single nucleotide polymorphisms (SNPs) in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location, and functional effects of these SNPs and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine. PMID:19379125
Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija
2012-04-01
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.
Mycobacterium leprae: genes, pseudogenes and genetic diversity
Singh, Pushpendra; Cole, Stewart T
2011-01-01
Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636
2012-01-01
The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org. PMID:23013645
Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap.
van der Geer, P; Henkemeyer, M; Jacks, T; Pawson, T
1997-01-01
The Ras guanine nucleotide-binding protein functions as a molecular switch in signalling downstream of protein-tyrosine kinases. Ras is activated by exchange of GDP for GTP and is turned off by hydrolysis of bound GTP to GDP. Ras itself has a low intrinsic GTPase activity that can be stimulated by GTPase-activating proteins (GAPs), including p120-Gap and neurofibromin. These GAPs possess a common catalytic domain but contain distinct regulatory elements that may couple different external signals to control of the Ras pathway. p120-Gap, for example, has two N-terminal SH2 domains that directly recognize phosphotyrosine motifs on activated growth factor receptors and cytoplasmic phosphoproteins. To analyze the role of p120-Gap in Ras regulation in vivo, we have used fibroblasts derived from mouse embryos with a null mutation in the gene for p120-Gap (Gap). Platelet-derived growth factor stimulation of Gap-/- cells led to an abnormally large increase in the level of Ras-GTP and in the duration of mitogen-activated protein (MAP) kinase activation compared with wild-type cells, suggesting that p120-Gap is specifically activated following growth factor stimulation. Induction of DNA synthesis in response to platelet-derived growth factor and morphological transformation by the v-src and EJ-ras oncogenes were not significantly affected by the absence of p120-Gap. However, we found that normal tyrosine phosphorylation of p190-rhoGap, a cytoplasmic protein that associates with the p120-Gap SH2 domains, was dependent on the presence of p120-Gap. Our results suggest that p120-Gap has specific functions in downregulating the Ras/MAP kinase pathway following growth factor stimulation, and in modulating the phosphorylation of p190-rhoGap, but is not required for mitogenic signalling. PMID:9121432
The -(α)(5.2) Deletion Detected in a Uruguayan Family: First Case Report in the Americas.
Soler, Ana María; Schelotto, Magdalena; de Oliveira Mota, Natalia; Dorta Ferreira, Roberta; Sonati, Maria de Fatima; da Luz, Julio Abayubá
2016-08-01
In Uruguay, α-thalassemia (α-thal) mutations were introduced predominantly by Mediterranean European immigrant populations and by slave trade of African populations. A patient with anemia with hypochromia and microcytosis, refractory to iron treatment and with normal hemoglobin (Hb) electrophoresis was analyzed for α-thal mutations by multiplex gap-polymerase chain reaction (gap-PCR), automated sequencing and multiplex ligation-dependent probe amplification (MLPA) analyses. Agarose gel electrophoresis of the multiplex gap-PCR showed a band of unexpected size (approximately 700 bp) in the samples from the proband and mother. Automated sequencing of the amplified fragment showed the presence of the -(α)(5.2) deletion (NG_000006.1: g.32867_38062del5196) [an α-thal-1 deletion of 5196 nucleotides (nts)]. The MLPA analysis of the proband's sample also showed the presence of the -(α)(5.2) deletion in heterozygous state. We report here the presence of the -(α)(5.2) deletion, for the first time in the Americas, in a Uruguayan family with Italian ancestry, detected with a previously described multiplex gap-PCR.
Kondo, Jiro; Westhof, Eric
2011-01-01
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431
Prospective guidance in a free-swimming cell.
Delafield-Butt, Jonathan T; Pepping, Gert-Jan; McCaig, Colin D; Lee, David N
2012-07-01
A systems theory of movement control in animals is presented in this article and applied to explaining the controlled behaviour of the single-celled Paramecium caudatum in an electric field. The theory-General Tau Theory-is founded on three basic principles: (i) all purposive movement entails prospectively controlling the closure of action-gaps (e.g. a distance gap when reaching, or an angle gap when steering); (ii) the sole informational variable required for controlling gaps is the relative rate of change of the gap (the time derivative of the gap size divided by the size), which can be directly sensed; and (iii) a coordinated movement is achieved by keeping the relative rates of change of gaps in a constant ratio. The theory is supported by studies of controlled movement in mammals, birds and insects. We now show for the first time that it is also supported by single-celled paramecia steering to the cathode in a bi-polar electric field. General Tau Theory is deployed to explain this guided steering by the cell. This article presents the first computational model of prospective perceptual control in a non-neural, single-celled system.
Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu
2016-10-01
Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.
The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi.
Ryskov, Alexey P; Osipov, Fedor A; Omelchenko, Andrey V; Semyenova, Seraphima K; Girnyk, Anastasiya E; Korchagin, Vitaly I; Vergun, Andrey A; Murphy, Robert W
2017-01-01
The all-female Caucasian rock lizard Darevskia rostombekowi and other unisexual species of this genus reproduce normally via true parthenogenesis. Typically, diploid parthenogenetic reptiles exhibit some amount of clonal diversity. However, allozyme data from D. rostombekowi have suggested that this species consists of a single clone. Herein, we test this hypothesis by evaluating variation at three variable microsatellite loci for 42 specimens of D. rostombekowi from four populations in Armenia. Analyses based on single nucleotide polymorphisms of each locus reveal five genotypes or presumptive clones in this species. All individuals are heterozygous at the loci. The major clone occurs in 24 individuals and involves three populations. Four rare clones involve one or several individuals from one or two populations. Most variation owes to parent-specific single nucleotide polymorphisms, which occur as heterozygotes. This result fails to reject the hypothesis of a single hybridization founder event that resulted in the initial formation of one major clone. The other clones appear to have originated via post-formation microsatellite mutations of the major clone.
NASA Astrophysics Data System (ADS)
Song, Chaoqun; Dong, Shiyun; Yan, Shixing; He, Jiawu; Xu, Binshi; He, Peng
2017-10-01
Ultra-narrow gap laser welding is a novel method for thick high strength aluminum alloy plate for its lower heat input, less deformation and higher efficiency. To obtain a perfect welding quality, it is vital to control the more complex droplet transfer behavior under the influence of ultra-narrow gap groove. This paper reports the effects of gap width of groove on droplet transfer behavior in ultra-narrow gap laser welding of 7A52 aluminum alloy plates by a high speed camera, using an ER 5356 filler wire. The results showed that the gap width had directly effects on droplet transfer mode and droplet shape. The droplet transfer modes were, in order, both-sidewall transfer, single-sidewall transfer, globular droplet transfer and bridging transfer, with different droplet shape and transition period, as the gap width increased from 2 mm to 3.5mm. The effect of gap width on lack of fusion was also studied to analyze the cause for lack of fusion at the bottom and on the sidewall of groove. Finally, with a 2.5 mm U-type parallel groove, a single-pass joint with no lack of fusion and other macro welding defects was successfully obtained in a single-sidewall transfer mode.
Photo-conductance of a single Quantum Dot
NASA Astrophysics Data System (ADS)
Zimmers, Alexandre; Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Dubertret, Benoit; Aubin, Herve; Ulysse, Christian; LPEM Collaboration
One promising strategy for the development of nanoscale resonant spin sensors is to measure the spin-dependent photo-current in Quantum Dots (QDots) containing spin-dependent recombination centers. To reach single spin sensitivity will require measurements of the photo-conductance of single QDots. We present here an experimental study of the conductance and photo-conductance of single HgSe QDots as function of drain and gate voltage. The evolution of the differential conductance dI/dV spectrum with the gate voltage demonstrates that single HgSe QDots are forming the junction. The amplitude of the gap measured in the differential conductance spectrum changes with the occupation level. A large inter-band gap, 0,85eV, is observed for the empty QDot, a smaller intra-band gap 0,25eV is observed for the doubly occupied QDot. These gap energies are consistent with the values extracted from the optical absorption spectrum. Upon illuminating the QDot junction, we show that the photo-conductive signal produced by this single QDot can be measured with a simple demodulation method. ANR Grant ''QUANTICON'' 10-0409-01 / DIM Nano-K / Chinese Scholarship Council.
Helal, Soheir F.; Gomaa, Howayda E.; Thabet, Eman H.; Younan, Mariam A.; Helmy, Neveen A.
2014-01-01
Immunoregulatory cytokines may influence the hepatitis C virus (HCV) infection outcome. This study aimed to determine the genotypic and allelic frequencies of the interleukin (IL)-10 (−1082) G/A polymorphism, and its association with chronicity or resolution of HCV genotype 4 infection in Egypt. The frequencies of different dimorphic polymorphisms based on single nucleotide substitution in chronic HCV patients (50) and resolved HCV patients (50) were: IL-10 (−1082) G/G 22 (44%) and 18 (36%), G/A 19 (38%) and 24 (48%), and A/A 9 (18%), and 8 (16%), respectively. In the sustained virologic response (SVR) (36) and spontaneously resolved subjects (14) groups, the frequencies were: IL-10 (−1082) G/G 11 (30.6%) and 7 (50%) G/A 18 (50%) and 6 (42.9%), A/A 7 (19.4%) and 1 (7.1%), respectively. An association between male gender and chronic hepatitis C outcome (P value 0.041) was found. However, no significant gender difference was found when we compared females versus males with elevated alanine transaminase (ALT) levels in the chronic HCV patient group (P value = 1). CONCLUSION No significant difference in the frequency of IL-10 single nucleotide polymorphism (SNP) at position 1082 was found between chronic and resolved HCV subjects. PMID:24833945
Helal, Soheir F; Gomaa, Howayda E; Thabet, Eman H; Younan, Mariam A; Helmy, Neveen A
2014-01-01
Immunoregulatory cytokines may influence the hepatitis C virus (HCV) infection outcome. This study aimed to determine the genotypic and allelic frequencies of the interleukin (IL)-10 (-1082) G/A polymorphism, and its association with chronicity or resolution of HCV genotype 4 infection in Egypt. The frequencies of different dimorphic polymorphisms based on single nucleotide substitution in chronic HCV patients (50) and resolved HCV patients (50) were: IL-10 (-1082) G/G 22 (44%) and 18 (36%), G/A 19 (38%) and 24 (48%), and A/A 9 (18%), and 8 (16%), respectively. In the sustained virologic response (SVR) (36) and spontaneously resolved subjects (14) groups, the frequencies were: IL-10 (-1082) G/G 11 (30.6%) and 7 (50%) G/A 18 (50%) and 6 (42.9%), A/A 7 (19.4%) and 1 (7.1%), respectively. An association between male gender and chronic hepatitis C outcome (P value 0.041) was found. However, no significant gender difference was found when we compared females versus males with elevated alanine transaminase (ALT) levels in the chronic HCV patient group (P value = 1). No significant difference in the frequency of IL-10 single nucleotide polymorphism (SNP) at position 1082 was found between chronic and resolved HCV subjects.
Mishra, Anshuman; Nizammuddin, Sheikh; Mallick, Chandana Basu; Singh, Sakshi; Prakash, Satya; Siddiqui, Niyamat Ali; Rai, Niraj; Carlus, S Justin; Sudhakar, Digumarthi V S; Tripathi, Vishnu P; Möls, Märt; Kim-Howard, Xana; Dewangan, Hemlata; Mishra, Abhishek; Reddy, Alla G; Roy, Biswajit; Pandey, Krishna; Chaubey, Gyaneshwer; Das, Pradeep; Nath, Swapan K; Singh, Lalji; Thangaraj, Kumarasamy
2017-03-01
Our understanding of the genetics of skin pigmentation has been largely skewed towards populations of European ancestry, imparting less attention to South Asian populations, who behold huge pigmentation diversity. Here, we investigate skin pigmentation variation in a cohort of 1,167 individuals in the Middle Gangetic Plain of the Indian subcontinent. Our data confirm the association of rs1426654 with skin pigmentation among South Asians, consistent with previous studies, and also show association for rs2470102 single nucleotide polymorphism. Our haplotype analyses further help us delineate the haplotype distribution across social categories and skin color. Taken together, our findings suggest that the social structure defined by the caste system in India has a profound influence on the skin pigmentation patterns of the subcontinent. In particular, social category and associated single nucleotide polymorphisms explain about 32% and 6.4%, respectively, of the total phenotypic variance. Phylogeography of the associated single nucleotide polymorphisms studied across 52 diverse populations of the Indian subcontinent shows wide presence of the derived alleles, although their frequencies vary across populations. Our results show that both polymorphisms (rs1426654 and rs2470102) play an important role in the skin pigmentation diversity of South Asians. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Khrustaleva, A M; Gritsenko, O F; Klovach, N V
2013-11-01
The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.
Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.
Cao, Jiaxue; Wei, Caihong; Zhang, Shuzhen; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Du, Lixin; Zhang, Hongping
2016-11-01
Extensive variation in reproduction has arisen in Chinese Mongolian sheep during recent domestication. Hu and Small-tailed Han sheep, for example, have become non-seasonal breeders and exhibit higher fecundity than Tan and Ujumqin breeds. We therefore scanned reproduction-related single-nucleotide variations from methylated DNA-immunoprecipitation sequencing data generated from each of those four breeds to uncover potential mechanisms underlying this breed variation. We generated a high-quality map of single nucleotide variations (SNVs) in DNA methylation enriched regions, and found that the majority of variants are located within non-coding regions. We identified 359 SNVs within the Sheep Quantitative Trait Locus (QTL) database. Nineteen of these SNVs associated with the Aseasonal Reproduction QTL, and 10 out of the 19 reside close to genes with known reproduction functions. We also identified the well-known FecB mutation in high-fecundity sheep (Hu and Small-tailed Han sheep). When we applied these FecB finding to our breeding system, we improved lambing rate by 175%. In summary, this study provided strong candidate SNVs associated with sheep fecundity that can serve as targets for functional testing and to enhance selective breeding strategies. Mol. Reprod. Dev. 83: 958-967, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mohd-Yusoff, Nur Fatihah; Ruperao, Pradeep; Tomoyoshi, Nurain Emylia; Edwards, David; Gresshoff, Peter M.; Biswas, Bandana; Batley, Jacqueline
2015-01-01
Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm. PMID:25660167
Nuotio, Joel; Pitkänen, Niina; Magnussen, Costan G; Buscot, Marie-Jeanne; Venäläinen, Mikko S; Elo, Laura L; Jokinen, Eero; Laitinen, Tomi; Taittonen, Leena; Hutri-Kähönen, Nina; Lyytikäinen, Leo-Pekka; Lehtimäki, Terho; Viikari, Jorma S; Juonala, Markus; Raitakari, Olli T
2017-06-01
Dyslipidemia is a major modifiable risk factor for cardiovascular disease. We examined whether the addition of novel single-nucleotide polymorphisms for blood lipid levels enhances the prediction of adult dyslipidemia in comparison to childhood lipid measures. Two thousand four hundred and twenty-two participants of the Cardiovascular Risk in Young Finns Study who had participated in 2 surveys held during childhood (in 1980 when aged 3-18 years and in 1986) and at least once in a follow-up study in adulthood (2001, 2007, and 2011) were included. We examined whether inclusion of a lipid-specific weighted genetic risk score based on 58 single-nucleotide polymorphisms for low-density lipoprotein cholesterol, 71 single-nucleotide polymorphisms for high-density lipoprotein cholesterol, and 40 single-nucleotide polymorphisms for triglycerides improved the prediction of adult dyslipidemia compared with clinical childhood risk factors. Adjusting for age, sex, body mass index, physical activity, and smoking in childhood, childhood lipid levels, and weighted genetic risk scores were associated with an increased risk of adult dyslipidemia for all lipids. Risk assessment based on 2 childhood lipid measures and the lipid-specific weighted genetic risk scores improved the accuracy of predicting adult dyslipidemia compared with the approach using only childhood lipid measures for low-density lipoprotein cholesterol (area under the receiver-operating characteristic curve 0.806 versus 0.811; P =0.01) and triglycerides (area under the receiver-operating characteristic curve 0.740 versus area under the receiver-operating characteristic curve 0.758; P <0.01). The overall net reclassification improvement and integrated discrimination improvement were significant for all outcomes. The inclusion of weighted genetic risk scores to lipid-screening programs in childhood could modestly improve the identification of those at highest risk of dyslipidemia in adulthood. © 2017 American Heart Association, Inc.
Gurramkonda, Venkatesh Babu; Syed, Altaf Hussain; Murthy, Jyotsna; Lakkakula, Bhaskar V K S
2017-06-26
Transcription factors are very diverse family of proteins involved in activating or repressing the transcription of a gene at a given time. Several studies using animal models demonstrated the role of transcription factor genes in craniofacial development. We aimed to investigate the association of IRF6 intron-6 polymorphism in the non-syndromic cleft lip with or without Palate in a south Indian population. 173 unrelated nonsyndromic cleft lip with or without Palate patients and 176 controls without clefts patients were genotyped for IRF6 rs2235375 variant by allele-specific amplification using the KASPar single nucleotide polymorphism genotyping system. The association between interferon regulatory factor-6 gene intron-6 dbSNP208032210:g.G>C (rs2235375) single nucleotide polymorphism and non-syndromic cleft lip with or without palate risk was investigated by chi-square test. There were significant differences in genotype or allele frequencies of rs2235375 single nucleotide polymorphism between controls and cases with non-syndromic cleft lip with or without palate. IRF6 rs2235375 variant was significantly associated with increased risk of non-syndromic cleft lip with or without palate in co-dominant, dominant (OR: 1.19; 95% CI 1.03-2.51; p=0.034) and allelic models (OR: 1.40; 95% CI 1.04-1.90; p=0.028). When subset analysis was applied significantly increased risk was observed in cleft palate only group (OR dominant: 4.33; 95% CI 1.44-12.97; p=0.005). These results suggest that IRF6 rs2235375 SNP play a major role in the pathogenesis and risk of developing non-syndromic cleft lip with or without palate. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C
2015-07-01
To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.
Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke.
Hanscombe, Ken B; Traylor, Matthew; Hysi, Pirro G; Bevan, Stephen; Dichgans, Martin; Rothwell, Peter M; Worrall, Bradford B; Seshadri, Sudha; Sudlow, Cathie; Williams, Frances M K; Markus, Hugh S; Lewis, Cathryn M
2015-08-01
Abnormal coagulation has been implicated in the pathogenesis of ischemic stroke, but how this association is mediated and whether it differs between ischemic stroke subtypes is unknown. We determined the shared genetic risk between 14 coagulation factors and ischemic stroke and its subtypes. Using genome-wide association study results for 14 coagulation factors from the population-based TwinsUK sample (N≈2000 for each factor), meta-analysis results from the METASTROKE consortium ischemic stroke genome-wide association study (12 389 cases, 62 004 controls), and genotype data for 9520 individuals from the WTCCC2 ischemic stroke study (3548 cases, 5972 controls-the largest METASTROKE subsample), we explored shared genetic risk for coagulation and stroke. We performed three analyses: (1) a test for excess concordance (or discordance) in single nucleotide polymorphism effect direction across coagulation and stroke, (2) an estimation of the joint effect of multiple coagulation-associated single nucleotide polymorphisms in stroke, and (3) an evaluation of common genetic risk between coagulation and stroke. One coagulation factor, factor XIII subunit B (FXIIIB), showed consistent effects in the concordance analysis, the estimation of polygenic risk, and the validation with genotype data, with associations specific to the cardioembolic stroke subtype. Effect directions for FXIIIB-associated single nucleotide polymorphisms were significantly discordant with cardioembolic disease (smallest P=5.7×10(-04)); the joint effect of FXIIIB-associated single nucleotide polymorphisms was significantly predictive of ischemic stroke (smallest P=1.8×10(-04)) and the cardioembolic subtype (smallest P=1.7×10(-04)). We found substantial negative genetic covariation between FXIIIB and ischemic stroke (rG=-0.71, P=0.01) and the cardioembolic subtype (rG=-0.80, P=0.03). Genetic markers associated with low FXIIIB levels increase risk of ischemic stroke cardioembolic subtype. © 2015 The Authors.
Evidence for a Complex Class of Nonadenylated mRNA in Drosophila
Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.
1980-01-01
The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246
Berro, Mariano; Mayor, Neema P.; Maldonado-Torres, Hazael; Cooke, Louise; Kusminsky, Gustavo; Marsh, Steven G.E.; Madrigal, J. Alejandro; Shaw, Bronwen E.
2010-01-01
Background Many genetic factors play major roles in the outcome of hematopoietic stem cell transplants from unrelated donors. Transforming growth factor β1 is a member of a highly pleiotrophic family of growth factors involved in the regulation of numerous immunomodulatory processes. Design and Methods We investigated the impact of single nucleotide polymorphisms at codons 10 and 25 of TGFB1, the gene encoding for transforming growth factor β1, on outcomes in 427 mye-loablative-conditioned transplanted patients. In addition, transforming growth factor β1 plasma levels were measured in 263 patients and 327 donors. Results Patients homozygous for the single nucleotide polymorphism at codon 10 had increased non-relapse mortality (at 3 years: 46.8% versus 29.4%, P=0.014) and reduced overall survival (at 5 years 29.3% versus 42.2%, P=0.013); the differences remained statistically significant in multivariate analysis. Donor genotype alone had no impact, although multiple single nucleotide polymorphisms within the pair were significantly associated with higher non-relapse mortality (at 3 years: 44% versus 29%, P=0.021) and decreased overall survival (at 5 years: 33.8% versus 41.9%, P=0.033). In the 10/10 HLA matched transplants (n=280), recipients of non-wild type grafts tended to have a higher incidence of acute graft-versus-host disease grades II-IV (P=0.052). In multivariate analysis, when analyzed with patients’ genotype, the incidences of both overall and grades II-IV acute graft-versus-host disease were increased (P=0.025 and P=0.009, respectively) in non-wild-type pairs. Conclusions We conclude that increasing numbers of single nucleotide polymorphisms in codon 10 of TGFB1 in patients and donors are associated with a worse outcome following hematopoietic stem cell transplantation from unrelated donors. PMID:19713222
Dasgupta, R; Kaesberg, P
1982-01-01
The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration. PMID:6895941
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-01-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-09-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.
Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya
2014-01-01
Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301
ERIC Educational Resources Information Center
Palardy, Gregory J.
2015-01-01
Background: An enduring question about achievement gaps is, which aspects of schools contribute most? At the early grade levels, when children spend the vast majority of their school day in a single classroom with a single teacher, school inequities that correlate with achievement gaps likely originate within the classroom. This study examined the…
Olsen, Nanna J; Ängquist, Lars; Larsen, Sofus C; Linneberg, Allan; Skaaby, Tea; Husemoen, Lise Lotte N; Toft, Ulla; Tjønneland, Anne; Halkjær, Jytte; Hansen, Torben; Pedersen, Oluf; Overvad, Kim; Ahluwalia, Tarunveer S; Sørensen, Thorkild Ia; Heitmann, Berit L
2016-09-01
Intake of sugar-sweetened beverages is associated with obesity, and this association may be modified by a genetic predisposition to obesity. We examined the interactions between a molecular genetic predisposition to various aspects of obesity and the consumption of soft drinks, which are a major part of sugar-sweetened beverages, in relation to changes in adiposity measures. A total of 4765 individuals were included in the study. On the basis of 50 obesity-associated single nucleotide polymorphisms that are associated with body mass index (BMI), waist circumference (WC), or the waist-to-hip ratio adjusted for BMI (WHRBMI), the following 4 genetic predisposition scores (GRSs) were constructed: a complete genetic predisposition score including all 50 single nucleotide polymorphisms (GRSComplete), a genetic predisposition score including BMI-associated single nucleotide polymorphisms (GRSBMI), a genetic predisposition score including waist circumference-associated single nucleotide polymorphisms (GRSWC), and a genetic predisposition score including the waist-to-hip ratio adjusted for BMI-associated single nucleotide polymorphisms (GRSWHR). Associations between soft drink intake and the annual change (Δ) in body weight (BW), WC, or waist circumference adjusted for BMI (WCBMI) and possible interactions with the GRSs were examined with the use of linear regression analyses and meta-analyses. For each soft drink serving per day, soft drink consumption was significantly associated with a higher ΔBW of 0.07 kg/y (95% CI: 0.01, 0.13 kg/y; P = 0.020) but not with the ΔWC or ΔWCBMI In analyses of the ΔBW, we showed an interaction only with the GRSWC (per risk allele for each soft drink serving per day: -0.06 kg/y; 95% CI: -0.10, -0.02 kg/y; P = 0.006). In analyses of the ΔWC, we showed interactions only with the GRSBMI and GRSComplete [per risk allele for each soft drink serving per day: 0.05 cm/y (95% CI: 0.02, 0.09 cm/y; P = 0.001) and 0.05 cm/y (95% CI: 0.02, 0.07 cm/y; P = 0.001), respectively]. Nearly identical results were observed in analyses of the ΔWCBMI CONCLUSIONS: A genetic predisposition to a high WC may attenuate the association between soft drink intake and BW gain. A genetic predisposition to high BMI as well as a genetic predisposition to high BMI, WC, and WHRBMI combined may strengthen the association between soft drink intake and WC gain. However, the public health impact may be limited. © 2016 American Society for Nutrition.
Organization patterns of the AGFG genes: an evolutionary study.
Panaro, Maria Antonietta; Acquafredda, Angela; Calvello, Rosa; Lisi, Sabrina; Dragone, Teresa; Cianciulli, Antonia
2011-03-01
A number of proteins which are needed for the building of new immunodeficiency virus type 1 virions can only be translated from unspliced virus-derived pre-mRNAs. These unspliced mRNAs are shuttled through the nuclear pores reaching the cytosol when bound to the viral protein Rev. However, as a cellular co-factor Rev requires a Rev-binding protein of the AGFG family (nucleoporin-related Arf-GAP domain and FG repeats-containing proteins). In this article we address the evolution of the AGFGs by analyzing the first section of the coding mRNAs. This contains a "core module" which can be traced from Drosophilae to fish, amphibia, birds, and mammals, including man. In the subfamily of AGFG1 molecules the estimated conservation from Drosophilae to primates is 67% (with limited gaps). In some Drosophilae the core module is preceded by a long stretch of more than 300 coding nucleotides, but this additional module is absent in other Drosophilae and in all AGFG1s of other species. The AGFG2 molecules emerged later in evolution, possibly deriving from a duplication of AGFG1s. AGFG2s, present in mammals only, exhibit an additional module of about 50 coding nucleotides ahead of the core module, which is significantly less conserved (54%, with more remarkable gaps). This additional module does not seem to have homologies with the additional module of Drosophilae nor with the precoding section of AGFG1s. Interestingly, in birds a highly re-edited form of the AGFG1 core module (Gallus gallus, Galliformes) coexists with a typical form of the AGFG1 core module (Taeniopygia guttata, Passeriformes).
Aldolase as a Chirality Intersection of L-Amino Acids and D-Sugars
NASA Astrophysics Data System (ADS)
Munegumi, Toratane
2015-06-01
Aldolase plays an important role in glycolysis and gluconeogenesis to produce D-fructose-1,6-bisphosphate (D-FBP) from dihydroxyacetone phosphate (DHP) and D-glyceraldehyde-3-phosphate (D-GAP). This reaction is stereoselective and retains the D-GAP 2R configuration and yields D-FBP (with the configuration: 3S, 4S, 5R). The 3- and 4-position carbons are the newly formed chiral carbons because the 5-position carbon of D-FBP comes from the 2-position of D-GAP. Although four diastereomeric products, ( 3S, 4R, 5R), ( 3R, 4R, 5R), ( 3R, 4S, 5R), ( 3S, 4S, 5R), are expected in the nonenzymatic reaction, only the ( 3S, 4S, 5R) diastereomer (D-FBP) is obtained. Therefore, the chirality in the 3- and 4-positions is induced by the chirality of the enzyme composed of L-amino acid residues. D-Glucose-6-phosphate (D-G6P), which is generated from D-FBP in the gluconeogenesis pathway, produces D-ribose-5-phosphate (D-R5P) in the pentose phosphate pathway. D-R5P is converted to PRPP (5-phosphoribosyl-α-pyrophosphate), which is used for the de novo synthesis of nucleotides. Ribonucleic acid (RNA) uses the nucleotides as building blocks. The configurations of the 4R-carbon and of the 3S-carbon are retained. The stereochemical structure of RNA is based on 3S as well as 4R (D). The consideration above suggests that aldolase is a key enzyme that determines the 3S configuration in D-R5P. It is thus a chirality intersection between amino acids and sugars, because the sugar chirality is determined by the chiral environment of an L-amino acid protein, aldolase, to produce D-FBP.
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
Radiogenomics Consortium (RGC)
The Radiogenomics Consortium's hypothesis is that a cancer patient's likelihood of developing toxicity to radiation therapy is influenced by common genetic variations, such as single nucleotide polymorphisms (SNPs).
Suture spanning augmentation of single-row rotator cuff repair: a biomechanical analysis.
Early, Nicholas A; Elias, John J; Lippitt, Steven B; Filipkowski, Danielle E; Pedowitz, Robert A; Ciccone, William J
2017-02-01
This in vitro study evaluated the biomechanical benefit of adding spanning sutures to single-row rotator cuff repair. Mechanical testing was performed to evaluate 9 pairs of cadaveric shoulders with complete rotator cuff repairs, with a single-row technique used on one side and the suture spanning technique on the other. The spanning technique included sutures from 2 lateral anchors securing tendon near the musculotendinous junction, spanning the same anchor placement from single-row repair. The supraspinatus muscle was loaded to 100 N at 0.25 Hz for 100 cycles, followed by a ramp to failure. Markers and a video tracking system measured anterior and posterior gap formation across the repair at 25-cycle intervals. The force at which the stiffness decreased by 50% and 75% was determined. Data were compared using paired t-tests. One single-row repair failed at <25 cycles. Both anterior and posterior gap distances tended to be 1 to 2 mm larger for the single-row repairs than for the suture spanning technique. The difference was statistically significant at all cycles for the posterior gap formation (P ≤ .02). The trends were not significant for the anterior gap (P ≥ .13). The loads at which the stiffness decreased by 50% and 75% did not differ significantly between the 2 types of repair (P ≥ .10). The suture spanning technique primarily improved posterior gap formation. Decreased posterior gap formation could reduce failure rates for rotator cuff repair. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Sampson, Juliana K.; Sheth, Nihar U.; Koparde, Vishal N.; Scalora, Allison F.; Serrano, Myrna G.; Lee, Vladimir; Roberts, Catherine H.; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H.; Buck, Gregory A.; Neale, Michael C.; Toor, Amir A.
2016-01-01
Summary Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. PMID:24749631
Labeled Nucleoside Triphosphates with Reversibly Terminating Aminoalkoxyl Groups
Hutter, Daniel; Kim, Myong-Jung; Karalkar, Nilesh; Leal, Nicole A.; Chen, Fei; Guggenheim, Evan; Visalakshi, Visa; Olejnik, Jerzy; Gordon, Steven; Benner, Steven A.
2013-01-01
Nucleoside triphosphates having a 3′-ONH2 blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3′-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3′-ONH2 group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3′-ONH2 blocking group in “next generation sequencing”. PMID:21128174
Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene.
Song, Q Q; Chai, Z X; Xin, J W; Zhao, S J; Ji, Q M; Zhang, C F; Ma, Z J; Zhong, J C
2015-03-13
To determine the level of genetic diversity and phylogenetic relationships among Tibetan yak populations, the mitochondrial DNA cytochrome c oxidase subunit 3 (COIII) genes of 378 yak individuals from 16 populations were analyzed in this study. The results showed that the length of cytochrome c oxidase subunit 3 gene sequences was 781 bp, with nucleotide frequencies of 29.2, 29.4, 26.1, and 15.2% for T, C, A, and G, respectively. A total of 26 haplotypes were identified, with 69 polymorphic sites, including 11 parsimony-informative sites and 58 single-nucleotide polymorphism sites. No deletions/insertions were found in sequence comparison, indicating that nucleotide mutation types were transitions and transversions. Haplotype and nucleotide diversities were 0.562 and 0.00138, respectively, indicating a high level of genetic diversity in Tibetan yak populations. Phylogenetic relationship analysis indicated that Tibetan yak populations are divided into 2 groups.
Broillet, M C; Firestein, S
1996-02-01
The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.
W-curve alignments for HIV-1 genomic comparisons.
Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H
2010-06-01
The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem.
Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo
2016-01-01
Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941
Smidansky, Eric D.; Arnold, Jamie J.; Reynolds, Shelley L.; Cameron, Craig E.
2013-01-01
The human mitochondrial RNA polymerase (h-mtRNAP) serves as both the transcriptase for expression and the primase for replication of mitochondrial DNA. As such, the enzyme is of fundamental importance to cellular energy metabolism, and defects in its function may be related to human disease states. Here we describe in vitro analysis of the h-mtRNAP kinetic mechanism for single, correct nucleotide incorporation. This was made possible by the development of efficient methods for expression and purification of h-mtRNAP using a bacterial system and by utilization of assays that rely on simple, synthetic RNA/DNA scaffolds without the need for mitochondrial transcription accessory proteins. We find that h-mtRNAP accomplishes single-nucleotide incorporation by using the same core steps, including conformational change steps before and after chemistry, that are prototypical for most types of nucleic acid polymerases. The polymerase binds to scaffolds via a two-step mechanism consisting of a fast initial-encounter step followed by a much slower isomerization that leads to catalytic competence. A substantial solvent deuterium kinetic isotope effect was observed for the forward reaction, but none was detectable for the reverse reaction, suggesting that chemistry is at least partially rate-limiting in the forward direction but not in the reverse. h-mtRNAP appears to exercise much more stringent surveillance over base than over sugar in determining the correctness of a nucleotide. The utility of developing the robust in vitro assays described here and of establishing a baseline of kinetic performance for the wild-type enzyme is that biological questions concerning h-mtRNAP may now begin to be addressed. PMID:21548588
Use of causative variants and SNP weighting in a single-step GBLUP context
USDA-ARS?s Scientific Manuscript database
Much effort has been recently put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, aiming genomic prediction. Among the genomic methods available, single-step GBLUP (ssGBLUP) became the choice because of its simplicity and potentially higher accuracy. When QTN are ...
Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F
2009-07-14
In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.
Institutional Protocol to Manage Consanguinity Detected by Genetic Testing in Pregnancy in a Minor
Chen, Laura P.; Beck, Anita E.; Tsuchiya, Karen D.; Chow, Penny M.; Mirzaa, Ghayda M.; Wiester, Rebecca T.
2015-01-01
Single-nucleotide polymorphism arrays and other types of genetic tests have the potential to detect first-degree consanguinity and uncover parental rape in cases of minor teenage pregnancy. We present 2 cases in which genetic testing identified parental rape of a minor teenager. In case 1, single-nucleotide polymorphism array in a patient with multiple developmental abnormalities demonstrated multiple long stretches of homozygosity, revealing parental rape of a teenage mother. In case 2, a vague maternal sexual assault history and diagnosis of Pompe disease by direct gene sequencing identified parental rape of a minor. Given the medical, legal, and ethical implications of such revelations, a protocol was developed at our institution to manage consanguinity identified via genetic testing. PMID:25687148
Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun
2007-01-01
Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779
Reference genotype and exome data from an Australian Aboriginal population for health-based research
Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.
2016-01-01
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114
Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M
2016-04-12
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.
Acyl-protein thioesterase 2 catalyzes the deacylation of peripheral membrane-associated GAP-43.
Tomatis, Vanesa M; Trenchi, Alejandra; Gomez, Guillermo A; Daniotti, Jose L
2010-11-30
An acylation/deacylation cycle is necessary to maintain the steady-state subcellular distribution and biological activity of S-acylated peripheral proteins. Despite the progress that has been made in identifying and characterizing palmitoyltransferases (PATs), much less is known about the thioesterases involved in protein deacylation. In this work, we investigated the deacylation of growth-associated protein-43 (GAP-43), a dually acylated protein at cysteine residues 3 and 4. Using fluorescent fusion constructs, we measured in vivo the rate of deacylation of GAP-43 and its single acylated mutants in Chinese hamster ovary (CHO)-K1 and human HeLa cells. Biochemical and live cell imaging experiments demonstrated that single acylated mutants were completely deacylated with similar kinetic in both cell types. By RT-PCR we observed that acyl-protein thioesterase 1 (APT-1), the only bona fide thioesterase shown to mediate deacylation in vivo, is expressed in HeLa cells, but not in CHO-K1 cells. However, APT-1 overexpression neither increased the deacylation rate of single acylated GAP-43 nor affected the steady-state subcellular distribution of dually acylated GAP-43 both in CHO-K1 and HeLa cells, indicating that GAP-43 deacylation is not mediated by APT-1. Accordingly, we performed a bioinformatic search to identify putative candidates with acyl-protein thioesterase activity. Among several candidates, we found that APT-2 is expressed both in CHO-K1 and HeLa cells and its overexpression increased the deacylation rate of single acylated GAP-43 and affected the steady-state localization of diacylated GAP-43 and H-Ras. Thus, the results demonstrate that APT-2 is the protein thioesterase involved in the acylation/deacylation cycle operating in GAP-43 subcellular distribution.
Masking as an effective quality control method for next-generation sequencing data analysis.
Yun, Sajung; Yun, Sijung
2014-12-13
Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, S.S.
1987-01-01
In X. laevis oocytes, mitochondrial DNA accumulates to 10/sup 5/ times the somatic cell complement, and is characterized by a high frequency of a triple-stranded displacement hoop structure at the origin of replication. To map the termini of the single strands, it was necessary to correct the nucleotide sequence of the D-loop region. The revised sequence of 2458 nucleotides contains 54 discrepancies in comparison to a previously published sequence. Radiolabeling of the nascent strands of the D-loop structure either at the 5' end or at the 3' end identifies a major species with a length of 1670 nucleotides. Cleavage ofmore » the 5' labeled strands reveals two families of ends located near several matches to an element, designated CSB-1, that is conserved in this location in several vertebrate genomes. Cleavage of 3' labeled strands produced one fragment. The unique 3' end maps to about 15 nucleotides preceding the tRNA/sup Pro/ gene. A search for proteins which may bind to mtDNA in this region to regulate nucleic acid synthesis has identified three activities in lysates of X. laevis mitochondria. The DNA-binding proteins were assayed by monitoring their ability to retard the migration of labeled double- or single-stranded DNA fragments in polyacrylamide gels. The DNA binding preference was determined by competition with an excess of either ds- or ssDNA.« less
Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.
Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P
1997-11-01
A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.
Defining the mRNA recognition signature of a bacterial toxin protein
Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; ...
2015-10-27
Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less
Defining the mRNA recognition signature of a bacterial toxin protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya
Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less
Kutys, Matthew L; Yamada, Kenneth M
2014-09-01
Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.
Risk determination and prevention of breast cancer.
Howell, Anthony; Anderson, Annie S; Clarke, Robert B; Duffy, Stephen W; Evans, D Gareth; Garcia-Closas, Montserat; Gescher, Andy J; Key, Timothy J; Saxton, John M; Harvie, Michelle N
2014-09-28
Breast cancer is an increasing public health problem. Substantial advances have been made in the treatment of breast cancer, but the introduction of methods to predict women at elevated risk and prevent the disease has been less successful. Here, we summarize recent data on newer approaches to risk prediction, available approaches to prevention, how new approaches may be made, and the difficult problem of using what we already know to prevent breast cancer in populations. During 2012, the Breast Cancer Campaign facilitated a series of workshops, each covering a specialty area of breast cancer to identify gaps in our knowledge. The risk-and-prevention panel involved in this exercise was asked to expand and update its report and review recent relevant peer-reviewed literature. The enlarged position paper presented here highlights the key gaps in risk-and-prevention research that were identified, together with recommendations for action. The panel estimated from the relevant literature that potentially 50% of breast cancer could be prevented in the subgroup of women at high and moderate risk of breast cancer by using current chemoprevention (tamoxifen, raloxifene, exemestane, and anastrozole) and that, in all women, lifestyle measures, including weight control, exercise, and moderating alcohol intake, could reduce breast cancer risk by about 30%. Risk may be estimated by standard models potentially with the addition of, for example, mammographic density and appropriate single-nucleotide polymorphisms. This review expands on four areas: (a) the prediction of breast cancer risk, (b) the evidence for the effectiveness of preventive therapy and lifestyle approaches to prevention, (c) how understanding the biology of the breast may lead to new targets for prevention, and (d) a summary of published guidelines for preventive approaches and measures required for their implementation. We hope that efforts to fill these and other gaps will lead to considerable advances in our efforts to predict risk and prevent breast cancer over the next 10 years.
CYK-4 regulates Rac, but not Rho, during cytokinesis
Zhuravlev, Yelena; Hirsch, Sophia M.; Jordan, Shawn N.; Dumont, Julien; Shirasu-Hiza, Mimi; Canman, Julie C.
2017-01-01
Cytokinesis is driven by constriction of an actomyosin contractile ring that is controlled by Rho-family small GTPases. Rho, activated by the guanine-nucleotide exchange factor ECT-2, is upstream of both myosin-II activation and diaphanous formin-mediated filamentous actin (f-actin) assembly, which drive ring constriction. The role for Rac and its regulators is more controversial, but, based on the finding that Rac inactivation can rescue cytokinesis failure when the GTPase-activating protein (GAP) CYK-4 is disrupted, Rac activity was proposed to be inhibitory to contractile ring constriction and thus specifically inactivated by CYK-4 at the division plane. An alternative model proposes that Rac inactivation generally rescues cytokinesis failure by reducing cortical tension, thus making it easier for the cell to divide when ring constriction is compromised. In this alternative model, CYK-4 was instead proposed to activate Rho by binding ECT-2. Using a combination of time-lapse in vivo single-cell analysis and Caenorhabditis elegans genetics, our evidence does not support this alternative model. First, we found that Rac disruption does not generally rescue cytokinesis failure: inhibition of Rac specifically rescues cytokinesis failure due to disruption of CYK-4 or ECT-2 but does not rescue cytokinesis failure due to disruption of two other contractile ring components, the Rho effectors diaphanous formin and myosin-II. Second, if CYK-4 regulates cytokinesis through Rho rather than Rac, then CYK-4 inhibition should decrease levels of downstream targets of Rho. Inconsistent with this, we found no change in the levels of f-actin or myosin-II at the division plane when CYK-4 GAP activity was reduced, suggesting that CYK-4 is not upstream of ECT-2/Rho activation. Instead, we found that the rescue of cytokinesis in CYK-4 mutants by Rac inactivation was Cdc42 dependent. Together our data suggest that CYK-4 GAP activity opposes Rac (and perhaps Cdc42) during cytokinesis. PMID:28298491
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myint, Wazo; Gong, Qingguo; Ahn, Jinwoo
2011-02-04
Research highlights: {yields} Structural consequence by substitution mutations on the isolated SERCA-nucleotide binding (SERCA-N) domain was studied. {yields} The study fills a gap between the previous clinical, physiological, and biochemical data and the molecular basis of SERCA-N. {yields} The E412G mutation, known to be seen in patients with Darier's disease, was found to maintain the active conformation but exhibit reduced protein stability. -- Abstract: Sarcoplasmic reticulum Ca{sup 2+} ATPase (SERCA) is essential for muscle function by transporting Ca{sup 2+} from the cytosol into the sarcoplasmic reticulum through ATP hydrolysis. In this report, the effects of substitution mutations on the isolatedmore » SERCA-nucleotide binding domain (SERCA-N) were studied using NMR. {sup 15}N-{sup 1}H HSQC spectra of substitution mutants at the nucleotide binding site, T441A, R560V, and C561A, showed chemical shift changes, primarily in residues adjacent to the mutation sites, indicating only local effects. Further, the patterns of chemical shift changes upon AMP-PNP binding to these mutants were similar to that of the wild type SERCA-N (WT). In contrast to these nucleotide binding site mutants, a mutant found in patients with Darier's disease, E412G, showed small but significant chemical shift changes throughout the protein and rapid precipitation. However, the AMP-PNP dissociation constant ({approx}2.5 mM) was similar to that of WT ({approx}3.8 mM). These results indicate that the E412G mutant retains its catalytic activity but most likely reduces its stability. Our findings provide molecular insight into previous clinical, physiological, and biochemical observations.« less
XPD polymorphisms: effects on DNA repair proficiency.
Lunn, R M; Helzlsouer, K J; Parshad, R; Umbach, D M; Harris, E L; Sanford, K K; Bell, D A
2000-04-01
XPD codes for a DNA helicase involved in transcription and nucleotide excision repair. Rare XPD mutations diminish nucleotide excision repair resulting in hypersensitivity to UV light and increased risk of skin cancer. Several polymorphisms in this gene have been identified but their impact on DNA repair is not known. We compared XPD genotypes at codons 312 and 751 with DNA repair proficiency in 31 women. XPD genotypes were measured by PCR-RFLP. DNA repair proficiency was assessed using a cytogenetic assay that detects X-ray induced chromatid aberrations (breaks and gaps). Chromatid aberrations were scored per 100 metaphase cells following incubation at 37 degrees C (1.5 h after irradiation) to allow for repair of DNA damage. Individuals with the Lys/Lys codon 751 XPD genotype had a higher number of chromatid aberrations (132/100 metaphase cells) than those having a 751Gln allele (34/100 metaphase cells). Individuals having greater than 60 chromatid breaks plus gaps were categorized as having sub-optimal repair. Possessing a Lys/Lys751 genotype increased the risk of sub-optimal DNA repair (odds ratio = 7.2, 95% confidence interval = 1.01-87.7). The Asp312Asn XPD polymorphism did not appear to affect DNA repair proficiency. These results suggest that the Lys751 (common) allele may alter the XPD protein product resulting in sub-optimal repair of X-ray-induced DNA damage.
Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA
NASA Astrophysics Data System (ADS)
Lewis, Frederick D.; Liu, Jianqin; Weigel, Wilfried; Rettig, Wolfgang; Kurnikov, Igor V.; Beratan, David N.
2002-10-01
Electron transfer (ET) processes in DNA are of current interest because of their involvement in oxidative strand cleavage reactions and their relevance to the development of molecular electronics. Two mechanisms have been identified for ET in DNA, a single-step tunneling process and a multistep charge-hopping process. The dynamics of tunneling reactions depend on both the distance between the electron donor and acceptor and the nature of the molecular bridge separating the donor and acceptor. In the case of protein and alkane bridges, the distance dependence is not strongly dependent on the properties of the donor and acceptor. In contrast, we show here that the distance decay of DNA ET rates varies markedly with the energetics of the donor and acceptor relative to the bridge. Specifically, we find that an increase in the energy of the bridge states by 0.25 eV (1 eV = 1.602 × 1019 J) relative to the donor and acceptor energies for photochemical oxidation of nucleotides, without changing the reaction free energy, results in an increase in the characteristic exponential distance decay constant for the ET rates from 0.71 to 1.1 Å1. These results show that, in the small tunneling energy gap regime of DNA ET, the distance dependence is not universal; it varies strongly with the tunneling energy gap. These DNA ET reactions fill a "missing link" or transition regime between the large barrier (rapidly decaying) tunneling regime and the (slowly decaying) hopping regime in the general theory of bridge-mediated ET processes.
DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores†
Comer, Jeffrey
2016-01-01
Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computational approaches, here we show how the sequence, molecular conformation, and pore geometry affect the blockade ionic current in model solid-state nanopores. We demonstrate that the blockade current from a DNA molecule is determined by the chemical identities and conformations of at least three consecutive nucleotides. We find the blockade currents produced by the nucleotide triplets to vary considerably with their nucleotide sequence despite having nearly identical molecular conformations. Encouragingly, we find blockade current differences as large as 25% for single-base substitutions in ultra small (1.6 nm × 1.1 nm cross section; 2 nm length) solid-state nanopores. Despite the complex dependence of the blockade current on the sequence and conformation of the DNA triplets, we find that, under many conditions, the number of thymine bases is positively correlated with the current, whereas the number of purine bases and the presence of both purine and pyrimidines in the triplet are negatively correlated with the current. Based on these observations, we construct a simple theoretical model that relates the ion current to the base content of a solid-state nanopore. Furthermore, we show that compact conformations of DNA in narrow pores provide the greatest signal-to-noise ratio for single base detection, whereas reduction of the nanopore length increases the ionic current noise. Thus, the sequence dependence of nanopore blockade current can be theoretically rationalized, although the predictions will likely need to be customized for each nanopore type. PMID:27103233
Park, Ji Hye
2018-01-01
Estimation of postmortem interval (PMI) is paramount in modern forensic investigation. After the disappearance of the early postmortem phenomena conventionally used to estimate PMI, entomologic evidence provides important indicators for PMI estimation. The age of the oldest fly larvae or pupae can be estimated to pinpoint the time of oviposition, which is considered the minimum PMI (PMImin). The development rate of insects is usually temperature dependent and species specific. Therefore, species identification is mandatory for PMImin estimation using entomological evidence. The classical morphological identification method cannot be applied when specimens are damaged or have not yet matured. To overcome this limitation, some investigators employ molecular identification using mitochondrial cytochrome c oxidase subunit I (COI) nucleotide sequences. The molecular identification method commonly uses Sanger's nucleotide sequencing and molecular phylogeny, which are complex and time consuming and constitute another obstacle for forensic investigators. In this study, instead of using conventional Sanger's nucleotide sequencing, single-nucleotide polymorphisms (SNPs) in the COI gene region, which are unique between fly species, were selected and targeted for single-base extension (SBE) technology. These SNPs were genotyped using a SNaPshot® kit. Eleven Calliphoridae and seven Sarcophagidae species were covered. To validate this genotyping, fly DNA samples (103 adults, 84 larvae, and 4 pupae) previously confirmed by DNA barcoding were used. This method worked quickly with minimal DNA, providing a potential alternative to conventional DNA barcoding. Consisting of only a few simple electropherogram peaks, the results were more straightforward compared with those of the conventional DNA barcoding produced by Sanger's nucleotide sequencing. PMID:29682531
Yamauchi, Yohei; Miura, Yuki; Kanaho, Yasunori
2017-01-01
The Small GTPase ADP-ribosylation factor 6 (Arf6) functions as the molecular switch in cellular signaling pathways by cycling between GDP-bound inactive and GTP-bound active form, which is precisely regulated by two regulators, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Numerous studies have shown that these machineries play critical roles in tumor angiogenesis/growth and cancer cell invasion/metastasis through regulating the cycling of Arf6. Here, we summarize accumulating knowledge for involvement of Arf6 GEFs/GAPs and small molecule inhibitors of Arf6 signaling/cycling in cancer progression, and discuss possible strategies for developing innovative anti-cancer drugs targeting Arf6 signaling/cycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Branny, P; de la Torre, F; Garel, J R
1998-04-01
The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes obtained by PCR amplification of chromosomal DNA with degenerate primers corresponding to amino acid sequences highly conserved in GAPDHs and PGKs. Nucleotide sequencing revealed that the three genes were organized in the order gap-pgk-tpi. The translation start codons of the three genes were identified by alignment of the N-terminal sequences. These genes predicted polypeptide chains of 338, 403 and 252 amino acids for GAPDH, PGK and TPI, respectively, and they were separated by 96 bp between gap and pgk, and by only 18 bp between pgk and tpi. The codon usage in gap, pgk, tpi and three other glycolytic genes from L. bulgaricus differed, noticeably from that in other chromosomal genes. The site of transcriptional initiation was located by primer extension, and a probable promoter was identified for the gap-pgk-tpi operon. Northern hybridization of total RNA with specific probes showed two transcripts, an mRNA of 1.4 kb corresponding to the gap gene, and a less abundant mRNA of 3.4 kb corresponding to the gap-pgk-tpi cluster. The absence of a visible terminator in the 3'-end of the shorter transcript and the location of this 3'-end inside the pgk gene indicated that this shorter transcript was produced by degradation of the longer one, rather than by an early termination of transcription after the gap gene.
Genetic Variants of TPCN2 Associated with Type 2 Diabetes Risk in the Chinese Population
Zhang, Yu; Fan, Xiaofang; Zhang, Ning; Zheng, Hui; Song, Yuping; Shen, Chunfang; Shen, Jiayi; Ren, Fengdong; Yang, Jialin
2016-01-01
Objective The aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population. Research Design and Methods The sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system. Results Ultimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype. Conclusions TPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms. PMID:26918892
García-Sanz, Ramón; Corchete, Luis Antonio; Alcoceba, Miguel; Chillon, María Carmen; Jiménez, Cristina; Prieto, Isabel; García-Álvarez, María; Puig, Noemi; Rapado, Immaculada; Barrio, Santiago; Oriol, Albert; Blanchard, María Jesús; de la Rubia, Javier; Martínez, Rafael; Lahuerta, Juan José; González Díaz, Marcos; Mateos, María Victoria; San Miguel, Jesús Fernando; Martínez-López, Joaquín; Sarasquete, María Eugenia
2017-12-01
Bortezomib- and thalidomide-based therapies have significantly contributed to improved survival of multiple myeloma (MM) patients. However, treatment-induced peripheral neuropathy (TiPN) is a common adverse event associated with them. Risk factors for TiPN in MM patients include advanced age, prior neuropathy, and other drugs, but there are conflicting results about the role of genetics in predicting the risk of TiPN. Thus, we carried out a genome-wide association study based on more than 300 000 exome single nucleotide polymorphisms in 172 MM patients receiving therapy involving bortezomib and thalidomide. We compared patients developing and not developing TiPN under similar treatment conditions (GEM05MAS65, NCT00443235). The highest-ranking single nucleotide polymorphism was rs45443101, located in the PLCG2 gene, but no significant differences were found after multiple comparison correction (adjusted P = .1708). Prediction analyses, cytoband enrichment, and pathway analyses were also performed, but none yielded any significant findings. A copy number approach was also explored, but this gave no significant results either. In summary, our study did not find a consistent genetic component associated with TiPN under bortezomib and thalidomide therapies that could be used for prediction, which makes clinical judgment essential in the practical management of MM treatment. Copyright © 2016 John Wiley & Sons, Ltd.
A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice.
Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, Hongbin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan
2007-04-17
The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.
A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice
Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, HongBin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan
2007-01-01
Background The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. Results A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. Conclusion A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia. PMID:17439653
Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V
2018-04-01
Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E
2015-10-01
The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.
Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro
2018-03-01
Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.
Characterizing the genetic risk for Type 2 diabetes in a Malaysian multi-ethnic cohort.
Abdullah, N; Abdul Murad, N A; Attia, J; Oldmeadow, C; Mohd Haniff, E A; Syafruddin, S E; Abd Jalal, N; Ismail, N; Ishak, M; Jamal, R; Scott, R J; Holliday, E G
2015-10-01
To characterize the association with Type 2 diabetes of known Type 2 diabetes risk variants in people in Malaysia of Malay, Chinese and Indian ancestry who participated in the Malaysian Cohort project. We genotyped 1604 people of Malay ancestry (722 cases, 882 controls), 1654 of Chinese ancestry (819 cases, 835 controls) and 1728 of Indian ancestry (851 cases, 877 controls). First, 62 candidate single-nucleotide polymorphisms previously associated with Type 2 diabetes were assessed for association via logistic regression within ancestral groups and then across ancestral groups using a meta-analysis. Second, estimated odds ratios were assessed for excess directional concordance with previously studied populations. Third, a genetic risk score aggregating allele dosage across the candidate single-nucleotide polymorphisms was tested for association within and across ancestral groups. After Bonferroni correction, seven individual single-nucleotide polymorphisms were associated with Type 2 diabetes in the combined Malaysian sample. We observed a highly significant excess in concordance of effect directions between Malaysian and previously studied populations. The genetic risk score was strongly associated with Type 2 diabetes in all Malaysian groups, explaining from 1.0 to 1.7% of total Type 2 diabetes risk variance. This study suggests there is substantial overlap of the genetic risk alleles underlying Type 2 diabetes in Malaysian and other populations. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
Kimura, Hiroki; Tsuboi, Daisuke; Wang, Chenyao; Kushima, Itaru; Koide, Takayoshi; Ikeda, Masashi; Iwayama, Yoshimi; Toyota, Tomoko; Yamamoto, Noriko; Kunimoto, Shohko; Nakamura, Yukako; Yoshimi, Akira; Banno, Masahiro; Xing, Jingrui; Takasaki, Yuto; Yoshida, Mami; Aleksic, Branko; Uno, Yota; Okada, Takashi; Iidaka, Tetsuya; Inada, Toshiya; Suzuki, Michio; Ujike, Hiroshi; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Iwata, Nakao; Kaibuchi, Kozo; Ozaki, Norio
2015-01-01
Background: Nuclear distribution E homolog 1 (NDE1), located within chromosome 16p13.11, plays an essential role in microtubule organization, mitosis, and neuronal migration and has been suggested by several studies of rare copy number variants to be a promising schizophrenia (SCZ) candidate gene. Recently, increasing attention has been paid to rare single-nucleotide variants (SNVs) discovered by deep sequencing of candidate genes, because such SNVs may have large effect sizes and their functional analysis may clarify etiopathology. Methods and Results: We conducted mutation screening of NDE1 coding exons using 433 SCZ and 145 pervasive developmental disorders samples in order to identify rare single nucleotide variants with a minor allele frequency ≤5%. We then performed genetic association analysis using a large number of unrelated individuals (3554 SCZ, 1041 bipolar disorder [BD], and 4746 controls). Among the discovered novel rare variants, we detected significant associations between SCZ and S214F (P = .039), and between BD and R234C (P = .032). Furthermore, functional assays showed that S214F affected axonal outgrowth and the interaction between NDE1 and YWHAE (14-3-3 epsilon; a neurodevelopmental regulator). Conclusions: This study strengthens the evidence for association between rare variants within NDE1 and SCZ, and may shed light into the molecular mechanisms underlying this severe psychiatric disorder. PMID:25332407
Sampson, Juliana K; Sheth, Nihar U; Koparde, Vishal N; Scalora, Allison F; Serrano, Myrna G; Lee, Vladimir; Roberts, Catherine H; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A
2014-08-01
Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. © 2014 John Wiley & Sons Ltd.
2017-01-01
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events. PMID:29181193
Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment
Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; ...
2015-04-09
Here, the causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences inmore » nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated.« less
A Bioluminometric Method of DNA Sequencing
NASA Technical Reports Server (NTRS)
Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)
2001-01-01
Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.
Molecular Epidemiology of Emerging Adenovirus 14 Associated Respiratory Disease in the United States
2010-01-01
nucleotides and 99.6% amino acids), including pos- session of a single 3-nucleotide GTG insertion corresponding to amino acid 148 (Ser) that was present in all...trainees: the Adenovirus Surveillance Program, 1966–1971. Am J Epidemiol 1973; 97:187–98. 4. Gray GC, Goswami PR, Malasig MD, et al. Adult adenovirus...facility and tertiary-care hospital. Clin Infect Dis 2001; 32:694–700. 43. Gray GC, McCarthy T, Lebeck MG, et al. Genotype prevalence and risk factors
Selection and Management of DNA Markers for Use in Genomic Evaluation
USDA-ARS?s Scientific Manuscript database
A database was constructed to store genotypes for 50,972 single-nucleotide polymorphisms (SNP) from the Illumina BovineSNP50 BeadChip for over 30,000 animals. The database allows storage of multiple samples per animal and stores all SNP genotypes for a sample in a single row. An indicator specifies ...
Association genetics in Pinus taeda L. I. wood property traits
Santiago C. Gonzalez-Martinez; Nicholas C. Wheeler; Elhan Ersoz; C. Dana Nelson; David B. Neale
2007-01-01
Genetic association is a powerful method for dissecting complex adaptive traits due to (i) fine-scale mapping resulting from historical recombination, (ii) wide coverage of phenotypic and genotypic variation within a single experiment, and (iii) the simultaneous discovery of loci and alleles. In this article, genetic association among single nucleotide polymorphisms (...
Bailey, Swneke D.; Desai, Kinjal; Kron, Ken J.; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A.; Treloar, Aislinn E.; Dowar, Mark; Thu, Kelsie L.; Cescon, David W.; Silvester, Jennifer; Yang, S. Y. Cindy; Wu, Xue; Pezo, Rossanna C.; Haibe-Kains, Benjamin; Mak, Tak W.; Bedard, Philippe L.; Pugh, Trevor J.; Sallari, Richard C.; Lupien, Mathieu
2016-01-01
Sustained expression of the oestrogen receptor alpha (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon oestrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers2–5, implying that other mechanisms underlie the persistent expression of ESR1. We report the significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by a functional inherited single nucleotide variant (SNV) rs9383590 that accounts for several breast cancer risk-loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. PMID:27571262
Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre; Schurr, Erwin
2011-05-01
Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10⁻⁹)-rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10⁻⁷ and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis.
Alter, Andrea; Huong, Nguyen Thu; Singh, Meenakshi; Orlova, Marianna; Van Thuc, Nguyen; Katoch, Kiran; Gao, Xiaojiang; Thai, Vu Hong; Ba, Nguyen Ngoc; Carrington, Mary; Abel, Laurent; Mehra, Narinder; Alcaïs, Alexandre
2011-01-01
Experimental evidence suggested the existence of unidentified leprosy susceptibility loci in the human leukocyte antigen (HLA) complex. To identify such genetic risk factors, a high-density association scan of a 1.9-mega-base (Mb) region in the HLA complex was performed. Among 682 single-nucleotide polymorphisms (SNPs), 59 were associated with leprosy (P <.01) in 198 Vietnamese single-case leprosy families. Genotyping of these SNPs in an independent sample of 292 Vietnamese single-case leprosy families replicated the association of 12 SNPs (P <.01). Multivariate analysis of these 12 SNPs showed that the association information could be captured by 2 intergenic HLA class I region SNPs (P = 9.4 × 10−9)—rs2394885 and rs2922997 (marginal multivariate P = 2.1 × 10−7 and P = .0016, respectively). SNP rs2394885 tagged the HLA-C*15:05 allele in the Vietnamese population. The identical associations were validated in a third sample of 364 patients with leprosy and 371 control subjects from North India. These results implicated class I alleles in leprosy pathogenesis. PMID:21459816
Sarawan, Somporn; Mahakhan, Polson; Jindamorakot, Sasitorn; Vichitphan, Kanit; Vichitphan, Sukanda; Sawaengkaew, Jutaporn
2013-08-01
A new yeast species (KKU-FW10) belonging to the Candida genus was isolated from Jasminum adenophyllum in the Plant Genetic Conservation Project under The Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindhorn area, Chulabhorn Dam, Konsan district within Chaiyaphum province in Thailand. The strain was identified via analysis of nucleotide sequences from the D1/D2 domain of 26S ribosomal DNA and based on its morphological, physiological and biochemical characteristics. The sequence obtained from yeast isolate KKU-FW10 was 97 percent identical to that of Candida chanthaburiensis (GenBank accession number AB500861.1), with 506/517 (nucleotides identity/total nucleotides) matching nucleotides, nine substitutions and two gaps being detected. This species belonged to the Candida clade. Regarding morphological characteristics, isolate KKU-FW10 presents cream-colored butyrous colonies, vegetative reproduction through budding and, round cells without filaments or ascospores. The major ubiquinone detected was Q-9. The above results suggest that isolate KKU-FW10 is a new member of the genus Candida, and the name Candida konsanensis is proposed for this yeast. The type strain of the new species is KKU-FW10(T) (= BCC 52588(T), = NBRC 109082(T), = CBS 12666(T)). In addition, this KKU-FW10 could potentially produce 58.24 Units/ml of carboxymethyl cellulase when it was cultured in YP broth containing 1.0 % carboxymethyl cellulose for 24 h.
Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C
1999-08-05
The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.
The Electronic and Optical Properties of Au Doped Single-Layer Phosphorene
NASA Astrophysics Data System (ADS)
Zhu, Ziqing; Chen, Changpeng; Liu, Jiayi; Han, Lu
2018-01-01
The electronic properties and optical properties of single and double Au-doped phosphorene have been comparatively investigated using the first-principles plane-wave pseudopotential method based on density functional theory. The decrease from direct band gap 0.78 eV to indirect band gap 0.22 and 0.11 eV are observed in the single and double Au-doped phosphorene, respectively. The red shifts of absorbing edge occur in both doped systems, which consequently enhance the absorbing of infrared light in phosphorene. Band gap engineering can, therefore, be used to directly tune the optical absorption of phosphorene system by substitutional Au doping.
Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.
Ermert, Susanne; Marx, Andreas; Hacker, Stephan M
2017-04-01
Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.
Mäkinen, Meeri Eeva-Liisa; Ylä-Outinen, Laura; Narkilahti, Susanna
2018-01-01
The electrical activity of the brain arises from single neurons communicating with each other. However, how single neurons interact during early development to give rise to neural network activity remains poorly understood. We studied the emergence of synchronous neural activity in human pluripotent stem cell (hPSC)-derived neural networks simultaneously on a single-neuron level and network level. The contribution of gamma-aminobutyric acid (GABA) and gap junctions to the development of synchronous activity in hPSC-derived neural networks was studied with GABA agonist and antagonist and by blocking gap junctional communication, respectively. We characterized the dynamics of the network-wide synchrony in hPSC-derived neural networks with high spatial resolution (calcium imaging) and temporal resolution microelectrode array (MEA). We found that the emergence of synchrony correlates with a decrease in very strong GABA excitation. However, the synchronous network was found to consist of a heterogeneous mixture of synchronously active cells with variable responses to GABA, GABA agonists and gap junction blockers. Furthermore, we show how single-cell distributions give rise to the network effect of GABA, GABA agonists and gap junction blockers. Finally, based on our observations, we suggest that the earliest form of synchronous neuronal activity depends on gap junctions and a decrease in GABA induced depolarization but not on GABAA mediated signaling. PMID:29559893
Pang, Y H; Lei, C Z; Zhang, C L; Lan, X Y; Shao, S M; Gao, X M; Chen, H
2012-01-01
PCR-SSCP and DNA sequencing methods were applied to reveal single nucleotide polymorphisms (SNPs) in the bovine VEGF-B gene in 675 samples belonging to three native Chinese cattle breeds. We found 3 SNPs and a duplication NC_007330.5: g. [782 A>G p. (Gly112 =) (;) 1000-1001dup CT (;) 1079 C>T (;) 2129 G>A p. (Arg184Gln)]. We also observed a statistically significant association of the polymorphism (1000-1001dup CT) in intron 3 of the VEGF-B gene with the body weight of the Nanyang cattle (p < 0.05). This polymorphisms of VEGF-B gene need to be verified among a larger cattle population before it can be identified as a marker for bovine body weight.
Hannou, Najat; Mondy, Samuel; Planamente, Sara; Moumni, Mohieddine; Llop, Pablo; López, María; Manceau, Charles; Barny, Marie-Anne; Faure, Denis
2013-10-01
Erwinia amylovora causes economic losses that affect pear and apple production in Morocco. Here, we report comparative genomics of four Moroccan E. amylovora strains with the European strain CFBP1430 and North-American strain ATCC49946. Analysis of single nucleotide polymorphisms (SNPs) revealed genetic homogeneity of Moroccan's strains and their proximity to the European strain CFBP1430. Moreover, the collected sequences allowed the assembly of a 65 kpb plasmid, which is highly similar to the plasmid pEI70 harbored by several European E. amylovora isolates. This plasmid was found in 33% of the 40 E. amylovora strains collected from several host plants in 2009 and 2010 in Morocco. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Sub-micro-liter Electrochemical Single-Nucleotide-Polymorphism Detector for Lab-on-a-Chip System
NASA Astrophysics Data System (ADS)
Tanaka, Hiroyuki; Fiorini, Paolo; Peeters, Sara; Majeed, Bivragh; Sterken, Tom; de Beeck, Maaike Op; Hayashi, Miho; Yaku, Hidenobu; Yamashita, Ichiro
2012-04-01
A sub-micro-liter single-nucleotide-polymorphism (SNP) detector for lab-on-a-chip applications is developed. This detector enables a fast, sensitive, and selective SNP detection directly from human blood. The detector is fabricated on a Si substrate by a standard complementary metal oxide semiconductor/micro electro mechanical systems (CMOS/MEMS) process and Polydimethylsiloxane (PDMS) molding. Stable and reproducible measurements are obtained by implementing an on-chip Ag/AgCl electrode and encapsulating the detector. The detector senses the presence of SNPs by measuring the concentration of pyrophosphoric acid generated during selective DNA amplification. A 0.5-µL-volume detector enabled the successful performance of the typing of a SNP within the ABO gene using human blood. The measured sensitivity is 566 pA/µM.
Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli
2015-01-01
Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene (SLC1A1) with severity of repetitive behaviors (obsessive–compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children with autism spectrum disorder. Although analyses were not significant for repetitive behaviors, youths homozygous for the high expressing C allele had more severe anxiety than carriers of the T allele. Allelic variation in SLC1A1 may be a biomarker for or modifier of anxiety symptom severity in children with ASD, but study findings are best conceptualized as tentative pending replication with larger independent samples. PMID:20155310
NASA Astrophysics Data System (ADS)
Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo
2016-04-01
We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.
Quantifying the utility of single nucleotide polymorphisms to guide colorectal cancer screening
Jenkins, Mark A; Makalic, Enes; Dowty, James G; Schmidt, Daniel F; Dite, Gillian S; MacInnis, Robert J; Ait Ouakrim, Driss; Clendenning, Mark; Flander, Louisa B; Stanesby, Oliver K; Hopper, John L; Win, Aung K; Buchanan, Daniel D
2016-01-01
Aim: To determine whether single nucleotide polymorphisms (SNPs) can be used to identify people who should be screened for colorectal cancer. Methods: We simulated one million people with and without colorectal cancer based on published SNP allele frequencies and strengths of colorectal cancer association. We estimated 5-year risks of colorectal cancer by number of risk alleles. Results: We identified 45 SNPs with an average 1.14-fold increase colorectal cancer risk per allele (range: 1.05–1.53). The colorectal cancer risk for people in the highest quintile of risk alleles was 1.81-times that for the average person. Conclusion: We have quantified the extent to which known susceptibility SNPs can stratify the population into clinically useful colorectal cancer risk categories. PMID:26846999
Gadow, Kenneth D; Roohi, Jasmin; DeVincent, Carla J; Kirsch, Sarah; Hatchwell, Eli
2010-09-01
Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene (SLC1A1) with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children with autism spectrum disorder. Although analyses were not significant for repetitive behaviors, youths homozygous for the high expressing C allele had more severe anxiety than carriers of the T allele. Allelic variation in SLC1A1 may be a biomarker for or modifier of anxiety symptom severity in children with ASD, but study findings are best conceptualized as tentative pending replication with larger independent samples.
Superconducting gap evolution in overdoped BaFe₂(As 1-xP x)₂ single crystals through nanocalorimetry
Campanini, D.; Diao, Z.; Fang, L.; ...
2015-06-18
We report on specific heat measurements on clean overdoped BaFe₂(As 1-xP x)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T| T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/k BT c ~ 2.2. Increasing the phosphorus concentration x,more » the main gap reduces till a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γ r, all samples however show similar behavior [γ r(H) - γ r (H = 0)∝ H n, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less
Gallium plasmonic nanoparticles for label-free DNA and single nucleotide polymorphism sensing
NASA Astrophysics Data System (ADS)
Marín, Antonio García; García-Mendiola, Tania; Bernabeu, Cristina Navio; Hernández, María Jesús; Piqueras, Juan; Pau, Jose Luis; Pariente, Félix; Lorenzo, Encarnación
2016-05-01
A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells.A label-free DNA and single nucleotide polymorphism (SNP) sensing method is described. It is based on the use of the pseudodielectric function of gallium plasmonic nanoparticles (GaNPs) deposited on Si (100) substrates under reversal of the polarization handedness condition. Under this condition, the pseudodielectric function is extremely sensitive to changes in the surrounding medium of the nanoparticle surface providing an excellent sensing platform competitive to conventional surface plasmon resonance. DNA sensing has been carried out by immobilizing a thiolated capture probe sequence from Helicobacter pylori onto GaNP/Si substrates; complementary target sequences of Helicobacter pylori can be quantified over the range of 10 pM to 3.0 nM with a detection limit of 6.0 pM and a linear correlation coefficient of R2 = 0.990. The selectivity of the device allows the detection of a single nucleotide polymorphism (SNP) in a specific sequence of Helicobacter pylori, without the need for a hybridization suppressor in solution such as formamide. Furthermore, it also allows the detection of this sequence in the presence of other pathogens, such as Escherichia coli in the sample. The broad applicability of the system was demonstrated by the detection of a specific gene mutation directly associated with cystic fibrosis in large genomic DNA isolated from blood cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00926c
NASA Astrophysics Data System (ADS)
He, Feng; Wen, Haishen; Yu, Dahui; Li, Jifang; Shi, Bao; Chen, Caifang; Zhang, Jiaren; Jin, Guoxiong; Chen, Xiaoyan; Shi, Dan; Yang, Yanping
2010-12-01
Follicle stimulating hormone β (FSHβ) of Japanese flounder ( Paralichthys olivaceus) plays a key role in the regulation of gonadal development. This study aimed to investigate molecular genetic characteristics of the FSHβ gene and elucidate the effects of single nucleotide polymorphisms (SNPs) of FSHβ on reproductive traits in Japanese flounder. We used polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) and sequencing of the FSHβ gene in 60 individuals. We identified only an SNP (T/C) in the coding region of exon3 of FSHβ. The SNP (T/C) did not lead to amino acid changes at the position 340 bp of FSHβ gene. Statistical analysis showed that the SNP was significantly associated with testosterone (T) level and gonadosomatic index (GSI) ( P < 0.05). Individuals with genotype TC of the SNP had significantly higher serum T levels and GSI ( P < 0.05) than that of genotype CC. Therefore, FSHβ gene could be a useful molecular marker in selection for prominent reproductive trait in Japanese Flounder.
Yates, Christopher M; Sternberg, Michael J E
2013-11-01
Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.
Stegelmann, Frank; Bullinger, Lars; Griesshammer, Martin; Holzmann, Karlheinz; Habdank, Marianne; Kuhn, Susanne; Maile, Carmen; Schauer, Stefanie; Döhner, Hartmut; Döhner, Konstanze
2010-01-01
Single-nucleotide polymorphism arrays allow for genome-wide profiling of copy-number alterations and copy-neutral runs of homozygosity at high resolution. To identify novel genetic lesions in myeloproliferative neoplasms, a large series of 151 clinically well characterized patients was analyzed in our study. Copy-number alterations were rare in essential thrombocythemia and polycythemia vera. In contrast, approximately one third of myelofibrosis patients exhibited small genomic losses (less than 5 Mb). In 2 secondary myelofibrosis cases the tumor suppressor gene NF1 in 17q11.2 was affected. Sequencing analyses revealed a mutation in the remaining NF1 allele of one patient. In terms of copy-neutral aberrations, no chromosomes other than 9p were recurrently affected. In conclusion, novel genomic aberrations were identified in our study, in particular in patients with myelofibrosis. Further analyses on single-gene level are necessary to uncover the mechanisms that are involved in the pathogenesis of myeloproliferative neoplasms. PMID:20015882
Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays
NASA Technical Reports Server (NTRS)
Urakawa, Hidetoshi; El Fantroussi, Said; Smidt, Hauke; Smoot, James C.; Tribou, Erik H.; Kelly, John J.; Noble, Peter A.; Stahl, David A.
2003-01-01
The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of Staphylococcus epidermidis (38 nucleotides) and Nitrosomonas eutropha (39 nucleotides) were hybridized to perfect-match probes (18-mer and 19-mer) and to a set of probes having all possible single-base-pair mismatches. The melting profiles of all probe-target duplexes were determined in parallel by using an imposed temperature step gradient. We derived an optimum wash temperature for each probe and target by using a simple formula to calculate a discrimination index for each temperature of the step gradient. This optimum corresponded to the output of an independent analysis using a customized neural network program. These results together provide an experimental and analytical framework for optimizing mismatch discrimination among all probes on a DNA microarray.
Iwasaki, Shinya; Ishiguro, Hiroki; Higuchi, Susumu; Onaivi, Emmanuel S; Arinami, Tadao
2007-08-01
Fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) are the major endocannabinoid metabolic enzymes. Owing to the importance of endocannabinoid system in addiction, the Pro129Thr polymorphism in the FAAH gene has reportedly been associated with substance abuse and dependence in a Caucasian population. To determine whether the single nucleodtide polymorphisms of the FAAH and MGLL genes are associated with alcoholism in a Japanese population. We conducted case-control studies for total 14 tag single nucleotide polymorphisms in those two genes using Japanese 729 patients with alcoholism and 799 healthy controls. Genotype and allele frequencies were compared between these groups. None of these genetic markers, however, showed significant association with alcoholism in Japanese. Whereas we examined associations in a larger sample size between alcoholism and tag single nucleotide polymorphisms that covered most regions of these endocannabinoid metabolic enzyme genes, we found that these are not associated with susceptibility to alcoholism in a Japanese population.
NASA Astrophysics Data System (ADS)
Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok
2018-03-01
We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.
Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.
Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie
2018-05-10
The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.
Bradley, Kevin M; Benner, Steven A
2014-01-01
Synthetic biologists wishing to self-assemble large DNA (L-DNA) constructs from small DNA fragments made by automated synthesis need fragments that hybridize predictably. Such predictability is difficult to obtain with nucleotides built from just the four standard nucleotides. Natural DNA's peculiar combination of strong and weak G:C and A:T pairs, the context-dependence of the strengths of those pairs, unimolecular strand folding that competes with desired interstrand hybridization, and non-Watson-Crick interactions available to standard DNA, all contribute to this unpredictability. In principle, adding extra nucleotides to the genetic alphabet can improve the predictability and reliability of autonomous DNA self-assembly, simply by increasing the information density of oligonucleotide sequences. These extra nucleotides are now available as parts of artificially expanded genetic information systems (AEGIS), and tools are now available to generate entirely standard DNA from AEGIS DNA during PCR amplification. Here, we describe the OligArch (for "oligonucleotide architecting") software, an application that permits synthetic biologists to engineer optimally self-assembling DNA constructs from both six- and eight-letter AEGIS alphabets. This software has been used to design oligonucleotides that self-assemble to form complete genes from 20 or more single-stranded synthetic oligonucleotides. OligArch is therefore a key element of a scalable and integrated infrastructure for the rapid and designed engineering of biology.
Parker, K A; Steitz, J A
1987-01-01
The human U3 ribonucleoprotein (RNP) has been analyzed to determine its protein constituents, sites of protein-RNA interaction, and RNA secondary structure. By using anti-U3 RNP antibodies and extracts prepared from HeLa cells labeled in vivo, the RNP was found to contain four nonphosphorylated proteins of 36, 30, 13, and 12.5 kilodaltons and two phosphorylated proteins of 74 and 59 kilodaltons. U3 nucleotides 72-90, 106-121, 154-166, and 190-217 must contain sites that interact with proteins since these regions are immunoprecipitated after treatment of the RNP with RNase A or T1. The secondary structure was probed with specific nucleases and by chemical modification with single-strand-specific reagents that block subsequent reverse transcription. Regions that are single stranded (and therefore potentially able to interact with a substrate RNA) include an evolutionarily conserved sequence at nucleotides 104-112 and nonconserved sequences at nucleotides 65-74, 80-84, and 88-93. Nucleotides 159-168 do not appear to be highly accessible, thus making it unlikely that this U3 sequence base pairs with sequences near the 5.8S rRNA-internal transcribed spacer II junction, as previously proposed. Alternative functions of the U3 RNP are discussed, including the possibility that U3 may participate in a processing event near the 3' end of 28S rRNA. Images PMID:2959855
Canopy gaps and dead tree dynamics: poking holes in the forest.
Sally Duncan
2002-01-01
When large trees die, individually or in clumps, gaps are opened in the forest canopy. A shifting mosaic of patches, from small single-tree gaps to very large gaps caused by wildlife, is a natural part of the development of composition and structure in mature forests. Gaps increase the diversity of forests across the landscape and present local environments that...
Derzelle, Sylviane; Girault, Guillaume; Kokotovic, Branko; Angen, Øystein
2015-01-01
Bacillus anthracis, the causative agent of anthrax, is known as one of the most genetically monomorphic species. Canonical single-nucleotide polymorphism (SNP) typing and whole-genome sequencing were used to investigate the molecular diversity of eleven B. anthracis strains isolated from cattle in Denmark between 1935 and 1988. Danish strains were assigned into five canSNP groups or lineages, i.e. A.Br.001/002 (n = 4), A.Br.Ames (n = 2), A.Br.008/011 (n = 2), A.Br.005/006 (n = 2) and A.Br.Aust94 (n = 1). The match with the A.Br.Ames lineage is of particular interest as the occurrence of such lineage in Europe is demonstrated for the first time, filling an historical gap within the phylogeography of the lineage. Comparative genome analyses of these strains with 41 isolates from other parts of the world revealed that the two Danish A.Br.008/011 strains were related to the heroin-associated strains responsible for outbreaks of injection anthrax in drug users in Europe. Eight novel diagnostic SNPs that specifically discriminate the different sub-groups of Danish strains were identified and developed into PCR-based genotyping assays. PMID:26317972
Conservation genomics of the endangered Burmese roofed turtle.
Çilingir, F Gözde; Rheindt, Frank E; Garg, Kritika M; Platt, Kalyar; Platt, Steven G; Bickford, David P
2017-12-01
The Burmese roofed turtle (Batagur trivittata) is one of the world's most endangered turtles. Only one wild population remains in Myanmar. There are thought to be 12 breeding turtles in the wild. Conservation efforts for the species have raised >700 captive turtles since 2002, predominantly from eggs collected in the wild. We collected tissue samples from 445 individuals (approximately 40% of the turtles' remaining global population), applied double-digest restriction-site associated DNA sequencing (ddRAD-Seq), and obtained approximately 1500 unlinked genome-wide single nucleotide polymorphisms. Individuals fell into 5 distinct genetic clusters, 4 of which represented full-sib families. We inferred a low effective population size (≤10 individuals) but did not detect signs of severe inbreeding, possibly because the population bottleneck occurred recently. Two groups of 30 individuals from the captive pool that were the most genetically diverse were reintroduced to the wild, leading to an increase in the number of fertile eggs (n = 27) in the wild. Another 25 individuals, selected based on the same criteria, were transferred to the Singapore Zoo as an assurance colony. Our study demonstrates that the research-to-application gap in conservation can be bridged through application of cutting-edge genomic methods. © 2017 Society for Conservation Biology.
GenomeGems: evaluation of genetic variability from deep sequencing data
2012-01-01
Background Detection of disease-causing mutations using Deep Sequencing technologies possesses great challenges. In particular, organizing the great amount of sequences generated so that mutations, which might possibly be biologically relevant, are easily identified is a difficult task. Yet, for this assignment only limited automatic accessible tools exist. Findings We developed GenomeGems to gap this need by enabling the user to view and compare Single Nucleotide Polymorphisms (SNPs) from multiple datasets and to load the data onto the UCSC Genome Browser for an expanded and familiar visualization. As such, via automatic, clear and accessible presentation of processed Deep Sequencing data, our tool aims to facilitate ranking of genomic SNP calling. GenomeGems runs on a local Personal Computer (PC) and is freely available at http://www.tau.ac.il/~nshomron/GenomeGems. Conclusions GenomeGems enables researchers to identify potential disease-causing SNPs in an efficient manner. This enables rapid turnover of information and leads to further experimental SNP validation. The tool allows the user to compare and visualize SNPs from multiple experiments and to easily load SNP data onto the UCSC Genome browser for further detailed information. PMID:22748151
Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A
2014-04-01
Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy. Copyright © 2014. Published by Elsevier B.V.
Kim, Kyu-Tae; Lee, Hye Won; Lee, Hae-Ock; Kim, Sang Cheol; Seo, Yun Jee; Chung, Woosung; Eum, Hye Hyeon; Nam, Do-Hyun; Kim, Junhyong; Joo, Kyeung Min; Park, Woong-Yang
2015-06-19
Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments. We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRAS(G12D), were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRAS(G12D) mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRAS(G12D) and low risk score. Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.
Rupesh, Kanchi Ravi; Smith, Aaron; Boehmer, Paul E
2014-11-28
We have adapted the thermal shift assay to measure the ligand binding properties of the herpes simplex virus-1 single-strand DNA binding protein, ICP8. By measuring SYPRO Orange fluorescence in microtiter plates using a fluorescence-enabled thermal cycler, we have quantified the effects of oligonucleotide ligands on the melting temperature of ICP8. We found that single-stranded oligomers raise the melting temperature of ICP8 in a length- and concentration-dependent manner, ranging from 1°C for (dT)5 to a maximum of 9°C with oligomers ⩾10 nucleotides, with an apparent Kd of <1μM for (dT)20. Specifically, the results indicate that ICP8 is capable of interacting with oligomers as short as 5 nucleotides. Moreover, the observed increases in melting temperature of up to 9°C, indicates that single-strand DNA binding significantly stabilizes the structure of ICP8. This assay may be applied to investigate the ligand binding proteins of other single-strand DNA binding proteins and used as a high-throughput screen to identify compounds with therapeutic potential that inhibit single-strand DNA binding. As proof of concept, the single-strand DNA binding agent ciprofloxacin reduces the ligand induced stabilization of the melting temperature of ICP8 in a dose-dependent manner. Copyright © 2014 Elsevier Inc. All rights reserved.
Isolation of Protein-Associated Circular DNA from Healthy Cattle Serum
Funk, Mathis; Gunst, Karin; Lucansky, Vincent; Müller, Hermann; zur Hausen, Harald
2014-01-01
Three replication-competent single-stranded DNA molecules sharing nucleotide similarity to transmissible spongiform encephalopathy (TSE)-associated isolate Sphinx 2.36 were isolated from healthy bovine serum. PMID:25169856
Assis, Shirleide; Marques, Cintia Rodrigues; Silva, Thiago Magalhães; Costa, Ryan Santos; Alcantara-Neves, Neuza Maria; Barreto, Mauricio Lima; Barnes, Kathleen Carole; Figueiredo, Camila Alexandrina
2014-06-01
Helicobacter pylori infection is a strong risk factor for gastric cancer, likely due to the extensive inflammation in the stomach mucosa caused by these bacteria. Many studies have reported an association between IL10 polymorphisms, the risk of gastric cancer, and IL-10 production. The aim of the study was to evaluate the association between IL10 genetic variants, Helicobacter pylori infection, and IL-10 production by peripheral blood leukocytes in children. We genotyped a total of 12 single nucleotide polymorphisms in IL10 in 1259 children aged 4-11 years living in a poor urban area in Salvador, Brazil, using TaqMan probe based, 5' nuclease assay minor groove binder chemistry. Association tests were performed by logistic regression for Helicobacter pylori infection and linear regression for IL-10 spontaneous production (whole-blood cultures) including sex, age, and principal components for informative ancestry markers as covariates, using PLINK. Our results shown that IL10 single nucleotide polymorphisms rs1800896 (OR = 1.63; 95% CI = 1.11-2.39), rs3024491 (OR = 1.71; 95% CI = 1.14-2.57), rs1878672 (OR = 1.79; 95% CI = 1.19-2.68), and rs3024496 (OR = 1.48; 95% CI = 1.05-2.08) were positively associated with Helicobacter pylori infection. Eight single nucleotide polymorphisms were associated with spontaneous production of IL-10 in culture, of which three (rs1800896 and rs1878672, p = .04; rs3024491, p = .01) were strongly associated with infection by Helicobacter pylori. Our results indicate that IL10 variants rs1800896, rs3024491, rs1878672, and rs3024496 are more consistently associated with the presence of anti-H. pylori IgG by inducing increased production of IL-10. Further studies are underway to elucidate the role of additional genetic variants and to investigate their impact on the occurrence of gastric cancer. © 2014 John Wiley & Sons Ltd.
Turner, Adam W; Martinuk, Amy; Silva, Anada; Lau, Paulina; Nikpay, Majid; Eriksson, Per; Folkersen, Lasse; Perisic, Ljubica; Hedin, Ulf; Soubeyrand, Sebastien; McPherson, Ruth
2016-05-01
A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-β pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease-associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D', 0.97; r(2), 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. The coronary artery disease-associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation. © 2016 American Heart Association, Inc.
E6 and E7 Gene Polymorphisms in Human Papillomavirus Types-58 and 33 Identified in Southwest China
Wen, Qiang; Wang, Tao; Mu, Xuemei; Chenzhang, Yuwei; Cao, Man
2017-01-01
Cancer of the cervix is associated with infection by certain types of human papillomavirus (HPV). The gene variants differ in immune responses and oncogenic potential. The E6 and E7 proteins encoded by high-risk HPV play a key role in cellular transformation. HPV-33 and HPV-58 types are highly prevalent among Chinese women. To study the gene intratypic variations, polymorphisms and positive selections of HPV-33 and HPV-58 E6/E7 in southwest China, HPV-33 (E6, E7: n = 216) and HPV-58 (E6, E7: n = 405) E6 and E7 genes were sequenced and compared to others submitted to GenBank. Phylogenetic trees were constructed by Maximum-likelihood and the Kimura 2-parameters methods by MEGA 6 (Molecular Evolutionary Genetics Analysis version 6.0). The diversity of secondary structure was analyzed by PSIPred software. The selection pressures acting on the E6/E7 genes were estimated by PAML 4.8 (Phylogenetic Analyses by Maximun Likelihood version4.8) software. The positive sites of HPV-33 and HPV-58 E6/E7 were contrasted by ClustalX 2.1. Among 216 HPV-33 E6 sequences, 8 single nucleotide mutations were observed with 6/8 non-synonymous and 2/8 synonymous mutations. The 216 HPV-33 E7 sequences showed 3 single nucleotide mutations that were non-synonymous. The 405 HPV-58 E6 sequences revealed 8 single nucleotide mutations with 4/8 non-synonymous and 4/8 synonymous mutations. Among 405 HPV-58 E7 sequences, 13 single nucleotide mutations were observed with 10/13 non-synonymous mutations and 3/13 synonymous mutations. The selective pressure analysis showed that all HPV-33 and 4/6 HPV-58 E6/E7 major non-synonymous mutations were sites of positive selection. All variations were observed in sites belonging to major histocompatibility complex and/or B-cell predicted epitopes. K93N and R145 (I/N) were observed in both HPV-33 and HPV-58 E6. PMID:28141822
VarDetect: a nucleotide sequence variation exploratory tool
Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades
2008-01-01
Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032
Nucleotide sequence of a resistance breaking mutant of southern bean mosaic virus.
Lee, L; Anderson, E J
1998-01-01
SBMV-S is a resistance-breaking mutant of an Arkansas isolate of the bean strain of southern bean mosaic virus (SBMV-BARK) that is able to move systemically in Phaseolus vulgaris cvs. Pinto and Great Northern, whereas the wild-type SBMV-BARK causes local necrotic lesions and is restricted to the inoculated leaves of these hosts. Sequence analysis of the 4136 nucleotide genomes of SBMV-BARK and SBMV-S revealed seven nucleotide differences, but only four deduced amino acid changes. A single amino acid change occurred in the C-terminal region of the putative RNA-dependent RNA polymerase and three differences were identified in the N-terminal portion of the virus coat protein. SBMV-BARK and SBMV-S were compared with other sobemoviruses and were found to contain a high level of nucleotide sequence identity (91.3%) to SBMV-B. Unlike SBMV-B however, SBMV-BARK and SBMV-S contained four putative overlapping open reading frames, making them more similar in genome organization to the cowpea strain, SBMV-C. The possibility exists that mutations or even errors, that resulted in mis-identification of open reading frames, occurred in previously published information on nucleotide sequence and genomic organization for SBMV-B.
Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji
2015-04-01
Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.
Spontaneous Transport of Single-Stranded DNA through Graphene-MoS2 Heterostructure Nanopores.
Luan, Binquan; Zhou, Ruhong
2018-04-24
The effective transport of a single-stranded DNA (ssDNA) molecule through a solid-state nanopore is essential to the future success of high-throughput and low-cost DNA sequencing. Compatible with current electric sensing technologies, here, we propose and demonstrate by molecular dynamics simulations the ssDNA transport through a quasi-two-dimensional nanopore in a heterostructure stacked together with different 2D materials, such as graphene and molybdenum disulfide (MoS 2 ). Due to different chemical potentials, U, of DNA bases on different 2D materials, it is energetically favorable for a ssDNA molecule to move from the low- U MoS 2 surface to the high- U graphene surface through a nanopore. With the proper attraction between the negatively charged phosphate group in each nucleotide and the positively charged Mo atoms exposed on the pore surface, the ssDNA molecule can be temporarily seized and released thereafter through a thermal activation, that is, a slow and possible nucleotide-by-nucleotide transport. A theoretical formulation is then developed for the free energy of the ssDNA transiting a heterostructure nanopore to properly characterize the non-equilibrium stick-slip-like motion of a ssDNA molecule.
Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.
Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V
2017-02-15
Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.
Ikushima, Shigehito; Tateishi, Yoshiyuki; Kanai, Keiko; Shimada, Emiko; Tanaka, Misa; Ishiguro, Tatsuji; Mizutani, Satoru; Kobayashi, Osamu
2012-04-01
Yeast plays a capital role in brewing fermentation and has a direct impact on flavor and aroma. For the evaluation of competent brewing strains during quality control or development of novel strains it is standard practice to perform fermentation tests, which are costly and time-consuming. Here, we have categorized DNA markers which enable to distinguish and to screen brewing strains more efficiently than ever before. Sequence analysis at 289 loci in the genomes of six bottom fermenting Saccharomyces pastorianus strains revealed that 30 loci contained single nucleotide polymorphisms (SNPs). By determining the nucleotide sequences at the SNP-loci in 26 other S. pastorianus strains and 20 strains of the top fermenting yeast Saccharomyces cerevisiae, almost all these strains could be discriminated solely on the basis of the SNPs. By comparing the fermentative phenotypes of these strains we found that some DNA markers showed a strong association with brewing characteristics, such as the production of ethyl acetate and hydrogen sulphide (H2S). Therefore, the DNA markers we identified will facilitate quality control and the efficient development of brewing yeast strains. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Owen, Barbara A. L.; Lang, Walter; McMurray, Cynthia T.
2010-01-01
Summary Here, we report that MSH2/MSH3 maintains lesion specificity for small loops by a distinctly different mechanism than does MHSH2/MSH6 for single base mismatches. ADP and ATP have no preference for the subunits of hMSH2/MSH3. Upon lesion binding, however, hMSH2/MSH3 adopts a single “nucleotide signature” in which one ADP binds within the hMSH2 subunit and the hMSH3 subunit is empty. On the lesion, ADP-hMSH2/MSH3-empty binds and hydrolyzes ATP in the empty hMSH3 subunit, which reduces ADP affinity and increases ATP affinity for the hMSH2 subunit. ADP/ATP exchange converts (CA)4-loop-bound ADP-MSH2/MSH3-ATP into an ATP-hMSH2/MSH3-ADP intermediate in which ATP hydrolysis is inhibited in the hMSH2 subunit. We propose a model in which lesion binding converts hMSH2/MSH3 into a distinct nucleotide-bound form, and poises it to be a molecular sensor for lesion specificity. PMID:19377479
Ahn, Myung-Ju; Park, Shin-Young; Kim, Won Kyu; Cho, Ju Hwan; Chang, Brian Junho; Kim, Dong Jo; Ahn, Jin Seok; Park, Keunchil; Han, Joong-Soo
2012-01-01
Phospholipase D (PLD) has an important role in various biological functions including vesicular transport, endocytosis, exocytosis, cell migration, and mitosis. These cellular biological processes are deregulated in the development of various human tumors. In order to explore the relationship between the PLD1 gene and risk of non-small cell lung cancer (NSCLC), single nucleotide polymorphisms (SNP) in the PLD1 exon region were surveyed in 211 NSCLC patients and 205 normal controls. In this study, we identified six SNPs at exon 23 in the PLD1 gene. Among the six SNPs, the most notable was a heterozygous A to C transition at nucleotide 2698 (A2698C, p<0.001). In addition, the genotype frequencies of A2744C (AC+CC) and A2756C (AC+CC) were associated with gender (female, A2744C and A2756C: p=0.071) in NSCLC patients. Interestingly, although the SNP A2698C did not cause change in amino acid, correlation between odd ratio of NSCLC patients and the SNP A2698C was observed to be statistically significant. PMID:23675264
A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim
Rose, Annkatrin; Meier, Iris
2001-01-01
Ran is a small signaling GTPase that is involved in nucleocytoplasmic transport. Two additional functions of animal Ran in the formation of spindle asters and the reassembly of the nuclear envelope in mitotic cells have been recently reported. In contrast to Ras or Rho, Ran is not associated with membranes. Instead, the spatial sequestering of its accessory proteins, the Ran GTPase-activating protein RanGAP and the nucleotide exchange factor RCC1, appears to define the local concentration of RanGTP vs. RanGDP involved in signaling. Mammalian RanGAP is bound to the nuclear pore by a mechanism involving the attachment of small ubiquitin-related modifier protein (SUMO) to its C terminus and the subsequent binding of the SUMOylated domain to the nucleoporin Nup358. Here we show that plant RanGAP utilizes a different mechanism for nuclear envelope association, involving a novel targeting domain that appears to be unique to plants. The N-terminal WPP domain is highly conserved among plant RanGAPs and the small, plant-specific nuclear envelope-associated protein MAF1, but not present in yeast or animal RanGAP. Confocal laser scanning microscopy of green fluorescent protein (GFP) fusion proteins showed that it is necessary for RanGAP targeting and sufficient to target the heterologous protein GFP to the plant nuclear rim. The highly conserved tryptophan and proline residues of the WPP motif are necessary for its function. The 110-aa WPP domain is the first nuclear-envelope targeting domain identified in plants. Its fundamental difference to its mammalian counterpart implies that different mechanisms have evolved in plants and animals to anchor RanGAP at the nuclear surface. PMID:11752475
Solar cell structure incorporating a novel single crystal silicon material
Pankove, Jacques I.; Wu, Chung P.
1983-01-01
A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.
Influence of twin boundaries on superconducting gap nodes in FeSe single crystal studied by STM/STS
NASA Astrophysics Data System (ADS)
Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Iwaya, K.; Fu, Y.; Kasahara, S.; Watanabe, D.; Mizukami, Y.; Mikami, T.; Kawamoto, Y.; Kurata, S.; Shibauchi, T.; Matsuda, Y.; Böhmer, A. E.; Wolf, T.; Meingast, C.; Löhneysen, H. V.
2014-03-01
We performed scanning tunneling microscopy (STM) and spectroscopy (STS) measurements on high-quality FeSe single crystals grown by vapor transport technique to examine the superconducting-gap structure. In MBE-grown FeSe thin films, based on the V-shaped tunneling spectra, nodal superconductivity is suggested. It is interesting to investigate how the nodes are affected by various kinds of defects. We found that twin boundaries bring about drastic effects on the gap nodes. With approaching to the twin boundary, V-shaped spectra gradually change to U-shaped ones. Interestingly, in the area between the twin boundaries separated by about 30 nm, the gap node is completely lifted and there appears a finite gap over +/-0.4 meV. This unusual twin-boundary effect will give us a hint to elucidate the superconducting-gap structure.
Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3
NASA Astrophysics Data System (ADS)
Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc
2018-06-01
SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.
Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo
2010-01-01
Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930
Saeed, Mohammad
2017-05-01
Systemic lupus erythematosus (SLE) is a complex disorder. Genetic association studies of complex disorders suffer from the following three major issues: phenotypic heterogeneity, false positive (type I error), and false negative (type II error) results. Hence, genes with low to moderate effects are missed in standard analyses, especially after statistical corrections. OASIS is a novel linkage disequilibrium clustering algorithm that can potentially address false positives and negatives in genome-wide association studies (GWAS) of complex disorders such as SLE. OASIS was applied to two SLE dbGAP GWAS datasets (6077 subjects; ∼0.75 million single-nucleotide polymorphisms). OASIS identified three known SLE genes viz. IFIH1, TNIP1, and CD44, not previously reported using these GWAS datasets. In addition, 22 novel loci for SLE were identified and the 5 SLE genes previously reported using these datasets were verified. OASIS methodology was validated using single-variant replication and gene-based analysis with GATES. This led to the verification of 60% of OASIS loci. New SLE genes that OASIS identified and were further verified include TNFAIP6, DNAJB3, TTF1, GRIN2B, MON2, LATS2, SNX6, RBFOX1, NCOA3, and CHAF1B. This study presents the OASIS algorithm, software, and the meta-analyses of two publicly available SLE GWAS datasets along with the novel SLE genes. Hence, OASIS is a novel linkage disequilibrium clustering method that can be universally applied to existing GWAS datasets for the identification of new genes.
Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.
Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L
2014-07-08
We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are complex, with internal promoters and terminators generating multiple transcription units and allowing differential gene expression within these operons. We discovered extensive antisense transcription that results from more than 500 operons, which fully overlap or extensively overlap adjacent divergent or convergent operons. The genomic regions corresponding to these antisense transcripts are highly conserved in E. coli (including Shigella species), although it remains to be proven whether or not they are functional. Our observations of features unearthed by single-nucleotide transcriptome mapping suggest that deeper layers of transcriptional regulation in bacteria are likely to be revealed in the future. Copyright © 2014 Conway et al.
Tocci, Stephen L; Tashjian, Robert Z; Leventhal, Evan; Spenciner, David B; Green, Andrew; Fleming, Braden C
2008-01-01
This study determined the effect of tear size on gap formation of single-row simple-suture arthroscopic rotator cuff repair (ARCR) vs transosseous Mason-Allen suture open RCR (ORCR) in 13 pairs of human cadaveric shoulders. A massive tear was created in 6 pairs and a large tear in 7. Repairs were cyclically tested in low-load and high-load conditions, with no significant difference in gap formation. Under low-load, gapping was greater in massive tears. Under high-load, there was a trend toward increased gap with ARCR for large tears. All repairs of massive tears failed in high-load. Gapping was greater posteriorly in massive tears for both techniques. Gap formation of a modeled RCR depends upon the tear size. ARCR of larger tears may have higher failure rates than ORCR, and the posterior aspect appears to be the site of maximum gapping. Specific attention should be directed toward maximizing initial fixation of larger rotator cuff tears, especially at the posterior aspect.
Superconducting gap of the single crystal β-PdBi2
NASA Astrophysics Data System (ADS)
Matsuzaki, H.; Nagai, K.; Kase, N.; Nakano, T.; Takeda, N.
2017-07-01
We investigate superconducting and normal properties of the single crystal of β-PdBi2. The electrical resistivity ρ(T) shows superconductivity at Tc = 5.0 K. Residual resistivity ratio (RRR) is estimated to be 2.9 obtained from ρ(300 K)/ρ(5.0 K). The H c2 curve obtained from ρ(T) in magnetic fields shows cleat enhancement from the Wertharmer-Helfand-Hohenberg theory in dirty limit. Specific heat C(T) measurement shows that clear jump is observed at T c = 4.8 K. T-dependence of the electronic specific heat C e(T) suggests full-gap symmetry with a single gap and strong coupling with ΔC e/γT c = 1.8.
Parrish, R Ryley; Day, Jeremy J; Lubin, Farah D
2012-07-01
DNA methylation is an epigenetic modification that is essential for the development and mature function of the central nervous system. Due to the relevance of this modification to the transcriptional control of gene expression, it is often necessary to examine changes in DNA methylation patterns with both gene and single-nucleotide resolution. Here, we describe an in-depth basic protocol for direct bisulfite sequencing of DNA isolated from brain tissue, which will permit direct assessment of methylation status at individual genes as well as individual cytosine molecules/nucleotides within a genomic region. This method yields analysis of DNA methylation patterns that is robust, accurate, and reproducible, thereby allowing insights into the role of alterations in DNA methylation in brain tissue.
Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.
Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L
2018-03-27
The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.
Search for the Universal Ancestors
NASA Technical Reports Server (NTRS)
Hartman, H. (Editor); Lawless, J. G. (Editor); Morrison, P. (Editor)
1985-01-01
By its nature, the study of the origins of life is multidisciplinary, requiring contributions from astronomers, biologists, chemists, geologists, physicists, and many others. Partial answers are provided to many questions about organic chemical evolution and the origin of life. It is observed that the gaps in our knowledge concerning the steps from the nonliving to the living are numerous. Among these gaps are: (1) a solar system formation with its accumulation of raw materials; (2) the synthesis of the life forming monomers, such as the amino acids, nucleotides, and lipids; (3) the condensation of these monomers into useful polymers, such as proteins and nucleic acids; (4) the sequestering of these materials into droplets of proteinoid or membrane-like structures; and (5) the development of a chemical memory (the genetic code) to pass on to the progeny the information acquired.
Scopesi, Fabio; Canini, Silvana; Arioni, Cesare; Mazzella, Massimo; Gazzolo, Diego; Lantieri, Pasquale B; Bonacci, Wanda; Serra, Giovanni
2006-06-01
Recently we demonstrated an increased 2,3-diphosphoglycerate (2,3-DPG) erythrocyte concentration in rat pups subjected to nucleotide-enriched artificial feeding. The present study was carried out to test the hypothesis that a possible increase in 2,3-DPG concentration can also be obtained in human neonates who are fed nucleotide-enriched formula. Preterm neonates born or referred to the neonatal intensive care unit of the G. Gaslini Hospital, Genoa University, with a gestational age >30 weeks and <37 weeks were enrolled in our randomized trial. Recruitment took place within 48-72 hours from birth. Only newborns of mothers deciding not to breast-feed were eligible to be randomized for the supplemented group (FN) or non-supplemented group (RF). Breast-fed newborns were considered the control group (C). The study window (for supplementation and blood samples) was restricted to the first two weeks following birth (from the 2nd (t1) to the 16th (t2) day of life). At the end of our study, only 21 neonates were eligible for statistical analysis. The stimulating action of dietary nucleotides on 2,3-DPG concentration failed to be demonstrated; increases in 2,3-DPG concentration that were observed in newborns fed with nucleotide supplemented formula (FN) were comparable to those observed in newborns fed with regular formula (RF) and breast-fed newborns. The EC recommendation for the amount of nucleotides allowed in formula milk does not seem to be high enough to have positive effects on 2,3-DPG synthesis. Whether this possible 'pharmacological' effect can be achieved by a higher intake of ingested nucleotides and/or a change in the proportions of single nucleotides contained in milk formulas remain interesting end points to be elucidated.
Gardner, Andrew F; Wang, Jinchun; Wu, Weidong; Karouby, Jennifer; Li, Hong; Stupi, Brian P; Jack, William E; Hersh, Megan N; Metzker, Michael L
2012-08-01
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3'-O-blocking groups but are incorporated with low efficiency and fidelity. We have developed a novel class of 3'-OH unblocked nucleotides, called Lightning Terminators™, which have a terminating 2-nitrobenzyl moiety attached to hydroxymethylated nucleobases. A key structural feature of this photocleavable group displays a 'molecular tuning' effect with respect to single-base termination and improved nucleotide fidelity. Using Therminator DNA polymerase, we demonstrate that these 3'-OH unblocked terminators exhibit superior enzymatic performance compared to two other reversible terminators, 3'-O-amino-TTP and 3'-O-azidomethyl-TTP. Lightning Terminators show maximum incorporation rates (k(pol)) that range from 35 to 45 nt/s, comparable to the fastest NGS chemistries, yet with catalytic efficiencies (k(pol)/K(D)) comparable to natural nucleotides. Pre-steady-state kinetic studies of thymidine analogs revealed that the major determinant for improved nucleotide selectivity is a significant reduction in k(pol) by >1000-fold over TTP misincorporation. These studies highlight the importance of structure-function relationships of modified nucleotides in dictating polymerase performance.
Prokaryotic nucleotide composition is shaped by both phylogeny and the environment.
Reichenberger, Erin R; Rosen, Gail; Hershberg, Uri; Hershberg, Ruth
2015-04-09
The causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences in nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences-which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA
Gamache, Eric R.; Doh, Jung H.; Ritz, Justin; Laederach, Alain; Bellaousov, Stanislav; Mathews, David H.; Curcio, M. Joan
2017-01-01
The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging. PMID:28445416
Lin, Eugene; Pei, Dee; Huang, Yi-Jen; Hsieh, Chang-Hsun; Wu, Lawrence Shih-Hsin
2009-08-01
Recent studies indicate that obesity may play a key role in modulating genetic predispositions to type 2 diabetes (T2D). This study examines the main effects of both single-locus and multilocus interactions among genetic variants in Taiwanese obese and nonobese individuals to test the hypothesis that obesity-related genes may contribute to the etiology of T2D independently and/or through such complex interactions. We genotyped 11 single nucleotide polymorphisms for 10 obesity candidate genes including adrenergic beta-2-receptor surface, adrenergic beta-3-receptor surface, angiotensinogen, fat mass and obesity associated gene, guanine nucleotide binding protein beta polypeptide 3 (GNB3), interleukin 6 receptor, proprotein convertase subtilisin/kexin type 1 (PCSK1), uncoupling protein 1, uncoupling protein 2, and uncoupling protein 3. There were 389 patients diagnosed with T2D and 186 age- and sex-matched controls. Single-locus analyses showed significant main effects of the GNB3 and PCSK1 genes on the risk of T2D among the nonobese group (p = 0.002 and 0.047, respectively). Further, interactions involving GNB3 and PCSK1 were suggested among the nonobese population using the generalized multifactor dimensionality reduction method (p = 0.001). In addition, interactions among angiotensinogen, fat mass and obesity associated gene, GNB3, and uncoupling protein 3 genes were found in a significant four-locus generalized multifactor dimensionality reduction model among the obese population (p = 0.001). The results suggest that the single nucleotide polymorphisms from the obesity candidate genes may contribute to the risk of T2D independently and/or in an interactive manner according to the presence or absence of obesity.
Glessner, Joseph T; Bick, Alexander G; Ito, Kaoru; Homsy, Jason; Rodriguez-Murillo, Laura; Fromer, Menachem; Mazaika, Erica; Vardarajan, Badri; Italia, Michael; Leipzig, Jeremy; DePalma, Steven R; Golhar, Ryan; Sanders, Stephan J; Yamrom, Boris; Ronemus, Michael; Iossifov, Ivan; Willsey, A Jeremy; State, Matthew W; Kaltman, Jonathan R; White, Peter S; Shen, Yufeng; Warburton, Dorothy; Brueckner, Martina; Seidman, Christine; Goldmuntz, Elizabeth; Gelb, Bruce D; Lifton, Richard; Seidman, Jonathan; Hakonarson, Hakon; Chung, Wendy K
2014-10-24
Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown pathogenesis. To determine the contribution of de novo copy number variants (CNVs) in the pathogenesis of sporadic CHD. We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism arrays and whole exome sequencing. Results were experimentally validated using digital droplet polymerase chain reaction. We compared validated CNVs in CHD cases with CNVs in 1301 healthy control trios. The 2 complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either single nucleotide polymorphism array (P=7×10(-5); odds ratio, 4.6) or whole exome sequencing data (P=6×10(-4); odds ratio, 3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (P=0.02; odds ratio, 2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in whole exome sequencing and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q subtelomeric deletions. We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD. © 2014 American Heart Association, Inc.
Wang, Hui-Yun; Luo, Minjie; Tereshchenko, Irina V; Frikker, Danielle M; Cui, Xiangfeng; Li, James Y; Hu, Guohong; Chu, Yi; Azaro, Marco A; Lin, Yong; Shen, Li; Yang, Qifeng; Kambouris, Manousos E; Gao, Richeng; Shih, Weichung; Li, Honghua
2005-02-01
A high-throughput genotyping system for scoring single nucleotide polymorphisms (SNPs) has been developed. With this system, >1000 SNPs can be analyzed in a single assay, with a sensitivity that allows the use of single haploid cells as starting material. In the multiplex polymorphic sequence amplification step, instead of attaching universal sequences to the amplicons, primers that are unlikely to have nonspecific and productive interactions are used. Genotypes of SNPs are then determined by using the widely accessible microarray technology and the simple single-base extension assay. Three SNP panels, each consisting of >1000 SNPs, were incorporated into this system. The system was used to analyze 24 human genomic DNA samples. With 5 ng of human genomic DNA, the average detection rate was 98.22% when single probes were used, and 96.71% could be detected by dual probes in different directions. When single sperm cells were used, 91.88% of the SNPs were detectable, which is comparable to the level that was reached when very few genetic markers were used. By using a dual-probe assay, the average genotyping accuracy was 99.96% for 5 ng of human genomic DNA and 99.95% for single sperm. This system may be used to significantly facilitate large-scale genetic analysis even if the amount of DNA template is very limited or even highly degraded as that obtained from paraffin-embedded cancer specimens, and to make many unpractical research projects highly realistic and affordable.
Desai, Prerak T.; den Bakker, Henk C.; Mikoleit, Matthew; Tolar, Beth; Trees, Eija; Hendriksen, Rene S.; Frye, Jonathan G.; Porwollik, Steffen; Weimer, Bart C.; Wiedmann, Martin; Weinstock, George M.; Fields, Patricia I.; McClelland, Michael
2014-01-01
Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s. PMID:25147968
An exonuclease III and graphene oxide-aided assay for DNA detection.
Peng, Lu; Zhu, Zhi; Chen, Yan; Han, Da; Tan, Weihong
2012-05-15
We have developed a novel DNA assay based on exonuclease III (ExoIII)-induced target recycling and the fluorescence quenching ability of graphene oxide (GO). This assay consists of a linear DNA probe labeled with a fluorophore in the middle. Introduction of target sequence induces the exonuclease III catalyzed probe digestion and generation of single nucleotides. After each cycle of digestion, the target is recycled to realize the amplification. Finally, graphene oxide is added to quench the remaining probes and the signal from the resulting fluorophore labeled single nucleotides is detected. With this approach, a sub-picomolar detection limit can be achieved within 40 min at 37°C. The method was successfully applied to multicolor DNA detection and the analysis of telomerase activity in extracts from cancer cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Single nucleotide variations: Biological impact and theoretical interpretation
Katsonis, Panagiotis; Koire, Amanda; Wilson, Stephen Joseph; Hsu, Teng-Kuei; Lua, Rhonald C; Wilkins, Angela Dawn; Lichtarge, Olivier
2014-01-01
Genome-wide association studies (GWAS) and whole-exome sequencing (WES) generate massive amounts of genomic variant information, and a major challenge is to identify which variations drive disease or contribute to phenotypic traits. Because the majority of known disease-causing mutations are exonic non-synonymous single nucleotide variations (nsSNVs), most studies focus on whether these nsSNVs affect protein function. Computational studies show that the impact of nsSNVs on protein function reflects sequence homology and structural information and predict the impact through statistical methods, machine learning techniques, or models of protein evolution. Here, we review impact prediction methods and discuss their underlying principles, their advantages and limitations, and how they compare to and complement one another. Finally, we present current applications and future directions for these methods in biological research and medical genetics. PMID:25234433
Zhang, Boyu; Jia, Yanbin; Yuan, Yanbo; Yu, Xin; Xu, Qi; Shen, Yucun; Shen, Yan
2004-09-01
Several lines of evidence suggest that dysfunctions of neurotransmitters are associated with schizophrenia. DOPA decarboxylase (DDC) is an enzyme involved directly in the synthesis of dopamine and serotonin, and indirectly in the synthesis of noradrenaline. Therefore, the DDC gene can be considered a candidate gene for schizophrenia. We performed an association study between three single nucleotide polymorphisms in the DDC gene and paranoid schizophrenia. However, in our study no significant differences were found in the genotype distributions and allele frequencies between 80 paranoid schizophrenics and 108 controls for any of the polymorphisms. Neither did the haplotypes of the single nucleotide polymorphisms show any association with paranoid schizophrenia. Therefore, we conclude that the polymorphisms studied do not play a major role in paranoid schizophrenia pathogenesis in the population investigated.
Chau, Man L; Chen, Swaine L; Yap, Min; Hartantyo, Sri H P; Chiew, Paul K T; Fernandez, Charlene J; Wong, Wai K; Fong, Rockey K; Tan, Wei L; Tan, Brian Z Y; Ng, Youming; Aung, Kyaw T; Mehershahi, Kurosh S; Goh, Christopher; Kang, Joanne S L; Barkham, Timothy; Leong, Adeline O K; Gutiérrez, Ramona A; Ng, Lee C
2017-12-01
We assessed microbial safety and quality of raw fish sold in Singapore during 2015-2016 to complement epidemiologic findings for an outbreak of infection with group B Streptococcus serotype III sequence type (ST) 283 associated with raw fish consumption. Fish-associated group B Streptococcus ST283 strains included strains nearly identical (0-2 single-nucleotide polymorphisms) with the human outbreak strain, as well as strains in another distinct ST283 clade (57-71 single-nucleotide polymorphisms). Our investigations highlight the risk for contamination of freshwater fish (which are handled and distributed separately from saltwater fish sold as sashimi) and the need for improved hygienic handling of all fish for raw consumption. These results have led to updated policy and guidelines regarding the sale of ready-to-eat raw fish dishes in Singapore.
New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo
Malm, Sven; Linguissi, Laure S. Ghoma; Tekwu, Emmanuel M.; Vouvoungui, Jeannhey C.; Kohl, Thomas A.; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K.; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine
2017-01-01
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC. PMID:28221129
New Mycobacterium tuberculosis Complex Sublineage, Brazzaville, Congo.
Malm, Sven; Linguissi, Laure S Ghoma; Tekwu, Emmanuel M; Vouvoungui, Jeannhey C; Kohl, Thomas A; Beckert, Patrick; Sidibe, Anissa; Rüsch-Gerdes, Sabine; Madzou-Laboum, Igor K; Kwedi, Sylvie; Penlap Beng, Véronique; Frank, Matthias; Ntoumi, Francine; Niemann, Stefan
2017-03-01
Tuberculosis is a leading cause of illness and death in Congo. No data are available about the population structure and transmission dynamics of the Mycobacterium tuberculosis complex strains prevalent in this central Africa country. On the basis of single-nucleotide polymorphisms detected by whole-genome sequencing, we phylogenetically characterized 74 MTBC isolates from Brazzaville, the capital of Congo. The diversity of the study population was high; most strains belonged to the Euro-American lineage, which split into Latin American Mediterranean, Uganda I, Uganda II, Haarlem, X type, and a new dominant sublineage named Congo type (n = 26). Thirty strains were grouped in 5 clusters (each within 12 single-nucleotide polymorphisms), from which 23 belonged to the Congo type. High cluster rates and low genomic diversity indicate recent emergence and transmission of the Congo type, a new Euro-American sublineage of MTBC.
Koole, Cassandra; Savage, Emilia E.; Christopoulos, Arthur; Miller, Laurence J.
2013-01-01
The glucagon-like peptide-1 receptor (GLP-1R) controls the physiological responses to the incretin hormone glucagon-like peptide-1 and is a major therapeutic target for the treatment of type 2 diabetes, owing to the broad range of effects that are mediated upon its activation. These include the promotion of glucose-dependent insulin secretion, increased insulin biosynthesis, preservation of β-cell mass, improved peripheral insulin action, and promotion of weight loss. Regulation of GLP-1R function is complex, with multiple endogenous and exogenous peptides that interact with the receptor that result in the activation of numerous downstream signaling cascades. The current understanding of GLP-1R signaling and regulation is limited, with the desired spectrum of signaling required for the ideal therapeutic outcome still to be determined. In addition, there are several single-nucleotide polymorphisms (used in this review as defining a natural change of single nucleotide in the receptor sequence; clinically, this is viewed as a single-nucleotide polymorphism only if the frequency of the mutation occurs in 1% or more of the population) distributed within the coding sequence of the receptor protein that have the potential to produce differential responses for distinct ligands. In this review, we discuss the current understanding of GLP-1R function, in particular highlighting recent advances in the field on ligand-directed signal bias, allosteric modulation, and probe dependence and the implications of these behaviors for drug discovery and development. PMID:23864649
Wang, Chun-Chi; Shih, Chi-Jen; Jong, Yuh-Jyh; Wu, Shou-Mei
2014-06-23
This is the first ligase chain reaction used for diagnosis of spinal muscular atrophy (SMA). Universal fluorescent tri-probe ligation (UFTPL), a novel strategy used for distinguishing the multi-nucleotide alternations at single base, is developed to quantitatively analyze the SMN1/SMN2 genes in diagnosis of SMA. Ligase chain reaction was performed by adding three probes including universal fluorescent probe, connecting probe and recognizing probe to differentiate single nucleotide polymorphisms in UFTPL. Our approach was based on the two UFTPL products of survival motor neuron 1 (SMN1) and SMN2 genes (the difference of 9 mer) and analyzed by capillary electrophoresis (CE). We successfully determined various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects. By using the UFTPL-CE method, the SMN1 and SMN2 genes were fully resolved with the resolution of 2.16±0.37 (n=3). The r values of SMN1 and SMN2 regression curves over a range of 1-4 copies were above 0.9944. Of the 48 DNA samples, the data of gene dosages were corresponding to that analyzed by conformation sensitive CE and denatured high-performance liquid chromatography (DHPLC). This technique was found to be a good methodology for quantification or determination of the relative genes having multi-nucleotide variants at single base. Copyright © 2014 Elsevier B.V. All rights reserved.
Uronen, Riikka-Liisa; Lundmark, Per; Orho-Melander, Marju; Jauhiainen, Matti; Larsson, Kristina; Siegbahn, Agneta; Wallentin, Lars; Zethelius, Björn; Melander, Olle; Syvänen, Ann-Christine; Ikonen, Elina
2010-08-01
To study how Niemann-Pick disease type C1 (NPC1) influences hepatic triacylglycerol (TG) metabolism and to determine whether this is reflected in circulating lipid levels. In Npc1(-/-) mice, the hepatic cholesterol content is increased but the TG content is decreased. We investigated lipid metabolism in Npc1(-/-) mouse hepatocytes and the association of NPC1 single-nucleotide polymorphisms with circulating TGs in humans. TGs were reduced in Npc1(-/-) mouse serum and hepatocytes. In Npc1(-/-) hepatocytes, the incorporation of [3H]oleic acid and [3H]acetate into TG was decreased, but shunting of oleic acid- or acetate-derived [3H]carbons into cholesterol was increased. Inhibition of cholesterol synthesis normalized TG synthesis, content, and secretion in Npc1(-/-) hepatocytes, suggesting increased hepatic cholesterol neogenesis as a cause for the reduced TG content and secretion. We found a significant association between serum TG levels and 5 common NPC1 single-nucleotide polymorphisms in a cohort of 1053 men, with the lowest P=8.7 x 10(-4) for the single-nucleotide polymorphism rs1429934. The association between the rs1429934 A allele and higher TG levels was replicated in 2 additional cohorts, which included 8041 individuals. This study provides evidence of the following: (1) in mice, loss of NPC1 function reduces hepatocyte TG content and secretion by increasing the metabolic flux of carbons into cholesterol synthesis; and (2) common variation in NPC1 contributes to serum TG levels in humans.
Large meta-analysis of genome-wide association studies identifies five loci for lean body mass.
Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang; Yerges-Armstrong, Laura M; Chou, Wen-Chi; Stolk, Lisette; Livshits, Gregory; Broer, Linda; Johnson, Toby; Koller, Daniel L; Kutalik, Zoltán; Luan, Jian'an; Malkin, Ida; Ried, Janina S; Smith, Albert V; Thorleifsson, Gudmar; Vandenput, Liesbeth; Hua Zhao, Jing; Zhang, Weihua; Aghdassi, Ali; Åkesson, Kristina; Amin, Najaf; Baier, Leslie J; Barroso, Inês; Bennett, David A; Bertram, Lars; Biffar, Rainer; Bochud, Murielle; Boehnke, Michael; Borecki, Ingrid B; Buchman, Aron S; Byberg, Liisa; Campbell, Harry; Campos Obanda, Natalia; Cauley, Jane A; Cawthon, Peggy M; Cederberg, Henna; Chen, Zhao; Cho, Nam H; Jin Choi, Hyung; Claussnitzer, Melina; Collins, Francis; Cummings, Steven R; De Jager, Philip L; Demuth, Ilja; Dhonukshe-Rutten, Rosalie A M; Diatchenko, Luda; Eiriksdottir, Gudny; Enneman, Anke W; Erdos, Mike; Eriksson, Johan G; Eriksson, Joel; Estrada, Karol; Evans, Daniel S; Feitosa, Mary F; Fu, Mao; Garcia, Melissa; Gieger, Christian; Girke, Thomas; Glazer, Nicole L; Grallert, Harald; Grewal, Jagvir; Han, Bok-Ghee; Hanson, Robert L; Hayward, Caroline; Hofman, Albert; Hoffman, Eric P; Homuth, Georg; Hsueh, Wen-Chi; Hubal, Monica J; Hubbard, Alan; Huffman, Kim M; Husted, Lise B; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Jordan, Joanne M; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O; Klopp, Norman; Kloth, Jacqueline S L; Koistinen, Heikki A; Kraus, William E; Kritchevsky, Stephen; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L; Launer, Lenore J; Lee, Jong-Young; Lerch, Markus M; Lewis, Joshua R; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Liu, Tian; Liu, Youfang; Ljunggren, Östen; Lorentzon, Mattias; Luben, Robert N; Maixner, William; McGuigan, Fiona E; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Melov, Simon; Michaëlsson, Karl; Mitchell, Braxton D; Morris, Andrew P; Mosekilde, Leif; Newman, Anne; Nielson, Carrie M; O'Connell, Jeffrey R; Oostra, Ben A; Orwoll, Eric S; Palotie, Aarno; Parker, Stephen C J; Peacock, Munro; Perola, Markus; Peters, Annette; Polasek, Ozren; Prince, Richard L; Räikkönen, Katri; Ralston, Stuart H; Ripatti, Samuli; Robbins, John A; Rotter, Jerome I; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schadt, Eric E; Schipf, Sabine; Scott, Laura; Sehmi, Joban; Shen, Jian; Soo Shin, Chan; Sigurdsson, Gunnar; Smith, Shad; Soranzo, Nicole; Stančáková, Alena; Steinhagen-Thiessen, Elisabeth; Streeten, Elizabeth A; Styrkarsdottir, Unnur; Swart, Karin M A; Tan, Sian-Tsung; Tarnopolsky, Mark A; Thompson, Patricia; Thomson, Cynthia A; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J; Tuomilehto, Jaakko; van Schoor, Natasja M; Verma, Arjun; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Weedon, Michael N; Welch, Ryan; Wichmann, H-Erich; Widen, Elisabeth; Williams, Frances M K; Wilson, James F; Wright, Nicole C; Xie, Weijia; Yu, Lei; Zhou, Yanhua; Chambers, John C; Döring, Angela; van Duijn, Cornelia M; Econs, Michael J; Gudnason, Vilmundur; Kooner, Jaspal S; Psaty, Bruce M; Spector, Timothy D; Stefansson, Kari; Rivadeneira, Fernando; Uitterlinden, André G; Wareham, Nicholas J; Ossowski, Vicky; Waterworth, Dawn; Loos, Ruth J F; Karasik, David; Harris, Tamara B; Ohlsson, Claes; Kiel, Douglas P
2017-07-19
Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10 -8 ) or suggestively genome wide (p < 2.3 × 10 -6 ). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.
Urano, Tomohiko; Shiraki, Masataka; Saito, Mitsuru; Sasaki, Noriko; Ouchi, Yasuyoshi; Inoue, Satoshi
2014-10-01
Elevation of homocysteine is associated with an increased risk for bone fractures. We previously reported that the methylenetetrahydrofolate reductase (MTHFR) gene polymorphism is associated with homocysteine levels and fracture. The association between the fracture and folate levels or their related gene polymorphisms is not completely clear. We speculated that the SLC25A32 gene, the mitochondrial inner membrane folate transporter, also could be implicated in the regulation of folate metabolism and fracture. A total of 851 Japanese postmenopausal women participated in the association study between the single nucleotide polymorphism genotype and plasma homocysteine or folate. We also tested the association between the candidate single nucleotide polymorphism and 663 postmenopausal women. The AA genotype of rs2241777 single nucleotide polymorphism at the 3'UTR region in the SLC25A32 gene was associated with lower plasma folate concentration compared with the other genotypes in 851 postmenopausal women. A total of 674 postmenopausal ambulatory Japanese women were followed up for 5.5 ± 0.1 years (mean ± SE). The AA genotype groups also showed an apparently higher rate and earlier onset of incident fractures than the other genotypes. A total of 407 participants had >70% young-adult mean bone mineral density at the start of the observation. These results show that the SLC25A32 gene polymorphism could be a risk factor for lower folate concentration and future fracture. © 2013 Japan Geriatrics Society.
Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients
NASA Astrophysics Data System (ADS)
Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier
2016-05-01
We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f
Single Nucleotide Polymorphism Analysis of European Archaeological M. leprae DNA
Watson, Claire L.; Lockwood, Diana N. J.
2009-01-01
Background Leprosy was common in Europe eight to twelve centuries ago but molecular confirmation of this has been lacking. We have extracted M. leprae ancient DNA (aDNA) from medieval bones and single nucleotide polymorphism (SNP) typed the DNA, this provides insight into the pattern of leprosy transmission in Europe and may assist in the understanding of M. leprae evolution. Methods and Findings Skeletons have been exhumed from 3 European countries (the United Kingdom, Denmark and Croatia) and are dated around the medieval period (476 to 1350 A.D.). we tested for the presence of 3 previously identified single nucleotide polymorphisms (SNPs) in 10 aDNA extractions. M. leprae aDNA was extracted from 6 of the 10 bone samples. SNP analysis of these 6 extractions were compared to previously analysed European SNP data using the same PCR assays and were found to be the same. Testing for the presence of SNPs in M. leprae DNA extracted from ancient bone samples is a novel approach to analysing European M. leprae DNA and the findings concur with the previously published data that European M. leprae strains fall in to one group (SNP group 3). Conclusions These findings support the suggestion that the M. leprae genome is extremely stable and show that archaeological M. leprae DNA can be analysed to gain detailed information about the genotypic make-up of European leprosy, which may assist in the understanding of leprosy transmission worldwide. PMID:19847306
Bieńkiewicz, Jan; Smolarz, Beata; Malinowski, Andrzej
2016-01-01
Current literature gives evidence of an indisputable role adiponectin plays in adipose tissue metabolism and obesity-related diseases. Moreover, latest research efforts focus on linking genetic markers of this adipocytokine's gene (ADIPOQ) with cancer. Aim of this study was to determine the genotype distribution of single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ and an attempt to identify the impact this polymorphism exerts on endometrial cancer risk in obese females. The test group comprised 90 women treated surgically for endometrial cancer between 2000 and 2012 in the Department of Surgical & Endoscopic Gynecology and Gynecologic Oncology, Polish Mothers' Memorial Hospital - Research Institute, Lodz, Poland. 90 individuals treated in the parallel period for uterine fibroids constituted the control group. Patients within both groups were stratified according to BMI into: lean, overweight and obese subjects. Statistical analysis was performed between two major groups and, furthermore, within the abovementioned subgroups. The analysis revealed that allele G of the investigated polymorphism in obese women with endometrial cancer is significantly more frequent, and allele T is significantly less frequent than in lean controls. However, no significant correlation was observed between the polymorphism and endometrial cancer in lean and overweight females. Single nucleotide polymorphism +276G > T (rs1501299) in ADIPOQ may be considered to be a risk factor of endometrial cancer. Further research on SNP in EC is warranted to obtain more conclusive outcomes.
Processing closely spaced lesions during Nucleotide Excision Repair triggers mutagenesis in E. coli
Isogawa, Asako; Fujii, Shingo
2017-01-01
It is generally assumed that most point mutations are fixed when damage containing template DNA undergoes replication, either right at the fork or behind the fork during gap filling. Here we provide genetic evidence for a pathway, dependent on Nucleotide Excision Repair, that induces mutations when processing closely spaced lesions. This pathway, referred to as Nucleotide Excision Repair-induced Mutagenesis (NERiM), exhibits several characteristics distinct from mutations that occur within the course of replication: i) following UV irradiation, NER-induced mutations are fixed much more rapidly (t ½ ≈ 30 min) than replication dependent mutations (t ½ ≈ 80–100 min) ii) NERiM specifically requires DNA Pol IV in addition to Pol V iii) NERiM exhibits a two-hit dose-response curve that suggests processing of closely spaced lesions. A mathematical model let us define the geometry (infer the structure) of the toxic intermediate as being formed when NER incises a lesion that resides in close proximity of another lesion in the complementary strand. This critical NER intermediate requires Pol IV / Pol II for repair, it is either lethal if left unrepaired or mutation-prone when repaired. Finally, NERiM is found to operate in stationary phase cells providing an intriguing possibility for ongoing evolution in the absence of replication. PMID:28686598
DNA variation in a conifer, Cryptomeria japonica (Cupressaceae sensu lato).
Kado, Tomoyuki; Yoshimaru, Hiroshi; Tsumura, Yoshihiko; Tachida, Hidenori
2003-01-01
We investigated the nucleotide variation of a conifer, Cryptomeria japonica, and the divergence between this species and its closest relative, Taxodium distichum, at seven nuclear loci (Acl5, Chi1, Ferr, GapC, HemA, Lcyb, and Pat). Samples of C. japonica were collected from three areas, Kantou-Toukai, Hokuriku, and Iwate. No apparent geographic differentiation was found among these samples. However, the frequency spectrum of the nucleotide polymorphism revealed excesses of intermediate-frequency variants, which suggests that the population was not panmictic and a constant size in the past. The average nucleotide diversity, pi, for silent sites was 0.00383. However, values of pi for silent sites vary among loci. Comparisons of polymorphism to divergence among loci (the HKA test) showed that the polymorphism at the Acl5 locus was significantly lower. We also observed a nearly significant excess of replacement polymorphisms at the Lcyb locus. These results suggested possibilities of natural selection acting at some of the loci. Intragenic recombination was detected only once at the Chi1 locus and was not detected at the other loci. The low level of population recombination rate, 4Nr, seemed to be due to both low level of recombination, r, and small population size, N. PMID:12930759
Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun
2016-10-01
The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.
Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2
Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won
2016-01-01
The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3′ end by 3′-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3′-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3′ end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation. PMID:27366906
Shirakawa, I; Chaen, S; Bagshaw, C R; Sugi, H
2000-01-01
The kinetics of displacement of a fluorescent nucleotide, 2'(3')-O-[N[2-[[Cy3]amido]ethyl]carbamoyl]-adenosine 5'-triphosphate (Cy3-EDA-ATP), bound to rabbit soleus muscle myofibrils were studied using flash photolysis of caged ATP. Use of myofibrils from this slow twitch muscle allowed better resolution of the kinetics of nucleotide exchange than previous studies with psoas muscle myofibrils (, Biophys. J. 73:2033-2042). Soleus myofibrils in the presence of Cy3-EDA-nucleotides (Cy3-EDA-ATP or Cy3-EDA-ADP) showed selective fluorescence staining of the A-band. The K(m) for Cy3-EDA-ATP and the K(d) for Cy3-EDA-ADP binding to the myofibril A-band were 1.9 microM and 3.8 microM, respectively, indicating stronger binding of nucleotide to soleus cross-bridges compared to psoas cross-bridges (2.6 microM and 50 microM, respectively). After flash photolysis of caged ATP, the A-band fluorescence of the myofibril in the Cy3-EDA-ATP solution under isometric conditions decayed exponentially with a rate constant of 0.045 +/- 0.007 s(-1) (n = 32) at 10 degrees C, which was about seven times slower than that for psoas myofibrils. When a myofibril was allowed to shorten with a constant velocity, the nucleotide displacement rate constant increased from 0.066 s(-1) (isometric) to 0.14 s(-1) at 20 degrees C with increasing shortening velocity up to 0.1 myofibril length/s (V(max), the shortening velocity under no load was approximately 0. 2 myofibril lengths/s). The rate constant was not significantly affected by an isovelocity stretch of up to 0.1 myofibril lengths/s. These results suggest that the cross-bridge kinetics are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening. These data also indicate that the interaction distance between a cross-bridge and the actin filament is at least 16 nm for a single cycle of the ATPase. PMID:10653804
On the optical band gap of zinc oxide
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
Three different values (3.1, 3.2, and 3.3 eV) have been reported for the optical band gap of zinc oxide single crystals at room temperature. By comparing the optical properties of ZnO crystals using a variety of optical techniques it is concluded that the room temperature band gap is 3.3 eV and that the other values are attributable to a valence band-donor transition at ˜3.15 eV that can dominate the optical absorption when the bulk of a single crystal is probed.
Yan, Dongmei; Li, Li; Zhu, Shuangli; Zhang, Yong; An, Junjing; Wang, Dongyan; Wen, Ning; Jorba, Jaume; Liu, Wei; Zhong, Ge; Huang, Lin; Kew, Olen; Liang, Xiaofeng; Xu, Wenbo
2010-09-01
From March to May 2006, type 1 circulating vaccine-derived poliovirus (cVDPV) was isolated from one case patient with acute flaccid paralysis (AFP) and six unimmunized healthy contacts in isolated mountain villages in Guangxi, China. We conducted epidemiological investigations in the affected communities and nucleotide sequence analyses of the cVDPV isolates. The results of the investigations showed that the AFP patient, an unimmunized 10-year-old boy, and five laboratory-confirmed contacts lived in the same village; one contact lived in a neighboring village. Only approximately 27% of children 5 to 10 years of age in the affected villages had received three or more doses of the trivalent oral poliovirus vaccine (OPV). Nucleotide sequence analyses revealed that the cVDPV isolates differed from the Sabin 1 (S1) isolate at 1.4 to 2.2% of VP1 nucleotide positions and shared 12 nucleotide substitutions within VP1. All isolates were S1/S2/S1/S3 recombinants sharing common recombination junctions. Key determinants of attenuation were replaced. Phylogenetic analysis suggested that the cVDPV circulated locally for approximately 12 months following the initiating OPV dose. No VDPVs were found after mass OPV immunizations, conducted from May to June 2006, that targeted all children <12 years of age. Our findings reinforce the point that VDPVs can emerge and spread in isolated communities with immunity gaps. Maintenance of sensitive AFP and poliovirus surveillance is essential to permit early detection and a rapid response to VDPV circulation.
USDA-ARS?s Scientific Manuscript database
Date palm is one of the few crop species that thrive in arid environments and are the most significant fruit crop in the Middle East and North Africa, but lacks genomic resources that can accelerate breeding efforts. Here, we present the first comprehensive catalogue of ~12 million common single nuc...
2004-01-01
alleles have different predicted lengths, e.g. in pCC31, cpp46 starts with ATGATG whereas in pTet this gene starts with only one ATG; in ssb1 , cmgB7 and...homologues in plasmid pVT745 from Actinobacillus actinomycetemcomitans, and a single-stranded DNA-binding protein ssb1 that may coat the single-stranded
USDA-ARS?s Scientific Manuscript database
A single missense mutation at position 159 of COQ9 (GàA) has been associated with genetic variation in fertility in Holstein cattle, with the A allele associated with higher fertility. COQ9 is involved in the synthesis of coenzyme COQ10, a component of the electron transport system of the mitochondr...
Yutin, Natalya; Suzuki, Marcelino T; Rosenberg, Mira; Rotem, Denisse; Madigan, Michael T; Süling, Jörg; Imhoff, Johannes F; Béjà, Oded
2009-12-01
To detect anoxygenic bacteria containing either type 1 or type 2 photosynthetic reaction centers in a single PCR, we designed a degenerate primer set based on the bchY gene. The new primers were validated in silico using the GenBank nucleotide database as well as by PCR on pure strains and environmental DNA.
2012-01-01
Background The aim of this study was to evaluate the potential association between single nucleotide polymorphisms related response to radiotherapy injury, such as genes related to DNA repair or enzymes involved in anti-oxidative activities. The paper aims to identify marker genes able to predict an increased risk of late toxicity studying our group of patients who underwent a Single Shot 3D-CRT PBI (SSPBI) after BCS (breast conserving surgery). Methods A total of 57 breast cancer patients who underwent SSPBI were genotyped for SNPs (single nucleotide polymorphisms) in XRCC1, XRCC3, GST and RAD51 by Pyrosequencing technology. Univariate analysis (ORs and 95% CI) was performed to correlate SNPs with the risk of developing ≥ G2 fibrosis or fat necrosis. Results A higher significant risk of developing ≥ G2 fibrosis or fat necrosis in patients with: polymorphic variant GSTP1 (Ile105Val) (OR = 2.9; 95%CI, 0.88-10.14, p = 0.047). Conclusions The presence of some SNPs involved in DNA repair or response to oxidative stress seem to be able to predict late toxicity. Trial Registration ClinicalTrials.gov: NCT01316328 PMID:22272830
Gerstner, Arpad; DeFord, James H; Papaconstantinou, John
2003-07-25
Ames dwarfism is caused by a homozygous single nucleotide mutation in the pituitary specific prop-1 gene, resulting in combined pituitary hormone deficiency, reduced growth and extended lifespan. Thus, these mice serve as an important model system for endocrinological, aging and longevity studies. Because the phenotype of wild type and heterozygous mice is undistinguishable, it is imperative for successful breeding to accurately genotype these animals. Here we report a novel, yet simple, approach for prop-1 genotyping using PCR-based allele-specific amplification (PCR-ASA). We also compare this method to other potential genotyping techniques, i.e. PCR-based restriction fragment length polymorphism analysis (PCR-RFLP) and fluorescence automated DNA sequencing. We demonstrate that the single-step PCR-ASA has several advantages over the classical PCR-RFLP because the procedure is simple, less expensive and rapid. To further increase the specificity and sensitivity of the PCR-ASA, we introduced a single-base mismatch at the 3' penultimate position of the mutant primer. Our results also reveal that the fluorescence automated DNA sequencing has limitations for detecting a single nucleotide polymorphism in the prop-1 gene, particularly in heterozygotes.
Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M
1982-01-01
The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460
STS study on single crystal of noncentrosymmetric superconductor PbTaSe2
NASA Astrophysics Data System (ADS)
Ye, Zhiyang; Wu, Rui; Wang, Jihui; Liang, Xuejin; Mao, Hanqing; Zhao, Lingxiao; Chen, Genfu; Pan, Shuheng
2015-03-01
We report our low temperature scanning tunneling spectroscopic study on single crystals of noncentrosymmetric superconductor PbTaSe2. On the background of the normal state tunneling spectrum, a superconducting energy gap opens at a temperature below the bulk Tc = 3.7K. At t = 1.4K, the gap magnitude is estimated to be about 1meV. This energy gap is particle-hole symmetry and is homogeneous in space. Extrapolating the low energy part of the spectrum, we find that the low energy part of the gap spectrum is linear like ``V'' shape. We will present the results of the numerical fit with various gap functions of proposed possible pairing symmetry. We will also present our preliminary results of the magnetic field dependence measurement and discuss the implications of these observations.
Single-feature polymorphism discovery in the barley transcriptome
Rostoks, Nils; Borevitz, Justin O; Hedley, Peter E; Russell, Joanne; Mudie, Sharon; Morris, Jenny; Cardle, Linda; Marshall, David F; Waugh, Robbie
2005-01-01
A probe-level model for analysis of GeneChip gene-expression data is presented which identified more than 10,000 single-feature polymorphisms (SFP) between two barley genotypes. The method has good sensitivity, as 67% of known single-nucleotide polymorphisms (SNP) were called as SFPs. This method is applicable to all oligonucleotide microarray data, accounts for SNP effects in gene-expression data and represents an efficient and versatile approach for highly parallel marker identification in large genomes. PMID:15960806
An investigation into the feasibility of myoglobin-based single-electron transistors
Li, Debin; Gannett, Peter M.; Lederman, David
2016-01-01
Myoglobin single-electron transistors were investigated using nanometer-gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without heme group) was used as a reference. The results suggest single electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors. PMID:22972432
Imincan, Gülnur; Pei, Fen; Yu, Lijia; Jin, Hongwei; Zhang, Liangren; Yang, Xiaoda; Zhang, Lihe; Tang, XinJing
2016-04-19
2'-O-(1-Pyrenylmethyl)uridine modified oligoribonucleotides provide highly sensitive pyrene fluorescent probes for detecting specific nucleotide mutation of RNA targets. To develop more stable and cost-effective oligonucleotide probes, we investigated the local microenvironmental effects of nearby nucleobases on pyrene fluorescence in duplexes of RNAs and 2'-O-(1-pyrenylmethyl)uridine modified oligonucleotides. By incorporation of deoxyribonucleotides, ribonucleotides, 2'-MeO-nucleotides and 2'-F-nucleotides at both sides of 2'-O-(1-pyrenylmethyl)uridine (U(p)) in oligodeoxynucleotide probes, we synthesized a series of pyrene modified oligonucleotide probes. Their pyrene fluorescence emission spectra indicated that only two proximal nucleotides have a substantial effect on the pyrene fluorescence properties of these oligonucleotide probes hybridized with target RNA with an order of fluorescence sensitivity of 2'-F-nucleotides > 2'-MeO-nucleotides > ribonucleotides ≫ deoxyribonucleotides. While based on circular dichroism spectra, overall helix conformations (either A- or B-form) of the duplexes have marginal effects on the sensitivity of the probes. Instead, the local substitution reflected the propensity of the nucleotide sugar ring to adopt North type conformation and, accordingly, shifted their helix geometry toward a more A-type like conformation in local microenvironments. Thus, higher enhancement of pyrene fluorescence emission favored local A-type helix structures and more polar and hydrophobic environments (F > MeO > OH at 2' substitution) of duplex minor grooves of probes with the target RNA. Further dynamic simulation revealed that local microenvironmental effect of 2'-F-nucleotides or ribonucleotides was enough for pyrene moiety to move out of nucleobases to the minor groove of duplexes; in addition, 2'-F-nucleotide had less effect on π-stack of pyrene-modified uridine with upstream and downstream nucleobases. The present oligonucleotide probes successfully distinguished target RNA from single-mutated RNA analyte during an in vitro assay of RNA synthesis.
Bromberg, Yana; Yachdav, Guy; Ofran, Yanay; Schneider, Reinhard; Rost, Burkhard
2009-05-01
The rapidly increasing quantity of protein sequence data continues to widen the gap between available sequences and annotations. Comparative modeling suggests some aspects of the 3D structures of approximately half of all known proteins; homology- and network-based inferences annotate some aspect of function for a similar fraction of the proteome. For most known protein sequences, however, there is detailed knowledge about neither their function nor their structure. Comprehensive efforts towards the expert curation of sequence annotations have failed to meet the demand of the rapidly increasing number of available sequences. Only the automated prediction of protein function in the absence of homology can close the gap between available sequences and annotations in the foreseeable future. This review focuses on two novel methods for automated annotation, and briefly presents an outlook on how modern web software may revolutionize the field of protein sequence annotation. First, predictions of protein binding sites and functional hotspots, and the evolution of these into the most successful type of prediction of protein function from sequence will be discussed. Second, a new tool, comprehensive in silico mutagenesis, which contributes important novel predictions of function and at the same time prepares for the onset of the next sequencing revolution, will be described. While these two new sub-fields of protein prediction represent the breakthroughs that have been achieved methodologically, it will then be argued that a different development might further change the way biomedical researchers benefit from annotations: modern web software can connect the worldwide web in any browser with the 'Deep Web' (ie, proprietary data resources). The availability of this direct connection, and the resulting access to a wealth of data, may impact drug discovery and development more than any existing method that contributes to protein annotation.
Light-Driven Nano-oscillators for Label-Free Single-Molecule Monitoring of MicroRNA.
Chen, Zixuan; Peng, Yujiao; Cao, Yue; Wang, Hui; Zhang, Jian-Rong; Chen, Hong-Yuan; Zhu, Jun-Jie
2018-06-13
Here, we present a mapping tool based on individual light-driven nano-oscillators for label-free single-molecule monitoring of microRNA. This design uses microRNA as a single-molecule damper for nano-oscillators by forming a rigid dual-strand structure in the gap between nano-oscillators and the immobilized surface. The ultrasensitive detection is attributed to comparable dimensions of the gap and microRNA. A developed surface plasmon-coupled scattering imaging technology enables us to directly measure the real-time gap distance vibration of multiple nano-oscillators with high accuracy and fast dynamics. High-level and low-level states of the oscillation amplitude indicate melting and hybridization statuses of microRNA. Lifetimes of two states reveal that the hybridization rate of microRNA is determined by the three-dimensional diffusion. This imaging technique contributes application potentials in a single-molecule detection and nanomechanics study.
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki
2014-01-01
ABSTRACT Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. IMPORTANCE Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3′ end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. PMID:25142600
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke
2014-11-01
Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy.
Ohno, T; Takamatsu, N; Meshi, T; Okada, Y
1983-01-01
The complete cDNA of hop stunt viroid (HSV) has been cloned by the method of Okayama and Berg (Mol.Cell.Biol.2,161-170. (1982] and the complete nucleotide sequence has been established. The covalently closed circular single-stranded HSV RNA consists of 297 nucleotides. The secondary structure predicted for HSV contains 67% of its residues base-paired. The native HSV can possess an extended rod-like structure characteristic of viroids previously established. The central region of the native HSV has a similar structure to the conserved region found in all viroids sequenced so far except for avocado sunblotch viroid. The sequence homologous to the 5'-end of U1a RNA is also found in the sequence of HSV but not in the central conserved region. Images PMID:6312412
Wang, Guan-Feng; He, Yijian; Strauch, Renee; Olukolu, Bode A; Nielsen, Dahlia; Li, Xu; Balint-Kurti, Peter J
2015-11-01
In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance. © 2015 American Society of Plant Biologists. All Rights Reserved.
Wang, Guan-Feng; He, Yijian; Strauch, Renee; Olukolu, Bode A.; Nielsen, Dahlia; Li, Xu; Balint-Kurti, Peter J.
2015-01-01
In plants, most disease resistance genes encode nucleotide binding Leu-rich repeat (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) upon pathogen recognition. The maize (Zea mays) NLR protein Rp1-D21 derives from an intragenic recombination between two NLRs, Rp1-D and Rp1-dp2, and confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified a single-nucleotide polymorphism locus highly associated with variation in the severity of Rp1-D21-induced HR. Two maize genes encoding hydroxycinnamoyltransferase (HCT; a key enzyme involved in lignin biosynthesis) homologs, termed HCT1806 and HCT4918, were adjacent to this single-nucleotide polymorphism. Here, we show that both HCT1806 and HCT4918 physically interact with and suppress the HR conferred by Rp1-D21 but not other autoactive NLRs when transiently coexpressed in Nicotiana benthamiana. Other maize HCT homologs are unable to confer the same level of suppression on Rp1-D21-induced HR. The metabolic activity of HCT1806 and HCT4918 is unlikely to be necessary for their role in suppressing HR. We show that the lignin pathway is activated by Rp1-D21 at both the transcriptional and metabolic levels. We derive a model to explain the roles of HCT1806 and HCT4918 in Rp1-mediated disease resistance. PMID:26373661
López-Urrutia, Eduardo; Valdés, Jesús; Bonilla-Moreno, Raúl; Martínez-Salazar, Martha; Martínez-Garcia, Martha; Berumen, Jaime; Villegas-Sepúlveda, Nicolás
2012-06-01
The HPV-16 E6/E7 genes, which contain intron 1, are processed by alternative splicing and its transcripts are detected with a heterogeneous profile in tumours cells. Frequently, the HPV-16 positive carcinoma cells bear viral variants that contain single nucleotide polymorphisms into its DNA sequence. We were interested in analysing the contribution of this polymorphism to the heterogeneity in the pattern of the E6/E7 spliced transcripts. Using the E6/E7 sequences from three closely related HPV-16 variants, we have shown that a few nucleotide changes are sufficient to produce heterogeneity in the splicing profile. Furthermore, using mutants that contained a single SNP, we also showed that one nucleotide change was sufficient to reproduce the heterogeneous splicing profile. Additionally, a difference of two or three SNPs among these viral sequences was sufficient to recruit differentially several splicing factors to the polymorphic E6/E7 transcripts. Moreover, only one SNP was sufficient to alter the binding site of at least one splicing factor, changing the ability of splicing factors to bind the transcript. Finally, the factors that were differentially bound to the short form of intron 1 of one of these E6/E7 variants were identified as TIA1 and/or TIAR and U1-70k, while U2AF65, U5-52k and PTB were preferentially bound to the transcript of the other variants. Copyright © 2012 Elsevier B.V. All rights reserved.
Optical waveguide loop for planar trapping of blood cells and microspheres
NASA Astrophysics Data System (ADS)
Ahluwalia, Balpreet S.; Hellesø, Olav G.
2013-09-01
The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.
Alignment of RNA molecules: Binding energy and statistical properties of random sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valba, O. V., E-mail: valbaolga@gmail.com; Nechaev, S. K., E-mail: sergei.nechaev@gmail.com; Tamm, M. V., E-mail: thumm.m@gmail.com
2012-02-15
A new statistical approach to the problem of pairwise alignment of RNA sequences is proposed. The problem is analyzed for a pair of interacting polymers forming an RNA-like hierarchical cloverleaf structures. An alignment is characterized by the numbers of matches, mismatches, and gaps. A weight function is assigned to each alignment; this function is interpreted as a free energy taking into account both direct monomer-monomer interactions and a combinatorial contribution due to formation of various cloverleaf secondary structures. The binding free energy is determined for a pair of RNA molecules. Statistical properties are discussed, including fluctuations of the binding energymore » between a pair of RNA molecules and loop length distribution in a complex. Based on an analysis of the free energy per nucleotide pair complexes of random RNAs as a function of the number of nucleotide types c, a hypothesis is put forward about the exclusivity of the alphabet c = 4 used by nature.« less
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bandgap and pseudohelicity effects over conductance in gapped graphene junctures
NASA Astrophysics Data System (ADS)
Navarro-Giraldo, J. A.; Quimbay, C. J.
2018-07-01
We study the conductance in gapped single-layer graphene junctures as a function of bangap, pseudohelicity and charge carriers density. To do it, we first calculate the transmission coefficients of massive charge carries for p–n and n–p–n junctures of gapped single-layer graphene. Next, we calculate the conductance for these two systems using the Landauer formula. Only for the p–n juncture case and non-zero bandgap values, we find the existence of a contribution to the conductance from pseudohelicity inversion states, which is small compared to the contribution from pseudohelicity conservation states. Also, we find for both type of junctures that there exists a window of charge carriers densities values where the conductance is zero (conductance gap), in such a way that the size of this window depends on the squared of the bandgap. We observe that the existence of a bandgap in the system leads to valley mixing and this fact could be useful for the future design of devices based on single-layer graphene.
Dohrmann, Paul R; Manhart, Carol M; Downey, Christopher D; McHenry, Charles S
2011-11-18
Upon completion of synthesis of an Okazaki fragment, the lagging strand replicase must recycle to the next primer at the replication fork in under 0.1 s to sustain the physiological rate of DNA synthesis. We tested the collision model that posits that cycling is triggered by the polymerase encountering the 5'-end of the preceding Okazaki fragment. Probing with surface plasmon resonance, DNA polymerase III holoenzyme initiation complexes were formed on an immobilized gapped template. Initiation complexes exhibit a half-life of dissociation of approximately 15 min. Reduction in gap size to 1 nt increased the rate of dissociation 2.5-fold, and complete filling of the gap increased the off-rate an additional 3-fold (t(1/2)~2 min). An exogenous primed template and ATP accelerated dissociation an additional 4-fold in a reaction that required complete filling of the gap. Neither a 5'-triphosphate nor a 5'-RNA terminated oligonucleotide downstream of the polymerase accelerated dissociation further. Thus, the rate of polymerase release upon gap completion and collision with a downstream Okazaki fragment is 1000-fold too slow to support an adequate rate of cycling and likely provides a backup mechanism to enable polymerase release when the other cycling signals are absent. Kinetic measurements indicate that addition of the last nucleotide to fill the gap is not the rate-limiting step for polymerase release and cycling. Modest (approximately 7 nt) strand displacement is observed after the gap between model Okazaki fragments is filled. To determine the identity of the protein that senses gap filling to modulate affinity of the replicase for the template, we performed photo-cross-linking experiments with highly reactive and non-chemoselective diazirines. Only the α subunit cross-linked, indicating that it serves as the sensor. Copyright © 2011 Elsevier Ltd. All rights reserved.
Nilforoushan, Arman; Furrer, Antonia; Wyss, Laura A; van Loon, Barbara; Sturla, Shana J
2015-04-15
Human DNA polymerase η (hPol η) contributes to anticancer drug resistance by catalyzing the replicative bypass of DNA adducts formed by the widely used chemotherapeutic agent cis-diamminedichloroplatinum (cisplatin). A chemical basis for overcoming bypass-associated resistance requires greater knowledge of how small molecules influence the hPol η-catalyzed bypass of DNA adducts. In this study, we demonstrated how synthetic nucleoside triphosphates act as hPol η substrates and characterized their influence on hPol η-mediated DNA synthesis over unmodified and platinated DNA. The single nucleotide incorporation efficiency of the altered nucleotides varied by more than 10-fold and the higher incorporation rates appeared to be attributable to the presence of an additional hydrogen bond between incoming dNTP and templating base. Finally, full-length DNA synthesis in the presence of increasing concentrations of synthetic nucleotides reduced the amount of DNA product independent of the template, representing the first example of hPol η inhibition in the presence of a platinated DNA template.
NASA Astrophysics Data System (ADS)
Kholmurodov, Kholmirzo; Dushanov, Eric; Khusenov, Mirzoaziz; Rahmonov, Khaiyom; Zelenyak, Tatyana; Doroshkevich, Alexander; Majumder, Subrata
2017-05-01
Studying of molecular systems as single nucleotides, nucleotide and peptide chains, RNA and DNA interacting with metallic nanoparticles within a carbon nanotube matrix represents a great interest in modern research. In this respect it is worth mentioning the development of the electronics diagnostic apparatus, the biochemical and biotechnological application tools (nanorobotic design, facilities of drug delivery in a living cell), so on. In the present work using molecular dynamics (MD) simulation method the interaction process of small nucleotide chains (NCs) and elongated peptide chains with different sets of metallic nanoparticles (NPs) on a matrix from carbon nanotube (CNT) were simulated to study their mechanisms of encapsulation and folding processes. We have performed a series of the MD calculations with different NC,peptides-NP-CNT models that were aimed on the investigation of the peculiarities of NC,peptide-NP interactions, the formation of bonds and structures in the system, as well as the dynamical behavior in an environment confined by the CNT matrix.
Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie
2010-03-01
Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.
Wong, Wing Chung; Kim, Dewey; Carter, Hannah; Diekhans, Mark; Ryan, Michael C; Karchin, Rachel
2011-08-01
Thousands of cancer exomes are currently being sequenced, yielding millions of non-synonymous single nucleotide variants (SNVs) of possible relevance to disease etiology. Here, we provide a software toolkit to prioritize SNVs based on their predicted contribution to tumorigenesis. It includes a database of precomputed, predictive features covering all positions in the annotated human exome and can be used either stand-alone or as part of a larger variant discovery pipeline. MySQL database, source code and binaries freely available for academic/government use at http://wiki.chasmsoftware.org, Source in Python and C++. Requires 32 or 64-bit Linux system (tested on Fedora Core 8,10,11 and Ubuntu 10), 2.5*≤ Python <3.0*, MySQL server >5.0, 60 GB available hard disk space (50 MB for software and data files, 40 GB for MySQL database dump when uncompressed), 2 GB of RAM.
Erdoğan, Onur; Aydin Son, Yeşim
2014-01-01
Single Nucleotide Polymorphisms (SNPs) are the most common genomic variations where only a single nucleotide differs between individuals. Individual SNPs and SNP profiles associated with diseases can be utilized as biological markers. But there is a need to determine the SNP subsets and patients' clinical data which is informative for the diagnosis. Data mining approaches have the highest potential for extracting the knowledge from genomic datasets and selecting the representative SNPs as well as most effective and informative clinical features for the clinical diagnosis of the diseases. In this study, we have applied one of the widely used data mining classification methodology: "decision tree" for associating the SNP biomarkers and significant clinical data with the Alzheimer's disease (AD), which is the most common form of "dementia". Different tree construction parameters have been compared for the optimization, and the most accurate tree for predicting the AD is presented.
Cruz, Vanessa P; Vera, Manuel; Pardo, Belén G; Taggart, John; Martinez, Paulino; Oliveira, Claudio; Foresti, Fausto
2017-05-01
Single nucleotide polymorphism (SNP) markers were identified and validated for two stingrays species, Potamotrygon motoro and Potamotrygon falkneri, using double digest restriction-site associated DNA (ddRAD) reads using 454-Roche technology. A total of 226 774 reads (65.5 Mb) were obtained (mean read length 289 ± 183 bp) detecting a total of 5399 contigs (mean contig length: 396 ± 91 bp). Mining this data set, a panel of 143 in silico SNPs was selected. Eighty-two of these SNPs were successfully validated and 61 were polymorphic: 14 in P. falkneri, 21 in P. motoro, 3 in both species and 26 fixed for alternative variants in both species, thus being useful for population analyses and hybrid detection. © 2016 John Wiley & Sons Ltd.
Tremblay, Johanne; Wang, Yujia; Raelson, John; Marois-Blanchet, Francois-Christophe; Wu, Zenghui; Luo, Hongyu; Bradley, Edward; Chalmers, John; Woodward, Mark; Harrap, Stephen; Hamet, Pavel; Wu, Jiangping
2017-03-08
EPH kinases and their ligands, ephrins (EFNs), have vital and diverse biological functions. We recently reported that Efnb3 gene deletion results in hypertension in female but not male mice. These data suggest that EFNB3 regulates blood pressure in a sex- and sex hormone-dependent way. In the present study, we conducted a human genetic study to assess the association of EFNB3 single nucleotide polymorphisms with human hypertension risks, using 3,448 patients with type 2 diabetes from the ADVANCE study (Action in Diabetes and Vascular Disease: Peterax and Diamicron MR Controlled Evaluation). We have observed significant association between 2 SNPs in the 3' untranslated region or within the adjacent region just 3' of the EFNB3 gene with hypertension, corroborating our findings from the mouse model. Thus, our investigation has shown that EFNB3 is a hypertension risk gene in certain individuals.
VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.
Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal
2014-12-01
Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.
Khrustaleva, A M; Klovach, N V; Gritsenko, O F; Seeb, J E
2014-07-01
The variability of 45 single nucleotide polymorphism (SNP) loci was studied in nine samples of the sockeye salmon Oncorhynchus nerka from the rivers of southwestern Kamchatka. The Wahlund effect, gametic disequilibrium at some loci, and a decrease in interpopulation genetic diversity estimates observed in samples from the Bolshaya River outlet are explained in terms of the samples' heterogeneity. Partitioning of mixed samples using some biological characteristics of the individuals led to a noticeable decrease in the frequency of these phenomena. It was demonstrated that the allelic diversity between the populations within the river Plotnikovs accounted for the larger part of genetic variation, as compared to the differentiation between the basins. The SNP loci responsible for intra- and interpopulation differentiation of sockeye salmon from the rivers of southwestern Kamchatka were identified. Some recommendations for field population genetic studies of Asian sockeye salmon were formulated.
Ruan, Li; Zhu, Jian-guo; Pan, Cong; Hua, Xing; Yuan, Dong-bo; Li, Zheng-ming; Zhong, Wei-de
2015-01-01
Background. The aim of the study was to investigate the association between single nucleotide polymorphism (SNP) of vitamin D receptor (VDR) gene and clinical progress of benign prostatic hyperplasia (BPH) in Chinese men. Methods. The DNA was extracted from blood of 200 BPH patients with operation (progression group) and 200 patients without operation (control group), respectively. The genotypes of VDR gene FokI SNP represented by “F/f” were identified by PCR-restriction fragment length polymorphism. The odds ratio (OR) of having progression of BPH for having the genotype were calculated. Results. Our date indicated that the f alleles of the VDR gene FokI SNP associated with the progression of BPH (P = 0.009). Conclusion. For the first time, our study demonstrated that VDR gene FokI SNP may be associated with the risk of BPH progress. PMID:25685834
Qi, Xiaoquan; Bakht, Saleha; Devos, Katrien M.; Gale, Mike D.; Osbourn, Anne
2001-01-01
A flexible, non-gel-based single nucleotide polymorphism (SNP) detection method is described. The method adopts thermostable ligation for allele discrimination and rolling circle amplification (RCA) for signal enhancement. Clear allelic discrimination was achieved after staining of the final reaction mixtures with Cybr-Gold and visualisation by UV illumination. The use of a compatible buffer system for all enzymes allows the reaction to be initiated and detected in the same tube or microplate well, so that the experiment can be scaled up easily for high-throughput detection. Only a small amount of DNA (i.e. 50 ng) is required per assay, and use of carefully designed short padlock probes coupled with generic primers and probes make the SNP detection cost effective. Biallelic assay by hybridisation of the RCA products with fluorescence dye-labelled probes is demonstrated, indicating that ligation-RCA (L-RCA) has potential for multiplexed assays. PMID:11713336
Apicella, Coren L.; Cesarini, David; Johannesson, Magnus; Dawes, Christopher T.; Lichtenstein, Paul; Wallace, Björn; Beauchamp, Jonathan; Westberg, Lars
2010-01-01
Background Oxytocin (OXT) has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR) gene variants and experimentally elicited social preferences are rare. Methodology/Principal Findings We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs) of the OXTR gene in a sample of Swedish twins (n = 684). Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs) and behavior in either of the games. Conclusion We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant. PMID:20585395
Jairin, Jirapong; Kobayashi, Tetsuya; Yamagata, Yoshiyuki; Sanada-Morimura, Sachiyo; Mori, Kazuki; Tashiro, Kosuke; Kuhara, Satoru; Kuwazaki, Seigo; Urio, Masahiro; Suetsugu, Yoshitaka; Yamamoto, Kimiko; Matsumura, Masaya; Yasui, Hideshi
2013-01-01
In this study, we developed the first genetic linkage map for the major rice insect pest, the brown planthopper (BPH, Nilaparvata lugens). The linkage map was constructed by integrating linkage data from two backcross populations derived from three inbred BPH strains. The consensus map consists of 474 simple sequence repeats, 43 single-nucleotide polymorphisms, and 1 sequence-tagged site, for a total of 518 markers at 472 unique positions in 17 linkage groups. The linkage groups cover 1093.9 cM, with an average distance of 2.3 cM between loci. The average number of marker loci per linkage group was 27.8. The sex-linkage group was identified by exploiting X-linked and Y-specific markers. Our linkage map and the newly developed markers used to create it constitute an essential resource and a useful framework for future genetic analyses in BPH. PMID:23204257
Pneumonic Plague Outbreak, Northern Madagascar, 2011
Richard, Vincent; Herindrainy, Perlinot; Soanandrasana, Rahelinirina; Ratsitoharina, Maherisoa; Rakotomanana, Fanjasoa; Andrianalimanana, Samuel; Scholz, Holger C.; Rajerison, Minoarisoa
2015-01-01
Yersinia pestis, the causative agent of plague, is endemic to Madagascar, particularly to the central highlands. Although plague has not been previously reported in northern Madagascar, an outbreak of pneumonic plague occurred in this remote area in 2011. Over a 27-day period, 17 suspected, 2 presumptive, and 3 confirmed human cases were identified, and all 15 untreated 20 patients died. Molecular typing of Y. pestis isolated from 2 survivors and 5 Rattus rattus rat samples identified the Madagascar-specific 1.ORI3-k single-nucleotide polymorphism genotype and 4 clustered regularly interspaced short palindromic repeat patterns. This outbreak had a case-fatality rate of 100% for nontreated patients. The Y. pestis 1.ORI3-k single-nucleotide polymorphism genotype might cause larger epidemics. Multidrug-resistant strains and persistence of the pathogen in natural foci near human settlements pose severe risks to populations in plague-endemic regions and require outbreak response strategies. PMID:25530466
Apicella, Coren L; Cesarini, David; Johannesson, Magnus; Dawes, Christopher T; Lichtenstein, Paul; Wallace, Björn; Beauchamp, Jonathan; Westberg, Lars
2010-06-16
Oxytocin (OXT) has been implicated in a suite of complex social behaviors including observed choices in economic laboratory experiments. However, actual studies of associations between oxytocin receptor (OXTR) gene variants and experimentally elicited social preferences are rare. We test hypotheses of associations between social preferences, as measured by behavior in two economic games, and 9 single nucleotide polymorphisms (SNPs) of the OXTR gene in a sample of Swedish twins (n = 684). Two standard economic games, the dictator game and the trust game, both involving real monetary consequences, were used to elicit such preferences. After correction for multiple hypothesis testing, we found no significant associations between any of the 9 single nucleotide polymorphisms (SNPs) and behavior in either of the games. We were unable to replicate the most significant association reported in previous research between the amount donated in a dictator game and an OXTR genetic variant.
Chau, Man L.; Chen, Swaine L.; Yap, Min; Hartantyo, Sri H.P.; Chiew, Paul K.T.; Fernandez, Charlene J.; Wong, Wai K.; Fong, Rockey K.; Tan, Wei L.; Tan, Brian Z.Y.; Ng, Youming; Aung, Kyaw T.; Mehershahi, Kurosh S.; Goh, Christopher; Kang, Joanne S.L.; Barkham, Timothy; Leong, Adeline O.K.; Gutiérrez, Ramona A.
2017-01-01
We assessed microbial safety and quality of raw fish sold in Singapore during 2015–2016 to complement epidemiologic findings for an outbreak of infection with group B Streptococcus serotype III sequence type (ST) 283 associated with raw fish consumption. Fish-associated group B Streptococcus ST283 strains included strains nearly identical (0–2 single-nucleotide polymorphisms) with the human outbreak strain, as well as strains in another distinct ST283 clade (57–71 single-nucleotide polymorphisms). Our investigations highlight the risk for contamination of freshwater fish (which are handled and distributed separately from saltwater fish sold as sashimi) and the need for improved hygienic handling of all fish for raw consumption. These results have led to updated policy and guidelines regarding the sale of ready-to-eat raw fish dishes in Singapore. PMID:29148967
Carter, Tamar E.; Boulter, Alexis; Existe, Alexandre; Romain, Jean R.; St. Victor, Jean Yves; Mulligan, Connie J.; Okech, Bernard A.
2015-01-01
Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. PMID:25646258
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases
Su, Yan; Guengerich, F. Peter
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785
Morrison, Alanna C; Bare, Lance A; Luke, May M; Pankow, James S; Mosley, Thomas H; Devlin, James J; Willerson, James T; Boerwinkle, Eric
2008-01-01
Ischemic stroke and coronary heart disease (CHD) may share genetic factors contributing to a common etiology. This study investigates whether 51 single nucleotide polymorphisms (SNPs) associated with CHD in multiple antecedent studies are associated with incident ischemic stroke in the Atherosclerosis Risk in Communities (ARIC) study. From the multiethnic ARIC cohort of 14,215 individuals, 495 validated ischemic strokes were identified. Cox proportional hazards models, adjusted for age and gender, identified three SNPs in Whites and two SNPs in Blacks associated with incident stroke (p
NASA Astrophysics Data System (ADS)
Maity, Sourav; Mazzolini, Monica; Arcangeletti, Manuel; Valbuena, Alejandro; Fabris, Paolo; Lazzarino, Marco; Torre, Vincent
2015-05-01
Cyclic nucleotide-gated (CNG) channels are activated by binding of cyclic nucleotides. Although structural studies have identified the channel pore and selectivity filter, conformation changes associated with gating remain poorly understood. Here we combine single-molecule force spectroscopy (SMFS) with mutagenesis, bioinformatics and electrophysiology to study conformational changes associated with gating. By expressing functional channels with SMFS fingerprints in Xenopus laevis oocytes, we were able to investigate gating of CNGA1 in a physiological-like membrane. Force spectra determined that the S4 transmembrane domain is mechanically coupled to S5 in the closed state, but S3 in the open state. We also show there are multiple pathways for the unfolding of the transmembrane domains, probably caused by a different degree of α-helix folding. This approach demonstrates that CNG transmembrane domains have dynamic structure and establishes SMFS as a tool for probing conformational change in ion channels.
Effects of Single-Sex and Coeducational Schooling on the Gender Gap in Educational Achievement
ERIC Educational Resources Information Center
Gibb, Sheree J.; Fergusson, David M.; Horwood, L. John
2008-01-01
This study examined the effects of single-sex and coeducational schooling on the gender gap in educational achievement to age 25. Data were drawn from the Christchurch Health and Development Study, a longitudinal study of a birth cohort of 1265 individuals born in 1977 in Christchurch, New Zealand. After adjustment for a series of covariates…
Investigation of a single barrier discharge in submillimeter air gaps. Nonuniform field
NASA Astrophysics Data System (ADS)
Bondarenko, P. N.; Emel'yanov, O. A.; Shemet, M. V.
2014-08-01
Pulse characteristics of single barrier discharges as well as parameters of charges accumulated on the surface of a dielectric under the atmospheric pressure in the "needle-(0.1-2.0)-mm air gap-polymer barrier-plane" system are investigated. It is found experimentally that for the positive polarity of the needle, the voltage for the discharge initiation is higher than in the case of the negative polarity by ˜25-35%. The reversal of the needle polarity from negative to positive increases the amplitude of the discharge current and the accumulated surface charge by ˜1.5-3 times. For the positive polarity of the needle, the discharge is governed by a streamer mechanism, while for the negative polarity, the discharge is initiated by the formation of a single Trichel pulse. The single pulse regime is observed for the discharge current up to a certain electrode gap d CR. For the positive needle and for air gap width d air > d CR ≈ 1.5 mm, a multipulse burst corona is formed, while for the negative needle and d air > d CR ≈ 0.9 mm, a damped sequence of Trichel pulses evolves in the system.
Dou, Dan; Hernández-Neuta, Iván; Wang, Hao; Östbye, Henrik; Qian, Xiaoyan; Thiele, Swantje; Resa-Infante, Patricia; Kouassi, Nancy Mounogou; Sender, Vicky; Hentrich, Karina; Mellroth, Peter; Henriques-Normark, Birgitta; Gabriel, Gülsah; Nilsson, Mats; Daniels, Robert
2017-07-05
Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Han, R-L; Lan, X-Y; Zhang, L-Z; Ren, G; Jing, Y-J; Li, M-J; Zhang, B; Zhao, M; Guo, Y-K; Kang, X-T; Chen, H
2010-01-01
Visfatin is a peptide that is predominantly expressed in visceral adipose tissue and is hypothesized to be related to obesity and insulin resistance. In this study, a novel silent single-nucleotide polymorphism (SNP) was found in exon 7 of the chicken visfatin gene (also known as PBEF1) by single-stranded conformation polymorphism (SSCP) and DNA sequencing. In total, 836 chickens forming an F2 resource population of Gushi chicken crossed with Anka broiler were genotyped by XbaI forced RFLP, and the associations of this polymorphism with chicken growth, carcass characteristics, and meat quality were analyzed. Significant associations were found between the polymorphism and 4-week body weight (BW4), 6-week body weight (BW6), 4-week body slanting length (BSL4), fat bandwidth (FBW), breast muscle water loss rate (BWLR) and breast muscle fiber density (BFD) (P < 0.05), as well as 4-week breastbone length (BBL4) (P < 0.01). These observations suggested that the polymorphism in exon7 of the visfatin gene had significant effects on the early growth traits of chicken.
APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition
Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V
2014-01-01
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition. DOI: http://dx.doi.org/10.7554/eLife.02008.001 PMID:24843014
HomSI: a homozygous stretch identifier from next-generation sequencing data.
Görmez, Zeliha; Bakir-Gungor, Burcu; Sagiroglu, Mahmut Samil
2014-02-01
In consanguineous families, as a result of inheriting the same genomic segments through both parents, the individuals have stretches of their genomes that are homozygous. This situation leads to the prevalence of recessive diseases among the members of these families. Homozygosity mapping is based on this observation, and in consanguineous families, several recessive disease genes have been discovered with the help of this technique. The researchers typically use single nucleotide polymorphism arrays to determine the homozygous regions and then search for the disease gene by sequencing the genes within this candidate disease loci. Recently, the advent of next-generation sequencing enables the concurrent identification of homozygous regions and the detection of mutations relevant for diagnosis, using data from a single sequencing experiment. In this respect, we have developed a novel tool that identifies homozygous regions using deep sequence data. Using *.vcf (variant call format) files as an input file, our program identifies the majority of homozygous regions found by microarray single nucleotide polymorphism genotype data. HomSI software is freely available at www.igbam.bilgem.tubitak.gov.tr/softwares/HomSI, with an online manual.
Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.
2015-01-01
In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005
Genome sequences of a mouse-avirulent and a mouse-virulent strain of Ross River virus.
Faragher, S G; Meek, A D; Rice, C M; Dalgarno, L
1988-04-01
The nucleotide sequence of the genomic RNA of a mouse-avirulent strain of Ross River virus, RRV NB5092 (isolated in 1969), has been determined and the corresponding sequence for the prototype mouse-virulent strain, RRV T48 (isolated in 1959), has been completed. The RRV NB5092 genome is approximately 11,674 nucleotides in length, compared with 11,853 nucleotides for RRV T48. RRV NB5092 and RRV T48 have the same genome organization. For both viruses an untranslated region of 80 nucleotides at the 5' end of the genome is followed by a 7440-nucleotide open reading frame which is interrupted after 5586 nucleotides by a single opal termination codon. By homology with other alphaviruses, the 5586-nucleotide open reading frame encodes the nonstructural proteins nsP1, nsP2, and nsP3; a fourth nonstructural protein, nsP4, is produced by read-through of the opal codon. The RRV nonstructural proteins show strong homology with the corresponding proteins of Sindbis virus and Semliki Forest virus in terms of size, net charge, and hydropathy characteristics. However, homology is not uniform between or within the proteins; nsP1, nsP2, and nsP4 contain extended domains which are highly conserved between alphaviruses, while the C-terminal region of nsP3 shows little conservation in sequence or length between alphaviruses. An untranslated "junction" region of 44 nucleotides (for RRV NB5092) or 47 nucleotides (for RRV T48) separates the nonstructural and structural protein coding regions. The structural proteins (capsid-E3-E2-6K-E1) are translated from an open reading frame of 3762 nucleotides which is followed by a 3'-untranslated region of approximately 348 nucleotides (for RRV NB5092) or 524 nucleotides (for RRV T48). Excluding deletions and insertions, the genomes of RRV NB5092 and RRV T48 differ at 284 nucleotides, representing a sequence divergence of 2.38%. Sequence deletions or insertions were found only in the noncoding regions and include a 173-nucleotide deletion in the 3'-untranslated region of RRV NB5092, compared with RRV T48. In the coding regions, most of the nucleotide differences are silent; there are 36 amino acid differences in the nonstructural proteins and 12 in the structural proteins. The distribution of amino acid differences between the two RRV strains correlates with the location of domains which are poorly conserved in sequence between alphaviruses. The possible role of amino acid differences in envelope glycoproteins E1 and E2 in determining the different antigenic and biological properties of RRV NB5092 and RRV T48 is discussed.
Massouh, Amid; Schubert, Julia; Yaneva-Roder, Liliya; Ulbricht-Jones, Elena S.; Johnson, Marc T.J.; Wright, Stephen I.; Pellizzer, Tommaso; Sobanski, Johanna; Greiner, Stephan
2016-01-01
Spontaneous plastome mutants have been used as a research tool since the beginning of genetics. However, technical restrictions have severely limited their contributions to research in physiology and molecular biology. Here, we used full plastome sequencing to systematically characterize a collection of 51 spontaneous chloroplast mutants in Oenothera (evening primrose). Most mutants carry only a single mutation. Unexpectedly, the vast majority of mutations do not represent single nucleotide polymorphisms but are insertions/deletions originating from DNA replication slippage events. Only very few mutations appear to be caused by imprecise double-strand break repair, nucleotide misincorporation during replication, or incorrect nucleotide excision repair following oxidative damage. U-turn inversions were not detected. Replication slippage is induced at repetitive sequences that can be very small and tend to have high A/T content. Interestingly, the mutations are not distributed randomly in the genome. The underrepresentation of mutations caused by faulty double-strand break repair might explain the high structural conservation of seed plant plastomes throughout evolution. In addition to providing a fully characterized mutant collection for future research on plastid genetics, gene expression, and photosynthesis, our work identified the spectrum of spontaneous mutations in plastids and reveals that this spectrum is very different from that in the nucleus. PMID:27053421
Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene.
Silva, Deborah S B S; Sawitzki, Fernanda R; De Toni, Elisa C; Graebin, Pietra; Picanco, Juliane B; Abujamra, Ana Lucia; de Farias, Caroline B; Roesler, Rafael; Brunetto, Algemir L; Alho, Clarice S
2012-11-10
We aimed to investigate single nucleotide polymorphisms (SNPs) in the EWS gene breaking region in order to analyze Ewing's sarcoma susceptibility. The SNPs were investigated in a healthy subject population and in Ewing's sarcoma patients from Southern Brazil. Genotyping was performed by TaqMan® assay for allelic discrimination using Real-Time PCR. The analysis of incidence of SNPs or different SNP-arrangements revealed a higher presence of homozygote TT-rs4820804 in Ewing's sarcoma patients (p=0.02; Chi Square Test). About 300 bp from the rs4820804 SNP lies a palindromic hexamer (5'-GCTAGC-3') and three nucleotides (GTC), which were previously identified to be in close vicinity of the breakpoint junction in both EWS and FLI1 genes. This DNA segment surrounding the rs4820804 SNP is likely to indicate a breakpoint region. If the T-rs4820804 allele predisposes a DNA fragment to breakage, homozygotes (TT-rs4820804) would have double the chance of having a chromosome break, increasing the chances for a translocation to occur. In conclusion, the TT-rs4820804 EWS genotype can be associated with Ewing's sarcoma and the SNP rs4820804 can be a candidate marker to understand Ewing's sarcoma susceptibility. Copyright © 2012 Elsevier B.V. All rights reserved.
Arlindo, Samuel; Calo, Pilar; Franco, Carlos; Prado, Marta; Cepeda, Alberto; Barros-Velázquez, Jorge
2006-12-01
The bacteriocins produced by two lactic acid bacteria isolated from nonfermented fresh meat and fish, respectively, and exhibiting a remarkable antilisterial activity, were characterized. Bacteriocinogenic strains were identified as Enterococcus faecium and the maximum bacteriocin production by both strains was detected in the stationary phase of growth. The activity against Listeria monocytogenes was maintained in pH range of 3-7 and was stable in both strains after heating at 100 or 121 degrees C. The genes coding for enterocin P were detected, isolated, and sequenced in both E. faecium strains. They exhibited DNA/DNA homology in the 87.1-97.2% range with respect to the other four enterocin P genes reported so far. Three single nucleotide polymorphism events, silent at the amino acid level, were detected at nucleotide positions 45 (G/A), 75 (A/G), and 90 (T/C) in E. faecium LHICA 28-4 and may explain the differences reported for those loci in other enterocin P-producing E. faecium strains. This work provides the first description of enterocin P-producing E. faecium strains in nonfermented foodstuffs and, in the case of E. faecium LHICA 51, the first report of an enterocin P-producing strain isolated from fish so far.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuppuswamy, M.N.; Hoffmann, J.W.; Spitzer, S.G.
1991-02-15
In this report, the authors describe an approach to detect the presence of abnormal alleles in those genetic diseases in which frequency of occurrence of the same mutation is high (e.g., hemophilia B). Initially, from each subject, the DNA fragment containing the putative mutation site is amplified by the polymerase chain reaction. For each fragment two reaction mixtures are then prepared. Each contains the amplified fragment, a primer (18-mer or longer) whose sequence is identical to the coding sequence of the normal gene immediately flanking the 5{prime} end of the mutation site, and either an {alpha}-{sup 32}P-labeled nucleotide corresponding tomore » the normal coding sequence at the mutation site or an {alpha}-{sup 32}P-labeled nucleotide corresponding to the mutant sequence. An essential feature of the present methodology is that the base immediately 3{prime} to the template-bound primer is one of those altered in the mutant, since in this way an extension of the primer by a single base will give an extended molecule characteristic of either the mutant or the wild type. The method is rapid and should be useful in carrier detection and prenatal diagnosis of every genetic disease with a known sequence variation.« less
Schwarz, Erika N; Ruhlman, Tracey A; Weng, Mao-Lun; Khiyami, Mohammad A; Sabir, Jamal S M; Hajarah, Nahid H; Alharbi, Njud S; Rabah, Samar O; Jansen, Robert K
2017-04-01
This study represents the most comprehensive plastome-wide comparison of nucleotide substitution rates across the three subfamilies of Fabaceae: Caesalpinioideae, Mimosoideae, and Papilionoideae. Caesalpinioid and mimosoid legumes have large, unrearranged plastomes compared with papilionoids, which exhibit varying levels of rearrangement including the loss of the inverted repeat (IR) in the IR-lacking clade (IRLC). Using 71 genes common to 39 legume taxa representing all the three subfamilies, we show that papilionoids consistently have higher nucleotide substitution rates than caesalpinioids and mimosoids, and rates in the IRLC papilionoids are generally higher than those in the IR-containing papilionoids. Unsurprisingly, this pattern was significantly correlated with growth habit as most papilionoids are herbaceous, whereas caesalpinioids and mimosoids are largely woody. Both nonsynonymous (dN) and synonymous (dS) substitution rates were also correlated with several biological features including plastome size and plastomic rearrangements such as the number of inversions and indels. In agreement with previous reports, we found that genes in the IR exhibit between three and fourfold reductions in the substitution rates relative to genes within the large single-copy or small single-copy regions. Furthermore, former IR genes in IR-lacking taxa exhibit accelerated rates compared with genes contained in the IR.
The nucleotide binding dynamics of human MSH2-MSH3 are lesion dependent.
Owen, Barbara A L; H Lang, Walter; McMurray, Cynthia T
2009-05-01
Here we report that the human DNA mismatch complex MSH2-MSH3 recognizes small loops by a mechanism different from that of MSH2-MSH6 for single-base mismatches. The subunits MSH2 and MSH3 can bind either ADP or ATP with similar affinities. Upon binding to a DNA loop, however, MSH2-MSH3 adopts a single 'nucleotide signature', in which the MSH2 subunit is occupied by an ADP molecule and the MSH3 subunit is empty. Subsequent ATP binding and hydrolysis in the MSH3 subunit promote ADP-ATP exchange in the MSH2 subunit to yield a hydrolysis-independent ATP-MSH2-MSH3-ADP intermediate. Human MSH2-MSH3 and yeast Msh2-Msh6 both undergo ADP-ATP exchange in the Msh2 subunit but, apparently, have opposite requirements for ATP hydrolysis: ADP release from DNA-bound Msh2-Msh6 requires ATP stabilization in the Msh6 subunit, whereas ADP release from DNA-bound MSH2-MSH3 requires ATP hydrolysis in the MSH3 subunit. We propose a model in which lesion binding converts MSH2-MSH3 into a distinct nucleotide-bound form that is poised to be a molecular sensor for lesion specificity.
Karimi, Mehran; Zarei, Tahereh; Haghpanah, Sezaneh; Moghadam, Mohamad; Ebrahimi, Ahmad; Rezaei, Narges; Heidari, Ghazaleh; Vazin, Afsaneh; Khavari, Maryam; Miri, Hamid R
2017-05-01
To evaluate the possible relationship between hydroxyurea (HU) response and some single-nucleotide polymorphism (SNP) in patients affected by β-thalassemia intermedia. In this cross-sectional study, 100 β-thalassemia intermedia patients who were taking HU with a dose of 8 to 15 mg/kg body weight per day for a period of at least 6 months were randomly selected between February 2013 and October 2014 in southern Iran. HU response was defined based on decrease or cessation of the blood transfusion need and evaluation of Hb level. In univariate analysis, from all evaluated SNPs, only rs10837814 SNP of olfactory receptors (ORs) OR51B2 showed a significant association with HU response (P=0.038) and from laboratory characteristics, only nucleated red blood cells showed significant associations (116%±183%) in good responders versus (264%±286%) in poor responders (P=0.045). In multiple logistic regression, neither laboratory variables nor different SNPs, showed significant association with HU response. Three novel nucleotide variations (-665 [A→C], -1301 [T→G],-1199 delA) in OR51B2 gene were found in good responders. None of the evaluated SNPs in our study showed significant association with HU response. Further larger studies and evaluation of other genes are suggested.