Evidence for a Complex Class of Nonadenylated mRNA in Drosophila
Zimmerman, J. Lynn; Fouts, David L.; Manning, Jerry E.
1980-01-01
The amount, by mass, of poly(A+) mRNA present in the polyribosomes of third-instar larvae of Drosophila melanogaster, and the relative contribution of the poly(A+) mRNA to the sequence complexity of total polysomal RNA, has been determined. Selective removal of poly(A+) mRNA from total polysomal RNA by use of either oligo-dT-cellulose, or poly(U)-sepharose affinity chromatography, revealed that only 0.15% of the mass of the polysomal RNA was present as poly(A+) mRNA. The present study shows that this RNA hybridized at saturation with 3.3% of the single-copy DNA in the Drosophila genome. After correction for asymmetric transcription and reactability of the DNA, 7.4% of the single-copy DNA in the Drosophila genome is represented in larval poly(A+) mRNA. This corresponds to 6.73 x 106 nucleotides of mRNA coding sequences, or approximately 5,384 diverse RNA sequences of average size 1,250 nucleotides. However, total polysomal RNA hybridizes at saturation to 10.9% of the single-copy DNA sequences. After correcting this value for asymmetric transcription and tracer DNA reactability, 24% of the single-copy DNA in Drosophila is represented in total polysomal RNA. This corresponds to 2.18 x 107 nucleotides of RNA coding sequences or 17,440 diverse RNA molecules of size 1,250 nucleotides. This value is 3.2 times greater than that observed for poly(A+) mRNA, and indicates that ≃69% of the polysomal RNA sequence complexity is contributed by nonadenylated RNA. Furthermore, if the number of different structural genes represented in total polysomal RNA is ≃1.7 x 104, then the number of genes expressed in third-instar larvae exceeds the number of chromomeres in Drosophila by about a factor of three. This numerology indicates that the number of chromomeres observed in polytene chromosomes does not reflect the number of structural gene sequences in the Drosophila genome. PMID:6777246
Poly A tail length analysis of in vitro transcribed mRNA by LC-MS.
Beverly, Michael; Hagen, Caitlin; Slack, Olga
2018-02-01
The 3'-polyadenosine (poly A) tail of in vitro transcribed (IVT) mRNA was studied using liquid chromatography coupled to mass spectrometry (LC-MS). Poly A tails were cleaved from the mRNA using ribonuclease T1 followed by isolation with dT magnetic beads. Extracted tails were then analyzed by LC-MS which provided tail length information at single-nucleotide resolution. A 2100-nt mRNA with plasmid-encoded poly A tail lengths of either 27, 64, 100, or 117 nucleotides was used for these studies as enzymatically added poly A tails showed significant length heterogeneity. The number of As observed in the tails closely matched Sanger sequencing results of the DNA template, and even minor plasmid populations with sequence variations were detected. When the plasmid sequence contained a discreet number of poly As in the tail, analysis revealed a distribution that included tails longer than the encoded tail lengths. These observations were consistent with transcriptional slippage of T7 RNAP taking place within a poly A sequence. The type of RNAP did not alter the observed tail distribution, and comparison of T3, T7, and SP6 showed all three RNAPs produced equivalent tail length distributions. The addition of a sequence at the 3' end of the poly A tail did, however, produce narrower tail length distributions which supports a previously described model of slippage where the 3' end can be locked in place by having a G or C after the poly nucleotide region. Graphical abstract Determination of mRNA poly A tail length using magnetic beads and LC-MS.
Sakai, Kazuko; Takeda, Masayuki; Okamoto, Isamu; Nakagawa, Kazuhiko; Nishio, Kazuto
2015-01-01
Hepatocyte growth factor (HGF) expression is a poor prognostic factor in various types of cancer. Expression levels of HGF have been reported to be regulated by shorter poly(dA) sequences in the promoter region. In the present study, the poly(dA) mononucleotide tract in various types of human cancer cell lines was examined and compared with the HGF expression levels in those cells. Short deoxyadenosine repeat sequences were detected in five of the 55 cell lines used in the present study. The H69, IM95, CCK-81, Sui73 and H28 cells exhibited a truncated poly(dA) sequence in which the number of poly(dA) repeats was reduced by ≥5 bp. Two of the cell lines exhibited high HGF expression, determined by reverse transcription quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The CCK-81, Sui73 and H28 cells with shorter poly(dA) sequences exhibited low HGF expression. The cause of the suppression of HGF expression in the CCK-81, Sui73 and H28 cells was clarified by two approaches, suppression by methylation and single nucleotide polymorphisms in the HGF gene. Exposure to 5-Aza-dC, an inhibitor of DNA methyltransferase 1, induced an increased expression of HGF in the CCK-81 cells, but not in the other cells. Single-nucleotide polymorphism (SNP) rs72525097 in intron 1 was detected in the Sui73 and H28 cells. Taken together, it was found that the defect of poly(dA) in the HGF promoter was present in various types of cancer, including lung, stomach, colorectal, pancreas and mesothelioma. The present study proposes the negative regulation mechanisms by methylation and SNP in intron 1 of HGF for HGF expression in cancer cells with short poly(dA).
Faragher, S G; Dalgarno, L
1986-07-20
The 3' untranslated (UT) sequences of the genomic RNAs of five geographic variants of the alphavirus Ross River virus (RRV) were determined and compared with the 3' UT sequence of RRV T48, the prototype strain. Part of the 3' UT region of Getah virus, a close serological relative of RRV, was also sequenced. The RRV 3' UT region varies markedly in length between variants. Large deletions or insertions, sequence rearrangements and single nucleotide substitutions are observed. A sequence tract of 49 to 58 nucleotides, which is repeated as four blocks in the RRV T48 3' UT region, occurs only once in the 3' UT region of one RRV strain (NB5092), indicating that the existence of repeat sequence blocks is not essential for RRV replication. However, the precise sequence of the 3' proximal copy of the repeat block and its position relative to the poly(A) tail were identical in all RRV isolates examined, suggesting that it has an important role in RRV replication. Nucleotide substitutions between RRV variants are distributed non-randomly along the length of the 3' UT region. The sequence of 120 to 130 nucleotides adjacent to the poly(A) tail is strongly conserved. Getah virus RNA contains three repeat sequence blocks in the 3' UT region. These are similar in sequence to those in RRV RNA but differ in their arrangement. Homology between the RRV and Getah 3' UT sequences is greatest in the 3' proximal repeat sequence block that shows three differences in 49 nucleotides. The 3' proximal repeat in Getah RNA occurs at the same position, relative to the poly(A) tail, as in all RRV variants. The RRV and Getah virus 3' UT sequences show extensive homology in the region between the 3' proximal repeat and the poly(A) tail but, apart from the repeat blocks themselves, they show no significant homology elsewhere.
The nucleotide sequence and genome organization of Plasmopara halstedii virus.
Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar
2011-03-17
Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates. Insignificant viral sequence variation indicated that the virus did not account for differences in pathogenicity of the oomycete P. halstedii.
Complete genome sequence of Paris mosaic necrosis virus, a distinct member of the genus Potyvirus
USDA-ARS?s Scientific Manuscript database
The complete genomic sequence of a novel potyvirus was determined from Paris polyphylla var. yunnanensis. Its genomic RNA consists of 9,660 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing a single open reading frame (ORF) encoding a large polyprotein. The virus shares 52.1-69.7%...
Sequence of a cDNA encoding pancreatic preprosomatostatin-22.
Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E
1982-01-01
We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673
Copp, William; Denisov, Alexey Y.; Xie, Jingwei; Noronha, Anne M.; Liczner, Christopher; Safaee, Nozhat
2017-01-01
Abstract Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2′-deoxyribose, 2′-O-methyl-ribose, 2′-deoxy-2′-fluoro-ribose, arabinose and 2′-deoxy-2′-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2’ modifications gave a variety of effects. Arabinose and 2′-deoxy-2′-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2′-O-methyl and 2′-deoxy-2′-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability. PMID:28973475
Copp, William; Denisov, Alexey Y; Xie, Jingwei; Noronha, Anne M; Liczner, Christopher; Safaee, Nozhat; Wilds, Christopher J; Gehring, Kalle
2017-09-29
Polyadenylate (poly(A)) has the ability to form a parallel duplex with Hoogsteen adenine:adenine base pairs at low pH or in the presence of ammonium ions. In order to evaluate the potential of this structural motif for nucleic acid-based nanodevices, we characterized the effects on duplex stability of substitutions of the ribose sugar with 2'-deoxyribose, 2'-O-methyl-ribose, 2'-deoxy-2'-fluoro-ribose, arabinose and 2'-deoxy-2'-fluoro-arabinose. Deoxyribose substitutions destabilized the poly(A) duplex both at low pH and in the presence of ammonium ions: no duplex formation could be detected with poly(A) DNA oligomers. Other sugar C2' modifications gave a variety of effects. Arabinose and 2'-deoxy-2'-fluoro-arabinose nucleotides strongly destabilized poly(A) duplex formation. In contrast, 2'-O-methyl and 2'-deoxy-2'-fluoro-ribo modifications were stabilizing either at pH 4 or in the presence of ammonium ions. The differential effect suggests they could be used to design molecules selectively responsive to pH or ammonium ions. To understand the destabilization by deoxyribose, we determined the structures of poly(A) duplexes with a single DNA residue by nuclear magnetic resonance spectroscopy and X-ray crystallography. The structures revealed minor structural perturbations suggesting that the combination of sugar pucker propensity, hydrogen bonding, pKa shifts and changes in hydration determine duplex stability. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Thomas, Laurent F.; Sætrom, Pål
2012-01-01
Alternative polyadenylation (APA) can for example occur when a protein-coding gene has several polyadenylation (polyA) signals in its last exon, resulting in messenger RNAs (mRNAs) with different 3′ untranslated region (UTR) lengths. Different 3′UTR lengths can give different microRNA (miRNA) regulation such that shortened transcripts have increased expression. The APA process is part of human cells' natural regulatory processes, but APA also seems to play an important role in many human diseases. Although altered APA in disease can have many causes, we reasoned that mutations in DNA elements that are important for the polyA process, such as the polyA signal and the downstream GU-rich region, can be one important mechanism. To test this hypothesis, we identified single nucleotide polymorphisms (SNPs) that can create or disrupt APA signals (APA-SNPs). By using a data-integrative approach, we show that APA-SNPs can affect 3′UTR length, miRNA regulation, and mRNA expression—both between homozygote individuals and within heterozygote individuals. Furthermore, we show that a significant fraction of the alleles that cause APA are strongly and positively linked with alleles found by genome-wide studies to be associated with disease. Our results confirm that APA-SNPs can give altered gene regulation and that APA alleles that give shortened transcripts and increased gene expression can be important hereditary causes for disease. PMID:22915998
Loke, Johnny C.; Stahlberg, Eric A.; Strenski, David G.; Haas, Brian J.; Wood, Paul Chris; Li, Qingshun Quinn
2005-01-01
Using a novel program, SignalSleuth, and a database containing authenticated polyadenylation [poly(A)] sites, we analyzed the composition of mRNA poly(A) signals in Arabidopsis (Arabidopsis thaliana), and reevaluated previously described cis-elements within the 3′-untranslated (UTR) regions, including near upstream elements and far upstream elements. As predicted, there are absences of high-consensus signal patterns. The AAUAAA signal topped the near upstream elements patterns and was found within the predicted location to only approximately 10% of 3′-UTRs. More importantly, we identified a new set, named cleavage elements, of poly(A) signals flanking both sides of the cleavage site. These cis-elements were not previously revealed by conventional mutagenesis and are contemplated as a cluster of signals for cleavage site recognition. Moreover, a single-nucleotide profile scan on the 3′-UTR regions unveiled a distinct arrangement of alternate stretches of U and A nucleotides, which led to a prediction of the formation of secondary structures. Using an RNA secondary structure prediction program, mFold, we identified three main types of secondary structures on the sequences analyzed. Surprisingly, these observed secondary structures were all interrupted in previously constructed mutations in these regions. These results will enable us to revise the current model of plant poly(A) signals and to develop tools to predict 3′-ends for gene annotation. PMID:15965016
Poly(A)-tag deep sequencing data processing to extract poly(A) sites.
Wu, Xiaohui; Ji, Guoli; Li, Qingshun Quinn
2015-01-01
Polyadenylation [poly(A)] is an essential posttranscriptional processing step in the maturation of eukaryotic mRNA. The advent of next-generation sequencing (NGS) technology has offered feasible means to generate large-scale data and new opportunities for intensive study of polyadenylation, particularly deep sequencing of the transcriptome targeting the junction of 3'-UTR and the poly(A) tail of the transcript. To take advantage of this unprecedented amount of data, we present an automated workflow to identify polyadenylation sites by integrating NGS data cleaning, processing, mapping, normalizing, and clustering. In this pipeline, a series of Perl scripts are seamlessly integrated to iteratively map the single- or paired-end sequences to the reference genome. After mapping, the poly(A) tags (PATs) at the same genome coordinate are grouped into one cleavage site, and the internal priming artifacts removed. Then the ambiguous region is introduced to parse the genome annotation for cleavage site clustering. Finally, cleavage sites within a close range of 24 nucleotides and from different samples can be clustered into poly(A) clusters. This procedure could be used to identify thousands of reliable poly(A) clusters from millions of NGS sequences in different tissues or treatments.
Marq, Jean-Baptiste; Hausmann, Stéphane; Veillard, Nicolas; Kolakofsky, Daniel; Garcin, Dominique
2011-02-25
Arenavirus RNA genomes are initiated by a "prime and realign" mechanism, such that the initiating GTP is found as a single unpaired (overhanging) nucleotide when the complementary genome ends anneal to form double-stranded (ds) RNA panhandle structures. dsRNAs modeled on these structures do not induce interferon (IFN), as opposed to blunt-ended (5' ppp)dsRNA. This study examines whether these viral structures can also act as decoys, by trapping RIG-I in inactive dsRNA complexes. We examined the ability of various dsRNAs to activate the RIG-I ATPase (presumably a measure of helicase translocation on dsRNA) relative to their ability to induce IFN. We found that there is no simple relationship between these two properties, as if RIG-I can translocate on short dsRNAs without inducing IFN. Moreover, we found that (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide can in fact competitively inhibit the ability of blunt-ended (5' ppp)dsRNAs to induce IFN when co-transfected into cells and that this inhibition is strongly dependent on the presence of the 5' ppp. In contrast, (5' ppp)dsRNAs with a single unpaired 5' ppp-nucleotide does not inhibit poly(I-C)-induced IFN activation, which is independent of the presence of a 5' ppp group.
Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng
2017-10-01
The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.
Alsaif, Mohammed A.; Al Shammari, Sulaiman A.; Alhamdan, Adel A.
2012-01-01
Introduction Single-nucleotide polymorphisms (SNPs) are biomarkers for exploring the genetic basis of many complex human diseases. The prediction of SNPs is promising in modern genetic analysis but it is still a great challenge to identify the functional SNPs in a disease-related gene. The computational approach has overcome this challenge and an increase in the successful rate of genetic association studies and reduced cost of genotyping have been achieved. The objective of this study is to identify deleterious non-synonymous SNPs (nsSNPs) associated with the COL1A1 gene. Material and methods The SNPs were retrieved from the Single Nucleotide Polymorphism Database (dbSNP). Using I-Mutant, protein stability change was calculated. The potentially functional nsSNPs and their effect on proteins were predicted by PolyPhen and SIFT respectively. FASTSNP was used for estimation of risk score. Results Our analysis revealed 247 SNPs as non-synonymous, out of which 5 nsSNPs were found to be least stable by I-Mutant 2.0 with a DDG value of > –1.0. Four nsSNPs, namely rs17853657, rs17857117, rs57377812 and rs1059454, showed a highly deleterious tolerance index score of 0.00 with a change in their physicochemical properties by the SIFT server. Seven nsSNPs, namely rs1059454, rs8179178, rs17853657, rs17857117, rs72656340, rs72656344 and rs72656351, were found to be probably damaging with a PSIC score difference between 2.0 and 3.5 by the PolyPhen server. Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, were found to be highly polymorphic with a risk score of 3-4 with a possible effect of non-conservative change and splicing regulation by FASTSNP. Conclusions Three nsSNPs, namely rs1059454, rs17853657 and rs17857117, are potential functional polymorphisms that are likely to have a functional impact on the COL1A1 gene. PMID:24273577
Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation
Shen, Yingjia; Ji, Guoli; Haas, Brian J.; Wu, Xiaohui; Zheng, Jianti; Reese, Greg J.; Li, Qingshun Quinn
2008-01-01
The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3′-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5′-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites. PMID:18411206
VarDetect: a nucleotide sequence variation exploratory tool
Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades
2008-01-01
Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032
PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations
Bendl, Jaroslav; Stourac, Jan; Salanda, Ondrej; Pavelka, Antonin; Wieben, Eric D.; Zendulka, Jaroslav; Brezovsky, Jan; Damborsky, Jiri
2014-01-01
Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp. PMID:24453961
USDA-ARS?s Scientific Manuscript database
A new species of the family Alphaflexiviridae provisionally named Alfalfa virus S (AVS) was diagnosed in alfalfa samples originating from Sudan. A complete nucleotide sequence of the viral genome consisting of 8,349 nucleotides excluding the 3’ poly(A) tail was determined by Illumina NGS technology ...
Xie, Jianbo; Shi, Haowen; Du, Zhenglin; Wang, Tianshu; Liu, Xiaomeng; Chen, Sanfeng
2016-01-01
Paenibacillus polymyxa has widely been studied as a model of plant-growth promoting rhizobacteria (PGPR). Here, the genome sequences of 9 P. polymyxa strains, together with 26 other sequenced Paenibacillus spp., were comparatively studied. Phylogenetic analysis of the concatenated 244 single-copy core genes suggests that the 9 P. polymyxa strains and 5 other Paenibacillus spp., isolated from diverse geographic regions and ecological niches, formed a closely related clade (here it is called Poly-clade). Analysis of single nucleotide polymorphisms (SNPs) reveals local diversification of the 14 Poly-clade genomes. SNPs were not evenly distributed throughout the 14 genomes and the regions with high SNP density contain the genes related to secondary metabolism, including genes coding for polyketide. Recombination played an important role in the genetic diversity of this clade, although the rate of recombination was clearly lower than mutation. Some genes relevant to plant-growth promoting traits, i.e. phosphate solubilization and IAA production, are well conserved, while some genes relevant to nitrogen fixation and antibiotics synthesis are evolved with diversity in this Poly-clade. This study reveals that both P. polymyxa and its closely related species have plant growth promoting traits and they have great potential uses in agriculture and horticulture as PGPR. PMID:26856413
An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease.
Roses, Allen D
2010-05-01
I coauthored a recently published research article describing a variable length, poly-T polymorphism in the TOMM40 gene, adjacent to apolipoprotein E (APOE) on chromosome 19, that accounts for the age at onset distribution for a complex disease, late-onset Alzheimer disease. These new data explain the mean age at disease onset for patients with the APOE4/4 genotype and differentiate 2 forms of TOMM40 poly-T polymorphisms linked to APOE, with each form associated with a different age at disease onset distribution. When linked to APOE3 (encoding the epsilon3 isoform of APOE), the longer TOMM40 poly-T repeats (19-39 nucleotides) at the rs10524523 (hereafter, 523) locus are associated with earlier age at onset and the shorter TOMM40 523 alleles (11-16 nucleotides) are associated with later age at onset. The data suggest that the poly-T alleles are codominant, with the age at onset phenotype determined by the 2 inherited 523 alleles, but with variable expressivity. Additional data will further refine the relationship between the length of the poly-T alleles and age at disease onset and determine if the relationship is linear.
Direct measurement of the poliovirus RNA polymerase error frequency in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, C.D.; Stokes, M.A.M.; Flanegan, J.B.
1988-02-01
The fidelity of RNA replication by the poliovirus-RNA-dependent RNA polymerase was examined by copying homopolymeric RNA templates in vitro. The poliovirus RNA polymerase was extensively purified and used to copy poly(A), poly(C), or poly(I) templates with equimolar concentrations of noncomplementary and complementary ribonucleotides. The error frequency was expressed as the amount of a noncomplementary nucleotide incorporated divided by the total amount of complementary and noncomplementary nucleotide incorporated. The polymerase error frequencies were very high, depending on the specific reaction conditions. The activity of the polymerase on poly(U) and poly(G) was too low to measure error frequencies on these templates. Amore » fivefold increase in the error frequency was observed when the reaction conditions were changed from 3.0 mM Mg{sup 2+} (pH 7.0) to 7.0 mM Mg{sup 2+} (pH 8.0). This increase in the error frequency correlates with an eightfold increase in the elongation rate that was observed under the same conditions in a previous study.« less
Gross rearrangements within the 5'-untranslated region of the picornaviral genomes.
Pilipenko, E V; Blinov, V M; Agol, V I
1990-06-11
An analysis of reported nucleotide sequences revealed several cases of gross rearrangements in the 5'-untranslated region (5-UTR) of picornaviral genomes. A large (greater than 100 nt) duplication was discovered in a downstream region of poliovirus 5-UTR involved in the translational control. Properties of the poliovirus mutants with large deletions [Kuge and Nomoto (1987) J. Virol. 61, 1478-1487] show that a single copy of the appropriate repeating unit is compatible with a wild type phenotype of the virus. In contrast to poliovirus and another enterovirus genomes, human rhinovirus RNAs contain only a single copy of this repeating unit. Another similarly large repeat was found in an upstream segment of the bovine enterovirus 5-UTR. A comparison of the primary and secondary structures of cardio- and aphthovirus 5-UTRs demonstrated the existence of a large (ca. 250 nucleotides) insertion/deletion in a region preceding the poly(C) tract. The two latter rearrangements appear to involve elements of the viral genome replication machinery. Possible origin as well as evolutionary and functional implications of these structural peculiarities are discussed.
Alfalfa virus S, a new species in the family Alphaflexiviridae
USDA-ARS?s Scientific Manuscript database
A new species of the family Alphaflexiviridae provisionally named alfalfa virus S (AVS) was discovered in alfalfa samples originating from Sudan. A complete nucleotide sequence of the viral genome consisting of 8,349 nucleotides excluding the 3’ poly(A) tail was determined by high throughput sequenc...
Two Drosophila chorion genes terminate transcription in discrete regions near their poly(A) sites.
Osheim, Y N; Miller, O L; Beyer, A L
1986-01-01
We have examined transcription termination of two closely linked Drosophila melanogaster chorion genes, s36-1 and s38-1, using the electron microscope. Our method is unusual and is independent of in vitro nuclear run-on transcription. By measuring transcription unit lengths in chromatin spreads, we can localize efficient termination sites to a region of approximately 210 bp for s36-1 and approximately 365 bp for s38-1. The center of this region is approximately 105 nucleotides downstream of the poly(A) site for the s36-1 gene, and approximately 400 nucleotides downstream for the s38-1 gene. Thus, these two Drosophila chorion genes terminate more closely to their poly(A) addition sites and in a shorter region than many other polyadenylated genes examined to date. Images Fig. 1. Fig. 2. PMID:3104029
Ono, Takeshi; Kaneda, Toshio; Muto, Akihiro; Yoshida, Tadashi
2009-07-24
Micro opioid receptor (MOR) agonists such as morphine are applied widely in clinical practice as pain therapy. The effects of morphine through MOR, such as analgesia and development of tolerance and dependence, are influenced by individual specificity. Recently, we analyzed single nucleotide polymorphisms on the human MOR gene to investigate the factors that contribute to individual specificity. In process of single nucleotide polymorphisms analysis, we found that specific nuclear proteins bound to G(-172) --> T region in exon 1 in MOR gene, and its affinity to DNA was increased by base substitution from G(-172) to T(-172). The isolated protein was identified by mass spectrometry and was confirmed by Western blotting to be poly(ADP-ribose) polymerase-1 (PARP-1). The overexpressed PARP-1 bound to G(-172) --> T and enhanced the transcription of reporter vectors containing G(-172) and T(-172). Furthermore, PARP-1 inhibitor (benzamide) decreased PARP-1 binding to G(-172) --> T without affecting mRNA or protein expression level of PARP-1 and down-regulated the subsequent MOR gene expression in SH-SY5Y cells. Moreover, we found that tumor necrosis factor-alpha enhanced MOR gene expression as well as increased PARP-1 binding to the G(-172) --> T region and G(-172) --> T-dependent transcription in SH-SY5Y cells. These effects were also inhibited by benzamide. In this study, our data suggest that PARP-1 positively regulates MOR gene transcription via G(-172) --> T, which might influence individual specificity in therapeutic opioid effects.
Yoshida, Tetsuya; Kitazawa, Yugo; Komatsu, Ken; Neriya, Yutaro; Ishikawa, Kazuya; Fujita, Naoko; Hashimoto, Masayoshi; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou
2014-11-01
In this study, we detected a Japanese isolate of hibiscus latent Fort Pierce virus (HLFPV-J), a member of the genus Tobamovirus, in a hibiscus plant in Japan and determined the complete sequence and organization of its genome. HLFPV-J has four open reading frames (ORFs), each of which shares more than 98 % nucleotide sequence identity with those of other HLFPV isolates. Moreover, HLFPV-J contains a unique internal poly(A) region of variable length, ranging from 44 to 78 nucleotides, in its 3'-untranslated region (UTR), as is the case with hibiscus latent Singapore virus (HLSV), another hibiscus-infecting tobamovirus. The length of the HLFPV-J genome was 6431 nucleotides, including the shortest internal poly(A) region. The sequence identities of ORFs 1, 2, 3 and 4 of HLFPV-J to other tobamoviruses were 46.6-68.7, 49.9-70.8, 31.0-70.8 and 39.4-70.1 %, respectively, at the nucleotide level and 39.8-75.0, 43.6-77.8, 19.2-70.4 and 31.2-74.2 %, respectively, at the amino acid level. The 5'- and 3'-UTRs of HLFPV-J showed 24.3-58.6 and 13.0-79.8 % identity, respectively, to other tobamoviruses. In particular, when compared to other tobamoviruses, each ORF and UTR of HLFPV-J showed the highest sequence identity to those of HLSV. Phylogenetic analysis showed that HLFPV-J, other HLFPV isolates and HLSV constitute a malvaceous-plant-infecting tobamovirus cluster. These results indicate that the genomic structure of HLFPV-J has unique features similar to those of HLSV. To our knowledge, this is the first report of the complete genome sequence of HLFPV.
Time dependence of triplet-singlet excitation transfer from compact poly rA to bound dye at 77 K.
Pearlstein, R M; Van Nostrand, F; Nairn, J A
1979-01-01
The nonexponential phosphorescence decay of a highly folded form of poly-riboadenylic acid (poly rA) with noncovalently bound dye is explained by a novel application of a well-known theory of electronic excitation transfer based on the Förster mechanism. This theory, originally used to describe singlet-singlet energy transfer from donor molecules to an acceptor in a solution, is here applied to the transfer of triplet excitation from the adenine (in poly rA) to the singlet manifold of either of the bound dyes, ethidium bromide or proflavine. New experimental data are presented that allow straight-forward theoretical interpretation. These data fit the form predicted by the theory, U(t) exp(-Bt1/2), where U(t) is the decay of the poly rA phosphorescence in the absence of dye, for a range of relative concentrations of either dye. The self-consistency of these theoretical fits is demonstrated by the proportionality of B to the square root of the Förster triplet-singlet overlap integrals for transfer from poly rA to each of the dyes, as demanded by the theory. From these self-consistent values of B, the theory enables one to deduce the mean packing density of nucleotides in this folded poly rA, which we estimate to be approximately 1 nm-3. We conclude that some variations of the method described here may be useful for deducing packing densities of nucleotides in other compact nucleic acid structures. PMID:262411
Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2
Kim, Geon-Woo; Lee, Seung-Hoon; Cho, Hee; Kim, Minwoo; Shin, Eui-Cheol; Oh, Jong-Won
2016-01-01
The liver-specific microRNA miR-122, which has essential roles in liver development and metabolism, is a key proviral factor for hepatitis C virus (HCV). Despite its crucial role in the liver and HCV life cycle, little is known about the molecular mechanism of miR-122 expression regulation by HCV infection. Here, we show that the HCV core protein downregulates the abundance of miR-122 by promoting its destabilization via the inhibition of GLD-2, a non-canonical cytoplasmic poly(A) polymerase. The decrease in miR-122 expression resulted in the dysregulation of the known functions of miR-122, including its proviral activity for HCV. By high-throughput sequencing of small RNAs from human liver biopsies, we found that the 22-nucleotide (nt) prototype miR-122 is modified at its 3′ end by 3′-terminal non-templated and templated nucleotide additions. Remarkably, the proportion of miR-122 isomers bearing a single nucleotide tail of any ribonucleotide decreased in liver specimens from patients with HCV. We found that these single-nucleotide-tailed miR-122 isomers display increased miRNA activity and stability over the 22-nt prototype miR-122 and that the 3′-terminal extension is catalyzed by the unique terminal nucleotidyl transferase activity of GLD-2, which is capable of adding any single ribonucleotide without preference of adenylate to the miR-122 3′ end. The HCV core protein specifically inhibited GLD-2, and its interaction with GLD-2 in the cytoplasm was found to be responsible for miR-122 downregulation. Collectively, our results provide new insights into the regulatory role of the HCV core protein in controlling viral RNA abundance and miR-122 functions through miR-122 stability modulation. PMID:27366906
Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.
Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O
1987-06-01
The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.
Khan, M Nuruzzaman; Tjong, Vinalia; Chilkoti, Ashutosh; Zharnikov, Michael
2013-08-29
We used a combination of synchrotron-based X-ray photoelectron spectroscopy (XPS) and angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy to study the chemical integrity, purity, and possible internal alignment of single-strand (ss) adenine deoxynucleotide (poly(A)) DNA brushes. The brushes were synthesized by surface-initiated enzymatic polymerization (SIEP) on a 25-mer of adenine self-assembled monolayer (SAM) on gold (A25-SH), wherein the terminal 3'-OH of the A25-SH serve as the initiation sites for SIEP of poly(A). XPS and NEXAFS spectra of poly(A) brushes were found to be almost identical to those of A25-SH initiator, with no unambiguous traces of contamination. Apart from the well-defined chemical integrity and contamination-free character, the brushes were found to have a high degree of orientational order, with an upright orientation of individual strands, despite their large thickness up to ~55 nm, that corresponds to a chain length of at least several hundred nucleotides for individual ssDNA molecules. The orientational order exhibited by these poly(A) DNA brushes, mediated presumably by base stacking, was found to be independent of the brush thickness as long as the packing density was high enough. The well-defined character and orientational ordering of the ssDNA brushes make them a potentially promising system for different applications.
Danis, Judit; Janovák, Luca; Gubán, Barbara; Göblös, Anikó; Szabó, Kornélia; Kemény, Lajos; Bata-Csörgő, Zsuzsanna; Széll, Márta
2018-03-08
Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types-normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line-upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT).
Danis, Judit; Janovák, Luca; Gubán, Barbara; Göblös, Anikó; Szabó, Kornélia; Bata-Csörgő, Zsuzsanna; Széll, Márta
2018-01-01
Keratinocytes are non-professional immune cells contributing actively to innate immune responses partially by reacting to a wide range of molecular patterns by activating pattern recognition receptors. Cytosolic nucleotide fragments as pathogen- or self-derived trigger factors are activating inflammasomes and inducing anti-viral signal transduction pathways as well as inducing expression of inflammatory cytokines. We aimed to compare the induced inflammatory reactions in three keratinocyte cell types—normal human epidermal keratinocytes, the HaCaT cell line and the HPV-KER cell line—upon exposure to the synthetic RNA and DNA analogues poly(I:C) and poly(dA:dT) to reveal the underlying signaling events. Both agents induced the expression of interleukin-6 and tumor necrosis factor α in all cell types; however, notable kinetic and expression level differences were found. Western blot analysis revealed rapid activation of the nuclear factor κB (NF-κB), mitogen activated protein kinase and signal transducers of activator of transcription (STAT) signal transduction pathways in keratinocytes upon poly(I:C) treatment, while poly(dA:dT) induced slower activation. Inhibition of NF-κB, p38, STAT-1 and STAT-3 signaling resulted in decreased cytokine expression, whereas inhibition of mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling showed a negative feedback role in both poly(I:C)- and poly(dA:dT)-induced cytokine expression. Based on our in vitro results nucleotide fragments are able to induce inflammatory reactions in keratinocytes, but with different rate and kinetics of cytokine expression, explained by faster activation of signaling routes by poly(I:C) than poly(dA:dT). PMID:29518010
Kandeel, Mahmoud; Kitade, Yukio
2018-02-01
RNA interference (RNAi) constitutes a major target in drug discovery. Recently, we reported that the Argonaute protein 2 (Ago2) PAZ domain selectively binds with all ribonucleotides except adenine and poorly recognizes deoxyribonucleotides. The binding properties of the PAZ domain with polynucleotides and the molecular mechanisms of substrates' selectivity remains unclear. In this study, the binding potencies of polynucleotides and the associated conformational and dynamic changes in PAZ domain are investigated. Coinciding with nucleotides' binding profile with the PAZ domain, polyuridylate (PolyU) and polycytidylate (PolyC) were potent binders. However, K dPolyU and K dPolyC were 15.8 and 9.3μM, respectively. In contrast, polyadenylate (PolyA) binding was not detectable. Molecular dynamics (MD) simulation revealed the highest change in root mean square deviation (RMSD) with ApoPAZ or PAZ domain bound with experimentally approved, low affinity substrates, whereas stronger binding substrates such as UMP or PolyU showed minimal RMSD changes. The loop between α3 and β5 in the β-hairpin subdomain showed the most responsive change in RMSD, being highly movable in the ApoPAZ and PAZ-AMP complex. Favorable substrate recognition was associate with moderate change in secondary structure content. In conclusion, the PAZ domain retains differential substrate selectivity associated with corresponding dynamic and structural changes upon binding. Copyright © 2017 Elsevier B.V. All rights reserved.
Promoter-Terminator Gene Loops Affect Alternative 3'-End Processing in Yeast.
Lamas-Maceiras, Mónica; Singh, Badri Nath; Hampsey, Michael; Freire-Picos, María A
2016-04-22
Many eukaryotic genes undergo alternative 3'-end poly(A)-site selection producing transcript isoforms with 3'-UTRs of different lengths and post-transcriptional fates. Gene loops are dynamic structures that juxtapose the 3'-ends of genes with their promoters. Several functions have been attributed to looping, including memory of recent transcriptional activity and polarity of transcription initiation. In this study, we investigated the relationship between gene loops and alternative poly(A)-site. Using the KlCYC1 gene of the yeast Kluyveromyces lactis, which includes a single promoter and two poly(A) sites separated by 394 nucleotides, we demonstrate in two yeast species the formation of alternative gene loops (L1 and L2) that juxtapose the KlCYC1 promoter with either proximal or distal 3'-end processing sites, resulting in the synthesis of short and long forms of KlCYC1 mRNA. Furthermore, synthesis of short and long mRNAs and formation of the L1 and L2 loops are growth phase-dependent. Chromatin immunoprecipitation experiments revealed that the Ssu72 RNA polymerase II carboxyl-terminal domain phosphatase, a critical determinant of looping, peaks in early log phase at the proximal poly(A) site, but as growth phase advances, it extends to the distal site. These results define a cause-and-effect relationship between gene loops and alternative poly(A) site selection that responds to different physiological signals manifested by RNA polymerase II carboxyl-terminal domain phosphorylation status. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
PolyQ repeat expansions in ATXN2 associated with ALS are CAA interrupted repeats.
Yu, Zhenming; Zhu, Yongqing; Chen-Plotkin, Alice S; Clay-Falcone, Dana; McCluskey, Leo; Elman, Lauren; Kalb, Robert G; Trojanowski, John Q; Lee, Virginia M-Y; Van Deerlin, Vivianna M; Gitler, Aaron D; Bonini, Nancy M
2011-03-29
Amyotrophic lateral sclerosis (ALS) is a devastating, rapidly progressive disease leading to paralysis and death. Recently, intermediate length polyglutamine (polyQ) repeats of 27-33 in ATAXIN-2 (ATXN2), encoding the ATXN2 protein, were found to increase risk for ALS. In ATXN2, polyQ expansions of ≥ 34, which are pure CAG repeat expansions, cause spinocerebellar ataxia type 2. However, similar length expansions that are interrupted with other codons, can present atypically with parkinsonism, suggesting that configuration of the repeat sequence plays an important role in disease manifestation in ATXN2 polyQ expansion diseases. Here we determined whether the expansions in ATXN2 associated with ALS were pure or interrupted CAG repeats, and defined single nucleotide polymorphisms (SNPs) rs695871 and rs695872 in exon 1 of the gene, to assess haplotype association. We found that the expanded repeat alleles of 40 ALS patients and 9 long-repeat length controls were all interrupted, bearing 1-3 CAA codons within the CAG repeat. 21/21 expanded ALS chromosomes with 3CAA interruptions arose from one haplotype (GT), while 18/19 expanded ALS chromosomes with <3CAA interruptions arose from a different haplotype (CC). Moreover, age of disease onset was significantly earlier in patients bearing 3 interruptions vs fewer, and was distinct between haplotypes. These results indicate that CAG repeat expansions in ATXN2 associated with ALS are uniformly interrupted repeats and that the nature of the repeat sequence and haplotype, as well as length of polyQ repeat, may play a role in the neurological effect conferred by expansions in ATXN2.
Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes.
Trapani, J A; Klein, J L; White, P C; Dupont, B
1988-01-01
A cDNA clone encoding a human serine esterase gene was isolated from a library constructed from poly(A)+ RNA of allogeneically stimulated, interleukin 2-expanded peripheral blood mononuclear cells. The clone, designated HSE26.1, represents a full-length copy of a 0.9-kilobase mRNA present in human cytotoxic cells but absent from a wide variety of noncytotoxic cell lines. Clone HSE26.1 contains an 892-base-pair sequence, including a single 741-base-pair open reading frame encoding a putative 247-residue polypeptide. The first 20 amino acids of the polypeptide form a leader sequence. The mature protein is predicted to have an unglycosylated Mr of approximately equal to 26,000 and contains a single potential site for N-linked glycosylation. The nucleotide and predicted amino acid sequences of clone HSE26.1 are homologous with all murine and human serine esterases cloned thus far but are most similar to mouse granzyme B (70% nucleotide and 68% amino acid identity). HSE26.1 protein is expressed weakly in unstimulated peripheral blood mononuclear cells but is strongly induced within 6-hr incubation in medium containing phytohemagglutinin. The data suggest that the protein encoded by HSE26.1 plays a role in cell-mediated cytotoxicity. Images PMID:3261871
Comprehensive Search for Alzheimer Disease Susceptibility Loci in the APOE Region
Jun, Gyungah; Vardarajan, Badri N.; Buros, Jacqueline; Yu, Chang-En; Hawk, Michele V.; Dombroski, Beth A.; Crane, Paul K.; Larson, Eric B.; Mayeux, Richard; Haines, Jonathan L.; Lunetta, Kathryn L.; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Farrer, Lindsay A.
2013-01-01
Objective To evaluate the association of risk and age at onset (AAO) of Alzheimer disease (AD) with single-nucleotide polymorphisms (SNPs) in the chromosome 19 region including apolipoprotein E (APOE) and a repeat-length polymorphism in TOMM40 (poly-T, rs10524523). Design Conditional logistic regression models and survival analysis. Setting Fifteen genome-wide association study data sets assembled by the Alzheimer's Disease Genetics Consortium. Participants Eleven thousand eight hundred forty AD cases and 10 931 cognitively normal elderly controls. Main Outcome Measures Association of AD risk and AAO with genotyped and imputed SNPs located in an 800-Mb region including APOE in the entire Alzheimer's Disease Genetics Consortium data set and with the TOMM40 poly-T marker genotyped in a subset of 1256 cases and 1605 controls. Results In models adjusting for APOE ε4, no SNPs in the entire region were significantly associated with AAO at P<.001. Rs10524523 was not significantly associated with AD or AAO in models adjusting for APOE genotype or within the subset of ε3/ε3 subjects. Conclusions APOE alleles ε2, ε3, and ε4 account for essentially all the inherited risk of AD associated with this region. Other variants including a poly-T track in TOMM40 are not independent risk or AAO loci. PMID:22869155
Time dependence of triplet--singlet excitation transfer from compact poly rA to bound dye at 77 k
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearlstein, R.M.; Nostrand, F.V.; Nairn, J.A.
1979-04-01
The nonexponential phosphorescence decay of a highly folded form of polyriboadenylic acid (poly rA) with noncovalently bound dye is explained by a novel application of a well-known theory of electronic excitation transfer based on the Forster mechanism. This theory, originally used to describe singlet-singlet energy transfer from donor molecules to an acceptor in a solution, is here applied to the transfer of triplet excitation from the adenine (in poly rA) to the singlet manifold of either of the bound dyes, ethidium bromide or proflavine. New experimental data are presented that allow straight-forward theoretical interpretation. These data fit the form predictedmore » by the theory, U(t)exp(-Bt/sup 1/2/), where U(t) is the decay of the poly rA phosphorescence in the absence of dye, for a range of relative concentrations of either dye. The self-consistency of these theoretical fits is demonstrated by the proportionality of B to the square root of the Forster triplet-singlet overlap integrals for transfer from poly rA to each of the dyes, as demanded by the theory. From these self-consistent values of B, the theory enables one to deduce the mean packing density of nucleotides in this folded poly rA, which we estimate to be approx. 1 nm/sup -3/. We conclude that some variation of the method described here may be useful for deducing packing densities of nucleotides in other compact nucleic acid structures.« less
Mandl, C W; Holzmann, H; Meixner, T; Rauscher, S; Stadler, P F; Allison, S L; Heinz, F X
1998-03-01
The flavivirus genome is a positive-strand RNA molecule containing a single long open reading frame flanked by noncoding regions (NCR) that mediate crucial processes of the viral life cycle. The 3' NCR of tick-borne encephalitis (TBE) virus can be divided into a variable region that is highly heterogeneous in length among strains of TBE virus and in certain cases includes an internal poly(A) tract and a 3'-terminal conserved core element that is believed to fold as a whole into a well-defined secondary structure. We have now investigated the genetic stability of the TBE virus 3' NCR and its influence on viral growth properties and virulence. We observed spontaneous deletions in the variable region during growth of TBE virus in cell culture and in mice. These deletions varied in size and location but always included the internal poly(A) element of the TBE virus 3' NCR and never extended into the conserved 3'-terminal core element. Subsequently, we constructed specific deletion mutants by using infectious cDNA clones with the entire variable region and increasing segments of the core element removed. A virus mutant lacking the entire variable region was indistinguishable from wild-type virus with respect to cell culture growth properties and virulence in the mouse model. In contrast, even small extensions of the deletion into the core element led to significant biological effects. Deletions extending to nucleotides 10826, 10847, and 10870 caused distinct attenuation in mice without measurable reduction of cell culture growth properties, which, however, were significantly restricted when the deletion was extended to nucleotide 10919. An even larger deletion (to nucleotide 10994) abolished viral viability. In spite of their high degree of attenuation, these mutants efficiently induced protective immune responses even at low inoculation doses. Thus, 3'-NCR deletions represent a useful technique for achieving stable attenuation of flaviviruses that can be included in the rational design of novel flavivirus live vaccines.
King, Brenee S.; Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G.
2012-01-01
Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts. PMID:23038248
Next-Generation Molecular Testing of Newborn Dried Blood Spots for Cystic Fibrosis.
Lefterova, Martina I; Shen, Peidong; Odegaard, Justin I; Fung, Eula; Chiang, Tsoyu; Peng, Gang; Davis, Ronald W; Wang, Wenyi; Kharrazi, Martin; Schrijver, Iris; Scharfe, Curt
2016-03-01
Newborn screening for cystic fibrosis enables early detection and management of this debilitating genetic disease. Implementing comprehensive CFTR analysis using Sanger sequencing as a component of confirmatory testing of all screen-positive newborns has remained impractical due to relatively lengthy turnaround times and high cost. Here, we describe CFseq, a highly sensitive, specific, rapid (<3 days), and cost-effective assay for comprehensive CFTR gene analysis from dried blood spots, the common newborn screening specimen. The unique design of CFseq integrates optimized dried blood spot sample processing, a novel multiplex amplification method from as little as 1 ng of genomic DNA, and multiplex next-generation sequencing of 96 samples in a single run to detect all relevant CFTR mutation types. Sequence data analysis utilizes publicly available software supplemented by an expert-curated compendium of >2000 CFTR variants. Validation studies across 190 dried blood spots demonstrated 100% sensitivity and a positive predictive value of 100% for single-nucleotide variants and insertions and deletions and complete concordance across the polymorphic poly-TG and consecutive poly-T tracts. Additionally, we accurately detected both a known exon 2,3 deletion and a previously undetected exon 22,23 deletion. CFseq is thus able to replace all existing CFTR molecular assays with a single robust, definitive assay at significant cost and time savings and could be adapted to high-throughput screening of other inherited conditions. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Shi, Chunshan; Yu, Haiyang; Sun, Dejun; Ma, Lili; Tang, Zhaohui; Xiao, Qiusheng; Chen, Xuesi
2015-05-01
Cisplatin-loaded poly(l-glutamic acid)-g-methoxy poly(ethylene glycol 5K) nanoparticles (CDDP-NPs) were characterized and exploited for the treatment of non-small cell lung carcinoma (NSCLC). In vitro metabolism experiments showed that a glutamic acid 5-mPEG ester [CH3O(CH2CH2O)nGlu] was generated when the poly(l-glutamic acid)-g-methoxy poly(ethylene glycol 5K) (PLG-g-mPEG5K) was incubated with HeLa cells. This suggests that the poly(glutamic acid) backbone of the PLG-g-mPEG5K is biodegradable. Furthermore, the size of the CDDP-NPs in an aqueous solution was affected by varying the pH (5.0-8.0) and their degradation rate was dependent on temperature. The CDDP-NPs could also bind to the model nucleotide 2'-deoxyguanosine 5'-monophosphate, indicating a biological activity similar to cisplatin. The CDDP-NPs showed a significantly lower peak renal platinum concentration after a single systemic administration when compared to free cisplatin. In vivo experiments with a Lewis lung carcinoma (LLC) model showed that the CDDP-NPs suppressed the growth of tumors. In addition, LLC tumor-bearing mice treated with the CDDP-NPs (5mg/kg cisplatin eq.) showed much longer survival rates (median survival time: 51days) as compared with mice treated with free cisplatin (median survival time: 18days), due to the acceptable antitumor efficacy and low systemic toxicity of CDDP-NPs. These results suggest that the CDDP-NPs may be successfully applied to the treatment of NSCLC. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Binding constants of phenylalanine for the four mononucleotides
NASA Technical Reports Server (NTRS)
Khaled, M. A.; Mullins, D. W., Jr.; Lacey, J. C., Jr.
1984-01-01
Earlier work has shown that several properties of amino acids correlate directly with properties of their anticodonic nucleotides. Furthermore, in precipitation studies with thermal proteinoids and homopolyribonucleotides, an anticodonic preference was displayed between Lys-rich, Pro-rich and Gly-rich thermal proteinoids and their anticodonic polyribonucleotides. However, Phe-rich thermal proteinoid displayed a preference for its codonic nucleotide, poly U. This inconsistency seemed to be explained by a folding in of the hydrophobic residues of Phe causing the proteinoid to appear more hydrophilic. The present work used nuclear magnetic resonance techniques to resolve a limited question: to which of the four nucleotides does Phe bind most strongly? The results show quite clearly that Phe binds most strongly to its anticodonic nucleotide, AMP.
Nucleotide sequence of Hungarian grapevine chrome mosaic nepovirus RNA1.
Le Gall, O; Candresse, T; Brault, V; Dunez, J
1989-01-01
The nucleotide sequence of the RNA1 of hungarian grapevine chrome mosaic virus, a nepovirus very closely related to tomato black ring virus, has been determined from cDNA clones. It is 7212 nucleotides in length excluding the 3' terminal poly(A) tail and contains a large open reading frame extending from nucleotides 216 to 6971. The presumably encoded polyprotein is 2252 amino acids in length with a molecular weight of 250 kDa. The primary structure of the polyprotein was compared with that of other viral polyproteins, revealing the same general genetic organization as that of other picorna-like viruses (comoviruses, potyviruses and picornaviruses), except that an additional protein is suspected to occupy the N-terminus of the polyprotein. PMID:2798128
Diekmann, Kerstin; Hodkinson, Trevor R.; Barth, Susanne
2012-01-01
Background and Aims Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne ‘Cashel’. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Methods Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. Key Results All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A8 mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. Conclusions The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species. PMID:22419761
Diekmann, Kerstin; Hodkinson, Trevor R; Barth, Susanne
2012-11-01
Lolium perenne (perennial ryegrass) is the most important forage grass species of temperate regions. We have previously released the chloroplast genome sequence of L. perenne 'Cashel'. Here nine chloroplast microsatellite markers are published, which were designed based on knowledge about genetically variable regions within the L. perenne chloroplast genome. These markers were successfully used for characterizing the genetic diversity in Lolium and different grass species. Chloroplast genomes of 14 Poaceae taxa were screened for mononucleotide microsatellite repeat regions and primers designed for their amplification from nine loci. The potential of these markers to assess genetic diversity was evaluated on a set of 16 Irish and 15 European L. perenne ecotypes, nine L. perenne cultivars, other Lolium taxa and other grass species. All analysed Poaceae chloroplast genomes contained more than 200 mononucleotide repeats (chloroplast simple sequence repeats, cpSSRs) of at least 7 bp in length, concentrated mainly in the large single copy region of the genome. Nucleotide composition varied considerably among subfamilies (with Pooideae biased towards poly A repeats). The nine new markers distinguish L. perenne from all non-Lolium taxa. TeaCpSSR28 was able to distinguish between all Lolium species and Lolium multiflorum due to an elongation of an A(8) mononucleotide repeat in L. multiflorum. TeaCpSSR31 detected a considerable degree of microsatellite length variation and single nucleotide polymorphism. TeaCpSSR27 revealed variation within some L. perenne accessions due to a 44-bp indel and was hence readily detected by simple agarose gel electrophoresis. Smaller insertion/deletion events or single nucleotide polymorphisms detected by these new markers could be visualized by polyacrylamide gel electrophoresis or DNA sequencing, respectively. The new markers are a valuable tool for plant breeding companies, seed testing agencies and the wider scientific community due to their ability to monitor genetic diversity within breeding pools, to trace maternal inheritance and to distinguish closely related species.
Kishi, H; Mukai, T; Hirono, A; Fujii, H; Miwa, S; Hori, K
1987-01-01
Fructose-1,6-bisphosphate aldolase A (fructose-bisphosphate aldolase; EC 4.1.2.13) deficiency is an autosomal recessive disorder associated with hereditary hemolytic anemia. To clarify the molecular mechanism of the deficiency at the nucleotide level, we have cloned aldolase A cDNA from a patient's poly(A)+ RNA that was expressed in cultured lymphoblastoid cells. Nucleotide analysis of the patient's aldolase A cDNA showed a substitution of a single nucleotide (adenine to guanine) at position 386 in a coding region. As a result, the 128th amino acid, aspartic acid, was replaced with glycine (GAT to GGT). Furthermore, change of the second letter of the aspartic acid codon extinguished a F ok I restriction site (GGATG to GGGTG). Southern blot analysis of the genomic DNA showed the patient carried a homozygous mutation inherited from his parents. When compared with normal human aldolase A, the patient's enzyme from erythrocytes and from cultured lymphoblastoid cells was found to be highly thermolabile, suggesting that this mutation causes a functional defect of the enzyme. To further examine this possibility, the thermal stability of aldolase A of the patient and of a normal control, expressed in Escherichia coli using expression plasmids, was determined. The results of E. coli expression of the mutated aldolase A enzyme confirmed the thermolabile nature of the abnormal enzyme. The Asp-128 is conserved in aldolase A, B, and C of eukaryotes, including an insect, Drosophila, suggesting that the Asp-128 of the aldolase A protein is likely to be an amino acid residue with a crucial role in maintaining the correct spatial structure or in performing the catalytic function of the enzyme. Images PMID:2825199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paule Roth, M.; Malfroy, L.; Offer, C.
1995-07-20
Human myelin oligodendrocyte glycoprotein (MOG), a myelin component of the central nervous system, is a candidate target antigen for autoimmune-mediated demyelination. We have isolated and sequenced part of a cosmid clone that contains the entire human MOG gene. The primary nuclear transcript, extending from the putative start of transcription to the site of poly(A) addition, is 15,561 nucleotides in length. The human MOG gene contains 8 exons, separated by 7 introns; canonical intron/exon boundary sites are observed at each junction. The introns vary in size from 242 to 6484 bp and contain numerous repetitive DNA elements, including 14 Alu sequencesmore » within 3 introns. Another Alu element is located in the 3{prime}-untranslated region of the gene. Alu sequences were classified with respect to subfamily assignment. Seven hundred sixty-three nucleotides 5{prime} of the transcription start and 1214 nucleotides 3{prime} of the poly(A) addition sites were also sequenced. The 5{prime}-flanking region revealed the presence of several consensus sequences that could be relevant in the transcription of the MOG gene, in particular binding sites in common with other myelin gene promoters. Two polymorphic intragenic dinucleotide (CA){sub n} and tetranucleotide (TAAA){sub n} repeats were identified and may provide genetic marker tools for association and linkage studies. 50 refs., 3 figs., 3 tabs.« less
Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.
Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto
2015-10-01
CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.
Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant
2017-11-28
Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.
Complexes of oligo(poly)nucleotides with structural anomalies
NASA Astrophysics Data System (ADS)
Dolinnaya, N. G.; Gryaznova, O. I.
1989-08-01
The results of studies on the structure and properties of DNA-RNA hybrids and complexes of oligo(poly)nucleotides containing non-canonical base pairs or unpaired bases both within and at the ends of the double helix are surveyed. The methods used in the study of such systems are briefly characterised: X-ray diffraction analysis, NMR and UV spectroscopy, circular dichroism, scanning microcalorimetry, etc. A comparative analysis of the influence of the non-canonical pairs on the structure and the energetic and kinetic parameters of the formation and dissociation of the oligonucleotide complexes has been carried out. The question of the stability of the non-canonical pairs as a function of their nature and position in the double helix is considered. The mechanisms of the formation of the hydrogen bonds between the bases of non-complementary pairs are discussed. The bibliography includes 171 references.
Interaction of thionine with triple-, double-, and single-stranded RNAs.
Lozano, Héctor J; García, Begoña; Busto, Natalia; Leal, José M
2013-01-10
The interaction of thionine with triple, double, and single RNA helices has been fully characterized by thermodynamic and kinetic methods. The nature of the interaction of thionine with the synthetic polynucleotides poly(rU), poly(rA)·poly(rU), and poly(rA)·2poly(rU) has been studied at pH = 7.0 and 25 °C by UV absorbance, fluorescence, circular dichroism spectroscopy, viscometry, differential scanning calorimetry, and T-jump kinetic measurements. The results show that at I = 0.1 M thionine binds to a single poly(rU) strand, destabilizes the poly(rA)·2poly(rU) triplex by external binding, and intercalates into poly(rA)·poly(rU) with similar affinity to the thionine/DNA intercalated complex (Paul, P.; Kumar, G. S. J. Fluoresc. 2012, 22, 71-80). On the other hand, the differential scanning calorimetry measurements performed with thionine display a point in which the heat capacity remains unaltered, revealing the equilibrium of isothermal denaturation: thionine/poly(rA)·2poly(rU) + thionine ⇌ thionine/poly(rA)·poly(rU) + thionine/poly(rU), an outcome supported by the other techniques used. The denaturation equilibrium constant, K(D) (25 °C) = 522 M(-1), was evaluated from the affinity with the single, duplex, and triplex RNA.
Kuhn, Josef; Tengler, Ulrike; Binder, Stefan
2001-01-01
To determine the influence of posttranscriptional modifications on 3′ end processing and RNA stability in plant mitochondria, pea atp9 and Oenothera atp1 transcripts were investigated for the presence and function of 3′ nonencoded nucleotides. A 3′ rapid amplification of cDNA ends approach initiated at oligo(dT)-adapter primers finds the expected poly(A) tails predominantly attached within the second stem or downstream of the double stem-loop structures at sites of previously mapped 3′ ends. Functional studies in a pea mitochondrial in vitro processing system reveal a rapid removal of the poly(A) tails up to termini at the stem-loop structure but little if any influence on further degradation of the RNA. In contrast 3′ poly(A) tracts at RNAs without such stem-loop structures significantly promote total degradation in vitro. To determine the in vivo identity of 3′ nonencoded nucleotides more accurately, pea atp9 transcripts were analyzed by a direct anchor primer ligation-reverse transcriptase PCR approach. This analysis identified maximally 3-nucleotide-long nonencoded extensions most frequently of adenosines combined with cytidines. Processing assays with substrates containing homopolymer stretches of different lengths showed that 10 or more adenosines accelerate RNA processivity, while 3 adenosines have no impact on RNA life span. Thus polyadenylation can generally stimulate the decay of RNAs, but processivity of degradation is almost annihilated by the stabilizing effect of the stem-loop structures. These antagonistic actions thus result in the efficient formation of 3′ processed and stable transcripts. PMID:11154261
Muñoz, Iciar; Sepulcre, María Pilar; Meseguer, José; Mulero, Victoriano
2014-05-01
TLR22 is a fish-specific TLR that recognizes dsRNAs. In the present study, a TLR22 homologue gene from gilthead seabream (sbTLR22) was identified and characterized. The full coding sequence contained a single open-reading frame of 2895 nucleotides encoding a predicted protein of 964 amino acids in length. Its 3'-UTR was relatively long, 1380 nucleotides, and contained three AU-rich sequences frequently associated with mRNA instability. Functional studies showed that the sbTLR22 transcript had a short half-life, although the three AU-rich sequences in its 3'-UTR did not seem to be related with this fact. The sbTLR22 was highly expressed in the spleen, thymus and gills of healthy fish. After Vibrio anguillarum infection, the mRNA levels of sbTLR22 increased greatly in head kidney, blood and peritoneal exudate, but were only moderately induced in spleen and liver, suggesting the involvement of sbTLR22 in the immune response against bacterial infections. In addition, acidophilic granulocytes and macrophages, both considered professional phagocytes in seabream, displayed cell-type-specific sbTLR22 expression profiles when stimulated with different pathogen-associated molecular patterns (PAMPs). Although acidophilic granulocytes expressed sbTLR22, polyinosinic:polycytidylic acid (poly I:C) was unable to up-regulate the expression of this receptor. In contrast, poly I:C induced the expression of sbTLR22 in macrophages, in a process that was partially endosome-dependent. Taken together, our results suggest that sbTLR22 is involved in bacterial infection and might sense bacterial PAMPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
The specificity and flexibility of l1 reverse transcription priming at imperfect T-tracts.
Monot, Clément; Kuciak, Monika; Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël
2013-05-01
L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5'-TTTT/A-3' sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether--and to which degree--the liberated 3'-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3' end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3' overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3' end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome.
Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.
Wood-Bouwens, Christina M; Ji, Hanlee P
2018-01-01
Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.
Poly(ADP-ribosyl)ation is recognized by ECT2 during mitosis.
Li, Mo; Bian, Chunjing; Yu, Xiaochun
2014-01-01
Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.
Surface properties of atomically flat poly-crystalline SrTiO3
Woo, Sungmin; Jeong, Hoidong; Lee, Sang A.; Seo, Hosung; Lacotte, Morgane; David, Adrian; Kim, Hyun You; Prellier, Wilfrid; Kim, Yunseok; Choi, Woo Seok
2015-01-01
Comparison between single- and the poly-crystalline structures provides essential information on the role of long-range translational symmetry and grain boundaries. In particular, by comparing single- and poly-crystalline transition metal oxides (TMOs), one can study intriguing physical phenomena such as electronic and ionic conduction at the grain boundaries, phonon propagation, and various domain properties. In order to make an accurate comparison, however, both single- and poly-crystalline samples should have the same quality, e.g., stoichiometry, crystallinity, thickness, etc. Here, by studying the surface properties of atomically flat poly-crystalline SrTiO3 (STO), we propose an approach to simultaneously fabricate both single- and poly-crystalline epitaxial TMO thin films on STO substrates. In order to grow TMOs epitaxially with atomic precision, an atomically flat, single-terminated surface of the substrate is a prerequisite. We first examined (100), (110), and (111) oriented single-crystalline STO surfaces, which required different annealing conditions to achieve atomically flat surfaces, depending on the surface energy. A poly-crystalline STO surface was then prepared at the optimum condition for which all the domains with different crystallographic orientations could be successfully flattened. Based on our atomically flat poly-crystalline STO substrates, we envision expansion of the studies regarding the TMO domains and grain boundaries. PMID:25744275
Genotyping-by-sequencing enables linkage mapping in three octoploid cultivated strawberry families
Salinas, Natalia; Tennessen, Jacob A.; Zurn, Jason D.; Sargent, Daniel James; Hancock, James; Bassil, Nahla V.
2017-01-01
Genotyping-by-sequencing (GBS) was used to survey genome-wide single-nucleotide polymorphisms (SNPs) in three biparental strawberry (Fragaria × ananassa) populations with the goal of evaluating this technique in a species with a complex octoploid genome. GBS sequence data were aligned to the F. vesca ‘Fvb’ reference genome in order to call SNPs. Numbers of polymorphic SNPs per population ranged from 1,163 to 3,190. Linkage maps consisting of 30–65 linkage groups were produced from the SNP sets derived from each parent. The linkage groups covered 99% of the Fvb reference genome, with three to seven linkage groups from a given parent aligned to any particular chromosome. A phylogenetic analysis performed using the POLiMAPS pipeline revealed linkage groups that were most similar to ancestral species F. vesca for each chromosome. Linkage groups that were most similar to a second ancestral species, F. iinumae, were only resolved for Fvb 4. The quantity of missing data and heterogeneity in genome coverage inherent in GBS complicated the analysis, but POLiMAPS resolved F. × ananassa chromosomal regions derived from diploid ancestor F. vesca. PMID:28875078
Wang, Haiyan; Zhu, Libang; Duan, Junling; Wang, Minghui; Yin, Huanshun; Wang, Po; Ai, Shiyun
2018-04-30
2'-O-methyl group on the 3' terminal nucleotide in plant microRNAs, as one kind of RNA methylations, is caused by HEN1 RNA methyltransferase (HENMT1), which is thought to be crucial for ribosome biogenesis and function. Herein, a simple and label-free PEC biosensing method was proposed for assay of HENMT1 activity and inhibitor screening based on peroxidase mimic PtCu nanoframes (PtCu NFs) catalytic signal amplification. In this work, MoS 2 @Graphene quantum dots/Phosphorus-doped rodlike carbon nitride (MoS 2 @GQDs/P-RCN) heterojunction was used as photoactive materials. With the doping of GQDs and the formation of heterojunction, the photoactivity of MoS 2 is greatly improved. After the double-stranded RNA (dsRNA) with 2 nt 3' overhangs was treated with HENMT1 in the presence of S-adenosyl-L-methionine, the 3' terminal nucleotide of the unmethylated dsRNA could be extended under the catalysis of the poly(U) polymerase in the existence of UTP. Poly(A) nucleotide chain modified with carboxyl group was captured on the electrode surface through hybridization reaction and acted as a bridge for the immobilization of reticular DNA-functionalized PtCu NFs (PtCu@DNA). Under the catalysis effect of peroxidase mimics PtCu@DNA towards hydrogen peroxide, O 2- was in situ generated as electron donor and a strong photocurrent was obtained. The proposed PEC bioassay exhibited high selectivity and low detection limit of 3.36ng/mL for HENMT1 activity assay. Furthermore, the inhibition research indicated that chlorpyrifos could inhibit the HENMT1 activity with the IC 50 value of 48.32nM. Copyright © 2017 Elsevier B.V. All rights reserved.
Ye, Fang; Jiang, Jin; Chang, Honglong; Xie, Li; Deng, Jinjun; Ma, Zhibo; Yuan, Weizheng
2015-07-01
Cell studies at the single-cell level are becoming more and more critical for understanding the complex biological processes. Here, we present an optimization study investigating the positioning of single cells using micromolding in capillaries technology coupled with the cytophobic biomaterial poly (2-hydroxyethyl methacrylate) (poly (HEMA)). As a cytophobic biomaterial, poly (HEMA) was used to inhibit cells, whereas the glass was used as the substrate to provide a cell adhesive background. The poly (HEMA) chemical barrier was obtained using micromolding in capillaries, and the microchannel networks used for capillarity were easily achieved by reversibly bonding the polydimethylsiloxane mold and the glass. Finally, discrete cell adhesion regions were presented on the glass surface. This method is facile and low cost, and the reagents are commercially available. We validated the cytophobic abilities of the poly (HEMA), optimized the channel parameters for higher quality and more stable poly (HEMA) patterns by investigating the effects of changing the aspect ratio and the width of the microchannel on the poly (HEMA) grid pattern, and improved the single-cell occupancy by optimizing the dimensions of the cell adhesion regions.
Knecht, Carolin; Mort, Matthew; Junge, Olaf; Cooper, David N.; Krawczak, Michael
2017-01-01
Abstract The in silico prediction of the functional consequences of mutations is an important goal of human pathogenetics. However, bioinformatic tools that classify mutations according to their functionality employ different algorithms so that predictions may vary markedly between tools. We therefore integrated nine popular prediction tools (PolyPhen-2, SNPs&GO, MutPred, SIFT, MutationTaster2, Mutation Assessor and FATHMM as well as conservation-based Grantham Score and PhyloP) into a single predictor. The optimal combination of these tools was selected by means of a wide range of statistical modeling techniques, drawing upon 10 029 disease-causing single nucleotide variants (SNVs) from Human Gene Mutation Database and 10 002 putatively ‘benign’ non-synonymous SNVs from UCSC. Predictive performance was found to be markedly improved by model-based integration, whilst maximum predictive capability was obtained with either random forest, decision tree or logistic regression analysis. A combination of PolyPhen-2, SNPs&GO, MutPred, MutationTaster2 and FATHMM was found to perform as well as all tools combined. Comparison of our approach with other integrative approaches such as Condel, CoVEC, CAROL, CADD, MetaSVM and MetaLR using an independent validation dataset, revealed the superiority of our newly proposed integrative approach. An online implementation of this approach, IMHOTEP (‘Integrating Molecular Heuristics and Other Tools for Effect Prediction’), is provided at http://www.uni-kiel.de/medinfo/cgi-bin/predictor/. PMID:28180317
Detection of a divergent variant of grapevine virus F by next-generation sequencing.
Molenaar, Nicholas; Burger, Johan T; Maree, Hans J
2015-08-01
The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).
Dashkevich, V S; Vishnivetskiĭ, S N; Skobel'tsina, L M; Luk'ianchikova, N L; Kaledin, V I
1986-12-01
Cortisol and 3'-methyl-4-dimethyl-amino-azobenzene induce an increase in the content of repeated sequences (RS) in transcriptionally active (TA) DNA, while the content of respective RS in potentially active DNA fractions enriched with regulatory regions of the genome decreases. RS content in induced poly A+-mRNA also rises, as determined by the nature of hybridization of respective c DNA with total DNA. The translation of induced poly A+-mRNA rises essentially, with the qualitative distinctions in in vitro synthesized protein product spectrum being absent. Inducible RS with unstable chromatine conformation are thought to provide a universal system of rapid response of the genetic apparatus to extreme situations, serving as transcription intensifiers in TA DNA and as translation intensifiers in induced poly A+-mRNA.
Derivatized versions of ligase enzymes for constructing DNA sequences
Mariella, Jr., Raymond P.; Christian, Allen T [Tracy, CA; Tucker, James D [Novi, MN; Dzenitis, John M [Livermore, CA; Papavasiliou, Alexandros P [Oakland, CA
2006-08-15
A method of making very long, double-stranded synthetic poly-nucleotides. A multiplicity of short oligonucleotides is provided. The short oligonucleotides are sequentially hybridized to each other. Enzymatic ligation of the oligonucleotides provides a contiguous piece of PCR-ready DNA of predetermined sequence.
Robertson, Neil M; Hizir, Mustafa Salih; Balcioglu, Mustafa; Wang, Rui; Yavuz, Mustafa Selman; Yumak, Hasan; Ozturk, Birol; Sheng, Jia; Yigit, Mehmet V
2015-09-15
In this study we have reported our efforts to address some of the challenges in the detection of miRNAs using water-soluble graphene oxide and DNA nanoassemblies. Purposefully inserting mismatches at specific positions in our DNA (probe) strands shows increasing specificity against our target miRNA, miR-10b, over miR-10a which varies by only a single nucleotide. This increased specificity came at a loss of signal intensity within the system, but we demonstrated that this could be addressed with the use of DNase I, an endonuclease capable of cleaving the DNA strands of the RNA/DNA heteroduplex and recycling the RNA target to hybridize to another probe strand. As we previously demonstrated, this enzymatic signal also comes with an inherent activity of the enzyme on the surface-adsorbed probe strands. To remove this activity of DNase I and the steady nonspecific increase in the fluorescence signal without compromising the recovered signal, we attached a thermoresponsive PEGMA polymer (poly(ethylene glycol) methyl ether methacrylate) to nGO. This smart polymer is able to shield the probes adsorbed on the nGO surface from the DNase I activity and is capable of tuning the detection capacity of the nGO nanoassembly with a thermoswitch at 39 °C. By utilizing probes with multiple mismatches, DNase I cleavage of the DNA probe strands, and the attachment of PEGMA polymers to graphene oxide to block undesired DNase I activity, we were able to detect miR-10b from liquid biopsy mimics and breast cancer cell lines. Overall we have reported our efforts to improve the specificity, increase the sensitivity, and eliminate the undesired enzymatic activity of DNase I on surface-adsorbed probes for miR-10b detection using water-soluble graphene nanodevices. Even though we have demonstrated only the discrimination of miR-10b from miR-10a, our approach can be extended to other short RNA molecules which differ by a single nucleotide.
Molee, A.; Kongroi, K.; Kuadsantia, P.; Poompramun, C.; Likitdecharote, B.
2016-01-01
The aim of the present study was to investigate the effect of single nucleotide polymorphisms in the major histocompatibility complex (MHC) class II gene on resistance to Newcastle disease virus and body weight of the Thai indigenous chicken, Leung Hang Khao (Gallus gallus domesticus). Blood samples were collected for single nucleotide polymorphism analysis from 485 chickens. Polymerase chain reaction sequencing was used to classify single nucleotide polymorphisms of class II MHC. Body weights were measured at the ages of 3, 4, 5, and 7 months. Titres of Newcastle disease virus at 2 weeks to 7 months were determined and the correlation between body weight and titre was analysed. The association between single nucleotide polymorphisms and body weight and titre were analysed by a generalized linear model. Seven single nucleotide polymorphisms were identified: C125T, A126T, C209G, C242T, A243T, C244T, and A254T. Significant correlations between log titre and body weight were found at 2 and 4 weeks. Associations between single nucleotide polymorphisms and titre were found for C209G and A254T, and between all single nucleotide polymorphisms (except A243T) and body weight. The results showed that class II MHC is associated with both titre of Newcastle disease virus and body weight in Leung Hang Khao chickens. This is of concern because improved growth traits are the main goal of breeding selection. Moreover, the results suggested that MHC has a pleiotropic effect on the titre and growth performance. This mechanism should be investigated in a future study. PMID:26732325
Functional analysis of regulatory single-nucleotide polymorphisms.
Pampín, Sandra; Rodríguez-Rey, José C
2007-04-01
The identification of regulatory polymorphisms has become a key problem in human genetics. In the past few years there has been a conceptual change in the way in which regulatory single-nucleotide polymorphisms are studied. We revise the new approaches and discuss how gene expression studies can contribute to a better knowledge of the genetics of common diseases. New techniques for the association of single-nucleotide polymorphisms with changes in gene expression have been recently developed. This, together with a more comprehensive use of the old in-vitro methods, has produced a great amount of genetic information. When added to current databases, it will help to design better tools for the detection of regulatory single-nucleotide polymorphisms. The identification of functional regulatory single-nucleotide polymorphisms cannot be done by the simple inspection of DNA sequence. In-vivo techniques, based on primer-extension, and the more recently developed 'haploChIP' allow the association of gene variants to changes in gene expression. Gene expression analysis by conventional in-vitro techniques is the only way to identify the functional consequences of regulatory single-nucleotide polymorphisms. The amount of information produced in the last few years will help to refine the tools for the future analysis of regulatory gene variants.
/sup 2/H NMR demonstration of amino acid - nucleotide interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaled, M.A.; Watkins, C.L.; Lacey, J.C. Jr.
Deuterium (/sup 2/H) NMR was used to investigate the interaction of L-Phenylalanine (with aromatic protons replaced by deuterons (Phe-D/sub 5/)), with 5'-AMP and polyadenylic acid (poly A). A considerable change in line width of the aromatic deuteron signals of Phe was observed. These data were plotted using a Scatchard-type equation, and yielded apparent binding constants for L-Phe to 5'-AMP and poly A of 7 and 11 M/sup -1/, respectively. Future applications of /sup 2/H-NMR in the study of nucleic acid-protein interactions are discussed.
Wen, Jingran; Scoles, Daniel R.; Facelli, Julio C.
2017-01-01
Spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3) are two common autosomal-dominant inherited ataxia syndromes, both of which are related to the unstable expansion of tri-nucleotide CAG repeats in the coding region of the related ATXN2 and ATXN3 genes, respectively. The poly-glutamine (poly-Q) tract encoded by the CAG repeats has long been recognized as an important factor in disease pathogenesis and progress. In this study, using the I-TASSER method for 3D structure prediction, we investigated the effect of poly-Q tract enlargement on the structure and folding of ataxin-2 and ataxin-3 proteins. Our results show good agreement with the known experimental structures of the Josephin and UIM domains providing credence to the simulation results presented here, which show that the enlargement of the poly-Q region not only affects the local structure of these regions but also affects the structures of functional domains as well as the whole protein. The changes observed in the predicted models of the UIM domains in ataxin-3 when the poly-Q track is enlarged provide new insights on possible pathogenic mechanisms. PMID:26861241
21 CFR 177.1635 - Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Poly(p-methylstyrene) and rubber-modified poly(p... Components of Single and Repeated Use Food Contact Surfaces § 177.1635 Poly(p-methylstyrene) and rubber-modified poly(p-methyl-styrene). Poly(p-methylstyrene) and rubber-modified poly(p-methylstyrene) identified...
Inclán, Mario; Guijarro, Lluis; Pont, Isabel; Frías, Juan C; Rotger, Carmen; Orvay, Francisca; Costa, Antoni; García-España, Enrique; Albelda, M Teresa
2017-11-13
The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA-polyU, poly(dAT) 2 , and poly(dGC) 2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA-polyU and poly(dAT) 2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC) 2 with the ligand L induces a quenching of the fluorescence. Cu 2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
de Biase, Pablo M.; Ervin, Eric N.; Pal, Prithwish; Samoylova, Olga; Markosyan, Suren; Keehan, Michael G.; Barrall, Geoffrey A.; Noskov, Sergei Yu.
2016-06-01
The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C).The electrophoretic transport of single-stranded DNA through biological nanopores such as alpha-hemolysin (αHL) is a promising and cost-effective technology with the potential to revolutionize genomics. The rational design of pores with the controlled polymer translocation rates and high contrast between different nucleotides could improve significantly nanopore sequencing applications. Here, we apply a combination of theoretical and experimental methods in an attempt to elucidate several selective modifications in the pore which were proposed to be central for the effective discrimination between purines and pyrimidines. Our nanopore test set includes the wild type αHL and six mutants (E111N/M113X/K147N) in which the cross-section and chemical functionality of the first constriction zone of the pore are modified. Electrophysiological recordings were combined with all-atom Molecular Dynamics simulations (MD) and a recently developed Brownian Dynamics (BROMOC) protocol to investigate residual ion currents and pore-DNA interactions for two homo-polymers e.g. poly(dA)40 or poly(dC)40 blocking the pore. The calculated residual currents and contrast in the poly(dA)40/poly(dC)40 blocked pore are in qualitative agreement with the experimental recordings. We showed that a simple structural metric allows rationalization of key elements in the emergent contrast between purines and pyrimidines in the modified αHL mutants. The shape of the pore and its capacity for hydrogen bonding to a translocated polynucleotide are two essential parameters for contrast optimization. To further probe the impact of these two factors in the ssDNA sensing, we eliminated the effect of the primary constriction using serine substitutions (i.e. E111S/M113S/T145S/K147S) and increased the hydrophobic volume of the central residue in the secondary constriction (L135I). This pore modification sharply increased the contrast between Adenine (A) and Cytosine (C). Electronic supplementary information (ESI) available: Statistical data on correlation between experimental and predicted conductance, ion densities in open and blocked pores and data on solvent structuring in nanopores. See DOI: 10.1039/c6nr00164e
Kang, Xiaoyan; Kim, Ha-Jeong; Ramirez, Michelle; Salameh, Sarah; Ma, Xiaojing
2013-01-01
The biallelic Interleukin-10 single nucleotide polymorphism (SNP) at -1082 of the promoter region linked to individual variation in cytokine inducibility has been strongly implicated in several pathological conditions including the development of, and outcomes in, septic shock during pneumococcal infection, acute respiratory distress syndrome, and cardiac dysfunction. However, the molecular basis of the SNP-mediated variable IL-10 production levels has not been explored. Here we report that the -1082G>A alleles in the promoter region of the human IL-10 gene physically interact with a nuclear protein in an allele-specific manner that results in different levels of IL-10 transcription. This protein has been identified as poly ADP-ribose polymerase 1 (PARP-1). We show that PARP-1 acts as a transcription repressor, and its DNA-binding activity is strongly regulated in macrophages that engulf apoptotic cells but not stimulated with lippopolysaccharides. These findings unveil a novel role of PARP-1 in the regulation of IL-10 production in an allele-dependent way, which determines individual susceptibility to sepsis-induced inflammatory pathology and the immunological sequelae in a physiological process where clearance of infection-induced apoptotic cells by professional phagocytes triggers the cytokine synthesis. PMID:20181890
NASA Technical Reports Server (NTRS)
Kanavarioti, A.; Chang, S.; Alberas, D. J.
1990-01-01
Selected imidazolide-activated nucleotides have been subjected to hydrolysis under conditions similar to those that favor their template-directed oligomerization. Rate constants of hydrolysis of the P-N bond in guanosine 5'-monophosphate 2-methylimidazolide (2-MeImpG) and in guanosine 5'-monophosphate imidazolide (ImpG), kh, have been determined in the presence/absence of magnesium ion as a function of temperature and polycytidylate [poly(C)] concentration. Using the rate constant of hydrolysis of 2-MeImpG and the rate constant of elongation, i.e., the reaction of an oligoguanylate with 2-MeImpG in the presence of poly(C) acting as template, the limiting concentration of 2-MeImpG necessary for oligonucleotide elongation to compete with hydrolysis can be calculated. The limiting concentration is defined as the initial concentration of monomer that results in its equal consumption by hydrolysis and by elongation. These limiting concentrations of 2-MeImpG are found to be 1.7 mM at 37 degrees C and 0.36 mM at 1 degrees C. Boundary conditions in the form of limiting concentration of activated nucleotide may be used to evaluate a prebiotic model for chemical synthesis of biopolymers. For instance, the limiting concentration of monomer can be used as a basis of comparison among catalytic, but nonenzymatic, RNA-type systems. We also determined the rate constant of dimerization of 2-MeImpG, k2 = 0.45 +/- 0.06 M-1 h-1 in the absence of poly(C), and 0.45 +/- 0.06 less than or equal to k2 less than or equal to 0.97 +/- 0.13 M-1 h-1 in its presence at 37 degrees C and pH 7.95.(ABSTRACT TRUNCATED AT 250 WORDS).
Chen, Zhongxue; Ng, Hon Keung Tony; Li, Jing; Liu, Qingzhong; Huang, Hanwen
2017-04-01
In the past decade, hundreds of genome-wide association studies have been conducted to detect the significant single-nucleotide polymorphisms that are associated with certain diseases. However, most of the data from the X chromosome were not analyzed and only a few significant associated single-nucleotide polymorphisms from the X chromosome have been identified from genome-wide association studies. This is mainly due to the lack of powerful statistical tests. In this paper, we propose a novel statistical approach that combines the information of single-nucleotide polymorphisms on the X chromosome from both males and females in an efficient way. The proposed approach avoids the need of making strong assumptions about the underlying genetic models. Our proposed statistical test is a robust method that only makes the assumption that the risk allele is the same for both females and males if the single-nucleotide polymorphism is associated with the disease for both genders. Through simulation study and a real data application, we show that the proposed procedure is robust and have excellent performance compared to existing methods. We expect that many more associated single-nucleotide polymorphisms on the X chromosome will be identified if the proposed approach is applied to current available genome-wide association studies data.
USDA-ARS?s Scientific Manuscript database
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...
Complete genome sequence of yam chlorotic necrosis virus, a novel macluravirus infecting yam
USDA-ARS?s Scientific Manuscript database
Complete genomic sequence of a novel member of the genus Macluravirus was determined from yam plants with chlorotic and necrotic symptoms in China. The genomic RNA consists of 8,261 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing one long open reading frame (ORF) encoding a larg...
USDA-ARS?s Scientific Manuscript database
The complete genomic sequence of a novel putative member of the genus Potyvirus was detected from Callistephus chinensis (china aster) in South Korea. The genomic RNA consists of 9,859 nucleotides excluding the 3’ poly(A) tail. The Callistephus virus genome, which contains the typical open reading f...
Gorzkiewicz, Michał; Buczkowski, Adam; Appelhans, Dietmar; Voit, Brigitte; Pułaski, Łukasz; Pałecz, Bartłomiej; Klajnert-Maculewicz, Barbara
2018-06-10
Adenosine analogue drugs (such as fludarabine or cladribine) require transporter-mediated uptake into cells and subsequent phosphorylation for anticancer activity. Therefore, application of nanocarrier systems for direct delivery of active triphosphate forms has been proposed. Here, we applied isothermal titration calorimetry and zeta potential titration to determine the stoichiometry and thermodynamic parameters of interactions between 4th generation poly(propyleneimine) dendrimers (unmodified or sugar-modified for increased biocompatibility) and ATP as a model adenosine nucleotide. We showed that glycodendrimers have the ability to efficiently interact with nucleoside triphosphates and to form stable complexes via electrostatic interactions between the ionized phosphate and amino groups on the nucleotide and the dendrimer, respectively. The complexation process is spontaneous, enthalpy-driven and depends on buffer composition (strongest interactions in organic buffer) and pH (more binding sites in acidic pH). These properties allow us to consider maltose-modified dendrimers as especially promising carriers for adenosine analogues. Copyright © 2018 Elsevier B.V. All rights reserved.
Choudhry, Shweta; Baskin, Laurence S; Lammer, Edward J; Witte, John S; Dasgupta, Sudeshna; Ma, Chen; Surampalli, Abhilasha; Shen, Joel; Shaw, Gary M; Carmichael, Suzan L
2015-05-01
Estrogenic endocrine disruptors acting via estrogen receptors α (ESR1) and β (ESR2) have been implicated in the etiology of hypospadias, a common congenital malformation of the male external genitalia. We determined the association of single nucleotide polymorphisms in ESR1 and ESR2 genes with hypospadias in a racially/ethnically diverse study population of California births. We investigated the relationship between hypospadias and 108 ESR1 and 36 ESR2 single nucleotide polymorphisms in 647 cases and 877 population based nonmalformed controls among infants born in selected California counties from 1990 to 2003. Subgroup analyses were performed by race/ethnicity (nonHispanic white and Hispanic subjects) and by hypospadias severity (mild to moderate and severe). Odds ratios for 33 of the 108 ESR1 single nucleotide polymorphisms had p values less than 0.05 (p = 0.05 to 0.007) for risk of hypospadias. However, none of the 36 ESR2 single nucleotide polymorphisms was significantly associated. In stratified analyses the association results were consistent by disease severity but different sets of single nucleotide polymorphisms were significantly associated with hypospadias in nonHispanic white and Hispanic subjects. Due to high linkage disequilibrium across the single nucleotide polymorphisms, haplotype analyses were conducted and identified 6 haplotype blocks in ESR1 gene that had haplotypes significantly associated with an increased risk of hypospadias (OR 1.3 to 1.8, p = 0.04 to 0.00001). Similar to single nucleotide polymorphism analysis, different ESR1 haplotypes were associated with risk of hypospadias in nonHispanic white and Hispanic subjects. No significant haplotype association was observed for ESR2. The data provide evidence that ESR1 single nucleotide polymorphisms and haplotypes influence the risk of hypospadias in white and Hispanic subjects, and warrant further examination in other study populations. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Control of total GFP expression by alterations to the 3′ region nucleotide sequence
2013-01-01
Background Previously, we distinguished the Escherichia coli type II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for unfolded and folded soluble target proteins. The translocation of folded protein to the periplasm for soluble expression via the Tat pathway was controlled by an N-terminal hydrophilic leader sequence. In this study, we investigated the effect of the hydrophilic C-terminal end and its nucleotide sequence on total and soluble protein expression. Results The native hydrophilic C-terminal end of GFP was obtained by deleting the C-terminal peptide LeuGlu-6×His, derived from pET22b(+). The corresponding clones induced total and soluble GFP expression that was either slightly increased or dramatically reduced, apparently through reconstruction of the nucleotide sequence around the stop codon in the 3′ region. In the expression-induced clones, the hydrophilic C-terminus showed increased Tat pathway specificity for soluble expression. However, in the expression-reduced clone, after analyzing the role of the 5′ poly(A) coding sequence with a substituted synonymous codon, we proved that the longer 5′ poly(A) coding sequence interacted with the reconstructed 3′ region nucleotide sequence to create a new mRNA tertiary structure between the 5′ and 3′ regions, which resulted in reduced total GFP expression. Further, to recover the reduced expression by changing the 3′ nucleotide sequence, after replacing selected C-terminal 5′ codons and the stop codon in the ORF with synonymous codons, total GFP expression in most of the clones was recovered to the undeleted control level. The insertion of trinucleotides after the stop codon in the 3′-UTR recovered or reduced total GFP expression. RT-PCR revealed that the level of total protein expression was controlled by changes in translational or transcriptional regulation, which were induced or reduced by the substitution or insertion of 3′ region nucleotides. Conclusions We found that the hydrophilic C-terminal end of GFP increased Tat pathway specificity and that the 3′ nucleotide sequence played an important role in total protein expression through translational and transcriptional regulation. These findings may be useful for efficiently producing recombinant proteins as well as for potentially controlling the expression level of specific genes in the body for therapeutic purposes. PMID:23834827
The Specificity and Flexibility of L1 Reverse Transcription Priming at Imperfect T-Tracts
Viollet, Sébastien; Mir, Ashfaq Ali; Gabus, Caroline; Darlix, Jean-Luc; Cristofari, Gaël
2013-01-01
L1 retrotransposons have a prominent role in reshaping mammalian genomes. To replicate, the L1 ribonucleoprotein particle (RNP) first uses its endonuclease (EN) to nick the genomic DNA. The newly generated DNA end is subsequently used as a primer to initiate reverse transcription within the L1 RNA poly(A) tail, a process known as target-primed reverse transcription (TPRT). Prior studies demonstrated that most L1 insertions occur into sequences related to the L1 EN consensus sequence (degenerate 5′-TTTT/A-3′ sites) and frequently preceded by imperfect T-tracts. However, it is currently unclear whether—and to which degree—the liberated 3′-hydroxyl extremity on the genomic DNA needs to be accessible and complementary to the poly(A) tail of the L1 RNA for efficient priming of reverse transcription. Here, we employed a direct assay for the initiation of L1 reverse transcription to define the molecular rules that guide this process. First, efficient priming is detected with as few as 4 matching nucleotides at the primer 3′ end. Second, L1 RNP can tolerate terminal mismatches if they are compensated within the 10 last bases of the primer by an increased number of matching nucleotides. All terminal mismatches are not equally detrimental to DNA extension, a C being extended at higher levels than an A or a G. Third, efficient priming in the context of duplex DNA requires a 3′ overhang. This suggests the possible existence of additional DNA processing steps, which generate a single-stranded 3′ end to allow L1 reverse transcription. Based on these data we propose that the specificity of L1 reverse transcription initiation contributes, together with the specificity of the initial EN cleavage, to the distribution of new L1 insertions within the human genome. PMID:23675310
Compositions and methods for detecting single nucleotide polymorphisms
Yeh, Hsin-Chih; Werner, James; Martinez, Jennifer S.
2016-11-22
Described herein are nucleic acid based probes and methods for discriminating and detecting single nucleotide variants in nucleic acid molecules (e.g., DNA). The methods include use of a pair of probes can be used to detect and identify polymorphisms, for example single nucleotide polymorphism in DNA. The pair of probes emit a different fluorescent wavelength of light depending on the association and alignment of the probes when hybridized to a target nucleic acid molecule. Each pair of probes is capable of discriminating at least two different nucleic acid molecules that differ by at least a single nucleotide difference. The methods can probes can be used, for example, for detection of DNA polymorphisms that are indicative of a particular disease or condition.
Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi
2017-01-01
Background: Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. Aims: To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Study Design: Case-control study. Methods: The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Results: Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. Conclusion: The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients. PMID:28443596
Can, Ceren; Yazıcıoğlu, Mehtap; Gürkan, Hakan; Tozkır, Hilmi; Görgülü, Adnan; Süt, Necdet Hilmi
2017-05-05
Atopic dermatitis is the most common chronic inflammatory skin disease. A complex interaction of both genetic and environmental factors is thought to contribute to the disease. To evaluate whether single nucleotide polymorphisms in the TLR2 gene c.2258C>T (R753Q) (rs5743708) and TLR2 c.-148+1614T>A (A-16934T) (rs4696480) (NM_0032643) are associated with atopic dermatitis in Turkish children. Case-control study. The study was conducted on 70 Turkish children with atopic dermatitis aged 0.5-18 years. The clinical severity of atopic dermatitis was evaluated by the severity scoring of atopic dermatitis index. Serum total IgE levels, specific IgE antibodies to inhalant and food allergens were measured in both atopic dermatitis patients and controls, skin prick tests were done on 70 children with atopic dermatitis. Genotyping for TLR2 (R753Q and A-16934T) single nucleotide polymorphisms was performed in both atopic dermatitis patients and controls. Cytosine-cytosine and cytosin-thymine genotype frequencies of the TLR2 R753Q single nucleotide polymorphism in the atopic dermatitis group were determined as being 98.6% and 1.4%, cytosine allele frequency for TLR2 R753Q single nucleotide polymorphism was determined as 99.29% and the thymine allele frequency was 0.71%, thymine-thymine, thymine-adenine, and adenine-adenine genotype frequencies of the TLR2 A-16934T single nucleotide polymorphism were 24.3%, 44.3%, and 31.4%. The thymine allele frequency for the TLR2 A-16934T single nucleotide polymorphism in the atopic dermatitis group was 46.43%, and the adenine allele frequency was 53.57%, respectively. There was not statistically significant difference between the groups for all investigated polymorphisms (p>0.05). For all single nucleotide polymorphisms studied, allelic distribution was analogous among atopic dermatitis patients and controls, and no significant statistical difference was observed. No homozygous carriers of the TLR2 R753Q single nucleotide polymorphism were found in the atopic dermatitis and control groups. The TLR2 (R753Q and A-16934T) single nucleotide polymorphisms are not associated with atopic dermatitis in a group of Turkish patients.
Activation of HIV-1 pre-mRNA 3' processing in vitro requires both an upstream element and TAR.
Gilmartin, G M; Fleming, E S; Oetjen, J
1992-01-01
The architecture of the human immunodeficiency virus type 1 (HIV-1) genome presents an intriguing dilemma for the 3' processing of viral transcripts--to disregard a canonical 'core' poly(A) site processing signal present at the 5' end of the transcript and yet to utilize efficiently an identical signal that resides at the 3' end of the message. The choice of processing sites in HIV-1 appears to be influenced by two factors: (i) proximity to the cap site, and (ii) sequences upstream of the core poly(A) site. We now demonstrate that an in vivo-defined upstream element that resides within the U3 region, 76 nucleotides upstream of the AAUAAA hexamer, acts specifically to enhance 3' processing at the HIV-1 core poly(A) site in vitro. We furthermore show that efficient in vitro 3' processing requires the RNA stem-loop structure of TAR, which serves to juxtapose spatially the upstream element and the core poly(A) site. An analysis of the stability of 3' processing complexes formed at the HIV-1 poly(A) site in vitro suggests that the upstream element may function by increasing processing complex stability at the core poly(A) site. Images PMID:1425577
Improved prediction of biochemical recurrence after radical prostatectomy by genetic polymorphisms.
Morote, Juan; Del Amo, Jokin; Borque, Angel; Ars, Elisabet; Hernández, Carlos; Herranz, Felipe; Arruza, Antonio; Llarena, Roberto; Planas, Jacques; Viso, María J; Palou, Joan; Raventós, Carles X; Tejedor, Diego; Artieda, Marta; Simón, Laureano; Martínez, Antonio; Rioja, Luis A
2010-08-01
Single nucleotide polymorphisms are inherited genetic variations that can predispose or protect individuals against clinical events. We hypothesized that single nucleotide polymorphism profiling may improve the prediction of biochemical recurrence after radical prostatectomy. We performed a retrospective, multi-institutional study of 703 patients treated with radical prostatectomy for clinically localized prostate cancer who had at least 5 years of followup after surgery. All patients were genotyped for 83 prostate cancer related single nucleotide polymorphisms using a low density oligonucleotide microarray. Baseline clinicopathological variables and single nucleotide polymorphisms were analyzed to predict biochemical recurrence within 5 years using stepwise logistic regression. Discrimination was measured by ROC curve AUC, specificity, sensitivity, predictive values, net reclassification improvement and integrated discrimination index. The overall biochemical recurrence rate was 35%. The model with the best fit combined 8 covariates, including the 5 clinicopathological variables prostate specific antigen, Gleason score, pathological stage, lymph node involvement and margin status, and 3 single nucleotide polymorphisms at the KLK2, SULT1A1 and TLR4 genes. Model predictive power was defined by 80% positive predictive value, 74% negative predictive value and an AUC of 0.78. The model based on clinicopathological variables plus single nucleotide polymorphisms showed significant improvement over the model without single nucleotide polymorphisms, as indicated by 23.3% net reclassification improvement (p = 0.003), integrated discrimination index (p <0.001) and likelihood ratio test (p <0.001). Internal validation proved model robustness (bootstrap corrected AUC 0.78, range 0.74 to 0.82). The calibration plot showed close agreement between biochemical recurrence observed and predicted probabilities. Predicting biochemical recurrence after radical prostatectomy based on clinicopathological data can be significantly improved by including patient genetic information. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Wu, Lei; He, Yao; Zhang, Di
2015-11-01
To systematically evaluate the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout in East Asian population. The literature retrieval was conducted by using English databases (Medline, EMbase), Chinese databases (CNKI, Vip, Wanfang, SinaMed) and others to collect the published papers on the association between single nucleotide polymorphism of rs2231142 genetic susceptibility and gout by the end of December 2014. Meta-analysis was performed with software Stata 12.0. Nine studies were included. There were significant associations between increased risk of gout and single nucleotide polymorphism of rs2231142, the combined OR was 2.04 (95%CI: 1.82-2.28) for A allele and C allele, 1.97 (95%CI: 1.57-2.48) for CA and CC, 3.71 (95%CI: 3.07-4.47) for AA and CC. Sex and region specific subgroup analysis showed less heterogeneity. There is significant association between gout and single nucleotide polymorphism of rs2231142 in East Asian population, and A allele is a high risk gene for gout.
CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population.
Zhao, Yun-Jing; Wang, Yue-Ping; Yang, Wen-Zhu; Sun, Hong-Wei; Ma, Hong-Wei; Zhao, Ya-Ru
2015-11-01
Speech sound disorder is the most common communication disorder. Some investigations support the possibility that the CNTNAP2 gene might be involved in the pathogenesis of speech-related diseases. To investigate single-nucleotide polymorphisms in the CNTNAP2 gene, 300 unrelated speech sound disorder patients and 200 normal controls were included in the study. Five single-nucleotide polymorphisms were amplified and directly sequenced. Significant differences were found in the genotype (P = .0003) and allele (P = .0056) frequencies of rs2538976 between patients and controls. The excess frequency of the A allele in the patient group remained significant after Bonferroni correction (P = .0280). A significant haplotype association with rs2710102T/+rs17236239A/+2538976A/+2710117A (P = 4.10e-006) was identified. A neighboring single-nucleotide polymorphism, rs10608123, was found in complete linkage disequilibrium with rs2538976, and the genotypes exactly corresponded to each other. The authors propose that these CNTNAP2 variants increase the susceptibility to speech sound disorder. The single-nucleotide polymorphisms rs10608123 and rs2538976 may merge into one single-nucleotide polymorphism. © The Author(s) 2015.
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are the most common genetic markers in Theobroma cacao, occurring approximately once in every 200 nucleotides. SNPs, like microsatellites, are co-dominant and PCR-based, but they have several advantages over microsatellites. They are unambiguous, so that a SN...
The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.
Olson, W K
1975-01-01
Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529
USDA-ARS?s Scientific Manuscript database
The complete genome sequence of a virus recently detected in switchgrass (Panicum virgatum) was determined and was found to be closely related to Maize rayado fino virus (MRFV), genus Marafivirus, family Tymoviridae. The genomic RNA is 6408 nucleotides long, excluding the poly (A) tail, and encodes...
Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya
2011-01-01
To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533
ExpandplusCrystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Langelier; J Planck; S Roy
2011-12-31
Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNAmore » interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.« less
McCutchen-Maloney, Sandra L.
2002-01-01
DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.
Grotegut, Chad A; Ngan, Emily; Garrett, Melanie E; Miranda, Marie Lynn; Ashley-Koch, Allison E; Swamy, Geeta K
2017-09-01
Oxytocin is a potent uterotonic agent that is widely used for induction and augmentation of labor. Oxytocin has a narrow therapeutic index and the optimal dosing for any individual woman varies widely. The objective of this study was to determine whether genetic variation in the oxytocin receptor (OXTR) or in the gene encoding G protein-coupled receptor kinase 6 (GRK6), which regulates desensitization of the oxytocin receptor, could explain variation in oxytocin dosing and labor outcomes among women being induced near term. Pregnant women with a singleton gestation residing in Durham County, NC, were prospectively enrolled as part of the Healthy Pregnancy, Healthy Baby cohort study. Those women undergoing an induction of labor at 36 weeks or greater were genotyped for 18 haplotype-tagging single-nucleotide polymorphisms in OXTR and 7 haplotype-tagging single-nucleotide polymorphisms in GRK6 using TaqMan assays. Linear regression was used to examine the relationship between maternal genotype and maximal oxytocin infusion rate, total oxytocin dose received, and duration of labor. Logistic regression was used to test for the association of maternal genotype with mode of delivery. For each outcome, backward selection techniques were utilized to control for important confounding variables and additive genetic models were used. Race/ethnicity was included in all models because of differences in allele frequencies across populations, and Bonferroni correction for multiple testing was used. DNA was available from 482 women undergoing induction of labor at 36 weeks or greater. Eighteen haplotype-tagging single-nucleotide polymorphisms within OXTR and 7 haplotype-tagging single-nucleotide polymorphisms within GRK6 were examined. Five single-nucleotide polymorphisms in OXTR showed nominal significance with maximal infusion rate of oxytocin, and two single-nucleotide polymorphisms in OXTR were associated with total oxytocin dose received. One single-nucleotide polymorphism in OXTR and two single-nucleotide polymorphisms in GRK6 were associated with duration of labor, one of which met the multiple testing threshold (P = .0014, rs2731664 [GRK6], mean duration of labor, 17.7 hours vs 20.2 hours vs 23.5 hours for AA, AC, and CC genotypes, respectively). Three single-nucleotide polymorphisms, two in OXTR and one in GRK6, showed nominal significance with mode of delivery. Genetic variation in OXTR and GRK6 is associated with the amount of oxytocin required as well as the duration of labor and risk for cesarean delivery among women undergoing induction of labor near term. With further research, pharmacogenomic approaches may potentially be utilized to develop personalized treatment to improve safety and efficacy outcomes among women undergoing induction of labor. Copyright © 2017 Elsevier Inc. All rights reserved.
Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha
2012-01-15
A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.
King, Michael R.; Vimr, Ross P.; Steenbergen, Susan M.; Spanjaard, Lodewijk; Plunkett, Guy; Blattner, Frederick R.; Vimr, Eric R.
2007-01-01
Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Ψ domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Ψ domain length indicated preferential loss or gain of single 5′-AAGACTC-3′ nucleotide repeats. Analysis of a K1 strain previously reported as “locked on” indicated a poly-Ψ region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation. PMID:17601779
King, Michael R; Vimr, Ross P; Steenbergen, Susan M; Spanjaard, Lodewijk; Plunkett, Guy; Blattner, Frederick R; Vimr, Eric R
2007-09-01
Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Psi domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Psi domain length indicated preferential loss or gain of single 5'-AAGACTC-3' nucleotide repeats. Analysis of a K1 strain previously reported as "locked on" indicated a poly-Psi region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation.
Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA
Uzawa, Takanori; Isoshima, Takashi; Ito, Yoshihiro; Ishimori, Koichiro; Makarov, Dmitrii E.; Plaxco, Kevin W.
2013-01-01
Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics. PMID:23746521
Homology modeling and in silico prediction of Ulcerative colitis associated polymorphisms of NOD1.
Majumdar, Ishani; Nagpal, Isha; Paul, Jaishree
2017-10-01
Cytosolic pattern recognition receptors play key roles in innate immune response. Nucleotide binding and oligomerisation domain containing protein 1 (NOD1) belonging to the Nod-like receptor C (NLRC) sub-family of Nod-like receptors (NLRs) is important for detection and clearance of intra-cellular Gram negative bacteria. NOD1 is involved in activation of pro-inflammatory pathways. Limited structural data is available for NOD1. Using different templates for each domain of NOD1, we determined the full-length homology model of NOD1. ADP binding amino acids within the nucleotide binding domain (NBD) of NOD1 were also predicted. Key residues in inter-domain interaction were identified by sequence comparison with Oryctolagus cuniculus NOD2, a related protein. Interactions between NBD and winged helix domain (WHD) were found to be conserved in NOD1. Functional and structural effect of single nucleotide polymorphisms within the NOD1 NBD domain associated with susceptibility risk to Ulcerative colitis (UC), an inflammatory disorder of the colon was evaluated by in silico studies. Mutations W219R and L349P were predicted to be damaging and disease associated by prediction programs SIFT, PolyPhen2, PANTHER, SNP&GO, PhD SNP and SNAP2. We further validated the effect of W219R and L349P mutation on NOD1 function in vitro. Elevated mRNA expression of pro-inflammatory cytokines IL8 and IL-1β was seen as compared to the wild type NOD1 in intestinal epithelial cell line HT29 when stimulated with NOD1 ligand. Thus, these mutations may indeed have a bearing on pathogenesis of inflammation during UC. Copyright © 2017 Elsevier Ltd. All rights reserved.
2014-01-01
A 2,2′-bipyridyl-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) polymer, acting as a light-harvesting ligand system, was synthesized and coupled to an organometallic rhodium complex designed for photocatalytic NAD+/NADH reduction. The material, which absorbs over a wide spectral range, was characterized by using various analytical techniques, confirming its chemical structure and properties. The dielectric function of the material was determined from spectroscopic ellipsometry measurements. Photocatalytic reduction of nucleotide redox cofactors under visible light irradiation (390–650 nm) was performed and is discussed in detail. The new metal-containing polymer can be used to cover large surface areas (e.g. glass beads) and, due to this immobilization step, can be easily separated from the reaction solution after photolysis. Because of its high stability, the polymer-based catalyst system can be repeatedly used under different reaction conditions for (photo)chemical reduction of NAD+. With this concept, enzymatic, photo-biocatalytic systems for solar energy conversion can be facilitated, and the precious metal catalyst can be recycled. PMID:25130570
NASA Technical Reports Server (NTRS)
White, D. H.; Erickson, J. C.
1981-01-01
The selective effects of polyribonucleotides on the formation of glycine peptide bonds in glycine on clay surfaces are investigated as a model for a template mechanism for the effects of polynucleotides on peptide bond formation. Free oligoglycine yields were determined for the cycling reaction of glycine in the presence and absence of clay and polyribonucleotides or polydeoxyribonucleotides. The polyribonucleotides are observed to lead to increases of up to fourfold increases in oligoglycine formed, with greater enhancements for poly-G nucleotides than for poly-A, poly-U and poly-C, indicating a codonic bias. Polydeoxyribonucleotides are found to provide no enhancement in peptide formation rates, and yields were also greatly reduced in the absence of clay. A mechanism for peptide synthesis is proposed which involves the activation of glycine on the clay surface, followed by the formation of esters between glycine and the 2-prime OH groups of the polyribonucleotide and peptide bonds between adjacent amino acyl esters. It is pointed out that if this mechanism is correct, it may provide a basis for a direct template translation process, which would produce a singlet genetic code.
Wu, Jiaxin; Li, Yanda; Jiang, Rui
2014-03-01
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring.
Chen, Shanyuan; Gomes, Rui; Costa, Vânia; Santos, Pedro; Charneca, Rui; Zhang, Ya-ping; Liu, Xue-hong; Wang, Shao-qing; Bento, Pedro; Nunes, Jose-Luis; Buzgó, József; Varga, Gyula; Anton, István; Zsolnai, Attila; Beja-Pereira, Albano
2013-10-01
The coexistence of wild boars and domestic pigs across Eurasia makes it feasible to conduct comparative genetic or genomic analyses for addressing how genetically different a domestic species is from its wild ancestor. To test whether there are differences in patterns of genetic variability between wild and domestic pigs at immunity-related genes and to detect outlier loci putatively under selection that may underlie differences in immune responses, here we analyzed 54 single-nucleotide polymorphisms (SNPs) of 19 immunity-related candidate genes on 11 autosomes in three pairs of wild boar and domestic pig populations from China, Iberian Peninsula, and Hungary. Our results showed no statistically significant differences in allele frequency and heterozygosity across SNPs between three pairs of wild and domestic populations. This observation was more likely due to the widespread and long-lasting gene flow between wild boars and domestic pigs across Eurasia. In addition, we detected eight coding SNPs from six genes as outliers being under selection consistently by three outlier tests (BayeScan2.1, FDIST2, and Arlequin3.5). Among four non-synonymous outlier SNPs, one from TLR4 gene was identified as being subject to positive (diversifying) selection and three each from CD36, IFNW1, and IL1B genes were suggested as under balancing selection. All of these four non-synonymous variants were predicted as being benign by PolyPhen-2. Our results were supported by other independent lines of evidence for positive selection or balancing selection acting on these four immune genes (CD36, IFNW1, IL1B, and TLR4). Our study showed an example applying a candidate gene approach to identify functionally important mutations (i.e., outlier loci) in wild and domestic pigs for subsequent functional experiments.
Bueno, Danilo; Palacios-Gimenez, Octavio Manuel; Martí, Dardo Andrea; Mariguela, Tatiane Casagrande; Cabral-de-Mello, Diogo Cavalcanti
2016-08-01
The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.
Jafari, Naghmeh; Broer, Linda; Hoppenbrouwers, Ilse A; van Duijn, Cornelia M; Hintzen, Rogier Q
2010-11-01
Multiple sclerosis is a presumed autoimmune disease associated with genetic and environmental risk factors such as infectious mononucleosis. Recent research has shown infectious mononucleosis to be associated with a specific HLA class I polymorphism. Our aim was to test if the infectious mononucleosis-linked HLA class I single nucleotide polymorphism (rs6457110) is also associated with multiple sclerosis. Genotyping of the HLA-A single nucleotide polymorphism rs6457110 using TaqMan was performed in 591 multiple sclerosis cases and 600 controls. The association of multiple sclerosis with the HLA-A single nucleotide polymorphism was tested using logistic regression adjusted for age, sex and HLA-DRB1*1501. HLA-A minor allele (A) is associated with multiple sclerosis (OR = 0.68; p = 4.08 × 10( -5)). After stratification for HLA-DRB1*1501 risk allele (T) carrier we showed a significant OR of 0.70 (p = 0.003) for HLA-A. HLA class I single nucleotide polymorphism rs6457110 is associated with infectious mononucleosis and multiple sclerosis, independent of the major class II allele, supporting the hypothesis that shared genetics may contribute to the association between infectious mononucleosis and multiple sclerosis.
Iwanowicz, Luke R; Iwanowicz, Deborah D; Adams, Cynthia R; Galbraith, Heather; Aunins, Aaron; Cornman, Robert S
2017-10-12
Here, we report a draft genome sequence of a picorna-like virus associated with brook trout, Salvelinus fontinalis , gill tissue. The draft genome comprises 8,681 nucleotides, excluding the poly(A) tract, and contains two open reading frames. It is most similar to picorna-like viruses that infect invertebrates.
Iwanowicz, Luke R.; Iwanowicz, Deborah; Adams, Cynthia; Galbraith, Heather S.; Aunins, Aaron W.; Cornman, Robert S.
2017-01-01
Here, we report a draft genome sequence of a picorna-like virus associated with brook trout, Salvelinus fontinalis, gill tissue. The draft genome comprises 8,681 nucleotides, excluding the poly(A) tract, and contains two open reading frames. It is most similar to picorna-like viruses that infect invertebrates.
NASA Astrophysics Data System (ADS)
Piantanida, Ivo; Mašić, Lozika; Rusak, Gordana
2009-04-01
Interactions of five flavonoids with dsRNA and single stranded ssRNA were studied by UV/vis titrations. The results obtained supported the intercalative binding mode as a dominant interaction of studied flavonoids with dsRNA as well as major interaction with ssRNA. Furthermore, changes of the UV/vis spectra of flavonoids induced by addition of poly G or poly C, respectively, are significantly stronger than changes induced by double stranded poly G-poly C, pointing to essential role of the free poly G or poly C sequence (not hydrogen bonded in double helix). Exclusively poly G caused significant batochromic shift of the UV/vis maxima of all studied flavonoids, whereby the intensity of batochromic shift is nicely correlated to the number of OH groups of flavonoid. Unlikely to poly G, addition of poly A and poly U induced measurable changes only in the UV/vis spectra of flavonoids characterised by no OH (galangin) or three OH groups (myricetin) on the phenyl part of the molecule. Consequently, flavonoids with one- or two-OH groups on the phenyl part of the molecule (luteolin, fisetin, kaempferol) specifically differentiate between poly A, poly U (negligible changes in the UV/Vis spectra) and poly G (strong changes in the UV/Vis spectra) as well as poly C (moderate changes in the UV/Vis spectra).
Complete genome sequence of keunjorong mosaic virus, a potyvirus from Cynanchum wilfordii.
Nam, Moon; Lee, Joo-Hee; Choi, Hong Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon
2013-08-01
We have determined the complete genome sequence of keunjorong mosaic virus (KjMV). The KjMV genome is composed of 9,611 nucleotides, excluding the 3'-terminal poly(A) tail. It contains two open reading frames (ORFs), with the large one encoding a polyprotein of 3,070 amino acids and the small overlapping ORF encoding a PIPO protein of 81 amino acids. The KjMV genome shared the highest nucleotide sequence identity (57.5 %) with pepper mottle virus and freesia mosaic virus, two members of the genus Potyvirus. Based on the phylogenetic relatedness to known potyviruses, KjMV appears to be a member of a new species in the genus Potyvirus.
Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi
2018-02-12
Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.
Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong
2014-01-01
The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5′ end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the poly(T) stretch among the ten tephritid species and two tandem repeats were present in the CR. PMID:24964138
Electrical detection and quantification of single and mixed DNA nucleotides in suspension
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al; Panicker, Neena G.; Rizvi, Tahir A.; Mustafa, Farah
2016-09-01
High speed sequential identification of the building blocks of DNA, (deoxyribonucleotides or nucleotides for short) without labeling or processing in long reads of DNA is the need of the hour. This can be accomplished through exploiting their unique electrical properties. In this study, the four different types of nucleotides that constitute a DNA molecule were suspended in a buffer followed by performing several types of electrical measurements. These electrical parameters were then used to quantify the suspended DNA nucleotides. Thus, we present a purely electrical counting scheme based on the semiconductor theory that allows one to determine the number of nucleotides in a solution by measuring their capacitance-voltage dependency. The nucleotide count was observed to be similar to the multiplication of the corresponding dopant concentration and debye volume after de-embedding the buffer contribution. The presented approach allows for a fast and label-free quantification of single and mixed nucleotides in a solution.
Duan, Haohong; Yan, Ning; Yu, Rong; Chang, Chun-Ran; Zhou, Gang; Hu, Han-Shi; Rong, Hongpan; Niu, Zhiqiang; Mao, Junjie; Asakura, Hiroyuki; Tanaka, Tsunehiro; Dyson, Paul Joseph; Li, Jun; Li, Yadong
2014-01-01
Despite significant advances in the fabrication and applications of graphene-like materials, it remains a challenge to prepare single-layered metallic materials, which have great potential applications in physics, chemistry and material science. Here we report the fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method. Atomic force microscope shows that the thickness of a rhodium nanosheet is <4 Å. Electron diffraction and X-ray absorption spectroscopy measurements suggest that the rhodium nanosheets are composed of planar single-atom-layered sheets of rhodium. Density functional theory studies reveal that the single-layered Rh nanosheet involves a δ-bonding framework, which stabilizes the single-layered structure together with the poly(vinylpyrrolidone) ligands. The poly(vinylpyrrolidone)-supported single-layered rhodium nanosheet represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobak, D.A.; Nightingale, M.S.; Murtagh, J.J.
1989-08-01
ADP-ribosylation factors (ARFs) are small guanine nucleotide-binding proteins that enhance the enzymatic activities of cholera toxin. Two ARF cDNAs, ARF1 and ARF3, were cloned from a human cerebellum library. Based on deduced amino acid sequences and patterns of hybridization of cDNA and oligonucleotide probes with mammalian brain poly(A){sup +} RNA, human ARF1 is the homologue of bovine ARF1. Human ARF3, which differs from bovine ARF1 and bovine ARF2, appears to represent a newly identified third type of ARF. Hybridization patterns of human ARF cDNA and clone-specific oligonucleotides with poly(A){sup +} RNA are consistent with the presence of at least two,more » and perhaps four, separate ARF messages in human brain. In vitro translation of ARF1, ARF2, and ARF3 produced proteins that behaved, by SDS/PAGE, similar to a purified soluble brain ARF. Deduced amino acid sequences of human ARF1 and ARF3 contain regions, similar to those in other G proteins, that are believed to be involved in GTP binding and hydrolysis. ARFS also exhibit a modest degree of homology with a bovine phospholipase C. The observations reported here support the conclusion that the ARFs are members of a multigene family of small guanine nucleotide-binding proteins. Definition of the regulation of ARF mRNAs and of function(s) of recombinant ARF proteins will aid in the elucidation of the physiologic role(s) of ARFs.« less
Choi, Kelvin; Sabado, Melanie; El-Toukhy, Sherine; Vogtmann, Emily; Freedman, Neal D; Hatsukami, Dorothy
2017-10-01
Background: Few studies have examined differences in product consumption patterns and nicotine and tobacco-specific nitrosamines (TSNA) exposure between single versus dual- and poly-tobacco users. We applied the Tobacco Product Use Patterns (T-PUPs) model to fill this gap in the literature. Methods: Data from adults (age ≥18 years) who used any tobacco products during the 5 days prior to participating in the 1999-2012 National Health and Nutrition Examination Survey (NHANES) were analyzed. Participants were classified into seven T-PUPs: (1) cigarettes only, (2) noncigarette combustibles only, (3) noncombustibles only, (4) dual noncigarette combustibles and noncombustibles, (5) dual cigarettes and noncombustibles, (6) dual cigarettes and noncigarette combustibles, and (7) poly-tobacco use. Weighted regression models were used to compare product consumption, serum cotinine, and urinary total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (i.e., NNAL) levels between single-, dual-, and poly-tobacco T-PUPs. Results: Dual- and poly-tobacco T-PUPs were associated with lower product consumption compared with single-product T-PUPs only in some cases (e.g., dual cigarette and noncombustible users smoked cigarettes on 0.6 fewer days in the past 5 days compared with cigarette-only users; P < 0.05). Dual- and poly-tobacco T-PUPs had either nondistinguishable or higher levels of serum cotinine and urinary total NNAL than corresponding single-product T-PUPs. Conclusions: Product consumption, and nicotine and TSNAs exposure of dual- and poly-tobacco product category users somewhat differ from those of single-product category users as defined by the T-TUPs model. Impact: Higher levels of cotinine and NNAL among dual- and poly-tobacco T-TUPs users compared with the single-product T-TUPs users may indicate health concerns. Cancer Epidemiol Biomarkers Prev; 26(10); 1525-30. ©2017 AACR . ©2017 American Association for Cancer Research.
Pyridine nucleotides in regulation of cell death and survival by redox and non-redox reactions.
Novak Kujundžić, Renata; Žarković, Neven; Gall Trošelj, Koraljka
2014-01-01
Changes of the level and ratios of pyridine nucleotides determine metabolism- dependent cellular redox status and the activity of poly(ADP-ribose) polymerases (PARPs) and sirtuins, thereby influencing several processes closely related to cell survival and death. Pyridine nucleotides participate in numerous metabolic reactions whereby their net cellular level remains constant, but the ratios of NAD+/NADP+ and NADH/NADPH oscillate according to metabolic changes in response to diverse stress signals. In non-redox reactions, NAD+ is degraded and quickly, afterward, resynthesized in the NAD+ salvage pathway, unless overwhelming activation of PARP-1 consumes NAD+ to the point of no return, when the cell can no longer generate enough ATP to accommodate NAD+ resynthesis. The activity of PARP-1 is mandatory for the onset of cytoprotective autophagy on sublethal stress signals. It has become increasingly clear that redox status, largely influenced by the metabolism-dependent composition of the pyridine nucleotides pool, plays an important role in the synthesis of pro-apoptotic and anti-apoptotic sphingolipids. Awareness of the involvement of the prosurvival sphingolipid, sphingosine-1-phosphate, in transition from inflammation to malignant transformation has recently emerged. Here, the participation of pyridine nucleotides in redox and non-redox reactions, sphingolipid metabolism, and their role in cell fate decisions is reviewed.
Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li
2009-03-01
The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.
2017-01-01
ABSTRACT Here, we report a draft genome sequence of a picorna-like virus associated with brook trout, Salvelinus fontinalis, gill tissue. The draft genome comprises 8,681 nucleotides, excluding the poly(A) tract, and contains two open reading frames. It is most similar to picorna-like viruses that infect invertebrates. PMID:29025930
He, Ping; Tan, De-Li; Liu, Hong-Xiang; Lv, Feng-Lin; Wu, Wei
2015-04-01
The short isoform of Rho guanine nucleotide exchange factor ARHGEF5 is known as TIM, which plays diverse roles in, for example, tumorigenesis, neuronal development and Src-induced podosome formation through the activation of its substrates, the Rho family of GTPases. The activation is auto-inhibited by a putative helix N-terminal to the DH domain of TIM, which is stabilized by the intramolecular interaction of C-terminal SH3 domain with a poly-proline sequence between the putative helix and the DH domain. In this study, we systematically investigated the structural basis, energetic landscape and biological implication underlying TIM auto-inhibition by using atomistic molecular dynamics simulations and binding free energy analysis. The computational study revealed that the binding of SH3 domain to poly-proline sequence is the prerequisite for the stabilization of TIM auto-inhibition. Thus, it is suggested that targeting SH3 domain with competitors of the poly-proline sequence would be a promising strategy to relieve the auto-inhibitory state of TIM. In this consideration, we rationally designed a number of peptide aptamers for competitively inhibiting the SH3 domain based on modeled TIM structure and computationally generated data. Peptide binding test and guanine nucleotide exchange analysis solidified that these designed peptides can both bind to the SH3 domain potently and activate TIM-catalyzed RhoA exchange reaction effectively. Interestingly, a positive correlation between the peptide affinity and induced exchange activity was observed. In addition, separate mutation of three conserved residues Pro49, Pro52 and Lys54 - they are required for peptide recognition by SH3 domain -- in a designed peptide to Ala would completely abolish the capability of this peptide activating TIM. All these come together to suggest an intrinsic relationship between peptide binding to SH3 domain and the activation of TIM. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
RNA metabolism in the regulation of protein synthesis in plants. Progress report, 1975-1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, J L
1979-01-01
The major objectives of the research for the contract period covered by this report were (1) to gain an insight into the sequence organization of the DNA of soybean, emphasizing the arrangement of single copy or unique sequences and repetitive sequences of DNA throughout the genome, (2) to characterize soybean RNAs relative to nucleotide sequence complexity and kinetics of synthesis and turnover of poly A/sup +/ mRNA, and (3) to study ribosomal proteins directed to an analysis of possible changes in proteins which relate to the activation of 80S ribosomes and thus mRNA utilization and protein synthesis in response tomore » environmental stimuli. Even with greatly reduced funding compared to that requested, objectives 1 and 2 were substantially accomplished. Because of reduced funding and the 20-month no cost extension, relatively little progress was made on objective 3. Accordingly objectives 1 and 2 will be summarized in some detail; a brief account of progress is presented on objective 3.« less
[Interaction of trivaline with single-stranded polyribonucleotides].
Strel'tsov, S A; Lysov, Iu P; Semenov, T E; Vengerov, Iu Iu; Khorlin, A A; Surovaia, A N; Gurskiĭ, G V
1991-01-01
Binding of tripeptide H-Val3-(NH)2-Dns (TVP) to polyribonucleotides was studied by fluorescence methods, circular and flow linear dichroism, equilibrium dialysis and electron microscopy. It was found that TVP binds to poly(U) in monomer, dimer and tetramer forms with binding constants of about 10(3), 40, 18.10(4) M, respectively. The cooperativity parameter for peptide dimer binding is 2000. The peptide forms tetramer complexes with poly(A), poly(C), poly(G) also. The formation of a complex between the peptide tetramer and nucleic acid is accompanied by a significant increase in the fluorescence intensity. The cooperative binding of TVP dimers to poly(U), poly(A), poly(C) is accompanied by a dramatic decrease in the flexibility of polynucleotide chains. However, it has a small effect (if any) on the flexibility of the poly(G) chain. The observed similarity of thermodynamic, optical and hydrodynamic++ properties of TVP complexes with single-stranded and double-stranded nucleic acids may reflect a similarity in the geometries of peptide complexes with nucleic acids. Electron microscopy studies show that peptide binding to poly(U) and dsDNA leads to compactization of the nucleic acids caused by interaction between the peptide tetramers bound to a nucleic acid. At the first stage of the compactization process the well-organized rod-like particles are formed, each consisting of one or more single-stranded polynucleotide fibers. Increasing the peptide concentration stimulates a side-by-side association and folding of the rods with the formation of macromolecular "leech-like" structures with the thickness of 20-50 nm.
Aspergillus and Penicillium identification using DNA sequences: Barcode or MLST?
USDA-ARS?s Scientific Manuscript database
Current methods in DNA technology can detect single nucleotide polymorphisms with measurable accuracy using several different approaches appropriate for different uses. If there are even single nucleotide differences that are invariant markers of the species, we can accomplish identification through...
CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules
NASA Astrophysics Data System (ADS)
Sarangi, S. N.; Sahu, S. N.; Nozaki, S.
2018-03-01
CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of <220>. Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.
A new type of localized fast moving electronic excitations in molecular chains
NASA Astrophysics Data System (ADS)
Korshunova, A. N.; Lakhno, V. D.
2014-06-01
It is shown that in a Holstein molecular chain placed in a strong longitudinal electric field some new types of excitations can arise. These excitations can transfer a charge over large distance (more than 1000 nucleotide pairs) along the chain retaining approximately their shapes. Excitations are formed only when a strong electric field either exists or quickly arises under especially preassigned conditions. These excitations transfer a charge even in the case when Holstein polarons are practically immobile. The results obtained are applied to synthetic homogeneous PolyG/PolyC DNA duplexes. They can also be provide the basis for explanation of famous H.W. Fink and C. Schönenberger experiment on long-range charge transfer in DNA.
2013-01-01
Demand for nonnutritive sweeteners continues to increase due to their ability to provide desirable sweetness with minimal calories. Acesulfame potassium and saccharin are well-studied nonnutritive sweeteners commonly found in food products. Some individuals report aversive sensations from these sweeteners, such as bitter and metallic side tastes. Recent advances in molecular genetics have provided insight into the cause of perceptual differences across people. For example, common alleles for the genes TAS2R9 and TAS2R38 explain variable response to the bitter drugs ofloxacin in vitro and propylthiouracil in vivo. Here, we wanted to determine whether differences in the bitterness of acesulfame potassium could be predicted by common polymorphisms (genetic variants) in bitter taste receptor genes (TAS2Rs). We genotyped participants (n = 108) for putatively functional single nucleotide polymorphisms in 5 TAS2Rs and asked them to rate the bitterness of 25 mM acesulfame potassium on a general labeled magnitude scale. Consistent with prior reports, we found 2 single nucleotide polymorphisms in TAS2R31 were associated with acesulfame potassium bitterness. However, TAS2R9 alleles also predicted additional variation in acesulfame potassium bitterness. Conversely, single nucleotide polymorphisms in TAS2R4, TAS2R38, and near TAS2R16 were not significant predictors. Using 1 single nucleotide polymorphism each from TAS2R9 and TAS2R31, we modeled the simultaneous influence of these single nucleotide polymorphisms on acesulfame potassium bitterness; together, these 2 single nucleotide polymorphisms explained 13.4% of the variance in perceived bitterness. These data suggest multiple polymorphisms within TAS2Rs contribute to the ability to perceive the bitterness from acesulfame potassium. PMID:23599216
Nucleotide cleaving agents and method
Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.
2000-01-01
The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.
21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Poly-1-butene resins and butene/ethylene... Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1570 Poly-1-butene resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers...
Chen, Sherry Xi; Seelig, Georg
2016-04-20
Even a single-nucleotide difference between the sequences of two otherwise identical biological nucleic acids can have dramatic functional consequences. Here, we use model-guided reaction pathway engineering to quantitatively improve the performance of selective hybridization probes in recognizing single nucleotide variants (SNVs). Specifically, we build a detection system that combines discrimination by competition with DNA strand displacement-based catalytic amplification. We show, both mathematically and experimentally, that the single nucleotide selectivity of such a system in binding to single-stranded DNA and RNA is quadratically better than discrimination due to competitive hybridization alone. As an additional benefit the integrated circuit inherits the property of amplification and provides at least 10-fold better sensitivity than standard hybridization probes. Moreover, we demonstrate how the detection mechanism can be tuned such that the detection reaction is agnostic to the position of the SNV within the target sequence. in contrast, prior strand displacement-based probes designed for kinetic discrimination are highly sensitive to position effects. We apply our system to reliably discriminate between different members of the let-7 microRNA family that differ in only a single base position. Our results demonstrate the power of systematic reaction network design to quantitatively improve biotechnology.
Mustafa, Saima; Fatima, Hira; Fatima, Sadia; Khosa, Tafheem; Akbar, Atif; Shaikh, Rehan Sadiq; Iqbal, Furhan
2018-01-01
To find out a correlation between the single nucleotide polymorphisms in cluster of differentiation 28 and cluster of differentiation 40 genes with Graves' disease, if any. This case-control study was conducted at the Multan Institute of Nuclear Medicine and Radiotherapy, Multan, Pakistan, and comprised blood samples of Graves' disease patients and controls. Various risk factors were also correlated either with the genotype at each single-nucleotide polymorphism or with various combinations of genotypes studied during present investigation. Of the 160 samples, there were 80(50%) each from patients and controls. Risk factor analysis revealed that gender (p=0.008), marital status (p<0.001), education (p<0.001), smoking (p<0.001), tri-iodothyronine (P <0.001), thyroxin (p<0.001) and thyroid-stimulating hormone (p<0.000) levels in blood were associated with Graves' disease. Both single-nucleotide polymorphisms in both genes were not associated with Graves' disease, either individually or in any combined form.
Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D
1995-11-10
The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.
Adsorption and condensation of amino acids and nucleotides with soluble mineral salts
NASA Technical Reports Server (NTRS)
Orenberg, J.; Lahav, N.
1986-01-01
The directed synthesis of biopolymers in an abiotic environment is presumably a cyclic sequence of steps which may be realized in a fluctuating environment such as a prebiotic pond undergoing wetting-drying cycles. Soluble mineral salts have been proposed as an essential component of this fluctuating environment. The following sequence may be considered as a most primitive mechanism of information transfer in a fluctuating environment: (1) adsorption of a biomolecule onto a soluable mineral salt surface to act as an adsorbed template; (2) specific adsorption of biomonomers onto the adsorbed template; (3) condensation of the adsorbed biomonomers; and (4) desorption of the elongated oligomer. In this investigation, the salts selected for study were CaSO4.2H2O(gypsum), SrSO4, and several other metal sulfates and chlorides. Adsorption of the monomeric species, gly, 5'AMP 5'GMP, and 5'CMP was investigated. The adsorbed template biopolymers used were Poly-A, Poly-G, Poly-C, and Poly-U. The results of studies involving these experimental participants, the first two steps of the proposed primitive information transfer mechanism, and condensation of amino acids to form oligomers in a fluctuating environment are to be reported.
Stockley, Jacqueline; Nisar, Shaista P; Leo, Vincenzo C; Sabi, Essa; Cunningham, Margaret R; Eikenboom, Jeroen C; Lethagen, Stefan; Schneppenheim, Reinhard; Goodeve, Anne C; Watson, Steve P; Mundell, Stuart J; Daly, Martina E
2015-01-01
The clinical expression of type 1 von Willebrand disease may be modified by co-inheritance of other mild bleeding diatheses. We previously showed that mutations in the platelet P2Y12 ADP receptor gene (P2RY12) could contribute to the bleeding phenotype in patients with type 1 von Willebrand disease. Here we investigated whether variations in platelet G protein-coupled receptor genes other than P2RY12 also contributed to the bleeding phenotype. Platelet G protein-coupled receptor genes P2RY1, F2R, F2RL3, TBXA2R and PTGIR were sequenced in 146 index cases with type 1 von Willebrand disease and the potential effects of identified single nucleotide variations were assessed using in silico methods and heterologous expression analysis. Seven heterozygous single nucleotide variations were identified in 8 index cases. Two single nucleotide variations were detected in F2R; a novel c.-67G>C transversion which reduced F2R transcriptional activity and a rare c.1063C>T transition predicting a p.L355F substitution which did not interfere with PAR1 expression or signalling. Two synonymous single nucleotide variations were identified in F2RL3 (c.402C>G, p.A134 =; c.1029 G>C p.V343 =), both of which introduced less commonly used codons and were predicted to be deleterious, though neither of them affected PAR4 receptor expression. A third single nucleotide variation in F2RL3 (c.65 C>A; p.T22N) was co-inherited with a synonymous single nucleotide variation in TBXA2R (c.6680 C>T, p.S218 =). Expression and signalling of the p.T22N PAR4 variant was similar to wild-type, while the TBXA2R variation introduced a cryptic splice site that was predicted to cause premature termination of protein translation. The enrichment of single nucleotide variations in G protein-coupled receptor genes among type 1 von Willebrand disease patients supports the view of type 1 von Willebrand disease as a polygenic disorder.
Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue
2016-01-01
DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962
Multifunctional Poly(2,5-benzimidazole)/Carbon Nanotube Composite Films
2010-01-01
Multifunctional Poly(2,5- benzimidazole )/Carbon Nanotube Composite Films JI-YE KANG,1 SOO-MI EO,1 IN-YUP JEON,1 YEONG SUK CHOI,2 LOON-SENG TAN,3 JONG...molecular-weight poly(2,5- benzimidazole ) (ABPBI). ABPBI/carbon nanotube (CNT) compo- sites were prepared via in situ polymerization of the AB-monomer in the...polymerization; multiwalled carbon nanotube (MWCNT); nano- composites; poly(2,5- benzimidazole ); (ABPBI); polycondensa- tion; poly(phosphoric acid); single-walled
Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.
Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru
2017-04-18
Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.
Li, Su-Xia
2004-12-01
Single nucleotide polymorphism (SNP) is the third genetic marker after restriction fragment length polymorphism (RFLP) and short tandem repeat. It represents the most density genetic variability in the human genome and has been widely used in gene location, cloning, and research of heredity variation, as well as parenthood identification in forensic medicine. As steady heredity polymorphism, single nucleotide polymorphism is becoming the focus of attention in monitoring chimerism and minimal residual disease in the patients after allogeneic hematopoietic stem cell transplantation. The article reviews SNP heredity characterization, analysis techniques and its applications in allogeneic stem cell transplantation and other fields.
The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus.
Gustafson, G; Armour, S L
1986-01-01
The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus (BSMV) has been determined. The sequence is 3289 nucleotides in length and contains four open reading frames (ORFs) which code for proteins of Mr 22,147 (ORF1), Mr 58,098 (ORF2), Mr 17,378 (ORF3), and Mr 14,119 (ORF4). The predicted N-terminal amino acid sequence of the polypeptide encoded by the ORF nearest the 5'-end of the RNA (ORF1) is identical (after the initiator methionine) to the published N-terminal amino acid sequence of BSMV coat protein for 29 of the first 30 amino acids. ORF2 occupies the central portion of the coding region of RNA beta and ORF3 is located at the 3'-end. The ORF4 sequence overlaps the 3'-region of ORF2 and the 5'-region of ORF3 and differs in codon usage from the other three RNA beta ORFs. The coding region of RNA beta is followed by a poly(A) tract and a 238 nucleotide tRNA-like structure which are common to all three BSMV genomic RNAs. Images PMID:3754962
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
USDA-ARS?s Scientific Manuscript database
High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...
Taira, Chiaki; Matsuda, Kazuyuki; Yamaguchi, Akemi; Sueki, Akane; Koeda, Hiroshi; Takagi, Fumio; Kobayashi, Yukihiro; Sugano, Mitsutoshi; Honda, Takayuki
2013-09-23
Single nucleotide alterations such as single nucleotide polymorphisms (SNP) and single nucleotide mutations are associated with responses to drugs and predisposition to several diseases, and they contribute to the pathogenesis of malignancies. We developed a rapid genotyping assay based on the allele-specific polymerase chain reaction (AS-PCR) with our droplet-PCR machine (droplet-AS-PCR). Using 8 SNP loci, we evaluated the specificity and sensitivity of droplet-AS-PCR. Buccal cells were pretreated with proteinase K and subjected directly to the droplet-AS-PCR without DNA extraction. The genotypes determined using the droplet-AS-PCR were then compared with those obtained by direct sequencing. Specific PCR amplifications for the 8 SNP loci were detected, and the detection limit of the droplet-AS-PCR was found to be 0.1-5.0% by dilution experiments. Droplet-AS-PCR provided specific amplification when using buccal cells, and all the genotypes determined within 9 min were consistent with those obtained by direct sequencing. Our novel droplet-AS-PCR assay enabled high-speed amplification retaining specificity and sensitivity and provided ultra-rapid genotyping. Crude samples such as buccal cells were available for the droplet-AS-PCR assay, resulting in the reduction of the total analysis time. Droplet-AS-PCR may therefore be useful for genotyping or the detection of single nucleotide alterations. Copyright © 2013 Elsevier B.V. All rights reserved.
Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du
2014-01-01
This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera. PMID:24466028
Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du
2014-01-01
This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651) and stem-loop 2 (15965-15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.
A novel member of the family Hepeviridae from cutthroat trout (Oncorhynchus clarkii)
Batts, William; Yun, Susan; Hedrick, Ronald; Winton, James
2011-01-01
Beginning in 1988, the Chinook salmon embryo (CHSE-214) cell line was used to isolate a novel virus from spawning adult trout in the state of California, USA. Termed the cutthroat trout (Oncorhynchus clarkii) virus (CTV), the small, round virus was not associated with disease, but was subsequently found to be present in an increasing number of trout populations in the western USA, likely by a combination of improved surveillance activities and the shipment of infected eggs to new locations. Here, we report that the full length genome of the 1988 Heenan Lake isolate of CTV consisted of 7269 nucleotides of positive-sense, single-stranded RNA beginning with a 5' untranslated region (UTR), followed by three open reading frames (ORFs), a 3' UTR and ending in a polyA tail. The genome of CTV was similar in size and organization to that of Hepatitis E virus (HEV) with which it shared the highest nucleotide and amino acid sequence identities. Similar to the genomes of human, rodent or avian hepeviruses, ORF 1 encoded a large, non-structural polyprotein that included conserved methyltransferase, protease, helicase and polymerase domains, while ORF 2 encoded the structural capsid protein and ORF 3 the phosphoprotein. Together, our data indicated that CTV was clearly a member of the family Hepeviridae, although the level of amino acid sequence identity with the ORFs of mammalian or avian hepeviruses (13-27%) may be sufficiently low to warrant the creation of a novel genus. We also performed a phylogenetic analysis using a 262. nt region within ORF 1 for 63 isolates of CTV obtained from seven species of trout reared in various geographic locations in the western USA. While the sequences fell into two genetic clades, the overall nucleotide diversity was low (less than 8.4%) and many isolates differed by only 1-2 nucleotides, suggesting an epidemiological link. Finally, we showed that CTV was able to form persistently infected cultures of the CHSE-214 cell line that may have use in research on the biology or treatment of hepevirus infections of humans or other animals.
Brown, Jessica A.; Pack, Lindsey R.; Sherrer, Shanen M.; Kshetry, Ajay K.; Newmister, Sean A.; Fowler, Jason D.; Taylor, John-Stephen; Suo, Zucai
2010-01-01
DNA polymerase λ (Pol λ) is a novel X-family DNA polymerase that shares 34% sequence identity with DNA polymerase β (Pol β). Pre-steady state kinetic studies have shown that the Pol λ•DNA complex binds both correct and incorrect nucleotides 130-fold tighter on average than the Pol β•DNA complex, although, the base substitution fidelity of both polymerases is 10−4 to 10−5. To better understand Pol λ’s tight nucleotide binding affinity, we created single- and double-substitution mutants of Pol λ to disrupt interactions between active site residues and an incoming nucleotide or a template base. Single-turnover kinetic assays showed that Pol λ binds to an incoming nucleotide via cooperative interactions with active site residues (R386, R420, K422, Y505, F506, A510, and R514). Disrupting protein interactions with an incoming correct or incorrect nucleotide impacted binding with each of the common structural moieties in the following order: triphosphate ≫ base > ribose. In addition, the loss of Watson-Crick hydrogen bonding between the nucleotide and template base led to a moderate increase in the Kd. The fidelity of Pol λ was maintained predominantly by a single residue, R517, which has minor groove interactions with the DNA template. PMID:20851705
Improvement in nitrogen fixation capacity could be part of the domestication process in soybean
Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M
2016-01-01
Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process. PMID:27118154
DeVry, C G; Tsai, W; Clarke, S
1996-11-15
The protein L-isoaspartyl/D-aspartyl O-methyltransferase (EC 2.1.1.77) catalyzes the first step in the repair of proteins damaged in the aging process by isomerization or racemization reactions at aspartyl and asparaginyl residues. A single gene has been localized to human chromosome 6 and multiple transcripts arising through alternative splicing have been identified. Restriction enzyme mapping, subcloning, and DNA sequence analysis of three overlapping clones from a human genomic library in bacteriophage P1 indicate that the gene spans approximately 60 kb and is composed of 8 exons interrupted by 7 introns. Analysis of intron/exon splice junctions reveals that all of the donor and acceptor splice sites are in agreement with the mammalian consensus splicing sequence. Determination of transcription initiation sites by primer extension analysis of poly(A)+ mRNA from human brain identifies multiple start sites, with a major site 159 nucleotides upstream from the ATG start codon. Sequence analysis of the 5'-untranslated region demonstrates several potential cis-acting DNA elements including SP1, ETF, AP1, AP2, ARE, XRE, CREB, MED-1, and half-palindromic ERE motifs. The promoter of this methyltransferase gene lacks an identifiable TATA box but is characterized by a CpG island which begins approximately 723 nucleotides upstream of the major transcriptional start site and extends through exon 1 and into the first intron. These features are characteristic of housekeeping genes and are consistent with the wide tissue distribution observed for this methyltransferase activity.
USDA-ARS?s Scientific Manuscript database
Unfavorable genetic correlations between production and fertility traits are well documented. Genetic selection for fertility traits is slow, however, due to low heritabilities. Identification of single nucleotide polymorphisms (SNP) involved in reproduction could improve reliability of genomic esti...
Discovery, Validation and Characterization of 1039 Cattle Single Nucleotide Polymorphisms
USDA-ARS?s Scientific Manuscript database
We identified approximately 13000 putative single nucleotide polymorphisms (SNPs) by comparison of repeat-masked BAC-end sequences from the cattle RPCI-42 BAC library with whole-genome shotgun contigs of cattle genome assembly Btau 1.0. Genotyping of a subset of these SNPs was performed on a panel ...
USDA-ARS?s Scientific Manuscript database
Multiplexed single nucleotide polymorphism (SNP) markers have the potential to increase the speed and cost-effectiveness of genotyping, provided that an optimal SNP density is used for each application. To test the efficiency of multiplexed SNP genotyping for diversity, mapping and breeding applicat...
USDA-ARS?s Scientific Manuscript database
Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphisms (SNPs) were genotyped using a high-density array and DNAs from individual plants from important onion populations from major production regions world-wide and the likely progenitor of onion, Allium vavilovii. Genotypes at 1226 SNPs were used to estimate genetic relati...
USDA-ARS?s Scientific Manuscript database
Genome scans in the pig have identified a region on chromosome 2 (SSC2) associated with tenderness. Calpastatin is a likely positional candidate gene in this region because of its inhibitory role in the calpain system that is involved in postmortem tenderization. Novel single nucleotide polymorphism...
Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli 0157:H7
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP) based typing panel was developed that redundantly identified eleven genogroups that span ...
USDA-ARS?s Scientific Manuscript database
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout, SNP discovery has been done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL), RNA sequencing, and whole...
Noël, Jean-François; Larose, Stéphanie; Abou Elela, Sherif; Wellinger, Raymund J.
2012-01-01
The RNA component of budding yeast telomerase (Tlc1) occurs in two forms, a non-polyadenylated form found in functional telomerase and a rare polyadenylated version with unknown function. Previous work suggested that the functional Tlc1 polyA− RNA is processed from the polyA+ form, but the mechanisms regulating its transcription termination and 3′-end formation remained unclear. Here we examined transcription termination of Tlc1 RNA in the sequences 3′ of the TLC1 gene and relate it to telomere maintenance. Strikingly, disruption of all probable or cryptic polyadenylation signals near the 3′-end blocked the accumulation of the previously reported polyA+ RNA without affecting the level, function or specific 3′ nucleotide of the mature polyA− form. A genetic approach analysing TLC1 3′-end sequences revealed that transcription terminates upstream of the polyadenylation sites. Furthermore, the results also demonstrate that the function of this Tlc1 terminator depends on the Nrd1/Nab3 transcription termination pathway. The data thus show that transcription termination of the budding yeast telomerase RNA occurs as that of snRNAs and Tlc1 functions in telomere maintenance are not strictly dependent on a polyadenylated precursor, even if the polyA+ form can serve as intermediate in a redundant termination/maturation pathway. PMID:22379137
We report a facile method to accomplish cross-linking reaction of poly (vinyl alcohol) (PVA) with single-wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), and Buckminsterfullerene (C-60) using microwave (MW) irradiation. Nanocomposites of PVA cross-linked with SW...
A novel MALDI–TOF based methodology for genotyping single nucleotide polymorphisms
Blondal, Thorarinn; Waage, Benedikt G.; Smarason, Sigurdur V.; Jonsson, Frosti; Fjalldal, Sigridur B.; Stefansson, Kari; Gulcher, Jeffery; Smith, Albert V.
2003-01-01
A new MALDI–TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3′-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis. PMID:14654708
Li, Peipei; Piao, Yongjun; Shon, Ho Sun; Ryu, Keun Ho
2015-10-28
Recently, rapid improvements in technology and decrease in sequencing costs have made RNA-Seq a widely used technique to quantify gene expression levels. Various normalization approaches have been proposed, owing to the importance of normalization in the analysis of RNA-Seq data. A comparison of recently proposed normalization methods is required to generate suitable guidelines for the selection of the most appropriate approach for future experiments. In this paper, we compared eight non-abundance (RC, UQ, Med, TMM, DESeq, Q, RPKM, and ERPKM) and two abundance estimation normalization methods (RSEM and Sailfish). The experiments were based on real Illumina high-throughput RNA-Seq of 35- and 76-nucleotide sequences produced in the MAQC project and simulation reads. Reads were mapped with human genome obtained from UCSC Genome Browser Database. For precise evaluation, we investigated Spearman correlation between the normalization results from RNA-Seq and MAQC qRT-PCR values for 996 genes. Based on this work, we showed that out of the eight non-abundance estimation normalization methods, RC, UQ, Med, TMM, DESeq, and Q gave similar normalization results for all data sets. For RNA-Seq of a 35-nucleotide sequence, RPKM showed the highest correlation results, but for RNA-Seq of a 76-nucleotide sequence, least correlation was observed than the other methods. ERPKM did not improve results than RPKM. Between two abundance estimation normalization methods, for RNA-Seq of a 35-nucleotide sequence, higher correlation was obtained with Sailfish than that with RSEM, which was better than without using abundance estimation methods. However, for RNA-Seq of a 76-nucleotide sequence, the results achieved by RSEM were similar to without applying abundance estimation methods, and were much better than with Sailfish. Furthermore, we found that adding a poly-A tail increased alignment numbers, but did not improve normalization results. Spearman correlation analysis revealed that RC, UQ, Med, TMM, DESeq, and Q did not noticeably improve gene expression normalization, regardless of read length. Other normalization methods were more efficient when alignment accuracy was low; Sailfish with RPKM gave the best normalization results. When alignment accuracy was high, RC was sufficient for gene expression calculation. And we suggest ignoring poly-A tail during differential gene expression analysis.
Construction and characterization of poliovirus subgenomic replicons.
Kaplan, G; Racaniello, V R
1988-05-01
Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blot (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2Apro, 2C, and 3Dpol and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. Replication of P2/Lansing virion RNA was inhibited by cotransfection with the R1 replicon, as demonstrated by hybridization analysis with a serotype-specific oligonucleotide probe. A higher level of inhibition of RNA replication was observed when P2/Lansing RNA was cotransfected into HeLa cells with truncated R1 transcripts (R1-PvuII) that were missing 395 3' nucleotides and a poly(A) tail. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs. No inhibition of plaque size was observed when replicon RNAs were used that were missing 1,384 or 1,839 3' nucleotides or contained plasmid-derived sequences downstream of the 3' poly(A). The trans-acting inhibitory effect of R1-PvuII on the replication of poliovirus P2/Lansing RNA did not involve entry of RNA into cells and appeared to reduce viral translation and RNA synthesis late in the infection cycle.
Biological nanopore MspA for DNA sequencing
NASA Astrophysics Data System (ADS)
Manrao, Elizabeth A.
Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.
Kurushima, J. D.; Lipinski, M. J.; Gandolfi, B.; Froenicke, L.; Grahn, J. C.; Grahn, R. A.; Lyons, L. A.
2012-01-01
Summary Both cat breeders and the lay public have interests in the origins of their pets, not only in the genetic identity of the purebred individuals, but also the historical origins of common household cats. The cat fancy is a relatively new institution with over 85% of its 40–50 breeds arising only in the past 75 years, primarily through selection on single-gene aesthetic traits. The short, yet intense cat breed history poses a significant challenge to the development of a genetic marker-based breed identification strategy. Using different breed assignment strategies and methods, 477 cats representing 29 fancy breeds were analysed with 38 short tandem repeats, 148 intergenic and five phenotypic single nucleotide polymorphisms. Results suggest the frequentist method of Paetkau (accuracy single nucleotide polymorphisms = 0.78, short tandem repeats = 0.88) surpasses the Bayesian method of Rannala and Mountain (single nucleotide polymorphisms = 0.56, short tandem repeats = 0.83) for accurate assignment of individuals to the correct breed. Additionally, a post-assignment verification step with the five phenotypic single nucleotide polymorphisms accurately identified between 0.31 and 0.58 of the mis-assigned individuals raising the sensitivity of assignment with the frequentist method to 0.89 and 0.92 single nucleotide polymorphisms and short tandem repeats respectively. This study provides a novel multi-step assignment strategy and suggests that, despite their short breed history and breed family groupings, a majority of cats can be assigned to their proper breed or population of origin, i.e. race. PMID:23171373
USDA-ARS?s Scientific Manuscript database
The objective of this study is to investigate single nucleotide polymorphism (SNP) genotypes imputation of Hereford cattle. Purebred Herefords were from two sources, Line 1 Hereford (N=240) and representatives of Industry Herefords (N=311). Using different reference panels of 62 and 494 males with 1...
USDA-ARS?s Scientific Manuscript database
Salmonid genomes are considered to be in a pseudo-tetraploid state as a result of an evolutionarily recent genome duplication event. This situation complicates single nucleotide polymorphism (SNP) discovery in rainbow trout as many putative SNPs are actually paralogous sequence variants (PSVs) and ...
USDA-ARS?s Scientific Manuscript database
Fertilization and development of the preimplantation embryo is under genetic control. The goal of the current study was to test 434 single nucleotide polymorphisms (SNPs) for association with genetic variation in fertilization and early embryonic development. The approach was to produce embryos from...
Prospects for inferring pairwise relationships with single nucleotide polymorphisms
Jeffery C. Glaubitz; O. Eugene, Jr. Rhodes; J. Andrew DeWoody
2003-01-01
An extraordinarily large number of single nucleotide polymorphisms (SNPs) are now available in humans as well as in other model organisms. Technological advancements may soon make it feasible to assay hundreds of SNPs in virtually any organism of interest. One potential application of SNPs is the determination of pairwise genetic relationships in populations without...
USDA-ARS?s Scientific Manuscript database
Call rate has been used as a measure of quality on both a single nucleotide polymorphism (SNP) and animal basis since SNP genotypes were first used in genomic evaluation of dairy cattle. The genotyping laboratories perform initial quality control screening and genotypes that fail are usually exclude...
USDA-ARS?s Scientific Manuscript database
Large datasets containing single nucleotide polymorphisms (SNPs) are used to analyze genome-wide diversity in a robust collection of cultivars from representative accessions, across the world. The extent of linkage disequilibrium (LD) within a population determines the number of markers required fo...
Yu, Hong; Liu, Jun; Yang, Aiping; Yang, Guohui; Yang, Wenjun; Lei, Heyue; Quan, Jianjun; Zhang, Zengyu
2016-04-01
Genetic factors play an important role in childhood autism. This study is to determine the association of single-nucleotide polymorphisms in dopa decarboxylase (DDC) and dopamine receptor-1 (DRD1) genes with childhood autism, in a Chinese Han population. A total of 211 autistic children and 250 age- and gender-matched healthy controls were recruited. The severity of disease was determined by Children Autism Rating Scale scores. TaqMan Probe by real-time polymerase chain reaction was used to determine genotypes and allele frequencies of single-nucleotide polymorphism rs6592961 in DDC and rs251937 in DRD1. Case-control and case-only studies were respectively performed, to determine the contribution of both single-nucleotide polymorphisms to the predisposition of disease and its severity. Our results showed that there was no significant association of the genotypes and allele frequencies of both single-nucleotide polymorphisms concerning childhood autism and its severity. More studies with larger samples are needed to corroborate their predicting roles. © The Author(s) 2015.
Single-molecule comparison of DNA Pol I activity with native and analog nucleotides
NASA Astrophysics Data System (ADS)
Gul, Osman; Olsen, Tivoli; Choi, Yongki; Corso, Brad; Weiss, Gregory; Collins, Philip
2014-03-01
DNA polymerases are critical enzymes for DNA replication, and because of their complex catalytic cycle they are excellent targets for investigation by single-molecule experimental techniques. Recently, we studied the Klenow fragment (KF) of DNA polymerase I using a label-free, electronic technique involving single KF molecules attached to carbon nanotube transistors. The electronic technique allowed long-duration monitoring of a single KF molecule while processing thousands of template strands. Processivity of up to 42 nucleotide bases was directly observed, and statistical analysis of the recordings determined key kinetic parameters for the enzyme's open and closed conformations. Subsequently, we have used the same technique to compare the incorporation of canonical nucleotides like dATP to analogs like 1-thio-2'-dATP. The analog had almost no affect on duration of the closed conformation, during which the nucleotide is incorporated. On the other hand, the analog increased the rate-limiting duration of the open conformation by almost 40%. We propose that the thiolated analog interferes with KF's recognition and binding, two key steps that determine its ensemble turnover rate.
Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J
2011-12-01
Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Xu, Zhi; Reynolds, Gavin P; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-11-01
Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Reynolds, Gavin P.; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-01-01
Background: Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). Methods: A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks’ antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Results: Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. Conclusions: These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. PMID:27521242
2009-03-01
52 Figure 4-1: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm single hot-arm actuator (shown on right...58 Figure 4-2: Applied voltage versus deflection curve for Poly1/Poly2 stacked 300-μm double hot-arm actuator (shown on...61 Figure 4-5: Deflection vs. power curves for an individual wedge from
Single-Walled Carbon Nanotubes Modulate the B- to A-DNA Transition
2015-01-01
We study the conformational equilibrium between B-to-A forms of ds-DNA adsorbed onto a single-walled carbon nanotube (SWNT) using free energy profile calculations based on all-atom molecular dynamics simulations. The potential of mean force (PMF) of the B-to-A transition of ds-DNA in the presence of an uncharged (10,0) carbon nanotube for two dodecamers with poly-AT or poly-GC sequences is calculated as a function of a root-mean-square-distance (ΔRMSD) difference metric for the B-to-A transition. The calculations reveal that in the presence of a SWNT DNA favors B-form DNA significantly in both poly-GC and poly-AT sequences. Furthermore, the poly-AT DNA:SWNT complex shows a higher energy penalty for adopting an A-like conformation than poly-GC DNA:SWNT by several kcal/mol. The presence of a SWNT on either poly-AT or poly-GC DNA affects the PMF of the transition such that the B form is favored by as much as 10 kcal/mol. In agreement with published data, we find a potential energy minimum between A and B-form DNA at ΔRMSD ≈ −1.5 Å and that the presence of the SWNT moves this minimum by as much as ΔRMSD = 3 Å. PMID:25553205
Coronado, Liani; Liniger, Matthias; Muñoz-González, Sara; Postel, Alexander; Pérez, Lester Josue; Pérez-Simó, Marta; Perera, Carmen Laura; Frías-Lepoureau, Maria Teresa; Rosell, Rosa; Grundhoff, Adam; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Becher, Paul; Ruggli, Nicolas; Ganges, Llilianne
2017-03-01
In this study, we compared the virulence in weaner pigs of the Pinar del Rio isolate and the virulent Margarita strain. The latter caused the Cuban classical swine fever (CSF) outbreak of 1993. Our results showed that the Pinar del Rio virus isolated during an endemic phase is clearly of low virulence. We analysed the complete nucleotide sequence of the Pinar del Rio virus isolated after persistence in newborn piglets, as well as the genome sequence of the inoculum. The consensus genome sequence of the Pinar del Rio virus remained completely unchanged after 28days of persistent infection in swine. More importantly, a unique poly-uridine tract was discovered in the 3'UTR of the Pinar del Rio virus, which was not found in the Margarita virus or any other known CSFV sequences. Based on RNA secondary structure prediction, the poly-uridine tract results in a long single-stranded intervening sequence (SS) between the stem-loops I and II of the 3'UTR, without major changes in the stem- loop structures when compared to the Margarita virus. The possible implications of this novel insertion on persistence and attenuation remain to be investigated. In addition, comparison of the amino acid sequence of the viral proteins E rns , E1, E2 and p7 of the Margarita and Pinar del Rio viruses showed that all non-conservative amino acid substitutions acquired by the Pinar del Rio isolate clustered in E2, with two of them being located within the B/C domain. Immunisation and cross-neutralisation experiments in pigs and rabbits suggest differences between these two viruses, which may be attributable to the amino acid differences observed in E2. Altogether, these data provide fresh insights into viral molecular features which might be associated with the attenuation and adaptation of CSFV for persistence in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
Sequence-Dependent Elasticity and Electrostatics of Single-Stranded DNA: Signatures of Base-Stacking
McIntosh, Dustin B.; Duggan, Gina; Gouil, Quentin; Saleh, Omar A.
2014-01-01
Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer’s rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼−0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration. PMID:24507606
Single Nucleotide Polymorphisms Predict Symptom Severity of Autism Spectrum Disorder
ERIC Educational Resources Information Center
Jiao, Yun; Chen, Rong; Ke, Xiaoyan; Cheng, Lu; Chu, Kangkang; Lu, Zuhong; Herskovits, Edward H.
2012-01-01
Autism is widely believed to be a heterogeneous disorder; diagnosis is currently based solely on clinical criteria, although genetic, as well as environmental, influences are thought to be prominent factors in the etiology of most forms of autism. Our goal is to determine whether a predictive model based on single-nucleotide polymorphisms (SNPs)…
USDA-ARS?s Scientific Manuscript database
Background/Objectives: The misincorporation of uracil into DNA leads to genomic instability. In a previous study, some of us identified four common single nucleotide polymorphisms (SNPs) in uracil-processing genes (rs2029166 and rs7296239 in SMUG1, rs34259 in UNG and rs4775748 in DUT) that were asso...
USDA-ARS?s Scientific Manuscript database
Single-nucleotide Polymorphism (SNP) markers are by far the most common form of DNA polymorphism in a genome. The objectives of this study were to discover SNPs in common bean comparing sequences from coding and non-coding regions obtained from Genbank and genomic DNA and to compare sequencing resu...
USDA-ARS?s Scientific Manuscript database
Previously, a candidate gene approach identified 51 single nucleotide polymorphisms (SNP) associated with genetic merit for reproductive traits and 26 associated with genetic merit for production in dairy bulls. We evaluated association of the 77 SNPs with days open (DO) for first lactation in a pop...
USDA-ARS?s Scientific Manuscript database
Watermelon (Citrullus lanatus var. lanatus) is an important vegetable fruit throughout the world. A high number of single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers should provide large coverage of the watermelon genome and high phylogenetic resolution of germplasm acces...
Demirci, Berna; Lee, Yoosook; Lanzaro, Gregory C; Alten, Bulent
2012-05-01
Culex theileri Theobald (Diptera: Culicidae) is one of the most common mosquito species in northeastern Turkey and serves as a vector for various zoonotic diseases including West Nile virus. Although there have been some studies on the ecology of Cx. theileri, very little genetic data has been made available. We successfully sequenced 11 gene fragments from Cx. theileri specimens collected from the northeastern part of Turkey. On average, we found a Single nucleotide polymorphism every 45 bp. Transitions outnumbered transversions, at a ratio of 2:1. This is the first report of genetic polymorphisms in Cx. theileri and Single nucleotide polymorphism discovered from this study can be used to investigate population structure and gene-environmental interactions.
Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro
2016-01-01
Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874
High-throughput discovery of rare human nucleotide polymorphisms by Ecotilling
Till, Bradley J.; Zerr, Troy; Bowers, Elisabeth; Greene, Elizabeth A.; Comai, Luca; Henikoff, Steven
2006-01-01
Human individuals differ from one another at only ∼0.1% of nucleotide positions, but these single nucleotide differences account for most heritable phenotypic variation. Large-scale efforts to discover and genotype human variation have been limited to common polymorphisms. However, these efforts overlook rare nucleotide changes that may contribute to phenotypic diversity and genetic disorders, including cancer. Thus, there is an increasing need for high-throughput methods to robustly detect rare nucleotide differences. Toward this end, we have adapted the mismatch discovery method known as Ecotilling for the discovery of human single nucleotide polymorphisms. To increase throughput and reduce costs, we developed a universal primer strategy and implemented algorithms for automated band detection. Ecotilling was validated by screening 90 human DNA samples for nucleotide changes in 5 gene targets and by comparing results to public resequencing data. To increase throughput for discovery of rare alleles, we pooled samples 8-fold and found Ecotilling to be efficient relative to resequencing, with a false negative rate of 5% and a false discovery rate of 4%. We identified 28 new rare alleles, including some that are predicted to damage protein function. The detection of rare damaging mutations has implications for models of human disease. PMID:16893952
Volkán-Kacsó, Sándor; Marcus, Rudolph A
2016-10-25
A recently proposed chemomechanical group transfer theory of rotary biomolecular motors is applied to treat single-molecule controlled rotation experiments. In these experiments, single-molecule fluorescence is used to measure the binding and release rate constants of nucleotides by monitoring the occupancy of binding sites. It is shown how missed events of nucleotide binding and release in these experiments can be corrected using theory, with F 1 -ATP synthase as an example. The missed events are significant when the reverse rate is very fast. Using the theory the actual rate constants in the controlled rotation experiments and the corrections are predicted from independent data, including other single-molecule rotation and ensemble biochemical experiments. The effective torsional elastic constant is found to depend on the binding/releasing nucleotide, and it is smaller for ADP than for ATP. There is a good agreement, with no adjustable parameters, between the theoretical and experimental results of controlled rotation experiments and stalling experiments, for the range of angles where the data overlap. This agreement is perhaps all the more surprising because it occurs even though the binding and release of fluorescent nucleotides is monitored at single-site occupancy concentrations, whereas the stalling and free rotation experiments have multiple-site occupancy.
Arankalle, V A; Ramakrishnan, J
2009-03-01
A simian hepatitis A virus (HAV) was identified retrospectively in a faecal sample from a rhesus monkey in India, inoculated in 1995 with a faecal suspension from a suspected patient of non-A to E hepatitis. The monkey was in captivity for 2 years in one of the experimental primate facilities in western India before being moved to the National Institute of Virology, Pune for experimentation. Phylogenetic analysis based on a partial sequence of the 5' noncoding region placed this virus in genotype V, the only other member being the AGM-27 strain recovered in 1986 from African green monkeys in Kenya. The source of infection of the monkey remains unclear. The full genome was amplified in nine fragments and sequenced. The genome of the Indian simian HAV (IND-SHAV) is 7425 nucleotides long including the poly-A tail of 14 nucleotides at the 3' end. At the nucleotide and amino acid levels, IND-SHAV was 99.8 and 100% identical with AGM27, respectively.
Characterization of hMTr1, a Human Cap1 2′-O-Ribose Methyltransferase*
Bélanger, François; Stepinski, Janusz; Darzynkiewicz, Edward; Pelletier, Jerry
2010-01-01
Cellular eukaryotic mRNAs are capped at their 5′ ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2′-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2′-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo. PMID:20713356
Hawtrey, Arthur; Pieterse, Anton; van Zyl, Johann; Van der Bijl, Pieter; Van der Merwe, Marichen; Nel, William; Ariatti, Mario
2008-09-01
N-Acylated derivatives of 8-(6-aminohexyl) amino-adenosine-5 '-phosphate were prepared and studied with regard to their effect on DNA synthesis by the Moloney leukemia virus reverse transcriptase. N-palmitoyl and N-nicotinyl derivatives and bis-8-(6-aminohexyl) amino-5'-AMP inhibited the enzyme partially using poly (rA).oligo d(pT)(16-18) as template-primer with [(3)H]dTTP. In order to increase hydrophobicity in the acyl component tethered to the 8-(6-aminohexyl) amino group on the adenine nucleotide, N-trityl-L-phenylalanine and the N-trityl derivatives of the o, m, and p-fluoro-DL-phenylalanine were initially examined for inhibition of the enzyme using the above template-primer system. The compounds all inhibited the reverse transcriptase with IC(50) values of approximately 60-80 microM. However, when N-trityl-m-fluoro-DL-phenylalanine was coupled to the nucleotide 8-(6-aminohexyl) amino-adenosine-5'-phosphate, the inhibitory activity of this compound increased significantly (IC(50) = 5 microM).
Sasaya, Takahide; Ishikawa, Koichi; Koganezawa, Hiroki
2002-06-05
The complete nucleotide sequence of RNA1 from Lettuce big-vein virus (LBVV), the type member of the genus Varicosavirus, was determined. LBVV RNA1 consists of 6797 nucleotides and contains one large ORF that encodes a large (L) protein of 2040 amino acids with a predicted M(r) of 232,092. Northern blot hybridization analysis indicated that the LBVV RNA1 is a negative-sense RNA. Database searches showed that the amino acid sequence of L protein is homologous to those of L polymerases of nonsegmented negative-strand RNA viruses. A cluster dendrogram derived from alignments of the LBVV L protein and the L polymerases indicated that the L protein is most closely related to the L polymerases of plant rhabdoviruses. Transcription termination/polyadenylation signal-like poly(U) tracts that resemble those in rhabdovirus and paramyxovirus RNAs were present upstream and downstream of the coding region. Although LBVV is related to rhabdoviruses, a key distinguishing feature is that the genome of LBVV is segmented. The results reemphasize the need to reconsider the taxonomic position of varicosaviruses.
Multiplexed capillary electrophoresis system
Yeung, Edward S.; Li, Qingbo; Lu, Xiandan
1998-04-21
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.
Multiplexed capillary electrophoresis system
Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.; Li, Qingbo; Lu, Xiandan
1996-12-10
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.
Multiplexed capillary electrophoresis system
Yeung, E.S.; Li, Q.; Lu, X.
1998-04-21
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.
Multiplexed capillary electrophoresis system
Yeung, E.S.; Chang, H.T.; Fung, E.N.; Li, Q.; Lu, X.
1996-12-10
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.
The Single Nucleotide Polymorphism Consortium
NASA Technical Reports Server (NTRS)
Morgan, Michael
2003-01-01
I want to discuss both the Single Nucleotide Polymorphism (SNP) Consortium and the Human Genome Project. I am afraid most of my presentation will be thin on law and possibly too high on rhetoric. Having been engaged in a personal and direct way with these issues as a trained scientist, I find it quite difficult to be always as objective as I ought to be.
Analysis of single nucleotide polymorphisms in case-control studies.
Li, Yonghong; Shiffman, Dov; Oberbauer, Rainer
2011-01-01
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variants in the human genome. SNPs are known to modify susceptibility to complex diseases. We describe and discuss methods used to identify SNPs associated with disease in case-control studies. An outline on study population selection, sample collection and genotyping platforms is presented, complemented by SNP selection, data preprocessing and analysis.
Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen
2012-09-04
A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.
A Laboratory Exercise for Genotyping Two Human Single Nucleotide Polymorphisms
ERIC Educational Resources Information Center
Fernando, James; Carlson, Bradley; LeBard, Timothy; McCarthy, Michael; Umali, Finianne; Ashton, Bryce; Rose, Ferrill F., Jr.
2016-01-01
The dramatic decrease in the cost of sequencing a human genome is leading to an era in which a wide range of students will benefit from having an understanding of human genetic variation. Since over 90% of sequence variation between humans is in the form of single nucleotide polymorphisms (SNPs), a laboratory exercise has been devised in order to…
USDA-ARS?s Scientific Manuscript database
The association of single nucleotide polymorphisms (SNPs) of calpastatin (CAST) gene with shear force of 2.54 cm steaks from M. longissimus dorsi from Gannan yaks (Bos grunniens, n=181) was studied. Yaks were harvested at 2, 3, and 4 yr of age (n=51, 59, and 71, respectively), and samples of each ya...
Winterhagen, Patrick; Wünsche, Jens-Norbert
2016-05-01
Within a polyembryonic mango seedling tree population, the genetic background of individuals should be identical because vigorous plants for cultivation are expected to develop from nucellar embryos representing maternal clones. Due to the fact that the mango cultivar 'Hôi' is assigned to the polyembryonic ecotype, an intra-cultivar variability of ethylene receptor genes was unexpected. Ethylene receptors in plants are conserved, but the number of receptors or receptor isoforms is variable regarding different plant species. However, it is shown here that the ethylene receptor MiETR1 is present in various isoforms within the mango cultivar 'Hôi'. The investigation of single nucleotide polymorphisms revealed that different MiETR1 isoforms can not be discriminated simply by individual single nucleotide exchanges but by the specific arrangement of single nucleotide polymorphisms at certain positions in the exons of MiETR1. Furthermore, an MiETR1 isoform devoid of introns in the genomic sequence was identified. The investigation demonstrates some limitations of high resolution melting and ScreenClust analysis and points out the necessity of sequencing to identify individual isoforms and to determine the variability within the tree population.
Khodakov, Dmitriy A; Khodakova, Anastasia S; Huang, David M; Linacre, Adrian; Ellis, Amanda V
2015-03-04
Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.
Single nucleotide polymorphism analysis using different colored dye dimer probes
NASA Astrophysics Data System (ADS)
Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter
2006-09-01
Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.
Kochanowski, N; Blanchard, F; Cacan, R; Chirat, F; Guedon, E; Marc, A; Goergen, J-L
2006-01-15
Analysis of intracellular nucleotide and nucleotide sugar contents is essential in studying protein glycosylation of mammalian cells. Nucleotides and nucleotide sugars are the donor substrates of glycosyltransferases, and nucleotides are involved in cellular energy metabolism and its regulation. A sensitive and reproducible ion-pair reverse-phase high-performance liquid chromatography (RP-HPLC) method has been developed, allowing the direct and simultaneous detection and quantification of some essential nucleotides and nucleotide sugars. After a perchloric acid extraction, 13 molecules (8 nucleotides and 5 nucleotide sugars) were separated, including activated sugars such as UDP-glucose, UDP-galactose, GDP-mannose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. To validate the analytical parameters, the reproducibility, linearity of calibration curves, detection limits, and recovery were evaluated for standard mixtures and cell extracts. The developed method is capable of resolving picomolar quantities of nucleotides and nucleotide sugars in a single chromatographic run. The HPLC method was then applied to quantify intracellular levels of nucleotides and nucleotide sugars of Chinese hamster ovary (CHO) cells cultivated in a bioreactor batch process. Evolutions of the titers of nucleotides and nucleotide sugars during the batch process are discussed.
USDA-ARS?s Scientific Manuscript database
Using linear regression models, we studied the main and two-way interaction effects of the predictor variables gender, age, BMI, and 64 folate/vitamin B-12/homocysteine/lipid/cholesterol-related single nucleotide polymorphisms (SNP) on log-transformed plasma homocysteine normalized by red blood cell...
ERIC Educational Resources Information Center
Gadow, Kenneth D.; Roohi, Jasmin; DeVincent, Carla J.; Kirsch, Sarah; Hatchwell, Eli
2010-01-01
Investigated association of single nucleotide polymorphism (SNP) rs301430 in glutamate transporter gene ("SLC1A1") with severity of repetitive behaviors (obsessive-compulsive behaviors, tics) and anxiety in children with autism spectrum disorder (ASD). Mothers and/or teachers completed a validated DSM-IV-referenced rating scale for 67 children…
USDA-ARS?s Scientific Manuscript database
The periodic need to restock reagent pools for genotyping chips provides an opportunity to increase the number of single-nucleotide polymorphisms (SNP) on a chip at no increase in cost. A high-density chip with >140,000 SNP has been developed by GeneSeek Inc. (Lincoln, NE) to increase accuracy of ge...
Keith R. Merrill; Craig E. Coleman; Susan E. Meyer; Elizabeth A. Leger; Katherine A. Collins
2016-01-01
Premise of the study: Bromus tectorum (Poaceae) is an annual grass species that is invasive in many areas of the world but most especially in the U.S. Intermountain West. Single-nucleotide polymorphism (SNP) markers were developed for use in investigating the geospatial and ecological diversity of B. tectorum in the Intermountain West to better understand the...
ERIC Educational Resources Information Center
Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui
2017-01-01
Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…
Brimacombe, M.; Hazbon, M.; Motiwala, A. S.; Alland, D.
2007-01-01
A single-nucleotide polymorphism-based cluster grouping (SCG) classification system for Mycobacterium tuberculosis was used to examine antibiotic resistance type and resistance mutations in relationship to specific evolutionary lineages. Drug resistance and resistance mutations were seen across all SCGs. SCG-2 had higher proportions of katG codon 315 mutations and resistance to four drugs. PMID:17846140
The CD8α gene in duck (Anatidae): cloning, characterization, and expression during viral infection.
Xu, Qi; Chen, Yang; Zhao, Wen Ming; Huang, Zheng Yang; Duan, Xiu Jun; Tong, Yi Yu; Zhang, Yang; Li, Xiu; Chang, Guo Bin; Chen, Guo Hong
2015-02-01
Cluster of differentiation 8 alpha (CD8α) is critical for cell-mediated immune defense and T-cell development. Although CD8α sequences have been reported for several species, very little is known about CD8α in ducks. To elucidate the mechanisms involved in the innate and adaptive immune responses of ducks, we cloned CD8α coding sequences from domestic, Muscovy, Mallard, and Spotbill ducks using reverse transcription polymerase chain reaction (RT-PCR). Each sequence consisted of 714 nucleotides and encoded a signal peptide, an IgV-like domain, a stalk region, a transmembrane region, and a cytoplasmic tail. We identified 58 nucleotide differences and 37 amino acid differences among the four types of duck; of these, 53 nucleotide and 33 amino acid differences were between Muscovy ducks and the other duck species. The CD8α cDNA sequence from domestic duck consisted of a 61-nucleotide 5' untranslated region (UTR), a 714-nucleotide open reading frame, and an 849-nucleotide 3' UTR. Multiple sequence alignments showed that the amino acid sequence of CD8α is conserved in vertebrates. RT-PCR revealed that expression of CD8α mRNA of domestic ducks was highest in the thymus and very low in the kidney, cerebrum, cerebellum, and muscle. Immunohistochemical analyses detected CD8α on the splenic corpuscle and periarterial lymphatic sheath of the spleen. CD8α mRNA in domestic ducklings was initially up-regulated, and then down-regulated, in the thymus, spleen, and liver after treatment with duck hepatitis virus type I (DHV-1) or the immunostimulant polyriboinosinic polyribocytidylic acid (poly I:C).
Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.
2016-01-01
Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524
Generation of RNA in abiotic conditions.
NASA Astrophysics Data System (ADS)
di Mauro, Ernesto
Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F. Ciciriello, S. Pino, G. Costanzo, E. Di Mauro. From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Research In Microbiology, Special Issue on The Origin of life and Microbiology (2009) 160:441-448. (2) Costanzo, G., Saladino, R., Crestini, C., Ciciriello, F., and Di Mauro, E. Nucleoside phos-phorylation by phosphate minerals. J. Biol. Chem. (2007) 282: 16729-16735. (3) Samanta Pino, Fabiana Ciciriello, Giovanna Costanzo and E. Di Mauro, Nonenzymatic RNA Ligation in Water J. Biol. Chem. (2008), 283: 36494-36503 (4) Costanzo, G., Pino, S., Ciciriello, F., and Di Mauro, E. Generation of long RNA chains in water. J Biol Chem. (2009) 284:33206-33216.
Heated oligonucleotide ligation assay (HOLA): an affordable single nucleotide polymorphism assay.
Black, W C; Gorrochotegui-Escalante, N; Duteau, N M
2006-03-01
Most single nucleotide polymorphism (SNP) detection requires expensive equipment and reagents. The oligonucleotide ligation assay (OLA) is an inexpensive SNP assay that detects ligation between a biotinylated "allele-specific detector" and a 3' fluorescein-labeled "reporter" oligonucleotide. No ligation occurs unless the 3' detector nucleotide is complementary to the SNP nucleotide. The original OLA used chemical denaturation and neutralization. Heated OLA (HOLA) instead uses a thermal stable ligase and cycles of denaturing and hybridization for ligation and SNP detection. The cost per genotype is approximately US$1.25 with two-allele SNPs or approximately US$1.75 with three-allele SNPs. We illustrate the development of HOLA for SNP detection in the Early Trypsin and Abundant Trypsin loci in the mosquito Aedes aegypti (L.) and at the a-glycerophosphate dehydrogenase locus in the mosquito Anopheles gambiae s.s.
Capillaries for use in a multiplexed capillary electrophoresis system
Yeung, Edward S.; Chang, Huan-Tsang; Fung, Eliza N.
1997-12-09
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.
Capillaries for use in a multiplexed capillary electrophoresis system
Yeung, E.S.; Chang, H.T.; Fung, E.N.
1997-12-09
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.
NASA Technical Reports Server (NTRS)
Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.
2003-01-01
We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.
Yamada, Yoshiji; Sakuma, Jun; Takeuchi, Ichiro; Yasukochi, Yoshiki; Kato, Kimihiko; Oguri, Mitsutoshi; Fujimaki, Tetsuo; Horibe, Hideki; Muramatsu, Masaaki; Sawabe, Motoji; Fujiwara, Yoshinori; Taniguchi, Yu; Obuchi, Shuichi; Kawai, Hisashi; Shinkai, Shoji; Mori, Seijiro; Arai, Tomio; Tanaka, Masashi
2017-06-13
We have performed exome-wide association studies to identify genetic variants that influence body mass index or confer susceptibility to obesity or metabolic syndrome in Japanese. The exome-wide association study for body mass index included 12,890 subjects, and those for obesity and metabolic syndrome included 12,968 subjects (3954 individuals with obesity, 9014 controls) and 6817 subjects (3998 individuals with MetS, 2819 controls), respectively. Exome-wide association studies were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of genotypes of single nucleotide polymorphisms to body mass index was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to obesity or metabolic syndrome was evaluated with Fisher's exact test. The exome-wide association studies identified six, 11, and 40 single nucleotide polymorphisms as being significantly associated with body mass index, obesity (P <1.21 × 10-6), or metabolic syndrome (P <1.20 × 10-6), respectively. Subsequent multivariable logistic regression analysis with adjustment for age and sex revealed that three and five single nucleotide polymorphisms were related (P < 0.05) to obesity or metabolic syndrome, respectively, with one of these latter polymorphisms-rs7350481 (C/T) at chromosome 11q23.3-also being significantly (P < 3.13 × 10-4) associated with metabolic syndrome. The polymorphism rs7350481 may thus be a novel susceptibility locus for metabolic syndrome in Japanese. In addition, single nucleotide polymorphisms in three genes (CROT, TSC1, RIN3) and at four loci (ANKK1, ZNF804B, CSRNP3, 17p11.2) were implicated as candidate determinants of obesity and metabolic syndrome, respectively.
Dai, Weiran; Ye, Ziliang; Lu, Haili; Su, Qiang; Li, Hui; Li, Lang
2018-02-23
The results showed that there was a certain correlation between the single nucleotide polymorphism of IL-10-1082G/A and rheumatic heart disease, but there was no systematic study to verify this conclusion. Systematic review of the association between single nucleotide polymorphism of IL-10-1082G/A locus and rheumatic heart disease. Computer retrieval PubMed, EMbase, Cochrane Library, CBM, CNKI, VIP and Data WanFang, the retrieval time limit from inception to June 2017. A case control study of single nucleotide polymorphisms and rheumatic heart disease in patients with rheumatic heart disease in the IL-10-1082G/A was collected. Two researchers independently screened the literature, extracted data and evaluated the risk of bias in the study, and using RevMan5.3 software for data analysis. A total of 3 case control studies were included, including 318 patients with rheumatic heart disease and 502 controls. Meta-analysis showed that there was no correlation between IL-10-1082G/A gene polymorphism and rheumatic heart disease [AA+AG VS GG: OR = 0.62, 95% CI (0.28, 1.39), P = 0.25; AA VS AG+GG: OR = 0.73, 95% CI (0.54, 1.00), P = 0.05; AA VS GG: OR = 0.70, 95% CI(0.47, 1.05), P = 0.08; AG VS GG: OR = 0.65, 95% CI (0.22, 1.92), P = 0.43; A VS G: OR = 0.87, 95% CI (0.71, 1.06), P = 0.17]. When AA is a recessive gene, the single nucleotide polymorphism of IL-10-1082G/A is associated with the presence of rheumatic heart disease. Due to the limitations of the quantity and quality of the included literatures, the further research results were still needed.
OmpF, a nucleotide-sensing nanoprobe, computational evaluation of single channel activities
NASA Astrophysics Data System (ADS)
Abdolvahab, R. H.; Mobasheri, H.; Nikouee, A.; Ejtehadi, M. R.
2016-09-01
The results of highthroughput practical single channel experiments should be formulated and validated by signal analysis approaches to increase the recognition precision of translocating molecules. For this purpose, the activities of the single nano-pore forming protein, OmpF, in the presence of nucleotides were recorded in real time by the voltage clamp technique and used as a means for nucleotide recognition. The results were analyzed based on the permutation entropy of current Time Series (TS), fractality, autocorrelation, structure function, spectral density, and peak fraction to recognize each nucleotide, based on its signature effect on the conductance, gating frequency and voltage sensitivity of channel at different concentrations and membrane potentials. The amplitude and frequency of ion current fluctuation increased in the presence of Adenine more than Cytosine and Thymine in milli-molar (0.5 mM) concentrations. The variance of the current TS at various applied voltages showed a non-monotonic trend whose initial increasing slope in the presence of Thymine changed to a decreasing one in the second phase and was different from that of Adenine and Cytosine; e.g., by increasing the voltage from 40 to 140 mV in the 0.5 mM concentration of Adenine or Cytosine, the variance decreased by one third while for the case of Thymine it was doubled. Moreover, according to the structure function of TS, the fractality of current TS differed as a function of varying membrane potentials (pd) and nucleotide concentrations. Accordingly, the calculated permutation entropy of the TS, validated the biophysical approach defined for the recognition of different nucleotides at various concentrations, pd's and polarities. Thus, the promising outcomes of the combined experimental and theoretical methodologies presented here can be implemented as a complementary means in pore-based nucleotide recognition approaches.
Caudron, Fabrice; Barral, Yves
2013-12-05
Cellular behavior is frequently influenced by the cell's history, indicating that single cells may memorize past events. We report that budding yeast permanently escape pheromone-induced cell-cycle arrest when experiencing a deceptive mating attempt, i.e., not reaching their putative partner within reasonable time. This acquired behavior depends on super-assembly and inactivation of the G1/S inhibitor Whi3, which liberates the G1 cyclin Cln3 from translational inhibition. Super-assembly of Whi3 is a slow response to pheromone, driven by polyQ and polyN domains, counteracted by Hsp70, and stable over generations. Unlike prion aggregates, Whi3 super-assemblies are not inherited mitotically but segregate to the mother cell. We propose that such polyQ- and polyN-based elements, termed here mnemons, act as cellular memory devices to encode previous environmental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
Single-Molecule Counting of Point Mutations by Transient DNA Binding
NASA Astrophysics Data System (ADS)
Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan
2017-03-01
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Methods and kits for nucleic acid analysis using fluorescence resonance energy transfer
Kwok, Pui-Yan; Chen, Xiangning
1999-01-01
A method for detecting the presence of a target nucleotide or sequence of nucleotides in a nucleic acid is disclosed. The method is comprised of forming an oligonucleotide labeled with two fluorophores on the nucleic acid target site. The doubly labeled oligonucleotide is formed by addition of a singly labeled dideoxynucleoside triphosphate to a singly labeled polynucleotide or by ligation of two singly labeled polynucleotides. Detection of fluorescence resonance energy transfer upon denaturation indicates the presence of the target. Kits are also provided. The method is particularly applicable to genotyping.
USDA-ARS?s Scientific Manuscript database
In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body we...
Eliakim, Alon; Ben Zaken, Sigal; Meckel, Yoav; Yamin, Chen; Dror, Nitzan; Nemet, Dan
2015-12-01
We present an adolescent elite water polo player who despite a genetic predisposition to develop exercise-induced severe muscle damage due to carrying the IL-6 174C allele single-nucleotide polymorphism, developed acute rhabdomyolysis only after a vigorous out-of-water training, suggesting that water polo training may be more suitable for genetically predisposed athletes.
Olsen, Randall J.; Sitkiewicz, Izabela; Ayeras, Ara A.; Gonulal, Vedia E.; Cantu, Concepcion; Beres, Stephen B.; Green, Nicole M.; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P.; Montgomery, Charles A.; Cartwright, Joiner; McGeer, Allison; Low, Donald E.; Whitney, Adeline R.; Cagle, Philip T.; Blasdel, Terry L.; DeLeo, Frank R.; Musser, James M.
2010-01-01
Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis (“flesh-eating disease”). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the ΔmtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research. PMID:20080771
Olsen, Randall J; Sitkiewicz, Izabela; Ayeras, Ara A; Gonulal, Vedia E; Cantu, Concepcion; Beres, Stephen B; Green, Nicole M; Lei, Benfang; Humbird, Tammy; Greaver, Jamieson; Chang, Ellen; Ragasa, Willie P; Montgomery, Charles A; Cartwright, Joiner; McGeer, Allison; Low, Donald E; Whitney, Adeline R; Cagle, Philip T; Blasdel, Terry L; DeLeo, Frank R; Musser, James M
2010-01-12
Single-nucleotide changes are the most common cause of natural genetic variation among members of the same species, but there is remarkably little information bearing on how they alter bacterial virulence. We recently discovered a single-nucleotide mutation in the group A Streptococcus genome that is epidemiologically associated with decreased human necrotizing fasciitis ("flesh-eating disease"). Working from this clinical observation, we find that wild-type mtsR function is required for group A Streptococcus to cause necrotizing fasciitis in mice and nonhuman primates. Expression microarray analysis revealed that mtsR inactivation results in overexpression of PrsA, a chaperonin involved in posttranslational maturation of SpeB, an extracellular cysteine protease. Isogenic mutant strains that overexpress prsA or lack speB had decreased secreted protease activity in vivo and recapitulated the necrotizing fasciitis-negative phenotype of the DeltamtsR mutant strain in mice and monkeys. mtsR inactivation results in increased PrsA expression, which in turn causes decreased SpeB secreted protease activity and reduced necrotizing fasciitis capacity. Thus, a naturally occurring single-nucleotide mutation dramatically alters virulence by dysregulating a multiple gene virulence axis. Our discovery has broad implications for the confluence of population genomics and molecular pathogenesis research.
Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei
2017-08-01
Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Böhm, H; Gross, B; Gaestel, M; Bommer, U A; Ryffel, G; Bielka, H
1991-01-01
The growth-related protein p23 of the Ehrlich ascites tumor (EAT) is preferentially expressed in the exponentially growing tumor; its synthesis is translationally controlled. p23 mRNA is efficiently translated in the wheat germ cell-free lysate. In contrast, p23 mRNA present in poly(A)+RNA isolated from EAT is not translated in cell-free systems of EAT and reticulocytes. Moreover, translation of a p23 transcript is inhibited in the presence of total poly(A)+RNA. This inhibition is abolished by the removal of the 5'-UTR of the p23 transcript. Solution hybridization/RNase protection experiments point to the presence of a nucleotide sequence complementary to the 5'-UTR of p23 mRNA which might be involved in p23 mRNA inhibition.
Pharmacokinetics of intramuscular microparticle depot of valdecoxib in an experimental model.
Agnihotri, Sagar M; Vavia, Pradeep R
2009-09-01
We did a prospective study to investigate pharmacokinetics of a single intramuscularly (i.m.) administered Valdecoxib (VC) polymeric microparticles in New Zealand white rabbits. Poly[lac(glc-leu)] microparticles encapsulating a potent cyclooxygenase-2- selective inhibitor, VC, were prepared by emulsion and solvent evaporation technique and administered i.m. to rabbits for pharmacokinetic study. A single i.m. dose of drug-loaded poly[lac(glc-leu)] microparticles resulted in sustained therapeutic drug levels in the plasma for 49 days. The relative bioavailability was increased severalfold as compared with unencapsulated drug. Injectable poly[lac(glc-leu)] microparticles hold promise for increasing drug bioavailability and reducing dosing frequency for better management of rheumatoid arthritis.
Blobstein, S H; Weinstein, I B; Grunberger, D; Weisgras, J; Harvey, R G
1975-07-29
Several lines of evidence suggest that oxide derivatives of carcinogenic polycyclic hydrocarbons are the reactive intermediates for in vivo binding to cellular nucleic acids. In the present study the covalent binding of 7,12-dimethylbenz[alpha]anthracene 5,6-oxide to synthetic homopolymers and nucleic acids in aqueous-acetone solutions has been investigated. Poly(G) was found to be the most reactive nucleic acid and underwent approximately 7-10% modification. Alkaline hydrolysis of the poly(G)-dimethylbenzathracene conjugate yielded chromatographically distinct polycyclic hydrocarbon-modified nucleotides which were further characterized by spectral analyses and enzymatic and chemical degradation. When the oxide was allowed to react with GMP or dGMP, at least two products were obtained in about 1% yield. Acid hydrolysis of the dGMP-dimethylbenzanthracene conjugates liberated the corresponding guanine-dimethylbenzathracene products. Mass spectral analysis of the modified bases provided direct evidence that we had obtained covalent binding of the poly-cyclic hydrocarbon to guanine. The mass spectral cleavage pattern suggest that one of these products is a hydroxydihydro derivative of dimethylbenzanthracene bound to guanine and the other is a dimethylbenzanthracene-guanine conjugate. Additional structural aspects of these guanine derivatives are discussed.
Genetic heterogeneity after first-line chemotherapy in high-grade serous ovarian cancer.
Lambrechts, Sandrina; Smeets, Dominiek; Moisse, Matthieu; Braicu, Elena Ioana; Vanderstichele, Adriaan; Zhao, Hui; Van Nieuwenhuysen, Els; Berns, Els; Sehouli, Jalid; Zeillinger, Robert; Darb-Esfahani, Silvia; Cacsire Castillo-Tong, Dan; Lambrechts, Diether; Vergote, Ignace
2016-01-01
Most high-grade serous ovarian carcinoma (HGSOC) patients benefit from first-line platinum-based chemotherapy, but progressively develop resistance during subsequent lines. Re-activating BRCA1 or MDR1 mutations can underlie platinum resistance in end-stage patients. However, little is known about resistance mechanisms occurring after a single line of platinum, when patients still qualify for other treatments. In 31 patients with primary platinum-sensitive HGSOC, we profiled tumours collected during debulking surgery before and after first-line chemotherapy using whole-exome sequencing and single nucleotide polymorphism profiling. Besides germline BRCA1/2 mutations, we observed frequent loss-of-heterozygosity in homologous recombination (HR) genes and mutation spectra characteristic of HR-deficiency in all tumours. At relapse, tumours differed considerably from their primary counterparts. There was, however, no evidence of events reactivating the HR pathway, also not in tumours resistant to second-line platinum. Instead, a platinum score of 13 copy number regions, among other genes including MECOM, CCNE1 and ERBB2, correlated with platinum-free interval (PFI) after first-line therapy, whereas an increase of this score in recurrent tumours predicted the change in PFI during subsequent therapy. Already after a single line of platinum, there is huge variability between primary and recurrent tumours, advocating that in HGSOC biopsies need to be collected at relapse to tailor treatment options to the underlying genetic profile. Nevertheless, all primary platinum-sensitive HGSOCs remained HR-deficient, irrespective of whether they became resistant to second-line platinum, further suggesting these tumours qualify for second-line Poly APD ribose polymerase (PARP) inhibitor treatment. Finally, chromosomal instability contributes to acquired resistance after a single line of platinum therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Islam, Md. Maidul; Suresh Kumar, Gopinatha
2008-03-01
The binding affinity, energetics and conformational aspects of the interaction of isoquinoline alkaloids berberine and palmatine to four single stranded polyribonucleotides polyguanylic acid [poly(G)], polyinosinic acid [poly(I)], polycytidylic acid [poly(C)] and polyuridylic acid [poly(U)] were studied by absorption, fluorescence, isothermal titration calorimetry and circular dichroism spectroscopy and compared with ethidium. Berberine, palmatine and ethidium binds strongly with poly(G) and poly(I) with affinity in the order 10 5 M -1 while their binding to poly(C) and poly(U) were very weak or practically nil. The same conclusions have also emerged from isothermal titration calorimetric studies. The binding of all the three compounds to poly(C) and poly(I) was exothermic and favored by both negative enthalpy change and positive entropy change. Conformational change in the polymer associated with the binding was observed in poly(I) with all the three molecules and poly(U) with ethidium but not in poly(G) and poly(C) revealing differences in the orientation of the bound molecules in the hitherto different helical organization of these polymers. These fundamental results may be useful and serve as database for the development of futuristic RNA based small molecule therapeutics.
2013-10-01
identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in cytokine genes, as well demographic, clinical, and...Center. The purpose of the proposed project is to identify common genetic variations (i.e., single nucleotide polymorphisms [ SNPs ] and haplotypes) in...research team continues to meet monthly to discuss progress with regards to recruitment, enrollment, and data collection. Training in Genetics In year
Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Sharpe, H.; Brown, N.
1994-07-01
The authors have investigated the distribution of mutant mtDNA molecules in single cells from a patient with Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease that is characterized by a sudden-onset bilateral loss of central vision, which typically occurs in early adulthood. More than 50% of all LHON patients carry an mtDNA mutation at nucleotide position 11778. This nucleotide change converts a highly conserved arginine residue to histidine at codon 340 in the NADH-ubiquinone oxidoreductase subunit 4 (ND4) gene of mtDNA. In the present study, the authors used PCR amplification of mtDNA from lymphocytes to investigate mtDNAmore » heteroplasmy at the single-cell level in a LHON patient. They found that most cells were either homoplasmic normal or homoplasmic mutant at nucleotide position 11778. Some (16%) cells contained both mutant and normal mtDNA.« less
Tian, Kai; Chen, Xiaowei; Luan, Binquan; Singh, Prashant; Yang, Zhiyu; Gates, Kent S; Lin, Mengshi; Mustapha, Azlin; Gu, Li-Qun
2018-05-22
Accurate and rapid detection of single-nucleotide polymorphism (SNP) in pathogenic mutants is crucial for many fields such as food safety regulation and disease diagnostics. Current detection methods involve laborious sample preparations and expensive characterizations. Here, we investigated a single locked nucleic acid (LNA) approach, facilitated by a nanopore single-molecule sensor, to accurately determine SNPs for detection of Shiga toxin producing Escherichia coli (STEC) serotype O157:H7, and cancer-derived EGFR L858R and KRAS G12D driver mutations. Current LNA applications that require incorporation and optimization of multiple LNA nucleotides. But we found that in the nanopore system, a single LNA introduced in the probe is sufficient to enhance the SNP discrimination capability by over 10-fold, allowing accurate detection of the pathogenic mutant DNA mixed in a large amount of the wild-type DNA. Importantly, the molecular mechanistic study suggests that such a significant improvement is due to the effect of the single-LNA that both stabilizes the fully matched base-pair and destabilizes the mismatched base-pair. This sensitive method, with a simplified, low cost, easy-to-operate LNA design, could be generalized for various applications that need rapid and accurate identification of single-nucleotide variations.
NASA Astrophysics Data System (ADS)
Furukawa, Kazuaki; Ebata, Keisuke
2000-12-01
Electrically active polysilanes of poly(methylphenylsilane) (PMPS) and poly[bis(p-n-butylphenyl)silane] (PBPS), which are, respectively, known as a good hole transporting material and a near-ultraviolet electroluminescent material, are end-grafted directly on a crystalline silicon surface. The single polysilane molecules are clearly distinguished one from the other on the surface by means of atomic force microscopy observations. End-grafted single molecules of PMPS are observed as dots while end-grafted PBPS appear as worms extending for more than 100 nm on the crystalline silicon surface.
Survey of inorganic polymers. [for composite matrix resins
NASA Technical Reports Server (NTRS)
Gerber, A. H.; Mcinerney, E. F.
1979-01-01
A literature search was carried out in order to identify inorganic, metallo-organic, and hybrid inorganic-organic polymers that could serve as potential matrix resins for advanced composites. The five most promising candidates were critically reviewed and recommendations were made for the achievement of their potential in terms of performance and cost. These generic polymer classes comprise: (1) Poly(arylsil sesquioxanes); (2) Poly(silyl arylene siloxanes); (3) Poly(silarylenes); (4) Poly(silicon-linked ferrocenes); and (5) Poly(organo phosphazenes). No single candidate currently possesses the necessary combination of physicomechanical properties, thermal stability, processability, and favorable economics. The first three classes exhibit the best thermal performance. On the other hand, poly (organo phosphazenes), the most extensively studied polymer class, exhibit the best combination of structure-property control, processability, and favorable economics.
Electron attachment to DNA single strands: gas phase and aqueous solution.
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F
2007-01-01
The 2'-deoxyguanosine-3',5'-diphosphate, 2'-deoxyadenosine-3',5'-diphosphate, 2'-deoxycytidine-3',5'-diphosphate and 2'-deoxythymidine-3',5'-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3',5'-dTDP (0.17 eV) and 3',5'-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3',5'-dTDP > 3',5'-dCDP > 3',5'-dGDP > 3',5'-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3'-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3'-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3',5'-dADP(-) (0.26 eV) and 3',5'-dGDP(-) (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage.
Genetic risk profiling and gene signature modeling to predict risk of complications after IPAA.
Sehgal, Rishabh; Berg, Arthur; Polinski, Joseph I; Hegarty, John P; Lin, Zhenwu; McKenna, Kevin J; Stewart, David B; Poritz, Lisa S; Koltun, Walter A
2012-03-01
Severe pouchitis and Crohn's disease-like complications are 2 adverse postoperative complications that confound the success of the IPAA in patients with ulcerative colitis. To date, approximately 83 single nucleotide polymorphisms within 55 genes have been associated with IBD. The aim of this study was to identify single-nucleotide polymorphisms that correlate with complications after IPAA that could be utilized in a gene signature fashion to predict postoperative complications and aid in preoperative surgical decision making. One hundred forty-two IPAA patients were retrospectively classified as "asymptomatic" (n = 104, defined as no Crohn's disease-like complications or severe pouchitis for at least 2 years after IPAA) and compared with a "severe pouchitis" group (n = 12, ≥ 4 episodes pouchitis per year for 2 years including the need for long-term therapy to maintain remission) and a "Crohn's disease-like" group (n = 26, presence of fistulae, pouch inlet stricture, proximal small-bowel disease, or pouch granulomata, occurring at least 6 months after surgery). Genotyping for 83 single-nucleotide polymorphisms previously associated with Crohn's disease and/or ulcerative colitis was performed on a customized Illumina genotyping platform. The top 2 single-nucleotide polymorphisms statistically identified as being independently associated with each of Crohn's disease-like and severe pouchitis were used in a multivariate logistic regression model. These single-nucleotide polymorphisms were then used to create probability equations to predict overall chance of a positive or negative outcome for that complication. The top 2 single-nucleotide polymorphisms for Crohn's disease-like complications were in the 10q21 locus and the gene for PTGER4 (p = 0.006 and 0.007), whereas for severe pouchitis it was NOD2 and TNFSF15 (p = 0.003 and 0.011). Probability equations suggested that the risk of these 2 complications greatly increased with increasing number of risk alleles, going as high as 92% for severe pouchitis and 65% for Crohn's disease-like complications. In this IPAA patient cohort, mutations in the 10q21 locus and the PTGER4 gene were associated with Crohn's disease-like complications, whereas mutations in NOD2 and TNFSF15 correlated with severe pouchitis. Preoperative genetic analysis and use of such gene signatures hold promise for improved preoperative surgical patient selection to minimize these IPAA complications.
Schermerhorn, Kelly M.; Gardner, Andrew F.
2015-01-01
Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179
O'Toole, Amanda S.; Miller, Stacy; Haines, Nathan; Zink, M. Coleen; Serra, Martin J.
2006-01-01
Thermodynamic parameters are reported for duplex formation of 48 self-complementary RNA duplexes containing Watson–Crick terminal base pairs (GC, AU and UA) with all 16 possible 3′ double-nucleotide overhangs; mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest-neighbor analysis, the addition of a second dangling nucleotide to a single 3′ dangling nucleotide increases stability of duplex formation up to 0.8 kcal/mol in a sequence dependent manner. Results from this study in conjunction with data from a previous study [A. S. O'Toole, S. Miller and M. J. Serra (2005) RNA, 11, 512.] allows for the development of a refined nearest-neighbor model to predict the influence of 3′ double-nucleotide overhangs on the stability of duplex formation. The model improves the prediction of free energy and melting temperature when tested against five oligomers with various core duplex sequences. Phylogenetic analysis of naturally occurring miRNAs was performed to support our results. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent upon the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for 3′ single terminal overhangs adjacent to a UA pair are also presented. PMID:16820533
High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus
Muchero, Wellington; Guo, Jianjun; Difazio, Stephen P.; ...
2015-01-23
We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcriptionmore » factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca 2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.« less
Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision.
Bao, Zehua; HamediRad, Mohammad; Xue, Pu; Xiao, Han; Tasan, Ipek; Chao, Ran; Liang, Jing; Zhao, Huimin
2018-07-01
We developed a CRISPR-Cas9- and homology-directed-repair-assisted genome-scale engineering method named CHAnGE that can rapidly output tens of thousands of specific genetic variants in yeast. More than 98% of target sequences were efficiently edited with an average frequency of 82%. We validate the single-nucleotide resolution genome-editing capability of this technology by creating a genome-wide gene disruption collection and apply our method to improve tolerance to growth inhibitors.
Electron Induced Conductivity of Al2O3 as Pertaining to Thermionic Integrated Circuits.
1985-12-01
No.6, pp. 4450-4456, December 1983. 18. Pomerantz, M. A., Shatas, R. A. and Marshall, 3. F., "Electrical Conductivity Induced in MgO Crystals by 1.3...Experiments were conducted to measure the electron induced conductivity CEIC) of single crystal sapphire (A120 ) and poly-crystalline alumina (A1203 ). The...induced conductivity (EIC) of single crystal sapphire (A li2O-) and poly-crystalline alumina (Alzz2O. The EIC is generated when the samples are bombarded
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat
2013-05-02
A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.
The Rhinovirus Subviral A-Particle Exposes 3′-Terminal Sequences of Its Genomic RNA
Harutyunyan, Shushan; Kowalski, Heinrich
2014-01-01
ABSTRACT Enteroviruses, which represent a large genus within the family Picornaviridae, undergo important conformational modifications during infection of the host cell. Once internalized by receptor-mediated endocytosis, receptor binding and/or the acidic endosomal environment triggers the native virion to expand and convert into the subviral (altered) A-particle. The A-particle is lacking the internal capsid protein VP4 and exposes N-terminal amphipathic sequences of VP1, allowing for its direct interaction with a lipid bilayer. The genomic single-stranded (+)RNA then exits through a hole close to a 2-fold axis of icosahedral symmetry and passes through a pore in the endosomal membrane into the cytosol, leaving behind the empty shell. We demonstrate that in vitro acidification of a prototype of the minor receptor group of common cold viruses, human rhinovirus A2 (HRV-A2), also results in egress of the poly(A) tail of the RNA from the A-particle, along with adjacent nucleotides totaling ∼700 bases. However, even after hours of incubation at pH 5.2, 5′-proximal sequences remain inside the capsid. In contrast, the entire RNA genome is released within minutes of exposure to the acidic endosomal environment in vivo. This finding suggests that the exposed 3′-poly(A) tail facilitates the positioning of the RNA exit site onto the putative channel in the lipid bilayer, thereby preventing the egress of viral RNA into the endosomal lumen, where it may be degraded. IMPORTANCE For host cell infection, a virus transfers its genome from within the protective capsid into the cytosol; this requires modifications of the viral shell. In common cold viruses, exit of the RNA genome is prepared by the acidic environment in endosomes converting the native virion into the subviral A-particle. We demonstrate that acidification in vitro results in RNA exit starting from the 3′-terminal poly(A). However, the process halts as soon as about 700 bases have left the viral shell. Conversely, inside the cell, RNA egress completes in about 2 min. This suggests the existence of cellular uncoating facilitators. PMID:24672023
Linear and circular dichroism characterization of thionine binding mode with DNA polynucleotides
NASA Astrophysics Data System (ADS)
Tuite, Eimer Mary; Nordén, Bengt
2018-01-01
The binding mode of thionine (3,7-diamino-5-phenothiazinium) with alternating and non-alternating DNA polynucleotides at low binding ratios was conclusively determined using linear and circular dichroism spectroscopies. The binding to [poly(dG-dC)]2 and poly(dG)·poly(dC) was purely intercalative and was insensitive to ionic strength. Intercalative binding to [poly(dA-dT)]2 is observed at low ionic strength, but a shift of some dye to an non-intercalative mode is observed as the background salt concentration increases. With poly(dA)·poly(dT), intercalative binding is unfavourable, although some dye molecules may intercalate at low ionic strength, and groove binding is strongly promoted with increasing concentration of background salt. However, stacking with bases is observed with single-stranded poly(dA) and with triplex poly(dT)*poly(dA)·poly(dT) which suggests that the unusual structure of poly(dA)·poly(dT) precludes intercalation. Thionine behaves similarly to the related dye methylene blue, and small differences may be attributed either to the ability of thionine to form H-bonds that stabilize intercalation or to its improved stacking interactions in the basepair pocket on steric grounds.
Lühr, B; Scheller, J; Meyer, P; Kramer, W
1998-02-01
We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.
NASA Astrophysics Data System (ADS)
Ou, Jiemei; Yang, Yuzhao; Lin, Wensheng; Yuan, Zhongke; Gan, Lin; Lin, Xiaofeng; Chen, Xudong; Chen, Yujie
2015-03-01
We investigated the transitions of conformations and their effects on emission properties of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) single molecules in PMMA matrix during thermal annealing process. Total internal reflection fluorescence microscopy measurements reveal the transformation from collapsed conformations to extended, highly ordered rod-like structures of MEH-PPV single molecules during thermal annealing. The blue shifts in the ensemble single molecule PL spectra support our hypnosis. The transition occurs as the annealing temperature exceeds 100 °C, implying that an annealing temperature near the glass transition temperature Tg of matrix is ideal for the control and optimization of blend polymer films.
Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro
Purohit, Nupur K.; Robu, Mihaela; Shah, Rashmi G.; Geacintov, Nicholas E.; Shah, Girish M.
2016-01-01
The existing methodologies for studying robust responses of poly (ADP-ribose) polymerase-1 (PARP-1) to DNA damage with strand breaks are often not suitable for examining its subtle responses to altered DNA without strand breaks, such as UV-damaged DNA. Here we describe two novel assays with which we characterized the interaction of PARP-1 with UV-damaged DNA in vivo and in vitro. Using an in situ fractionation technique to selectively remove free PARP-1 while retaining the DNA-bound PARP-1, we demonstrate a direct recruitment of the endogenous or exogenous PARP-1 to the UV-lesion site in vivo after local irradiation. In addition, using the model oligonucleotides with single UV lesion surrounded by multiple restriction enzyme sites, we demonstrate in vitro that DDB2 and PARP-1 can simultaneously bind to UV-damaged DNA and that PARP-1 casts a bilateral asymmetric footprint from −12 to +9 nucleotides on either side of the UV-lesion. These techniques will permit characterization of different roles of PARP-1 in the repair of UV-damaged DNA and also allow the study of normal housekeeping roles of PARP-1 with undamaged DNA. PMID:26753915
Demonstration of Protein-Based Human Identification Using the Hair Shaft Proteome
Leppert, Tami; Anex, Deon S.; Hilmer, Jonathan K.; Matsunami, Nori; Baird, Lisa; Stevens, Jeffery; Parsawar, Krishna; Durbin-Johnson, Blythe P.; Rocke, David M.; Nelson, Chad; Fairbanks, Daniel J.; Wilson, Andrew S.; Rice, Robert H.; Woodward, Scott R.; Bothner, Brian; Hart, Bradley R.; Leppert, Mark
2016-01-01
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 single nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). This study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts. PMID:27603779
Ruhlman, Tracey A; Zhang, Jin; Blazier, John C; Sabir, Jamal S M; Jansen, Robert K
2017-04-01
There is a misinterpretation in the literature regarding the variable orientation of the small single copy region of plastid genomes (plastomes). The common phenomenon of small and large single copy inversion, hypothesized to occur through intramolecular recombination between inverted repeats (IR) in a circular, single unit-genome, in fact, more likely occurs through recombination-dependent replication (RDR) of linear plastome templates. If RDR can be primed through both intra- and intermolecular recombination, then this mechanism could not only create inversion isomers of so-called single copy regions, but also an array of alternative sequence arrangements. We used Illumina paired-end and PacBio single-molecule real-time (SMRT) sequences to characterize repeat structure in the plastome of Monsonia emarginata (Geraniaceae). We used OrgConv and inspected nucleotide alignments to infer ancestral nucleotides and identify gene conversion among repeats and mapped long (>1 kb) SMRT reads against the unit-genome assembly to identify alternative sequence arrangements. Although M. emarginata lacks the canonical IR, we found that large repeats (>1 kilobase; kb) represent ∼22% of the plastome nucleotide content. Among the largest repeats (>2 kb), we identified GC-biased gene conversion and mapping filtered, long SMRT reads to the M. emarginata unit-genome assembly revealed alternative, substoichiometric sequence arrangements. We offer a model based on RDR and gene conversion between long repeated sequences in the M. emarginata plastome and provide support that both intra-and intermolecular recombination between large repeats, particularly in repeat-rich plastomes, varies unit-genome structure while homogenizing the nucleotide sequence of repeats. © 2017 Botanical Society of America.
Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution.
Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Kim, Jae-Ho
2011-06-07
This work describes a simple technique for direct patterning of single-walled carbon nanotube (SWNT)/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) composite electrodes in a large area on a substrate based on the solution transfer process by microcontact printing using poly(dimethylsiloxane) (PDMS) stamps. Various shapes of SWNT/PEDOT-PSS composite patterns, such as line, circle, and square, can be easily fabricated with high pattern fidelity and structural integrity. The single parallel line pattern device exhibits high electrical conductivity (0.75 × 10(5) S/m) and electronic stability because of alignment of nanotubes and big-size SWNT bundles (∼5 nm). The electromechanical study reveals that the composite patterns show ∼1% resistance change along SWNT alignment direction and ∼5% resistance change along vertical alignment direction after 200 bend cycles. Our approach provides a facile, low-cost method to pattern transparent conductive SWNT/polymer composite electrodes and demonstrates a novel platform for future integration of conducting SWNT/polymer composite patterns for optoelectronic applications.
Development of anti-scale poly(aspartic acid-citric acid) dual polymer systems for water treatment.
Nayunigari, Mithil Kumar; Gupta, Sanjay Kumar; Kokkarachedu, Varaprasad; Kanny, K; Bux, F
2014-01-01
The formation of calcium sulphate and calcium carbonate scale poses major problems in heat exchangers and water cooling systems, thereby affecting the performance of these types of equipment. In order to inhibit these scale formations, new types of biodegradable water soluble single polymer and dual poly(aspartic acid-citric acid) polymers were developed and tested. The effectiveness of single polymer and four different compositions of poly aspartic acid and citric acid dual polymer systems as scale inhibitors were evaluated. Details of the synthesis, thermal stability, scale inhibition and the morphological characterization of single and dual polymers are presented in this scientific paper. It was found that the calcium sulphate scale inhibition rate was in the range 76.06-91.45%, while the calcium carbonate scale inhibition rate observed was in the range 23.37-30.0% at 65-70 °C. The finding suggests that the water soluble dual polymers are very effective in sulphate scale inhibition in comparison of calcium carbonate scale inhibition.
NASA Astrophysics Data System (ADS)
Porcarelli, Luca; Aboudzadeh, M. Ali; Rubatat, Laurent; Nair, Jijeesh R.; Shaplov, Alexander S.; Gerbaldi, Claudio; Mecerreyes, David
2017-10-01
Single-ion conducting polymer electrolytes represent the ideal solution to reduce concentration polarization in lithium metal batteries (LMBs). This paper reports on the synthesis and characterization of single-ion ABA triblock copolymer electrolytes comprising PEO and poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) blocks, poly(LiMTFSI). Block copolymers are prepared by reversible addition-fragmentation chain transfer polymerization, showing low glass transition temperature (-55 to 7 °C) and degree of crystallinity (51-0%). Comparatively high values of ionic conductivity are obtained (up to ≈ 10-4 S cm-1 at 70 °C), combined with a lithium-ion transference number close to unity (tLi+ ≈ 0.91) and a 4 V electrochemical stability window. In addition to these promising features, solid polymer electrolytes are successfully tested in lithium metal cells at 70 °C providing long lifetime up to 300 cycles, and stable charge/discharge cycling at C/2 (≈100 mAh g-1).
Improved Aerogel Vacuum Thermal Insulation
NASA Technical Reports Server (NTRS)
Ruemmele, Warren P.; Bue, Grant C.
2009-01-01
An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.
Simultaneous determination of nucleotide sugars with ion-pair reversed-phase HPLC.
Nakajima, Kazuki; Kitazume, Shinobu; Angata, Takashi; Fujinawa, Reiko; Ohtsubo, Kazuaki; Miyoshi, Eiji; Taniguchi, Naoyuki
2010-07-01
Nucleotide sugars are important in determining cell surface glycoprotein glycosylation, which can modulate cellular properties such as growth and arrest. We have developed a conventional HPLC method for simultaneous determination of nucleotide sugars. A mixture of nucleotide sugars (CMP-NeuAc, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GlcNAc, GDP-Man, GDP-Fuc and UDP-GlcUA) and relevant nucleotides were perfectly separated in an optimized ion-pair reversed-phase mode using Inertsil ODS-4 and ODS-3 columns. The newly developed method enabled us to determine the nucleotide sugars in cellular extracts from 1 x 10(6) cells in a single run. We applied this method to characterize nucleotide sugar levels in breast and pancreatic cancer cell lines and revealed that the abundance of UDP-GlcNAc, UDP-GalNAc, UDP-GlcUA and GDP-Fuc were a cell-type-specific feature. To determine the physiological significance of changes in nucleotide sugar levels, we analyzed their changes by glucose deprivation and found that the determination of nucleotide sugar levels provided us with valuable information with respect to studying the overview of cellular glycosylation status.
Generalization of Associations of Kidney-Related Genetic Loci to American Indians
Haack, Karin; Almasy, Laura; Laston, Sandra; Lee, Elisa T.; Best, Lyle G.; Fabsitz, Richard R.; MacCluer, Jean W.; Howard, Barbara V.; Umans, Jason G.; Cole, Shelley A.
2014-01-01
Summary Background and objectives CKD disproportionally affects American Indians, who similar to other populations, show genetic susceptibility to kidney outcomes. Recent studies have identified several loci associated with kidney traits, but their relevance in American Indians is unknown. Design, setting, participants, & measurements This study used data from a large, family-based genetic study of American Indians (the Strong Heart Family Study), which includes 94 multigenerational families enrolled from communities located in Oklahoma, the Dakotas, and Arizona. Individuals were recruited from the Strong Heart Study, a population-based study of cardiovascular disease in American Indians. This study selected 25 single nucleotide polymorphisms in 23 loci identified from recently published kidney-related genome-wide association studies in individuals of European ancestry to evaluate their associations with kidney function (estimated GFR; individuals 18 years or older, up to 3282 individuals) and albuminuria (urinary albumin to creatinine ratio; n=3552) in the Strong Heart Family Study. This study also examined the association of single nucleotide polymorphisms in the APOL1 region with estimated GFR in 1121 Strong Heart Family Study participants. GFR was estimated using the abbreviated Modification of Diet in Renal Disease Equation. Additive genetic models adjusted for age and sex were used. Results This study identified significant associations of single nucleotide polymorphisms with estimated GFR in or nearby PRKAG2, SLC6A13, UBE2Q2, PIP5K1B, and WDR72 (P<2.1 × 10-3 to account for multiple testing). Single nucleotide polymorphisms in these loci explained 2.2% of the estimated GFR total variance and 2.9% of its heritability. An intronic variant of BCAS3 was significantly associated with urinary albumin to creatinine ratio. APOL1 single nucleotide polymorphisms were not associated with estimated GFR in a single variant test or haplotype analyses, and the at-risk variants identified in individuals with African ancestry were not detected in DNA sequencing of American Indians. Conclusion This study extends the genetic associations of loci affecting kidney function to American Indians, a population at high risk of kidney disease, and provides additional support for a potential biologic relevance of these loci across ancestries. PMID:24311711
Feng, Xue; Poplawsky, Alan R; Karasev, Alexander V
2014-11-01
The I gene is a single, dominant gene conferring temperature-sensitive resistance to all known strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris). However, the closely related Bean common mosaic necrosis virus (BCMNV) induces whole plant necrosis in I-bearing genotypes of common bean, and the presence of additional, recessive genes is required to prevent this severe whole plant necrotic reaction caused by BCMNV. Almost all known BCMNV isolates have so far been classified as having pathotype VI based on their interactions with the five BCMV resistance genes, and all have a distinct serotype A. Here, we describe a new isolate of BCMV, RU1M, capable of inducing whole plant necrosis in the presence of the I gene, that appears to belong to pathotype VII and exhibits B-serotype. Unlike other isolates of BCMV, RU1M was able to induce severe whole plant necrosis below 30°C in bean cultivar Jubila that carries the I gene and a protective recessive gene bc-1. The whole genome of RU1M was cloned and sequenced and determined to be 9,953 nucleotides long excluding poly(A), coding for a single polyprotein of 3,186 amino acids. Most of the genome was found almost identical (>98%) to the BCMV isolate RU1-OR (also pathotype VII) that did not induce necrotic symptoms in 'Jubila'. Inspection of the nucleotide sequences for BCMV isolates RU1-OR, RU1M, and US10 (all pathotype VII) and three closely related sequences of BCMV isolates RU1P, RU1D, and RU1W (all pathotype VI) revealed that RU1M is a product of recombination between RU1-OR and a yet unknown potyvirus. A 0.8-kb fragment of an unknown origin in the RU1M genome may have led to its ability to induce necrosis regardless of temperature in beans carrying the I gene. This is the first report of a BCMV isolate inducing temperature-insensitive necrosis in an I gene containing bean genotype.
Yang, Yong; Wu, Zhihong; Zhao, Taimao; Wang, Hai; Zhao, Dong; Zhang, Jianguo; Wang, Yipeng; Ding, Yaozhong; Qiu, Guixing
2009-06-01
The etiology of adolescent idiopathic scoliosis is undetermined despite years of research. A number of hypotheses have been postulated to explain its development, including growth abnormalities. The irregular expression of growth hormone and insulin-like growth factor-1 (IGF-1) may disturb hormone metabolism, result in a gross asymmetry, and promote the progress of adolescent idiopathic scoliosis. Initial association studies in complex diseases have demonstrated the power of candidate gene association. Prior to our study, 1 study in this field had a negative result. A replicable study is vital for reliability. To determine the relationship of growth hormone receptor and IGF-1 genes with adolescent idiopathic scoliosis, a population-based association study was performed. Single nucleotide polymorphisms with potential function were selected from candidate genes and a distribution analysis was performed. A conclusion was made confirming the insufficiency of an association between adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes in Han Chinese.
A single splice site mutation in human-specific ARHGAP11B causes basal progenitor amplification
Florio, Marta; Namba, Takashi; Pääbo, Svante; Hiller, Michael; Huttner, Wieland B.
2016-01-01
The gene ARHGAP11B promotes basal progenitor amplification and is implicated in neocortex expansion. It arose on the human evolutionary lineage by partial duplication of ARHGAP11A, which encodes a Rho guanosine triphosphatase–activating protein (RhoGAP). However, a lack of 55 nucleotides in ARHGAP11B mRNA leads to loss of RhoGAP activity by GAP domain truncation and addition of a human-specific carboxy-terminal amino acid sequence. We show that these 55 nucleotides are deleted by mRNA splicing due to a single C→G substitution that creates a novel splice donor site. We reconstructed an ancestral ARHGAP11B complementary DNA without this substitution. Ancestral ARHGAP11B exhibits RhoGAP activity but has no ability to increase basal progenitors during neocortex development. Hence, a single nucleotide substitution underlies the specific properties of ARHGAP11B that likely contributed to the evolutionary expansion of the human neocortex. PMID:27957544
Li, Ming; Ohi, Kazutaka; Chen, Chunhui; He, Qinghua; Liu, Jie-Wei; Chen, Chuansheng; Luo, Xiong-Jian; Dong, Qi; Hashimoto, Ryota; Su, Bing
2014-12-01
Hippocampal volume is a key brain structure for learning ability and memory process, and hippocampal atrophy is a recognized biological marker of Alzheimer's disease. However, the genetic bases of hippocampal volume are still unclear although it is a heritable trait. Genome-wide association studies (GWASs) on hippocampal volume have implicated several significantly associated genetic variants in Europeans. Here, to test the contributions of these GWASs identified genetic variants to hippocampal volume in different ethnic populations, we screened the GWAS-identified candidate single-nucleotide polymorphisms in 3 independent healthy Asian brain imaging samples (a total of 990 subjects). The results showed that none of these single-nucleotide polymorphisms were associated with hippocampal volume in either individual or combined Asian samples. The replication results suggested a complexity of genetic architecture for hippocampal volume and potential genetic heterogeneity between different ethnic populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Detecting Single-Nucleotide Substitutions Induced by Genome Editing.
Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R
2016-08-01
The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells. © 2016 Cold Spring Harbor Laboratory Press.
Enzymes Involved in Post-transcriptional RNA Metabolism in Gram-negative bacteria
Mohanty, Bijoy K.
2018-01-01
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this chapter we discuss the various enzymes that control transcription, translation and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5′ and 3′ termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript, are matured to individual 16S, 23S and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and non-translated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase as well as proteins that regulate the catalytic activity of particular ribonucleases. Under certain stress conditions an additional group of specialized endonucleases facilitate the cell’s ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I participate in multiple RNA processing and decay pathways. PMID:29676246
Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life
Perina, Dragutin; Mikoč, Andreja; Ahel, Josip; Ćetković, Helena; Žaja, Roko; Ahel, Ivan
2014-01-01
Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in regulation of many cellular pathways. Poly(ADP-ribose) (PAR) consists of chains of repeating ADP-ribose nucleotide units and is synthesized by the family of enzymes called poly(ADP-ribose) polymerases (PARPs). This modification can be removed by the hydrolytic action of poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3 (ARH3). Hydrolytic activity of macrodomain proteins (MacroD1, MacroD2 and TARG1) is responsible for the removal of terminal ADP-ribose unit and for complete reversion of protein ADP-ribosylation. Poly(ADP-ribosyl)ation is widely utilized in eukaryotes and PARPs are present in representatives from all six major eukaryotic supergroups, with only a small number of eukaryotic species that do not possess PARP genes. The last common ancestor of all eukaryotes possessed at least five types of PARP proteins that include both mono and poly(ADP-ribosyl) transferases. Distribution of PARGs strictly follows the distribution of PARP proteins in eukaryotic species. At least one of the macrodomain proteins that hydrolyse terminal ADP-ribose is also always present. Therefore, we can presume that the last common ancestor of all eukaryotes possessed a fully functional and reversible PAR metabolism and that PAR signalling provided the conditions essential for survival of the ancestral eukaryote in its ancient environment. PARP proteins are far less prevalent in bacteria and were probably gained through horizontal gene transfer. Only eleven bacterial species possess all proteins essential for a functional PAR metabolism, although it is not known whether PAR metabolism is truly functional in bacteria. Several dsDNA viruses also possess PARP homologues, while no PARP proteins have been identified in any archaeal genome. Our analysis of the distribution of enzymes involved in PAR metabolism provides insight into the evolution of these important signalling systems, as well as providing the basis for selection of the appropriate genetic model organisms to study the physiology of the specific human PARP proteins. PMID:24865146
Seal, B S; Neill, J D; Ridpath, J F
1994-07-01
Caliciviruses are nonenveloped with a polyadenylated genome of approximately 7.6 kb and a single capsid protein. The "RNA Fold" computer program was used to analyze 3'-terminal noncoding sequences of five feline calicivirus (FCV), rabbit hemorrhagic disease virus (RHDV), and two San Miguel sea lion virus (SMSV) isolates. The FCV 3'-terminal sequences are 40-46 nucleotides in length and 72-91% similar. The FCV sequences were predicted to contain two possible duplex structures and one stem-loop structure with free energies of -2.1 to -18.2 kcal/mole. The RHDV genomic 3'-terminal RNA sequences are 54 nucleotides in length and share 49% sequence similarity to homologous regions of the FCV genome. The RHDV sequence was predicted to form two duplex structures in the 3'-terminal noncoding region with a single stem-loop structure, resembling that of FCV. In contrast, the SMSV 1 and 4 genomic 3'-terminal noncoding sequences were 185 and 182 nucleotides in length, respectively. Ten possible duplex structures were predicted with an average structural free energy of -35 kcal/mole. Sequence similarity between the two SMSV isolates was 75%. Furthermore, extensive cloverleaflike structures are predicted in the 3' noncoding region of the SMSV genome, in contrast to the predicted single stem-loop structures of FCV or RHDV.
Nelson, Chase W; Moncla, Louise H; Hughes, Austin L
2015-11-15
New applications of next-generation sequencing technologies use pools of DNA from multiple individuals to estimate population genetic parameters. However, no publicly available tools exist to analyse single-nucleotide polymorphism (SNP) calling results directly for evolutionary parameters important in detecting natural selection, including nucleotide diversity and gene diversity. We have developed SNPGenie to fill this gap. The user submits a FASTA reference sequence(s), a Gene Transfer Format (.GTF) file with CDS information and a SNP report(s) in an increasing selection of formats. The program estimates nucleotide diversity, distance from the reference and gene diversity. Sites are flagged for multiple overlapping reading frames, and are categorized by polymorphism type: nonsynonymous, synonymous, or ambiguous. The results allow single nucleotide, single codon, sliding window, whole gene and whole genome/population analyses that aid in the detection of positive and purifying natural selection in the source population. SNPGenie version 1.2 is a Perl program with no additional dependencies. It is free, open-source, and available for download at https://github.com/hugheslab/snpgenie. nelsoncw@email.sc.edu or austin@biol.sc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Base Preferences in Non-Templated Nucleotide Incorporation by MMLV-Derived Reverse Transcriptases
Zajac, Pawel; Islam, Saiful; Hochgerner, Hannah; Lönnerberg, Peter; Linnarsson, Sten
2013-01-01
Reverse transcriptases derived from Moloney Murine Leukemia Virus (MMLV) have an intrinsic terminal transferase activity, which causes the addition of a few non-templated nucleotides at the 3´ end of cDNA, with a preference for cytosine. This mechanism can be exploited to make the reverse transcriptase switch template from the RNA molecule to a secondary oligonucleotide during first-strand cDNA synthesis, and thereby to introduce arbitrary barcode or adaptor sequences in the cDNA. Because the mechanism is relatively efficient and occurs in a single reaction, it has recently found use in several protocols for single-cell RNA sequencing. However, the base preference of the terminal transferase activity is not known in detail, which may lead to inefficiencies in template switching when starting from tiny amounts of mRNA. Here, we used fully degenerate oligos to determine the exact base preference at the template switching site up to a distance of ten nucleotides. We found a strong preference for guanosine at the first non-templated nucleotide, with a greatly reduced bias at progressively more distant positions. Based on this result, and a number of careful optimizations, we report conditions for efficient template switching for cDNA amplification from single cells. PMID:24392002
Urschitz, Johann; Sultan, Omar; Ward, Kenneth
2011-01-01
Objective Various Asian and Pacifific Islander groups have higher prevalence rates of type 2 diabetes and gestational diabetes. This increased incidence is likely to include genetic factors. Single nucleotide polymorphisms in the retinol binding protein 4 gene have been linked to the occurrence of type 2 diabetes. Hypothesizing a link between retinol binding protein 4 and gestational diabetes, we performed a candidate gene study to look for an association between an important retinol binding protein gene polymorphism (rs3758539) and gestational diabetes. Study Design Blood was collected from Caucasian, Asian, and Pacific Islander women diagnosed with gestational diabetes and from ethnically matched non-diabetic controls. DNA was extracted and real time PCR technology (TaqMan, Applied Biosystems) used to screen for the rs3758539 single nucleotide polymorphism located 5′ of exon 1 of the retinol binding protein 4 gene. Results Genotype and allele frequencies in the controls and gestational diabetes cases were tested using chi-square contingency tests. Genotype frequencies were in Hardy-Weinberg equilibrium. There was no association between the rs3758539 retinol binding protein 4 single nucleotide polymorphism and gestational diabetes in the Caucasian, Filipino, or Pacific Islander groups. Conclusion Interestingly, the rs3758539 retinol binding protein 4 single nucleotide polymorphism was not found to be associated with gestational diabetes. The absence of association suggests that gestational and type 2 diabetes may have more divergent molecular pathophysiology than previously suspected. PMID:21886308
Pooled genome wide association detects association upstream of FCRL3 with Graves' disease.
Khong, Jwu Jin; Burdon, Kathryn P; Lu, Yi; Laurie, Kate; Leonardos, Lefta; Baird, Paul N; Sahebjada, Srujana; Walsh, John P; Gajdatsy, Adam; Ebeling, Peter R; Hamblin, Peter Shane; Wong, Rosemary; Forehan, Simon P; Fourlanos, Spiros; Roberts, Anthony P; Doogue, Matthew; Selva, Dinesh; Montgomery, Grant W; Macgregor, Stuart; Craig, Jamie E
2016-11-18
Graves' disease is an autoimmune thyroid disease of complex inheritance. Multiple genetic susceptibility loci are thought to be involved in Graves' disease and it is therefore likely that these can be identified by genome wide association studies. This study aimed to determine if a genome wide association study, using a pooling methodology, could detect genomic loci associated with Graves' disease. Nineteen of the top ranking single nucleotide polymorphisms including HLA-DQA1 and C6orf10, were clustered within the Major Histo-compatibility Complex region on chromosome 6p21, with rs1613056 reaching genome wide significance (p = 5 × 10 -8 ). Technical validation of top ranking non-Major Histo-compatablity complex single nucleotide polymorphisms with individual genotyping in the discovery cohort revealed four single nucleotide polymorphisms with p ≤ 10 -4 . Rs17676303 on chromosome 1q23.1, located upstream of FCRL3, showed evidence of association with Graves' disease across the discovery, replication and combined cohorts. A second single nucleotide polymorphism rs9644119 downstream of DPYSL2 showed some evidence of association supported by finding in the replication cohort that warrants further study. Pooled genome wide association study identified a genetic variant upstream of FCRL3 as a susceptibility locus for Graves' disease in addition to those identified in the Major Histo-compatibility Complex. A second locus downstream of DPYSL2 is potentially a novel genetic variant in Graves' disease that requires further confirmation.
Gu, Hong; Sun, Erdan; Cui, Lei; Yang, Xiufen; Lim, Apiradee; Xu, Jun; Snellingen, Torkel; Liu, Xipu; Wang, Ningli; Liu, Ningpu
2012-10-01
To investigate the association between single-nucleotide polymorphisms in the pi isoform of glutathione S-transferase (GSTP1) gene and the risk of exudative age-related macular degeneration (AMD) in a Chinese case-control cohort. A total of 131 Chinese patients with exudative AMD and 138 control individuals were recruited. Genomic DNA was extracted from venous blood leukocytes. Two common nonsynonymous single-nucleotide polymorphisms in GSTP1 (rs1695 and rs1138272) were genotyped by polymerase chain reaction followed by allele-specific restriction enzyme digestion and direct sequencing. Significant association with exudative AMD was detected for single-nucleotide polymorphism, rs1695 (P = 0.019). The risk G allele frequencies were 21.8% in AMD patients and 12.7% in control subjects (P = 0.007). Compared with the wild-type AA genotype, odds ratio for the risk of AMD was 1.91 (95% confidence interval, 1.09-3.35) for the heterozygous AG genotype and 2.52 (95% confidence interval, 0.6-10.61) for the homozygous GG genotype. In contrast, rs1138272 was not associated with exudative AMD (P = 1.00). The risk G allele frequencies of rs1138272 were 0.4% in AMD patients and 0.4% in control subjects (P = 1.00). Our data suggest that the GSTP1 variant rs1695 moderately increases the risk of exudative AMD. The variant rs1138272 was rare and was not associated with exudative AMD in this Chinese cohort.
Arnedo, Mireia; Taffé, Patrick; Sahli, Roland; Furrer, Hansjakob; Hirschel, Bernard; Elzi, Luigia; Weber, Rainer; Vernazza, Pietro; Bernasconi, Enos; Darioli, Roger; Bergmann, Sven; Beckmann, Jacques S; Telenti, Amalio; Tarr, Philip E
2007-09-01
HIV-1 infected individuals have an increased cardiovascular risk which is partially mediated by dyslipidemia. Single nucleotide polymorphisms in multiple genes involved in lipid transport and metabolism are presumed to modulate the risk of dyslipidemia in response to antiretroviral therapy. The contribution to dyslipidemia of 20 selected single nucleotide polymorphisms of 13 genes reported in the literature to be associated with plasma lipid levels (ABCA1, ADRB2, APOA5, APOC3, APOE, CETP, LIPC, LIPG, LPL, MDR1, MTP, SCARB1, and TNF) was assessed by longitudinally modeling more than 4400 plasma lipid determinations in 438 antiretroviral therapy-treated participants during a median period of 4.8 years. An exploratory genetic score was tested that takes into account the cumulative contribution of multiple gene variants to plasma lipids. Variants of ABCA1, APOA5, APOC3, APOE, and CETP contributed to plasma triglyceride levels, particularly in the setting of ritonavir-containing antiretroviral therapy. Variants of APOA5 and CETP contributed to high-density lipoprotein-cholesterol levels. Variants of CETP and LIPG contributed to non-high-density lipoprotein-cholesterol levels, a finding not reported previously. Sustained hypertriglyceridemia and low high-density lipoprotein-cholesterol during the study period was significantly associated with the genetic score. Single nucleotide polymorphisms of ABCA1, APOA5, APOC3, APOE, and CETP contribute to plasma triglyceride and high-density lipoprotein-cholesterol levels during antiretroviral therapy exposure. Genetic profiling may contribute to the identification of patients at risk for antiretroviral therapy-related dyslipidemia.
Electron attachment to DNA single strands: gas phase and aqueous solution
Gu, Jiande; Xie, Yaoming; Schaefer, Henry F.
2007-01-01
The 2′-deoxyguanosine-3′,5′-diphosphate, 2′-deoxyadenosine-3′,5′-diphosphate, 2′-deoxycytidine-3′,5′-diphosphate and 2′-deoxythymidine-3′,5′-diphosphate systems are the smallest units of a DNA single strand. Exploring these comprehensive subunits with reliable density functional methods enables one to approach reasonable predictions of the properties of DNA single strands. With these models, DNA single strands are found to have a strong tendency to capture low-energy electrons. The vertical attachment energies (VEAs) predicted for 3′,5′-dTDP (0.17 eV) and 3′,5′-dGDP (0.14 eV) indicate that both the thymine-rich and the guanine-rich DNA single strands have the ability to capture electrons. The adiabatic electron affinities (AEAs) of the nucleotides considered here range from 0.22 to 0.52 eV and follow the order 3′,5′-dTDP > 3′,5′-dCDP > 3′,5′-dGDP > 3′,5′-dADP. A substantial increase in the AEA is observed compared to that of the corresponding nucleic acid bases and the corresponding nucleosides. Furthermore, aqueous solution simulations dramatically increase the electron attracting properties of the DNA single strands. The present investigation illustrates that in the gas phase, the excess electron is situated both on the nucleobase and on the phosphate moiety for DNA single strands. However, the distribution of the extra negative charge is uneven. The attached electron favors the base moiety for the pyrimidine, while it prefers the 3′-phosphate subunit for the purine DNA single strands. In contrast, the attached electron is tightly bound to the base fragment for the cytidine, thymidine and adenosine nucleotides, while it almost exclusively resides in the vicinity of the 3′-phosphate group for the guanosine nucleotides due to the solvent effects. The comparatively low vertical detachment energies (VDEs) predicted for 3′,5′-dADP− (0.26 eV) and 3′,5′-dGDP− (0.32 eV) indicate that electron detachment might compete with reactions having high activation barriers such as glycosidic bond breakage. However, the radical anions of the pyrimidine nucleotides with high VDE are expected to be electronically stable. Thus the base-centered radical anions of the pyrimidine nucleotides might be the possible intermediates for DNA single-strand breakage. PMID:17660189
Jennette, K W; Jeffrey, A M; Blobstein, S H; Beland, F A; Harvey, R G; Weinstein, I B
1977-03-08
The covalent binding of benzo[a]pyrene 4,5-oxide and benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and isomer II to nucleic acids in aqueous acetone solution has been investigated. Benzo[a]pyrene 4,5-oxide reacted preferentially with guanosine residues. On the other hand, benzo[a]pyrene-7,8-dihydrodiol 9,10-oxide isomer I and II reacted extensively with guanosine, adenosine, and cytidine residues. Time course studies showed that the reactivity of isomer I or isomer II with homopolyribonucleotides followed the order poly(G) greater than poly(A) greater than poly(C). Alkaline or enzymatic hydrolysis of the modified nucleic acids and subsequent chromatography on Sephadex LH-20 columns yielded benzo[a]pyrene-nucleotide adducts. These were enzymatically converted to the corresponding nucleosides which were resolved into several distinct components by high-pressure liquid chromatography. Evidence was obtained for the presence of multiple nucleoside adducts of guanosine, adenosine, cytidine, deoxyguanosine, deoxyadenosine, and deoxycytidine. The HPLC profiles of adducts formed with isomer I were different from the corresponding profiles of adducts formed with isomer II. Structural aspects of these nucleoside adducts are discussed.
Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao
2017-01-01
By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662
Hellmich, Wibke; Greif, Dominik; Pelargus, Christoph; Anselmetti, Dario; Ros, Alexandra
2006-10-20
Single cell analytics is a key method in the framework of proteom research allowing analyses, which are not subjected to ensemble-averaging, cell-cycle or heterogeneous cell-population effects. Our previous studies on single cell analysis in poly(dimethylsiloxane) microfluidic devices with native label-free laser induced fluorescence detection [W. Hellmich, C. Pelargus, K. Leffhalm, A. Ros, D. Anselmetti, Electrophoresis 26 (2005) 3689] were extended in order to improve separation efficiency and detection sensitivity. Here, we particularly focus on the influence of poly(oxyethylene) based coatings on the separation performance. In addition, the influence on background fluorescence is studied by the variation of the incident laser power as well as the adaptation of the confocal volume to the microfluidic channel dimensions. Last but not least, the use of carbon black particles further enhanced the detection limit to 25 nM, thereby reaching the relevant concentration ranges necessary for the label-free detection of low abundant proteins in single cells. On the basis of these results, we demonstrate the first electropherogram from an individual Spodoptera frugiperda (Sf9) cell with native label-free UV-LIF detection in a microfluidic chip.
USDA-ARS?s Scientific Manuscript database
Background: Folate is an essential nutrient which supports nucleotide synthesis and biological methylation reactions. Diminished folate status results in chromosome breakage and is associated with several diseases including colorectal cancer. Folate status is also inversely related to plasma homocys...
DDB2 promotes chromatin decondensation at UV-induced DNA damage
Lindh, Michael; Acs, Klara; Vrouwe, Mischa G.; Pines, Alex; van Attikum, Haico; Mullenders, Leon H.
2012-01-01
Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains. PMID:22492724
Polynucleotide: adenosine glycosidase activity of saporin-L1: effect on DNA, RNA and poly(A).
Barbieri, L; Valbonesi, P; Gorini, P; Pession, A; Stirpe, F
1996-01-01
The ribosome-inactivating proteins (RIPs) are a family of plant enzymes for which a unique activity has been determined: rRNA N-glycosidase, which removes adenine at a specific universally conserved position (A4324 in the case of rat ribosomes). Here we report that saporin-L1, a RIP from the leaves of Saponaria officinalis, recognizes other substrates, including RNAs from different sources, DNA and poly(A). Saporin-L1 depurinated DNA extensively and released adenine from all adenine-containing polynucleotides tested. Adenine was the only base released from DNA or artificial polynucleotides. The characteristics of the reactions catalysed by saporin-L1 have been determined: optimal pH and temperature, ionic requirements, and the kinetic parameters Km and kcat. The reaction proceeded without cofactors, at low ionic strength, in the absence of Mg2+ and K+. Saporin-L1 had no activity towards various adenine-containing non-polynucleotide compounds (cytokinins, cofactors, nucleotides). This plant protein may now be classified as a polynucleotide: adenosine glycosidase. PMID:8912688
Yao, Dehui; Ji, Zhixia; Wang, Changjun; Qi, Gaofu; Zhang, Lili; Ma, Xin; Chen, Shouwen
2012-03-01
The strain 3-10 was isolated from soil and identified as B. subtilis according to morphological and physiological characteristics and nucleotide sequence of 16S rRNA. It co-produced anti-fungal iturin A and fertilizer synergist of poly-γ-glutamic acid (γ-PGA) under solid state fermentation (SSF) with rapeseed meal. The co-production of iturin A and γ-PGA reached 5.3 and 51.3 g/kg-dry weight culture, respectively, and the number of viable cells reached 1.9 × 10(10) CFU/g-dry weight culture. In pot tests, the shoot length and dry weight of watermelon seedlings treated by the SSF culture improved by 48.0 and 30.8%, respectively compared to the control; and its biocontrol effect on watermelon fusarium wilt achieved 89.6%. These results highlight a novel strategy to exploit the low-cost and widely available rapeseed meal as dual-functional bio-organic fertilizer under SSF by B. subtilis.
Single-chain behavior of poly(3-hexylthiophene)
NASA Astrophysics Data System (ADS)
Ivanov, Momchil; Gross, Jonathan; Janke, Wolfhard
2017-03-01
Poly(3-hexylthiophene) (P3HT) has been in the focus of recent studies due to its promising future use in organic photovoltaics, electronics and photonics. Recent publications investigate the melt behavior of P3HT, its interaction with other molecules, mainly various fullerene derivates, and isolated chains interacting with substrates. In this work we lay the focus on the single-chain properties of P3HT in vacuum. We compare structural properties obtained from simulations using two coarse-grained models and an atomistic model of the polymer for various chain lengths and temperatures.
Poly (N-ethyl aniline)/Ag Nanocomposite as Humidity Sensor
NASA Astrophysics Data System (ADS)
Pande, Nishigandh S.; Jaspal, Dipika; Ambekar, Jalindar
Poly (N-ethyl aniline)/Ag organic-inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20-80∘ (2θ) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789cm-1, 1595cm-1, 667cm-1 and 501cm-1 in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.
Fraley, Stephanie I; Hardick, Justin; Masek, Billie J; Jo Masek, Billie; Athamanolap, Pornpat; Rothman, Richard E; Gaydos, Charlotte A; Carroll, Karen C; Wakefield, Teresa; Wang, Tza-Huei; Yang, Samuel
2013-10-01
Comprehensive profiling of nucleic acids in genetically heterogeneous samples is important for clinical and basic research applications. Universal digital high-resolution melt (U-dHRM) is a new approach to broad-based PCR diagnostics and profiling technologies that can overcome issues of poor sensitivity due to contaminating nucleic acids and poor specificity due to primer or probe hybridization inaccuracies for single nucleotide variations. The U-dHRM approach uses broad-based primers or ligated adapter sequences to universally amplify all nucleic acid molecules in a heterogeneous sample, which have been partitioned, as in digital PCR. Extensive assay optimization enables direct sequence identification by algorithm-based matching of melt curve shape and Tm to a database of known sequence-specific melt curves. We show that single-molecule detection and single nucleotide sensitivity is possible. The feasibility and utility of U-dHRM is demonstrated through detection of bacteria associated with polymicrobial blood infection and microRNAs (miRNAs) associated with host response to infection. U-dHRM using broad-based 16S rRNA gene primers demonstrates universal single cell detection of bacterial pathogens, even in the presence of larger amounts of contaminating bacteria; U-dHRM using universally adapted Lethal-7 miRNAs in a heterogeneous mixture showcases the single copy sensitivity and single nucleotide specificity of this approach.
Sonnenberg, Lars; Luo, Yufei; Schlaad, Helmut; Seitz, Markus; Cölfen, Helmut; Gaub, Hermann E
2007-12-12
The interaction between poly(L-glutamic acid) (PLE) and calcite crystals was studied with AFM-based single molecule force spectroscopy. Block copolymers of poly(ethylene oxide) (PEO) and PLE were synthesized and covalently attached to the tip of an AFM cantilever. In desorption measurements the molecules were allowed to adsorb on the calcite crystal faces and afterward successively desorbed. The corresponding desorption forces were detected with high precision, showing for example a force transition between the two blocks. Because of its importance in the crystallization process in biominerals, the PLE-calcite interaction was investigated as a function of the pH as well as the calcium concentration of the aqueous solution. The sensitivity of the technique was underlined by resolving different interaction forces for calcite (104) and calcite (100).
3'-End labeling of nucleic acids by a polymerase ribozyme.
Samanta, Biswajit; Horning, David P; Joyce, Gerald F
2018-06-13
A polymerase ribozyme can be used to label the 3' end of RNA or DNA molecules by incorporating a variety of functionalized nucleotide analogs. Guided by a complementary template, the ribozyme adds a single nucleotide that may contain a fluorophore, biotin, azide or alkyne moiety, thus enabling the detection and/or capture of selectively labeled materials. Employing a variety of commercially available nucleotide analogs, efficient labeling was demonstrated for model RNAs and DNAs, human microRNAs and natural tRNA.
Crownover, Emily; Duvall, Craig L.; Convertine, Anthony; Hoffman, Allan S.; Stayton, Patrick S.
2012-01-01
Here we describe a new graft copolymer architecture of poly(propylacrylic acid) (polyPAA) that displays potent pH-dependent, membrane-destabilizing activity and in addition is shown to enhance protein blood circulation kinetics. PolyPAA containing a single telechelic alkyne functionality was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization with an alkyne-functional chain transfer agent (CTA) and coupled to RAFT polymerized poly(azidopropyl methacrylate) (polyAPMA) through azide-alkyne [3+2] Huisgen cycloaddition. The graft copolymers become membrane destabilizing at endosomal pH values and are active at significantly lower concentrations than the linear polyPAA. A biotin terminated polyPAA graft copolymer was prepared by grafting PAA onto polyAPMA polymerized with a biotin functional RAFT CTA. The blood circulation time and biodistribution of tritium labeled avidin conjugated to the polyPAA graft copolymer was characterized along with a clinically utilized 40 kDa branched polyethylene glycol (PEG) also possessing biotin functionalization. The linear and graft polyPAA increase the area under the curve (AUC) over avidin alone by 9 and 12 times, respectively. Furthermore, polyPAA graft copolymer conjugates accumulated in tumor tissue significantly more than the linear polyPAA and the branched PEG conjugates. The collective data presented in this report indicate that the polyPAA graft copolymers exhibit robust pH-dependent, membrane-destabilizing activity, low cytotoxicity and significantly enhance blood circulation time and tumor accumulation. PMID:21699931
Efficiency and Fidelity of Human DNA Polymerases λ and β during Gap-Filling DNA Synthesis
Brown, Jessica A.; Pack, Lindsey R.; Sanman, Laura E.; Suo, Zucai
2010-01-01
The base excision repair (BER) pathway coordinates the replacement of 1 to 10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1- to 10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5′-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER. PMID:20961817
Detecting and Analyzing Genetic Recombination Using RDP4.
Martin, Darren P; Murrell, Ben; Khoosal, Arjun; Muhire, Brejnev
2017-01-01
Recombination between nucleotide sequences is a major process influencing the evolution of most species on Earth. The evolutionary value of recombination has been widely debated and so too has its influence on evolutionary analysis methods that assume nucleotide sequences replicate without recombining. When nucleic acids recombine, the evolution of the daughter or recombinant molecule cannot be accurately described by a single phylogeny. This simple fact can seriously undermine the accuracy of any phylogenetics-based analytical approach which assumes that the evolutionary history of a set of recombining sequences can be adequately described by a single phylogenetic tree. There are presently a large number of available methods and associated computer programs for analyzing and characterizing recombination in various classes of nucleotide sequence datasets. Here we examine the use of some of these methods to derive and test recombination hypotheses using multiple sequence alignments.
Extension of the COG and arCOG databases by amino acid and nucleotide sequences
Meereis, Florian; Kaufmann, Michael
2008-01-01
Background The current versions of the COG and arCOG databases, both excellent frameworks for studies in comparative and functional genomics, do not contain the nucleotide sequences corresponding to their protein or protein domain entries. Results Using sequence information obtained from GenBank flat files covering the completely sequenced genomes of the COG and arCOG databases, we constructed NUCOCOG (nucleotide sequences containing COG databases) as an extended version including all nucleotide sequences and in addition the amino acid sequences originally utilized to construct the current COG and arCOG databases. We make available three comprehensive single XML files containing the complete databases including all sequence information. In addition, we provide a web interface as a utility suitable to browse the NUCOCOG database for sequence retrieval. The database is accessible at . Conclusion NUCOCOG offers the possibility to analyze any sequence related property in the context of the COG and arCOG framework simply by using script languages such as PERL applied to a large but single XML document. PMID:19014535
Obesity-Related Genomic Loci Are Associated with Type 2 Diabetes in a Han Chinese Population
Zhao, Qi; He, Jiang; Chen, Li; Zhao, Zhigang; Li, Qiang; Ge, Jiapu; Chen, Gang; Guo, Xiaohui; Lu, Juming; Weng, Jianping; Jia, Weiping; Ji, Linong; Xiao, Jianzhong; Shan, Zhongyan; Liu, Jie; Tian, Haoming; Ji, Qiuhe; Zhu, Dalong; Zhou, Zhiguang; Shan, Guangliang; Yang, Wenying
2014-01-01
Background and Aims Obesity is a well-known risk factor for type 2 diabetes. Genome-wide association studies have identified a number of genetic loci associated with obesity. The aim of this study is to examine the contribution of obesity-related genomic loci to type 2 diabetes in a Chinese population. Methods We successfully genotyped 18 obesity-related single nucleotide polymorphisms among 5338 type 2 diabetic patients and 4663 controls. Both individual and joint effects of these single nucleotide polymorphisms on type 2 diabetes and quantitative glycemic traits (assessing β-cell function and insulin resistance) were analyzed using logistic and linear regression models, respectively. Results Two single nucleotide polymorphisms near MC4R and GNPDA2 genes were significantly associated with type 2 diabetes before adjusting for body mass index and waist circumference (OR (95% CI) = 1.14 (1.06, 1.22) for the A allele of rs12970134, P = 4.75×10−4; OR (95% CI) = 1.10 (1.03, 1.17) for the G allele of rs10938397, P = 4.54×10−3). When body mass index and waist circumference were further adjusted, the association of MC4R with type 2 diabetes remained significant (P = 1.81×10−2) and that of GNPDA2 was attenuated (P = 1.26×10−1), suggesting the effect of the locus including GNPDA2 on type 2 diabetes may be mediated through obesity. Single nucleotide polymorphism rs2260000 within BAT2 was significantly associated with type 2 diabetes after adjusting for body mass index and waist circumference (P = 1.04×10−2). In addition, four single nucleotide polymorphisms (near or within SEC16B, BDNF, MAF and PRL genes) showed significant associations with quantitative glycemic traits in controls even after adjusting for body mass index and waist circumference (all P values<0.05). Conclusions This study indicates that obesity-related genomic loci were associated with type 2 diabetes and glycemic traits in the Han Chinese population. PMID:25093408
Gu, Xin; Na, Rong; Huang, Tao; Wang, Li; Tao, Sha; Tian, Lu; Chen, Zhuo; Jiao, Yang; Kang, Jian; Zheng, Siqun; Xu, Jianfeng; Sun, Jielin; Qi, Jun
2013-08-01
Common treatments for benign prostatic hyperplasia include 5α-reductase inhibitors and α-adrenergic receptor antagonists. However, these treatments can only partially decrease the risk of benign prostatic hyperplasia progression. SRD5A1 and SRD5A2 are 5α-reductase inhibitor targets. We investigated the association between drug efficacy and single nucleotide polymorphisms in the SRD5A1 and SRD5A2 genes in a Chinese population. We genotyped 11 tagging single nucleotide polymorphisms in the SRD5A1 and SRD5A2 genes in a total of 426 benign prostatic hyperplasia cases and 1,008 controls from Xinhua Hospital, Shanghai, People's Republic of China. Cases were treated with type II 5α-reductase inhibitors and α-adrenergic receptor antagonists. We tested the association of tagging single nucleotide polymorphisms with benign prostatic hyperplasia risk/progression, clinical characteristics at baseline, including the I-PSS (International Prostate Symptom Score) and total prostate volume, and changes in clinical characteristics after treatment. The 11 tagging single nucleotide polymorphisms were not significantly associated with benign prostatic hyperplasia risk or progression (each p >0.05). In the SRD5A1 gene rs6884552 and rs3797177 were significantly associated with baseline I-PSS (p = 0.04 and 0.003, respectively). In the SRD5A2 gene rs523349 (V89L) and rs9332975 were significantly associated with baseline total prostate volume (p = 0.01 and 0.001, respectively). In SRD5A1 rs166050 was significantly associated with the posttreatment change in total prostate volume (p = 0.04). In SRD5A2 rs523349 and rs612224 were significantly associated with the posttreatment I-PSS change (p = 0.03 and 0.009, respectively). SRD5A1 and SRD5A2 single nucleotide polymorphisms are significantly associated with the clinical characteristics of benign prostatic hyperplasia and the efficacy of benign prostatic hyperplasia treatment. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2015-07-21
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David; Cousins, Peter
2012-12-04
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
Solar cell contact formation using laser ablation
Harley, Gabriel; Smith, David D.; Cousins, Peter John
2014-07-22
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.
Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; Prata, Mara de Moura Gondim; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira
2016-02-01
This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (p<0.05). We observed a significant association between the presence of the alleles T-13910 and A-22018 and the lactose-tolerant phenotype (p<0.05). After evaluation of the biochemical blood test results for lactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was <15 mg/dL, presenting an area under the receiver operating characteristic curve greater than 80.3%, with satisfactory values for sensitivity and specificity. These data corroborate the association of these single nucleotide polymorphisms (C>T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL.
Adib-Samii, Poneh; Rost, Natalia; Traylor, Matthew; Devan, William; Biffi, Alessandro; Lanfranconi, Silvia; Fitzpatrick, Kaitlin; Bevan, Steve; Kanakis, Allison; Valant, Valerie; Gschwendtner, Andreas; Malik, Rainer; Richie, Alexa; Gamble, Dale; Segal, Helen; Parati, Eugenio A.; Ciusani, Emilio; Holliday, Elizabeth G.; Maguire, Jane; Wardlaw, Joanna; Worrall, Bradford; Bis, Joshua; Wiggins, Kerri L.; Longstreth, Will; Kittner, Steve J.; Cheng, Yu-Ching; Mosley, Thomas; Falcone, Guido J.; Furie, Karen L.; Leiva-Salinas, Carlos; Lau, Benison C.; Khan, Muhammed Saleem; Sharma, Pankaj; Fornage, Myriam; Mitchell, Braxton D.; Psaty, Bruce M.; Sudlow, Cathie; Levi, Christopher; Boncoraglio, Giorgio B.; Rothwell, Peter M.; Meschia, James; Dichgans, Martin; Rosand, Jonathan; Markus, Hugh S.
2013-01-01
Background and Purpose Recently, a novel locus at 17q25 was associated with white matter hyperintensities (WMH) on MRI in stroke-free individuals. We aimed to replicate the association with WMH volume (WMHV) in patients with ischemic stroke. If the association acts by promoting a small vessel arteriopathy, it might be expected to also associate with lacunar stroke. Methods We quantified WMH on MRI in the stroke-free hemisphere of 2588 ischemic stroke cases. Association between WMHV and 6 single-nucleotide polymorphisms at chromosome 17q25 was assessed by linear regression. These single-nucleotide polymorphisms were also investigated for association with lacunar stroke in 1854 cases and 51 939 stroke-free controls from METASTROKE. Meta-analyses with previous reports and a genetic risk score approach were applied to identify other novel WMHV risk variants and uncover shared genetic contributions to WMHV in community participants without stroke and ischemic stroke. Results Single-nucleotide polymorphisms at 17q25 were associated with WMHV in ischemic stroke, the most significant being rs9894383 (P=0.0006). In contrast, there was no association between any single-nucleotide polymorphism and lacunar stroke. A genetic risk score analysis revealed further genetic components to WMHV shared between community participants without stroke and ischemic stroke. Conclusions This study provides support for an association between the 17q25 locus and WMH. In contrast, it is not associated with lacunar stroke, suggesting that the association does not act by promoting small-vessel arteriopathy or the same arteriopathy responsible for lacunar infarction. PMID:23674528
Leonardo, Daniela P.; Albuquerque, Dulcinéia M.; Lanaro, Carolina; Baptista, Letícia C.; Cecatti, José G.; Surita, Fernanda G.; Parpinelli, Mary A.; Costa, Fernando F.; Franco-Penteado, Carla F.; Fertrin, Kleber Y.; Costa, Maria Laura
2015-01-01
Background Preeclampsia is one of the leading causes of maternal and neonatal morbidity and mortality in the world, but its appearance is still unpredictable and its pathophysiology has not been entirely elucidated. Genetic studies have associated single nucleotide polymorphisms in genes encoding nitric oxide synthase and matrix metalloproteases with preeclampsia, but the results are largely inconclusive across different populations. Objectives To investigate the association of single nucleotide polymorphisms (SNPs) in NOS3 (G894T, T-786C, and a variable number of tandem repetitions VNTR in intron 4), MMP2 (C-1306T), and MMP9 (C-1562T) genes with preeclampsia in patients from Southeastern Brazil. Methods This prospective case-control study enrolled 77 women with preeclampsia and 266 control pregnant women. Clinical data were collected to assess risk factors and the presence of severe complications, such as eclampsia and HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Results We found a significant association between the single nucleotide polymorphism NOS3 T-786C and preeclampsia, independently from age, height, weight, or the other SNPs studied, and no association was found with the other polymorphisms. Age and history of preeclampsia were also identified as risk factors. The presence of at least one polymorphic allele for NOS3 T-786C was also associated with the occurrence of eclampsia or HELLP syndrome among preeclamptic women. Conclusions Our data support that the NOS3 T-786C SNP is associated with preeclampsia and the severity of its complications. PMID:26317342
Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; de Moura Gondim Prata, Mara; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira
2016-01-01
OBJECTIVE: This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. METHOD: A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. RESULTS: Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (p<0.05). We observed a significant association between the presence of the alleles T-13910 and A-22018 and the lactose-tolerant phenotype (p<0.05). After evaluation of the biochemical blood test results for lactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was <15 mg/dL, presenting an area under the receiver operating characteristic curve greater than 80.3%, with satisfactory values for sensitivity and specificity. CONCLUSIONS: These data corroborate the association of these single nucleotide polymorphisms (C>T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL. PMID:26934237
Mechanical characterization of poly-SiGe layers for CMOS-MEMS integrated application
NASA Astrophysics Data System (ADS)
Modlinski, Robert; Witvrouw, Ann; Verbist, Agnes; Puers, Robert; De Wolf, Ingrid
2010-01-01
Measuring mechanical properties at the microscale is essential to understand and to fabricate reliable MEMS. In this paper a tensile testing system and matching microscale test samples are presented. The test samples have a dog-bone-like structure. They are designed to mimic standard macro-tensile test samples. The micro-tensile tests are used to characterize 0.9 µm thick polycrystalline silicon germanium (poly-SiGe) films. The poly-SiGe film, that can be considered as a close equivalent to polycrystalline silicon (poly-Si), is studied as a very promising material for use in CMOS/MEMS integration in a single chip due to its low-temperature LPCVD deposition (T < 450 °C). The fabrication process of the poly-SiGe micro-tensile test structure is explained in detail: the design, the processing and post-processing, the testing and finally the results' discussion. The poly-SiGe micro-tensile results are also compared with nanoindentation data obtained on the same poly-SiGe films as well as with results obtained by other research groups.
Four Linked Genes Participate in Controlling Sporulation Efficiency in Budding Yeast
Ben-Ari, Giora; Zenvirth, Drora; Sherman, Amir; David, Lior; Klutstein, Michael; Lavi, Uri; Hillel, Jossi; Simchen, Giora
2006-01-01
Quantitative traits are conditioned by several genetic determinants. Since such genes influence many important complex traits in various organisms, the identification of quantitative trait loci (QTLs) is of major interest, but still encounters serious difficulties. We detected four linked genes within one QTL, which participate in controlling sporulation efficiency in Saccharomyces cerevisiae. Following the identification of single nucleotide polymorphisms by comparing the sequences of 145 genes between the parental strains SK1 and S288c, we analyzed the segregating progeny of the cross between them. Through reciprocal hemizygosity analysis, four genes, RAS2, PMS1, SWS2, and FKH2, located in a region of 60 kilobases on Chromosome 14, were found to be associated with sporulation efficiency. Three of the four “high” sporulation alleles are derived from the “low” sporulating strain. Two of these sporulation-related genes were verified through allele replacements. For RAS2, the causative variation was suggested to be a single nucleotide difference in the upstream region of the gene. This quantitative trait nucleotide accounts for sporulation variability among a set of ten closely related winery yeast strains. Our results provide a detailed view of genetic complexity in one “QTL region” that controls a quantitative trait and reports a single nucleotide polymorphism-trait association in wild strains. Moreover, these findings have implications on QTL identification in higher eukaryotes. PMID:17112318
Nanoscale studies link amyloid maturity with polyglutamine diseases onset
NASA Astrophysics Data System (ADS)
Ruggeri, F. S.; Vieweg, S.; Cendrowska, U.; Longo, G.; Chiki, A.; Lashuel, H. A.; Dietler, G.
2016-08-01
The presence of expanded poly-glutamine (polyQ) repeats in proteins is directly linked to the pathogenesis of several neurodegenerative diseases, including Huntington’s disease. However, the molecular and structural basis underlying the increased toxicity of aggregates formed by proteins containing expanded polyQ repeats remain poorly understood, in part due to the size and morphological heterogeneity of the aggregates they form in vitro. To address this knowledge gap and technical limitations, we investigated the structural, mechanical and morphological properties of fibrillar aggregates at the single molecule and nanometer scale using the first exon of the Huntingtin protein as a model system (Exon1). Our findings demonstrate a direct correlation of the morphological and mechanical properties of Exon1 aggregates with their structural organization at the single aggregate and nanometric scale and provide novel insights into the molecular and structural basis of Huntingtin Exon1 aggregation and toxicity.
Nakano, Miki; Ebina, Kuniyoshi; Tanaka, Shigenori
2013-04-01
Polyglutamine (polyQ, a peptide) with an abnormal repeat length is the causative agent of polyQ diseases, such as Huntington's disease. Although glutamine is a polar residue, polyQ peptides form insoluble aggregates in water, and the mechanism for this aggregation is still unclear. To elucidate the detailed mechanism for the nucleation and aggregation of polyQ peptides, replica exchange molecular dynamics simulations were performed for monomers and dimers of polyQ peptides with several chain lengths. Furthermore, to determine how the aggregation mechanism of polyQ differs from those of other peptides, we compared the results for polyQ with those of polyasparagine and polyleucine. The energy barrier between the monomeric and dimeric states of polyQ was found to be relatively low, and it was observed that polyQ dimers strongly favor the formation of antiparallel β-sheet structures. We also found a characteristic behavior of the monomeric polyQ peptide: a turn at the eighth residue is always present, even when the chain length is varied. We previously showed that a structure including more than two sets of β-turns is stable, so a long monomeric polyQ chain can act as an aggregation nucleus by forming several pairs of antiparallel β-sheet structures within a single chain. Since the aggregation of polyQ peptides has some features in common with an amyloid fibril, our results shed light on the mechanism for the aggregation of polyQ peptides as well as the mechanism for the formation of general amyloid fibrils, which cause the onset of amyloid diseases.
Conformational Switching in PolyGln Amyloid Fibrils Resulting from a Single Amino Acid Insertion
Huang, Rick K.; Baxa, Ulrich; Aldrian, Gudrun; Ahmed, Abdullah B.; Wall, Joseph S.; Mizuno, Naoko; Antzutkin, Oleg; Steven, Alasdair C.; Kajava, Andrey V.
2014-01-01
The established correlation between neurodegenerative disorders and intracerebral deposition of polyglutamine aggregates motivates attempts to better understand their fibrillar structure. We designed polyglutamines with a few lysines inserted to overcome the hindrance of extreme insolubility and two D-lysines to limit the lengths of β-strands. One is 33 amino acids long (PolyQKd-33) and the other has one fewer glutamine (PolyQKd-32). Both form well-dispersed fibrils suitable for analysis by electron microscopy. Electron diffraction confirmed cross-β structures in both fibrils. Remarkably, the deletion of just one glutamine residue from the middle of the peptide leads to substantially different amyloid structures. PolyQKd-32 fibrils are consistently 10–20% wider than PolyQKd-33, as measured by negative staining, cryo-electron microscopy, and scanning transmission electron microscopy. Scanning transmission electron microscopy analysis revealed that the PolyQKd-32 fibrils have 50% higher mass-per-length than PolyQKd-33. This distinction can be explained by a superpleated β-structure model for PolyQKd-33 and a model with two β-solenoid protofibrils for PolyQKd-32. These data provide evidence for β-arch-containing structures in polyglutamine fibrils and open future possibilities for structure-based drug design. PMID:24853742
Genetics of Oxidative Stress in Obesity
Rupérez, Azahara I.; Gil, Angel; Aguilera, Concepción M.
2014-01-01
Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications. PMID:24562334
Genetics of oxidative stress in obesity.
Rupérez, Azahara I; Gil, Angel; Aguilera, Concepción M
2014-02-20
Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs) in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.
A graphene-based platform for single nucleotide polymorphism (SNP) genotyping.
Liu, Meng; Zhao, Huimin; Chen, Shuo; Yu, Hongtao; Zhang, Yaobin; Quan, Xie
2011-06-15
A facile, rapid, stable and sensitive approach for fluorescent detection of single nucleotide polymorphism (SNP) is designed based on DNA ligase reaction and π-stacking between the graphene and the nucleotide bases. In the presence of perfectly matched DNA, DNA ligase can catalyze the linkage of fluorescein amidite-labeled single-stranded DNA (ssDNA) and a phosphorylated ssDNA, and thus the formation of a stable duplex in high yield. However, the catalytic reaction cannot effectively carry out with one-base mismatched DNA target. In this case, we add graphene to the system in order to produce different quenching signals due to its different adsorption affinity for ssDNA and double-stranded DNA. Taking advantage of the unique surface property of graphene and the high discriminability of DNA ligase, the proposed protocol exhibits good performance in SNP genotyping. The results indicate that it is possible to accurately determine SNP with frequency as low as 2.6% within 40 min. Furthermore, the presented flexible strategy facilitates the development of other biosensing applications in the future. Copyright © 2011 Elsevier B.V. All rights reserved.
Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.
Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco
2014-05-20
In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.
WEB-server for search of a periodicity in amino acid and nucleotide sequences
NASA Astrophysics Data System (ADS)
E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.
2017-12-01
A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.
Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.
Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B
2017-09-01
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
Nucleotide Selectivity in Abiotic RNA Polymerization Reactions
NASA Astrophysics Data System (ADS)
Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.
2017-09-01
In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.
Quantum-Sequencing: Fast electronic single DNA molecule sequencing
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.
Korshoj, Lee E; Afsari, Sepideh; Chatterjee, Anushree; Nagpal, Prashant
2017-11-01
Electronic conduction or charge transport through single molecules depends primarily on molecular structure and anchoring groups and forms the basis for a wide range of studies from molecular electronics to DNA sequencing. Several high-throughput nanoelectronic methods such as mechanical break junctions, nanopores, conductive atomic force microscopy, scanning tunneling break junctions, and static nanoscale electrodes are often used for measuring single-molecule conductance. In these measurements, "smearing" due to conformational changes and other entropic factors leads to large variances in the observed molecular conductance, especially in individual measurements. Here, we show a method for characterizing smear in single-molecule conductance measurements and demonstrate how binning measurements according to smear can significantly enhance the use of individual conductance measurements for molecular recognition. Using quantum point contact measurements on single nucleotides within DNA macromolecules, we demonstrate that the distance over which molecular junctions are maintained is a measure of smear, and the resulting variance in unbiased single measurements depends on this smear parameter. Our ability to identify individual DNA nucleotides at 20× coverage increases from 81.3% accuracy without smear analysis to 93.9% with smear characterization and binning (SCRIB). Furthermore, merely 7 conductance measurements (7× coverage) are needed to achieve 97.8% accuracy for DNA nucleotide recognition when only low molecular smear measurements are used, which represents a significant improvement over contemporary sequencing methods. These results have important implications in a broad range of molecular electronics applications from designing robust molecular switches to nanoelectronic DNA sequencing.
Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.
Lavoie, Mathieu; Abou Elela, Sherif
2008-08-19
Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.
USDA-ARS?s Scientific Manuscript database
One focus of the Sorghum Translational Genomics Lab (part of sorghum CRIS, PSGD, CSRL, USDA-ARS, Lubbock TX) is to utilize nucleotide variation between sorghum germplasm such as those derived from RNA seq for translation and validation of Single Nucleotide Polymorphism (SNP) into easy access DNA m...
Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).
Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan
2017-06-05
Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.
A genetic variation map for chicken with 2.8 million single nucleotide polymorphisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, G K; Hillier, L; Brandstrom, M
2005-02-20
We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines--contrary to the idea that domestic animals are highly inbred relative to theirmore » wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.« less
A Lateral Flow Biosensor for the Detection of Single Nucleotide Polymorphisms.
Zeng, Lingwen; Xiao, Zhuo
2017-01-01
A lateral flow biosensor (LFB) is introduced for the detection of single nucleotide polymorphisms (SNPs). The assay is composed of two steps: circular strand displacement reaction and lateral flow biosensor detection. In step 1, the nucleotide at SNP site is recognized by T4 DNA ligase and the signal is amplified by strand displacement DNA polymerase, which can be accomplished at a constant temperature. In step 2, the reaction product of step 1 is detected by a lateral flow biosensor, which is a rapid and cost effective tool for nuclei acid detection. Comparing with conventional methods, it requires no complicated machines. It is suitable for the use of point of care diagnostics. Therefore, this simple, cost effective, robust, and promising LFB detection method of SNP has great potential for the detection of genetic diseases, personalized medicine, cancer related mutations, and drug-resistant mutations of infectious agents.
Detecting and Removing Ascertainment Bias in Microsatellites from the HGDP-CEPH Panel
Eriksson, Anders; Manica, Andrea
2011-01-01
Although ascertainment bias in single nucleotide polymorphisms is a well-known problem, it is generally accepted that microsatellites have mutation rates too high for bias to be a concern. Here, we analyze in detail the large set of microsatellites typed for the Human Genetic Diversity Panel (HGDP)-CEPH panel. We develop a novel framework based on rarefaction to compare heterozygosity across markers with different mutation rates. We find that, whereas di- and tri-nucleotides show similar patterns of within- and between-population heterozygosity, tetra-nucleotides are inconsistent with the other two motifs. In addition, di- and tri-nucleotides are consistent with 16 unbiased tetra-nucleotide markers, whereas the HPGP-CEPH tetra-nucleotides are significantly different. This discrepancy is due to the HGDP-CEPH tetra-nucleotides being too homogeneous across Eurasia, even after their slower mutation rate is taken into account by rarefying the other markers. The most likely explanation for this pattern is ascertainment bias. We strongly advocate the exclusion of tetra-nucleotides from future population genetics analysis of this dataset, and we argue that other microsatellite datasets should be investigated for the presence of bias using the approach outlined in this article. PMID:22384358
Robu, Mihaela; Shah, Rashmi G.; Purohit, Nupur K.; Zhou, Pengbo; Naegeli, Hanspeter
2017-01-01
Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV–DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1–XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV–DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins. PMID:28760956
Robu, Mihaela; Shah, Rashmi G; Purohit, Nupur K; Zhou, Pengbo; Naegeli, Hanspeter; Shah, Girish M
2017-08-15
Xeroderma pigmentosum C (XPC) protein initiates the global genomic subpathway of nucleotide excision repair (GG-NER) for removal of UV-induced direct photolesions from genomic DNA. The XPC has an inherent capacity to identify and stabilize at the DNA lesion sites, and this function is facilitated in the genomic context by UV-damaged DNA-binding protein 2 (DDB2), which is part of a multiprotein UV-DDB ubiquitin ligase complex. The nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) has been shown to facilitate the lesion recognition step of GG-NER via its interaction with DDB2 at the lesion site. Here, we show that PARP1 plays an additional DDB2-independent direct role in recruitment and stabilization of XPC at the UV-induced DNA lesions to promote GG-NER. It forms a stable complex with XPC in the nucleoplasm under steady-state conditions before irradiation and rapidly escorts it to the damaged DNA after UV irradiation in a DDB2-independent manner. The catalytic activity of PARP1 is not required for the initial complex formation with XPC in the nucleoplasm but it enhances the recruitment of XPC to the DNA lesion site after irradiation. Using purified proteins, we also show that the PARP1-XPC complex facilitates the handover of XPC to the UV-lesion site in the presence of the UV-DDB ligase complex. Thus, the lesion search function of XPC in the genomic context is controlled by XPC itself, DDB2, and PARP1. Our results reveal a paradigm that the known interaction of many proteins with PARP1 under steady-state conditions could have functional significance for these proteins.
NASA Astrophysics Data System (ADS)
Tsyganov, M. M.; Ibragimova, M. K.; Karabut, I. V.; Freydin, M. B.; Choinzonov, E. L.; Litvyakov, N. V.
2015-11-01
Our previous research establishes that changes of expression of the ATP-binding cassette genes family is connected with the neoadjuvant chemotherapy effect. However, the mechanism of regulation of resistance gene expression remains unclear. As many researchers believe, single nucleotide polymorphisms can be involved in this process. Thereupon, microarray analysis is used to study polymorphisms in ATP-binding cassette genes. It is thus found that MDR gene expression is connected with 5 polymorphisms, i.e. rs241432, rs241429, rs241430, rs3784867, rs59409230, which participate in the regulation of expression of own genes.
Paulish-Miller, Teresa E.; Augostini, Peter; Schuyler, Jessica A.; Smith, William L.; Mordechai, Eli; Adelson, Martin E.; Gygax, Scott E.; Secor, William E.
2014-01-01
Metronidazole resistance in the sexually transmitted parasite Trichomonas vaginalis is a problematic public health issue. We have identified single nucleotide polymorphisms (SNPs) in two nitroreductase genes (ntr4Tv and ntr6Tv) associated with resistance. These SNPs were associated with one of two distinct T. vaginalis populations identified by multilocus sequence typing, yet one SNP (ntr6Tv A238T), which results in a premature stop codon, was associated with resistance independent of population structure and may be of diagnostic value. PMID:24550324
Kondo, Jiro; Westhof, Eric
2011-10-01
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide-protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson-Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson-Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues.
CNG and HCN channels: two peas, one pod.
Craven, Kimberley B; Zagotta, William N
2006-01-01
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
Structure of a eukaryotic cyclic nucleotide-gated channel
Li, Minghui; Zhou, Xiaoyuan; Wang, Shu; Michailidis, Ioannis; Gong, Ye; Su, Deyuan; Li, Huan; Li, Xueming; Yang, Jian
2018-01-01
Summary Cyclic nucleotide-gated (CNG) channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5 Å-resolution single-particle electron cryomicroscopy structure of a CNG channel from C. elegans in the cGMP-bound open state. The channel has an unusual voltage-sensor-like domain (VSLD), accounting for its deficient voltage dependence. A C-terminal linker connecting S6 and the cyclic nucleotide-binding domain interacts directly with both the VSLD and pore domain, forming a gating ring that couples conformational changes triggered by cyclic nucleotide binding to the gate. The selectivity filter is lined by the carboxylate side chains of a functionally important glutamate and three rings of backbone carbonyls. This structure provides a new framework for understanding mechanisms of ion permeation, gating and channelopathy of CNG channels and cyclic nucleotide modulation of related channels. PMID:28099415
Aquaporin-4 polymorphisms and brain/body weight ratio in sudden infant death syndrome (SIDS).
Studer, Jacqueline; Bartsch, Christine; Haas, Cordula
2014-07-01
Failure in the regulation of homeostatic water balance in the brain is associated with severe cerebral edema and increased brain weights and may also play an important role in the pathogenesis of sudden infant death syndrome (SIDS). We genotyped three single-nucleotide polymorphisms in the aquaporin-4 water channel-encoding gene (AQP4), which were previously shown to be associated with (i) SIDS in Norwegian infants (rs2075575), (ii) severe brain edema (rs9951307), and (iii) increased brain water permeability (rs3906956). We also determined whether the brain/body weight ratio is increased in SIDS infants compared with sex- and age-matched controls. Genotyping of the three AQP4 single-nucleotide polymorphisms was performed in 160 Caucasian SIDS infants and 181 healthy Swiss adults using a single-base extension method. Brain and body weights were measured during autopsy in 157 SIDS and 59 non-SIDS infants. No differences were detected in the allelic frequencies of the three AQP4 single-nucleotide polymorphisms between SIDS and adult controls. The brain/body weight ratio was similarly distributed in SIDS and non-SIDS infants. Variations in the AQP4 gene seem of limited significance as predisposing factors in Caucasian SIDS infants. Increased brain weights may only become evident in conjunction with environmental or other genetic risk factors.
Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.
Shevidi, Saba; Uchida, Alicia; Schudrowitz, Natalie; Wessel, Gary M; Yajima, Mamiko
2017-12-01
A single base pair mutation in the genome can result in many congenital disorders in humans. The recent gene editing approach using CRISPR/Cas9 has rapidly become a powerful tool to replicate or repair such mutations in the genome. These approaches rely on cleaving DNA, while presenting unexpected risks. In this study, we demonstrate a modified CRISPR/Cas9 system fused to cytosine deaminase (Cas9-DA), which induces a single nucleotide conversion in the genome. Cas9-DA was introduced into sea urchin eggs with sgRNAs targeted for SpAlx1, SpDsh, or SpPks, each of which is critical for skeletogenesis, embryonic axis formation, or pigment formation, respectively. We found that both Cas9 and Cas9-DA edit the genome, and cause predicted phenotypic changes at a similar efficiency. Cas9, however, resulted in significant deletions in the genome centered on the gRNA target sequence, whereas Cas9-DA resulted in single or double nucleotide editing of C to T conversions within the gRNA target sequence. These results suggest that the Cas9-DA approach may be useful for manipulating gene activity with decreased risks of genomic aberrations. Developmental Dynamics 246:1036-1046, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Carr, Carolyn E; Khutsishvili, Irine; Marky, Luis A
2018-06-22
Triplex formation occurs via interaction of a third strand with the major groove of double stranded nucleic acid, through Hoogsteen hydrogen bonding. In this work, we use a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry to determine complete thermodynamic profiles for the unfolding of poly(rA)•poly(rU) (Duplex) and poly(rA)•2poly(rU) (Triplex). Our thermodynamic results are in good agreement with the much earlier work of Krakauer and Sturtevant using only UV melting techniques. The folding of these two helices yielded an uptake of ions, ΔnNa+ = 0.15 mol Na+/mol base-pair (Duplex) and 0.30 mol Na+/mole base-triplet (Triplex), which are consistent with their polymer behavior and the higher charge density parameter of triple helices. The osmotic stress technique yielded a release of structural water, ΔnW = 2 mol H2O/mol base-pair (Duplex unfolding into single strands) and an uptake of structural water, ΔnW = 2 mol H2O/mole base-pair (Triplex unfolding into Duplex and a single strand). However, an overall release of electrostricted waters is obtained for the unfolding of both complexes from pressure perturbation calorimetric experiments. In total, the ΔV values obtained for the unfolding of Triplex into Duplex and a single strand correspond to an immobilization of two structural waters and a release of three electrostricted waters. The ΔV values obtained for the unfolding of Duplex into two single strands correspond to the release of two structural waters and the immobilization of four electrostricted water molecules.
Lee, Byeong Ryong; Lee, Jae Hoon; Kim, Kyeong Heon; Kim, Hee-Dong; Kim, Tae Geun
2014-12-01
We report the effects of poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and gold chloride (AuCl) co-doping on the electrical and optical properties of reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films fabricated by dipcoating methods. The RGO/SWNT films were doped with both AuCl3 dissolved in nitromethane and PSS hole injection layers by spin coating to improve their electrical properties by increasing the work function of the RGO/SWNT films, thereby reducing the Schottky barrier height between the RGO/SWNT and p-GaN films. As a result, we obtained a reduced sheet resistance of 851.9 Ω/Ω and a contact resistance of 1.97 x 10(-1) Ω x cm2, together with a high transmittance of 84.1% at 380 nm. The contact resistance of these films should be further reduced to fully utilize the feature of the electrode scheme proposed in this work, but the current result suggests its potential use as a transparent conductive electrode for ultraviolet light-emitting diodes.
Naidu, Hariprasad; Subramanian, B Mohana; Chinchkar, Shankar Ramchandra; Sriraman, Rajan; Rana, Samir Kumar; Srinivasan, V A
2012-05-01
The antigenic types of canine parvovirus (CPV) are defined based on differences in the amino acids of the major capsid protein VP2. Type specificity is conferred by a limited number of amino acid changes and in particular by few nucleotide substitutions. PCR based methods are not particularly suitable for typing circulating variants which differ in a few specific nucleotide substitutions. Assays for determining SNPs can detect efficiently nucleotide substitutions and can thus be adapted to identify CPV types. In the present study, CPV typing was performed by single nucleotide extension using the mini-sequencing technique. A mini-sequencing signature was established for all the four CPV types (CPV2, 2a, 2b and 2c) and feline panleukopenia virus. The CPV typing using the mini-sequencing reaction was performed for 13 CPV field isolates and the two vaccine strains available in our repository. All the isolates had been typed earlier by full-length sequencing of the VP2 gene. The typing results obtained from mini-sequencing matched completely with that of sequencing. Typing could be achieved with less than 100 copies of standard plasmid DNA constructs or ≤10¹ FAID₅₀ of virus by mini-sequencing technique. The technique was also efficient for detecting multiple types in mixed infections. Copyright © 2012 Elsevier B.V. All rights reserved.
Silva-Junior, Orzenil B; Grattapaglia, Dario
2015-11-01
We used high-density single nucleotide polymorphism (SNP) data and whole-genome pooled resequencing to examine the landscape of population recombination (ρ) and nucleotide diversity (ϴw ), assess the extent of linkage disequilibrium (r(2) ) and build the highest density linkage maps for Eucalyptus. At the genome-wide level, linkage disequilibrium (LD) decayed within c. 4-6 kb, slower than previously reported from candidate gene studies, but showing considerable variation from absence to complete LD up to 50 kb. A sharp decrease in the estimate of ρ was seen when going from short to genome-wide inter-SNP distances, highlighting the dependence of this parameter on the scale of observation adopted. Recombination was correlated with nucleotide diversity, gene density and distance from the centromere, with hotspots of recombination enriched for genes involved in chemical reactions and pathways of the normal metabolic processes. The high nucleotide diversity (ϴw = 0.022) of E. grandis revealed that mutation is more important than recombination in shaping its genomic diversity (ρ/ϴw = 0.645). Chromosome-wide ancestral recombination graphs allowed us to date the split of E. grandis (1.7-4.8 million yr ago) and identify a scenario for the recent demographic history of the species. Our results have considerable practical importance to Genome Wide Association Studies (GWAS), while indicating bright prospects for genomic prediction of complex phenotypes in eucalypt breeding. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Breter, H J
1985-05-24
Mammalian cells incorporate 6-thioguanosine into their nucleic acids when grown in the presence of 6-mercaptopurine. 35S-labeled total RNA was prepared from L5178Y murine lymphoma cells grown in vitro in the presence of 6-[35S]mercaptopurine. Base analyses of this RNA suggested that 6-thioguanosine residues in RNA molecules undergo posttranscriptional modification. Thus, enzymatic peak-shifting analyses using anion-exchange high-performance liquid chromatography were applied to the hydrolysis products released from total RNA preparations by digestion with nuclease P1 or nuclease P1 plus nucleotide pyrophosphatase. At least eight 35S-labeled, phosphatase-sensitive compounds structurally different from [35S]6thioGMP were found in nuclease P1 digests. Four of these compounds were susceptible to cleavage with nucleotide pyrophosphatase, thus indicating that they contained phosphoric acid anhydride bonds. Individual RNA species were not separately examined, the radiochromatographic data, however, which were obtained from digests of total RNA preparations, present evidence that 6-thioguanosine 5'-diphosphate and 6-thioguanosine 5'-triphosphate exist as 5'-terminal starting nucleotides (in tRNA and rRNA) and that 6-thioguanosine becomes incorporated into the highly modified dinucleoside triphosphate structures (caps) which commonly block the 5'-termini of eukaryotic poly(A)+ mRNA-molecules.
Uncovering drug-responsive regulatory elements
Luizon, Marcelo R; Ahituv, Nadav
2015-01-01
Nucleotide changes in gene regulatory elements can have a major effect on interindividual differences in drug response. For example, by reviewing all published pharmacogenomic genome-wide association studies, we show here that 96.4% of the associated single nucleotide polymorphisms reside in noncoding regions. We discuss how sequencing technologies are improving our ability to identify drug response-associated regulatory elements genome-wide and to annotate nucleotide variants within them. We highlight specific examples of how nucleotide changes in these elements can affect drug response and illustrate the techniques used to find them and functionally characterize them. Finally, we also discuss challenges in the field of drug-responsive regulatory elements that need to be considered in order to translate these findings into the clinic. PMID:26555224
Sequence alterations in RX in patients with microphthalmia, anophthalmia, and coloboma
London, Nikolas J.S.; Kessler, Patricia; Williams, Bryan; Pauer, Gayle J.; Hagstrom, Stephanie A.
2009-01-01
Purpose Microphthalmia, anophthalmia, and coloboma are ocular malformations with a significant genetic component. Rx is a homeobox gene expressed early in the developing retina and is important in retinal cell fate specification as well as stem cell proliferation. We screened a group of 24 patients with microphthalmia, coloboma, and/or anophthalmia for RX mutations. Methods We used standard PCR and automated sequencing techniques to amplify and sequence each of the three RX exons. Patients’ charts were reviewed for clinical information. The pathologic impact of the identified sequence variant was analyzed by computational methods using PolyPhen and PMut algorithms. Results In addition to the polymorphisms we identified a single patient with coloboma having a heterozygous nucleotide change (g.197G>C) in the first exon that results in a missense mutation of arginine to threonine at amino acid position 66 (R66T). In silico analysis predicted R66T to be a deleterious mutation. Conclusions Sequence variations in RX are uncommon in patients with congenital ocular malformations, but may play a role in disease pathogenesis. We observed a missense mutation in RX in a patient with a small, typical chorioretinal coloboma, and postulate that the mutation is responsible for the patient’s phenotype. PMID:19158959
Azevedo, Ana P; Silva, Susana N; De Lima, João P; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José
2017-06-01
The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog ( E. coli ) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility.
Azevedo, Ana P.; Silva, Susana N.; De Lima, João P.; Reichert, Alice; Lima, Fernando; Júnior, Esmeraldina; Rueff, José
2017-01-01
The role of base excision repair (BER) genes in Philadelphia-negative (PN)-myeloproliferative neoplasms (MPNs) susceptibility was evaluated by genotyping eight polymorphisms [apurinic/apyrimidinic endodeoxyribonuclease 1, mutY DNA glycosylase, earlier mutY homolog (E. coli) (MUTYH), 8-oxoguanine DNA glycosylase 1, poly (ADP-ribose) polymerase (PARP) 1, PARP4 and X-ray repair cross-complementing 1 (XRCC1)] in a case-control study involving 133 Caucasian Portuguese patients. The results did not reveal a correlation between individual BER polymorphisms and PN-MPNs when considered as a whole. However, stratification for essential thrombocythaemia revealed i) borderline effect/tendency to increased risk when carrying at least one variant allele for XRCC1_399 single-nucleotide polymorphism (SNP); ii) decreased risk for Janus kinase 2-positive patients carrying at least one variant allele for XRCC1_399 SNP; and iii) decreased risk in females carrying at least one variant allele for MUTYH SNP. Combination of alleles demonstrated an increased risk to PN-MPNs for one specific haplogroup. These findings may provide evidence for gene variants in susceptibility to MPNs. Indeed, common variants in DNA repair genes may hamper the capacity to repair DNA, thus increasing cancer susceptibility. PMID:28599464
Smyth, Redmond P; Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe; von Kleist, Max; Marquet, Roland
2018-05-18
Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5' region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5' PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production.
PrimerStation: a highly specific multiplex genomic PCR primer design server for the human genome
Yamada, Tomoyuki; Soma, Haruhiko; Morishita, Shinichi
2006-01-01
PrimerStation () is a web service that calculates primer sets guaranteeing high specificity against the entire human genome. To achieve high accuracy, we used the hybridization ratio of primers in liquid solution. Calculating the status of sequence hybridization in terms of the stringent hybridization ratio is computationally costly, and no web service checks the entire human genome and returns a highly specific primer set calculated using a precise physicochemical model. To shorten the response time, we precomputed candidates for specific primers using a massively parallel computer with 100 CPUs (SunFire 15 K) about 3 months in advance. This enables PrimerStation to search and output qualified primers interactively. PrimerStation can select highly specific primers suitable for multiplex PCR by seeking a wider temperature range that minimizes the possibility of cross-reaction. It also allows users to add heuristic rules to the primer design, e.g. the exclusion of single nucleotide polymorphisms (SNPs) in primers, the avoidance of poly(A) and CA-repeats in the PCR products, and the elimination of defective primers using the secondary structure prediction. We performed several tests to verify the PCR amplification of randomly selected primers for ChrX, and we confirmed that the primers amplify specific PCR products perfectly. PMID:16845094
Smith, Maureen R; Jousset, Anne-Caroline; Despons, Laurence; Laumond, Géraldine; Decoville, Thomas; Cattenoz, Pierre; Moog, Christiane; Jossinet, Fabrice; Mougel, Marylène; Paillart, Jean-Christophe
2018-01-01
Abstract Non-coding RNA regulatory elements are important for viral replication, making them promising targets for therapeutic intervention. However, regulatory RNA is challenging to detect and characterise using classical structure-function assays. Here, we present in cell Mutational Interference Mapping Experiment (in cell MIME) as a way to define RNA regulatory landscapes at single nucleotide resolution under native conditions. In cell MIME is based on (i) random mutation of an RNA target, (ii) expression of mutated RNA in cells, (iii) physical separation of RNA into functional and non-functional populations, and (iv) high-throughput sequencing to identify mutations affecting function. We used in cell MIME to define RNA elements within the 5′ region of the HIV-1 genomic RNA (gRNA) that are important for viral replication in cells. We identified three distinct RNA motifs controlling intracellular gRNA production, and two distinct motifs required for gRNA packaging into virions. Our analysis reveals the 73AAUAAA78 polyadenylation motif within the 5′ PolyA domain as a dual regulator of gRNA production and gRNA packaging, and demonstrates that a functional polyadenylation signal is required for viral packaging even though it negatively affects gRNA production. PMID:29514260
Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates.
Parrella, P; Xiao, Y; Fliss, M; Sanchez-Cespedes, M; Mazzarelli, P; Rinaldi, M; Nicol, T; Gabrielson, E; Cuomo, C; Cohen, D; Pandit, S; Spencer, M; Rabitti, C; Fazio, V M; Sidransky, D
2001-10-15
To determine the frequency and distribution of mitochondrial DNA mutations in breast cancer, 18 primary breast tumors were analyzed by direct sequencing. Twelve somatic mutations not present in matched lymphocytes and normal breast tissues were detected in 11 of the tumors screened (61%). Of these mutations, five (42%) were deletions or insertions in a homopolymeric C-stretch between nucleotides 303-315 (D310) within the D-loop. The remaining seven mutations (58%) were single-base substitutions in the coding (ND1, ND4, ND5, and cytochrome b genes) or noncoding regions (D-loop) of the mitochondrial genome. In three cases (25%), the mutations detected in coding regions led to amino acid substitutions in the protein sequence. We then screened an additional 46 primary breast tumors with a rapid PCR-based assay to identify poly-C alterations in D310, and we found seven more cancers with alterations. Using D310 mutations as clonal marker, we detected identical changes in five of five matched fine-needle aspirates and in four of four metastases-positive lymph nodes. The high frequency of D310 alterations in primary breast cancer combined with the high sensitivity of the PCR-based assays provides a new molecular tool for cancer detection.
Simpson, L L; Stiles, B G; Zepeda, H; Wilkins, T D
1989-01-01
Clostridium spiroforme iotalike toxin produced time- and concentration-dependent incorporation of ADP-ribose into homo-poly-L-arginine. Polyasparagine, polyglutamic acid, polylysine, and agmatine were poor substrates. Enzyme activity was associated with the light-chain polypeptide of the toxin. The heavy chain did not possess ADP-ribosyltransferase activity, nor did it enhance or inhibit activity of the light chain. In broken-cell assays, the toxin acted mainly on G-actin, rather than F-actin. A single ADP-ribose group was transferred to each substrate molecule (G-actin). The enzyme was heat sensitive, had a pH optimum in the range of 7 to 8, was inhibited by high concentrations of nicotinamide, and was reversibly denatured by urea and guanidine. Physiological levels of nucleotides (AMP, ADP, ATP, and ADP-ribose) and cations (Na+, K+, Ca2+, and Mg2+) were not very active as enzyme inhibitors. The toxin was structurally and functionally similar to Clostridium botulinum type C2 toxin and Clostridium perfringens iota toxin. When combined with previous findings, the data suggest that a new class of mono(ADP-ribosyl)ating toxins has been found and that these agents belong to a related and possibly homologous series of binary toxins.
Simpson, L L; Stiles, B G; Zepeda, H; Wilkins, T D
1989-01-01
Clostridium spiroforme iotalike toxin produced time- and concentration-dependent incorporation of ADP-ribose into homo-poly-L-arginine. Polyasparagine, polyglutamic acid, polylysine, and agmatine were poor substrates. Enzyme activity was associated with the light-chain polypeptide of the toxin. The heavy chain did not possess ADP-ribosyltransferase activity, nor did it enhance or inhibit activity of the light chain. In broken-cell assays, the toxin acted mainly on G-actin, rather than F-actin. A single ADP-ribose group was transferred to each substrate molecule (G-actin). The enzyme was heat sensitive, had a pH optimum in the range of 7 to 8, was inhibited by high concentrations of nicotinamide, and was reversibly denatured by urea and guanidine. Physiological levels of nucleotides (AMP, ADP, ATP, and ADP-ribose) and cations (Na+, K+, Ca2+, and Mg2+) were not very active as enzyme inhibitors. The toxin was structurally and functionally similar to Clostridium botulinum type C2 toxin and Clostridium perfringens iota toxin. When combined with previous findings, the data suggest that a new class of mono(ADP-ribosyl)ating toxins has been found and that these agents belong to a related and possibly homologous series of binary toxins. Images PMID:2521214
Oliver-Calixte, Nyoté J; Uba, Franklin I; Battle, Katrina N; Weerakoon-Ratnayake, Kumuditha M; Soper, Steven A
2014-05-06
The process of immobilizing enzymes onto solid supports for bioreactions has some compelling advantages compared to their solution-based counterpart including the facile separation of enzyme from products, elimination of enzyme autodigestion, and increased enzyme stability and activity. We report the immobilization of λ-exonuclease onto poly(methylmethacrylate) (PMMA) micropillars populated within a microfluidic device for the on-chip digestion of double-stranded DNA. Enzyme immobilization was successfully accomplished using 3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling to carboxylic acid functionalized PMMA micropillars. Our results suggest that the efficiency for the catalysis of dsDNA digestion using λ-exonuclease, including its processivity and reaction rate, were higher when the enzyme was attached to a solid support compared to the free solution digestion. We obtained a clipping rate of 1.0 × 10(3) nucleotides s(-1) for the digestion of λ-DNA (48.5 kbp) by λ-exonuclease. The kinetic behavior of the solid-phase reactor could be described by a fractal Michaelis-Menten model with a catalytic efficiency nearly 17% better than the homogeneous solution-phase reaction. The results from this work will have important ramifications in new single-molecule DNA sequencing strategies that employ free mononucleotide identification.
Non-enzymatic glucose detection based on phenylboronic acid modified optical fibers
NASA Astrophysics Data System (ADS)
Sun, Xiaolan; Li, Nana; Zhou, Bin; Zhao, Wei; Liu, Liyuan; Huang, Chao; Ma, Longfei; Kost, Alan R.
2018-06-01
A non-enzymatic, sensitive glucose sensor was fabricated based on an evanescent wave absorbing optical fiber probe. The optical fiber sensor was functionalized by fixing a poly (phenylboronic acid) (polyPBA) film onto the conical region of the single mode fiber. The reflected light intensity of the polyPBA-functionalized fiber sensor increased proportionally with glucose concentration in the range of 0-60 mM, and the sensor showed good reproducibility and stability. The developed sensor possessed a high sensitivity of 0.1787%/mM and good linearity. The measurement of glucose concentration in human serum was also demonstrated.
Yang, Jintao; Zhang, Mingzhen; Chen, Hong; Chang, Yung; Chen, Zhan; Zheng, Jie
2014-08-11
Numerous biocompatible antifouling polymers have been developed for a wide variety of fundamental and practical applications in drug delivery, biosensors, marine coatings, and many other areas. Several antifouling mechanisms have been proposed, but the exact relationship among molecular structure, surface hydration property, and antifouling performance of antifouling polymers still remains elusive. Here this work strives to provide a better understanding of the structure-property relationship of poly(N-hydroxyalkyl acrylamide)-based materials. We have designed, synthesized, and characterized a series of polyHAAA brushes of various carbon spacer lengths (CSLs), that is, poly(N-hydroxymethyl acrylamide) (polyHMAA), poly(N-(2-hydroxyethyl)acrylamide) (polyHEAA), poly(N-(3-hydroxypropyl)acrylamide) (polyHPAA), and poly(N-(5-hydroxypentyl)acrylamide) (polyHPenAA), to study the structural dependence of CSLs on their antifouling performance. HMAA, HEAA, HPAA, and HPenAA monomers contained one, two, three, and five methylene groups between hydroxyl and amide groups, while the other groups in polymer backbones were the same as each other. The relation of such small structural differences of polymer brushes to their surface hydration and antifouling performance was studied by combined experimental and computational methods including surface plasmon resonance sensors, sum frequency generation (SFG) vibrational spectroscopy, cell adhesion assay, and molecular simulations. Antifouling results showed that all polyHAAA-based brushes were highly surface resistant to protein adsorption from single protein solutions, undiluted blood serum and plasma, as well as cell adhesion up to 7 days. In particular, polyHMAA and polyHEAA with the shorter CSLs exhibited higher surface hydration and better antifouling ability than polyHPMA and polyHPenAA. SFG and molecular simulations further revealed that the variation of CSLs changed the ratio of hydrophobicity/hydrophilicity of polymers, resulting in different hydration characteristics. Among them, polyHMAA and polyHEAA with the shorter CSLs showed the highest potency for surface hydration and antifouling abilities, while polyHPenAA showed the lowest potency. The combination of both hydroxyl and amide groups in the same polymer chain provides a promising structural motif for the design of new effective antifouling materials.
Parker, Glendon J.; Leppert, Tami; Anex, Deon S.; ...
2016-09-07
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 singlemore » nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). Furthermore, this study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.« less
Association of α-, β-, and γ-Synuclein With Diffuse Lewy Body Disease
Nishioka, Kenya; Wider, Christian; Vilariño-Güell, Carles; Soto-Ortolaza, Alexandra I.; Lincoln, Sarah J.; Kachergus, Jennifer M.; Jasinska-Myga, Barbara; Ross, Owen A.; Rajput, Alex; Robinson, Christopher A.; Ferman, Tanis J.; Wszolek, Zbigniew K.; Dickson, Dennis W.; Farrer, Matthew J.
2016-01-01
Objective To determine the association of the genes that encode α-, β-, and γ-synuclein (SNCA, SNCB, and SNCG, respectively) with diffuse Lewy body disease (DLBD). Design Case-control study. Subjects A total of 172 patients with DLBD consistent with a clinical diagnosis of Parkinson disease dementia/dementia with Lewy bodies and 350 clinically and 97 pathologically normal controls. Interventions Sequencing of SNCA, SNCB, and SNCG and genotyping of single-nucleotide polymorphisms performed on an Applied Biosystems capillary sequencer and a Sequenom MassArray pLEX platform, respectively. Associations were determined using χ2 or Fisher exact tests. Results Initial sequencing studies of the coding regions of each gene in 89 patients with DLBD did not detect any pathogenic substitutions. Nevertheless, genotyping of known polymorphic variability in sequence-conserved regions detected several single-nucleotide polymorphisms in the SNCA and SNCG genes that were significantly associated with disease (P=.05 to <.001). Significant association was also observed for 3 single-nucleotide polymorphisms located in SNCB when comparing DLBD cases and pathologically confirmed normal controls (P=.03-.01); however, this association was not significant for the clinical controls alone or the combined clinical and pathological controls (P>.05). After correction for multiple testing, only 1 single-nucleotide polymorphism in SNCG (rs3750823) remained significant in all of the analyses (P=.05-.009). Conclusion These findings suggest that variants in all 3 members of the synuclein gene family, particularly SNCA and SNCG, affect the risk of developing DLBD and warrant further investigation in larger, pathologically defined data sets as well as clinically diagnosed Parkinson disease/dementia with Lewy bodies case-control series. PMID:20697047
Refactoring the Genetic Code for Increased Evolvability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pines, Gur; Winkler, James D.; Pines, Assaf
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Glendon J.; Leppert, Tami; Anex, Deon S.
Human identification from biological material is largely dependent on the ability to characterize genetic polymorphisms in DNA. Unfortunately, DNA can degrade in the environment, sometimes below the level at which it can be amplified by PCR. Protein however is chemically more robust than DNA and can persist for longer periods. Protein also contains genetic variation in the form of single amino acid polymorphisms. These can be used to infer the status of non-synonymous single nucleotide polymorphism alleles. To demonstrate this, we used mass spectrometry-based shotgun proteomics to characterize hair shaft proteins in 66 European-American subjects. A total of 596 singlemore » nucleotide polymorphism alleles were correctly imputed in 32 loci from 22 genes of subjects’ DNA and directly validated using Sanger sequencing. Estimates of the probability of resulting individual non-synonymous single nucleotide polymorphism allelic profiles in the European population, using the product rule, resulted in a maximum power of discrimination of 1 in 12,500. Imputed non-synonymous single nucleotide polymorphism profiles from European–American subjects were considerably less frequent in the African population (maximum likelihood ratio = 11,000). The converse was true for hair shafts collected from an additional 10 subjects with African ancestry, where some profiles were more frequent in the African population. Genetically variant peptides were also identified in hair shaft datasets from six archaeological skeletal remains (up to 260 years old). Furthermore, this study demonstrates that quantifiable measures of identity discrimination and biogeographic background can be obtained from detecting genetically variant peptides in hair shaft protein, including hair from bioarchaeological contexts.« less
Refactoring the Genetic Code for Increased Evolvability
Pines, Gur; Winkler, James D.; Pines, Assaf; ...
2017-11-14
ABSTRACT The standard genetic code is robust to mutations during transcription and translation. Point mutations are likely to be synonymous or to preserve the chemical properties of the original amino acid. Saturation mutagenesis experiments suggest that in some cases the best-performing mutant requires replacement of more than a single nucleotide within a codon. These replacements are essentially inaccessible to common error-based laboratory engineering techniques that alter a single nucleotide per mutation event, due to the extreme rarity of adjacent mutations. In this theoretical study, we suggest a radical reordering of the genetic code that maximizes the mutagenic potential of singlemore » nucleotide replacements. We explore several possible genetic codes that allow a greater degree of accessibility to the mutational landscape and may result in a hyperevolvable organism that could serve as an ideal platform for directed evolution experiments. We then conclude by evaluating the challenges of constructing such recoded organisms and their potential applications within the field of synthetic biology. IMPORTANCE The conservative nature of the genetic code prevents bioengineers from efficiently accessing the full mutational landscape of a gene via common error-prone methods. Here, we present two computational approaches to generate alternative genetic codes with increased accessibility. These new codes allow mutational transitions to a larger pool of amino acids and with a greater extent of chemical differences, based on a single nucleotide replacement within the codon, thus increasing evolvability both at the single-gene and at the genome levels. Given the widespread use of these techniques for strain and protein improvement, along with more fundamental evolutionary biology questions, the use of recoded organisms that maximize evolvability should significantly improve the efficiency of directed evolution, library generation, and fitness maximization.« less
Transient state kinetics of transcription elongation by T7 RNA polymerase.
Anand, Vasanti Subramanian; Patel, Smita S
2006-11-24
The single subunit DNA-dependent RNA polymerase (RNAP) from bacteriophage T7 catalyzes both promoter-dependent transcription initiation and promoter-independent elongation. Using a promoter-free substrate, we have dissected the kinetic pathway of single nucleotide incorporation during elongation. We show that T7 RNAP undergoes a slow conformational change (0.01-0.03 s(-1)) to form an elongation competent complex with the promoter-free substrate (dissociation constant (Kd) of 96 nM). The complex binds to a correct NTP (Kd of 80 microM) and incorporates the nucleoside monophosphate (NMP) into RNA primer very efficiently (220 s(-1) at 25 degrees C). An overall free energy change (-5.5 kcal/mol) and internal free energy change (-3.7 kcal/mol) of single NMP incorporation was calculated from the measured equilibrium constants. In the presence of inorganic pyrophosphate (PPi), the elongation complex catalyzes the reverse pyrophosphorolysis reaction at a maximum rate of 0.8 s(-1) with PPi Kd of 1.2 mM. Several experiments were designed to investigate the rate-limiting step in the pathway of single nucleotide addition. Acid-quench and pulse-chase kinetics indicated that an isomerization step before chemistry is rate-limiting. The very similar rate constants of sequential incorporation of two nucleotides indicated that the steps after chemistry are fast. Based on available data, we propose that the preinsertion to insertion isomerization of NTP observed in the crystallographic studies of T7 RNAP is a likely candidate for the rate-limiting step. The studies here provide a kinetic framework to investigate structure-function and fidelity of RNA synthesis and to further explore the role of the conformational change in nucleotide selection during RNA synthesis.
Histone-poly(A) hybrid molecules as tools to block nuclear pores.
Cremer, G; Wojtech, E; Kalbas, M; Agutter, P S; Prochnow, D
1995-04-01
Histone-poly(A) hybrid molecules were used for transport experiments with resealed nuclear envelopes and after attachment of a cleavable cross-linker (SASD) to identify nuclear proteins. In contrast to histones, the hybrid molecules cannot be accumulated in resealed nuclear envelopes, and in contrast to poly(A), the export of hybrids from preloaded nuclear envelopes is completely impaired. The experiments strongly confirm the existence of poly(A) as an export signal in mRNA which counteracts the nuclear location signals (NLS) in histones. The contradicting transport signals in the hybrid molecules impair translocation through the nuclear pore complex. The failure to accumulate hybrid molecules into resealed nuclear envelopes results from the covalent attachment of polyadenylic acid to histones in a strict 1:1 molar ratio. This was demonstrated in control transport experiments where radiolabeled histones were simply mixed with nonlabeled poly(A) or radiolabeled poly(A) mixed with nonlabeled histones. In comparison, control uptake experiments with histones covalently linked to a single UMP-mononucleotide are strongly enhanced. Such controls exclude the conceivable possibility of a simple masking of the nuclear location signal in the histones by the covalent attached poly(A) moiety. Photoreactive histone-poly(A) hybrid analogs serve to identify nuclear envelope proteins--presumably in the nuclear pore--with molecular weights of 110, 80, and 71.4 kDa.
Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag
2013-11-01
Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.
Nanowire–quantum-dot lasers on flexible membranes
NASA Astrophysics Data System (ADS)
Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko
2018-06-01
We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.
NASA Astrophysics Data System (ADS)
Zhang, Yuan Yuan; Shi, Yumeng; Chen, Fuming; Mhaisalkar, S. G.; Li, Lain-Jong; Ong, Beng S.; Wu, Yiliang
2007-11-01
A solution processable method for employing single-walled carbon nanotubes (SWCNTs) as bottom contact source/drain electrodes for a significant reduction of contact resistance in poly(3,3‴-didodecylquarterthiophene) based organic field effect transistors (OFETs) is proposed. A two order of magnitude reduction in contact resistance and up to a threefold improvement in field effect mobilities were observed in SWCNT contacted OFETs as opposed to similar devices with gold source/drain electrodes. Based on Kelvin probe measurements, this improvement was attributed to a reduction in the Schottky barrier for hole injection into organic semiconductor.
NASA Astrophysics Data System (ADS)
Liu, Xianqiao; Kaminski, Michael D.; Riffle, Judy S.; Chen, Haitao; Torno, Michael; Finck, Martha R.; Taylor, LaToyia; Rosengart, Axel J.
2007-04-01
This paper describes a single emulsion-solvent evaporation protocol to prepare PEGylated biodegradable/biocompatible magnetic carriers by utilizing hydrophobic magnetite and a mixture of poly( D,L lactide-co-glycolide) (PLGA) and poly(lactic acid-block-polyethylene glycol) (PLA-PEG) (26:1 by mass) polymers. We characterized the magnetic microspheres in terms of morphology, composite microstructure, size and size distribution, and magnetic properties. Results show that the preparation produces magnetic microspheres with a good spherical morphology, small size (mean diameter of 1.2-1.5 μm) by means of large size distributions, and magnetizations up to 20-30 emu/g of microspheres.
Roy, Snigdha; Das, Suman
2014-01-01
Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na+] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure. PMID:24498422
Pradhan, Ankur Bikash; Haque, Lucy; Roy, Snigdha; Das, Suman
2014-01-01
Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.
Nitiyon, Sukanya; Khunnamwong, Pannida; Lertwattanasakul, Noppon; Limtong, Savitree
2018-05-24
Three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) representing a single novel anamorphic and d-xylose-fermenting yeast species were obtained from three peat samples collected from Khan Thulee peat swamp forest in Surat Thani province, Thailand. The strains differed from each other by one to two nucleotide substitutions in the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene and zero to one nucleotide substitution in the internal transcribed spacer (ITS) region. Phylogenetic analysis based on the combined sequences of the ITS and the D1/D2 regions showed that the three strains represented a single Candida species that was distinct from the other related species in the Lodderomyces/Candida albicans clade. The three strains form a subclade with the other Candida species including Candida sanyaensis, Candida tropicalis and Candida sojae. C. sanyaensis was the most closely related species, with 2.1-2.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, and 3.8-4.0 % nucleotide substitutions in the ITS region. The three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) were assigned as a single novel species, which was named Candida kantuleensis sp. nov. The type strain is DMKU-XE11 T (=CBS 15219 T =TBRC 7764 T ). The MycoBank number for C. kantuleensis sp. nov. is MB 824179.
IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes.
Dumoutier, L; Van Roost, E; Ameye, G; Michaux, L; Renauld, J C
2000-12-01
IL-TIF is a new cytokine originally identified as a gene induced by IL-9 in murine T lymphocytes, and showing 22% amino acid identity with IL-10. Here, we report the sequence and organization of the mouse and human IL-TIF genes, which both consist of 6 exons spreading over approximately 6 Kb. The IL-TIF gene is a single copy gene in humans, and is located on chromosome 12q15, at 90 Kb from the IFN gamma gene, and at 27 Kb from the AK155 gene, which codes for another IL-10-related cytokine. In the mouse, the IL-TIF gene is located on chromosome 10, also in the same region as the IFN gamma gene. Although it is a single copy gene in BALB/c and DBA/2 mice, the IL-TIF gene is duplicated in other strains such as C57Bl/6, FVB and 129. The two copies, which show 98% nucleotide identity in the coding region, were named IL-TIF alpha and IL-TIF beta. Beside single nucleotide variations, they differ by a 658 nucleotide deletion in IL-TIF beta, including the first non-coding exon and 603 nucleotides from the promoter. A DNA fragment corresponding to this deletion was sufficient to confer IL-9-regulated expression of a luciferase reporter plasmid, suggesting that the IL-TIF beta gene is either differentially regulated, or not expressed at all.
Duellman, Tyler; Warren, Christopher; Yang, Jay
2014-01-01
Microribonucleic acids (miRNAs) work with exquisite specificity and are able to distinguish a target from a non-target based on a single nucleotide mismatch in the core nucleotide domain. We questioned whether miRNA regulation of gene expression could occur in a single nucleotide polymorphism (SNP)-specific manner, manifesting as a post-transcriptional control of expression of genetic polymorphisms. In our recent study of the functional consequences of matrix metalloproteinase (MMP)-9 SNPs, we discovered that expression of a coding exon SNP in the pro-domain of the protein resulted in a profound decrease in the secreted protein. This missense SNP results in the N38S amino acid change and a loss of an N-glycosylation site. A systematic study demonstrated that the loss of secreted protein was due not to the loss of an N-glycosylation site, but rather an SNP-specific targeting by miR-671-3p and miR-657. Bioinformatics analysis identified 41 SNP-specific miRNA targeting MMP-9 SNPs, mostly in the coding exon and an extension of the analysis to chromosome 20, where the MMP-9 gene is located, suggesting that SNP-specific miRNAs targeting the coding exon are prevalent. This selective post-transcriptional regulation of a target messenger RNA harboring genetic polymorphisms by miRNAs offers an SNP-dependent post-transcriptional regulatory mechanism, allowing for polymorphic-specific differential gene regulation. PMID:24627221
Schoeman, Elizna M; Lopez, Genghis H; McGowan, Eunike C; Millard, Glenda M; O'Brien, Helen; Roulis, Eileen V; Liew, Yew-Wah; Martin, Jacqueline R; McGrath, Kelli A; Powley, Tanya; Flower, Robert L; Hyland, Catherine A
2017-04-01
Blood group single nucleotide polymorphism genotyping probes for a limited range of polymorphisms. This study investigated whether massively parallel sequencing (also known as next-generation sequencing), with a targeted exome strategy, provides an extended blood group genotype and the extent to which massively parallel sequencing correctly genotypes in homologous gene systems, such as RH and MNS. Donor samples (n = 28) that were extensively phenotyped and genotyped using single nucleotide polymorphism typing, were analyzed using the TruSight One Sequencing Panel and MiSeq platform. Genes for 28 protein-based blood group systems, GATA1, and KLF1 were analyzed. Copy number variation analysis was used to characterize complex structural variants in the GYPC and RH systems. The average sequencing depth per target region was 66.2 ± 39.8. Each sample harbored on average 43 ± 9 variants, of which 10 ± 3 were used for genotyping. For the 28 samples, massively parallel sequencing variant sequences correctly matched expected sequences based on single nucleotide polymorphism genotyping data. Copy number variation analysis defined the Rh C/c alleles and complex RHD hybrids. Hybrid RHD*D-CE-D variants were correctly identified, but copy number variation analysis did not confidently distinguish between D and CE exon deletion versus rearrangement. The targeted exome sequencing strategy employed extended the range of blood group genotypes detected compared with single nucleotide polymorphism typing. This single-test format included detection of complex MNS hybrid cases and, with copy number variation analysis, defined RH hybrid genes along with the RHCE*C allele hitherto difficult to resolve by variant detection. The approach is economical compared with whole-genome sequencing and is suitable for a red blood cell reference laboratory setting. © 2017 AABB.
Simple methods for the 3' biotinylation of RNA.
Moritz, Bodo; Wahle, Elmar
2014-03-01
Biotinylation of RNA allows its tight coupling to streptavidin and is thus useful for many types of experiments, e.g., pull-downs. Here we describe three simple techniques for biotinylating the 3' ends of RNA molecules generated by chemical or enzymatic synthesis. First, extension with either the Schizosaccharomyces pombe noncanonical poly(A) polymerase Cid1 or Escherichia coli poly(A) polymerase and N6-biotin-ATP is simple, efficient, and generally applicable independently of the 3'-end sequences of the RNA molecule to be labeled. However, depending on the enzyme and the reaction conditions, several or many biotinylated nucleotides are incorporated. Second, conditions are reported under which splint-dependent ligation by T4 DNA ligase can be used to join biotinylated and, presumably, other chemically modified DNA oligonucleotides to RNA 3' ends even if these are heterogeneous as is typical for products of enzymatic synthesis. Third, we describe the use of 29 DNA polymerase for a template-directed fill-in reaction that uses biotin-dUTP and, thanks to the enzyme's proofreading activity, can cope with more extended 3' heterogeneities.
Wu, Hai-Yan; Ji, Xiao-Yu; Yu, Wei-Wei; Du, Yu-Zhou
2014-03-10
We present the complete mitogenome of a stonefly, Cryptoperla stilifera Sivec (Plecoptera; Peltoperlidae). The mitogenome was a circular molecule consisting of 15,633 nucleotides, 37 genes and a A+T-rich region. C. stilifera mitogenome was similar to Pteronarcys princeps mitogenome (Plecoptera; Pteronarcyidae). All transfer RNA genes (tRNAs) had typical cloverleaf secondary structures except for trnSer (AGN), where the stem-loop structure of the dihydrouridine (DHU) arm was missing. The A+T-rich region of C. stilifera had two stem-loops and each had two interlink. Three conserved sequence blocks (CSBs) were present in the A+T-rich regions of C. stilifera, Peltoperla tarteri and Peltoperla arcuata. Moreover, many polynucleotide stretches (Poly N, N=A, T and C) in the A+T-rich region of C. stilifera Phylogenetic relationships of Polyneopteran species were constructed based on the nucleotide sequences of 13 protein coding genes (PCGs). Both maximum likelihood (ML) and Bayesian inference (BI) analyses supported Grylloblattodea as the sister group to Plecoptera+Dermaptera and Embiidina and Phasmatodea as sister groups. Copyright © 2014 Elsevier B.V. All rights reserved.
Binding and Translocation of Termination Factor Rho Studied at the Single-Molecule Level
Koslover, Daniel J.; Fazal, Furqan M.; Mooney, Rachel A.; Landick, Robert; Block, Steven M.
2012-01-01
Rho termination factor is an essential hexameric helicase responsible for terminating 20–50% of all mRNA synthesis in E. coli. We used single- molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho- utilization (rut) site of the ? tR1 terminator. Our results are consistent with Rho complexes adopting two states, one that binds 57 ±2 nucleotides of RNA across all six of the Rho primary binding sites, and another that binds 85 ±2 nucleotides at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′-to-3′ towards RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the rut site and RNAP. These findings lead to a general model for Rho binding and translocation, and establish a novel experimental approach that should facilitate additional single- molecule studies of RNA-binding proteins. PMID:22885804
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz
2008-01-01
Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825
[The joint applications of DNA chips and single nucleotide polymorphisms in forensic science].
Bai, Peng; Tian, Li; Zhou, Xue-ping
2005-05-01
DNA chip technology, being a new high-technology, shows its vigorous life and rapid growth. Single Nucleotide Polymorphisms (SNPs) is the most common diversity in the human genome. It provides suitable genetic markers which play a key role in disease linkage study, pharmacogenomics, forensic medicine, population evolution and immigration study. Their advantage such as being analyzed with DNA chips technology, is predicted to play an important role in the field of forensic medicine, especially in paternity test and individual identification. This report mainly reviews the characteristics of DNA chip and SNPs, and their joint applications in the practice of forensic medicine.
Testing for genetic association taking into account phenotypic information of relatives.
Uh, Hae-Won; Wijk, Henk Jan van der; Houwing-Duistermaat, Jeanine J
2009-12-15
We investigated efficient case-control association analysis using family data. The outcome of interest was coronary heart disease. We employed existing and new methods that take into account the correlations among related individuals to obtain the proper type I error rates. The methods considered for autosomal single-nucleotide polymorphisms were: 1) generalized estimating equations-based methods, 2) variance-modified Cochran-Armitage (MCA) trend test incorporating kinship coefficients, and 3) genotypic modified quasi-likelihood score test. Additionally, for X-linked single-nucleotide polymorphisms we proposed a two-degrees-of-freedom test. Performance of these methods was tested using Framingham Heart Study 500 k array data.
Shirasu, Naoto; Kuroki, Masahide
2014-01-01
We developed a time- and cost-effective multiplex allele-specific polymerase chain reaction (AS-PCR) method based on the two-step PCR thermal cycles for genotyping single-nucleotide polymorphisms in three alcoholism-related genes: alcohol dehydrogenase 1B, aldehyde dehydrogenase 2 and μ-opioid receptor. Applying MightyAmp(®) DNA polymerase with optimized AS-primers and PCR conditions enabled us to achieve effective and selective amplification of the target alleles from alkaline lysates of a human hair root, and simultaneously to determine the genotypes within less than 1.5 h using minimal lab equipment.
Nadeem, Amina; Mumtaz, Sadaf; Naveed, Abdul Khaliq; Aslam, Muhammad; Siddiqui, Arif; Lodhi, Ghulam Mustafa; Ahmad, Tausif
2015-05-15
Inflammation plays a significant role in the etiology of type 2 diabetes mellitus (T2DM). The rise in the pro-inflammatory cytokines is the essential step in glucotoxicity and lipotoxicity induced mitochondrial injury, oxidative stress and beta cell apoptosis in T2DM. Among the recognized markers are interleukin (IL)-6, IL-1, IL-10, IL-18, tissue necrosis factor-alpha (TNF-α), C-reactive protein, resistin, adiponectin, tissue plasminogen activator, fibrinogen and heptoglobins. Diabetes mellitus has firm genetic and very strong environmental influence; exhibiting a polygenic mode of inheritance. Many single nucleotide polymorphisms (SNPs) in various genes including those of pro and anti-inflammatory cytokines have been reported as a risk for T2DM. Not all the SNPs have been confirmed by unifying results in different studies and wide variations have been reported in various ethnic groups. The inter-ethnic variations can be explained by the fact that gene expression may be regulated by gene-gene, gene-environment and gene-nutrient interactions. This review highlights the impact of these interactions on determining the role of single nucleotide polymorphism of IL-6, TNF-α, resistin and adiponectin in pathogenesis of T2DM.
Liu, Siyang; Huang, Shujia; Rao, Junhua; Ye, Weijian; Krogh, Anders; Wang, Jun
2015-01-01
Comprehensive recognition of genomic variation in one individual is important for understanding disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions. However, these approaches consistently display a substantial bias against the recovery of complex structural variants and novel sequence in individual genomes and do not provide interpretation information such as the annotation of ancestral state and formation mechanism. We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and characterize different forms of structural variation and novel sequence from population-scale de novo genome assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies captures a wide spectrum of structural variants and novel sequences present in the human population in high sensitivity and specificity. Our method provides a direct solution for investigating structural variants and novel sequences from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study also highlights the usefulness of the de novo assembly strategy for definition of genome structure.
Keshari, Pankaj K; Harbo, Hanne F; Myhr, Kjell-Morten; Aarseth, Jan H; Bos, Steffan D; Berge, Tone
2016-04-14
Multiple sclerosis is a chronic inflammatory, demyelinating disease of the central nervous system. Recent genome-wide studies have revealed more than 110 single nucleotide polymorphisms as associated with susceptibility to multiple sclerosis, but their functional contribution to disease development is mostly unknown. Consistent allelic imbalance was observed for rs907091 in IKZF3 and rs11609 in IQGAP1, which are in strong linkage disequilibrium with the multiple sclerosis associated single nucleotide polymorphisms rs12946510 and rs8042861, respectively. Using multiple sclerosis patients and healthy controls heterozygous for rs907091 and rs11609, we showed that the multiple sclerosis risk alleles at IKZF3 and IQGAP1 are expressed at higher levels as compared to the protective allele. Furthermore, individuals homozygous for the multiple sclerosis risk allele at IQGAP1 had a significantly higher total expression of IQGAP1 compared to individuals homozygous for the protective allele. Our data indicate a possible regulatory role for the multiple sclerosis-associated IKZF3 and IQGAP1 variants. We suggest that such cis-acting mechanisms may contribute to the multiple sclerosis association of single nucleotide polymorphisms at IKZF3 and IQGAP1.
Liu, Hui; Wang, Kai; Yang, Cangjie; Huang, Shuo; Wang, Mingfeng
2017-09-01
Polymeric micelles loaded with multiple therapeutic modalities are important to overcome challenges such as drug resistance and improve the therapeutic efficacy. Here we report a new polymer micellar drug carrier that integrates chemotherapy and photothermal therapy in a single platform. Specifically, a narrow bandgap poly(dithienyl-diketopyrrolopyrrole) (PDPP) polymer was encapsulated together with a model anticancer drug doxorubicin (DOX) in the hydrophobic cores of polymeric micelles formed by Pluronic F127, an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer. The PDPP polymer served as an organic photothermal agent that absorbs near-infrared light (700-1000nm) and transforms into heat efficiently. The dual functional micelles co-loaded with PDPP and DOX in the hydrophobic compartment showed good colloidal stability after being stored at 4°C at least over two months, and remained visibly stable after 808-nm laser irradiation. The loaded DOX had negligible effect on the size and photothermal property of the micelles. The release of DOX from the micelles could be enhanced by the "breathing" effect of shrinking/swelling of the micelles induced by the temperature change, owing to the thermosensitive nature of the F127 polymers. Importantly, the ternary F127/PDPP/DOX micelles under 808-nm laser irradiation showed enhanced cytotoxicity against cancer cells such as HeLa cells, compared to F127 micelles containing single modality of either PDPP or DOX only. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo
2014-12-01
A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swain, B; Basu, M; Sahoo, B R; Maiti, N K; Routray, P; Eknath, A E; Samanta, M
2012-01-01
Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic pattern recognition receptor (PRR) and is a member of NOD like receptor (NLR) family. It senses a wide range of bacteria and viruses or their products and is involved in innate immune responses. In this report, NOD-2 gene was cloned and characterized from rohu (Labeo rohita) which is highly commercially important fish species in the Indian subcontinent. The full length rohu NOD-2 (rNOD-2) cDNA comprised of 3176 bp with a single open reading frame (ORF) of 2949 bp encoding a polypeptide of 982 amino acids (aa) with an estimated molecular mass of 109.65 kDa. The rNOD-2 comprised two N-terminal CARD domains (at 4-91 aa and 111-200 aa), one NACHT domain (at 271-441 aa) and seven C-terminal leucine rich repeat (LRR) regions. Phylogenetically, rNOD-2 was closely related to grass carp NOD-2 (gcNOD2) and exhibited significant similarity (94.2%) and identity (88.6%) in their amino acids. Ontogeny analysis of rNOD-2 showed its constitutive expression across the developmental stages, and highlighted the embryonic innate defense system in fish. Tissue specific analysis of rNOD-2 by quantitative real-time PCR (qRT-PCR) revealed its wide distribution; highest expression was in liver followed by blood. In response to PGN and LTA stimulation, Aeromonas hydrophila and Edwardsiella tarda infection, and poly I:C treatment, expression of rNOD-2 and its associated downstream molecules RICK and IFN-γ were significantly enhanced in the treated fish compared to control. These findings suggested the key role of NOD-2 in augmenting innate immunity in fish in response to bacterial and viral infection. This study may be helpful for the development of preventive measures against infectious diseases in fish. Copyright © 2011 Elsevier Ltd. All rights reserved.
DeWitt, D L; Smith, W L
1988-01-01
Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548
Using of methods of speckle optics for Chlamydia trachomatis typing
NASA Astrophysics Data System (ADS)
Ulyanov, Sergey S.; Zaytsev, Sergey S.; Ulianova, Onega V.; Saltykov, Yury V.; Feodorova, Valentina A.
2017-03-01
Specific method of transformation of nucleotide of gene into speckle pattern is suggested. Reference speckle pattern of omp1 gene of typical wild strains of Chlamydia trachomatis of genovars D, E, F, G, J and K and Chlamydia psittaci as well is generated. Perspectives of proposed technique in the gene identification and detection of natural genetic mutations as single nucleotide polymorphism (SNP) are demonstrated.
USDA-ARS?s Scientific Manuscript database
Genotyping by sequencing (GBS) technology was used to identify a set of 9,933 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1,087 cM for watermelon. The genome-wide variation of recombination rate (GWRR) across the map was evaluated and a positive co...
Yang, Young Geun; Kim, Jong Yeol; Park, Su Jeong; Kim, Suhng Wook; Jeon, Ok-Hee; Kim, Doo-Sik
2007-08-31
Apolipoprotein E (APOE) plays a critical role in lipoprotein metabolism by binding to both low-density lipoprotein and APOE receptors. The APOE gene has three allelic forms, epsilon2, epsilon3, and epsilon4, which encode different isoforms of the APOE protein. In this study, we have developed a new genotyping method for APOE. Our multiplex tetra-primer amplification refractory mutation system (multiplex T-ARMS) polymerase chain reaction (PCR) was performed in a single reaction tube with six primers consisting of two common primers and two specific primers for each of two single nucleotide polymorphism (SNP) sites. We obtained definitive electropherograms that showed three (epsilon2/epsilon2, epsilon3/epsilon3, and epsilon4/epsilon4), four (epsilon2/epsilon3 and epsilon3/epsilon4), and five (epsilon2/epsilon4) amplicons by multiplex T-ARMS PCR in a single reaction tube. Multiplex T-ARMS PCR for APOE genotyping is a simple and accurate method that requires only a single PCR reaction, without any another treatments or expensive instrumentation, to simultaneously identify two sites of single nucleotide polymorphisms.
Krasheninina, Olga A; Novopashina, Darya S; Lomzov, Alexander A; Venyaminova, Alya G
2014-09-05
The synthesis and properties two series of new 2'-O-methyl RNA probes, each containing a single insertion of a 2'-bispyrenylmethylphosphorodiamidate derivative of a nucleotide (U, C, A, and G), are described. As demonstrated by UV melting studies, the probes form stable complexes with model RNAs and DNAs. Significant increases (up to 21-fold) in pyrene excimer fluorescence intensity were observed upon binding of most of the probes with complementary RNAs, but not with DNAs. The fluorescence spectra are independent of the nature of the modified nucleotides. The nucleotides on the 5'-side of the modified nucleotide have no effect on the fluorescence spectra, whereas the natures of the two nucleotides on the 3'-side are important: CC, CG, and UC dinucleotide units on the 3'-side of the modified nucleotide provide the maximum increases in excimer fluorescence intensity. This study suggests that these 2'-bispyrene-labeled 2'-O-methyl RNA probes might be useful tools for detection of RNAs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rosinski-Chupin, Isabelle; Sauvage, Elisabeth; Sismeiro, Odile; Villain, Adrien; Da Cunha, Violette; Caliot, Marie-Elise; Dillies, Marie-Agnès; Trieu-Cuot, Patrick; Bouloc, Philippe; Lartigue, Marie-Frédérique; Glaser, Philippe
2015-05-30
Streptococcus agalactiae, or Group B Streptococcus, is a leading cause of neonatal infections and an increasing cause of infections in adults with underlying diseases. In an effort to reconstruct the transcriptional networks involved in S. agalactiae physiology and pathogenesis, we performed an extensive and robust characterization of its transcriptome through a combination of differential RNA-sequencing in eight different growth conditions or genetic backgrounds and strand-specific RNA-sequencing. Our study identified 1,210 transcription start sites (TSSs) and 655 transcript ends as well as 39 riboswitches and cis-regulatory regions, 39 cis-antisense non-coding RNAs and 47 small RNAs potentially acting in trans. Among these putative regulatory RNAs, ten were differentially expressed in response to an acid stress and two riboswitches sensed directly or indirectly the pH modification. Strikingly, 15% of the TSSs identified were associated with the incorporation of pseudo-templated nucleotides, showing that reiterative transcription is a pervasive process in S. agalactiae. In particular, 40% of the TSSs upstream genes involved in nucleotide metabolism show reiterative transcription potentially regulating gene expression, as exemplified for pyrG and thyA encoding the CTP synthase and the thymidylate synthase respectively. This comprehensive map of the transcriptome at the single nucleotide resolution led to the discovery of new regulatory mechanisms in S. agalactiae. It also provides the basis for in depth analyses of transcriptional networks in S. agalactiae and of the regulatory role of reiterative transcription following variations of intra-cellular nucleotide pools.
El-Sabrout, Karim; Aggag, Sarah A.
2017-01-01
Aim: In this study, we examined parts of six growth genes (growth hormone [GH], melanocortin 4 receptor [MC4R], growth hormone receptor [GHR], phosphorglycerate mutase [PGAM], myostatin [MSTN], and fibroblast growth factor [FGF]) as specific primers for two rabbit lines (V-line, Alexandria) using nucleotide sequence analysis, to investigate association between detecting single nucleotide polymorphism (SNP) of these genes and body weight (BW) at market. Materials and Methods: Each line kits were grouped into high and low weight rabbits to identify DNA markers useful for association studies with high BW. DNA from blood samples of each group was extracted to amplify the six growth genes. SNP technique was used to study the associate polymorphism in the six growth genes and marketing BW (at 63 days) in the two rabbit lines. The purified polymerase chain reaction products were sequenced in those had the highest and lowest BW in each line. Results: Alignment of sequence data from each group revealed the following SNPs: At nucleotide 23 (A-C) and nucleotide 35 (T-G) in MC4R gene (sense mutation) of Alexandria and V-line high BW. Furthermore, we detected the following SNPs variation between the two lines: A SNP (T-C) at nucleotide 27 was identified by MC4R gene (sense mutation) and another one (A-C) at nucleotide 14 was identified by GHR gene (nonsense mutation) of Alexandria line. The results of individual BW at market (63 days) indicated that Alexandria rabbits had significantly higher BW compared with V-line rabbits. MC4R polymorphism showed significant association with high BW in rabbits. Conclusion: The results of polymorphism demonstrate the possibility to detect an association between BW in rabbits and the efficiency of the used primers to predict through the genetic specificity using the SNP of MC4R. PMID:28246458
Solid state synthesis of poly(dichlorophosphazene)
Allen, Christopher W.; Hneihen, Azzam S.; Peterson, Eric S.
2001-01-01
A method for making poly(dichlorophosphazene) using solid state reactants is disclosed and described. The present invention improves upon previous methods by removing the need for chlorinated hydrocarbon solvents, eliminating complicated equipment and simplifying the overall process by providing a "single pot" two step reaction sequence. This may be accomplished by the condensation reaction of raw materials in the melt phase of the reactants and in the absence of an environmentally damaging solvent.
Probing Gαi1 Protein Activation at Single Amino Acid Resolution
Sun, Dawei; Maeda, Shoji; Matkovic, Milos; Mendieta, Sandro; Mayer, Daniel; Dawson, Roger; Schertler, Gebhard F.X.; Madan Babu, M.; Veprintsev, Dmitry B.
2016-01-01
We present comprehensive single amino acid resolution maps of the residues stabilising the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and of the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-6. Key residues in this cluster are Y320, crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the inter-domain interface and release of GDP. PMID:26258638
NASA Astrophysics Data System (ADS)
Garcia-Cruz, Alvaro; Lee, Michael; Marote, Pedro; Zine, Nadia; Sigaud, Monique; Bonhomme, Anne; Pruna, Raquel; Lopez, Manuel; Bausells, Joan; Jaffrezic, Nicole; Errachid, Abdelhamid
2016-08-01
Highly efficient nano-engineering tools will certainly revolutionize the biomedical and sensing devices research and development in the years to come. Here, we present a novel high performance conducting poly(pyrrole) nanowires (PPy-NW) patterning technology on thermoplastic surfaces (poly(ethylene terephthalate (PETE), poly(ethylene 2,6-naphthalate (PEN), polyimide (PI), and cyclic olefin copolymer) using nanocontact printing and controlled chemical polymerization (nCP-CCP) technique. The technique uses a commercial compact disk as a template to produce nanopatterned polydimethylsiloxane (PDMS) stamps. The PDMS nanopatterned stamp was applied to print the PPy-NWs and the developed technology of nCP-CCP produced 3D conducting nanostructures. This new and very promising nanopatterning technology was achieved in a single step and with a low cost of fabrication over large areas.
Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip.
Cheng, Yu-Heng; Chen, Yu-Chih; Brien, Riley; Yoon, Euisik
2016-10-07
Recent research suggests that cancer stem-like cells (CSCs) are the key subpopulation for tumor relapse and metastasis. Due to cancer plasticity in surface antigen and enzymatic activity markers, functional tumorsphere assays are promising alternatives for CSC identification. To reliably quantify rare CSCs (1-5%), thousands of single-cell suspension cultures are required. While microfluidics is a powerful tool in handling single cells, previous works provide limited throughput and lack automatic data analysis capability required for high-throughput studies. In this study, we present the scaling and automation of high-throughput single-cell-derived tumor sphere assay chips, facilitating the tracking of up to ∼10 000 cells on a chip with ∼76.5% capture rate. The presented cell capture scheme guarantees sampling a representative population from the bulk cells. To analyze thousands of single-cells with a variety of fluorescent intensities, a highly adaptable analysis program was developed for cell/sphere counting and size measurement. Using a Pluronic® F108 (poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)) coating on polydimethylsiloxane (PDMS), a suspension culture environment was created to test a controversial hypothesis: whether larger or smaller cells are more stem-like defined by the capability to form single-cell-derived spheres. Different cell lines showed different correlations between sphere formation rate and initial cell size, suggesting heterogeneity in pathway regulation among breast cancer cell lines. More interestingly, by monitoring hundreds of spheres, we identified heterogeneity in sphere growth dynamics, indicating the cellular heterogeneity even within CSCs. These preliminary results highlight the power of unprecedented high-throughput and automation in CSC studies.
Kong, Muwen; Beckwitt, Emily C; Springall, Luke; Kad, Neil M; Van Houten, Bennett
2017-01-01
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair. © 2017 Elsevier Inc. All rights reserved.
Reciprocal uniparental disomy in yeast.
Andersen, Sabrina L; Petes, Thomas D
2012-06-19
In the diploid cells of most organisms, including humans, each chromosome is usually distinguishable from its partner homolog by multiple single-nucleotide polymorphisms. One common type of genetic alteration observed in tumor cells is uniparental disomy (UPD), in which a pair of homologous chromosomes are derived from a single parent, resulting in loss of heterozygosity for all single-nucleotide polymorphisms while maintaining diploidy. Somatic UPD events are usually explained as reflecting two consecutive nondisjunction events. Here we report a previously undescribed mode of chromosome segregation in Saccharomyces cerevisiae in which one cell division produces daughter cells with reciprocal UPD for the same pair of chromosomes without an aneuploid intermediate. One pair of sister chromatids is segregated into one daughter cell and the other pair is segregated into the other daughter cell, mimicking a meiotic chromosome segregation pattern. We term this process "reciprocal uniparental disomy."
Genomic diversity of the human intestinal parasite Entamoeba histolytica
2012-01-01
Background Entamoeba histolytica is a significant cause of disease worldwide. However, little is known about the genetic diversity of the parasite. We re-sequenced the genomes of ten laboratory cultured lines of the eukaryotic pathogen Entamoeba histolytica in order to develop a picture of genetic diversity across the genome. Results The extreme nucleotide composition bias and repetitiveness of the E. histolytica genome provide a challenge for short-read mapping, yet we were able to define putative single nucleotide polymorphisms in a large portion of the genome. The results suggest a rather low level of single nucleotide diversity, although genes and gene families with putative roles in virulence are among the more polymorphic genes. We did observe large differences in coverage depth among genes, indicating differences in gene copy number between genomes. We found evidence indicating that recombination has occurred in the history of the sequenced genomes, suggesting that E. histolytica may reproduce sexually. Conclusions E. histolytica displays a relatively low level of nucleotide diversity across its genome. However, large differences in gene family content and gene copy number are seen among the sequenced genomes. The pattern of polymorphism indicates that E. histolytica reproduces sexually, or has done so in the past, which has previously been suggested but not proven. PMID:22630046
Ghedira, Rim; Papazova, Nina; Vuylsteke, Marnik; Ruttink, Tom; Taverniers, Isabel; De Loose, Marc
2009-10-28
GMO quantification, based on real-time PCR, relies on the amplification of an event-specific transgene assay and a species-specific reference assay. The uniformity of the nucleotide sequences targeted by both assays across various transgenic varieties is an important prerequisite for correct quantification. Single nucleotide polymorphisms (SNPs) frequently occur in the maize genome and might lead to nucleotide variation in regions used to design primers and probes for reference assays. Further, they may affect the annealing of the primer to the template and reduce the efficiency of DNA amplification. We assessed the effect of a minor DNA template modification, such as a single base pair mismatch in the primer attachment site, on real-time PCR quantification. A model system was used based on the introduction of artificial mismatches between the forward primer and the DNA template in the reference assay targeting the maize starch synthase (SSIIb) gene. The results show that the presence of a mismatch between the primer and the DNA template causes partial to complete failure of the amplification of the initial DNA template depending on the type and location of the nucleotide mismatch. With this study, we show that the presence of a primer/template mismatch affects the estimated total DNA quantity to a varying degree.
Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.
Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A
2018-06-01
Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less
Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.; ...
2017-09-19
Fracture behaviors of single, two, and multiple contacting spherical Poly (methyl methacrylate) (PMMA) particles were recorded using high speed synchrotron X-ray phase contrast imaging. A miniaturized Kolsky bar setup was used to apply dynamic compressive loading on the PMMA particles. In both single and two particle experiments, cracking initiated near the center of the particles and propagated towards the contacts. The crack bifurcated near the contact points for single particle experiments, thus forming conical fragments. The crack bifurcation and subsequent conical fragment formation was observed only at the particle-particle contact for two particle experiments. The particles were observed to fracturemore » in hemispherical fragments normal to the contact plane in the multiparticle experiments. The observed failure mechanisms strongly suggest that the maximum tensile stress near the center of the particle is the critical parameter governing fracture of the particles. Moreover, the compressive stress under the contact areas led to the bifurcation and subsequent conical fragment formation.« less
NASA Astrophysics Data System (ADS)
Ferris, James P.; Ertem, Gözen; Kamaluddin; Agarwal, Vipin; Hua, Lu Lin
The binding of adenosine to Na+-montmorillonite 22A is greater than 5'-AMP, at neutral pH. Adenine derivatives bind more strongly to the clay than the corresponding uracil derivatives. These data are consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. Other forces must be operative in the binding of uracil derivatives to the clay since the uracil ring system is not basic. The reaction of the 5'-AMP with water soluble carbodiimide in the presence of Na+-montmorillonite results in the formation of 2',5'-pApA (18.9%), 3',5'-pApA (11%), and AppA (4.8%). When poly(U) is used in place of the clay the product yields are 2',5',-pApA (15.5%), 3',5'-pApA (3.7%) and AppA (14.9%). The cyclic nucleotide, c(pA)2 is also formed when poly(U) is used. AppA is the principal reaction product when neither clay nor poly(U) is present in the reaction mixture. When 2'-deoxy-5'-AMP reacts with carbodiimide in the presence of Na+-montmorillonite 22A the products are dpApA (4.8%), dAppApA (4.5%) and dAppA (17.4%). Cyclic 3',5'-dAMP is the main product (14%) of the reaction of 2'-deoxy-3'-AMP.
Hein, David W.
2009-01-01
Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) exhibit single nucleotide polymorphisms (SNPs) in human populations that modify drug and carcinogen metabolism. This paper updates the identity, location, and functional effects of these SNPs and then follows with emerging concepts for understanding why pharmacogenetic findings may not be replicated consistently. Using this paradigm as an example, laboratory-based mechanistic analyses can reveal complexities such that genetic polymorphisms become biologically and medically relevant when confounding factors are more fully understood and considered. As medical care moves to a more personalized approach, the implications of these confounding factors will be important in understanding the complexities of personalized medicine. PMID:19379125
Pravica, Vera; Popadic, Dusan; Savic, Emina; Markovic, Milos; Drulovic, Jelena; Mostarica-Stojkovic, Marija
2012-04-01
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by unpredictable and variable clinical course. Etiology of MS involves both genetic and environmental factors. New technologies identified genetic polymorphisms associated with MS susceptibility among which immunologically relevant genes are significantly overrepresented. Although individual genes contribute only a small part to MS susceptibility, they might be used as biomarkers, thus helping to identify accurate diagnosis, predict clinical disease course and response to therapy. This review focuses on recent progress in research on MS genetics with special emphasis on the possibility to use single nucleotide polymorphism of candidate genes as biomarkers of susceptibility to disease and response to therapy.
Mycobacterium leprae: genes, pseudogenes and genetic diversity
Singh, Pushpendra; Cole, Stewart T
2011-01-01
Leprosy, which has afflicted human populations for millenia, results from infection with Mycobacterium leprae, an unculturable pathogen with an exceptionally long generation time. Considerable insight into the biology and drug resistance of the leprosy bacillus has been obtained from genomics. M. leprae has undergone reductive evolution and pseudogenes now occupy half of its genome. Comparative genomics of four different strains revealed remarkable conservation of the genome (99.995% identity) yet uncovered 215 polymorphic sites, mainly single nucleotide polymorphisms, and a handful of new pseudogenes. Mapping these polymorphisms in a large panel of strains defined 16 single nucleotide polymorphism-subtypes that showed strong geographical associations and helped retrace the evolution of M. leprae. PMID:21162636
2012-01-01
The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org. PMID:23013645
Fixed-Gap Tunnel Junction for Reading DNA Nucleotides
2015-01-01
Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides via hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events. PMID:25380505
Formation of porous networks on polymeric surfaces by femtosecond laser micromachining
NASA Astrophysics Data System (ADS)
Assaf, Youssef; Kietzig, Anne-Marie
2017-02-01
In this study, porous network structures were successfully created on various polymer surfaces by femtosecond laser micromachining. Six different polymers (poly(tetrafluoroethylene) (PTFE), poly(methyl methacrylate) (PMMA), high density poly(ethylene) (HDPE), poly(lactic acid) (PLA), poly(carbonate) (PC), and poly(ethylene terephthalate) (PET)) were machined at different fluences and pulse numbers, and the resulting structures were identified and compared by lacunarity analysis. At low fluence and pulse numbers, porous networks were confirmed to form on all materials except PLA. Furthermore, all networks except for PMMA were shown to bundle up at high fluence and pulse numbers. In the case of PC, a complete breakdown of the structure at such conditions was observed. Operation slightly above threshold fluence and at low pulse numbers is therefore recommended for porous network formation. Finally, the thickness over which these structures formed was measured and compared to two intrinsic material dependent parameters: the single pulse threshold fluence and the incubation coefficient. Results indicate that a lower threshold fluence at operating conditions favors material removal over structure formation and is hence detrimental to porous network formation. Favorable machining conditions and material-dependent parameters for the formation of porous networks on polymer surfaces have thus been identified.
Micropatterns of Matrigel for three-dimensional epithelial cultures.
Sodunke, Temitope R; Turner, Keneshia K; Caldwell, Sarah A; McBride, Kevin W; Reginato, Mauricio J; Noh, Hongseok Moses
2007-09-01
Three-dimensional (3D) epithelial culture models are widely used to promote a physiologically relevant microenvironment for the study of normal and aberrant epithelial organization. Despite the increased use of these models, their potential as a cell-based screening tool for therapeutics has been hindered by the lack of existing platforms for large-scale 3D cellular studies. Current 3D standard culture does not allow for single spheroid or 'acinus' analysis required for high-throughput systems. Here, we present general strategies for creating bulk micropatterns of Matrigel that can be used as a platform for 3D epithelial culture and cell-based assays at the single acinus level. Both buried and free-standing micropatterns of Matrigel were created using modified soft lithography techniques such as microtransfer molding (microTM) and dry lift-off technique. Surface modification of poly(dimethylsiloxane) (PDMS) with oxygen plasma followed by treatment with poly(2-hydroxy-ethylmethacrylate) (poly-HEMA) was sufficient to promote deformation-free release of Matrigel patterns. In addition, a novel dual-layer dry lift-off technique was developed to simultaneously generate patterns of Matrigel and poly-HEMA on a single substrate. We also demonstrate that the micropatterned Matrigel can support 3D culture originating from a single normal human mammary epithelial (MCF-10A) cell or a human breast cancer cell (MDA-MB-231) with comparable phenotypes to standard 3D culture techniques. Culture of normal MCF-10A cells on micropatterned Matrigel resulted in formation of structures with the characteristic apoptosis of centrally located cells and formation of hollow lumens. Moreover, the carcinoma cell line showed their characteristic formation of disorganized invasive cellular clusters, lacking the normal epithelial architecture on micropatterned Matrigel. Hence, micropatterned Matrigel can be used as a 3D epithelial cell-based platform for a wide variety of applications in epithelial and cancer biology, tissue engineering, as well as gene/drug screening technology.
Kondo, Jiro; Westhof, Eric
2011-01-01
Nucleotide bases are recognized by amino acid residues in a variety of DNA/RNA binding and nucleotide binding proteins. In this study, a total of 446 crystal structures of nucleotide–protein complexes are analyzed manually and pseudo pairs together with single and bifurcated hydrogen bonds observed between bases and amino acids are classified and annotated. Only 5 of the 20 usual amino acid residues, Asn, Gln, Asp, Glu and Arg, are able to orient in a coplanar fashion in order to form pseudo pairs with nucleotide bases through two hydrogen bonds. The peptide backbone can also form pseudo pairs with nucleotide bases and presents a strong bias for binding to the adenine base. The Watson–Crick side of the nucleotide bases is the major interaction edge participating in such pseudo pairs. Pseudo pairs between the Watson–Crick edge of guanine and Asp are frequently observed. The Hoogsteen edge of the purine bases is a good discriminatory element in recognition of nucleotide bases by protein side chains through the pseudo pairing: the Hoogsteen edge of adenine is recognized by various amino acids while the Hoogsteen edge of guanine is only recognized by Arg. The sugar edge is rarely recognized by either the side-chain or peptide backbone of amino acid residues. PMID:21737431
Interface Character of Aluminum-Graphite Metal Matrix Composites.
1983-01-27
studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase
Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu
2016-10-01
Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.
The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi.
Ryskov, Alexey P; Osipov, Fedor A; Omelchenko, Andrey V; Semyenova, Seraphima K; Girnyk, Anastasiya E; Korchagin, Vitaly I; Vergun, Andrey A; Murphy, Robert W
2017-01-01
The all-female Caucasian rock lizard Darevskia rostombekowi and other unisexual species of this genus reproduce normally via true parthenogenesis. Typically, diploid parthenogenetic reptiles exhibit some amount of clonal diversity. However, allozyme data from D. rostombekowi have suggested that this species consists of a single clone. Herein, we test this hypothesis by evaluating variation at three variable microsatellite loci for 42 specimens of D. rostombekowi from four populations in Armenia. Analyses based on single nucleotide polymorphisms of each locus reveal five genotypes or presumptive clones in this species. All individuals are heterozygous at the loci. The major clone occurs in 24 individuals and involves three populations. Four rare clones involve one or several individuals from one or two populations. Most variation owes to parent-specific single nucleotide polymorphisms, which occur as heterozygotes. This result fails to reject the hypothesis of a single hybridization founder event that resulted in the initial formation of one major clone. The other clones appear to have originated via post-formation microsatellite mutations of the major clone.
NASA Astrophysics Data System (ADS)
Zhang, Dong; Ortiz, Christine
2003-03-01
With the advent of nanotechnology, miniaturized devices will soon need nanoscale springs with well-controlled nanomechanical properties such as shock absorbers, or to control the adhesive interactions between two components. In order to understand, manipulate, and control single macromolecule nanomechanical properties, mono(thiol)-terminated poly(hydroxyethyl methacrylate-g-ethylene glycol) has been synthesized via atom transfer radical polymerization. End-functionalization, chemical structure, molecular weight, side-chain graft density, radius of gyration, and polydispersity were characterized by 1H nuclear magnetic resonance, static light scattering, and gel permeation chromatography. The polymer chains were attached to Au-coated Si wafers via chemisorption to prepare well-separated "mushrooms", as verified by atomic force microscopy. Single molecule force spectroscopy was then used to measure the extensional elastic properties, i.e. force (nN) versus end-to-end separation distance (nm), of the individual chains by tethering to a Si3N4 probe tip via nonspecific, physisorption interactions.
Madsen, Mikael; Christensen, Rasmus S; Krissanaprasit, Abhichart; Bakke, Mette R; Riber, Camilla F; Nielsen, Karina S; Zelikin, Alexander N; Gothelf, Kurt V
2017-08-04
Conjugated polymers have been intensively studied due to their unique optical and electronic properties combined with their physical flexibility and scalable bottom up synthesis. Although the bulk qualities of conjugated polymers have been extensively utilized in research and industry, the ability to handle and manipulate conjugated polymers at the nanoscale lacks significantly behind. Here, the toolbox for controlled manipulation of conjugated polymers was expanded through the synthesis of a polyfluorene-DNA graft-type polymer (poly(F-DNA)). The polymer possesses the characteristics associated with the conjugated polyfluorene backbone, but the protruding single-stranded DNA provides the material with an exceptional addressability. This study demonstrates controlled single-molecule patterning of poly(F-DNA), as well as energy transfer between two different polymer-DNA conjugates. Finally, highly efficient DNA-directed quenching of polyfluorene fluorescence was shown. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A high-throughput method for generating uniform microislands for autaptic neuronal cultures
Sgro, Allyson E.; Nowak, Amy L.; Austin, Naola S.; Custer, Kenneth L.; Allen, Peter B.; Chiu, Daniel T.; Bajjalieh, Sandra M.
2013-01-01
Generating microislands of culture substrate on coverslips by spray application of poly-D lysine is a commonly used method for culturing isolated neurons that form self (autaptic) synapses. This preparation has multiple advantages for studying synaptic transmission in isolation; however, generating microislands by spraying produces islands of non-uniform size and thus cultures vary widely in the number of islands containing single neurons. To address these problems, we developed a high-throughput method for reliably generating uniformly-shaped microislands of culture substrate. Stamp molds formed of poly(dimethylsiloxane) (PDMS) were fabricated with arrays of circles and used to generate stamps made of 9.2% agarose. The agarose stamps were capable of loading sufficient poly D-lysine and collagen dissolved in acetic acid to rapidly generate coverslips containing at least 64 microislands per coverslip. When hippocampal neurons were cultured on these coverslips, there were significantly more single-neuron islands per coverslip. We noted that single neurons tended to form one of three distinct neurite-arbor morphologies, which varied with island size and the location of the cell body on the island. To our surprise, the number of synapses per autaptic neuron did not correlate with arbor shape or island size, suggesting that other factors regulate the number of synapses formed by isolated neurons. The stamping method we report can be used to increase the number of single-neuron islands per culture and aid in the rapid visualization of microislands. PMID:21515305
Label-Free Direct Detection of miRNAs with Poly-Silicon Nanowire Biosensors
Gong, Changguo; Qi, Jiming; Xiao, Han; Jiang, Bin; Zhao, Yulan
2015-01-01
Background The diagnostic and prognostic value of microRNAs (miRNAs) in a variety of diseases is promising. The novel silicon nanowire (SiNW) biosensors have advantages in molecular detection because of their high sensitivity and fast response. In this study, poly-crystalline silicon nanowire field-effect transistor (poly-SiNW FET) device was developed to achieve specific and ultrasensitive detection of miRNAs without labeling and amplification. Methods The poly-SiNW FET was fabricated by a top–down Complementary Metal Oxide Semiconductor (CMOS) wafer fabrication based technique. Single strand DNA (ssDNA) probe was bind to the surface of the poly-SiNW device which was silanated and aldehyde-modified. By comparing the difference of resistance value before and after ssDNA and miRNA hybridization, poly-SiNW device can be used to detect standard and real miRNA samples. Results Poly-SiNW device with different structures (different line width and different pitch) was applied to detect standard Let-7b sample with a detection limitation of 1 fM. One-base mismatched sequence could be distinguished meanwhile. Furthermore, these poly-SiNW arrays can detect snRNA U6 in total RNA samples extracted from HepG2 cells with a detection limitation of 0.2 μg/mL. In general, structures with pitch showed better results than those without pitch in detection of both Let-7b and snRNA U6. Moreover, structures with smaller pitch showed better detection efficacy. Conclusion Our findings suggest that poly-SiNW arrays could detect standard and real miRNA sample without labeling or amplification. Poly-SiNW biosensor device is promising for miRNA detection. PMID:26709827
Helal, Soheir F.; Gomaa, Howayda E.; Thabet, Eman H.; Younan, Mariam A.; Helmy, Neveen A.
2014-01-01
Immunoregulatory cytokines may influence the hepatitis C virus (HCV) infection outcome. This study aimed to determine the genotypic and allelic frequencies of the interleukin (IL)-10 (−1082) G/A polymorphism, and its association with chronicity or resolution of HCV genotype 4 infection in Egypt. The frequencies of different dimorphic polymorphisms based on single nucleotide substitution in chronic HCV patients (50) and resolved HCV patients (50) were: IL-10 (−1082) G/G 22 (44%) and 18 (36%), G/A 19 (38%) and 24 (48%), and A/A 9 (18%), and 8 (16%), respectively. In the sustained virologic response (SVR) (36) and spontaneously resolved subjects (14) groups, the frequencies were: IL-10 (−1082) G/G 11 (30.6%) and 7 (50%) G/A 18 (50%) and 6 (42.9%), A/A 7 (19.4%) and 1 (7.1%), respectively. An association between male gender and chronic hepatitis C outcome (P value 0.041) was found. However, no significant gender difference was found when we compared females versus males with elevated alanine transaminase (ALT) levels in the chronic HCV patient group (P value = 1). CONCLUSION No significant difference in the frequency of IL-10 single nucleotide polymorphism (SNP) at position 1082 was found between chronic and resolved HCV subjects. PMID:24833945
Helal, Soheir F; Gomaa, Howayda E; Thabet, Eman H; Younan, Mariam A; Helmy, Neveen A
2014-01-01
Immunoregulatory cytokines may influence the hepatitis C virus (HCV) infection outcome. This study aimed to determine the genotypic and allelic frequencies of the interleukin (IL)-10 (-1082) G/A polymorphism, and its association with chronicity or resolution of HCV genotype 4 infection in Egypt. The frequencies of different dimorphic polymorphisms based on single nucleotide substitution in chronic HCV patients (50) and resolved HCV patients (50) were: IL-10 (-1082) G/G 22 (44%) and 18 (36%), G/A 19 (38%) and 24 (48%), and A/A 9 (18%), and 8 (16%), respectively. In the sustained virologic response (SVR) (36) and spontaneously resolved subjects (14) groups, the frequencies were: IL-10 (-1082) G/G 11 (30.6%) and 7 (50%) G/A 18 (50%) and 6 (42.9%), A/A 7 (19.4%) and 1 (7.1%), respectively. An association between male gender and chronic hepatitis C outcome (P value 0.041) was found. However, no significant gender difference was found when we compared females versus males with elevated alanine transaminase (ALT) levels in the chronic HCV patient group (P value = 1). No significant difference in the frequency of IL-10 single nucleotide polymorphism (SNP) at position 1082 was found between chronic and resolved HCV subjects.
Mishra, Anshuman; Nizammuddin, Sheikh; Mallick, Chandana Basu; Singh, Sakshi; Prakash, Satya; Siddiqui, Niyamat Ali; Rai, Niraj; Carlus, S Justin; Sudhakar, Digumarthi V S; Tripathi, Vishnu P; Möls, Märt; Kim-Howard, Xana; Dewangan, Hemlata; Mishra, Abhishek; Reddy, Alla G; Roy, Biswajit; Pandey, Krishna; Chaubey, Gyaneshwer; Das, Pradeep; Nath, Swapan K; Singh, Lalji; Thangaraj, Kumarasamy
2017-03-01
Our understanding of the genetics of skin pigmentation has been largely skewed towards populations of European ancestry, imparting less attention to South Asian populations, who behold huge pigmentation diversity. Here, we investigate skin pigmentation variation in a cohort of 1,167 individuals in the Middle Gangetic Plain of the Indian subcontinent. Our data confirm the association of rs1426654 with skin pigmentation among South Asians, consistent with previous studies, and also show association for rs2470102 single nucleotide polymorphism. Our haplotype analyses further help us delineate the haplotype distribution across social categories and skin color. Taken together, our findings suggest that the social structure defined by the caste system in India has a profound influence on the skin pigmentation patterns of the subcontinent. In particular, social category and associated single nucleotide polymorphisms explain about 32% and 6.4%, respectively, of the total phenotypic variance. Phylogeography of the associated single nucleotide polymorphisms studied across 52 diverse populations of the Indian subcontinent shows wide presence of the derived alleles, although their frequencies vary across populations. Our results show that both polymorphisms (rs1426654 and rs2470102) play an important role in the skin pigmentation diversity of South Asians. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Khrustaleva, A M; Gritsenko, O F; Klovach, N V
2013-11-01
The genetic polymorphism of 45 single-nucleotide polymorphism loci was examined in the four largest wild populations of sockeye salmon Oncorhynchusnerka from drainages of the Asian coast of the Pacific Ocean (Eastern and Western Kamchatka). It was demonstrated that sockeye salmon from the Palana River were considerably different from all other populations examined. The most probable explanation of the observed differences is the suggestion on possible demographic events in the history of this population associated with the decrease in its effective number. To study the origin, colonization patterns, and evolution of Asian sockeye salmon, as well as to resolve some of the applied tasks, like population assignment and genetic identification, a differentiation approach to SNP-marker selection was suggested. Adaptively important loci that evolve under the pressure of balancing (stabilizing) selection were identified, thanks to which the number of loci that provide the baseline classification error rates in the population assignment tests was reduced to 30. It was demonstrated that SNPs located in the MHC2 and GPH genes were affected by diversifying selection. Procedures for selecting single-nucleotide polymorphisms for phylogenetic studies of Asian sockeye salmon were suggested. Using principal-component analysis, 17 loci that adequately reproduce genetic differentiation within arid among the regions of the origin of Kamchatka sockeye salmon, were selected.
Screening of reproduction-related single-nucleotide variations from MeDIP-seq data in sheep.
Cao, Jiaxue; Wei, Caihong; Zhang, Shuzhen; Capellini, Terence D; Zhang, Li; Zhao, Fuping; Li, Li; Zhong, Tao; Wang, Linjie; Du, Lixin; Zhang, Hongping
2016-11-01
Extensive variation in reproduction has arisen in Chinese Mongolian sheep during recent domestication. Hu and Small-tailed Han sheep, for example, have become non-seasonal breeders and exhibit higher fecundity than Tan and Ujumqin breeds. We therefore scanned reproduction-related single-nucleotide variations from methylated DNA-immunoprecipitation sequencing data generated from each of those four breeds to uncover potential mechanisms underlying this breed variation. We generated a high-quality map of single nucleotide variations (SNVs) in DNA methylation enriched regions, and found that the majority of variants are located within non-coding regions. We identified 359 SNVs within the Sheep Quantitative Trait Locus (QTL) database. Nineteen of these SNVs associated with the Aseasonal Reproduction QTL, and 10 out of the 19 reside close to genes with known reproduction functions. We also identified the well-known FecB mutation in high-fecundity sheep (Hu and Small-tailed Han sheep). When we applied these FecB finding to our breeding system, we improved lambing rate by 175%. In summary, this study provided strong candidate SNVs associated with sheep fecundity that can serve as targets for functional testing and to enhance selective breeding strategies. Mol. Reprod. Dev. 83: 958-967, 2016 © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Allele-specific locus binding and genome editing by CRISPR at the p16INK4a locus.
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-07-28
The clustered regularly interspaced short palindromic repeats (CRISPR) system has been adopted for a wide range of biological applications including genome editing. In some cases, dissection of genome functions requires allele-specific genome editing, but the use of CRISPR for this purpose has not been studied in detail. In this study, using the p16INK4a gene in HCT116 as a model locus, we investigated whether chromatin states, such as CpG methylation, or a single-nucleotide gap form in a target site can be exploited for allele-specific locus binding and genome editing by CRISPR in vivo. First, we showed that allele-specific locus binding and genome editing could be achieved by targeting allele-specific CpG-methylated regions, which was successful for one, but not all guide RNAs. In this regard, molecular basis underlying the success remains elusive at this stage. Next, we demonstrated that an allele-specific single-nucleotide gap form could be employed for allele-specific locus binding and genome editing by CRISPR, although it was important to avoid CRISPR tolerance of a single nucleotide mismatch brought about by mismatched base skipping. Our results provide information that might be useful for applications of CRISPR in studies of allele-specific functions in the genomes.
NASA Astrophysics Data System (ADS)
Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan
2017-02-01
Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.
Mohd-Yusoff, Nur Fatihah; Ruperao, Pradeep; Tomoyoshi, Nurain Emylia; Edwards, David; Gresshoff, Peter M.; Biswas, Bandana; Batley, Jacqueline
2015-01-01
Genetic structure can be altered by chemical mutagenesis, which is a common method applied in molecular biology and genetics. Second-generation sequencing provides a platform to reveal base alterations occurring in the whole genome due to mutagenesis. A model legume, Lotus japonicus ecotype Miyakojima, was chemically mutated with alkylating ethyl methanesulfonate (EMS) for the scanning of DNA lesions throughout the genome. Using second-generation sequencing, two individually mutated third-generation progeny (M3, named AM and AS) were sequenced and analyzed to identify single nucleotide polymorphisms and reveal the effects of EMS on nucleotide sequences in these mutant genomes. Single-nucleotide polymorphisms were found in every 208 kb (AS) and 202 kb (AM) with a bias mutation of G/C-to-A/T changes at low percentage. Most mutations were intergenic. The mutation spectrum of the genomes was comparable in their individual chromosomes; however, each mutated genome has unique alterations, which are useful to identify causal mutations for their phenotypic changes. The data obtained demonstrate that whole genomic sequencing is applicable as a high-throughput tool to investigate genomic changes due to mutagenesis. The identification of these single-point mutations will facilitate the identification of phenotypically causative mutations in EMS-mutated germplasm. PMID:25660167
Grußmayer, Kristin S; Steiner, Florian; Lupton, John M; Herten, Dirk-Peter; Vogelsang, Jan
2015-12-01
Blinking of the photoluminescence (PL) emitted from individual conjugated polymer chains is one of the central observations made by single-molecule spectroscopy (SMS). Important information, for example regarding excitation energy transfer, can be extracted by evaluating dynamic quenching. However, the nature of trap states, which are responsible for PL quenching, often remains obscured. We present a detailed investigation of the photon statistics of single poly(3-hexylthiophene) (P3HT) chains obtained by SMS. The photon statistics provide a measure of the number and brightness of independently emitting areas on a single chain. These observables can be followed during blinking. A decrease in PL intensity is shown to be correlated with either 1) a decrease in the average brightness of the emitting sites; or 2) a decrease in the number of emitting regions. We attribute these phenomena to the formation of 1) shallow charge traps, which can weakly affect all emitting areas of a single chain at once; and 2) deep traps, which have a strong effect on small regions within the single chains. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Borovok, Natalia; Iram, Natalie; Zikich, Dragoslav; Ghabboun, Jamal; Livshits, Gideon I; Porath, Danny; Kotlyar, Alexander B
2008-09-01
We describe a method for the preparation of novel long (hundreds of nanometers), uniform, inter-molecular G4-DNA molecules composed of four parallel G-strands. The only long continuous G4-DNA reported so far are intra-molecular structures made of a single G-strand. To enable a tetra-molecular assembly of the G-strands we developed a novel approach based on avidin-biotin biological recognition. The steps of the G4-DNA production include: (i) Enzymatic synthesis of long poly(dG)-poly(dC) molecules with biotinylated poly(dG)-strand; (ii) Formation of a complex between avidin-tetramer and four biotinylated poly(dG)-poly(dC) molecules; (iii) Separation of the poly(dC) strands from the poly(dG)-strands, which are connected to the avidin; (iv) Assembly of the four G-strands attached to the avidin into tetra-molecular G4-DNA. The average contour length of the formed structures, as measured by AFM, is equal to that of the initial poly(dG)-poly(dC) molecules, suggesting a tetra-molecular mechanism of the G-strands assembly. The height of tetra-molecular G4-nanostructures is larger than that of mono-molecular G4-DNA molecules having similar contour length. The CD spectra of the tetra- and mono-molecular G4-DNA are markedly different, suggesting different structural organization of these two types of molecules. The tetra-molecular G4-DNA nanostructures showed clear electrical polarizability. This suggests that they may be useful for molecular electronics.
DNA hybridization sensor based on pentacene thin film transistor.
Kim, Jung-Min; Jha, Sandeep Kumar; Chand, Rohit; Lee, Dong-Hoon; Kim, Yong-Sang
2011-01-15
A DNA hybridization sensor using pentacene thin film transistors (TFTs) is an excellent candidate for disposable sensor applications due to their low-cost fabrication process and fast detection. We fabricated pentacene TFTs on glass substrate for the sensing of DNA hybridization. The ss-DNA (polyA/polyT) or ds-DNA (polyA/polyT hybrid) were immobilized directly on the surface of the pentacene, producing a dramatic change in the electrical properties of the devices. The electrical characteristics of devices were studied as a function of DNA immobilization, single-stranded vs. double-stranded DNA, DNA length and concentration. The TFT device was further tested for detection of λ-phage genomic DNA using probe hybridization. Based on these results, we propose that a "label-free" detection technique for DNA hybridization is possible through direct measurement of electrical properties of DNA-immobilized pentacene TFTs. Copyright © 2010 Elsevier B.V. All rights reserved.
Nuotio, Joel; Pitkänen, Niina; Magnussen, Costan G; Buscot, Marie-Jeanne; Venäläinen, Mikko S; Elo, Laura L; Jokinen, Eero; Laitinen, Tomi; Taittonen, Leena; Hutri-Kähönen, Nina; Lyytikäinen, Leo-Pekka; Lehtimäki, Terho; Viikari, Jorma S; Juonala, Markus; Raitakari, Olli T
2017-06-01
Dyslipidemia is a major modifiable risk factor for cardiovascular disease. We examined whether the addition of novel single-nucleotide polymorphisms for blood lipid levels enhances the prediction of adult dyslipidemia in comparison to childhood lipid measures. Two thousand four hundred and twenty-two participants of the Cardiovascular Risk in Young Finns Study who had participated in 2 surveys held during childhood (in 1980 when aged 3-18 years and in 1986) and at least once in a follow-up study in adulthood (2001, 2007, and 2011) were included. We examined whether inclusion of a lipid-specific weighted genetic risk score based on 58 single-nucleotide polymorphisms for low-density lipoprotein cholesterol, 71 single-nucleotide polymorphisms for high-density lipoprotein cholesterol, and 40 single-nucleotide polymorphisms for triglycerides improved the prediction of adult dyslipidemia compared with clinical childhood risk factors. Adjusting for age, sex, body mass index, physical activity, and smoking in childhood, childhood lipid levels, and weighted genetic risk scores were associated with an increased risk of adult dyslipidemia for all lipids. Risk assessment based on 2 childhood lipid measures and the lipid-specific weighted genetic risk scores improved the accuracy of predicting adult dyslipidemia compared with the approach using only childhood lipid measures for low-density lipoprotein cholesterol (area under the receiver-operating characteristic curve 0.806 versus 0.811; P =0.01) and triglycerides (area under the receiver-operating characteristic curve 0.740 versus area under the receiver-operating characteristic curve 0.758; P <0.01). The overall net reclassification improvement and integrated discrimination improvement were significant for all outcomes. The inclusion of weighted genetic risk scores to lipid-screening programs in childhood could modestly improve the identification of those at highest risk of dyslipidemia in adulthood. © 2017 American Heart Association, Inc.
Gurramkonda, Venkatesh Babu; Syed, Altaf Hussain; Murthy, Jyotsna; Lakkakula, Bhaskar V K S
2017-06-26
Transcription factors are very diverse family of proteins involved in activating or repressing the transcription of a gene at a given time. Several studies using animal models demonstrated the role of transcription factor genes in craniofacial development. We aimed to investigate the association of IRF6 intron-6 polymorphism in the non-syndromic cleft lip with or without Palate in a south Indian population. 173 unrelated nonsyndromic cleft lip with or without Palate patients and 176 controls without clefts patients were genotyped for IRF6 rs2235375 variant by allele-specific amplification using the KASPar single nucleotide polymorphism genotyping system. The association between interferon regulatory factor-6 gene intron-6 dbSNP208032210:g.G>C (rs2235375) single nucleotide polymorphism and non-syndromic cleft lip with or without palate risk was investigated by chi-square test. There were significant differences in genotype or allele frequencies of rs2235375 single nucleotide polymorphism between controls and cases with non-syndromic cleft lip with or without palate. IRF6 rs2235375 variant was significantly associated with increased risk of non-syndromic cleft lip with or without palate in co-dominant, dominant (OR: 1.19; 95% CI 1.03-2.51; p=0.034) and allelic models (OR: 1.40; 95% CI 1.04-1.90; p=0.028). When subset analysis was applied significantly increased risk was observed in cleft palate only group (OR dominant: 4.33; 95% CI 1.44-12.97; p=0.005). These results suggest that IRF6 rs2235375 SNP play a major role in the pathogenesis and risk of developing non-syndromic cleft lip with or without palate. Copyright © 2017 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Maslow, Bat-Sheva L; Budinetz, Tara; Sueldo, Carolina; Anspach, Erica; Engmann, Lawrence; Benadiva, Claudio; Nulsen, John C
2015-07-01
To compare the analysis of chromosome number from paraffin-embedded products of conception using single-nucleotide polymorphism (SNP) microarray with the recommended screening for the evaluation of couples presenting with recurrent pregnancy loss who do not have previous fetal cytogenetic data. We performed a retrospective cohort study including all women who presented for a new evaluation of recurrent pregnancy loss over a 2-year period (January 1, 2012, to December 31, 2013). All participants had at least two documented first-trimester losses and both the recommended screening tests and SNP microarray performed on at least one paraffin-embedded products of conception sample. Single-nucleotide polymorphism microarray identifies all 24 chromosomes (22 autosomes, X, and Y). Forty-two women with a total of 178 losses were included in the study. Paraffin-embedded products of conception from 62 losses were sent for SNP microarray. Single-nucleotide polymorphism microarray successfully diagnosed fetal chromosome number in 71% (44/62) of samples, of which 43% (19/44) were euploid and 57% (25/44) were noneuploid. Seven of 42 (17%) participants had abnormalities on recurrent pregnancy loss screening. The per-person detection rate for a cause of pregnancy loss was significantly higher in the SNP microarray (0.50; 95% confidence interval [CI] 0.36-0.64) compared with recurrent pregnancy loss evaluation (0.17; 95% CI 0.08-0.31) (P=.002). Participants with one or more euploid loss identified on paraffin-embedded products of conception were significantly more likely to have an abnormality on recurrent pregnancy loss screening than those with only noneuploid results (P=.028). The significance remained when controlling for age, number of losses, number of samples, and total pregnancies. These results suggest that SNP microarray testing of paraffin-embedded products of conception is a valuable tool for the evaluation of recurrent pregnancy loss in patients without prior fetal cytogenetic results. Recommended recurrent pregnancy loss screening was unnecessary in almost half the patients in our study. II.
Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke.
Hanscombe, Ken B; Traylor, Matthew; Hysi, Pirro G; Bevan, Stephen; Dichgans, Martin; Rothwell, Peter M; Worrall, Bradford B; Seshadri, Sudha; Sudlow, Cathie; Williams, Frances M K; Markus, Hugh S; Lewis, Cathryn M
2015-08-01
Abnormal coagulation has been implicated in the pathogenesis of ischemic stroke, but how this association is mediated and whether it differs between ischemic stroke subtypes is unknown. We determined the shared genetic risk between 14 coagulation factors and ischemic stroke and its subtypes. Using genome-wide association study results for 14 coagulation factors from the population-based TwinsUK sample (N≈2000 for each factor), meta-analysis results from the METASTROKE consortium ischemic stroke genome-wide association study (12 389 cases, 62 004 controls), and genotype data for 9520 individuals from the WTCCC2 ischemic stroke study (3548 cases, 5972 controls-the largest METASTROKE subsample), we explored shared genetic risk for coagulation and stroke. We performed three analyses: (1) a test for excess concordance (or discordance) in single nucleotide polymorphism effect direction across coagulation and stroke, (2) an estimation of the joint effect of multiple coagulation-associated single nucleotide polymorphisms in stroke, and (3) an evaluation of common genetic risk between coagulation and stroke. One coagulation factor, factor XIII subunit B (FXIIIB), showed consistent effects in the concordance analysis, the estimation of polygenic risk, and the validation with genotype data, with associations specific to the cardioembolic stroke subtype. Effect directions for FXIIIB-associated single nucleotide polymorphisms were significantly discordant with cardioembolic disease (smallest P=5.7×10(-04)); the joint effect of FXIIIB-associated single nucleotide polymorphisms was significantly predictive of ischemic stroke (smallest P=1.8×10(-04)) and the cardioembolic subtype (smallest P=1.7×10(-04)). We found substantial negative genetic covariation between FXIIIB and ischemic stroke (rG=-0.71, P=0.01) and the cardioembolic subtype (rG=-0.80, P=0.03). Genetic markers associated with low FXIIIB levels increase risk of ischemic stroke cardioembolic subtype. © 2015 The Authors.
Berro, Mariano; Mayor, Neema P.; Maldonado-Torres, Hazael; Cooke, Louise; Kusminsky, Gustavo; Marsh, Steven G.E.; Madrigal, J. Alejandro; Shaw, Bronwen E.
2010-01-01
Background Many genetic factors play major roles in the outcome of hematopoietic stem cell transplants from unrelated donors. Transforming growth factor β1 is a member of a highly pleiotrophic family of growth factors involved in the regulation of numerous immunomodulatory processes. Design and Methods We investigated the impact of single nucleotide polymorphisms at codons 10 and 25 of TGFB1, the gene encoding for transforming growth factor β1, on outcomes in 427 mye-loablative-conditioned transplanted patients. In addition, transforming growth factor β1 plasma levels were measured in 263 patients and 327 donors. Results Patients homozygous for the single nucleotide polymorphism at codon 10 had increased non-relapse mortality (at 3 years: 46.8% versus 29.4%, P=0.014) and reduced overall survival (at 5 years 29.3% versus 42.2%, P=0.013); the differences remained statistically significant in multivariate analysis. Donor genotype alone had no impact, although multiple single nucleotide polymorphisms within the pair were significantly associated with higher non-relapse mortality (at 3 years: 44% versus 29%, P=0.021) and decreased overall survival (at 5 years: 33.8% versus 41.9%, P=0.033). In the 10/10 HLA matched transplants (n=280), recipients of non-wild type grafts tended to have a higher incidence of acute graft-versus-host disease grades II-IV (P=0.052). In multivariate analysis, when analyzed with patients’ genotype, the incidences of both overall and grades II-IV acute graft-versus-host disease were increased (P=0.025 and P=0.009, respectively) in non-wild-type pairs. Conclusions We conclude that increasing numbers of single nucleotide polymorphisms in codon 10 of TGFB1 in patients and donors are associated with a worse outcome following hematopoietic stem cell transplantation from unrelated donors. PMID:19713222
Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G
2017-01-01
Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly affects adipose tissue retention by maintaining healthy tissue formation and vascularization. Dex DW MS provide an improved model to former Dex SW MS, resulting in notably longer release time and, consequently, larger volumes of adipose retained in vivo. The use of microspheres, specifically double-walled, as vehicles for controlled drug delivery of adipogenic factors therefore present a clinically relevant model of adipose retention that has the potential to greatly improve soft tissue repair. PMID:29051810
Sipka, Sándor; Zilahi, Erika; Papp, Gábor; Chen, Ji-Qing; Nagy, Andrea; Hegyi, Katalin; Kónya, József; Zeher, Margit
2017-05-01
We described earlier a simultaneously increased that the increased expression of miRNA-146a/b was accompanied by an increase in the expression of and TRAF6 and a decrease in the expression of IRAK1 genes in the peripheral mononuclear cells (PBMCs) of patients with primary Sjogren's syndrome (pSS) patients. Recently, the expression of EBV encoded. RNA (EBER) was published in the B cells of salivary glands of in pSS. In the present study, we applied an EBV-EBER1 specific synthetic single stranded complementary DNA molecule (EBV-EBER1-cDNA) to test whether any EBER1 related effect exists also in PBMCs of pSS patients. In the PBMCs of pSS patients and healthy controls, we investigated in vitro the effects of a synthetic single stranded EBV-EBER1-cDNA molecule, synthetic double-stranded (ds)RNA polyinosinic-polycytidylic acid [poly (I:C)] and polyadenylic acid potassium salt poly-adenylic acid [poly-(A)] on the expression of TRAF6 gene tested by qRTPCR. The release of interferon -α was detected by ELISA. EBV-EBER1-cDNA resulted in a significant reduction in the expression of TRAF6 in the cells of patients, but in the healthy controls not, whereas the treatments with poly (I:C) and poly-(A) could not reduce the TRAF6 over-expression. No release of EBER1 could be observed in the culture supernatants of patients with pSS. Only the treatment with poly (I:C) resulted in a significant increase of interferon -α release, and only in the heathy controls. No release of EBER1 molecules took place during the culturing of cells. EBV-EBER- cDNA acted functionally on the cells of patients only. These findings give a further evidence of the linkage between EBV and pSS, furthermore, they show the possible role of EBV-EBER1 in the induction of increased TRAF6 expression in the peripheral B cells of Sjögren's patients. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.
Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V
2016-08-16
Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.
Nicotinamide megadosing increases hepatic poly(ADP-ribose) levels in choline-deficient rats.
ApSimon, M M; Rawling, J M; Kirkland, J B
1995-07-01
Previous work in our laboratory has shown that dietary megadoses of nicotinamide, used in the prevention of diabetes, cause increases in hepatic poly(ADP-ribose). Poly(ADP-ribose) is synthesized from NAD+ by a nuclear enzyme, poly(ADP-ribose)polymerase, which is activated by DNA strand breaks. The nicotinamide-induced increase in poly(ADP-ribose) could result from an increase in substrate, NAD+, or the induction of strand breaks in DNA. Strand breaks may result from the depletion of single carbon groups, through the excretion of methylated derivatives of nicotinamide. To differentiate between these mechanisms, a 3 x 3 factorial experiment was conducted in which rats were fed diets containing various supplements of choline bitartrate (0, 2, 20 g/kg diet) and nicotinamide (0, 1, 2 g/kg diet). At the conclusion of treatments, blood NAD+ and liver lipid, NAD+ and poly(ADP-ribose) levels were determined. Choline deficiency caused the characteristic accumulation of fat in the liver at all levels of nicotinamide. In choline deficient rats, nicotinamide supplements further increased liver lipid concentration. Blood and liver NAD+ concentrations were increased by nicotinamide supplementation, irrespective of choline status. In contrast, liver poly(ADP-ribose) levels were increased by nicotinamide supplementation only in choline deficient rats. These results show that nicotinamide-induced increases in poly(ADP-ribose) levels appear to be dependent on decreased methyl donor status and suggest that adequate choline status is important for preventing some deleterious effects of nicotinamide treatment.
Dellacasa, Elena; Zhao, Li; Yang, Gesheng; Pastorino, Laura; Sukhorukov, Gleb B
2016-01-01
The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA) n stereocomplex and the cores with and without the polymeric (PSS/PAH) n /PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release.
Yang, Gesheng; Pastorino, Laura
2016-01-01
Summary The enantiomers poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) were alternately adsorbed directly on calcium carbonate (CaCO3) templates and on poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) multilayer precursors in order to fabricate a novel layer-by-layer (LBL) assembly. A single layer of poly(L-lysine) (PLL) was used as a linker between the (PDLA/PLLA)n stereocomplex and the cores with and without the polymeric (PSS/PAH)n/PLL multilayer precursor (PEM). Nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) were used to characterize the chemical composition and molecular weight of poly(lactic acid) polymers. Both multilayer structures, with and without polymeric precursor, were firstly fabricated and characterized on planar supports. A quartz crystal microbalance (QCM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and ellipsometry were used to evaluate the thickness and mass of the multilayers. Then, hollow, spherical microcapsules were obtained by the removal of the CaCO3 sacrificial template. The chemical composition of the obtained microcapsules was confirmed by differential scanning calorimetry (DSC) and wide X-ray diffraction (WXRD) analyses. The microcapsule morphology was evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) measurements. The experimental results confirm the successful fabrication of this innovative system, and its full biocompatibility makes it worthy of further characterization as a promising drug carrier for sustained release. PMID:26925356
Dasgupta, R; Kaesberg, P
1982-01-01
The nucleotide sequences of the subgenomic coat protein messengers (RNA4's) of two related bromoviruses, brome mosaic virus (BMV) and cowpea chlorotic mottle virus (CCMV), have been determined by direct RNA and CDNA sequencing without cloning. BMV RNA4 is 876 b long including a 5' noncoding region of nine nucleotides and a 3' noncoding region of 300 nucleotides. CCMV RNA 4 is 824 b long, including a 5' noncoding region of 10 nucleotides and a 3' noncoding region of 244 nucleotides. The encoded coat proteins are similar in length (188 amino acids for BMV and 189 amino acids for CCMV) and display about 70% homology in their amino acid sequences. Length difference between the two RNAs is due mostly to a single deletion, in CCMV with respect to BMV, of about 57 b immediately following the coding region. Allowing for this deletion the RNAs are indicate that mutations leading to divergence were constrained in the coding region primarily by the requirement of maintaining a favorable coat protein structure and in the 3' noncoding region primarily by the requirement of maintaining a favorable RNA spatial configuration. PMID:6895941
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-01-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield. PMID:25333064
Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred
2014-09-01
Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.
Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya
2014-01-01
Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301
Olsen, Nanna J; Ängquist, Lars; Larsen, Sofus C; Linneberg, Allan; Skaaby, Tea; Husemoen, Lise Lotte N; Toft, Ulla; Tjønneland, Anne; Halkjær, Jytte; Hansen, Torben; Pedersen, Oluf; Overvad, Kim; Ahluwalia, Tarunveer S; Sørensen, Thorkild Ia; Heitmann, Berit L
2016-09-01
Intake of sugar-sweetened beverages is associated with obesity, and this association may be modified by a genetic predisposition to obesity. We examined the interactions between a molecular genetic predisposition to various aspects of obesity and the consumption of soft drinks, which are a major part of sugar-sweetened beverages, in relation to changes in adiposity measures. A total of 4765 individuals were included in the study. On the basis of 50 obesity-associated single nucleotide polymorphisms that are associated with body mass index (BMI), waist circumference (WC), or the waist-to-hip ratio adjusted for BMI (WHRBMI), the following 4 genetic predisposition scores (GRSs) were constructed: a complete genetic predisposition score including all 50 single nucleotide polymorphisms (GRSComplete), a genetic predisposition score including BMI-associated single nucleotide polymorphisms (GRSBMI), a genetic predisposition score including waist circumference-associated single nucleotide polymorphisms (GRSWC), and a genetic predisposition score including the waist-to-hip ratio adjusted for BMI-associated single nucleotide polymorphisms (GRSWHR). Associations between soft drink intake and the annual change (Δ) in body weight (BW), WC, or waist circumference adjusted for BMI (WCBMI) and possible interactions with the GRSs were examined with the use of linear regression analyses and meta-analyses. For each soft drink serving per day, soft drink consumption was significantly associated with a higher ΔBW of 0.07 kg/y (95% CI: 0.01, 0.13 kg/y; P = 0.020) but not with the ΔWC or ΔWCBMI In analyses of the ΔBW, we showed an interaction only with the GRSWC (per risk allele for each soft drink serving per day: -0.06 kg/y; 95% CI: -0.10, -0.02 kg/y; P = 0.006). In analyses of the ΔWC, we showed interactions only with the GRSBMI and GRSComplete [per risk allele for each soft drink serving per day: 0.05 cm/y (95% CI: 0.02, 0.09 cm/y; P = 0.001) and 0.05 cm/y (95% CI: 0.02, 0.07 cm/y; P = 0.001), respectively]. Nearly identical results were observed in analyses of the ΔWCBMI CONCLUSIONS: A genetic predisposition to a high WC may attenuate the association between soft drink intake and BW gain. A genetic predisposition to high BMI as well as a genetic predisposition to high BMI, WC, and WHRBMI combined may strengthen the association between soft drink intake and WC gain. However, the public health impact may be limited. © 2016 American Society for Nutrition.
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
Radiogenomics Consortium (RGC)
The Radiogenomics Consortium's hypothesis is that a cancer patient's likelihood of developing toxicity to radiation therapy is influenced by common genetic variations, such as single nucleotide polymorphisms (SNPs).
Characterization of the Eimeria maxima sporozoite surface protein IMP1.
Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P
2015-07-30
The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. Published by Elsevier B.V.
Sampson, Juliana K.; Sheth, Nihar U.; Koparde, Vishal N.; Scalora, Allison F.; Serrano, Myrna G.; Lee, Vladimir; Roberts, Catherine H.; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H.; Buck, Gregory A.; Neale, Michael C.; Toor, Amir A.
2016-01-01
Summary Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. PMID:24749631
Labeled Nucleoside Triphosphates with Reversibly Terminating Aminoalkoxyl Groups
Hutter, Daniel; Kim, Myong-Jung; Karalkar, Nilesh; Leal, Nicole A.; Chen, Fei; Guggenheim, Evan; Visalakshi, Visa; Olejnik, Jerzy; Gordon, Steven; Benner, Steven A.
2013-01-01
Nucleoside triphosphates having a 3′-ONH2 blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3′-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3′-ONH2 group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3′-ONH2 blocking group in “next generation sequencing”. PMID:21128174
Singh, Mamta; Arora, Garima; Kumar, Santosh; Tiwari, Prabhakar; Kidwai, Saqib
2013-01-01
Inorganic polyphosphate (polyP), a linear polymer of hundreds of phosphate residues linked by ATP-like phosphoanhydride bonds, is found in all organisms and performs a wide variety of functions. This study shows that polyP accumulation occurs in Mycobacterium tuberculosis upon exposure to various stress conditions. M. tuberculosis possesses a single homolog of ppk-1, and we have disrupted ppk-1 in the M. tuberculosis genome by allelic replacement. The mutant strain exhibited negligible levels of intracellular polyP, decreased expression of sigF and phoP, and reduced growth in the stationary phase and displayed a survival defect in response to nitrosative stress and in THP-1 macrophages compared to the wild-type strain. We report that reduction in polyP levels is associated with increased susceptibility of M. tuberculosis to certain TB drugs and impairs its ability to cause disease in guinea pigs. These results suggest that polyP contributes to persistence of M. tuberculosis in vitro and plays an important role in the physiology of bacteria residing within guinea pigs. PMID:23585537
Wang, Jianchao; Wang, Hui; Wang, Chongqing; Zhang, Lingling; Wang, Tao; Zheng, Long
2017-11-01
A novel method, calcium hypochlorite (CHC) treatment, was proposed for separation of hazardous poly(vinyl chloride) (PVC) plastic from mixed plastic wastes (MPWs) by froth flotation. Flotation behavior of single plastic indicates that PVC can be separated from poly(ethylene terephthalate) (PET), poly(acrylonitrile-co-butadiene-co-styrene) (ABS), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA) by froth flotation combined with CHC treatment. Mechanism of CHC treatment was examined by contact angle measurement, scanning electron microscopy, Fourier transform infrared and X-ray photoelectron spectroscopy. Under the optimum conditions, separation of PVC from binary plastics with different particle sizes is achieved efficiently. The purity of PC, ABS, PMMA, PS and PET is greater than 96.8%, 98.5%, 98.8%, 97.4% and 96.3%, respectively. Separation of PVC from multi-plastics was further conducted by two-stage flotation. PVC can be separated efficiently from MPWs with residue content of 0.37%. Additionally, reusing CHC solution is practical. This work indicates that separation of hazardous PVC from MPWs is effective by froth flotation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Genetic diversity and classification of Tibetan yak populations based on the mtDNA COIII gene.
Song, Q Q; Chai, Z X; Xin, J W; Zhao, S J; Ji, Q M; Zhang, C F; Ma, Z J; Zhong, J C
2015-03-13
To determine the level of genetic diversity and phylogenetic relationships among Tibetan yak populations, the mitochondrial DNA cytochrome c oxidase subunit 3 (COIII) genes of 378 yak individuals from 16 populations were analyzed in this study. The results showed that the length of cytochrome c oxidase subunit 3 gene sequences was 781 bp, with nucleotide frequencies of 29.2, 29.4, 26.1, and 15.2% for T, C, A, and G, respectively. A total of 26 haplotypes were identified, with 69 polymorphic sites, including 11 parsimony-informative sites and 58 single-nucleotide polymorphism sites. No deletions/insertions were found in sequence comparison, indicating that nucleotide mutation types were transitions and transversions. Haplotype and nucleotide diversities were 0.562 and 0.00138, respectively, indicating a high level of genetic diversity in Tibetan yak populations. Phylogenetic relationship analysis indicated that Tibetan yak populations are divided into 2 groups.
Broillet, M C; Firestein, S
1996-02-01
The activation of a cyclic nucleotide-gated channel is the final step in sensory transduction in olfaction. Normally, this channel is opened by the intracellular cyclic nucleotide second messenger cAMP or cGMP. However, in single channel recordings we found that donors of nitric oxide, a putative intercellular messenger, could directly activate the native olfactory neuron channel. Its action was independent of the presence of the normal ligand and did not involve the cyclic nucleotide binding site, suggesting an alternate site on the molecule that is critical in channel gating. The biochemical pathway appears to utilize nitric oxide in one of its alternate redox states, the nitrosonium ion, transnitrosylating a free sulfhydryl group belonging to a cysteine residue tentatively identified as being in the region linking the S6 transmembrane domain to the ligand binding domain.
Computational screening of disease-associated mutations in OCA2 gene.
Kamaraj, Balu; Purohit, Rituraj
2014-01-01
Oculocutaneous albinism type 2 (OCA2), caused by mutations of OCA2 gene, is an autosomal recessive disorder characterized by reduced biosynthesis of melanin pigment in the skin, hair, and eyes. The OCA2 gene encodes instructions for making a protein called the P protein. This protein plays a crucial role in melanosome biogenesis, and controls the eumelanin content in melanocytes in part via the processing and trafficking of tyrosinase which is the rate-limiting enzyme in melanin synthesis. In this study we analyzed the pathogenic effect of 95 non-synonymous single nucleotide polymorphisms reported in OCA2 gene using computational methods. We found R305W mutation as most deleterious and disease associated using SIFT, PolyPhen, PANTHER, PhD-SNP, Pmut, and MutPred tools. To understand the atomic arrangement in 3D space, the native and mutant (R305W) structures were modeled. Molecular dynamics simulation was conducted to observe the structural significance of computationally prioritized disease-associated mutation (R305W). Root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond (NH bond), trace of covariance matrix, eigenvector projection analysis, and density analysis results showed prominent loss of stability and rise in mutant flexibility values in 3D space. This study presents a well designed computational methodology to examine the albinism-associated SNPs.
Zhong, Jie; Shang, Hong Hong; Zhu, Chuan Xia; Zhu, Jun Zi; Zhu, Hong Jian; Hu, Yan; Gao, Bi Da
2016-06-02
The alternaria blackspot of rapeseed is one of the most prominent diseases of rapeseed. It is caused by three species of the genus Alternaria: Alternaria brassicicola, Alternaria brassicae, and Alternaria raphanin. Here we report a novel positive-sense RNA virus from an A. brassicicola strain 817-14. The virus has a 6639 nucleotide (nt) long genome, excluding a poly (A)-tail, and was predicted to contain three putative open reading frames (ORF1, ORF2, and ORF3). The large ORF1 encoded a 174-kDa polyprotein (composed of 1522 amino acid residues) containing a conserved RNA-dependent RNA polymerase (RdRp) domain and a helicase domain. The other two smaller ORFs encoded polypeptides with unknown function. Homology search and phylogenetic analysis, based on the RdRp and helicase domains, suggest that this virus is related to and grouped with Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), Rosellinia necatrix fusarivirus 1 (RnFV1), Fusarium graminearum virus-DK21 (FgV1), and Penicillium roqueforti RNA mycovirus 1 (PrRV1), all of which belong to a newly proposed family Fusariviridae. For this study, we designed the virus as "Alternaria brassicicola fusarivirus 1" (AbFV1). Virus elimination revealed that AbFV1 has no conspicuous impact on the biological properties of its host. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.
1987-06-01
To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less
The Complete Mitochondrial Genome of the Rice Moth, Corcyra cephalonica
Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong
2012-01-01
The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)3. The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)9, (AT)8 elements. PMID:23413968
The complete mitochondrial genome of the rice moth, Corcyra cephalonica.
Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong
2012-01-01
The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.
Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo
2016-01-01
Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941
Smidansky, Eric D.; Arnold, Jamie J.; Reynolds, Shelley L.; Cameron, Craig E.
2013-01-01
The human mitochondrial RNA polymerase (h-mtRNAP) serves as both the transcriptase for expression and the primase for replication of mitochondrial DNA. As such, the enzyme is of fundamental importance to cellular energy metabolism, and defects in its function may be related to human disease states. Here we describe in vitro analysis of the h-mtRNAP kinetic mechanism for single, correct nucleotide incorporation. This was made possible by the development of efficient methods for expression and purification of h-mtRNAP using a bacterial system and by utilization of assays that rely on simple, synthetic RNA/DNA scaffolds without the need for mitochondrial transcription accessory proteins. We find that h-mtRNAP accomplishes single-nucleotide incorporation by using the same core steps, including conformational change steps before and after chemistry, that are prototypical for most types of nucleic acid polymerases. The polymerase binds to scaffolds via a two-step mechanism consisting of a fast initial-encounter step followed by a much slower isomerization that leads to catalytic competence. A substantial solvent deuterium kinetic isotope effect was observed for the forward reaction, but none was detectable for the reverse reaction, suggesting that chemistry is at least partially rate-limiting in the forward direction but not in the reverse. h-mtRNAP appears to exercise much more stringent surveillance over base than over sugar in determining the correctness of a nucleotide. The utility of developing the robust in vitro assays described here and of establishing a baseline of kinetic performance for the wild-type enzyme is that biological questions concerning h-mtRNAP may now begin to be addressed. PMID:21548588
cDNA cloning and analysis of betaine aldehyde dehydrogenase, a salt inducible enzyme in sugar beet
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCue, K.F.; Hanson, A.D.
1990-05-01
Betaine accumulates and serves as a compatible osmolyte in some plants subjected to drought or salinity stress. The last enzyme in the betaine biosynthetic pathway is betaine aldehyde dehydrogenase (BADH). The activity of BADH increases in response to increasing salinity levels. This increase in activity corresponds to an increase in protein detectable by immunoblotting, and to an increase in the translatable BADH mRNA. BADH was cloned from a cDNA library constructed in {lambda}gt10 using poly(A){sup +} RNA from sugar beets salinized to 500 mM NaCl. cDNAs were size selected (>1kb) before ligation into the vector, and the library was screenedmore » with a spinach BADH cDNA probe. Three nearly full length clones obtained were confirmed as BADH by their nucleotide and deduced amino acid homology to spinach BADH. Clones averaged 1.8 kb and contained open reading frames of 500 amino acids at 80% identity with spinach BADH. RNA gel blot analysis of poly(A){sup +} RNA indicated that salinization to 500 mM NaCl resulted in a 5-fold increase of BADH mRNA level.« less
Kandala, Divya T; Mohan, Nimmy; A, Vivekanand; A P, Sudheesh; G, Reshmi; Laishram, Rakesh S
2016-01-29
Almost all eukaryotic mRNAs have a poly (A) tail at the 3'-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3'-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3'-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3'-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kandala, Divya T.; Mohan, Nimmy; A, Vivekanand; AP, Sudheesh; G, Reshmi; Laishram, Rakesh S.
2016-01-01
Almost all eukaryotic mRNAs have a poly (A) tail at the 3′-end. Canonical PAPs (PAPα/γ) polyadenylate nuclear pre-mRNAs. The recent identification of the non-canonical Star-PAP revealed specificity of nuclear PAPs for pre-mRNAs, yet the mechanism how Star-PAP selects mRNA targets is still elusive. Moreover, how Star-PAP target mRNAs having canonical AAUAAA signal are not regulated by PAPα is unclear. We investigate specificity mechanisms of Star-PAP that selects pre-mRNA targets for polyadenylation. Star-PAP assembles distinct 3′-end processing complex and controls pre-mRNAs independent of PAPα. We identified a Star-PAP recognition nucleotide motif and showed that suboptimal DSE on Star-PAP target pre-mRNA 3′-UTRs inhibit CstF-64 binding, thus preventing PAPα recruitment onto it. Altering 3′-UTR cis-elements on a Star-PAP target pre-mRNA can switch the regulatory PAP from Star-PAP to PAPα. Our results suggest a mechanism of poly (A) site selection that has potential implication on the regulation of alternative polyadenylation. PMID:26496945
NASA Technical Reports Server (NTRS)
Kim, Myoung K.; Jeon, Jae-Heung; Fujita, Masayuki; Davin, Laurence B.; Lewis, Norman G.
2002-01-01
The isolation and characterization of a multigene family of the first class of dirigent proteins (namely that mainly involved in 8-8' coupling leading to (+)-pinoresinol in this case) is reported, this comprising of nine western red cedar (Thuja plicata) DIRIGENT genes (DIR1-9) of 72-99.5% identity to each other. Their corresponding cDNA clones had coding regions for 180-183 amino acids with each having a predicted molecular mass of ca. 20 kDa including the signal peptide. Real time-PCR established that the DIRIGENT isovariants were differentially expressed during growth and development of T. plicata (P < 0.05). The phylogenetic relationships and the rates and patterns of nucleotide substitution suggest that the DIRIGENT gene may have evolved via paralogous expansion at an early stage of vascular plant diversification. Thereafter, western red cedar paralogues have maintained an high homogeneity presumably via a concerted evolutionary mode. This, in turn, is assumed to be the driving force for the differential formation of 8-8'-linked pinoresinol derived (poly)lignans in the needles, stems, bark and branches, as well as for massive accumulation of 8-8'-linked plicatic acid-derived (poly)lignans in heartwood.
Montiel Corona, Virginia; Le Borgne, Sylvie; Revah, Sergio; Morales, Marcia
2017-02-01
A Rhodobacter capsulatus strain and a photoheterotrophic culture (IZT) were cultivated to produce hydrogen under different light-dark cycles. A dark fermentation effluent (DFE) was used as substrate. It was found that IZT culture had an average cumulative hydrogen production (Paccum H 2 ) of 1300±43mLH 2 L -1 under continuous illumination and light-dark cycles of 30 or 60min. In contrast, R. capsulatus reduced its Paccum H 2 by 20% under 30:30min light-dark cycles, but tripled its poly-β-hydroxybutyrate (PHB) content (308±2mgPHB gdw -1 ) compared to continuous illumination. The highest PHB content by IZT culture was 178±10mgPHB gdw -1 under 15:15min light-dark cycles. PCR-DGGE analysis revealed that the IZT culture was mainly composed of Rhodopseudomonas palustris identified with high nucleotide similarity (99%). The evaluated cultures might be used for hydrogen and PHB production. They might provide energy savings by using light-dark cycles and DFE valorization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of causative variants and SNP weighting in a single-step GBLUP context
USDA-ARS?s Scientific Manuscript database
Much effort has been recently put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, aiming genomic prediction. Among the genomic methods available, single-step GBLUP (ssGBLUP) became the choice because of its simplicity and potentially higher accuracy. When QTN are ...
Keith, G; Glasser, A L; Desgrès, J; Kuo, K C; Gehrke, C W
1990-10-25
We report in this paper on the complete structure determination of the modified nucleotide A*, now called Ar(p), that was previously identified in yeast methionine initiator tRNA as an isomeric form of O-ribosyl-adenosine bearing an additional phosphoryl-monoester group on its ribose2 moiety. By using the chemical procedure of periodate oxidation and subsequent beta-elimination with cyclohexylamine on mono- and dinucleotides containing Ar(p), we characterized the location of the phosphate group on the C-5" of the ribose2 moiety, and the linkage between the two riboses as a (1"----2')-glycosidic bond. Since the structural difference between phosphatase treated Ar(p) and authentic O-alpha-ribosyl-(1"----2')-adenosine from poly(ADP-Ribose) was previously assigned to an isomeric difference in the ribose2-ribose1 linkage, the (1"----2')-glycosidic bond of Ar(p) was deduced to have a beta-spatial configuration. Thus, final chemical structure for Ar(p) at the position 64 in yeast initiator tRNA(Met) has been established as O-beta-ribosyl-(1"----2')-adenosine-5"-phosphate. This nucleotide is linked by a 3',5'-phosphodiester bond to G at the position 65.
LaPolla, R J; Mayne, K M; Davidson, N
1984-01-01
A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870
Lima, L S; Gramacho, K P; Carels, N; Novais, R; Gaiotto, F A; Lopes, U V; Gesteira, A S; Zaidan, H A; Cascardo, J C M; Pires, J L; Micheli, F
2009-07-14
In order to increase the efficiency of cacao tree resistance to witches' broom disease, which is caused by Moniliophthora perniciosa (Tricholomataceae), we looked for molecular markers that could help in the selection of resistant cacao genotypes. Among the different markers useful for developing marker-assisted selection, single nucleotide polymorphisms (SNPs) constitute the most common type of sequence difference between alleles and can be easily detected by in silico analysis from expressed sequence tag libraries. We report the first detection and analysis of SNPs from cacao-M. perniciosa interaction expressed sequence tags, using bioinformatics. Selection based on analysis of these SNPs should be useful for developing cacao varieties resistant to this devastating disease.
Institutional Protocol to Manage Consanguinity Detected by Genetic Testing in Pregnancy in a Minor
Chen, Laura P.; Beck, Anita E.; Tsuchiya, Karen D.; Chow, Penny M.; Mirzaa, Ghayda M.; Wiester, Rebecca T.
2015-01-01
Single-nucleotide polymorphism arrays and other types of genetic tests have the potential to detect first-degree consanguinity and uncover parental rape in cases of minor teenage pregnancy. We present 2 cases in which genetic testing identified parental rape of a minor teenager. In case 1, single-nucleotide polymorphism array in a patient with multiple developmental abnormalities demonstrated multiple long stretches of homozygosity, revealing parental rape of a teenage mother. In case 2, a vague maternal sexual assault history and diagnosis of Pompe disease by direct gene sequencing identified parental rape of a minor. Given the medical, legal, and ethical implications of such revelations, a protocol was developed at our institution to manage consanguinity identified via genetic testing. PMID:25687148
Jeong, Hyun-Jeong; Lee, Joong-Bok; Park, Seung-Yong; Song, Chang-Seon; Kim, Bo-Sook; Rho, Jung-Rae; Yoo, Mi-Hyun; Jeong, Byung-Hoon; Kim, Yong-Sun
2007-01-01
Polymorphisms of the prion protein gene (PRNP) have been detected in several cervid species. In order to confirm the genetic variations, this study examined the DNA sequences of the PRNP obtained from 33 captive sika deer (Cervus nippon laiouanus) in Korea. A total of three single-nucleotide polymorphisms (SNPs) at codons 100, 136 and 226 in the PRNP of the sika deer were identified. The polymorphic site located at codon 100 has not been reported. The SNPs detected at codons 100 and 226 induced amino acid substitutions. The SNP at codon 136 was a silent mutation that does not induce any amino acid change. The genotype and allele frequencies were determined for each of the SNPs. PMID:17679779
Reference genotype and exome data from an Australian Aboriginal population for health-based research
Tang, Dave; Anderson, Denise; Francis, Richard W.; Syn, Genevieve; Jamieson, Sarra E.; Lassmann, Timo; Blackwell, Jenefer M.
2016-01-01
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians. PMID:27070114
Tang, Dave; Anderson, Denise; Francis, Richard W; Syn, Genevieve; Jamieson, Sarra E; Lassmann, Timo; Blackwell, Jenefer M
2016-04-12
Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X coverage in ∼80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs) and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99% concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set provides a useful reference point for genomic studies on Aboriginal Australians.
Kariithi, Henry M.; Cousserans, François; Parker, Nicolas J.; İnce, İkbal Agah; Scully, Erin D.; Boeren, Sjef; Geib, Scott M.; Mekonnen, Solomon; Vlak, Just M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max
2016-01-01
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744
MacDonald, Logan C; Berger, Bryan W
2014-06-27
Anionic polysaccharides are of growing interest in the biotechnology industry due to their potential pharmaceutical applications in drug delivery and wound treatment. Chemical composition and polymer length strongly influence the physical and biological properties of the polysaccharide and thus its potential industrial and medical applications. One promising approach to determining monomer composition and controlling the degree of polymerization involves the use of polysaccharide lyases, which catalyze the depolymerization of anionic polysaccharides via a β-elimination mechanism. Utilization of these enzymes for the production of custom-made oligosaccharides requires a high degree of control over substrate specificity. Previously, we characterized a polysaccharide lyase (Smlt1473) from Stenotrophomonas maltophilia k279a, which exhibited significant activity against hyaluronan (HA), poly-β-d-glucuronic acid (poly-GlcUA), and poly-β-d-mannuronic acid (poly-ManA) in a pH-regulated manner. Here, we utilize a sequence structure guided approach based on a homology model of Smlt1473 to identify nine putative substrate-binding residues and examine their effect on substrate specificity via site-directed mutagenesis. Interestingly, single point mutations H221F and R312L resulted in increased activity and specificity toward poly-ManA and poly-GlcUA, respectively. Furthermore, a W171A mutant nearly eliminated HA activity, while increasing poly-ManA and poly-GlcUA activity by at least 35%. The effect of these mutations was analyzed by comparison with the high resolution structure of Sphingomonas sp. A1-III alginate lyase in complex with poly-ManA tetrasaccharide and by taking into account the structural differences between HA, poly-GlcUA, and poly-ManA. Overall, our results demonstrate that even minor changes in active site architecture have a significant effect on the substrate specificity of Smlt1473, whose structural plasticity could be applied to the design of highly active and specific polysaccharide lyases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Masking as an effective quality control method for next-generation sequencing data analysis.
Yun, Sajung; Yun, Sijung
2014-12-13
Next generation sequencing produces base calls with low quality scores that can affect the accuracy of identifying simple nucleotide variation calls, including single nucleotide polymorphisms and small insertions and deletions. Here we compare the effectiveness of two data preprocessing methods, masking and trimming, and the accuracy of simple nucleotide variation calls on whole-genome sequence data from Caenorhabditis elegans. Masking substitutes low quality base calls with 'N's (undetermined bases), whereas trimming removes low quality bases that results in a shorter read lengths. We demonstrate that masking is more effective than trimming in reducing the false-positive rate in single nucleotide polymorphism (SNP) calling. However, both of the preprocessing methods did not affect the false-negative rate in SNP calling with statistical significance compared to the data analysis without preprocessing. False-positive rate and false-negative rate for small insertions and deletions did not show differences between masking and trimming. We recommend masking over trimming as a more effective preprocessing method for next generation sequencing data analysis since masking reduces the false-positive rate in SNP calling without sacrificing the false-negative rate although trimming is more commonly used currently in the field. The perl script for masking is available at http://code.google.com/p/subn/. The sequencing data used in the study were deposited in the Sequence Read Archive (SRX450968 and SRX451773).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cairns, S.S.
1987-01-01
In X. laevis oocytes, mitochondrial DNA accumulates to 10/sup 5/ times the somatic cell complement, and is characterized by a high frequency of a triple-stranded displacement hoop structure at the origin of replication. To map the termini of the single strands, it was necessary to correct the nucleotide sequence of the D-loop region. The revised sequence of 2458 nucleotides contains 54 discrepancies in comparison to a previously published sequence. Radiolabeling of the nascent strands of the D-loop structure either at the 5' end or at the 3' end identifies a major species with a length of 1670 nucleotides. Cleavage ofmore » the 5' labeled strands reveals two families of ends located near several matches to an element, designated CSB-1, that is conserved in this location in several vertebrate genomes. Cleavage of 3' labeled strands produced one fragment. The unique 3' end maps to about 15 nucleotides preceding the tRNA/sup Pro/ gene. A search for proteins which may bind to mtDNA in this region to regulate nucleic acid synthesis has identified three activities in lysates of X. laevis mitochondria. The DNA-binding proteins were assayed by monitoring their ability to retard the migration of labeled double- or single-stranded DNA fragments in polyacrylamide gels. The DNA binding preference was determined by competition with an excess of either ds- or ssDNA.« less
Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.
Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P
1997-11-01
A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.
Defining the mRNA recognition signature of a bacterial toxin protein
Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; ...
2015-10-27
Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less
Defining the mRNA recognition signature of a bacterial toxin protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya
Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less
An improved method for detecting circulating microRNAs with S-Poly(T) Plus real-time PCR
Niu, Yanqin; Zhang, Limin; Qiu, Huiling; Wu, Yike; Wang, Zhiwei; Zai, Yujia; Liu, Lin; Qu, Junle; Kang, Kang; Gou, Deming
2015-01-01
We herein describe a simple, sensitive and specific method for analysis of circulating microRNAs (miRNA), termed S-Poly(T) Plus real-time PCR assay. This new method is based on our previously developed S-Poly(T) method, in which a unique S-Poly(T) primer is used during reverse-transcription to increase sensitivity and specificity. Further increased sensitivity and simplicity of S-Poly(T) Plus, in comparison with the S-Poly(T) method, were achieved by a single-step, multiple-stage reaction, where RNAs were polyadenylated and reverse-transcribed at the same time. The sensitivity of circulating miRNA detection was further improved by a modified method of total RNA isolation from serum/plasma, S/P miRsol, in which glycogen was used to increase the RNA yield. We validated our methods by quantifying miRNA expression profiles in the sera of the patients with pulmonary arterial hypertension associated with congenital heart disease. In conclusion, we developed a simple, sensitive, and specific method for detecting circulating miRNAs that allows the measurement of 266 miRNAs from 100 μl of serum or plasma. This method presents a promising tool for basic miRNA research and clinical diagnosis of human diseases based on miRNA biomarkers. PMID:26459910
Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kushida, Soh; Yamamoto, Yohei; Braam, Daniel
2015-12-31
Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.
Methylation effect on the ohmic resistance of a poly-GC DNA-like chain
NASA Astrophysics Data System (ADS)
de Moura, F. A. B. F.; Lyra, M. L.; de Almeida, M. L.; Ourique, G. S.; Fulco, U. L.; Albuquerque, E. L.
2016-10-01
We determine, by using a tight-binding model Hamiltonian, the characteristic current-voltage (IxV) curves of a 5-methylated cytosine single strand poly-GC DNA-like finite segment, considering the methyl groups attached laterally to a random fraction of the cytosine basis. Striking, we found that the methylation significantly impacts the ohmic resistance (R) of the DNA-like segments, indicating that measurements of R can be used as a biosensor tool to probe the presence of anomalous methylation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenjin, Zeng; Ran, Bi; Hongmei, Zhang, E-mail: iamhmzhang@njupt.edu.cn, E-mail: iamwhuang@njupt.edu.cn
2014-12-14
Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7–tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of hostmore » and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.« less
Meisburger, Steve P.; Sutton, Julie L.; Chen, Huimin; Pabit, Suzette A.; Kirmizialtin, Serdal; Elber, Ron; Pollack, Lois
2013-01-01
Nucleic acids are highly charged polyelectrolytes that interact strongly with salt ions. Rigid, base-paired regions are successfully described with worm like chain models, but non base-paired single stranded regions have fundamentally different polymer properties because of their greater flexibility. Recently, attention has turned to single stranded nucleic acids due to the growing recognition of their biological importance, as well as the availability of sophisticated experimental techniques sensitive to the conformation of individual molecules. We investigate polyelectrolyte properties of poly(dT), an important and widely studied model system for flexible single stranded nucleic acids, in physiologically important mixed mono- and di-valent salt. We report measurements of the form factor and interparticle interactions using SAXS, end to end distances using smFRET, and number of excess ions using ASAXS. We present a coarse-grained model that accounts for flexibility, excluded volume, and electrostatic interactions in these systems. Predictions of the model are validated against experiment. We also discuss the state of all-atom, explicit solvent Molecular Dynamics simulations of poly(dT), the next step in understanding the complexities of ion interactions with these highly charged and flexible polymers. PMID:23606337
Effects of Water on the Single-Chain Elasticity of Poly(U) RNA.
Luo, Zhonglong; Cheng, Bo; Cui, Shuxun
2015-06-09
Water, the dominant component under the physiological condition, is a complicated solvent which greatly affects the properties of solute molecules. Here, we utilize atomic force microscope-based single-molecule force spectroscopy to study the influence of water on the single-molecule elasticity of an unstructured single-stranded RNA (poly(U)). In nonpolar solvents, RNA presents its inherent elasticity, which is consistent with the theoretical single-chain elasticity calculated by quantum mechanics calculations. In aqueous buffers, however, an additional energy of 1.88 kJ/mol·base is needed for the stretching of the ssRNA chain. This energy is consumed by the bound water rearrangement (Ew) during chain elongation. Further experimental results indicate that the Ew value is uncorrelated to the salt concentrations and stretching velocity. The results obtained in an 8 M guanidine·HCl solution provide more evidence that the bound water molecules around RNA give rise to the observed deviation between aqueous and nonaqueous environments. Compared to synthetic water-soluble polymers, the value of Ew of RNA is much lower. The weak interference of water is supposed to be the precondition for the RNA secondary structure to exist in aqueous solution.
DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores†
Comer, Jeffrey
2016-01-01
Measurements of ionic currents through nanopores partially blocked by DNA have emerged as a powerful method for characterization of the DNA nucleotide sequence. Although the effect of the nucleotide sequence on the nanopore blockade current has been experimentally demonstrated, prediction and interpretation of such measurements remain a formidable challenge. Using atomic resolution computational approaches, here we show how the sequence, molecular conformation, and pore geometry affect the blockade ionic current in model solid-state nanopores. We demonstrate that the blockade current from a DNA molecule is determined by the chemical identities and conformations of at least three consecutive nucleotides. We find the blockade currents produced by the nucleotide triplets to vary considerably with their nucleotide sequence despite having nearly identical molecular conformations. Encouragingly, we find blockade current differences as large as 25% for single-base substitutions in ultra small (1.6 nm × 1.1 nm cross section; 2 nm length) solid-state nanopores. Despite the complex dependence of the blockade current on the sequence and conformation of the DNA triplets, we find that, under many conditions, the number of thymine bases is positively correlated with the current, whereas the number of purine bases and the presence of both purine and pyrimidines in the triplet are negatively correlated with the current. Based on these observations, we construct a simple theoretical model that relates the ion current to the base content of a solid-state nanopore. Furthermore, we show that compact conformations of DNA in narrow pores provide the greatest signal-to-noise ratio for single base detection, whereas reduction of the nanopore length increases the ionic current noise. Thus, the sequence dependence of nanopore blockade current can be theoretically rationalized, although the predictions will likely need to be customized for each nanopore type. PMID:27103233
Park, Ji Hye
2018-01-01
Estimation of postmortem interval (PMI) is paramount in modern forensic investigation. After the disappearance of the early postmortem phenomena conventionally used to estimate PMI, entomologic evidence provides important indicators for PMI estimation. The age of the oldest fly larvae or pupae can be estimated to pinpoint the time of oviposition, which is considered the minimum PMI (PMImin). The development rate of insects is usually temperature dependent and species specific. Therefore, species identification is mandatory for PMImin estimation using entomological evidence. The classical morphological identification method cannot be applied when specimens are damaged or have not yet matured. To overcome this limitation, some investigators employ molecular identification using mitochondrial cytochrome c oxidase subunit I (COI) nucleotide sequences. The molecular identification method commonly uses Sanger's nucleotide sequencing and molecular phylogeny, which are complex and time consuming and constitute another obstacle for forensic investigators. In this study, instead of using conventional Sanger's nucleotide sequencing, single-nucleotide polymorphisms (SNPs) in the COI gene region, which are unique between fly species, were selected and targeted for single-base extension (SBE) technology. These SNPs were genotyped using a SNaPshot® kit. Eleven Calliphoridae and seven Sarcophagidae species were covered. To validate this genotyping, fly DNA samples (103 adults, 84 larvae, and 4 pupae) previously confirmed by DNA barcoding were used. This method worked quickly with minimal DNA, providing a potential alternative to conventional DNA barcoding. Consisting of only a few simple electropherogram peaks, the results were more straightforward compared with those of the conventional DNA barcoding produced by Sanger's nucleotide sequencing. PMID:29682531
Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping
2011-02-01
In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch.
Genetic Variants of TPCN2 Associated with Type 2 Diabetes Risk in the Chinese Population
Zhang, Yu; Fan, Xiaofang; Zhang, Ning; Zheng, Hui; Song, Yuping; Shen, Chunfang; Shen, Jiayi; Ren, Fengdong; Yang, Jialin
2016-01-01
Objective The aim of this study was to determine whether TPCN2 genetic variants are associated with type 2 diabetes and to elucidate which variants in TPCN2 confer diabetes susceptibility in the Chinese population. Research Design and Methods The sample population included 384 patients with type 2 diabetes and 1468 controls. Anthropometric parameters, glycemic and lipid profiles and insulin resistance were measured. We selected 6 TPCN2 tag single nucleotide polymorphisms (rs35264875, rs267603153, rs267603154, rs3829241, rs1551305, and rs3750965). Genotypes were determined using a Sequenom MassARRAY SNP genotyping system. Results Ultimately, we genotyped 3 single nucleotide polymorphisms (rs3750965, rs3829241, and rs1551305) in all individuals. There was a 5.1% higher prevalence of the rs1551305 variant allele in type 2 diabetes individuals (A) compared with wild-type homozygous individuals (G). The AA genotype of rs1551305 was associated with a higher diabetes risk (p<0.05). The distributions of rs3829241 and rs3750965 polymorphisms were not significantly different between the two groups. HOMA-%B of subjects harboring the AA genotype of rs1551305 decreased by 14.87% relative to the GG genotype. Conclusions TPCN2 plays a role in metabolic regulation, and the rs1551305 single nucleotide polymorphism is associated with type 2 diabetes risk. Future work will begin to unravel the underlying mechanisms. PMID:26918892
García-Sanz, Ramón; Corchete, Luis Antonio; Alcoceba, Miguel; Chillon, María Carmen; Jiménez, Cristina; Prieto, Isabel; García-Álvarez, María; Puig, Noemi; Rapado, Immaculada; Barrio, Santiago; Oriol, Albert; Blanchard, María Jesús; de la Rubia, Javier; Martínez, Rafael; Lahuerta, Juan José; González Díaz, Marcos; Mateos, María Victoria; San Miguel, Jesús Fernando; Martínez-López, Joaquín; Sarasquete, María Eugenia
2017-12-01
Bortezomib- and thalidomide-based therapies have significantly contributed to improved survival of multiple myeloma (MM) patients. However, treatment-induced peripheral neuropathy (TiPN) is a common adverse event associated with them. Risk factors for TiPN in MM patients include advanced age, prior neuropathy, and other drugs, but there are conflicting results about the role of genetics in predicting the risk of TiPN. Thus, we carried out a genome-wide association study based on more than 300 000 exome single nucleotide polymorphisms in 172 MM patients receiving therapy involving bortezomib and thalidomide. We compared patients developing and not developing TiPN under similar treatment conditions (GEM05MAS65, NCT00443235). The highest-ranking single nucleotide polymorphism was rs45443101, located in the PLCG2 gene, but no significant differences were found after multiple comparison correction (adjusted P = .1708). Prediction analyses, cytoband enrichment, and pathway analyses were also performed, but none yielded any significant findings. A copy number approach was also explored, but this gave no significant results either. In summary, our study did not find a consistent genetic component associated with TiPN under bortezomib and thalidomide therapies that could be used for prediction, which makes clinical judgment essential in the practical management of MM treatment. Copyright © 2016 John Wiley & Sons, Ltd.
A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice.
Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, Hongbin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan
2007-04-17
The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia.
A single nucleotide mutation in Nppc is associated with a long bone abnormality in lbab mice
Jiao, Yan; Yan, Jian; Jiao, Feng; Yang, HongBin; Donahue, Leah Rae; Li, Xinmin; Roe, Bruce A; Stuart, John; Gu, Weikuan
2007-01-01
Background The long bone abnormality (lbab) mouse is a new autosomal recessive mutant characterized by overall smaller body size with proportionate dwarfing of all organs and shorter long bones. Previous linkage analysis has located the lbab mutation on chromosome 1 between the markers D1Mit9 and D1Mit488. Results A genome-based positional approach was used to identify a mutation associated with lbab disease. A total of 122 genes and expressed sequence tags at the lbab region were screened for possible mutation by using genomic DNA from lbabl/lbab, lbab/+, and +/+ B6 mice and high throughput temperature gradient capillary electrophoresis. A sequence difference was identified in one of the amplicons of gene Nppc between lbab/lbab and +/+ mice. One-step reverse transcriptase polymerase chain reaction was performed to validate the difference of Nppc in different types of mice at the mRNA level. The mutation of Nppc was unique in lbab/lbab mice among multiple mouse inbred strains. The mutation of Nppc is co-segregated with lbab disease in 200 progenies produced from heterozygous lbab/+ parents. Conclusion A single nucleotide mutation of Nppc is associated with dwarfism in lbab/lbab mice. Current genome information and technology allow us to efficiently identify single nucleotide mutations from roughly mapped disease loci. The lbab mouse is a useful model for hereditary human achondroplasia. PMID:17439653
Schürch, A C; Arredondo-Alonso, S; Willems, R J L; Goering, R V
2018-04-01
Whole genome sequence (WGS)-based strain typing finds increasing use in the epidemiologic analysis of bacterial pathogens in both public health as well as more localized infection control settings. This minireview describes methodologic approaches that have been explored for WGS-based epidemiologic analysis and considers the challenges and pitfalls of data interpretation. Personal collection of relevant publications. When applying WGS to study the molecular epidemiology of bacterial pathogens, genomic variability between strains is translated into measures of distance by determining single nucleotide polymorphisms in core genome alignments or by indexing allelic variation in hundreds to thousands of core genes, assigning types to unique allelic profiles. Interpreting isolate relatedness from these distances is highly organism specific, and attempts to establish species-specific cutoffs are unlikely to be generally applicable. In cases where single nucleotide polymorphism or core gene typing do not provide the resolution necessary for accurate assessment of the epidemiology of bacterial pathogens, inclusion of accessory gene or plasmid sequences may provide the additional required discrimination. As with all epidemiologic analysis, realizing the full potential of the revolutionary advances in WGS-based approaches requires understanding and dealing with issues related to the fundamental steps of data generation and interpretation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E
2015-10-01
The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.
Wu, Jiaxin; Wu, Mengmeng; Li, Lianshuo; Liu, Zhuo; Zeng, Wanwen; Jiang, Rui
2016-01-01
The recent advancement of the next generation sequencing technology has enabled the fast and low-cost detection of all genetic variants spreading across the entire human genome, making the application of whole-genome sequencing a tendency in the study of disease-causing genetic variants. Nevertheless, there still lacks a repository that collects predictions of functionally damaging effects of human genetic variants, though it has been well recognized that such predictions play a central role in the analysis of whole-genome sequencing data. To fill this gap, we developed a database named dbWGFP (a database and web server of human whole-genome single nucleotide variants and their functional predictions) that contains functional predictions and annotations of nearly 8.58 billion possible human whole-genome single nucleotide variants. Specifically, this database integrates 48 functional predictions calculated by 17 popular computational methods and 44 valuable annotations obtained from various data sources. Standalone software, user-friendly query services and free downloads of this database are available at http://bioinfo.au.tsinghua.edu.cn/dbwgfp. dbWGFP provides a valuable resource for the analysis of whole-genome sequencing, exome sequencing and SNP array data, thereby complementing existing data sources and computational resources in deciphering genetic bases of human inherited diseases. © The Author(s) 2016. Published by Oxford University Press.
Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro
2018-03-01
Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.
Wienholz, Franziska; Vermeulen, Wim
2017-01-01
Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761
Characterizing the genetic risk for Type 2 diabetes in a Malaysian multi-ethnic cohort.
Abdullah, N; Abdul Murad, N A; Attia, J; Oldmeadow, C; Mohd Haniff, E A; Syafruddin, S E; Abd Jalal, N; Ismail, N; Ishak, M; Jamal, R; Scott, R J; Holliday, E G
2015-10-01
To characterize the association with Type 2 diabetes of known Type 2 diabetes risk variants in people in Malaysia of Malay, Chinese and Indian ancestry who participated in the Malaysian Cohort project. We genotyped 1604 people of Malay ancestry (722 cases, 882 controls), 1654 of Chinese ancestry (819 cases, 835 controls) and 1728 of Indian ancestry (851 cases, 877 controls). First, 62 candidate single-nucleotide polymorphisms previously associated with Type 2 diabetes were assessed for association via logistic regression within ancestral groups and then across ancestral groups using a meta-analysis. Second, estimated odds ratios were assessed for excess directional concordance with previously studied populations. Third, a genetic risk score aggregating allele dosage across the candidate single-nucleotide polymorphisms was tested for association within and across ancestral groups. After Bonferroni correction, seven individual single-nucleotide polymorphisms were associated with Type 2 diabetes in the combined Malaysian sample. We observed a highly significant excess in concordance of effect directions between Malaysian and previously studied populations. The genetic risk score was strongly associated with Type 2 diabetes in all Malaysian groups, explaining from 1.0 to 1.7% of total Type 2 diabetes risk variance. This study suggests there is substantial overlap of the genetic risk alleles underlying Type 2 diabetes in Malaysian and other populations. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
Kimura, Hiroki; Tsuboi, Daisuke; Wang, Chenyao; Kushima, Itaru; Koide, Takayoshi; Ikeda, Masashi; Iwayama, Yoshimi; Toyota, Tomoko; Yamamoto, Noriko; Kunimoto, Shohko; Nakamura, Yukako; Yoshimi, Akira; Banno, Masahiro; Xing, Jingrui; Takasaki, Yuto; Yoshida, Mami; Aleksic, Branko; Uno, Yota; Okada, Takashi; Iidaka, Tetsuya; Inada, Toshiya; Suzuki, Michio; Ujike, Hiroshi; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Iwata, Nakao; Kaibuchi, Kozo; Ozaki, Norio
2015-01-01
Background: Nuclear distribution E homolog 1 (NDE1), located within chromosome 16p13.11, plays an essential role in microtubule organization, mitosis, and neuronal migration and has been suggested by several studies of rare copy number variants to be a promising schizophrenia (SCZ) candidate gene. Recently, increasing attention has been paid to rare single-nucleotide variants (SNVs) discovered by deep sequencing of candidate genes, because such SNVs may have large effect sizes and their functional analysis may clarify etiopathology. Methods and Results: We conducted mutation screening of NDE1 coding exons using 433 SCZ and 145 pervasive developmental disorders samples in order to identify rare single nucleotide variants with a minor allele frequency ≤5%. We then performed genetic association analysis using a large number of unrelated individuals (3554 SCZ, 1041 bipolar disorder [BD], and 4746 controls). Among the discovered novel rare variants, we detected significant associations between SCZ and S214F (P = .039), and between BD and R234C (P = .032). Furthermore, functional assays showed that S214F affected axonal outgrowth and the interaction between NDE1 and YWHAE (14-3-3 epsilon; a neurodevelopmental regulator). Conclusions: This study strengthens the evidence for association between rare variants within NDE1 and SCZ, and may shed light into the molecular mechanisms underlying this severe psychiatric disorder. PMID:25332407
Sampson, Juliana K; Sheth, Nihar U; Koparde, Vishal N; Scalora, Allison F; Serrano, Myrna G; Lee, Vladimir; Roberts, Catherine H; Jameson-Lee, Max; Ferreira-Gonzalez, Andrea; Manjili, Masoud H; Buck, Gregory A; Neale, Michael C; Toor, Amir A
2014-08-01
Whole exome sequencing (WES) was performed on stem cell transplant donor-recipient (D-R) pairs to determine the extent of potential antigenic variation at a molecular level. In a small cohort of D-R pairs, a high frequency of sequence variation was observed between the donor and recipient exomes independent of human leucocyte antigen (HLA) matching. Nonsynonymous, nonconservative single nucleotide polymorphisms were approximately twice as frequent in HLA-matched unrelated, compared with related D-R pairs. When mapped to individual chromosomes, these polymorphic nucleotides were uniformly distributed across the entire exome. In conclusion, WES reveals extensive nucleotide sequence variation in the exomes of HLA-matched donors and recipients. © 2014 John Wiley & Sons Ltd.
2017-01-01
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events. PMID:29181193
Prokaryotic Nucleotide Composition Is Shaped by Both Phylogeny and the Environment
Reichenberger, Erin R.; Rosen, Gail; Hershberg, Uri; ...
2015-04-09
Here, the causes of the great variation in nucleotide composition of prokaryotic genomes have long been disputed. Here, we use extensive metagenomic and whole-genome data to demonstrate that both phylogeny and the environment shape prokaryotic nucleotide content. We show that across environments, various phyla are characterized by different mean guanine and cytosine (GC) values as well as by the extent of variation on that mean value. At the same time, we show that GC-content varies greatly as a function of environment, in a manner that cannot be entirely explained by disparities in phylogenetic composition. We find environmentally driven differences inmore » nucleotide content not only between highly diverged environments (e.g., soil, vs. aquatic vs. human gut) but also within a single type of environment. More specifically, we demonstrate that some human guts are associated with a microbiome that is consistently more GC-rich across phyla, whereas others are associated with a more AT-rich microbiome. These differences appear to be driven both by variations in phylogenetic composition and by environmental differences—which are independent of these phylogenetic composition differences. Combined, our results demonstrate that both phylogeny and the environment significantly affect nucleotide composition and that the environmental differences affecting nucleotide composition are far subtler than previously appreciated.« less
A Bioluminometric Method of DNA Sequencing
NASA Technical Reports Server (NTRS)
Ronaghi, Mostafa; Pourmand, Nader; Stolc, Viktor; Arnold, Jim (Technical Monitor)
2001-01-01
Pyrosequencing is a bioluminometric single-tube DNA sequencing method that takes advantage of co-operativity between four enzymes to monitor DNA synthesis. In this sequencing-by-synthesis method, a cascade of enzymatic reactions yields detectable light, which is proportional to incorporated nucleotides. Pyrosequencing has the advantages of accuracy, flexibility and parallel processing. It can be easily automated. Furthermore, the technique dispenses with the need for labeled primers, labeled nucleotides and gel-electrophoresis. In this chapter, the use of this technique for different applications is discussed.
NASA Astrophysics Data System (ADS)
Feodorova, Valentina A.; Saltykov, Yury V.; Zaytsev, Sergey S.; Ulyanov, Sergey S.; Ulianova, Onega V.
2018-04-01
Method of phase-shifting speckle-interferometry has been used as a new tool with high potency for modern bioinformatics. Virtual phase-shifting speckle-interferometry has been applied for detection of polymorphism in the of Chlamydia trachomatis omp1 gene. It has been shown, that suggested method is very sensitive to natural genetic mutations as single nucleotide polymorphism (SNP). Effectiveness of proposed method has been compared with effectiveness of the newest bioinformatic tools, based on nucleotide sequence alignment.