CONCEPTUAL DESIGN STUDY OF A MOBILE GAMMA IRRADIATOR FOR FRUIT PRODUCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-05-31
Engineering Drawings report available as CAPE-944. A conceptual design study was made of a mobile irradiator for radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons. Minimum radiation dose specification for the fruit ranged from 100,000 to 200,000 rads with maximum to minimum dose ratio in the range of 1.5 to 3. Minimum allowable production rates were in the range of 500 to 1000 lb of fruit/hr. The irradiator was required to be mobile, preferably on one truck capable of being put in operation one day after arrival at the site. Preliminary studies compared five types of irradiators, consisting of amore » single source slab, two package pass design; a double slab, single pass design; a single slab, four pass design; a line source rotary design; and a movable source, movable package design. It was concluded that a Co/sup 60/ irradiator can be built to meet the general requirements for radiopasteurization of fruit. The irradiator can be made mobile and can be mounted on a single trailer. The combined weight of the mobile unit would be 70 to 85 tons depending on the type of irradiator. This unit would require a special license from the State Highway Department. (C.H.)« less
Glovebox stripper system tritium capture efficiency-literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, D. W.; Poore, A. S.
2015-09-28
Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.
Designing robust watermark barcodes for multiplex long-read sequencing.
Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth
2017-03-15
To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman
2011-11-07
High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.
Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias
2017-01-01
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.
MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)
1994-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.
Intel NX to PVM 3.2 message passing conversion library
NASA Technical Reports Server (NTRS)
Arthur, Trey; Nelson, Michael L.
1993-01-01
NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.
NASA Astrophysics Data System (ADS)
Xu, Ming; Huang, Li
2014-08-01
This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.
Non-destructive single-pass low-noise detection of ions in a beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias
2015-11-15
We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less
Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof
2018-03-27
Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.
2016-06-01
Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.
A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li
2018-03-01
Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.
Quantifying fish habitat associated with stream simulation design culverts in northern Wisconsin
A. Timm; D. Higgins; J. Stanovick; R. Kolka; S. Eggert
2017-01-01
This study investigated the effects of culvert replacement design on fish habitat and fish weight by comparing substrate diversity and weight at three stream simulation (SS)-design and three bankfull and backwater (BB)-design sites on the Chequamegon-Nicolet National Forest, Wisconsin. Stream channel cross-sections, Wolman substrate particle counts, and single-pass...
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).
Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M
2008-12-15
We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.
He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R
2015-07-14
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection
He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.
2015-01-01
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225
Creating Single-Subject Design Graphs in Microsoft Excel[TM] 2007
ERIC Educational Resources Information Center
Dixon, Mark R.; Jackson, James W.; Small, Stacey L.; Horner-King, Mollie J.; Mui Ker Lik, Nicholas; Garcia, Yors; Rosales, Rocio
2009-01-01
Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The…
Optical performance of multifocal soft contact lenses via a single-pass method.
Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric
2012-08-01
A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p < 0.05). AirOptix design exhibited good performance for distance and intermediate vision. PureVision design showed improved performance across the test vergences, but only for pupils ≥4 mm in diameter. Performance of Acuvue bifocal was comparable with other MFCLs, but only for pupils >4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.
Centerline pavement markings on two-lane mountain highways.
DOT National Transportation Integrated Search
1983-01-01
The Virginia Department of Highways and Transportation uses a lane marking designated mountain pavement marking (MPM) on two-lane highways in mountainous areas. This special marking consists of a single broken yellow line supplemented with "PASS WITH...
Fourier-transform optical microsystems
NASA Technical Reports Server (NTRS)
Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.
1999-01-01
The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.
Parallel Ray Tracing Using the Message Passing Interface
2007-09-01
software is available for lens design and for general optical systems modeling. It tends to be designed to run on a single processor and can be very...Cameron, Senior Member, IEEE Abstract—Ray-tracing software is available for lens design and for general optical systems modeling. It tends to be designed to...National Aeronautics and Space Administration (NASA), optical ray tracing, parallel computing, parallel pro- cessing, prime numbers, ray tracing
NASA Astrophysics Data System (ADS)
Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.
In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.
ERIC Educational Resources Information Center
Orange County Public Schools, Orlando, FL.
The Single Teen Parent Program conducted by the Orange County, Florida, Public Schools, was designed to help single teen parents acquire marketable skills and jobs in order to head independent family units. The parents served were between the ages of 16 and 20 and either had a high school diploma or had passed the General Educational Development…
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.
Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
1.2.1.1 Harvest, Collection and Storage Quarter 3 Milestone Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Lynn M.; Smith, William A.; Cafferty, Kara G.
Single pass baling of corn stover is required in order to meet targets for the herbaceous biomass 2017 logistics design case. Single-pass pass stover harvest is based on the grain harvest and generally results in stover with a moisture content of 30-50% wet basis (w.b). Aerobic storage of corn stover with high moisture results in high levels of dry matter loss (DML), up to 25%. Anaerobic storage (ensiling) reduces DML to less than 5%, but additional costs are associated with handling and transporting the extra moisture in the biomass. This milestone provides a best-estimate of costs for using high moisturemore » feedstock within the conventional baled logistics system. The costs of three (3) anaerobic storage systems that reduce dry matter losses (bale wrap, silage tube, and silage drive over pile) are detailed in this milestone and compared to both a conventional dry-baled corn stover case and a high moisture bale case, both stored aerobically. The total logistics cost (harvest, collection, storage, and transportation) of the scenarios are as follows: the conventional multi-pass dry bale case and the single-pass high moisture case stored aerobically were nearly equivalent at $61.15 and $61.24/DMT. The single-pass bale wrap case was the lowest at $57.63/DMT. The bulk anaerobic cases were the most expensive at $84.33 for the silage tube case and $75.97 for the drive over pile, which reflect the additional expense of transporting high-moisture bulk material; however, a reduction in preprocessing costs may occur because these feedstocks are size reduced in the field. In summary, the costs estimates presented in this milestone report can be used to determine if anaerobic storage of high-moisture corn stover is an economical option for dry matter preservation.« less
Meador, M.R.; McIntyre, J.P.; Pollock, K.H.
2003-01-01
Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of single-pass backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (ps1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, ps1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. Single-pass backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of single-pass sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple-pass electrofishing at some sites may be necessary to better evaluate the adequacy of single-pass electrofishing and to help make meaningful interpretations of fish community structure.
Analog design of wireless control for home equipment
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing; Jiang, Suping
2018-04-01
This design consists of a STC89C52 microcontroller, a serial Bluetooth module and the Android system. Production of STC89C52 controlled by single-chip computer telephone systems. The system is composed of mobile phone Android system as a master in the family centre,via serial Bluetooth module pass instructions and information to implement wireless transceiver using STC89C52 MCU wireless Bluetooth transmission to control homedevices. System high reliability, low cost easy to use, stong applicability and other characerristics, can be used in single-user family, has great significance.
Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.
Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian
2018-01-17
We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.
Base line estimation using single passes of laser data
NASA Technical Reports Server (NTRS)
Dunn, P. J.; Torrence, M.; Smith, D. E.; Kolenkiewicz, R.
1979-01-01
The laser data of the GEOS 3 satellite passes observed by four stations at Greenbelt (Maryland), Bermuda, Grand Turk Island (Bahamas) and Patrick Air Force Base (Florida), were employed to determine precise interstation base lines and relative heights in short orbital arcs of no more than 12-min duration. No more than five arcs of data are required to define the interstation base lines to 30-cm precision. Base lines running parallel to the orbital motion can be defined to submeter precision from a single short arc of data. Combining arcs of different orbital geometry in a common adjustment of two or more stations relative to the base station helps to compensate for weak base line definition in any single arc. This technique can be used for tracking such spacecraft as Lageos, a high-altitude retroreflector-carrying satellite designed for precise laser ranging studies.
Efficient Single-Pass Index Construction for Text Databases.
ERIC Educational Resources Information Center
Heinz, Steffen; Zobel, Justin
2003-01-01
Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a single-pass inversion method on Web document collections. Shows that the single-pass approach is faster and does not require the complete vocabulary of the indexed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, P.; /Fermilab; Cary, J.
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less
Simulation of double-pass stimulated Raman backscattering
NASA Astrophysics Data System (ADS)
Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.
2018-04-01
Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.
Design of micro bending deformer for optical fiber weight sensor
NASA Astrophysics Data System (ADS)
Ula, R. K.; Hanto, D.; Waluyo, T. B.; Adinanta, H.; Widiyatmoko, B.
2017-04-01
The road damage due to excessive load is one of the causes of accidents on the road. A device to measure weight of the passing vehicles needs to be planted in the road structure. Thus, a weight sensor for the passing vehicles is required. In this study, we designed a weight sensor for a static load based on a power loss due to a micro bending on the optical fiber flanked on a board. The following main components are used i.e. LED 1310 nm as a light source, a multimode fiber optic as a transmission media and a power meter for measuring power loss. This works focuses on obtaining a suitable deformer design for weight sensor. Experimental results show that deformer design with 1.5 mm single side has level of accuracy as 4.32% while the design with 1.5 mm double side has level of accuracy as 98.77%. Increasing deformer length to 2.5 mm gives 71.18% level of accuracy for single side, and 76.94% level of accuracy for double side. Micro bending design with 1.5 mm double side has a high sensitivity and it is also capable of measuring load up to 100 kg. The sensor designed has been tested for measuring the weight of motor cycle, and it can be upgraded for measuring heavy vehicles.
Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian
2006-02-01
The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes and at lesser depths with single pass higher fluence settings. Findings suggest that similar collagen fibril alteration can occur with multiple pass low-energy treatments and single pulse high-energy treatments. The lower fluence multiple pass approach is associated with less patient discomfort, less side effects, and more consistent clinical results. Copyright 2005 Wiley-Liss, Inc.
Creating single-subject design graphs in Microsoft Excel 2007.
Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio
2009-01-01
Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions.
CREATING SINGLE-SUBJECT DESIGN GRAPHS IN MICROSOFT EXCELTM 2007
Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio
2009-01-01
Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions. PMID:19949515
UAVSAR Active Electronically-Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark
2010-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.
MOBILE GAMMA IRRADIATORS FOR FRUIT PRODUCE (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
Mobile irradiators used for the radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons are described. The irradiators are mounted on trailers and each irradiator, including the trailer, weighs 70 to 80 tons. Radiatton doses range from 100,000 to 200,000 rads. Minimum production is 500 lb of fruit per hour. Drawings are included for four types of irradiators: the single-slab twopass, double-slab one-pass, single-slab four-pass, and line-source rotary. In the single-slab two-pass system, the packages make two passes in front of the source. The length of the packages is parallel to the direction of travel. The packages are irradiated on eachmore » side. This system is light in weight, has low capital cost, and is simple to fabricate. The double-slab one- pass system is the same as the above except the source strength is doubled and irradiation time is cut in half. The same arrangement is used in the single-slab four-pass system that is used in the singleslab two-pass system except the packages make two passes on each side of the source. The rotary system combines a linear and rotary motion to provide high dosage. It uses a small Co/sup 60/ source but costs more than a single-slab twopass system. (F.E.S.)« less
Gasification of carbonaceous solids
Coates, Ralph L.
1976-10-26
A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.
A statistical model of the wave field in a bounded domain
NASA Astrophysics Data System (ADS)
Hellsten, T.
2017-02-01
Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.
Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution
Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.
2005-01-01
We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.
Technology requirements for a generic aerocapture system. [for atmospheric entry
NASA Technical Reports Server (NTRS)
Cruz, M. I.
1980-01-01
The technology requirements for the design of a generic aerocapture vehicle system are summarized. These spacecraft have the capability of completely eliminating fuel-costly retropropulsion for planetary orbit capture through a single aerodynamically controlled atmospheric braking pass from a hyperbolic trajectory into a near circular orbit. This generic system has application at both the inner and outer planets. Spacecraft design integration, navigation, communications, and aerothermal protection system design problems were assessed in the technology requirements study and are discussed in this paper.
Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].
Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph
2018-04-01
Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.
Design of a lock-amplifier circuit
NASA Astrophysics Data System (ADS)
Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.
2017-01-01
The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.
Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber
NASA Astrophysics Data System (ADS)
Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Butsch, A.; Novoa, D.; Russell, P. St. J.
2016-08-01
It is interesting to pose the question: How best to design an optomechanical device, with no electronics, optical cavity, or laser gain, that will self-oscillate when pumped in a single pass with only a few mW of single-frequency laser power? One might begin with a mechanically resonant and highly compliant system offering very high optomechanical gain. Such a system, when pumped by single-frequency light, might self-oscillate at its resonant frequency. It is well-known, however, that this will occur only if the group velocity dispersion of the light is high enough so that phonons causing pump-to-Stokes conversion are sufficiently dissimilar to those causing pump-to-anti-Stokes conversion. Recently it was reported that two light-guiding membranes 20 μm wide, ˜500 nm thick and spaced by ˜500 nm, suspended inside a glass fiber capillary, oscillated spontaneously at its mechanical resonant frequency (˜6 MHz) when pumped with only a few mW of single-frequency light. This was surprising, since perfect Raman gain suppression would be expected. In detailed measurements, using an interferometric side-probing technique capable of resolving nanoweb movements as small as 10 pm, we map out the vibrations along the fiber and show that stimulated intermodal scattering to a higher-order optical mode frustrates gain suppression, permitting the structure to self-oscillate. A detailed theoretical analysis confirms this picture. This novel mechanism makes possible the design of single-pass optomechanical oscillators that require only a few mW of optical power, no electronics nor any optical resonator. The design could also be implemented in silicon or any other suitable material.
Crested wheatgrass control and native plant establishment in Utah
April Hulet; Bruce A. Roundy; Brad Jessop
2010-01-01
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and...
Single-pass incremental force updates for adaptively restrained molecular dynamics.
Singh, Krishna Kant; Redon, Stephane
2018-03-30
Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1984-01-01
A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.
Li, Wen-Di; Chou, Stephen Y
2010-01-18
We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.
CMOS-based carbon nanotube pass-transistor logic integrated circuits
Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao
2012-01-01
Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, Panagiotis; /Fermilab; Cary, John
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less
Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C
2012-12-01
Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tehranchi, Amirhossein; Kashyap, Raman
2009-10-12
A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.
Ottosson, Johan; Lavesson, Lillian; Pinzke, Stefan; Grahn, Patrik
2015-01-01
Freezing of Gait (FOG) is a common condition in people with Parkinson’s disease (PD). FOG entails suddenly experiencing difficulties moving or feeling that one’s feet are as glued to the ground. It is triggered, e.g., when passing through doorways. Earlier studies suggest that being in natural environments affects FOG in a positive way. Five subjects were recruited to serve as five single subject cases. We used interviews, observations, questionnaires and collected gait pattern data with aid of an accelerometer. A special designed outdoor setting was used, where we investigated whether passing through hedge openings with or without built elements triggered FOG. We found that no one experienced a FOG reaction when they passed through hedge openings without built elements. However, FOG was triggered when a doorframe was inserted into a hedge opening, and/or when peripheral vision was blocked. We interpret the results such that the doorframe triggered a phobic reflex, causing a freezing reaction. Passing through hedge openings does not trigger FOG, which we interpret as a biophilic reaction. Our results, if repeated in future studies, may have significance to everyday lives of PD patients, who could get a simpler life by consciously prioritizing stays in natural surroundings. PMID:26132480
Design of dual ring wavelength filters for WDM applications
NASA Astrophysics Data System (ADS)
Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.
2016-12-01
Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.
UAVSAR Instrument: Current Operations and Planned Upgrades
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David
2011-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these
Gheza, Federico; Raimondi, Paolo; Solaini, Leonardo; Coccolini, Federico; Baiocchi, Gian Luca; Portolani, Nazario; Tiberio, Guido Alberto Massimo
2018-04-11
Outside the US, FLS certification is not required and its teaching methods are not well standardized. Even if the FLS was designed as "stand alone" training system, most of Academic Institution offer support to residents during training. We present the first systematic application of FLS in Italy. Our aim was to evaluate the role of mentoring/coaching on FLS training in terms of the passing rate and global performance in the search for resource optimization. Sixty residents in general surgery, obstetrics & gynecology, and urology were selected to be enrolled in a randomized controlled trial, practicing FLS with the goal of passing a simulated final exam. The control group practiced exclusively with video material from SAGES, whereas the interventional group was supported by a mentor. Forty-six subjects met the requirements and completed the trial. For the other 14 subjects no results are available for comparison. One subject for each group failed the exam, resulting in a passing rate of 95.7%, with no obvious differences between groups. Subgroup analysis did not reveal any difference between the groups for FLS tasks. We confirm that methods other than video instruction and deliberate FLS practice are not essential to pass the final exam. Based on these results, we suggest the introduction of the FLS system even where a trained tutor is not available. This trial is the first single institution application of the FLS in Italy and one of the few experiences outside the US. Trial Number: NCT02486575 ( https://www.clinicaltrials.gov ).
NASA Astrophysics Data System (ADS)
Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-01
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-29
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Implementing Multidisciplinary and Multi-Zonal Applications Using MPI
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.
1995-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.
The Selection of Q-Switch for a 350mJ Air-borne 2-micron Wind Lidar
NASA Technical Reports Server (NTRS)
Petros, Mulugeta; Yu, Jirong; Trieu, Bo; Bai, Yingxin; Petzar, Paul; Singh, Upendra N.
2008-01-01
In the process of designing a coherent, high energy 2micron, Doppler wind Lidar, various types of Q-Switch materials and configurations have been investigated for the oscillator. Designing an oscillator with a relatively low gain laser material, presents challenges related to the management high internal circulating fluence due to high reflective output coupler. This problem is compounded by the loss of hold-off. In addition, the selection has to take into account the round trip optical loss in the resonator and the loss of hold-off. For this application, a Brewster cut 5mm aperture, fused silica AO Q-switch is selected. Once the Q-switch is selected various rf frequencies were evaluated. Since the Lidar has to perform in single longitudinal and transverse mode with transform limited line width, in this paper, various seeding configurations are presented in the context of Q-Switch diffraction efficiency. The master oscillator power amplifier has demonstrated over 350mJ output when the amplifier is operated in double pass mode and higher than 250mJ when operated in single pass configuration. The repetition rate of the system is 10Hz and the pulse length 200ns.
Soft-state biomicrofluidic pulse generator for single cell analysis
NASA Astrophysics Data System (ADS)
Sabounchi, Poorya; Ionescu-Zanetti, Cristian; Chen, Roger; Karandikar, Manjiree; Seo, Jeonggi; Lee, Luke P.
2006-05-01
We present the design, fabrication, and characterization of a soft-state biomicrofluidic pulse generator for single cell analysis. Hydrodynamic cell trapping via lateral microfluidic junctions allows the trapping of single cells from a bulk suspension. Microfluidic injection sites adjacent to the cell-trapping channels enable the pulsed delivery of nanoliter volumes of biochemical reagent. We demonstrated the application and removal of reagent at a frequency of 10Hz with a rise time of less than 33ms and a reagent consumption rate of 0.2nL/s. It is shown that this system operates as a low-pass filter with a cutoff frequency of 7Hz.
High peak-power kilohertz laser system employing single-stage multi-pass amplification
Shan, Bing; Wang, Chun; Chang, Zenghu
2006-05-23
The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.
Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading
NASA Technical Reports Server (NTRS)
Steeve, B. E.; Wingate, R. J.
2012-01-01
A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.
Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning
NASA Astrophysics Data System (ADS)
Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.
2012-10-01
To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
2010-09-01
on an Optical Micrograph of the Transverse View of Single-Pass NAB. After [5]............................................... 6 Figure 4 . Vertical...deformed and 6 elongated but does not see the same refinement that is seen inside the SZ [ 4 ]. The grain structure right outside the TMAZ will also...including grinding, polishing, and electropolishing . The first step was to grind the surface using a Buehler ECOMET 4 Variable Speed Grinder
Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers
NASA Astrophysics Data System (ADS)
Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca
2014-06-01
We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.
Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper
NASA Astrophysics Data System (ADS)
Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan
2010-03-01
A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, L.N.
Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for 'grating-type' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a 'multi-pass collider', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak powermore » requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.« less
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
NASA Technical Reports Server (NTRS)
1981-01-01
Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.
Portable Device Slices Thermoplastic Prepregs
NASA Technical Reports Server (NTRS)
Taylor, Beverly A.; Boston, Morton W.; Wilson, Maywood L.
1993-01-01
Prepreg slitter designed to slit various widths rapidly by use of slicing bar holding several blades, each capable of slicing strip of preset width in single pass. Produces material evenly sliced and does not contain jagged edges. Used for various applications in such batch processes involving composite materials as press molding and autoclaving, and in such continuous processes as pultrusion. Useful to all manufacturers of thermoplastic composites, and in slicing B-staged thermoset composites.
Means for the focusing and acceleration of parallel beams of charged particles. [Patent application
Maschke, A.W.
1980-09-23
Apparatus for focusing beams of charged particles comprising planar arrays of electrostatic quadrupoles. The array may be assembled from a single component which comprises a support plate containing uniform rows of poles. Each pole is separated by a hole through the plate designed to pass a beam. Two such plates may be positioned with their poles intermeshed to form a plurality of quadrupoles.
Experimental Charging Behavior of Orion UltraFlex Array Designs
NASA Technical Reports Server (NTRS)
Golofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.
2010-01-01
The present ground based investigations give the first definitive look describing the charging behavior of Orion UltraFlex arrays in both the Low Earth Orbital (LEO) and geosynchronous (GEO) environments. Note the LEO charging environment also applies to the International Space Station (ISS). The GEO charging environment includes the bounding case for all lunar mission environments. The UltraFlex photovoltaic array technology is targeted to become the sole power system for life support and on-orbit power for the manned Orion Crew Exploration Vehicle (CEV). The purpose of the experimental tests is to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues to ascertain if a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Stage 1 LEO plasma testing revealed that all four arrays successfully passed arc threshold bias tests down to -240 V. Stage 2 GEO electron gun charging tests revealed that only the front side area of indium tin oxide coated array designs successfully passed the arc frequency tests
Advanced Antenna Design for NASA's EcoSAR Instrument
NASA Technical Reports Server (NTRS)
Du Toit, Cornelis F.; Deshpande, Manohar; Rincon, Rafael F.
2016-01-01
Advanced antenna arrays were designed for NASA's EcoSAR airborne radar instrument. EcoSAR is a beamforming synthetic aperture radar instrument designed to make polarimetric and "single pass" interferometric measurements of Earth surface parameters. EcoSAR's operational requirements of a 435MHz center frequency with up to 200MHz bandwidth, dual polarization, high cross-polarization isolation (> 30 dB), +/- 45deg beam scan range and antenna form-factor constraints imposed stringent requirements on the antenna design. The EcoSAR project successfully developed, characterized, and tested two array antennas in an anechoic chamber. EcoSAR's first airborne campaign conducted in the spring of 2014 generated rich data sets of scientific and engineering value, demonstrating the successful operation of the antennas.
Comparison of cryogenic low-pass filters.
Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
Comparison of cryogenic low-pass filters
NASA Astrophysics Data System (ADS)
Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo-Ortega, J.F., E-mail: jfcdrr@yahoo.es; Pozo, M.; Moragues, S.
To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom onmore » the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application ( (www.radiochromic.com)) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm{sup 2} region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed.« less
Sah, Parimal; Das, Bijoy Krishna
2018-03-20
It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500 nm≤λ≤1650 nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24 nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2 nm) exhibits a pass bandwidth down to ∼10 nm.
49 CFR 172.102 - Special provisions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... design type that has passed a leakproofness test at the Packing Group II level. Small inner packagings... packaging or transport unit is closed. Each packaging must correspond to a design type that has passed a... transport unit is closed. Each packaging must correspond to a design type that has passed a leakproofness...
49 CFR 172.102 - Special provisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... bags, each packaging must correspond to a design type that has passed a leakproofness test at the... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II...
49 CFR 172.102 - Special provisions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packagings, each packaging must correspond to a design type that has passed a leakproofness test at the...
49 CFR 172.102 - Special provisions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packaging must correspond to a design type that has passed a leakproofness test at the Packing Group II... packagings, each packaging must correspond to a design type that has passed a leakproofness test at the...
49 CFR 172.102 - Special provisions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... design type that has passed a leakproofness test at the Packing Group II level. Small inner packagings... packaging or transport unit is closed. Each packaging must correspond to a design type that has passed a... transport unit is closed. Each packaging must correspond to a design type that has passed a leakproofness...
Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,
2014-01-01
Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.
Estimating Measures of Pass-Fail Reliability from Parallel Half-Tests.
ERIC Educational Resources Information Center
Woodruff, David J.; Sawyer, Richard L.
Two methods for estimating measures of pass-fail reliability are derived, by which both theta and kappa may be estimated from a single test administration. The methods require only a single test administration and are computationally simple. Both are based on the Spearman-Brown formula for estimating stepped-up reliability. The non-distributional…
Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu
2017-09-10
Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).
Parametric analysis of plastic strain and force distribution in single pass metal spinning
NASA Astrophysics Data System (ADS)
Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra
2013-12-01
Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.
The TIL commissioning and performance
NASA Astrophysics Data System (ADS)
Zhang, X.; Zheng, W.; Wei, X.; Jing, F.; Sui, Z.; Zheng, K.; Xu, Q.; Yuan, X.; Jiang, X.; Yang, L.; Ma, P.; Li, M.; Wang, J.; Hu, D.; He, S.; Li, F.; Peng, Z.; Feng, B.; Zhou, H.; Guo, L.; Li, X.; Zhang, X.; Su, J.; Zhu, Q.; Yu, H.; Zhao, R.; Ma, C.; He, H.; Fan, D.; Zhang, W.
2008-05-01
The TIL serves for both technological platforms for SG-III construction and physical experiments to study and understand target physics toward ignition and plasma burning [2]. The TIL has been designed to produce 10kJ blue light. Its eight-beam are stacked 4 high by 2 wide, The clear optical aperture is 30cm×30cm The cavity and booster amplifiers have 9 and 6 glass slabs respectively, with thickness of 3.8cm. The cavity is a four-pass amplification stage with the seed pulse injected through its cavity spatial filter, while the booster a single pass amplification stage. The commissioning experiments have successfully been conducted to test the output and control abilities of the system. A single beam line of TIL produced 3-ns pulse of 1645 Joule blue light at the target, which demonstrated that the TIL can deliver ten-thousand-joule blue light to the target. Beam qualities have been investigated jointly with the laser chain simulations using the SG-99 code. The wavefront distortions of the beams will be improved by deformable mirrors.
Calculation of single-pass gain for laser ceramics with losses
NASA Astrophysics Data System (ADS)
Vatnik, S. M.
2018-04-01
Rate equations describing the single-pass gain in an active medium with losses are analytically solved. The found relations illustrate the dependences of the amplification efficiency of Nd : YAG ceramics on the pump power density and specific losses. It is concluded that specific losses can be estimated from comparative measurements of unsaturated and saturated gains.
Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...
ERIC Educational Resources Information Center
Cornell Univ., Ithaca, NY. Dept. of Computer Science.
Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…
Performance potential of air turbo-ramjet employing supersonic through-flow fan
NASA Technical Reports Server (NTRS)
Kepler, C. E.; Champagne, G. A.
1989-01-01
A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.
Chen, Yong-Siou; Manser, Joseph S; Kamat, Prashant V
2015-01-21
The quest for economic, large-scale hydrogen production has motivated the search for new materials and device designs capable of splitting water using only energy from the sun. Here we introduce an all solution-processed tandem water splitting assembly composed of a BiVO4 photoanode and a single-junction CH3NH3PbI3 hybrid perovskite solar cell. This unique configuration allows efficient solar photon management, with the metal oxide photoanode selectively harvesting high energy visible photons, and the underlying perovskite solar cell capturing lower energy visible-near IR wavelengths in a single-pass excitation. Operating without external bias under standard AM 1.5G illumination, the photoanode-photovoltaic architecture, in conjunction with an earth-abundant cobalt phosphate catalyst, exhibits a solar-to-hydrogen conversion efficiency of 2.5% at neutral pH. The design of low-cost tandem water splitting assemblies employing single-junction hybrid perovskite materials establishes a potentially promising new frontier for solar water splitting research.
An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data.
Della-Maggiore, Valeria; Chau, Wilkin; Peres-Neto, Pedro R; McIntosh, Anthony R
2002-09-01
We present the results from two sets of Monte Carlo simulations aimed at evaluating the robustness of some preprocessing parameters of SPM99 for the analysis of functional magnetic resonance imaging (fMRI). Statistical robustness was estimated by implementing parametric and nonparametric simulation approaches based on the images obtained from an event-related fMRI experiment. Simulated datasets were tested for combinations of the following parameters: basis function, global scaling, low-pass filter, high-pass filter and autoregressive modeling of serial autocorrelation. Based on single-subject SPM analysis, we derived the following conclusions that may serve as a guide for initial analysis of fMRI data using SPM99: (1) The canonical hemodynamic response function is a more reliable basis function to model the fMRI time series than HRF with time derivative. (2) Global scaling should be avoided since it may significantly decrease the power depending on the experimental design. (3) The use of a high-pass filter may be beneficial for event-related designs with fixed interstimulus intervals. (4) When dealing with fMRI time series with short interstimulus intervals (<8 s), the use of first-order autoregressive model is recommended over a low-pass filter (HRF) because it reduces the risk of inferential bias while providing a relatively good power. For datasets with interstimulus intervals longer than 8 seconds, temporal smoothing is not recommended since it decreases power. While the generalizability of our results may be limited, the methods we employed can be easily implemented by other scientists to determine the best parameter combination to analyze their data.
Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo
2012-02-01
In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.
Continuous-wave modulation of a femtosecond oscillator using coherent molecules.
Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D
2018-03-01
We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.
A 532 nm Chaotic Fiber Laser Transmitter for Underwater Lidar
2013-04-23
passes through unaffected. 3.1.1.2 Ring Lasers as Oscillators The simplest form of laser is a called a Fabry - Perot laser, in which two reflectors are...insufficient to drive the gain amplifier, and so the circulator-based design was scrapped in favor of the Fabry - Perot , whose efficiency was far better...Bidirectional Ring and Fabry - Perot Lasers The Fabry - Perot laser used two matched FBGs to create a wavelength-selective resonator cavity. First single- and
NASA Astrophysics Data System (ADS)
Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A.; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N. Jon
2018-01-01
A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.
Finite element modelling of chain-die forming for ultra-high strength steel
NASA Astrophysics Data System (ADS)
Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui
2017-10-01
There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.
Improved multiple-pass Raman spectrometer
NASA Astrophysics Data System (ADS)
Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.
2011-08-01
An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-01
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-13
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.
NASA Astrophysics Data System (ADS)
Jena, D. P.; Panigrahi, S. N.
2016-03-01
Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.
Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignotti, A.; Tamborenea, P.I.
1988-02-01
The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.
Processors for wavelet analysis and synthesis: NIFS and TI-C80 MVP
NASA Astrophysics Data System (ADS)
Brooks, Geoffrey W.
1996-03-01
Two processors are considered for image quadrature mirror filtering (QMF). The neuromorphic infrared focal-plane sensor (NIFS) is an existing prototype analog processor offering high speed spatio-temporal Gaussian filtering, which could be used for the QMF low- pass function, and difference of Gaussian filtering, which could be used for the QMF high- pass function. Although not designed specifically for wavelet analysis, the biologically- inspired system accomplishes the most computationally intensive part of QMF processing. The Texas Instruments (TI) TMS320C80 Multimedia Video Processor (MVP) is a 32-bit RISC master processor with four advanced digital signal processors (DSPs) on a single chip. Algorithm partitioning, memory management and other issues are considered for optimal performance. This paper presents these considerations with simulated results leading to processor implementation of high-speed QMF analysis and synthesis.
Hyperswitch Communication Network Computer
NASA Technical Reports Server (NTRS)
Peterson, John C.; Chow, Edward T.; Priel, Moshe; Upchurch, Edwin T.
1993-01-01
Hyperswitch Communications Network (HCN) computer is prototype multiple-processor computer being developed. Incorporates improved version of hyperswitch communication network described in "Hyperswitch Network For Hypercube Computer" (NPO-16905). Designed to support high-level software and expansion of itself. HCN computer is message-passing, multiple-instruction/multiple-data computer offering significant advantages over older single-processor and bus-based multiple-processor computers, with respect to price/performance ratio, reliability, availability, and manufacturing. Design of HCN operating-system software provides flexible computing environment accommodating both parallel and distributed processing. Also achieves balance among following competing factors; performance in processing and communications, ease of use, and tolerance of (and recovery from) faults.
Consolidation of Surface Coatings by Friction Stir Techniques
2010-09-01
alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments
Design and Modeling of Turbine Airfoils with Active Flow Control in Realistic Engine Conditions
2008-07-16
deficit and turbulence parameters in the wake of a passing blade . An additional objective was to determine the proper cylinder diameter and...we see that in terms of velocity deficit only, the 4mm cylinder at x/D=8 approximates very well the blade wake . However, we see that the problem...Results Blade Wake The computational domain consisted of a single blade with periodic conditions imposed at approximately the mid-passage, as seen in
Fiber Optic Temperature Sensor Based on Multimode Interference Effects
NASA Astrophysics Data System (ADS)
Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.
2011-01-01
A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.
Single-pass environmental chamber for quantifying human responses to airborne chemicals.
Suarez, Joseph C; Warmath, D Stan; Koetz, Kurt P; Hood, Alison F; Thompson, Mark L; Kendal-Reed, Martin S; Walker, Dianne B; Walker, James C
2005-03-01
Despite increasing interest in the short-term effects of airborne environmental contaminants, experimental findings are generated at a very slow pace. This is due in part to the expense and complexity of most environmental chambers, which are needed for quantifying effects of wholebody exposures. We lessened this obstacle by designing, constructing, and testing a single-pass, 10-m3 stainless-steel chamber. Compressed air is purified before being sent to an air dilution olfactometer, which supplies 1000 L (1 m3) per minute (referenced to STP) while maintaining 40% relative humidity (RH) and 22.6 degrees C. Precise control of all stimulus parameters is greatly simplified since air is not recirculated. Vapor-phase odorant concentrations are achieved by varying the proportion of total airflow passing through one or more saturators, and are verified in real time by an infrared (IR) spectrometer. An adjoining 5-m3 anteroom is used for introducing known intensities of more chemically complex vapor and/or particulate stimuli into the chamber. Prior to the point that air is exhausted from the chamber, all components are made of stainless steel, Teflon, or glass. A LabView program contains feedback loops that achieve document chamber conditions and document performance. Additional instrumentation and computer systems provide for the automated collection of perceptual, respiratory, eye blink, heart rate, blood pressure, psychological state, and cognitive data. These endpoints are now being recorded, using this facility, in response to ranges of concentrations of propionic acid and environmental tobacco smoke.
Development of a Submillimeter Multipass Spectrometer for the Study of Molecular Ions
NASA Astrophysics Data System (ADS)
Carroll, A.; Rocher, B.; Laas, J. C.; Deprince, B. A.; Hays, B.; Weaver, S. L. Widicus; Lang, S.
2012-06-01
We have developed a multipass spectrometer for the submillimeter spectral region that is being used to study molecular ions through gas phase spectroscopy. The optical configuration is based on the design of Perry and coworkers that was implemented in the optical regime. To our knowledge, this is the first implementation of this optical configuration at long wavelengths. The setup involves two nearly concentric spherical mirrors that focus the multiple beam passes into a small area, or ``waist'', in the middle of the sample chamber. A supersonic molecular beam is coupled to the setup so that the molecular beam crosses the optical path at the waist. Initial studies have focused on neutral test molecules to probe the physical properties of the molecular beam under various arrangements of the molecular source relative to the optical path. Current studies focus on coupling a plasma discharge source to the setup to enable the study of molecular ions. Here we present the design of this instrument, compare the spectrometer capabilities to a traditional single pass spectrometer, and discuss the results of initial spectroscopic studies.
NASA Astrophysics Data System (ADS)
Yu, Liping; Pan, Bing
2016-12-01
A low-cost, easy-to-implement but practical single-camera stereo-digital image correlation (DIC) system using a four-mirror adapter is established for accurate shape and three-dimensional (3D) deformation measurements. The mirrors assisted pseudo-stereo imaging system can convert a single camera into two virtual cameras, which view a specimen from different angles and record the surface images of the test object onto two halves of the camera sensor. To enable deformation measurement in non-laboratory conditions or extreme high temperature environments, an active imaging optical design, combining an actively illuminated monochromatic source with a coupled band-pass optical filter, is compactly integrated to the pseudo-stereo DIC system. The optical design, basic principles and implementation procedures of the established system for 3D profile and deformation measurements are described in detail. The effectiveness and accuracy of the established system are verified by measuring the profile of a regular cylinder surface and displacements of a translated planar plate. As an application example, the established system is used to determine the tensile strains and Poisson's ratio of a composite solid propellant specimen during stress relaxation test. Since the established single-camera stereo-DIC system only needs a single camera and presents strong robustness against variations in ambient light or the thermal radiation of a hot object, it demonstrates great potential in determining transient deformation in non-laboratory or high-temperature environments with the aid of a single high-speed camera.
Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe
NASA Astrophysics Data System (ADS)
Obeid, Obeid; Alfano, Giulio; Bahai, Hamid
2017-08-01
The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.
Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications
NASA Technical Reports Server (NTRS)
Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.;
2017-01-01
Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.
Targeting accuracy of single-isocenter intensity-modulated radiosurgery for multiple lesions.
Calvo-Ortega, J F; Pozo, M; Moragues, S; Casals, J
2017-01-01
To investigate the targeting accuracy of intensity-modulated SRS (IMRS) plans designed to simultaneously treat multiple brain metastases with a single isocenter. A home-made acrylic phantom able to support a film (EBT3) in its coronal plane was used. The phantom was CT scanned and three coplanar small targets (a central and two peripheral) were outlined in the Eclipse system. Peripheral targets were 6 cm apart from the central one. A reference IMRS plan was designed to simultaneously treat the three targets, but only a single isocenter located at the center of the central target was used. After positioning the phantom on the linac using the room lasers, a CBCT scan was acquired and the reference plan were mapped on it, by placing the planned isocenter at the intersection of the landmarks used in the film showing the linac isocenter. The mapped plan was then recalculated and delivered. The film dose distribution was derived using a cloud computing application (www.radiochromic.com) that uses a triple-channel dosimetry algorithm. Comparison of dose distributions using the gamma index (5%/1 mm) were performed over a 5 × 5 cm 2 region centered over each target. 2D shifts required to get the best gamma passing rates on the peripheral target regions were compared with the reported ones for the central target. The experiment was repeated ten times in different sessions. Average 2D shifts required to achieve optimal gamma passing rates (99%, 97%, 99%) were 0.7 mm (SD: 0.3 mm), 0.8 mm (SD: 0.4 mm) and 0.8 mm (SD: 0.3 mm), for the central and the two peripheral targets, respectively. No statistical differences (p > 0.05) were found for targeting accuracy between the central and the two peripheral targets. The study revealed a targeting accuracy within 1 mm for off-isocenter targets within 6 cm of the linac isocenter, when a single-isocenter IMRS plan is designed. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.
Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less
NASA Astrophysics Data System (ADS)
Dirisu, Afusat Olayinka
Quantum Cascade (QC) lasers are intersubband light sources operating in the wavelength range of ˜ 3 to 300 mum and are used in applications such as sensing (environmental, biological, and hazardous chemical), infrared countermeasures, and free-space infrared communications. The mid-infrared range (i.e. lambda ˜ 3-30 mum) is of particular importance in sensing because of the strong interaction of laser radiation with various chemical species, while in free space communications the atmospheric windows of 3-5 mum and 8-12 mum are highly desirable for low loss transmission. Some of the requirements of these applications include, (1) high output power for improved sensitivity; (2) high operating temperatures for compact and cost-effective systems; (3) wide tunability; (4) single mode operation for high selectivity. In the past, available mid-infrared sources, such as the lead-salt and solid-state lasers, were bulky, expensive, or emit low output power. In recent years, QC lasers have been explored as cost-effective and compact sources because of their potential to satisfy and exceed all the above requirements. Also, the ultrafast carrier lifetimes of intersubband transitions in QC lasers are promising for high bandwidth free-space infrared communication. This thesis was focused on the improvement of QC lasers through the design and optimization of the laser cavity and characterization of the laser gain medium. The optimization of the laser cavity included, (1) the design and fabrication of high reflection Bragg gratings and subwavelength antireflection gratings, by focused ion beam milling, to achieve tunable, single mode and high power QC lasers, and (2) modeling of slab-coupled optical waveguide QC lasers for high brightness output beams. The characterization of the QC laser gain medium was carried out using the single-pass transmission experiment, a sensitive measurement technique, for probing the intersubband transitions and the electron distribution of QC lasers under different temperatures and applied bias conditions, unlike typical infrared measurement techniques that are restricted to non-functional devices. With the single-pass technique, basic understanding of the physics behind the workings of the QC laser gain can be achieved, which is invaluable in the design of QC lasers with high output power and high operating temperatures.
Lazoura, Olga; Ismail, Tevfik F; Pavitt, Christopher; Lindsay, Alistair; Sriharan, Mona; Rubens, Michael; Padley, Simon; Duncan, Alison; Wong, Tom; Nicol, Edward
2016-02-01
Assessment of the left atrial appendage (LAA) for thrombus and anatomy is important prior to atrial fibrillation (AF) ablation and LAA exclusion. The use of cardiovascular CT (CCT) to detect LAA thrombus has been limited by the high incidence of pseudothrombus on single-pass studies. We evaluated the diagnostic accuracy of a two-phase protocol incorporating a limited low-dose delayed contrast-enhanced examination of the LAA, compared with a single-pass study for LAA morphological assessment, and transesophageal echocardiography (TEE) for the exclusion of thrombus. Consecutive patients (n = 122) undergoing left atrial interventions for AF were assessed. All had a two-phase CCT protocol (first-past scan plus a limited, 60-s delayed scan of the LAA) and TEE. Sensitivity, specificity, diagnostic accuracy, positive (PPV) and negative predictive values (NPV) were calculated for the detection of true thrombus on first-pass and delayed scans, using TEE as the gold standard. Overall, 20/122 (16.4 %) patients had filling defects on the first-pass study. All affected the full delineation of the LAA morphology; 17/20 (85 %) were confirmed as pseudo-filling defects. Three (15 %) were seen on late-pass and confirmed as true thrombi on TEE; a significant improvement in diagnostic performance relative to a single-pass scan (McNemar Chi-square 17, p < 0.001). The sensitivity, specificity, diagnostic accuracy, PPV and NPV was 100, 85.7, 86.1, 15.0 and 100 % respectively for first-pass scans, and 100 % for all parameters for the delayed scans. The median (range) additional radiation dose for the delayed scan was 0.4 (0.2-0.6) mSv. A low-dose delayed scan significantly improves the identification of true LAA anatomy and thrombus in patients undergoing LA intervention.
Li-Ion Battery By-Pass Removal Qualification
NASA Astrophysics Data System (ADS)
Borthomieu, Y.; Pasquier, E.
2005-05-01
The reasons of the by-pass use on Space batteries is to avoid open circuit, short-circuit and dramatic performances drift on the power system. By-pass diodes are currently used in NiH2 batteries due to the high probability of open circuit at cell level. This probability is mainly linked to the possibility to have a hydrogen leak within the pressure vessel due to the high operating pressure (70 bars) that can induce cell open circuit.For the Lithium-Ion batteries, first items had bypass implemented by similarity, but:All the cell failure cases have been analyzed at battery level:- Cell Open circuit:In contrast to NiCd and NiH2 cells, Li-Ion cells can be put in parallel due to the fact the open circuit voltage (OCV) is linked to the State Of Charge (SOC).With cells in parallel, a battery open circuit failure can never be encountered even with a cell in open circuit.- Cell Short circuit:In case of cell short, the entire cells within the module will be shorted.- Cell capacity spread:If the capacities of cells in series are strongly diverging, the worst module limits the battery. In case the battery is no more able to deliver the requested power for which it was designed, the worst module has to be reversed. In reversal, a Li-Ion cell is self-shorted. So, the strong capacity decrease in one module leads to the short of this module.These three failure cases cover all the possible Li-Ion failure root causes.Considering these three events, the analysis demonstrates that the Li-Ion battery still functions in any case without any by-pass system because the design of the battery size always takes into account the loss of one module.Nevertheless, the by-pass removal should allow to:- Improve the battery reliability as each bypass unit represents a single - Reduce by at least 30 % of the total price of the battery,- Reduce significant weight at battery level,- Shorten the battery manufacturing lead time (at least8 months for by-pass purchasing), - Avoid US export licenses.A formal qualification of a Li-Ion battery without by- pass system is on going in the frame of an ESA ARTES 3 contract.
By-Pass Diode Temperature Tests of a Solar Array Coupon under Space Thermal Environment Conditions
NASA Technical Reports Server (NTRS)
Wright, Kenneth H.; Schneider, Todd A.; Vaughn, Jason A.; Hoang, Bao; Wong, Frankie; Wu, Gordon
2016-01-01
By-Pass diodes are a key design feature of solar arrays and system design must be robust against local heating, especially with implementation of larger solar cells. By-Pass diode testing was performed to aid thermal model development for use in future array designs that utilize larger cell sizes that result in higher string currents. Testing was performed on a 56-cell Advanced Triple Junction solar array coupon provided by SSL. Test conditions were vacuum with cold array backside using discrete by-pass diode current steps of 0.25 A ranging from 0 A to 2.0 A.
High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP2
NASA Astrophysics Data System (ADS)
Chaitanya Kumar, S.; Jelínek, M.; Baudisch, M.; Zawilski, K. T.; Schunemann, P. G.; Kubecek, V.; Biegert, J.; Ebrahim-Zadeh, M.
2012-06-01
We report a tunable, high-energy, single-pass, optical parametric generator (OPG) based on the new nonlinear material, cadmium silicon phosphide, CdSiP2. The OPG is pumped by a laboratory designed cavity-dumped passively mode-locked, diode-pumped, Nd:YAG oscillator, providing 25 μJ pulses in 20 ps at 5 Hz. The pump energy is further boosted by a flashlamp-pumped Nd:YAG amplifier to 2.5 mJ. The OPG is temperature tunable over 1263-1286 nm (23 nm) in the signal and 6153-6731 nm (578 nm) in the idler, corresponding to a total tuning range of 601 nm. Using the single-pass OPG configuration, we have generated signal energy as high as 636 μJ at 1283 nm, together with an idler energy of 33 μJ at 6234 nm, for 2.1 mJ of input pump energy. The signal pulses generated from the OPG have a Gaussian pulse duration of 24 ps and an FWHM spectral bandwidth of 10.4 nm at central wavelength of 1276 nm. The corresponding idler spectrum has an FWHM bandwidth of 140 nm centered at 6404 nm.
Study of gas tungsten arc welding procedures for tantalum alloy T-111 (Ta-8 W-2Hf) plate
NASA Technical Reports Server (NTRS)
Gold, R. E.; Kesterson, R. L.
1973-01-01
Methods of eliminating or reducing underbread cracking in multipass GTA welds in thick T-111 plate were studied. Single V butt welds prepared using experimental filler metal compositions and standard weld procedures resulted in only moderate success in reducing underbread cracking. Subsequent procedural changes incorporating manual welding, slower weld speeds, and three or fewer fill passes resulted in crack-free single V welds only when the filler metal was free of hafnium. The double V joint design with successive fill passes on opposite sides of the joint produced excellent welds. The quality of each weld was determined metallographically since the cracking, when present, was very slight and undetectable using standard NDT techniques. Tensile and bend tests were performed on selected weldments. The inherent filler metal strength and the joint geometry determined the strength of the weldment. Hardness and electron beam microprobe traverses were made on selected specimens with the result that significant filler metal-base metal dilution as well as hafnium segregation was detected. A tentative explanation of T-111 plate underbread cracking is presented based on the intrinsic effects of hafnium in the weldment.
All-fiber bandpass filter based on asymmetrical modes exciting and coupling
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min
2013-01-01
A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.
All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror
NASA Astrophysics Data System (ADS)
Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.
1996-02-01
At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.
Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N Jon
2018-01-01
A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1 H (400 MHz) and inner low-pass coil for 23 Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1 H and -27 dB for 23 Na. Signal-to-noise ratios (SNRs) were calculated and 23 Na flip angle maps were acquired. 23 Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo 1 H and 23 Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23 Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR. Copyright © 2017 Elsevier Inc. All rights reserved.
Acoustic results of supersonic tip speed fan blade modification
NASA Technical Reports Server (NTRS)
Jutras, R. R.; Kazin, S. B.
1974-01-01
A supersonic tip speed single stage fan was modified with the intent of reducing multiple pure tone (MPT) or buzz saw noise. There were three modifications to the blades from the original design. The modifications to the blade resulted in an increase in cascade throat area causing the shock to start at a lower corrected fan speed. The acoustic results without acoustically absorbing liners showed substantial reduction in multiple pure tone levels. However, an increase in the blade passing frequency noise at takeoff fan speed accompanied the MPT reduction. The net result however, was a reduction in the maximum 1000-foot (304.8 m) altitude level flyover PNL. For the case with acoustic treatment in the inlet outer wall, the takeoff noise increased relative to an acoustically treated baseline. This was largely due to the increased blade passing frequency noise which was not effectively reduced by the liner.
NASA Technical Reports Server (NTRS)
Barr, Stephanie
2010-01-01
Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space
NASA Astrophysics Data System (ADS)
Barr, Stephanie
2010-09-01
Studies done in the past have drawn on lessons learned with regard to human loss-of-life events. However, an examination of near-fatal accidents can be equally useful, not only in detecting causes, both proximate and systemic, but also for determining what factors averted disaster, what design decisions and/or operator actions prevented catastrophe. Binary pass/fail launch history is often used for risk, but this also has limitations. A program with a number of near misses can look more reliable than a consistently healthy program with a single out-of-family failure. Augmenting reliability evaluations with this near miss data can provide insight and expand on the limitations of a strictly pass/fail evaluation. This paper intends to show how near-miss lessons learned can provide crucial data for any new human spaceflight programs that are interested in sending man into space.
VizieR Online Data Catalog: The Red MSX Source Survey: massive protostars (Lumsden+, 2013)
NASA Astrophysics Data System (ADS)
Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.
2013-10-01
The Midcourse Space Experiment (MSX) satellite mission included an astronomy experiment (SPIRIT III) designed to acquire mid-infrared photometry of sources in the Galactic plane (b<5°). MSX had a raw resolution of 18.3", a beam size 50 times smaller than that of IRAS at 12 and 25um. MSX observed six bands between 4 and 21um, of which the four between 8 and 21um are sensitive to astronomical sources. We used v2.3 of the MSX PSC (Egan et al. 2003, Cat. V/114) as our basic input, restricting ourselves to the main Galactic plane catalog, which excludes sources seen in only a single observing pass and those seen in multiple passes but with low significance. We restricted our catalog to 10
Zhu, Mingyue; Zhang, Jing; Yi, Xingwen; Ying, Hao; Li, Xiang; Luo, Ming; Song, Yingxiong; Huang, Xiatao; Qiu, Kun
2018-03-19
We present the design and optimization of the optical single side-band (SSB) Nyquist four-level pulse amplitude modulation (PAM-4) transmission using dual-drive Mach-Zehnder modulator (DDMZM)modulation and direct detection (DD), aiming at the C-band cost-effective, high-speed and long-distance transmission. At the transmitter, the laser line width should be small to avoid the phase noise to amplitude noise conversion and equalization-enhanced phase noise due to the large chromatic dispersion (CD). The optical SSB signal is generated after optimizing the optical modulation index (OMI) and hence the minimum phase condition which is required by the Kramers-Kronig (KK) receiver can also be satisfied. At the receiver, a simple AC-coupled photodiode (PD) is used and a virtual carrier is added for the KK operation to alleviate the signal-to-signal beating interference (SSBI).A Volterra filter (VF) is cascaded for remaining nonlinearities mitigation. When the fiber nonlinearity becomes significant, we elect to use an optical band-pass filter with offset filtering. It can suppress the simulated Brillouin scattering and the conjugated distortion by filtering out the imaging frequency components. With our design and optimization, we achieve single-channel, single polarization 102.4-Gb/s Nyquist PAM-4 over 800-km standard single-mode fiber (SSMF).
Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook
2012-01-01
An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.
Evaluation of Dynamic Passing Sight Distance Problem Using a Finite Element Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xuedong; Radwan, Essam; Zhang, Fan
2008-06-01
Sufficient passing sight distance is an important control for two-lane rural highway design to minimize the possibility of a head-on collision between passing and opposing vehicles. Traditionally, passing zones are marked by checking passing sight distance that is potentially restricted by static sight obstructions. Such obstructions include crest curves, overpasses, and lateral objects along highways. This paper proposes a new concept of dynamic sight-distance assessment, which involves restricted passing sight distances due to the impeding vehicles that are traveling in the same direction. Using a finite-element model, the dynamic passing sight-distance problem was evaluated, and the writers analyzed the relationshipsmore » between the available passing sight distance and other factors such as the horizontal curve radius, impeding vehicle dimensions, and a driver s following distance. It was found that the impeding vehicles may cause substantially insufficient passing sight distances, which may lead to potential traffic safety problems. It is worthwhile to expand on this safety issue and consider the dynamic passing sight distance in highway design.« less
Ultrashort pulse amplification in cryogenically cooled amplifiers
Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary
2004-10-12
A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
High power regenerative laser amplifier
Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.
1994-01-01
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.
High power regenerative laser amplifier
Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.
1994-02-08
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.
Atom detection and photon production in a scalable, open, optical microcavity.
Trupke, M; Goldwin, J; Darquié, B; Dutier, G; Eriksson, S; Ashmore, J; Hinds, E A
2007-08-10
A microfabricated Fabry-Perot optical resonator has been used for atom detection and photon production with less than 1 atom on average in the cavity mode. Our cavity design combines the intrinsic scalability of microfabrication processes with direct coupling of the cavity field to single-mode optical waveguides or fibers. The presence of the atom is seen through changes in both the intensity and the noise characteristics of probe light reflected from the cavity input mirror. An excitation laser passing transversely through the cavity triggers photon emission into the cavity mode and hence into the single-mode fiber. These are first steps toward building an optical microcavity network on an atom chip for applications in quantum information processing.
NASA Technical Reports Server (NTRS)
Galofaro, Joel T.; Vayner, Boris V.; Hillard, Grover B.
2011-01-01
The present ground based investigations give the first definitive look describing the expected on-orbit charging behavior of Orion UltraFlex array coupons in the Low Earth Orbital and Geosynchronous Environments. Furthermore, it is important to note that the LEO charging environment also applies to the International Space Station as well as to the lunar mission charging environments. The GEO charging environment includes the bounding case for all lunar orbital and lunar surface mission environments. The UltraFlex thin film photovoltaic array technology has been targeted to become the sole power system for life support and on-orbit power for the manned Aires Crew Exploration Vehicle. It is therefore, crucial to gain an understanding of the complex charging behavior to answer some of the basic performance and survivability issues in an attempt to ascertain that a single UltraFlex array design will be able to cope with the projected worst case LEO and GEO charging environments. Testing was limited to four array coupons, two coupons each from two different array manufactures, Emcore and Spectrolab. The layout of each array design is identical and varies only in the actual cell technology used. The individual array cells from each manufacturer have an antireflection layered coating and come in two different varieties either uncoated (only AR coating) or coated with a thin conducting ITO layer. The LEO Plasma tests revealed that all four coupons passed the arc threshold -120 V bias tests. GEO electron gun charging tests revealed that only front side area of ITO coated coupons passed tests. Only the Emcore AR array passed backside Stage 2 GEO Tests.
Design and qualification of the SEU/TD Radiation Monitor chip
NASA Technical Reports Server (NTRS)
Buehler, Martin G.; Blaes, Brent R.; Soli, George A.; Zamani, Nasser; Hicks, Kenneth A.
1992-01-01
This report describes the design, fabrication, and testing of the Single-Event Upset/Total Dose (SEU/TD) Radiation Monitor chip. The Radiation Monitor is scheduled to fly on the Mid-Course Space Experiment Satellite (MSX). The Radiation Monitor chip consists of a custom-designed 4-bit SRAM for heavy ion detection and three MOSFET's for monitoring total dose. In addition the Radiation Monitor chip was tested along with three diagnostic chips: the processor monitor and the reliability and fault chips. These chips revealed the quality of the CMOS fabrication process. The SEU/TD Radiation Monitor chip had an initial functional yield of 94.6 percent. Forty-three (43) SEU SRAM's and 14 Total Dose MOSFET's passed the hermeticity and final electrical tests and were delivered to LL.
A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.
Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou
2017-11-01
In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.
Modular approach to achieving the next-generation X-ray light source
NASA Astrophysics Data System (ADS)
Biedron, S. G.; Milton, S. V.; Freund, H. P.
2001-12-01
A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, William Michael; Plimpton, Steven James; Wang, Peng
2010-03-01
LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.
A design of a high speed dual spectrometer by single line scan camera
NASA Astrophysics Data System (ADS)
Palawong, Kunakorn; Meemon, Panomsak
2018-03-01
A spectrometer that can capture two orthogonal polarization components of s light beam is demanded for polarization sensitive imaging system. Here, we describe the design and implementation of a high speed spectrometer for simultaneous capturing of two orthogonal polarization components, i.e. vertical and horizontal components, of light beam. The design consists of a polarization beam splitter, two polarization-maintain optical fibers, two collimators, a single line-scan camera, a focusing lens, and a reflection blaze grating. The alignment of two beam paths was designed to be symmetrically incident on the blaze side and reverse blaze side of reflection grating, respectively. The two diffracted beams were passed through the same focusing lens and focused on the single line-scan sensors of a CMOS camera. The two spectra of orthogonal polarization were imaged on 1000 pixels per spectrum. With the proposed setup, the amplitude and shape of the two detected spectra can be controlled by rotating the collimators. The technique for optical alignment of spectrometer will be presented and discussed. The two orthogonal polarization spectra can be simultaneously captured at a speed of 70,000 spectra per second. The high speed dual spectrometer can simultaneously detected two orthogonal polarizations, which is an important component for the development of polarization-sensitive optical coherence tomography. The performance of the spectrometer have been measured and analyzed.
Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver
NASA Technical Reports Server (NTRS)
Ajmani, Kumud; Taylor, Arthur C., III
1994-01-01
This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.
GLobal Integrated Design Environment
NASA Technical Reports Server (NTRS)
Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.
2011-01-01
The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.
Engel, Pierre; Almas, Mariana Ferreira; De Bruin, Marieke Louise; Starzyk, Kathryn; Blackburn, Stella; Dreyer, Nancy Ann
2017-04-01
To describe and characterize the first cohort of Post-Authorization Safety Study (PASS) protocols reviewed under the recent European pharmacovigilance legislation. A systematic approach was used to compile all publicly available information on PASS protocols and assessments submitted from July 2012 to July 2015 from Pharmacovigilance Risk Assessment Committee (PRAC) minutes, European Medicines Agency (EMA) and European Network of Pharmacovigilance and Pharmacoepidemiology (ENCePP) webpages. During the study period, 189 different PASS protocols were submitted to the PRAC, half of which were entered in the ENCePP electronic register of post-authorization studies (EU-PAS) by July 2015. Those protocols were assessed during 353 PRAC reviews. The EMA published only 31% of the PRAC feedback, of which the main concerns were study design (37%) and feasibility (30%). Among the 189 PASS, slightly more involved primary data capture (58%). PASS assessing drug utilization mainly leveraged secondary data sources (58%). The majority of the PASS did not include a comparator (65%) and 35% of PASS also evaluated clinical effectiveness endpoints. To the best of our knowledge this is the first comprehensive review of three years of PASS protocols submitted under the new pharmacovigilance legislation. Our results show that both EMA and PASS sponsors could respectively increase the availability of protocol assessments and documents in the EU-PAS. Protocol content review and the high number of PRAC comments related to methodological issues and feasibility concerns should raise awareness among PASS stakeholders to design more thoughtful studies according to pharmacoepidemiological principles and existing guidelines. © 2016 The British Pharmacological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulff, J; Huggins, A
Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardin, A; Avery, S; Ding, X
2014-06-15
Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less
Single-pass memory system evaluation for multiprogramming workloads
NASA Technical Reports Server (NTRS)
Conte, Thomas M.; Hwu, Wen-Mei W.
1990-01-01
Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.
Embedded neural recording with TinyOS-based wireless-enabled processor modules.
Farshchi, Shahin; Pesterev, Aleksey; Nuyujukian, Paul; Guenterberg, Eric; Mody, Istvan; Judy, Jack W
2010-04-01
To create a wireless neural recording system that can benefit from the continuous advancements being made in embedded microcontroller and communications technologies, an embedded-system-based architecture for wireless neural recording has been designed, fabricated, and tested. The system consists of commercial-off-the-shelf wireless-enabled processor modules (motes) for communicating the neural signals, and a back-end database server and client application for archiving and browsing the neural signals. A neural-signal-acquisition application has been developed to enable the mote to either acquire neural signals at a rate of 4000 12-bit samples per second, or detect and transmit spike heights and widths sampled at a rate of 16670 12-bit samples per second on a single channel. The motes acquire neural signals via a custom low-noise neural-signal amplifier with adjustable gain and high-pass corner frequency that has been designed, and fabricated in a 1.5-microm CMOS process. In addition to browsing acquired neural data, the client application enables the user to remotely toggle modes of operation (real-time or spike-only), as well as amplifier gain and high-pass corner frequency.
Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms
2001-10-25
830- s lead (Medico), during several different body postures, deep respiration, and walking. The algorithm had a pre - determined sensing dynamic range...SINGLE-PASS VDD ATRIAL ELECTROGRAMS J. Kim1, S.H. Lee1, S.Y.Yang2, B. S . Cho2, and W. Huh1 1Department of Electronics Engineering, Myongji...University, Yongin, Korea 2Department of Information and Communication, Dongwon College, Kwangju, Korea S T = 5 0 % x ( B + C ) / 2 S T = 5 0 % x ( A + B
Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D
2009-04-01
With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.
Pulsed dye laser double-pass treatment of patients with resistant capillary malformations.
Rajaratnam, Ratna; Laughlin, Sharyn A; Dudley, Denis
2011-07-01
The pulsed dye laser is an effective and established treatment for port-wine stains and has become the generally accepted standard of care. However, in many cases, complete clearance cannot be achieved as a significant proportion of lesions become resistant to treatment. Multiple passes or pulse-stacking techniques have been used to improve the extent and rate of fading, but concerns over increased adverse effects have limited this clinical approach. In this work, a double-pass technique with the pulsed dye laser has been described, which may allow for increased depth of vascular injury, greater efficacy, and an acceptable risk profile. Our aim was to determine the efficacy and the rate of side-effects for a double-pass protocol with a pulsed dye laser (PDL) to treat patients previously treated with PDL and/or other laser modalities. A retrospective chart review was conducted of 26 patients treated with a minimum of three double-pass treatments alone, or in combination, with single pass conventional PDL. Almost half of the patients (n = 12) showed either a moderate or significant improvement in fading compared to pre-treatment photographs with the double-pass technique. In a further 12 patients, there was a mild improvement. In two patients, there was no change. Sixteen patients developed mild side-effects: blisters (n = 5), dry scabs (n = 11) and transient hyperpigmentation (n = 4). This preliminary experience suggests that a double-pass technique at defined intervals between the first and second treatment with PDL can further lighten some port-wine stains, which are resistant to conventional single-pass treatments. This technique may be a useful addition to the laser treatment of PWS and deserves further scrutiny with randomized prospective studies and histological analysis to confirm the increased depth of vascular injury.
Single-pass BPM system of the Photon Factory storage ring.
Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y
1998-05-01
At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.
Employing multi-GPU power for molecular dynamics simulation: an extension of GALAMOST
NASA Astrophysics Data System (ADS)
Zhu, You-Liang; Pan, Deng; Li, Zhan-Wei; Liu, Hong; Qian, Hu-Jun; Zhao, Yang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2018-04-01
We describe the algorithm of employing multi-GPU power on the basis of Message Passing Interface (MPI) domain decomposition in a molecular dynamics code, GALAMOST, which is designed for the coarse-grained simulation of soft matters. The code of multi-GPU version is developed based on our previous single-GPU version. In multi-GPU runs, one GPU takes charge of one domain and runs single-GPU code path. The communication between neighbouring domains takes a similar algorithm of CPU-based code of LAMMPS, but is optimised specifically for GPUs. We employ a memory-saving design which can enlarge maximum system size at the same device condition. An optimisation algorithm is employed to prolong the update period of neighbour list. We demonstrate good performance of multi-GPU runs on the simulation of Lennard-Jones liquid, dissipative particle dynamics liquid, polymer and nanoparticle composite, and two-patch particles on workstation. A good scaling of many nodes on cluster for two-patch particles is presented.
Beam-dynamics driven design of the LHeC energy-recovery linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel
The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less
Beam-dynamics driven design of the LHeC energy-recovery linac
Pellegrini, Dario; Latina, Andrea; Schulte, Daniel; ...
2015-12-23
The LHeC study is a possible upgrade of the LHC that aims at delivering an electron beam for collisions with the existing hadronic beams. The current baseline design for the electron facility consists of a multi-pass superconducting energy-recovery linac operating in a continuous wave mode. Here, we summarize the overall layout of such ERL complex located on the LHC site and introduce the most recent developments. We review of the lattice components, presenting their baseline design along with possible alternatives that aims at improving the overall machine performance. The detector bypass has been designed and integrated into the lattice. Trackingmore » simulations allowed us to verify the high current (~150 mA in the linacs) beam operation required for the LHeC to serve as an Higgs Factory. The impact of single and multi-bunch wake-fields, synchrotron radiation and beam-beam effects has been assessed in this paper.« less
PASS Student Leader and Mentor Roles: A Tertiary Leadership Pathway
ERIC Educational Resources Information Center
Skalicky, Jane; Caney, Annaliese
2010-01-01
In relation to developing leadership skills during tertiary studies, this paper considers the leadership pathway afforded by a Peer Assisted Study Sessions (PASS) program which includes the traditional PASS Leader role and a more senior PASS Mentor role. Data was collected using a structured survey with open-ended questions designed to capture the…
Optimal and Nonoptimal Computer-Based Test Designs for Making Pass-Fail Decisions
ERIC Educational Resources Information Center
Hambleton, Ronald K.; Xing, Dehui
2006-01-01
Now that many credentialing exams are being routinely administered by computer, new computer-based test designs, along with item response theory models, are being aggressively researched to identify specific designs that can increase the decision consistency and accuracy of pass-fail decisions. The purpose of this study was to investigate the…
NASA Astrophysics Data System (ADS)
Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei
2017-12-01
InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. Gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing module size are important challenges for the design of such detector system. Here we present for the first time an InGaAs/InP SPD with 1.25 GHz sine wave gating using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15 mm * 15 mm and implements the miniaturization of avalanche extraction for high-frequency sine wave gating. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of MIRC, and the SPD exhibits excellent performance with 27.5 % photon detection efficiency, 1.2 kcps dark count rate, and 9.1 % afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.
High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.
Bartlome, R; Baer, M; Sigrist, M W
2007-01-01
In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.
NASA Technical Reports Server (NTRS)
Crowley, James; Rowan, Lawrence; Podwysocki, Melvin; Meyer, David
1988-01-01
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data of the Mountain Pass, California carbonatite complex were examined to evaluate the AVIRIS instrument performance and to explore alternative methods of data calibration. Although signal-to-noise estimates derived from the data indicated that the A, B, and C spectrometers generally met the original instrument design objectives, the S/N performance of the D spectrometer was below expectations. Signal-to-noise values of 20 to 1 or lower were typical of the D spectrometer and several detectors in the D spectrometer array were shown to have poor electronic stability. The AVIRIS data also exhibited periodic noise, and were occasionally subject to abrupt dark current offsets. Despite these limitations, a number of mineral absorption bands, including CO3, Al-OH, and unusual rare earth element bands, were observed for mine areas near the main carbonatite body. To discern these bands, two different calibration procedures were applied to remove atmospheric and solar components from the remote sensing data. The two procedures, referred to as the single spectrum and the flat field calibration methods gave distinctly different results. In principle, the single spectrum method should be more accurate; however, additional fieldwork is needed to rigorously determine the degree of calibration success.
Double-pass imaging through scattering (Conference Presentation)
NASA Astrophysics Data System (ADS)
Tajahuerce, Enrique; Andrés Bou, Pedro; Artal, Pablo; Lancis, Jesús
2017-02-01
In the last years, single-pixel imaging (SPI) was established as a suitable tool for non-invasive imaging of an absorbing object completely embedded in an inhomogeneous medium. One of the main characteristics of the technique is that it uses very simple sensors (bucket detectors such as photodiodes or photomultiplier tubes) combined with structured illumination and mathematical algorithms to recover the image. This reduction in complexity of the sensing device gives these systems the opportunity to obtain images at shallow depth overcoming the scattering problem. Nonetheless, some challenges, such as the need for improved signal-to-noise or the frame rate, remain to be tackled before extensive use in practical systems. Also, for intact or live optically thick tissues, epi-detection is commonly used, while present implementations of SPI are limited to transillumination geometries. In this work we present new features and some recent advances in SPI that involve either the use of computationally efficient algorithms for adaptive sensing or a balanced detection mechanism. Additionally, SPI has been adapted to handle reflected light to create a double pass optical system. Such developments represent a significant step towards the use of SPI in more realistic scenarios, especially in biophotonics applications. In particular, we show the design of a single-pixel ophtalmoscope as a novel way of imaging the retina in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.
2005-06-15
Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to homemore » after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.« less
ARES I Upper Stage Subsystems Design and Development
NASA Technical Reports Server (NTRS)
Frate, David T.; Senick, Paul F.; Tolbert, Carol M.
2011-01-01
From 2005 through early 2011, NASA conducted concept definition, design, and development of the Ares I launch vehicle. The Ares I was conceived to serve as a crew launch vehicle for beyond-low-Earth-orbit human space exploration missions as part of the Constellation Program Architecture. The vehicle was configured with a single shuttle-derived solid rocket booster first stage and a new liquid oxygen/liquid hydrogen upper stage, propelled by a single, newly developed J-2X engine. The Orion Crew Exploration Vehicle was to be mated to the forward end of the Ares I upper stage through an interface with fairings and a payload adapter. The vehicle design passed a Preliminary Design Review in August 2008, and was nearing the Critical Design Review when efforts were concluded as a result of the Constellation Program s cancellation. At NASA Glenn Research Center, four subsystems were developed for the Ares I upper stage. These were thrust vector control (TVC) for the J-2X, electrical power system (EPS), purge and hazardous gas (P&HG), and development flight instrumentation (DFI). The teams working each of these subsystems achieved 80 percent or greater design completion and extensive development testing. These efforts were extremely successful representing state-of-the-art technology and hardware advances necessary to achieve Ares I reliability, safety, availability, and performance requirements. This paper documents the designs, development test activity, and results.
NASA Astrophysics Data System (ADS)
Thiebaud, P.; Cross, D. C.
1980-07-01
A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.
A pumped, two-phase flow heat transport system for orbiting instrument payloads
NASA Technical Reports Server (NTRS)
Fowle, A. A.
1981-01-01
A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
Nawasreh, Zakariya; Logerstedt, David; Cummerm, Kathleen; Axe, Michael J.; Risberg, May Arna; Snyder-Mackler, Lynn
2017-01-01
Background The variability in outcomes after anterior cruciate ligament reconstruction (ACLR) might be related to the criteria that are used to determine athletes’ readiness to return to their preinjury activity level. A battery of return-to-activity criteria (RTAC) that emphasize normal knee function and movement symmetry has been instituted to quantitatively determine athletes’ readiness to return to preinjury activities. Purpose To investigate performance-based and patient-reported measures at 12 and 24 months after ACLR between patients who passed or failed RTAC at 6 months after ACLR. Study Design Cohort study; Level of evidence, 2. Methods A total of 108 patients who had participated in International Knee Documentation Committee level 1 or 2 sports activities completed RTAC testing at 6, 12, and 24 months after surgery. The RTAC included the isometric quadriceps strength index (QI), 4 single-legged hop tests, the Knee Outcome Survey–activities of daily living subscale (KOS-ADLS), and the global rating scale of perceived function (GRS). Patients who scored ≥90% on all RTAC were classified as the pass group, and those who scored <90% on any RTAC were classified as the fail group. At 12- and 24-month follow-ups, patients were asked if they had returned to the same preinjury activity level. Results At the 6-month follow-up, there were 48 patients in the pass group and 47 in the fail group. At the 12-month follow-up, 31 patients (73.8%) from the pass group and 15 patients (39.5%) from the fail group passed RTAC, and at the 24-month follow-up, 25 patients (75.8%) from the pass group and 14 patients (51.9%) from the fail group passed RTAC. The rate of return to activities in the pass group was 81% and 84% at 12 and 24 months after ACLR, respectively, compared with only 44% and 46% in the fail group (P ≤ .012), respectively; however, some patients in the fail group participated in preinjury activities without being cleared by their therapists. At 12 and 24 months, 60.5% and 48.1% of patients continued to fail again on the criteria, respectively. A statistically significant group × time interaction was found for the single hop and 6-m timed hop limb symmetry indices (LSIs) (P ≤ .037), with only the fail group demonstrating a significant improvement over time. A main effect of group was detected for the QI and the crossover hop and triple hop LSIs (P <.01), with patients in the pass group demonstrating higher performance. A main effect of time was detected for the crossover hop and triple hop LSIs and the GRS, with improvements seen in both groups (P <.05). Conclusion Patients who passed the RTAC early after ACLR were more likely to demonstrate normal knee function and movement symmetry at 12 and 24 months postoperatively, while patients who failed the RTAC early were more likely to demonstrate impaired knee function and movement asymmetry at 12- and 24-month follow-ups. Patients in the pass group had a higher rate of return to their preinjury activity level compared with those in the fail group. A group of patients chose to return to their preinjury activities, even though they were functionally not ready. PMID:28125899
Kassotis, John; Voigt, Louis; Mongwa, Mbu; Reddy, C V R
2005-01-01
The objective of this study was to assess the feasibility of DDD pacing from a standard single-pass VDD pacemaker system. Over the past 2 decades significant advances have been made in the development of single-pass VDD pacing systems. These have been shown in long-term prospective studies to effectively preserve atrioventricular (AV)synchrony in patients with AV block and normal sinus node function. What remains problematic is the development of a single-pass pacing system capable of DDD pacing. Such a lead configuration would be useful in those patients with peripheral venous anomalies and in younger patients with congenital anomalies, which may require lead revisions in the future. In addition, with the increased use of resynchronization (biventricular pacing) therapy, the availability of a reliable single-pass lead will minimize operative time, enhance patient safety, and minimize the amount of hardware within the heart. The feasibility of DDD pacing via a Medtronic Capsure VDD-2 (Model #5038) pacing lead was evaluated. Twenty patients who presented with AV block and normal sinus node function were recruited for this study. Atrial pacing thresholds and sensitivities were assessed intraoperatively in the supine position with various respiratory maneuvers. Five patients who agreed to participate in long-term follow-up received a dual-chamber generator and were evaluated periodically over a 12-month period. Mean atrial sensitivity was 2.35 +/- 0.83 mV at the time of implantation. Effective atrial stimulation was possible in all patients at the time of implantation (mean stimulation threshold 3.08 +/- 1.04 V at 0.5 ms [bipolar], 3.34 +/- 0.95 V at 0.5 ms [unipolar]). Five of the 20 patients received a Kappa KDR701 generator, and atrial electrical properties were followed up over a 1-year period. There was no significant change in atrial pacing threshold or incidence of phrenic nerve stimulation over the 1-year follow-up. A standard single-pass VDD pacing lead system was capable of DDD pacing intraoperatively and during long-term follow-up. Despite higher than usual thresholds via the atrial dipole, pacemaker telemetry revealed < 10% use of atrial pacing dipole over a 12-month period, which would minimally deplete the pacemaker's battery. In addition, the telemetry confirmed appropriate sensing and pacing of the atrial dipole throughout the study period. At this time such systems can serve as back-up DDD pacing systems with further refinements required to optimize atrial thresholds in all patients.
0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration
NASA Astrophysics Data System (ADS)
Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.
2010-02-01
A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.
Jonnalagadda, Siddhartha Reddy; Li, Dingcheng; Sohn, Sunghwan; Wu, Stephen Tze-Inn; Wagholikar, Kavishwar; Torii, Manabu; Liu, Hongfang
2012-01-01
This paper describes the coreference resolution system submitted by Mayo Clinic for the 2011 i2b2/VA/Cincinnati shared task Track 1C. The goal of the task was to construct a system that links the markables corresponding to the same entity. The task organizers provided progress notes and discharge summaries that were annotated with the markables of treatment, problem, test, person, and pronoun. We used a multi-pass sieve algorithm that applies deterministic rules in the order of preciseness and simultaneously gathers information about the entities in the documents. Our system, MedCoref, also uses a state-of-the-art machine learning framework as an alternative to the final, rule-based pronoun resolution sieve. The best system that uses a multi-pass sieve has an overall score of 0.836 (average of B(3), MUC, Blanc, and CEAF F score) for the training set and 0.843 for the test set. A supervised machine learning system that typically uses a single function to find coreferents cannot accommodate irregularities encountered in data especially given the insufficient number of examples. On the other hand, a completely deterministic system could lead to a decrease in recall (sensitivity) when the rules are not exhaustive. The sieve-based framework allows one to combine reliable machine learning components with rules designed by experts. Using relatively simple rules, part-of-speech information, and semantic type properties, an effective coreference resolution system could be designed. The source code of the system described is available at https://sourceforge.net/projects/ohnlp/files/MedCoref.
Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi
2018-03-27
To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.
Linear fixed-field multipass arcs for recirculating linear accelerators
Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...
2012-06-14
Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less
Micro-fractional ablative skin resurfacing with two novel erbium laser systems.
Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B
2008-02-01
Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.
DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO ...
DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO KITCHEN (RIGHT). VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
Narrow-band double-pass superluminescent diodes emitting at 1060 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobintsov, A A; Perevozchikov, M V; Shramenko, M V
2009-09-30
Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)
Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio
2008-07-21
We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.
A new fold-cross metal mesh filter for suppressing side lobe leakage in terahertz region
NASA Astrophysics Data System (ADS)
Lu, Changgui; Qi, Zhengqing; Guo, Wengao; Cui, Yiping
2018-04-01
In this paper we propose a new type of fold-cross metal mesh band pass filter, which keeps diffraction side lobe far away from the main transmission peak and shows much better side lobe suppression. Both experimental and theoretical studies are made to analyze the mechanism of side lobe. Compared to the traditional cross filter, the fold-cross filter has a much lower side lobe with almost the same central frequency, bandwidth and highest transmission about 98%. Using the photolithography and electroplating techniques, we experimentally extend the distance between the main peak and diffraction side lobe to larger than 1 THz for the fold-cross filter, which is two times larger than the cross filter while maintaining the main peak transmissions of 89% at 1.25 THz for the two structures. This type of single layer substrate-free fold-cross metal structure shows better design flexibility and structure reliability with the introduction of fold arms for metal mesh band pass filters.
Surface folding in metals: a mechanism for delamination wear in sliding
Mahato, Anirban; Guo, Yang; Sundaram, Narayan K.; Chandrasekar, Srinivasan
2014-01-01
Using high-resolution, in situ imaging of a hard, wedge-shaped model asperity sliding against a metal surface, we demonstrate a new mechanism for particle formation and delamination wear. Damage to the residual surface is caused by the occurrence of folds on the free surface of the prow-shaped region ahead of the wedge. This damage manifests itself as shallow crack-like features and surface tears, which are inclined at very acute angles to the surface. The transformation of folds into cracks, tears and particles is directly captured. Notably, a single sliding pass is sufficient to damage the surface, and subsequent passes result in the generation of platelet-like wear particles. Tracking the folding process at every stage from surface bumps to folds to cracks/tears/particles ensures that there is no ambiguity in capturing the mechanism of wear. Because fold formation and consequent delamination are quite general, our findings have broad applicability beyond wear itself, including implications for design of surface generation and conditioning processes. PMID:25197251
TWO NEW HALO DEBRIS STREAMS IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grillmair, C. J., E-mail: carl@ipac.caltech.edu
2014-07-20
Using photometry from Data Release 10 of the northern footprint of the Sloan Digital Sky Survey, we detect two new stellar streams with lengths of between 25° and 50°. The streams, which we designate Hermus and Hyllus, are at distances of between 15 and 23 kpc from the Sun and pass primarily through Hercules and Corona Borealis. Stars in the streams appear to be metal-poor, with [Fe/H] ∼ – 2.3, though we cannot rule out metallicities as high as [Fe/H] = –1.2. While Hermus passes within 1° (in projection) of the globular cluster NGC 6229, a roughly one magnitude difference in distancemore » modulus, combined with no signs of connecting with NGC 6229's Roche lobe, argue against any physical association between the two. Though the two streams almost certainly had different progenitors, similarities in preliminary orbit estimates suggest that those progenitors may themselves have been a product of a single accretion event.« less
4D light-field sensing system for people counting
NASA Astrophysics Data System (ADS)
Hou, Guangqi; Zhang, Chi; Wang, Yunlong; Sun, Zhenan
2016-03-01
Counting the number of people is still an important task in social security applications, and a few methods based on video surveillance have been proposed in recent years. In this paper, we design a novel optical sensing system to directly acquire the depth map of the scene from one light-field camera. The light-field sensing system can count the number of people crossing the passageway, and record the direction and intensity of rays at a snapshot without any assistant light devices. Depth maps are extracted from the raw light-ray sensing data. Our smart sensing system is equipped with a passive imaging sensor, which is able to naturally discern the depth difference between the head and shoulders for each person. Then a human model is built. Through detecting the human model from light-field images, the number of people passing the scene can be counted rapidly. We verify the feasibility of the sensing system as well as the accuracy by capturing real-world scenes passing single and multiple people under natural illumination.
Multi-anode wire two dimensional proportional counter for detecting Iron-55 X-Ray Radiation
NASA Astrophysics Data System (ADS)
Weston, Michael William James
Radiation detectors in many applications use small sensor areas or large tubes which only collect one-dimensional information. There are some applications that require analyzing a large area and locating specific elements such as contamination on the heat tiles of a space shuttle or features on historical artifacts. The process can be time consuming and scanning a large area in a single pass is beneficial. The use of a two dimensional multi-wire proportional counter provides a large detection window presenting positional information in a single pass. This thesis described the design and implementation of an experimental detector to evaluate a specific design intended for use as a handheld instrument. The main effort of this research was to custom build a detector for testing purposes. The aluminum chamber and all circuit boards were custom designed and built specifically for this application. Various software and programmable logic algorithms were designed to analyze the raw data in real time and attempted to determine what data was useful and what could be discarded. The research presented here provides results useful for designing an improved second generation detector in the future. With the anode wire spacing chosen and the minimal collimation of the radiation source, detected events occurred all over the detection grid at any time. The raw event data did not make determining the source position easy and further data correlation was required. An abundance of samples had multiple wire hits which were not useful because it falsely reported the source to be all over the place and at different energy levels. By narrowing down the results to only use the largest signal pairs on different axes in each event, a much more accurate analysis of where the source existed above the grid was determined. The basic principle and construction method was shown to work, however the gas selection, geometry and anode wire constructs proved to be poor. To provide a system optimized for a specific application would require detailed Monte Carlo simulations. These simulation results together with the details and techniques implemented in this thesis would provide a final instrument of much higher accuracy.
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Jabre, Patricia; Galinski, Michel; Ricard-Hibon, Agnes; Devaud, Marie Laure; Ruscev, Mirko; Kulstad, Erik; Vicaut, Eric; Adnet, Fréderic; Margenet, Alain; Marty, Jean; Combes, Xavier
2011-03-01
Emergency tracheal intubation is reported to be more difficult with single-use plastic than with reusable metal laryngoscope blades in both inhospital and out-of-hospital settings. Single-use metal blades have been developed but have not been compared with conventional metal blades. This controlled trial compares the efficacy and safety of single-use metal blades with reusable metal blades in out-of-hospital emergency tracheal intubation. This randomized controlled trial was carried out in France with out-of-hospital emergency medical units (Services de Médecine d'Urgence et de Réanimation). This was a multicenter prospective noninferiority randomized controlled trial in adult out-of-hospital patients requiring emergency tracheal intubation. Patients were randomly assigned to either single-use or reusable metal laryngoscope blades and intubated by a senior physician or a nurse anesthetist. The primary outcome was first-pass intubation success. Secondary outcomes were incidence of difficult intubation, need for alternate airway devices, and early intubation-related complications (esophageal intubation, mainstem intubation, vomiting, pulmonary aspiration, dental trauma, bronchospasm or laryngospasm, ventricular tachycardia, arterial desaturation, hypotension, or cardiac arrest). The study included 817 patients, including 409 intubated with single-use blades and 408 with a reusable blade. First-pass intubation success was similar in both groups: 292 (71.4%) for single-use blades, 290 (71.1%) for reusable blades. The 95% confidence interval (CI) for the difference in treatments (0.3%; 95% CI -5.9% to 6.5%) did not include the prespecified inferiority margin of -7%. There was no difference in rate of difficult intubation (difference 3%; 95% CI -7% to 2%), need for alternate airway (difference 4%; 95% CI -8% to 1%), or early complication rate (difference 3%; 95% CI -3% to 8%). First-pass out-of-hospital tracheal intubation success with single-use metal laryngoscopy blades was noninferior to first-pass success with reusable metal laryngoscope blades. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò
2018-01-01
Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less
Static Noise Margin Enhancement by Flex-Pass-Gate SRAM
NASA Astrophysics Data System (ADS)
O'Uchi, Shin-Ichi; Masahara, Meishoku; Sakamoto, Kunihiro; Endo, Kazuhiko; Liu, Yungxun; Matsukawa, Takashi; Sekigawa, Toshihiro; Koike, Hanpei; Suzuki, Eiichi
A Flex-Pass-Gate SRAM, i.e. a fin-type-field-effect-transistor- (FinFET-) based SRAM, is proposed to enhance noise margin during both read and write operations. In its cell, the flip-flop is composed of usual three-terminal- (3T-) FinFETs while pass gates are composed of four-terminal- (4T-) FinFETs. The 4T-FinFETs enable to adopt a dynamic threshold-voltage control in the pass gates. During a write operation, the threshold voltage of the pass gates is lowered to enhance the writing speed and stability. During the read operation, on the other hand, the threshold voltage is raised to enhance the static noise margin. An asymmetric-oxide 4T-FinFET is helpful to manage the leakage current through the pass gate. In this paper, a design strategy of the pass gate with an asymmetric gate oxide is considered, and a TCAD-based Monte Carlo simulation reveals that the Flex-Pass-Gate SRAM based on that design strategy is expected to be effective in half-pitch 32-nm technology for low-standby-power (LSTP) applications, even taking into account the variability in the device performance.
Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria
2010-11-22
We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.
Personal Access Satellite System (PASS) study. Fiscal year 1989 results
NASA Technical Reports Server (NTRS)
Sue, Miles K. (Editor)
1990-01-01
The Jet Propulsion Laboratory is exploring the potential and feasibility of a personal access satellite system (PASS) that will offer the user greater freedom and mobility than existing or currently planned communications systems. Studies performed in prior years resulted in a strawman design and the identification of technologies that are critical to the successful implementation of PASS. The study efforts in FY-89 were directed towards alternative design options with the objective of either improving the system performance or alleviating the constraints on the user terminal. The various design options and system issues studied this year and the results of the study are presented.
Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L
2016-07-01
Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Highly flexible SRAM cells based on novel tri-independent-gate FinFET
NASA Astrophysics Data System (ADS)
Liu, Chengsheng; Zheng, Fanglin; Sun, Yabin; Li, Xiaojin; Shi, Yanling
2017-10-01
In this paper, a novel tri-independent-gate (TIG) FinFET is proposed for highly flexible SRAM cells design. To mitigate the read-write conflict, two kinds of SRAM cells based on TIG FinFETs are designed, and high tradeoff are obtained between read stability and speed. Both cells can offer multi read operations for frequency requirement with single voltage supply. In the first TIG FinFET SRAM cell, the strength of single-fin access transistor (TIG FinFET) can be flexibly adjusted by selecting five different modes to meet the needs of dynamic frequency design. Compared to the previous double-independent-gate (DIG) FinFET SRAM cell, 12.16% shorter read delay can be achieved with only 1.62% read stability decrement. As for the second TIG FinFET SRAM cell, pass-gate feedback technology is applied and double-fin TIG FinFETs are used as access transistors to solve the severe write-ability degradation. Three modes exist to flexibly adjust read speed and stability, and 68.2% larger write margin and 51.7% shorter write delay are achieved at only the expense of 26.2% increase in leakage power, with the same layout area as conventional FinFET SRAM cell.
Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.
2001-01-01
This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.
NASA Astrophysics Data System (ADS)
Min, Byungjoon
2018-01-01
Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.
KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE ...
KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE CANEC PANEL CEILING. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
76 FR 31453 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
.... SID TTI data must be processed as defined in Federal Motor Vehicle Safety Standard (FMVSS) part 571...). Pass/fail injury assessments: TTI and pelvic acceleration. 2. One longitudinal test with the Hybrid II... pelvic acceleration. 3. Vertical (14g) test with modified Hybrid II ATDs using existing pass/fail...
Randomized Dynamic Mode Decomposition
NASA Astrophysics Data System (ADS)
Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan
2017-11-01
The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.
NASA Astrophysics Data System (ADS)
Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong
2016-11-01
A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.
2018-05-01
In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.
Two-electrode low supply voltage electrocardiogram signal amplifier.
Dobrev, D
2004-03-01
Portable biomedical instrumentation has become an important part of diagnostic and treatment instrumentation, including telemedicine applications. Low-voltage and low-power design tendencies prevail. Modern battery cell voltages in the range of 3-3.6 V require appropriate circuit solutions. A two-electrode biopotential amplifier design is presented, with a high common-mode rejection ratio (CMRR), high input voltage tolerance and standard first-order high-pass characteristic. Most of these features are due to a high-gain first stage design. The circuit makes use of passive components of popular values and tolerances. Powered by a single 3 V source, the amplifier tolerates +/- 1 V common mode voltage, +/- 50 microA common mode current and 2 V input DC voltage, and its worst-case CMRR is 60 dB. The amplifier is intended for use in various applications, such as Holter-type monitors, defibrillators, ECG monitors, biotelemetry devices etc.
Comparative Implementation of High Performance Computing for Power System Dynamic Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng
Dynamic simulation for transient stability assessment is one of the most important, but intensive, computations for power system planning and operation. Present commercial software is mainly designed for sequential computation to run a single simulation, which is very time consuming with a single processer. The application of High Performance Computing (HPC) to dynamic simulations is very promising in accelerating the computing process by parallelizing its kernel algorithms while maintaining the same level of computation accuracy. This paper describes the comparative implementation of four parallel dynamic simulation schemes in two state-of-the-art HPC environments: Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).more » These implementations serve to match the application with dedicated multi-processor computing hardware and maximize the utilization and benefits of HPC during the development process.« less
Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi
2016-11-01
High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.
Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong
2012-08-01
The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
PASS--Placement/Advisement for Student Success.
ERIC Educational Resources Information Center
Shreve, Chuck; Wildie, Avace
In 1985-86, Northern Michigan College (NMC) used funds received from the United States Department of Education to develop a system of assessment, advisement, and placement--Placement/Advisement for Student Success (PASS), an integrated system designed to improve student retention. PASS currently consists of three components: summer orientation,…
Tamaoka, Katsuo; Asano, Michiko; Miyaoka, Yayoi; Yokosawa, Kazuhiko
2014-04-01
Using the eye-tracking method, the present study depicted pre- and post-head processing for simple scrambled sentences of head-final languages. Three versions of simple Japanese active sentences with ditransitive verbs were used: namely, (1) SO₁O₂V canonical, (2) SO₂O₁V single-scrambled, and (3) O₁O₂SV double-scrambled order. First pass reading times indicated that the third noun phrase just before the verb in both single- and double-scrambled sentences required longer reading times compared to canonical sentences. Re-reading times (the sum of all fixations minus the first pass reading) showed that all noun phrases including the crucial phrase before the verb in double-scrambled sentences required longer re-reading times than those required for single-scrambled sentences; single-scrambled sentences had no difference from canonical ones. Therefore, a single filler-gap dependency can be resolved in pre-head anticipatory processing whereas two filler-gap dependencies require much greater cognitive loading than a single case. These two dependencies can be resolved in post-head processing using verb agreement information.
Jiang, Wen-Hao; Liu, Jian-Hong; Liu, Yin; Jin, Ge; Zhang, Jun; Pan, Jian-Wei
2017-12-15
InGaAs/InP single-photon detectors (SPDs) are the key devices for applications requiring near-infrared single-photon detection. The gating mode is an effective approach to synchronous single-photon detection. Increasing gating frequency and reducing the module size are important challenges for the design of such a detector system. Here we present for the first time, to the best of our knowledge, an InGaAs/InP SPD with 1.25 GHz sine wave gating (SWG) using a monolithically integrated readout circuit (MIRC). The MIRC has a size of 15 mm×15 mm and implements the miniaturization of avalanche extraction for high-frequency SWG. In the MIRC, low-pass filters and a low-noise radio frequency amplifier are integrated based on the technique of low temperature co-fired ceramic, which can effectively reduce the parasitic capacitance and extract weak avalanche signals. We then characterize the InGaAs/InP SPD to verify the functionality and reliability of the MIRC, and the SPD exhibits excellent performance with 27.5% photon detection efficiency, a 1.2 kcps dark count rate, and 9.1% afterpulse probability at 223 K and 100 ns hold-off time. With this MIRC, one can further design miniaturized high-frequency SPD modules that are highly required for practical applications.
NASA Astrophysics Data System (ADS)
Traxler, Lukas; Reutterer, Bernd; Bayer, Natascha; Drauschke, Andreas
2017-04-01
To treat cataract intraocular lenses (IOLs) are used to replace the clouded human eye lens. Due to postoperative healing processes the IOL can displace within the eye, which can lead to deteriorated quality of vision. To test and characterize these effect an IOL can be embedded into a model of the humane eye. One informative measure are wavefront aberrations. In this paper three different setups, the typical double-pass configuration (DP), a single-pass (SP1) where the measured light travels in the same direction as in DP and a single-pass (SP2) with reversed direction, are investigated. All three setups correctly measure the aberrations of the eye, where SP1 is found to be the simplest to set up and align. Because of the lowest complexity it is the proposed method for wavefront measurement in model eyes.
Design and Analysis of a Micromachined LC Low Pass Filter For 2.4GHz Application
NASA Astrophysics Data System (ADS)
Saroj, Samruddhi R.; Rathee, Vishal R.; Pande, Rajesh S.
2018-02-01
This paper reports design and analysis of a passive low pass filter with cut-off frequency of 2.4 GHz using MEMS (Micro Electro-Mechanical Systems) technology. The passive components such as suspended spiral inductors and metal-insulator-metal (MIM) capacitor are arranged in T network form to implement LC low pass filter design. This design employs a simple approach of suspension thereby reducing parasitic losses to eliminate the performance degrading effects caused by integrating an off-chip inductor in the filter circuit proposed to be developed on a low cost silicon substrate using RF-MEMS components. The filter occupies only 2.1 mm x 0.66 mm die area and is designed using micro-strip transmission line placed on a silicon substrate. The design is implemented in High Frequency Structural Simulator (HFSS) software and fabrication flow is proposed for its implementation. The simulated results show that the design has an insertion loss of -4.98 dB and return loss of -2.60dB.
Saha, S. K.; Dutta, R.; Choudhury, R.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems. PMID:23844390
Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P
2013-01-01
In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.
A pilot study of EUS-guided through-the-needle forceps biopsy (with video).
Nakai, Yousuke; Isayama, Hiroyuki; Chang, Kenneth J; Yamamoto, Natsuyo; Mizuno, Suguru; Mohri, Dai; Kogure, Hirofumi; Matsubara, Saburo; Tada, Minoru; Koike, Kazuhiko
2016-07-01
In EUS-guided FNA (EUS-FNA), small-caliber needles are preferable for optimal cytologic yield, whereas large ones are preferable when histologic specimens are needed. Because of the rigidity and friction induced by its large caliber, however, technical limitation does exist in a 19-gauge FNA needle. Recent development of miniature biopsy forceps enables EUS-guided through-the-needle forceps biopsy (EUS-TTNFB). The aim of this study is to evaluate safety and efficacy of EUS-TTNFB. Eighteen sessions of EUS-TTNFB in 17 patients with solid lesions were performed by using a 0.75-mm biopsy forceps through a 19-gauge FNA needle. Technical feasibility, safety, and diagnostic yield of EUS-TTNFB were retrospectively studied. A total of 49 passes, a median of 3 passes per session, were performed, and the needle puncture, advancement and removal of the biopsy forceps, and subsequent EUS-FNA were technically successful in all patients. No adverse events were observed other than one case with hyperamylasemia without pancreatitis. Macroscopic histologic core by EUS-TTNFB was obtained at a rate of 71% per pass. The tissue acquisition rate by EUS-TTNFB alone was 67% per pass and 100% per session. When EUS-TTNFB and subsequent EUS-FNA were combined, the tissue acquisition rate was 94% per pass. The accuracy of combined EUS-TTNFB and EUS-FNA to diagnose malignancy was 88% per pass and 94% per session. With a single pass of EUS-TTNFB and EUS-FNA, the tissue acquisition rate was 89%, and the accuracy to diagnose malignancy was 83%. EUS-TTNFB was safe and technically feasible and provided additional tissue acquisition with a single puncture of a 19-gauge FNA needle. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Wei, Cai-Jie; Wu, Wei-Zhong
2018-09-01
Two kinds of hybrid two-step multi-soil-layering (MSL) systems loaded with different filter medias (zeolite-ceramsite MSL-1 and ceramsite-red clay MSL-2) were set-up for the low-(C/N)-ratio polluted river water treatment. A long-term pollutant removal performance of these two kinds of MSL systems was evaluated for 214 days. By-pass was employed in MSL systems to evaluate its effect on nitrogen removal enhancement. Zeolite-ceramsite single-pass MSL-1 system owns outstanding ammonia removal capability (24 g NH 4 + -Nm -2 d -1 ), 3 times higher than MSL-2 without zeolite under low aeration rate condition (0.8 × 10 4 L m -2 .h -1 ). Aeration rate up to 1.6 × 10 4 L m -2 .h -1 well satisfied the requirement of complete nitrification in first unit of both two MSLs. However, weak denitrification in second unit was commonly observed. By-pass of 50% influent into second unit can improve about 20% TN removal rate for both MSL-1 and MSL-2. Complete nitrification and denitrification was achieved in by-pass MSL systems after addition of carbon source with the resulting C/N ratio up to 2.5. The characters of biofilms distributed in different sections inside MSL-1 system well illustrated the nitrogen removal mechanism inside MSL systems. Two kinds of MSLs are both promising as an appealing nitrifying biofilm reactor. Recirculation can be considered further for by-pass MSL-2 system to ensure a complete ammonia removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
DeWitt, Nancy T.; Flocks, James G.; Hansen, Mark; Kulp, Mark; Reynolds, B.J.
2007-01-01
The U.S. Geological Survey (USGS), in cooperation with the University of New Orleans (UNO) and the Louisiana Department of Natural Resources (LDNR), conducted a high-resolution, single-beam bathymetric survey along the Louisiana southern coastal zone from Belle Pass to Caminada Pass. The survey consisted of 483 line kilometers of data acquired in July and August of 2005. This report outlines the methodology and provides the data from the survey. Analysis of the data and comparison to a similar bathymetric survey completed in 1989 show significant loss of seafloor and shoreline retreat, which is consistent with previously published estimates of shoreline change in the study area.
First Image Products from EcoSAR - Osa Peninsula, Costa Rica
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Lee, SeungKuk; Rincon, Rafael; Fatuyinbo, Lola; Bollian, Tobias; Ranson, Jon
2016-01-01
Designed especially for forest ecosystem studies, EcoSAR employs state-of-the-art digital beamforming technology to generate wide-swath, high-resolution imagery. EcoSARs dual antenna single-pass imaging capability eliminates temporal decorrelation from polarimetric and interferometric analysis, increasing the signal strength and simplifying models used to invert forest structure parameters. Antennae are physically separated by 25 meters providing single pass interferometry. In this mode the radar is most sensitive to topography. With 32 active transmit and receive channels, EcoSARs digital beamforming is an order of magnitude more versatile than the digital beamforming employed on the upcoming NISAR mission. EcoSARs long wavelength (P-band, 435 MHz, 69 cm) measurements can be used to simulate data products for ESAs future BIOMASS mission, allowing scientists to develop algorithms before the launch of the satellite. EcoSAR can also be deployed to collect much needed data where BIOMASS satellite wont be allowed to collect data (North America, Europe and Arctic), filling in the gaps to keep a watchful eye on the global carbon cycle. EcoSAR can play a vital role in monitoring, reporting and verification schemes of internationals programs such as UN-REDD (United Nations Reducing Emissions from Deforestation and Degradation) benefiting global society. EcoSAR was developed and flown with support from NASA Earth Sciences Technology Offices Instrument Incubator Program.
EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES
The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...
Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.
Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng
2018-01-01
Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.
Li, Dingcheng; Sohn, Sunghwan; Wu, Stephen Tze-Inn; Wagholikar, Kavishwar; Torii, Manabu; Liu, Hongfang
2012-01-01
Objective This paper describes the coreference resolution system submitted by Mayo Clinic for the 2011 i2b2/VA/Cincinnati shared task Track 1C. The goal of the task was to construct a system that links the markables corresponding to the same entity. Materials and methods The task organizers provided progress notes and discharge summaries that were annotated with the markables of treatment, problem, test, person, and pronoun. We used a multi-pass sieve algorithm that applies deterministic rules in the order of preciseness and simultaneously gathers information about the entities in the documents. Our system, MedCoref, also uses a state-of-the-art machine learning framework as an alternative to the final, rule-based pronoun resolution sieve. Results The best system that uses a multi-pass sieve has an overall score of 0.836 (average of B3, MUC, Blanc, and CEAF F score) for the training set and 0.843 for the test set. Discussion A supervised machine learning system that typically uses a single function to find coreferents cannot accommodate irregularities encountered in data especially given the insufficient number of examples. On the other hand, a completely deterministic system could lead to a decrease in recall (sensitivity) when the rules are not exhaustive. The sieve-based framework allows one to combine reliable machine learning components with rules designed by experts. Conclusion Using relatively simple rules, part-of-speech information, and semantic type properties, an effective coreference resolution system could be designed. The source code of the system described is available at https://sourceforge.net/projects/ohnlp/files/MedCoref. PMID:22707745
Design and validation of a wearable "DRL-less" EEG using a novel fully-reconfigurable architecture.
Mahajan, Ruhi; Morshed, Bashir I; Bidelman, Gavin M
2016-08-01
The conventional EEG system consists of a driven-right-leg (DRL) circuit, which prohibits modularization of the system. We propose a Lego-like connectable fully reconfigurable architecture of wearable EEG that can be easily customized and deployed at naturalistic settings for collecting neurological data. We have designed a novel Analog Front End (AFE) that eliminates the need for DRL while maintaining a comparable signal quality of EEG. We have prototyped this AFE for a single channel EEG, referred to as Smart Sensing Node (SSN), that senses brain signals and sends it to a Command Control Node (CCN) via an I2C bus. The AFE of each SSN (referential-montage) consists of an off-the-shelf instrumentation amplifier (gain=26), an active notch filter fc = 60Hz), 2nd-order active Butterworth low-pass filter followed by a passive low pass filter (fc = 47.5 Hz, gain = 1.61) and a passive high pass filter fc = 0.16 Hz, gain = 0.83). The filtered signals are digitized using a low-power microcontroller (MSP430F5528) with a 12-bit ADC at 512 sps, and transmitted to the CCN every 1 s at a bus rate of 100 kbps. The CCN can further transmit this data wirelessly using Bluetooth to the paired computer at a baud rate of 115.2 kbps. We have compared temporal and frequency-domain EEG signals of our system with a research-grade EEG. Results show that the proposed reconfigurable EEG captures comparable signals, and is thus promising for practical routine neurological monitoring in non-clinical settings where a flexible number of EEG channels are needed.
40 CFR 403.5 - National pretreatment standards: Prohibited discharges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GENERAL PRE-TREAT-MENT REGULATIONS FOR EXIST-ING AND NEW... designed to prevent Pass Through and/or Interference, as the case may be, was developed in accordance with... Through or Interference; or (B) If a local limit designed to prevent Pass Through and/or Interference, as...
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howder, Collin R.; Bell, David M.; Anderson, Scott L.
2014-01-15
An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging frommore » 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.« less
High Performance Compression of Science Data
NASA Technical Reports Server (NTRS)
Storer, James A.; Carpentieri, Bruno; Cohn, Martin
1994-01-01
Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.
Cavity enhanced atomic magnetometry
Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer
2015-01-01
Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853
Active polarisation control of a quantum cascade laser using tuneable birefringence in waveguides.
Dhirhe, D; Slight, T J; Holmes, B M; Ironside, C N
2013-10-07
We discuss the design, modelling, fabrication and characterisation of an integrated tuneable birefringent waveguide for quantum cascade lasers. We have fabricated quantum cascade lasers operating at wavelengths around 4450 nm that include polarisation mode converters and a differential phase shift section. We employed below laser threshold electroluminescence to investigate the single pass operation of the integrated device. We use a theory based on the electro-optic properties of birefringence in quantum cascade laser waveguides combined with a Jones matrix based description to gain an understanding of the electroluminescence results. With the quantum cascade lasers operating above threshold we demonstrated polarisation control of the output.
LongISLND: in silico sequencing of lengthy and noisy datatypes
Lau, Bayo; Mohiyuddin, Marghoob; Mu, John C.; Fang, Li Tai; Bani Asadi, Narges; Dallett, Carolina; Lam, Hugo Y. K.
2016-01-01
Summary: LongISLND is a software package designed to simulate sequencing data according to the characteristics of third generation, single-molecule sequencing technologies. The general software architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences (PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus building and variant calling. Availability and Implementation: LongISLND is implemented in Java and available at http://bioinform.github.io/longislnd Contact: hugo.lam@roche.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27667791
Making the Grade: How Learner Engagement Changes after Passing a Course
ERIC Educational Resources Information Center
Lang, David; Kindel, Alex; Domingue, Ben; Paepcke, Andreas
2017-01-01
Understanding how individuals interact with a course after receiving a passing grade could have important implications for course design. If individuals become disengaged after passing a class, then this may raise questions about optimal ordering of content, course difficulty, and grade transparency. Using a person fixed effects model, we analyze…
Candidate Performance on the Business Environment and Concepts Section of the CPA Exam
ERIC Educational Resources Information Center
Lindsay, D. H.; Tan, K. B.; Campbell, Annhenrie
2009-01-01
This paper examines how differences in curricular design of undergraduate accounting programs influence pass rates on the Business Environment and Concepts Section of the CPA Exam. The association of the pass rate of a school's accounting graduates to the design of the schools accounting program and to other school characteristics was examined…
Membrane-Based Gas Traps for Ammonia, Freon-21, and Water Systems to Simplify Ground Processing
NASA Technical Reports Server (NTRS)
Ritchie, Stephen M. C.
2003-01-01
Gas traps are critical for the smooth operation of coolant loops because gas bubbles can cause loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and blockage of passages to remote systems. Coolant loops are ubiquitous in space flight hardware, and thus there is a great need for this technology. Conventional gas traps will not function in micro-gravity due to the absence of buoyancy forces. Therefore, clever designs that make use of adhesion and momentum are required for adequate separation, preferable in a single pass. The gas traps currently used in water coolant loops on the International Space Station are composed of membrane tube sets in a shell. Each tube set is composed of a hydrophilic membrane (used for water transport and capture of bubbles) and a hydrophobic membrane (used for venting of air bubbles). For the hydrophilic membrane, there are two critical pressures, the pressure drop and the bubble pressure. The pressure drop is the decrease in system pressure across the gas trap. The bubble pressure is the pressure required for air bubbles to pass across the water filled membrane. A significant difference between these pressures is needed to ensure complete capture of air bubbles in a single pass. Bubbles trapped by the device adsorb on the hydrophobic membrane in the interior of the hydrophilic membrane tube. After adsorption, the air is vented due to a pressure drop of approximately 1 atmosphere across the membrane. For water systems, the air is vented to the ambient (cabin). Because water vapor can also transport across the hydrophobic membrane, it is critical that a minimum surface area is used to avoid excessive water loss (would like to have a closed loop for the coolant). The currently used gas traps only provide a difference in pressure drop and bubble pressure of 3-4 psid. This makes the gas traps susceptible to failure at high bubble loading and if gas venting is impaired. One mechanism for the latter is when particles adhere to the hydrophobic membrane, promoting formation of a water layer about it that can blind the membrane for gas transport (Figure 1). This mechanism is the most probable cause for observed failures with the existing design. The objective of this project was to devise a strategy for choosing new membrane materials (database development and procedure), redesign of the gas trap to mitigate blinding effects, and to develop a design that can be used in ammonia and Freon-21 coolant loops.
NASA Astrophysics Data System (ADS)
Vinciguerra, T.; Chittams, A.; Dadzie, J.; Deskins, T.; Goncalves, V.; M'Bagui Matsanga, C.; Zakaria, R.; Ehrman, S.; Dickerson, R. R.
2015-12-01
Over the past several years, the combined utilization of hydraulic fracturing and horizontal drilling has led to a rapid increase in natural gas production, especially from the Marcellus Shale. To explore the impact of this activity downwind on regions with no natural gas production, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was used to generate 48-hour back-trajectories for summer, daytime hours from the years 2007-2014 in the Baltimore, MD and Washington, D.C. areas where hourly ethane measurements are available from Photochemical Assessment Monitoring Stations (PAMS). For each of the years investigated, unconventional well counts were obtained for counties in the surrounding states of Pennsylvania, Ohio, West Virginia, and Virginia, and counties exceeding a threshold of 0.05 wells/km2 were designated as counties with a high density of wells. The back-trajectories for each year were separated into two groups: those which passed through counties containing a high density of wells, and those which did not. Back-trajectories passing through high-density counties were further screened by applying a height criterion where trajectories beyond 10% above the mixing layer were excluded. Preliminary results indicate that air parcels with back-trajectories passing within the boundary layer of counties with a high density of unconventional natural gas wells correspond to significantly greater concentrations of observed ethane at these downwind monitors.
CAMAC driver for the RSX-11M V3 operating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tippie, J. W.; Cannon, P. H.
1977-01-01
A driver for Kinetic Systems 3911A dedicated crate controller and 3992 serial highway driver for RSX-11M is described. The implementation includes a modified UCB structure. With this structure, multiple active I/O requests are supported to a single controller. The completion of an I/O request may be tied to external events via a WAIT-FOR-LAM command. Features of the driver include the ability to pass a list of FNA's in a single QIO call, serial highway overhead transparent at the QIO level, and special control commands to the driver passed in the FNA list. 1 figure.
Isochronic carrier-envelope phase-shift compensator.
Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter
2008-11-15
A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.
Evaluation of a single-scan protocol for radiochromic film dosimetry.
Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai
2015-03-08
The purpose of this study was to evaluate a single-scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24-hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24-hr protocol). The single-scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single-scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity-modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single-scan protocol was within 2% of the 24-hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single-scan and 24-hr protocols were 2.0 ± 1.8 cGy and 1.4 ± 1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single-scan protocol and 95.9% for the 24-hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6 ± 3.5cGy and 2.9 ± 3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7% ± 1.8% for the single-scan protocol and 97.3% ± 1.4% for the 24-hr protocol. Thus, the single-scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency.
Transverse mode instability of fiber oscillators in comparison with fiber amplifiers
NASA Astrophysics Data System (ADS)
Hejaz, Kamran; Shayganmanesh, Mahdi; Azizi, Saeed; Abedinajafi, Ali; Roohforouz, Ali; Rezaei-Nasirabad, Reza; Vatani, Vahid
2018-05-01
Transverse mode instability (TMI) is experimentally investigated in a fiber oscillator and a fiber amplifier. For a reasonable comparison of TMI in these two configurations, the same optical components and design parameters are applied to both. Our experimental results show that the TMI power threshold in a fiber oscillator is lower than in a corresponding fiber amplifier. By using simulation software, a fiber oscillator and an amplifier are designed with similar characteristics, to provide identical conditions for all effective parameters on TMI in both of them. Since the signal propagation in fiber oscillators is different from that of single-pass fiber amplifiers, and also since both forward and backward propagating signals in fiber oscillators can generate thermo-optic index gratings, the observed lower TMI threshold in the fiber oscillator is due to its different interaction of light with index gratings.
Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas
Jordana, Josep; Robert, Francesc-Josep; Berenguer, Jordi
2017-01-01
Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from −30 dBm to −10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at −30 dBm to 55% at −10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs. PMID:28757592
Cohen, Joel L; Weiner, Steven F; Pozner, Jason N; Ibrahimi, Omar A; Vasily, David B; Ross, E Victor; Gabriel, Zena
2016-11-01
In this multi-center pilot study, the safety pro le of high intensity focused radiofrequency (RF) delivered to the dermis was evaluated for safety in the treatment of the aging neck and face. A newly designed insulated microneedle system delivers a signi cant coagulative thermal injury into the dermis while sparing the epidermis from RF injury. Thirty- ve healthy subjects from seven aesthetic practices were evaluated, and data from each were incorporated in this case report. The subjects received a single treatment using settings that delivered the highest RF energies suggested from the new recommended protocols. The depth of thermal delivery was adjusted before each pass and all subjects received a minimum of two to three passes to the treated areas. Before and after photographs along with adverse effects were recorded. This case report demonstrates the ability to deliver significant RF thermal injury to several layers of the dermis with insulated microneedles safely with little injury to the epidermis and minimum downtime. J Drugs Dermatol. 2016;15(11):1308-1312..
Strategies for automatic processing of large aftershock sequences
NASA Astrophysics Data System (ADS)
Kvaerna, T.; Gibbons, S. J.
2017-12-01
Aftershock sequences following major earthquakes present great challenges to seismic bulletin generation. The analyst resources needed to locate events increase with increased event numbers as the quality of underlying, fully automatic, event lists deteriorates. While current pipelines, designed a generation ago, are usually limited to single passes over the raw data, modern systems also allow multiple passes. Processing the raw data from each station currently generates parametric data streams that are later subject to phase-association algorithms which form event hypotheses. We consider a major earthquake scenario and propose to define a region of likely aftershock activity in which we will detect and accurately locate events using a separate, specially targeted, semi-automatic process. This effort may use either pattern detectors or more general algorithms that cover wider source regions without requiring waveform similarity. An iterative procedure to generate automatic bulletins would incorporate all the aftershock event hypotheses generated by the auxiliary process, and filter all phases from these events from the original detection lists prior to a new iteration of the global phase-association algorithm.
Program Analyzes Radar Altimeter Data
NASA Technical Reports Server (NTRS)
Vandemark, Doug; Hancock, David; Tran, Ngan
2004-01-01
A computer program has been written to perform several analyses of radar altimeter data. The program was designed to improve on previous methods of analysis of altimeter engineering data by (1) facilitating and accelerating the analysis of large amounts of data in a more direct manner and (2) improving the ability to estimate performance of radar-altimeter instrumentation and provide data corrections. The data in question are openly available to the international scientific community and can be downloaded from anonymous file-transfer- protocol (FTP) locations that are accessible via links from altimetry Web sites. The software estimates noise in range measurements, estimates corrections for electromagnetic bias, and performs statistical analyses on various parameters for comparison of different altimeters. Whereas prior techniques used to perform similar analyses of altimeter range noise require comparison of data from repetitions of satellite ground tracks, the present software uses a high-pass filtering technique to obtain similar results from single satellite passes. Elimination of the requirement for repeat-track analysis facilitates the analysis of large amounts of satellite data to assess subtle variations in range noise.
Analysis of the Optimum Gain of a High-Pass L-Matching Network for Rectennas.
Gasulla, Manel; Jordana, Josep; Robert, Francesc-Josep; Berenguer, Jordi
2017-07-25
Rectennas, which mainly consist of an antenna, matching network, and rectifier, are used to harvest radiofrequency energy in order to power tiny sensor nodes, e.g., the nodes of the Internet of Things. This paper demonstrates for the first time, the existence of an optimum voltage gain for high-pass L-matching networks used in rectennas by deriving an analytical expression. The optimum gain is that which leads to maximum power efficiency of the rectenna. Here, apart from the L-matching network, a Schottky single-diode rectifier was used for the rectenna, which was optimized at 868 MHz for a power range from -30 dBm to -10 dBm. As the theoretical expression depends on parameters not very well-known a priori, an accurate search of the optimum gain for each power level was performed via simulations. Experimental results show remarkable power efficiencies ranging from 16% at -30 dBm to 55% at -10 dBm, which are for almost all the tested power levels the highest published in the literature for similar designs.
NASA Astrophysics Data System (ADS)
Mokhtabad Amrei, Mohsen
13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes. Furthermore, low angle interface laths were observed inside martensite sub-blocks over different regions. The hardness profile of a multi-pass weld was explained by the overlaying heat effects of surrounding passes. In some regions, a tempered matrix was observed, while in other regions a double-quenched microstructure was found. The final aspect of this study focused on the effects of post-weld heat treatments on reformed austenite and carbide formations, and evolution of hardness. The effects of tempering duration and temperature on microstructure were investigated. The study found that nanometer-sized carbides form at martensite lath interfaces and sub-block boundaries. Additionally, it was determined that for any holding duration, the maximum austenite percentage is achievable by tempering at 610 °C. Similarly, the maximum softening was reported for tempering at 610 °C, for any given holding period.
NASA Technical Reports Server (NTRS)
Stanley, H. R.; Martin, C. F.; Roy, N. A.; Vetter, J. R.
1971-01-01
Error analyses were performed to examine the height error in a relative sea-surface profile as determined by a combination of land-based multistation C-band radars and optical lasers and one ship-based radar tracking the GEOS 2 satellite. It was shown that two relative profiles can be obtained: one using available south-to-north passes of the satellite and one using available north-to-south type passes. An analysis of multi-station tracking capability determined that only Antigua and Grand Turk radars are required to provide satisfactory orbits for south-to-north type satellite passes, while a combination of Merritt Island, Bermuda, and Wallops radars provide secondary orbits for north-to-south passes. Analysis of ship tracking capabilities shows that high elevation single pass range-only solutions are necessary to give only moderate sensitivity to systematic error effects.
Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma
NASA Astrophysics Data System (ADS)
Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.
2010-04-01
The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.
BEHAVIORAL COACHING TO IMPROVE OFFENSIVE LINE PASS-BLOCKING SKILLS OF HIGH SCHOOL FOOTBALL ATHLETES
Stokes, John V; Luiselli, James K; Reed, Derek D; Fleming, Richard K
2010-01-01
We evaluated several behavioral coaching procedures for improving offensive line pass-blocking skills with 5 high school varsity football players. Pass blocking was measured during practice drills and games, and our intervention included descriptive feedback with and without video feedback and teaching with acoustical guidance (TAG). Intervention components and pass blocking were evaluated in a multiple baseline design, which showed that video feedback and TAG were the most effective procedures. For all players, improved pass blocking matched a standard derived by observing more experienced linemen and was evident in games. Additional intervention was required to maintain pass-blocking proficiency. Issues pertinent to behavioral coaching and sport psychology research are discussed. PMID:21358905
Hybrid/Tandem Laser-Arc Welding of Thick Low Carbon Martensitic Stainless Steel Plates =
NASA Astrophysics Data System (ADS)
Mirakhorli, Fatemeh
High efficiency and long-term life of hydraulic turbines and their assemblies are of utmost importance for the hydropower industry. Usually, hydroelectric turbine components are made of thick-walled low carbon martensitic stainless steels. The assembly of large hydroelectric turbine components has been a great challenge. The use of conventional welding processes involves typical large groove design and multi-pass welding to fill the groove which exposes the weld to a high heat input creating relatively large fusion zone and heat affected zone. The newly-developed hybrid/tandem laser-arc welding technique is believed to offer a highly competitive solution to improve the overall hydro-turbine performance by combining the high energy density and fast welding speed of the laser welding technology with the good gap bridging and feeding ability of the gas metal arc welding process to increase the productivity and reduce the consumable material. The main objective of this research work is to understand different challenges appearing during hybrid laser-arc welding (HLAW) of thick gauge assemblies of low carbon 13%Cr- 4%Ni martensitic stainless steel and find a practical solution by adapting and optimizing this relatively new welding process in order to reduce the number of welding passes necessary to fill the groove gap. The joint integrity was evaluated in terms of microstructure, defects and mechanical properties in both as-welded and post-welded conditions. A special focus was given to the hybrid and tandem laser-arc welding technique for the root pass. Based on the thickness of the low carbon martensitic stainless steel plates, this work is mainly focused on the following two tasks: • Single pass hybrid laser-arc welding of 10-mm thick low carbon martensitic stainless steel. • Multi-pass hybrid/tandem laser-arc welding of 25-mm thick martensitic stainless steel.
Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi
NASA Technical Reports Server (NTRS)
1980-01-01
The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.
Photonic compressed sensing nyquist folding receiver
2017-09-01
filter . Two independent photonic receiver architectures are designed and analyzed over the course of this research. Both receiver designs are...undersamples the signals using an opti- cal modulator configuration at 1550 nm and collects the detected samples in a low pass interpolation filter ...Electronic Intelligence EW Electronic Warfare FM Frequency Modulated LNA Low Noise Amplifier LPF Low Pass Filter MZI Mach-Zehnder Interferometer NYFR Nyquist
Spacing and length of passing sidings and the incremental capacity of single track.
DOT National Transportation Integrated Search
2016-02-18
The objective of this study is to evaluate the effect of initial siding spacing and distribution of siding length on the incremental capacity of infrastructure investments on single-track railway lines. Previous research has shown a linear reduction ...
Tian, Brian Wei Cheng Anthony
2015-01-01
Objective: To demonstrate a combination laser therapy to treat Hori's nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm2, frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients’ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus. PMID:26865788
Trelles, Mario A; Vélez, Mariano; Mordon, Serge
2008-03-01
Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat deposition in the upper dermis. When performing ablative fractional resurfacing with an Er:YAG laser, treatment of varying degrees of damage could be achieved by varying the number of passes. (c) 2008 Wiley-Liss, Inc.
Technological development of spectral filters for Sentinel-2
NASA Astrophysics Data System (ADS)
Schröter, Karin; Schallenberg, Uwe; Mohaupt, Matthias
2017-11-01
In the frame of the initiative for Global Monitoring for Environment and Security (GMES), jointly undertaken by the European Commission and the European Space Agency a technological development of two filter assemblies was performed for the Multi- Spectral Instrument (MSI) for Sentinel-2. The multispectral pushbroom imaging of the Earth will be performed in 10 VNIR bands (from 443 nm to 945nm) and 3 SWIR bands (from 1375 nm to 2190 nm). Possible filter coating techniques and masking concepts were considered in the frame of trade-off studies. The selected deposition concept is based on self-blocked all-dielectric multilayer band pass filter. Band pass and blocking characteristic is deposited on the space side of a single filter substrate whereas the detector side of the substrate has an antireflective coating. The space- and detector side masking design is realized by blades integrated in the mechanical parts including the mechanical interface to the filter assembly support on the MSI focal plane. The feasibility and required performance of the VNIR Filter Assembly and SWIR Filter Assembly were successfully demonstrated by breadboarding. Extensive performance tests of spectral and optical parameters and environmental tests (radiation, vibration, shock, thermal vacuum cycling, humidity) were performed on filter stripe- and filter assembly level. The presentation will contain a detailed description of the filter assembly design and the results of the performance and environmental tests.
Ma, Irene W Y; Brindle, Mary E; Ronksley, Paul E; Lorenzetti, Diane L; Sauve, Reg S; Ghali, William A
2011-09-01
Central venous catheterization (CVC) is increasingly taught by simulation. The authors reviewed the literature on the effects of simulation training in CVC on learner and clinical outcomes. The authors searched computerized databases (1950 to May 2010), reference lists, and considered studies with a control group (without simulation education intervention). Two independent assessors reviewed the retrieved citations. Independent data abstraction was performed on study design, study quality score, learner characteristics, sample size, components of interventional curriculum, outcomes assessed, and method of assessment. Learner outcomes included performance measures on simulators, knowledge, and confidence. Patient outcomes included number of needle passes, arterial puncture, pneumothorax, and catheter-related infections. Twenty studies were identified. Simulation-based education was associated with significant improvements in learner outcomes: performance on simulators (standardized mean difference [SMD] 0.60 [95% CI 0.45 to 0.76]), knowledge (SMD 0.60 [95% CI 0.35 to 0.84]), and confidence (SMD 0.41 [95% CI 0.30 to 0.53] for studies with single-group pretest and posttest design; SMD 0.52 (95% CI 0.23 to 0.81) for studies with nonrandomized, two-group design). Furthermore, simulation-based education was associated with improved patient outcomes, including fewer needle passes (SMD -0.58 [95% CI -0.95 to -0.20]), and pneumothorax (relative risk 0.62 [95% CI 0.40 to 0.97]), for studies with nonrandomized, two-group design. However, simulation-based training was not associated with a significant reduction in risk of either arterial puncture or catheter-related infections. Despite some limitations in the literature reviewed, evidence suggests that simulation-based education for CVC provides benefits in learner and select clinical outcomes.
NASA Astrophysics Data System (ADS)
Agrawal, B. P.; Ghosh, P. K.
2017-03-01
Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.
Low Temperature Cure Powder Coatings
2013-05-01
operations Minimize worker exposure to VOCs, HAPs, and hexavalent chrome Passed objective AF Engr Qual Plan = Air Force Engineer Quality Plan MIL-PRF...Inconclusive • Inconclusive • Not applicable (N/A) • Passed criteria Reduction of hexavalent chromium use • Passed objective Reduction of hazardous...compliance. The implementation of the OSHA Final Rule designating the permissible exposure limit (PEL) for hexavalent chromium is a significant
NASA Astrophysics Data System (ADS)
Degnan, J. J.; Wells, D. N.; Huet, H.; Chauvet, N.; Lawrence, D. W.; Mitchell, S. E.; Eklund, W. D.
2005-12-01
A 3D imaging lidar system, developed for the University of Florida at Gainesville and operating at the water transmissive wavelength of 532 nm, is designed to contiguously map underlying terrain and/or perform shallow water bathymetry on a single overflight from an altitude of 600 m with a swath width of 225 m and a horizontal spatial resolution of 20 cm. Each 600 psec pulse from a frequency-doubled, low power (~3 microjoules @ 8 kHz = 24 mW), passively Q-switched Nd:YAG microchip laser is passed through a holographic element which projects a 10x10 array of spots onto a 2m x 2m target area. The individual ground spots are then imaged onto individual anodes within a 10x10 segmented anode photomultiplier. The latter is followed by a 100 channel multistop ranging receiver with a range resolution of about 4 cm. The multistop feature permits single photon detection in daylight with wide range gates as well as multiple single photon returns per pixel per laser fire from volumetric scatterers such as tree canopies or turbid water columns. The individual single pulse 3D images are contiguously mosaiced together through the combined action of the platform velocity and a counter-rotating dual wedge optical scanner whose rotations are synchronized to the laser pulse train. The paper provides an overview of the lidar opto-mechanical design, the synchronized dual wedge scanner and servo controller, and the experimental results obtained to date.
1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system
NASA Astrophysics Data System (ADS)
Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.
2017-02-01
Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.
Kao, Steven D; Morshedi, Maud M; Narsinh, Kazim H; Kinney, Thomas B; Minocha, Jeet; Picel, Andrew C; Newton, Isabel; Rose, Steven C; Roberts, Anne C; Kuo, Alexander; Aryafar, Hamed
2016-08-01
To assess whether intravascular ultrasound (US) guidance impacts number of needle passes, contrast usage, radiation dose, and procedure time during creation of transjugular intrahepatic portosystemic shunts (TIPS). Intravascular US-guided creation of TIPS in 40 patients was retrospectively compared with conventional TIPS in 49 patients between February 2010 and November 2015 at a single tertiary care institution. Patient sex and age, etiology of liver disease (hepatitis C virus, alcohol abuse, nonalcoholic steatohepatitis), severity of liver disease (mean Model for End-Stage Liver Disease score), and indications for TIPS (variceal bleeding, refractory ascites, refractory hydrothorax) in conventional and intravascular US-guided cases were recorded. The two groups were well matched by sex, age, etiology of liver disease, Child-Pugh class, Model for End-Stage Liver Disease scores, and indication for TIPS (P range = .19-.94). Fewer intrahepatic needle passes were required in intravascular US-guided TIPS creation compared with conventional TIPS (2 passes vs 6 passes, P < .01). Less iodinated contrast material was used in intravascular US cases (57 mL vs 140 mL, P < .01). Radiation exposure, as measured by cumulative dose, dose area product, and fluoroscopy time, was reduced with intravascular US (174 mGy vs 981 mGy, P < .01; 3,793 μGy * m(2) vs 21,414 μGy * m(2), P < .01; 19 min vs 34 min, P < .01). Procedure time was shortened with intravascular US (86 min vs 125 min, P < .01). Intravascular US guidance resulted in fewer intrahepatic needle passes, decreased contrast medium usage, decreased radiation dosage, and shortened procedure time in TIPS creation. Copyright © 2016 SIR. All rights reserved.
Aeroassisted orbit transfer vehicle trajectory analysis
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Suit, William T.
1988-01-01
The emphasis in this study was on the use of multiple pass trajectories for aerobraking. However, for comparison, single pass trajectories, trajectories using ballutes, and trajectories corrupted by atmospheric anomolies were run. A two-pass trajectory was chosen to determine the relation between sensitivity to errors and payload to orbit. Trajectories that used only aerodynamic forces for maneuvering could put more weight into the target orbits but were very sensitive to variations from the planned trajectors. Using some thrust control resulted in less payload to orbit, but greatly reduced the sensitivity to variations from nominal trajectories. When compared to the non-thrusting trajectories investigated, the judicious use of thrusting resulted in multiple pass trajectories that gave 97 percent of the payload to orbit with almost none of the sensitivity to variations from the nominal.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
A distributed lumped active all-pass network configuration.
NASA Technical Reports Server (NTRS)
Huelsman, L. P.; Raghunath, S.
1972-01-01
In this correspondence a new and interesting distributed lumped active network configuration that realizes an all-pass network function is described. A design chart for determining the values of the network elements is included.
Possibilities of the fish pass restoration
NASA Astrophysics Data System (ADS)
Čubanová, Lea
2018-03-01
According to the new elaborated methodology of the Ministry of Environment of the Slovak Republic: Identification of the appropriate fish pass types according to water body typology (2015) each barrier on the river must be passable. On the barriers or structures without fish passes new ones should be design and built and on some water structures with existed but nonfunctional fish passes must be realized reconstruction or restoration of such objects. Assessment should be done in terms of the existing migratory fish fauna and hydraulic conditions. Fish fauna requirements resulting from the ichthyological research of the river section with barrier. Hydraulic conditions must than fulfil these requirements inside the fish pass body.
How β-Lactam Antibiotics Enter Bacteria: A Dialogue with the Porins
Molitor, Alexander; Bolla, Jean-Michel; Bessonov, Andrey N.; Winterhalter, Mathias; Pagès, Jean-Marie
2009-01-01
Background Multi-drug resistant (MDR) infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. β-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. Methodology/Principal Findings Here influx of β-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single β-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of β-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. Conclusions/Significance We propose the idea of a molecular “passport” that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections. PMID:19434239
Lozoya-Agullo, Isabel; Zur, Moran; Wolk, Omri; Beig, Avital; González-Álvarez, Isabel; González-Álvarez, Marta; Merino-Sanjuán, Matilde; Bermejo, Marival; Dahan, Arik
2015-03-01
Intestinal drug permeability has been recognized as a critical determinant of the fraction dose absorbed, with direct influence on bioavailability, bioequivalence and biowaiver. The purpose of this research was to compare intestinal permeability values obtained by two different intestinal rat perfusion methods: the single-pass intestinal perfusion (SPIP) model and the Doluisio (closed-loop) rat perfusion method. A list of 15 model drugs with different permeability characteristics (low, moderate, and high, as well as passively and actively absorbed) was constructed. We assessed the rat intestinal permeability of these 15 model drugs in both SPIP and the Doluisio methods, and evaluated the correlation between them. We then evaluated the ability of each of these methods to predict the fraction dose absorbed (Fabs) in humans, and to assign the correct BCS permeability class membership. Excellent correlation was obtained between the two experimental methods (r(2)=0.93). An excellent correlation was also shown between literature Fabs values and the predictions made by both rat perfusion techniques. Similar BCS permeability class membership was designated by literature data and by both SPIP and Doluisio methods for all compounds. In conclusion, the SPIP model and the Doluisio (closed-loop) rat perfusion method are both equally useful for obtaining intestinal permeability values that can be used for Fabs prediction and BCS classification. Copyright © 2015 Elsevier B.V. All rights reserved.
Design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatments.
Grams, Michael P; de Los Santos, Luis E Fong
2018-06-01
To describe the design and clinical use of a rotational phantom for dosimetric verification of IMRT/VMAT treatment plans using radiochromic film. A solid water cylindrical phantom was designed with separable upper and lower halves and rests on plastic bearings allowing for 360° rotation about its central axis. The phantom accommodates a half sheet of radiochromic film, and by rotating the cylinder, the film can be placed in any plane between coronal and sagittal. Calculated dose planes coinciding with rotated film measurements are exported by rotating the CT image and dose distribution within the treatment planning system. The process is illustrated with 2 rotated film measurements of an SRS treatment plan involving 4 separate targets. Additionally, 276 patient specific QA measurements were obtained with the phantom and analyzed with a 2%/2 mm gamma criterion. The average 2%/2 mm gamma passing rate for all 276 plans was 99.3%. Seventy-two of the 276 plans were measured with the plane of the film rotated between the coronal and sagittal planes and had an average passing rate of 99.4%. The rotational phantom allows for accurate film measurements in any plane. With this technique, regions of a dose distribution which might otherwise require multiple sagittal or coronal measurements can be verified with as few as a single measurement. This increases efficiency and, in combination with the high spatial resolution inherent to film dosimetry, makes the rotational technique an attractive option for patient-specific QA. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy
NASA Astrophysics Data System (ADS)
Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme
2018-06-01
We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.
Yb:YAG master oscillator power amplifier for remote wind sensing.
Sridharan, A K; Saraf, S; Byer, R L
2007-10-20
We have demonstrated key advances towards a solid-state laser amplifier at 1.03 microm for global remote wind sensing. We designed end-pumped zig-zag slab amplifiers to achieve high gain. We overcame parasitic oscillation limitations using claddings on the slab's total internal reflection (TIR) and edge surfaces to confine the pump and signal light by TIR and allow leakage of amplified spontaneous emission rays that do not meet the TIR condition. This enables e3, e5, and e8 single-, double-, and quadruple-pass small-signal amplifier gain, respectively. The stored energy density is 15.6 J/cm3, a record for a laser-diode end-pumped Yb:YAG zig-zag slab amplifier.
Multi-petascale highly efficient parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less
ARIEL e-LINAC: Commissioning and Development
NASA Astrophysics Data System (ADS)
Laxdal, R. E.; Zvyagintsev, V.
2016-09-01
A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.
High performance compression of science data
NASA Technical Reports Server (NTRS)
Storer, James A.; Cohn, Martin
1994-01-01
Two papers make up the body of this report. One presents a single-pass adaptive vector quantization algorithm that learns a codebook of variable size and shape entries; the authors present experiments on a set of test images showing that with no training or prior knowledge of the data, for a given fidelity, the compression achieved typically equals or exceeds that of the JPEG standard. The second paper addresses motion compensation, one of the most effective techniques used in the interframe data compression. A parallel block-matching algorithm for estimating interframe displacement of blocks with minimum error is presented. The algorithm is designed for a simple parallel architecture to process video in real time.
LongISLND: in silico sequencing of lengthy and noisy datatypes.
Lau, Bayo; Mohiyuddin, Marghoob; Mu, John C; Fang, Li Tai; Bani Asadi, Narges; Dallett, Carolina; Lam, Hugo Y K
2016-12-15
LongISLND is a software package designed to simulate sequencing data according to the characteristics of third generation, single-molecule sequencing technologies. The general software architecture is easily extendable, as demonstrated by the emulation of Pacific Biosciences (PacBio) multi-pass sequencing with P5 and P6 chemistries, producing data in FASTQ, H5, and the latest PacBio BAM format. We demonstrate its utility by downstream processing with consensus building and variant calling. LongISLND is implemented in Java and available at http://bioinform.github.io/longislnd CONTACT: hugo.lam@roche.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Chemical Plume Detection with an Iterative Background Estimation Technique
2016-05-17
schemes because of contamination of background statistics by the plume. To mitigate the effects of plume contamination , a first pass of the detector...can be used to create a background mask. However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be...is estimated using plume-pixels, the covariance matrix is contaminated and detection performance may be significantly reduced. To avoid Further author
Older Children's Misunderstanding of Uncertain Belief after Passing the False Belief Test
ERIC Educational Resources Information Center
Zhang, Ting; Zheng, Xueru; Zhang, Li; Sha, Wenju; Deak, Gedeon; Li, Hong
2010-01-01
A four-location belief task was designed to examine children's understanding of another's uncertain belief after passing a false belief (FB) task. In Experiment 1, after passing the FB task, participants were asked what a puppet would do after he failed to find his toy at the falsely believed location. Most 4-year-olds and half of 6-year-olds…
ERIC Educational Resources Information Center
Barry, Leasha M.; Moore, William E., IV
2004-01-01
Students with specific learning disabilities (SLD) are required to pass the same competency exams as students enrolled in general education in order to graduate to new grade levels and to earn a high school diploma. In this study, the authors taught students with SLD a self-directed organizational strategy designed to assist them in passing the…
A single-frequency double-pulse Ho:YLF laser for CO2-lidar
NASA Astrophysics Data System (ADS)
Kucirek, P.; Meissner, A.; Eiselt, P.; Höfer, M.; Hoffmann, D.
2016-03-01
A single-frequency q-switched Ho:YLF laser oscillator with a bow-tie ring resonator, specifically designed for highspectral stability, is reported. It is pumped with a dedicated Tm:YLF laser at 1.9 μm. The ramp-and-fire method with a DFB-diode laser as a reference is employed for generating single-frequency emission at 2051 nm. The laser is tested with different operating modes, including cw-pumping at different pulse repetition frequencies and gain-switched pumping. The standard deviation of the emission wavelength of the laser pulses is measured with the heterodyne technique at the different operating modes. Its dependence on the single-pass gain in the crystal and on the cavity finesse is investigated. At specific operating points the spectral stability of the laser pulses is 1.5 MHz (rms over 10 s). Under gain-switched pumping with 20% duty cycle and 2 W of average pump power, stable single-frequency pulse pairs with a temporal separation of 580 μs are produced at a repetition rate of 50 Hz. The measured pulse energy is 2 mJ (<2 % rms error on the pulse energy over 10 s) and the measured pulse duration is approx. 20 ns for each of the two pulses in the burst.
McConville, Christopher; Major, Ian; Devlin, Brid; Brimer, Andrew
2016-07-01
Multipurpose prevention technologies (MPTs) are preferably single dosage forms designed to simultaneously address multiple sexual and reproductive health needs, such as unintended pregnancy, HIV infection and other sexually transmitted infections (STIs). This manuscript describes the development of a range of multi-layered vaginal tablets, with both immediate and sustained release layers capable of delivering the antiretroviral drug dapivirine, the contraceptive hormone levonorgestrel, and the anti-herpes simplex virus drug acyclovir at independent release rates from a single dosage form. Depending on the design of the tablet in relation to the type (immediate or sustained release) or number of layers, the dose of each drug could be individually controlled. For example one tablet design was able to provide immediate release of all three drugs, while another tablet design was able to provide immediate release of both acyclovir and levonorgestrel, while providing sustained release of Dapivirine for up to 8h. A third tablet design was able to provide immediate release of both acyclovir and levonorgestrel, a large initial burst of Dapivirine, followed by sustained release of Dapivirine for up to 8h. All of the tablets passed the test for friability with a percent friability of less than 1%. The hardness of all tablet designs was between 115 and 153N, while their drug content met the European Pharmacopeia 2.9.40 Uniformity of Dosage units acceptance value at levels 1 and 2. Finally, the accelerated stability of all three actives was significantly enhanced in comparison with a mixed drug control. Copyright © 2016 Elsevier B.V. All rights reserved.
Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack
2010-07-01
Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.
Thermal-hydraulic behavior of a mixed chevron single-pass plate-and-frame heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manglik, R.M.; Muley, A.
1995-12-31
Effective heat exchange is very critical for improving the process efficiency and operating economy of chemical and process plants. Here, experimental friction factor and heat transfer data for single-phase water flows in a plate-and-frame heat exchanger are presented. A mixed chevron plate arrangement with {beta} = 30{degree}/60{degree} in a single-pass U-type, counterflow configuration is employed. The friction factor and heat transfer data are for isothermal flow and cooling conditions, respectively, and the flow rates correspond to transition and turbulent flow regimes (300 < Re < 6,000 and 2.4 < Pr < 4.5). Based on these data, Nusselt number and frictionmore » factor correlations for fully developed turbulent flows (Re {ge} 1,000) are presented. The results highlight the effects of {beta} on the thermal-hydraulic performance, transition to turbulent flows, and the relative impact of using symmetric or mixed chevron plate arrangements.« less
Modified current follower-based immittance function simulators
NASA Astrophysics Data System (ADS)
Alpaslan, Halil; Yuce, Erkan
2017-12-01
In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.
A Versatile Ion Injector at KACST
NASA Astrophysics Data System (ADS)
El Ghazaly, M. O. A.; Behery, S. A.; Almuqhim, A. A.; Papash, A. I.; Welsch, C. P.
2011-10-01
A versatile ion-beam injector is presently being constructed at the National Centre for Mathematics and Physics (NCMP) at the King Abdul-Aziz City for Science and Technology (KACST), Saudi Arabia. This versatile injector will provide an electrostatic storage ring with high-quality ion beams of energies up to 30 keV per charge q. It will also allow for crossed-beams experiments in single-pass setups. The injector has been designed to include beams from two different ion sources, switched by a 90° deflection setup, and to allow for matching of the beam parameters to the Twiss parameters of the ring. The injector is equipped with two crossed beam-lines (inlets), with duplicated beam extraction and acceleration systems. As part of the initial setup, a simple electric discharge ion source has been developed for commissioning of the whole injector. In this paper, we report on the ion optics layout and the design parameters of the injector.
New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system
NASA Astrophysics Data System (ADS)
Shimada, Ken-ichi; Ide, Tatsuro; Shimano, Takeshi; Anderson, Ken; Curtis, Kevin
2014-02-01
A new optical architecture for holographic data storage system which is compatible with a Blu-ray Disc™ (BD) system is proposed. In the architecture, both signal and reference beams pass through a single objective lens with numerical aperture (NA) 0.85 for realizing angularly multiplexed recording. The geometry of the architecture brings a high affinity with an optical architecture in the BD system because the objective lens can be placed parallel to a holographic medium. Through the comparison of experimental results with theory, the validity of the optical architecture was verified and demonstrated that the conventional objective lens motion technique in the BD system is available for angularly multiplexed recording. The test-bed composed of a blue laser system and an objective lens of the NA 0.85 was designed. The feasibility of its compatibility with BD is examined through the designed test-bed.
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
NASA Technical Reports Server (NTRS)
Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.
1983-01-01
The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.
NASA Technical Reports Server (NTRS)
Allen, C. P.; Martin, C. F.
1977-01-01
The SEAHT program is designed to process multiple passes of altimeter data with intersecting ground tracks, with the estimation of corrections for orbital errors to each pass such that the data has the best overall agreement at the crossover points. Orbit error for each pass is modeled as a polynomial in time, with optional orders of 0, 1, or 2. One or more passes may be constrained in the adjustment process, thus allowing passes with the best orbits to provide the overall level and orientation of the estimated sea surface heights. Intersections which disagree by more than an input edit level are not used in the error parameter estimation. In the program implementation, passes are grouped into South-North passes and North-South passes, with the North-South passes partitioned out for the estimation of orbit error parameters. Computer core utilization is thus dependent on the number of parameters estimated for the set of South-North arcs, but is independent on the number of North-South passes. Estimated corrections for each pass are applied to the data at its input data rate and an output tape is written which contains the corrected data.
Gulzari, Usman Ali; Sajid, Muhammad; Anjum, Sheraz; Agha, Shahrukh; Torres, Frank Sill
2016-01-01
A Mesh topology is one of the most promising architecture due to its regular and simple structure for on-chip communication. Performance of mesh topology degraded greatly by increasing the network size due to small bisection width and large network diameter. In order to overcome this limitation, many researchers presented modified Mesh design by adding some extra links to improve its performance in terms of network latency and power consumption. The Cross-By-Pass-Mesh was presented by us as an improved version of Mesh topology by intelligent addition of extra links. This paper presents an efficient topology named Cross-By-Pass-Torus for further increase in the performance of the Cross-By-Pass-Mesh topology. The proposed design merges the best features of the Cross-By-Pass-Mesh and Torus, to reduce the network diameter, minimize the average number of hops between nodes, increase the bisection width and to enhance the overall performance of the network. In this paper, the architectural design of the topology is presented and analyzed against similar kind of 2D topologies in terms of average latency, throughput and power consumption. In order to certify the actual behavior of proposed topology, the synthetic traffic trace and five different real embedded application workloads are applied to the proposed as well as other competitor network topologies. The simulation results indicate that Cross-By-Pass-Torus is an efficient candidate among its predecessor's and competitor topologies due to its less average latency and increased throughput at a slight cost in network power and energy for on-chip communication.
Development of high repetition rate nitric oxide planar laser induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Jiang, Naibo
This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.
Wideband monolithically integrated front-end subsystems and components
NASA Astrophysics Data System (ADS)
Mruk, Joseph Rene
This thesis presents the analysis, design, and measurements of passive, monolithically integrated, wideband recta-coax and printed circuit board front-end components. Monolithic fabrication of antennas, impedance transformers, filters, and transitions lowers manufacturing costs by reducing assembly time and enhances performance by removing connectors and cabling between the devices. Computational design, fabrication, and measurements are used to demonstrate the capabilities of these front-end assemblies. Two-arm wideband planar log-periodic antennas fed using a horizontal feed that allows for filters and impedance transformers to be readily fabricated within the radiating region of the antenna are demonstrated. At microwave frequencies, low-cost printed circuit board processes are typically used to produce planar devices. A 1.8 to 11 GHz two-arm planar log-periodic antenna is designed with a monolithically integrated impedance transformer. Band rejection methods based on modifying the antenna aperture, use of an integrated filter, and the application of both methods are investigated with realized gain suppressions of over 25 dB achieved. The ability of standard circuit board technology to fabricate millimeter-wave devices up to 110 GHz is severely limited. Thin dielectrics are required to prevent the excitation of higher order modes in the microstrip substrate. Fabricating the thin line widths required for the antenna aperture also becomes prohibitively challenging. Surface micro-machining typically used in the fabrication of MEMS devices is capable of producing the extremely small features that can be used to fabricate antennas extending through W-band. A directly RF fed 18 to 110 GHz planar log-periodic antenna is developed. The antenna is fabricated with an integrated impedance transformer and additional transitions for measurement characterization. Singly terminated low-loss wideband millimeter-wave filters operating over V- and W- band are developed. High quality performance of an 18 to 100 GHz front-end is realized by dividing the single instantaneous antenna into two apertures operating from 18 to 50 and 50 to 100 GHz. Each channel features an impedance transformer, low-pass (low-frequency) or band-pass (high-frequency) filter, and grounded CPW launch. This dual-aperture front-end demonstrates that micromachining technology is now capable of fabricating broadband millimeter-wave components with a high degree of integration.
Audit Guidelines for 1989-90: Single Audit Act of 1984.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia.
Single Audit Act of 1984 was passed to provide guidelines for organizationwide audits of federally funded programs. Explanatory notes for Educational Improvement Act (EIA) summer school accounting are given. Section 1 outlines audit requirements established for state and local governments that receive and administer federal assistance. An…
ERIC Educational Resources Information Center
Ryan, Patricia
This booklet attempts to reassure single parents that they can raise healthy, happy children and provides some suggestions for parents' specific questions and concerns. The first section discusses the emotional stages children pass through when they lose a parent, ways to explain to children the loss of a parent, and ways to handle children's…
Overtaking collision effects in a cw double-pass proton linac
Tao, Yue; Qiang, Ji; Hwang, Kilean
2017-12-22
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Overtaking collision effects in a cw double-pass proton linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yue; Qiang, Ji; Hwang, Kilean
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
Deep nets vs expert designed features in medical physics: An IMRT QA case study.
Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer
2018-03-30
The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Basak, Amrita; Acharya, Ranadip; Das, Suman
2016-08-01
This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.
[Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match hadmore » already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.« less
Transfer of molybdenum disulfide to various metals
NASA Technical Reports Server (NTRS)
Barton, G. C.; Pepper, S. V.
1977-01-01
Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.
Plasmoids as magnetic flux ropes. [in geomagnetic tail
NASA Technical Reports Server (NTRS)
Moldwin, Mark B.; Hughes, W. J.
1991-01-01
A magnetic flux rope model is developed and used to determine whether the principal axis analysis (PAA) of magnetometer signatures from a single satellite pass is sufficient to obtain the magnetic topology of plasmoids. The model is also used to determine if plasmoid observations are best explained by the flux rope, closed loop, or large-amplitude wave picture. It was found that the principal axis directions is highly dependent on the satellite trajectory through the structure and, therefore, the PAA of magnetometer data from a single satellite pass is insufficient to differentiate between magnetic closed loop and flux rope models. Results also indicate that the flux rope model of plasmoid formation is well suited to unify the observations of various magnetic structures observed by ISEE 3.
Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser
NASA Astrophysics Data System (ADS)
Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.
2016-04-01
Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.
PASS-predicted design, synthesis and biological evaluation of cyclic nitrones as nootropics.
Marwaha, Alka; Goel, R K; Mahajan, Mohinder P
2007-09-15
Out of 400 virtually designed imidazoline N-oxides, five cyclic nitrones were selected on the basis of PASS prediction as potent nootropics and were evaluated for their biological activities in albino mice. The selected N-alkyl and aryl-substituted nitrones were found to be excellent nootropics. A series of lead compounds acting as cognition enhancers have been provided, which can be further exploited in search of such New Chemical Entities (NCEs).
Design Considerations of a Compounded Sterile Preparations Course
Petraglia, Christine; Mattison, Melissa J.
2016-01-01
Objective. To design a comprehensive learning and assessment environment for the practical application of compounded sterile preparations using a constructivist approach. Design. Compounded Sterile Preparations Laboratory is a required 1-credit course that builds upon the themes of training aseptic technique typically used in health system settings and threads application of concepts from other courses in the curriculum. Students used critical-thinking skills to devise appropriate strategies to compound sterile preparations. Assessment. Aseptic technique skills were assessed with objective, structured, checklist-based rubrics. Most students successfully completed practical assessments using appropriate technique (mean assessment grade=83.2%). Almost all students passed the practical media fill (98%) and gloved fingertip sampling (86%) tests on the first attempt; all passed on the second attempt. Conclusion. Employing a constructivist scaffold approach to teaching proper hygiene and aseptic technique prepared students to pass media fill and gloved fingertip tests and to perform well on practical compounding assessments. PMID:26941438
NASA Astrophysics Data System (ADS)
Pishevar, M. R.; Mohandesi, J. Aghazadeh; Omidvar, H.; Safarkhanian, M. A.
2015-10-01
Friction stir welding is suitable for joining series 5000 alloys because no fusion welding problems arise for the alloys in this process. The present study examined the effects of double-pass welding and tool rotational and travel speeds for the second-pass welding on the mechanical and microstructural properties of friction stir lap welding of AA5456 (AlMg5)-H321 (5 mm thickness) and AA5456 (AlMg5)-O (2.5 mm thickness). The first pass of all specimens was performed at a rotational speed of 650 rpm and a travel speed of 50 mm/min. The second pass was performed at rotational speeds of 250, 450, and 650 rpm and travel speeds of 25, 50, and 75 mm/min. The results showed that the second pass changed the grain sizes in the center of the nugget zone compared with the first pass. It was observed that the size of the hooking defect of the double-pass-welded specimens was higher than that for the single-pass-welded specimen. The size of the hooking defect was found to be a function of the rotational and travel speeds. The optimal joint tensile shear properties were achieved at a rotational speed of 250 rpm and travel a speed of 75 mm/min.
Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.
Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P
2018-03-01
The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.
Initial Assessment of Open Rotor Propulsion Applied to an Advanced Single-Aisle Aircraft
NASA Technical Reports Server (NTRS)
Guynn, Mark D.; Berton, Jeffrey J.; Hendricks, Eric S.; Tong, Michael T.; Haller, William J.; Thurman, Douglas R.
2011-01-01
Application of high speed, advanced turboprops, or propfans, to subsonic transport aircraft received significant attention and research in the 1970s and 1980s when fuel efficiency was the driving focus of aeronautical research. Recent volatility in fuel prices and concern for aviation s environmental impact have renewed interest in unducted, open rotor propulsion, and revived research by NASA and a number of engine manufacturers. Unfortunately, in the two decades that have passed since open rotor concepts were thoroughly investigated, NASA has lost experience and expertise in this technology area. This paper describes initial efforts to re-establish NASA s capability to assess aircraft designs with open rotor propulsion. Specifically, methodologies for aircraft-level sizing, performance analysis, and system-level noise analysis are described. Propulsion modeling techniques have been described in a previous paper. Initial results from application of these methods to an advanced single-aisle aircraft using open rotor engines based on historical blade designs are presented. These results indicate open rotor engines have the potential to provide large reductions in fuel consumption and emissions. Initial noise analysis indicates that current noise regulations can be met with old blade designs and modern, noiseoptimized blade designs are expected to result in even lower noise levels. Although an initial capability has been established and initial results obtained, additional development work is necessary to make NASA s open rotor system analysis capability on par with existing turbofan analysis capabilities.
NASA Technical Reports Server (NTRS)
Talia, George E.
1996-01-01
Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.
Dynamic mask for producing uniform or graded-thickness thin films
Folta, James A [Livermore, CA
2006-06-13
A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.
ABM Drag_Pass Report Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.
NASA Astrophysics Data System (ADS)
Narita, Moe; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Miura, Akira; Tadanaga, Kiyoharu
2018-06-01
Yb:CaYAlO4 single crystals were grown by the floating zone method and their spectral properties were investigated. Void formation was effectively suppressed by using a feed rod of Y-rich composition with the aid of a double zone-pass technique. For the oxygen excess composition of Yb:Ca0.9925Y1.0075AlO4.00375, a void-free crystal was obtained by performing only the double zone-pass. On the other hand, for cation-deficient type of Yb:Ca0.9925Y1.005AlO4, void-free crystal could not be obtained by performing the double zone-pass. The void formation is attributable to the constitutional supercooling caused by segregation of main constituents of Y and Ca, and the congruent composition may exist in the Y-rich region with existence of interstitial excess oxide ions. The absorption cross section for σ-polarization was slightly larger than that for π-polarization, which is reasonable on the basis of the crystal structure of CaYAlO4.
Increasing capacity of baseband digital data communication networks
Frankel, Robert S.; Herman, Alexander
1985-01-01
This invention provides broadband network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Increasing capacity of baseband digital data communication networks
Frankel, R.S.; Herman, A.
This invention provides broadbank network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Time-resolved double-slit interference pattern measurement with entangled photons
Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas
2014-01-01
The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360
Youssef, Nour J; Rizk, Alain G; Ibrahimi, Omar A; Tannous, Zeina S
2017-09-01
BACKGROUND The 800 nm long-pulsed diode laser machine is safe and effective for permanent hair reduction. Traditionally, most long-pulsed diode lasers used for hair removal had a relatively small spot size. Recently, a long-pulsed diode laser with a large spot size and vacuum assisted suction handpiece was introduced. The treatment parameters of each type of handpiece differ. Short and long-term clinical efficacy, treatment associated pain, and patient satisfaction are important factors to be considered. This study aims to conduct a direct head to head comparison of both handpieces of the 800nm long-pulsed diode laser by evaluating long term hair reduction, treatment associated pain and patient satisfaction. Thirteen subjects were enrolled in this prospective, self-controlled, single-center study of axillary laser hair removal. The study involved 4 treatments using a long pulsed diode laser with a large spot size HS handpiece (single pass), HS handpiece (double pass), and a small spot size ET handpiece according to a randomized choice. The treatment sessions were done at 4-8 week intervals with follow up visits taken at 6 and 12 months after the last treatment session. Hair clearance and thickness analysis were assessed using macro hair count photographs taken at baseline visit, at each treatment session visit and at follow up visits. Other factors including pain, treatment duration, and patients' preference were secondary study endpoints. At 6 months follow up visits after receiving four laser treatments, there was statistically significant hair clearance in the three treatment arms with 66.1 % mean percentage hair reduction with the ET handpiece, 43.6% with the HSS (single pass) and 64.1 % with the HSD (double). However, at one year follow up, the results significantly varied from the 6 months follow up. The mean percentage hair reduction was 57.8% with the ET handpiece treated axillas (n=9), 16.5% with the HSS (single pass) handpiece treated axillas (n=7), and 46.9% with the HSD (double pass) handpiece treated axillas (n=6). Thus, at one year follow up, there was a significant hair reduction that was similar in both the ET and HSD treated axillae (57.8% and 46.9 %), but only minimal hair reduction (16.5%)was observed in the HSS treated axillae. This is the first study that compared the long-term efficacy of the ET and HS handpieces after four treatment sessions with up to 12 months follow up after the last treatment session. It is also the first study that provided head to head comparison between HS (double pass), HS (single pass), and ET handpiece taking into consideration the end hair reduction result, the time consumed, the pain score experienced, and the overall patient satisfaction. HSD had better hair clearance and patient satisfaction when compared to ET and HSS. The long term follow up results showed that ET was superior to HSS (P less than .05), but was not superior to HSD (P greater than 0.05). However, HSD treated patients had lower pain scores with HSD than with ET. We conclude that ET handpiece is almost as efficacious as HSD handpiece, and the desired end results could be achieved with HDD with better patient satisfaction, less treatment duration and less pain.
J Drugs Dermatol. 2017;16(9):893-898.
.Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.
1961-05-01
A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.
Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.
1961-05-01
A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)
NASA Astrophysics Data System (ADS)
Nihei, Tatsuya; Nishioka, Hidetoshi; Kawamura, Chikara; Nishimura, Masahiro; Edamatsu, Masayuki; Koda, Masayuki
In order to introduce the performance based design of pile foundation, vertical stiffness of pile is one of the important design factors. Although it had been es timated the vertical stiffness of pile had the displacement-level dependency, it had been not clarified. We compared the vertical stiffness of pile measured by two loading conditions at pile foundation of the railway viaduct. Firstly, we measured the vertical stiffness at static loading test under construction of the viaduct. Secondly, we measured the vertical stiffness at the time of train passing. So, we recognized that the extrapolation of the displacement level dependency in static loading test could evaluate the vertical stiffness of pile during train passing.
Competition After Windrowing or Single-Roller Chopping For Site Preparation in the Southern Piedmont
James H. Miller
1980-01-01
For two years, post-treatment regrowth of herbaceous and woody species was sampled on two adjoining areas in the southern Piedmont where they had been either sheared and piled into windrows or chopped by a single pass of a single-drum roller-chopper. Windrowing yielded 55% less total standing crop of woody trees, shrubs, and vines after 2 years than chopping did. But...
Enzymatic Removal of Bilirubin from Blood: A Potential Treatment for Neonatal Jaundice
NASA Astrophysics Data System (ADS)
Lavin, Arthur; Sung, Cynthia; Klibanov, Alexander M.; Langer, Robert
1985-11-01
Current treatments for severe jaundice can result in major complications. Neonatal jaundice is caused by excessive accumulation of bilirubin in the blood. A small blood filter containing immobilized bilirubin oxidase was developed to reduce serum bilirubin concentrations. When human or rat blood was passed through the enzyme filter, more than 90 percent of the bilirubin was degraded in a single pass. This procedure may have important applications in the clinical treatment of neonatal jaundice.
History of Satellite Orbit Determination at NSWCDD
2018-01-31
run . Segment 40 did pass editing and its use was optional after Segment 20. Segment 30 needed to be run before Segment 80. Segment 70 was run as...control cards required to run the program. These included a CHARGE card related to usage charges and various REQUEST, ATTACH, and CATALOG cards...each) could be done in a single run after the long-arc solution had converged. These short arcs used the pass matrices from the long-arc run in their
NASA Astrophysics Data System (ADS)
Zhang, Yixin; Zhang, Xuping; Shi, Yuanlei; Ying, Zhoufeng; Wang, Shun
2014-06-01
Capacitive gate transient noise has been problematic for the high-speed single photon avalanche photodiode (SPAD), especially when the operating frequency extends to the gigahertz level. We proposed an electro-optic modulator based gate transient noise suppression method for sine-wave gated InGaAs/InP SPAD. With the modulator, gate transient is up-converted to its higher-order harmonics that can be easily removed by low pass filtering. The proposed method enables online tuning of the operating rate without modification of the hardware setup. At 250 K, detection efficiency of 14.7% was obtained with 4.8×10-6 per gate dark count and 3.6% after-pulse probabilities for 1550-nm optical signal under 1-GHz gating frequency. Experimental results have shown that the performance of the detector can be maintained within a designated frequency range from 0.97 to 1.03 GHz, which is quite suitable for practical high-speed SPAD applications operated around the gigahertz level.
NASA Technical Reports Server (NTRS)
Becker, Jeffrey C.
1995-01-01
The Thinking Machines CM-5 platform was designed to run single program, multiple data (SPMD) applications, i.e., to run a single binary across all nodes of a partition, with each node possibly operating on different data. Certain classes of applications, such as multi-disciplinary computational fluid dynamics codes, are facilitated by the ability to have subsets of the partition nodes running different binaries. In order to extend the CM-5 system software to permit such applications, a multi-program loader was developed. This system is based on the dld loader which was originally developed for workstations. This paper provides a high level description of dld, and describes how it was ported to the CM-5 to provide support for multi-binary applications. Finally, it elaborates how the loader has been used to implement the CM-5 version of MPIRUN, a portable facility for running multi-disciplinary/multi-zonal MPI (Message-Passing Interface Standard) codes.
National Waterways Study. Waterway Science and Technology.
1981-08-01
Revetments 278 VII-A Split Hull Type Trailing Suction Hopper Dredge 304 VII-B Drag Heads 306 VII-C Overflow Systems 307 VII-D Trailing Suction Hopper... head reversals are possible. Poor approach conditions currently exist at some locks which could have been mitigated if modern, improved design...of ti,.c that a navigable pass section can be used. Navigation dams must be designed to pass high flows and floods with minor swell head and without in
The integrated proactive surveillance system for prostate cancer.
Wang, Haibin; Yatawara, Mahendra; Huang, Shao-Chi; Dudley, Kevin; Szekely, Christine; Holden, Stuart; Piantadosi, Steven
2012-01-01
In this paper, we present the design and implementation of the integrated proactive surveillance system for prostate cancer (PASS-PC). The integrated PASS-PC is a multi-institutional web-based system aimed at collecting a variety of data on prostate cancer patients in a standardized and efficient way. The integrated PASS-PC was commissioned by the Prostate Cancer Foundation (PCF) and built through the joint of efforts by a group of experts in medical oncology, genetics, pathology, nutrition, and cancer research informatics. Their main goal is facilitating the efficient and uniform collection of critical demographic, lifestyle, nutritional, dietary and clinical information to be used in developing new strategies in diagnosing, preventing and treating prostate cancer.The integrated PASS-PC is designed based on common industry standards - a three tiered architecture and a Service- Oriented Architecture (SOA). It utilizes open source software and programming languages such as HTML, PHP, CSS, JQuery, Drupal and MySQL. We also use a commercial database management system - Oracle 11g. The integrated PASS-PC project uses a "confederation model" that encourages participation of any interested center, irrespective of its size or location. The integrated PASS-PC utilizes a standardized approach to data collection and reporting, and uses extensive validation procedures to prevent entering erroneous data. The integrated PASS-PC controlled vocabulary is harmonized with the National Cancer Institute (NCI) Thesaurus. Currently, two cancer centers in the USA are participating in the integrated PASS-PC project.THE FINAL SYSTEM HAS THREE MAIN COMPONENTS: 1. National Prostate Surveillance Network (NPSN) website; 2. NPSN myConnect portal; 3. Proactive Surveillance System for Prostate Cancer (PASS-PC). PASS-PC is a cancer Biomedical Informatics Grid (caBIG) compatible product. The integrated PASS-PC provides a foundation for collaborative prostate cancer research. It has been built to meet the short term goal of gathering prostate cancer related data, but also with the prerequisites in place for future evolution into a cancer research informatics platform. In the future this will be vital for successful prostate cancer studies, care and treatment.
The Integrated Proactive Surveillance System for Prostate Cancer
Wang, Haibin; Yatawara, Mahendra; Huang, Shao-Chi; Dudley, Kevin; Szekely, Christine; Holden, Stuart; Piantadosi, Steven
2012-01-01
In this paper, we present the design and implementation of the integrated proactive surveillance system for prostate cancer (PASS-PC). The integrated PASS-PC is a multi-institutional web-based system aimed at collecting a variety of data on prostate cancer patients in a standardized and efficient way. The integrated PASS-PC was commissioned by the Prostate Cancer Foundation (PCF) and built through the joint of efforts by a group of experts in medical oncology, genetics, pathology, nutrition, and cancer research informatics. Their main goal is facilitating the efficient and uniform collection of critical demographic, lifestyle, nutritional, dietary and clinical information to be used in developing new strategies in diagnosing, preventing and treating prostate cancer. The integrated PASS-PC is designed based on common industry standards – a three tiered architecture and a Service- Oriented Architecture (SOA). It utilizes open source software and programming languages such as HTML, PHP, CSS, JQuery, Drupal and MySQL. We also use a commercial database management system – Oracle 11g. The integrated PASS-PC project uses a “confederation model” that encourages participation of any interested center, irrespective of its size or location. The integrated PASS-PC utilizes a standardized approach to data collection and reporting, and uses extensive validation procedures to prevent entering erroneous data. The integrated PASS-PC controlled vocabulary is harmonized with the National Cancer Institute (NCI) Thesaurus. Currently, two cancer centers in the USA are participating in the integrated PASS-PC project. The final system has three main components: 1. National Prostate Surveillance Network (NPSN) website; 2. NPSN myConnect portal; 3. Proactive Surveillance System for Prostate Cancer (PASS-PC). PASS-PC is a cancer Biomedical Informatics Grid (caBIG) compatible product. The integrated PASS-PC provides a foundation for collaborative prostate cancer research. It has been built to meet the short term goal of gathering prostate cancer related data, but also with the prerequisites in place for future evolution into a cancer research informatics platform. In the future this will be vital for successful prostate cancer studies, care and treatment. PMID:22505956
Daryasafar, Navid; Baghbani, Somaye; Moghaddasi, Mohammad Naser; Sadeghzade, Ramezanali
2014-01-01
We intend to design a broadband band-pass filter with notch-band, which uses coupled transmission lines in the structure, using new models of coupled transmission lines. In order to realize and present the new model, first, previous models will be simulated in the ADS program. Then, according to the change of their equations and consequently change of basic parameters of these models, optimization and dependency among these parameters and also their frequency response are attended and results of these changes in order to design a new filter are converged.
Design of collection optics and polychromators for a JT-60SA Thomson scattering system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tojo, H.; Hatae, T.; Sakuma, T.
2010-10-15
This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T{sub e} by considering all spatial channels and a double-pass laser system with different geometric parameters.
Hao, L-H; Guo, S-C; Liu, C-C; Zhu, H; Wang, B; Fu, L; Chen, M-T; Zhou, L; Chi, J-Y; Yang, W; Nie, W-J; Lu, Y
2014-12-01
The bioavailability of rifampicin (RMP) decreases by ∼30% on interaction with isoniazid (INH) in stomach acid conditions, which can result in the development of drug resistance and treatment failure. To compare the bioavailability in healthy volunteers of five anti-tuberculosis fixed-drug combinations (FDCs) used in China (formulations A-E) containing RMP and INH against single-drug formulations taken as reference. Two- or three-period, two- or three-sequence crossover study of drugs. Only RMP formulation E passed the bioequivalence criteria, with 90% confidence intervals for the log-transformed ratios of AUC₀₋₂₄, AUC₀₋∞, and Cmax of respectively 89.9-103.7, 89.6-102.2 and 87.7-107.9. For INH, formulations A, B, C and D passed the bioequivalence test, but not product E, where the 90%CIs of the log-transformed ratios of AUC₀₋₂₄, AUC₀₋∞, and Cmax were respectively 85.2-100.7, 85.2-100.7 and 73.8-100.9. According to the results of the bioequivalence analysis carried out in this study, RMP formulations A, B, C and D were not within the acceptable range and only formulation E passed the bioequivalence criteria of 80-125%. In comparison, four-test INH formulations (A, B, C and D) were bioequivalent to the corresponding single-drug formulation, while product E failed in the bioequivalence criteria.
How to pass the false-belief task before your fourth birthday.
Rubio-Fernández, Paula; Geurts, Bart
2013-01-01
The experimental record of the last three decades shows that children under 4 years old fail all sorts of variations on the standard false-belief task, whereas more recent studies have revealed that infants are able to pass nonverbal versions of the task. We argue that these paradoxical results are an artifact of the type of false-belief tasks that have been used to test infants and children: Nonverbal designs allow infants to keep track of a protagonist's perspective over a course of events, whereas verbal designs tend to disrupt the perspective-tracking process in various ways, which makes it too hard for younger children to demonstrate their capacity for perspective tracking. We report three experiments that confirm this hypothesis by showing that 3-year-olds can pass a suitably streamlined version of the verbal false-belief task. We conclude that young children can pass the verbal false-belief task provided that they are allowed to keep track of the protagonist's perspective without too much disruption.
An intelligent subsurface buoy design for measuring ocean ambient noise
NASA Astrophysics Data System (ADS)
Li, Bing; Wang, Lei
2012-11-01
A type of ultra-low power subsurface buoy system is designed to measure and record ocean ambient noise data. The buoy utilizes a vector hydrophone (pass band 20Hz-1.2kHz) and a 6-element vertical hydrophone array (pass band 20Hz-2kHz) to measure ocean ambient noise. The acoustic signals are passed through an automatically modified gain, a band pass filter, and an analog-to-digital (A/D) conversion module. They are then stored in high-capacity flash memory. In order to identify the direction of noise source, the vector sensor measuring system has integrated an electric-magnetic compass. The system provides a low-rate underwater acoustic communication system which is used to report the buoy state information and a high-speed USB interface which is used to retrieve the recorded data on deck. The whole system weighs about 125kg and can operate autonomously for more than 72 hours. The system's main architecture and the sea-trial test results are provided in this paper.
Low-cost solar array project task 1: Silicon material. Gaseous melt replenishment system
NASA Technical Reports Server (NTRS)
Jewett, D. N.; Bates, H. E.; Hill, D. M.
1980-01-01
The operation of a silicon production technique was demonstrated. The essentials of the method comprise chemical vapor deposition of silicon, by hydrogen reduction of chlorosilanes, on the inside of a quartz reaction vessel having large internal surface area. The system was designed to allow successive deposition-melting cycles, with silicon removal being accomplished by discharging the molten silicon. The liquid product would be suitable for transfer to a crystal growth process, casting into solid form, or production of shots. A scaled-down prototype reactor demonstrated single pass conversion efficiency of 20 percent and deposition rates and energy consumption better than conventional Siemens reactors, via deposition rates of 365 microns/hr. and electrical consumption of 35 Kwhr/kg of silicon produced.
The laser accelerator-another unicorn in the garden
NASA Astrophysics Data System (ADS)
Hand, L. N.
1981-07-01
Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.
Kim, Myoung Jin; Jung, Yong Min; Kim, Bok Hyeon; Han, Won-Taek; Lee, Byeong Ha
2007-08-20
We demonstrate a fiber-based bandpass filter with an ultra-wide spectral bandwidth. The ultra-wide band feature is achieved by inscribing a long-period fiber grating (LPG) in a specially-designed low index core single mode fiber. To get the bandpass function, the evanescent field coupling between two attached fibers is utilized. By applying strain, the spectral shape of the pass-band is adjusted to flat-top and Gaussian shapes. For the flat-top case, the bandwidth is obtained ~ 160 nm with an insertion loss of ~ 2 dB. With strain, the spectral shape is switched into a Gaussian one, which has ~ 120 nm FWHM and ~ 4.18 dB insertion loss at the peak.
Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulents
NASA Technical Reports Server (NTRS)
1978-01-01
The technical activities were directed toward the assessment of encapsulation processes for use with ethylene/vinyl acetate copolymer as the pottant. Potentially successful formulations were prepared by compounding the raw polymer with ultraviolet absorbers and crosslinking agents to give stabilized and curable compositions. The compounded resin was then converted to a more useful form with an extruder to give pottant in sheets that could be more easily used in lamination. After experimenting with various techniques, the vacuum-bag process was found to be an excellent encapsulation method. Miniature single-celled and multi-celled solar modules of both substrate and superstrate designs were prepared by this technique. The resulting modules were of good appearance, were bubble-free, and successfully passed the thermal cycle test.
Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.
1976-06-15
A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.
Day, John D; Doshi, Rahul N; Belott, Peter; Birgersdotter-Green, Ulrika; Behboodikhah, Mahnaz; Ott, Peter; Glatter, Kathryn A; Tobias, Serge; Frumin, Howard; Lee, Byron K; Merillat, John; Wiener, Isaac; Wang, Samuel; Grogin, Harlan; Chun, Sung; Patrawalla, Rob; Crandall, Brian; Osborn, Jeffrey S; Weiss, J Peter; Lappe, Donald L; Neuman, Stacey
2007-05-08
Implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators have relied on multiple ventricular fibrillation (VF) induction/defibrillation tests at implantation to ensure that the device can reliably sense, detect, and convert VF. The ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations) is the first large, multicenter, prospective trial comparing vulnerability safety margin testing versus defibrillation safety margin testing with a single VF induction/defibrillation. A total of 426 patients receiving an implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator underwent vulnerability safety margin or defibrillation safety margin screening at 14 J in a randomized order. After this, patients underwent confirmatory testing, which required 2 VF conversions without failure at < or = 21 J. Patients who passed their first 14-J and confirmatory tests, irrespective of the results of their second 14-J test, had their devices programmed to a 21-J shock for ventricular tachycardia (VT) or VF > or = 200 bpm and were followed up for 1 year. Of 420 patients who underwent 14-J vulnerability safety margin screening, 322 (76.7%) passed. Of these, 317 (98.4%) also passed 21-J confirmatory tests. Of 416 patients who underwent 14-J defibrillation safety margin screening, 343 (82.5%) passed, and 338 (98.5%) also passed 21-J confirmatory tests. Most clinical VT/VF episodes (32 of 37, or 86%) were terminated by the first shock, with no difference in first shock success. In all observed cases in which the first shock was unsuccessful, subsequent shocks terminated VT/VF without complication. Although spontaneous episodes of fast VT/VF were limited, there was no difference in the odds of first shock efficacy between groups. Screening with vulnerability safety margin or defibrillation safety margin may allow for inductionless or limited shock testing in most patients.
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Single Pass Streaming BLAST on FPGAs*†
Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom
2008-01-01
Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828
Hopf, H-B; Hochscherf, M; Jehmlich, M; Leischik, M; Ritter, J
2007-07-01
This paper describes the introduction of a single-pass batch hemodialysis system for renal replacement therapy in a 14 bed intensive care unit. The goals were to reduce the workload of intensive care unit physicians using an alternative and simpler method compared to continuous veno-venous hemodiafiltration (CVVHDF) and to reduce the costs of hemofiltrate solutions (80,650 EUR per year in our clinic in 2005). We describe and evaluate the process of implementation of the system as well as the achieved and prospective savings. We conclude that a close cooperation of all participants (physicians, nurses, economists, technicians) of a hospital can achieve substantial benefits for patients and employees as well as reduce the economic burden of a hospital.
Cavity-enhanced Faraday rotation measurement with auto-balanced photodetection.
Chang, Chia-Yu; Shy, Jow-Tsong
2015-10-01
Optical cavity enhancement for a tiny Faraday rotation is demonstrated with auto-balanced photodetection. This configuration is analyzed using the Jones matrix formalism. The resonant rotation signal is amplified, and thus, the angular sensitivity is improved. In the experiment, the air Faraday rotation is measured with an auto-balanced photoreceiver in single-pass and cavity geometries. The result shows that the measured Faraday rotation in the single-pass geometry is enhanced by a factor of 85 in the cavity geometry, and the sensitivity is improved to 7.54×10(-10) rad Hz(-1/2), which agrees well with the Jones matrix analysis. With this verification, we propose an AC magnetic sensor whose magnetic sensitivity is expected to achieve 10 pT Hz(-1/2).
Initial application of a dual-sweep streak camera to the Duke storage ring OK-4 source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.H.; Yang, B.X.; Litvinenko, V.
1997-08-01
The visible and UV spontaneous emission radiation (SER) from the Duke OK-4 wiggler has been used with a Hamamatsu C5680 dual-sweep streak camera to characterize the stored electron beams. Particle beam energies of 270 and 500 MeV in the Duke storage ring were used in this initial application with the OK-4 adjusted to generate wavelengths from 500 nm to near 200 nm. The OK-4 magnetic system with its 68 periods provided a much stronger radiation source than a nearby bending magnet source point. Sensitivity to single-bunch, single-turn SER was shown down to 4 {mu}A beam current at {lambda} = 450more » nm. The capability of seeing second passes in the FEL resonator at a wavelength near 200 nm was used to assess the cavity length versus orbit length. These tests (besides supporting preparation for UV-visible SR FEL startups) are also relevant to possible diagnostics techniques for single-pass FEL prototype facilities.« less
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
Double passing the Kitt Peak 1-m Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hubbard, R.; Brault, J. W.
1985-01-01
Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.
Design of dual band FSS by using quadruple L-slot technique
NASA Astrophysics Data System (ADS)
Fauzi, Noor Azamiah Md; Aziz, Mohamad Zoinol Abidin Abd.; Said, Maizatul Alice Meor; Othman, Mohd Azlishah; Ahmad, Badrul Hisham; Malek, Mohd Fareq Abd
2015-05-01
This paper presents a new design of dual band frequency selective surface (FSS) for band pass microwave transmission application. FSS can be used on energy saving glass to improve the transmission of wireless communication signals through the glass. The microwave signal will be attenuate when propagate throughout the different structure such as building. Therefore, some of the wireless communication system cannot be used in the optimum performance. The aim of this paper is designed, simulated and analyzed the new dual band FSS structure for microwave transmission. This design is based on a quadruple L slot combined with cross slot to produce pass band at 900 MHz and 2.4 GHz. The vertical of pair inverse L slot is used as the band pass for the frequency of 2.4GHz. While, the horizontal of pair inverse L slot is used as the band pass at frequency 900MHz. This design is simulated and analyzed by using Computer Simulation Technology (CST) Microwave Studio (MWS) software. The characteristics of the transmission (S21) and reflection (S11) of the dual band FSS were simulater and analyzed. The bandwidth of the first band is 118.91MHz which covered the frequency range from 833.4MHz until 952.31MHz. Meanwhile, the bandwidth for the second band is 358.84MHz which covered the frequency range from 2.1475GHz until 2.5063GHz. The resonance/center frequency of this design is obtained at 900MHz with a 26.902dB return loss and 2.37GHz with 28.506dB a return loss. This FSS is suitable as microwave filter for GSM900 and WLAN 2.4GHz application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xingye; Hu, Bin; Wei, Changdong
Lanthanum zirconate (La2Zr2O7) is a promising candidate material for thermal barrier coating (TBC) applications due to its low thermal conductivity and high-temperature phase stability. In this work, a novel image-based multi-scale simulation framework combining molecular dynamics (MD) and finite element (FE) calculations is proposed to study the thermal conductivity of La2Zr2O7 coatings. Since there is no experimental data of single crystal La2Zr2O7 thermal conductivity, a reverse non-equilibrium molecular dynamics (reverse NEMD) approach is first employed to compute the temperature-dependent thermal conductivity of single crystal La2Zr2O7. The single crystal data is then passed to a FE model which takes into accountmore » of realistic thermal barrier coating microstructures. The predicted thermal conductivities from the FE model are in good agreement with experimental validations using both flash laser technique and pulsed thermal imaging-multilayer analysis. The framework proposed in this work provides a powerful tool for future design of advanced coating systems. (C) 2016 Elsevier Ltd. All rights reserved.« less
A feasibility study of reactor-based deep-burn concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Taiwo, T. A.; Hill, R. N.
2005-09-16
A systematic assessment of the General Atomics (GA) proposed Deep-Burn concept based on the Modular Helium-Cooled Reactor design (DB-MHR) has been performed. Preliminary benchmarking of deterministic physics codes was done by comparing code results to those from MONTEBURNS (MCNP-ORIGEN) calculations. Detailed fuel cycle analyses were performed in order to provide an independent evaluation of the physics and transmutation performance of the one-pass and two-pass concepts. Key performance parameters such as transuranic consumption, reactor performance, and spent fuel characteristics were analyzed. This effort has been undertaken in close collaborations with the General Atomics design team and Brookhaven National Laboratory evaluation team.more » The study was performed primarily for a 600 MWt reference DB-MHR design having a power density of 4.7 MW/m{sup 3}. Based on parametric and sensitivity study, it was determined that the maximum burnup (TRU consumption) can be obtained using optimum values of 200 {micro}m and 20% for the fuel kernel diameter and fuel packing fraction, respectively. These values were retained for most of the one-pass and two-pass design calculations; variation to the packing fraction was necessary for the second stage of the two-pass concept. Using a four-batch fuel management scheme for the one-pass DB-MHR core, it was possible to obtain a TRU consumption of 58% and a cycle length of 286 EFPD. By increasing the core power to 800 MWt and the power density to 6.2 MW/m{sup 3}, it was possible to increase the TRU consumption to 60%, although the cycle length decreased by {approx}64 days. The higher TRU consumption (burnup) is due to the reduction of the in-core decay of fissile Pu-241 to Am-241 relative to fission, arising from the higher power density (specific power), which made the fuel more reactivity over time. It was also found that the TRU consumption can be improved by utilizing axial fuel shuffling or by operating with lower material temperatures (colder core). Results also showed that the transmutation performance of the one-pass deep-burn concept is sensitive to the initial TRU vector, primarily because longer cooling time reduces the fissile content (Pu-241 specifically.) With a cooling time of 5 years, the TRU consumption increases to 67%, while conversely, with 20-year cooling the TRU consumption is about 58%. For the two-pass DB-MHR (TRU recycling option), a fuel packing fraction of about 30% is required in the second pass (the recycled TRU). It was found that using a heterogeneous core (homogeneous fuel element) concept, the TRU consumption is dependent on the cooling interval before the 2nd pass, again due to Pu-241 decay during the time lag between the first pass fuel discharge and the second pass fuel charge. With a cooling interval of 7 years (5 and 2 years before and after reprocessing) a TRU consumption of 55% is obtained. With an assumed ''no cooling'' interval, the TRU consumption is 63%. By using a cylindrical core to reduce neutron leakage, TRU consumption of the case with 7-year cooling interval increases to 58%. For a two-pass concept using a heterogeneous fuel element (and homogeneous core) with first and second pass volume ratio of 2:1, the TRU consumption is 62.4%. Finally, the repository loading benefits arising from the deep-burn and Inert Matrix Fuel (IMF) concepts were estimated and compared, for the same initial TRU vector. The DB-MHR concept resulted in slightly higher TRU consumption and repository loading benefit compared to the IMF concept (58.1% versus 55.1% for TRU consumption and 2.0 versus 1.6 for estimated repository loading benefit).« less
Detail, Facture, and Colour in the Architecture of Polish Single-Family Houses after 1989
NASA Astrophysics Data System (ADS)
Sztafrowski, Marek
2017-10-01
The article presents single-family houses architecture transformations since 1989, with particularly close attention paid to the significance of detail, facture, and colour. The article presents the architecture as an art of designing and building facilities with both use and aesthetic value, an art of shaping space and building forms. Architectural work should correspond to the intended function, technique, economic and aesthetic requirements, thus shaping all elements of human immediate environment, both inside and outside of the building. Architecture of the building is perceived as form, structure, and function, as well as detail, facture, and colour. Facture and colour are created through materials used for external finishes. The solid of the building is noticed first while looking at the building, then the finishes detail such as colour, facture, and detail. Materials for external finishes are commonly selected for their aesthetic value equally with their technical characteristics. The detail was always a characteristic element of style. However, currently the fashion for details can be observed, the fashion for usage of materials for external finishes and inter-connected with that colour and facture. The architecture of Polish single-family houses underwent considerable metamorphosis after system change of 1989 - from destitute in form, devoid in detail and colour socmodernism, to architecture extremely varied in terms of form, utilised structures, materials, and detail. Hence, appearance of the phenomenon called fashion can be observed in the architecture, understood as constant changeability, seeking novelty, and creation based on opinion-forming centres. The architectural fashion consists of form, function, structure, building materials, detail, facture, and colour trends, e.g. after rejecting socmodernism, steep roofs characteristic for single-family houses trend started. After 1989, initially individual single-family house projects were created; however, rapidly developing building market precipitated the creation of catalogue solutions, repetitive and conventional. Currently, potential customers have access to catalogues of numerous design studios and companies, every last one including few dozens of comprehensive constructions design options of single-family house at the fewest. In the conventional catalogue designs, steep roofs began to gain popularity, becoming increasingly complicated with various choices of roof windows as time passes. The entrances are frequently adorned with porticos and columns. So-called “mansion architecture” of the single-family houses has developed. Recently, fashion alluding to modernism of 1920s has developed in the single-family houses architecture. New trends among architects are adapted with increasing frequency by investors looking for unconventional solutions. The neo-modernism trend is noticeable predominantly in individual projects; however, it appears in catalogue propositions with increasing frequency. Designs of single-family houses of simplistic shape and distinct expression emerge, with flat roofs, minimalistic detail, and vital, carefully chosen in terms of facture and colour, material solutions of wall finishes. Apart from the conventional solutions, presently the building market offers a vast variety of meticulously prepared, factory-made, and thoroughly checked in various realisations details. Architects discontinued using manufactured and individually designed detail in favour of utilising conventional solutions for designed objects. In a well-designed single-family house, facture, colour, and detail of materials utilised in external finishes should harmonise with the building shape and form.
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
46 CFR 154.706 - Cargo boil-off as fuel: Fuel lines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.706 Cargo boil-off as fuel: Fuel lines. (a) Gas fuel lines must not pass through accommodation, service, or control spaces. Each gas fuel line passing...
ERIC Educational Resources Information Center
Ayoun, Dalila
2001-01-01
Tests the effectiveness of written recasts versus models in the acquisition of the aspectual distinction between two past tenses in French, the "passe compose" and the "imparfait" with a pretest, repeated exposure, and posttest design. (Author/VWL)
Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke
2016-01-01
Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school office buildings. PMID:26742055
Properties of train load frequencies and their applications
NASA Astrophysics Data System (ADS)
Milne, D. R. M.; Le Pen, L. M.; Thompson, D. J.; Powrie, W.
2017-06-01
A train in motion applies moving steady loads to the railway track as well as dynamic excitation; this causes track deflections, vibration and noise. At low frequency, the spectrum of measured track vibration has been found to have a distinct pattern; with spectral peaks occurring at multiples of the vehicle passing frequency. This pattern can be analysed to quantify aspects of train and track performance as well as to design sensors and systems for trackside condition monitoring. To this end, analytical methods are developed to determine frequency spectra based on known vehicle geometry and track properties. It is shown that the quasi-static wheel loads from a moving train, which are the most significant cause of the track deflections at low frequency, can be understood by considering a loading function representing the train geometry in combination with the response of the track to a single unit load. The Fourier transform of the loading function describes how the passage of repeating vehicles within a train leads to spectral peaks at various multiples of the vehicle passing frequency. When a train consists of a single type of repeating vehicle, these peaks depend on the geometry of that vehicle type as the separation of axles on a bogie and spacing of those bogies on a vehicle cause certain frequencies to be suppressed. Introduction of different vehicle types within a train or coupling of trainsets with a different inter-car length changes the spectrum, although local peaks still occur at multiples of the passing frequency of the primary vehicle. Using data from track-mounted geophones, it is shown that the properties of the train load spectrum, together with a model for track behaviour, allows calculation of the track system support modulus without knowledge of the axle loads, and enables rapid determination of the train speed. For continuous remote condition monitoring, track-mounted transducers are ideally powered using energy harvesting devices. These need to be tuned to optimise energy abstraction; the appropriate energy harvesting frequencies for given vehicle types and line speeds can also be predicted using the models developed.
Sharp, T G
1984-02-01
The study was designed to determine whether any one of seven selected variables or a combination of the variables is predictive of performance on the State Board Test Pool Examination. The selected variables studied were: high school grade point average (HSGPA), The University of Tennessee, Knoxville, College of Nursing grade point average (GPA), and American College Test Assessment (ACT) standard scores (English, ENG; mathematics, MA; social studies, SS; natural sciences, NSC; composite, COMP). Data utilized were from graduates of the baccalaureate program of The University of Tennessee, Knoxville, College of Nursing from 1974 through 1979. The sample of 322 was selected from a total population of 572. The Statistical Analysis System (SAS) was designed to accomplish analysis of the predictive relationship of each of the seven selected variables to State Board Test Pool Examination performance (result of pass or fail), a stepwise discriminant analysis was designed for determining the predictive relationship of the strongest combination of the independent variables to overall State Board Test Pool Examination performance (result of pass or fail), and stepwise multiple regression analysis was designed to determine the strongest predictive combination of selected variables for each of the five subexams of the State Board Test Pool Examination. The selected variables were each found to be predictive of SBTPE performance (result of pass or fail). The strongest combination for predicting SBTPE performance (result of pass or fail) was found to be GPA, MA, and NSC.
Swartz, Richard S; Luchansky, John B; Kulas, Megan; Shoyer, Bradley A; Shane, Laura E; Strasser, Hannah; Munson, Madison; Porto-Fett, Anna C S
2015-05-01
Thermal inactivation of Shiga toxin-producing Escherichia coli (STEC) cells within knitted/cubed beef steaks following cooking on a nonstick griddle was quantified. Both faces of each beef cutlet (ca. 64 g; ca. 8.5 cm length by 10.5 cm width by 0.75 cm height) were surface inoculated (ca. 6.6 log CFU/g) with 250 μl of a rifampin-resistant cocktail composed of single strains from each of eight target serogroups of STEC: O26:H11, O45:H2, O103:H2, O104:H4, O111:H(2), O121:H19, O145:NM, and O157:H7. Next, inoculated steaks were (i) passed once through a mechanical tenderizer and then passed one additional time through the tenderizer perpendicular to the orientation of the first pass (single cubed steak; SCS) or (ii) passed once through a mechanical tenderizer, and then two tenderized cutlets were knitted together by passage concomitantly through the tenderizer two additional times perpendicular to the orientation of the previous pass (double cubed steak; DCS). SCS and DCS were individually cooked for up to 3.5 min per side in 30 ml of extra virgin olive oil heated to 191.5°C (376.7°F) on a hard-anodized aluminum nonstick griddle using a flat-surface electric ceramic hot plate. Regardless of steak preparation (i.e., single versus double cubed steaks), as expected, the longer the cooking time, the higher the final internal temperature, and the greater the inactivation of STEC cells within cubed steaks. The average final internal temperatures of SCS cooked for up 2.5 min and DCS cooked for up to 3.5 min ranged from 59.8 to 94.7°C and 40.3 to 82.2°C, respectively. Cooking SCS and DCS on an aluminum griddle set at ca. 191.5°C for 0.5 to 2.5 min and 1.0 to 3.5 min per side, respectively, resulted in total reductions in pathogen levels of ca. 1.0 to ≥6.8 log CFU/g. These data validated that cooking SCS (ca. 0.6 cm thick) or DCS (ca. 1.3 cm thick) on a nonstick aluminum griddle heated at 191.5°C for at least 1.25 and 3.0 min per side, respectively, was sufficient to achieve a 5.0log reduction in the levels of the single strains from each of the eight target STEC serogroups tested.
NASA Technical Reports Server (NTRS)
Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey
2010-01-01
The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Manshadi, Farzin; Rahmat-Samii, Yahya; Cramer, Paul
1990-01-01
Some of the various categories of issues that must be considered in the selection and design of spacecraft antennas for a Personal Access Satellite System (PASS) are addressed, and parametric studies for some of the antenna concepts to help the system designer in making the most appropriate antenna choice with regards to weight, size, and complexity, etc. are provided. The question of appropriate polarization for the spacecraft as well as for the User Terminal Antenna required particular attention and was studied in some depth. Circular polarization seems to be the favored outcome of this study. Another problem that has generally been a complicating factor in designing the multiple beam reflector antennas, is the type of feeds (single vs. multiple element and overlapping vs. non-overlapping clusters) needed for generating the beams. This choice is dependent on certain system design factors, such as the required frequency reuse, acceptable interbeam isolation, antenna efficiency, number of beams scanned, and beam-forming network (BFN) complexity. This issue is partially addressed, but is not completely resolved. Indications are that it may be possible to use relatively simple non-overlapping clusters of only a few elements, unless a large frequency reuse and very stringent isolation levels are required.
Cyclone reactor with internal separation and axial recirculation
Becker, F.E.; Smolensky, L.A.
1988-07-19
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.
Cyclone reactor with internal separation and axial recirculation
Becker, Frederick E.; Smolensky, Leo A.
1989-01-01
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.
Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis
NASA Astrophysics Data System (ADS)
Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.
2017-06-01
Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.
NASA Technical Reports Server (NTRS)
1991-01-01
California Polytechnic State University's design project for the 1990-91 school year was the design of a close air support aircraft. There were eight design groups that participated and were given requests for proposals. These proposals contained mission specifications, particular performance and payload requirements, as well as the main design drivers. The mission specifications called for a single pilot weighing 225 lb with equipment. The design mission profile consisted of the following: (1) warm-up, taxi, take off, and accelerate to cruise speed; (2) dash at sea level at 500 knots to a point 250 nmi from take off; (3) combat phase, requiring two combat passes at 450 knots that each consist of a 360 deg turn and an energy increase of 4000 ft. - at each pass, half of air-to-surface ordnance is released; (4) dash at sea level at 500 knots 250 nmi back to base; and (5) land with 20 min of reserve fuel. The request for proposal also specified the following performance requirements with 50 percent internal fuel and standard stores: (1) the aircraft must be able to accelerate from Mach 0.3 to 0.5 at sea level in less than 20 sec; (2) required turn rates are 4.5 sustained g at 450 knots at sea level; (3) the aircraft must have a reattack time of 25 sec or less (reattack time was defined as the time between the first and second weapon drops); (4) the aircraft is allowed a maximum take off and landing ground roll of 2000 ft. The payload requirements were 20 Mk 82 general-purpose free-fall bombs and racks; 1 GAU-8A 30-mm cannon with 1350 rounds; and 2 AIM-9L Sidewinder missiles and racks. The main design drivers expressed in the request for proposal were that the aircraft should be survivable and maintainable. It must be able to operate in remote areas with little or no maintenance. Simplicity was considered the most important factor in achieving the former goal. In addition, the aircraft must be low cost both in acquisition and operation. The summaries of the aircraft configurations developed by the eight groups are presented.
Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A
2015-11-20
We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.
Noyes, Matthew P; Lederman, Evan; Adams, Christopher R; Denard, Patrick J
2018-05-01
To compare the biomechanical properties of single-row repair with triple-loaded (TL) anchor repair versus a knotless rip stop (KRS) repair in a rotator cuff repair model. Rotator cuff tears were created in 8 cadaveric matched-pair specimens and repaired with a TL anchor or KRS construct. In the TL construct, anchors were placed in the greater tuberosity and then all suture limbs were passed through the rotator cuff as simple sutures and tied. In the KRS construct, a 2-mm suture tape was passed through the tendon in an inverted mattress fashion, and a free suture was passed medial to the suture tape to create a rip-stop. Then, the suture tape and free suture were secured with knotless anchors. Displacement was observed with video tracking after cyclic loading, and specimens were loaded to failure. The mean load to failure was 438 ± 59 N in TL anchor repairs compared with 457 ± 110 N in KRS repairs (P = .582). The mean displacement with cyclic loading was 3.8 ± 1.6 mm in TL anchor repairs versus 4.3 ± 1.8 mm in the KRS group (P = .297). Mode of failure was consistent in both groups, with 6 of 8 failures in the TL anchor group and 7 of 8 failures in KRS group occurring from anchor pullout. There is no statistical difference in load to failure and cyclic loading between TL anchor and KRS single-row repair techniques. KRS repair technique may be an alternative method of repairing full-thickness supraspinatus tendon tears with a single-row construct. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
New Primary Dew-Point Generators at HMI/FSB-LPM in the Range from -70 °C to +60 °C
NASA Astrophysics Data System (ADS)
Zvizdic, Davor; Heinonen, Martti; Sestan, Danijel
2012-09-01
To extend the dew-point range and to improve the uncertainties of the humidity scale realization at HMI/FSB-LPM, new primary low- and high-range dew-point generators were developed and implemented in cooperation with MIKES, in 2009 through EUROMET Project No. 912. The low-range saturator is designed for primary realization of the dew-point temperature scale from -70 °C to + 5 °C, while the high-range saturator covers the range from 1 °C to 60 °C. The system is designed as a single-pressure, single-pass dew-point generator. MIKES designed and constructed both the saturators to be implemented in dew-point calibration systems at LPM. The LPM took care of purchasing and adapting liquid baths, of implementing the temperature and pressure measurement equipment appropriate for use in the systems, and development of gas preparation and flow control systems as well as of the computer-based automated data acquisition. The principle and the design of the generator are described in detail and schematically depicted. The tests were performed at MIKES to investigate how close both the saturators are to an ideal saturator. Results of the tests show that both the saturators are efficient enough for a primary realization of the dew-point temperature scale from -70 °C to + 60 °C, in the specified flow-rate ranges. The estimated standard uncertainties due to the non-ideal saturation efficiency are between 0.02 °C and 0.05 °C.
Chang, Soon Bok; Kim, Young Ran; Yoon, Mi Hee; Shim, Joung Un; Ko, Eun Hui; Kim, Min Ok
2004-12-01
The purpose of this study was to compare differences in the time when bowel sounds were heard and gas was passed in women who had an abdominal hysterectomy and were treated for 5 minutes (experimental group A) or 10 minutes (experimental group B) with San-Yin-Jiao (SP-6) acupressure. The design of this study was a nonequivalent control group non-synchronized post test only design. The participants included 142 women, 39 in experimental group A, 30 in experimental group B, and 73 in the control group. Data was collected using a structured questionnaire which included items on general characteristics and a self report of time when gas was passed. Differences for the three groups as to time when bowel sounds were heard and gas was passed were analyzed using ANOVA. The time when bowel sounds were heard was statistically significantly shorter in both experimental groups compared to the control group(F=10.29, p=.000). The time when gas was passed was statistically significantly shorter in experimental group B(10 min) compared to the control group(F=4.68, p=.011). It could be concluded that SP-6 acupressure of 10 minutes was effective in shortening the time until bowel sounds were heard and gas was passed for women who had had an abdominal hysterectomy. Replication of the study with a larger number of participants is necessary in order to be able to generalize the results.
NASA Astrophysics Data System (ADS)
Hariyadi, T.; Mulyasari, S.; Mukhidin
2018-02-01
In this paper we have designed and simulated a Band Pass Filter (BPF) at X-band frequency. This filter is designed for X-band weather radar application with 9500 MHz center frequency and bandwidth -3 dB is 120 MHz. The filter design was performed using a hairpin microstrip combined with an open stub and defected ground structure (DGS). The substrate used is Rogers RT5880 with a dielectric constant of 2.2 and a thickness of 1.575 mm. Based on the simulation results, it is found that the filter works on frequency 9,44 - 9,56 GHz with insertion loss value at pass band is -1,57 dB.
Design structure for in-system redundant array repair in integrated circuits
Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.
2008-11-25
A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.
MPF: A portable message passing facility for shared memory multiprocessors
NASA Technical Reports Server (NTRS)
Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.
1987-01-01
The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.
Efficiently passing messages in distributed spiking neural network simulation.
Thibeault, Corey M; Minkovich, Kirill; O'Brien, Michael J; Harris, Frederick C; Srinivasa, Narayan
2013-01-01
Efficiently passing spiking messages in a neural model is an important aspect of high-performance simulation. As the scale of networks has increased so has the size of the computing systems required to simulate them. In addition, the information exchange of these resources has become more of an impediment to performance. In this paper we explore spike message passing using different mechanisms provided by the Message Passing Interface (MPI). A specific implementation, MVAPICH, designed for high-performance clusters with Infiniband hardware is employed. The focus is on providing information about these mechanisms for users of commodity high-performance spiking simulators. In addition, a novel hybrid method for spike exchange was implemented and benchmarked.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... multiple Issuer MBS is structured so that small issuers, who do not meet the minimum number of loans and... program, securities are backed by single-family or multifamily loans. Under the Ginnie Mae II program, securities are only backed by single family loans. Both the Ginnie Mae I and II MBS are modified pass-through...
The Radiation Environment for the LISA/Laser Interferometry Space Antenna
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Xapsos, Michael; Poivey, Christian
2005-01-01
The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.
Dilution in single pass arc welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, J.N.; Marder, A.R.
1996-06-01
A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiencymore » can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.« less
Analysis of thermomechanical states in single-pass GMAW surfaced steel element
NASA Astrophysics Data System (ADS)
Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof
2017-03-01
In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.
Choulakian, Mazen Y; Li, Jennifer Y; Ramos, Samuel; Mannis, Mark J
2016-01-01
To evaluate the predictability and reproducibility of stromal bed thickness for single-pass donor Descemet stripping automated endothelial keratoplasty (DSAEK) tissue preparation, using the ML7 Microkeratome Donor Cornea System (Med-logics Inc, Athens, TX). In this retrospective chart review of 256 consecutive corneal tissue preparations for DSAEK surgery, from June 2013 to August 2014, tissue thicknesses were divided into 3 groups, depending on surgeon preference: <91 μm (group A), 90 to 120 μm (group B), and 120 to 160 μm (group C). Precut and postcut data were recorded. Average postcut donor corneal thickness was 114 ± 30 μm (range 60-183 μm), whereas the average in group A was 97 ± 23 μm (range 60-128), in group B was 113 ± 21 μm (range 77-179), and in group C was 134 ± 43 (range 89-183). Average postcut endothelial cell density was very adequate at 3013 ± 250 cells per square millimeter. There were a total of 7 failed procedures from 256 attempts, which represents a rate of 2.7%. This rate decreases to 1.5% when analyzing the last 200 cuts. The ML7 Microkeratome Donor Cornea System allows for reliable and reproducible DSAEK tissue preparation. Ultrathin DSAEK tissues can be prepared with a single-pass. Aiming for a graft thickness between 90 and 120 μm seems to be most reliable.
Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222
Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.
Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel
NASA Astrophysics Data System (ADS)
Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.
2011-12-01
A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.
Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang
2016-01-01
In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter. PMID:27658929
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1971-01-01
The steady state thermodynamic cycle balance of the single preburner staged combustion engine, coupled with dynamic transient analyses, dictated in detail the location and requirements for each valve defined in this volume. Valve configuration selections were influenced by overall engine and vehicle system weight and failure mode determinations. Modulating valve actuators are external to the valve and are line replaceable. Development and satisfactory demonstration of a high pressure dynamic shaft seal has made this configuration practical. Pneumatic motor driven actuators that use engine pumped hydrogen gas as the working fluid are used. The helium control system is proposed as a module containing a cluster of solenoid actuated valves. The separable couplings and flanges are designed to assure minimum leakage with minimum coupling weight. The deflection of the seal surface in the flange is defined by finite element analysis that has been confirmed with test data. The seal design proposed has passed preliminary pressure cycling and thermal cycling tests.
Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang
2016-09-23
In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter.
Hastrup, Sidsel; Damgaard, Dorte; Johnsen, Søren Paaske; Andersen, Grethe
2016-07-01
We designed and validated a simple prehospital stroke scale to identify emergent large vessel occlusion (ELVO) in patients with acute ischemic stroke and compared the scale to other published scales for prediction of ELVO. A national historical test cohort of 3127 patients with information on intracranial vessel status (angiography) before reperfusion therapy was identified. National Institutes of Health Stroke Scale (NIHSS) items with the highest predictive value of occlusion of a large intracranial artery were identified, and the most optimal combination meeting predefined criteria to ensure usefulness in the prehospital phase was determined. The predictive performance of Prehospital Acute Stroke Severity (PASS) scale was compared with other published scales for ELVO. The PASS scale was composed of 3 NIHSS scores: level of consciousness (month/age), gaze palsy/deviation, and arm weakness. In derivation of PASS 2/3 of the test cohort was used and showed accuracy (area under the curve) of 0.76 for detecting large arterial occlusion. Optimal cut point ≥2 abnormal scores showed: sensitivity=0.66 (95% CI, 0.62-0.69), specificity=0.83 (0.81-0.85), and area under the curve=0.74 (0.72-0.76). Validation on 1/3 of the test cohort showed similar performance. Patients with a large artery occlusion on angiography with PASS ≥2 had a median NIHSS score of 17 (interquartile range=6) as opposed to PASS <2 with a median NIHSS score of 6 (interquartile range=5). The PASS scale showed equal performance although more simple when compared with other scales predicting ELVO. The PASS scale is simple and has promising accuracy for prediction of ELVO in the field. © 2016 American Heart Association, Inc.
Industry Supplied CAD Curriculum: Case Study on Passing Certification Exams
ERIC Educational Resources Information Center
Webster, Rustin; Dues, Joseph; Ottway, Rudy
2017-01-01
Students who successfully pass professional certification exams while in school are often targeted first by industry for internships and entry level positions. Over the last decade, leading industry suppliers of computer-aided design (CAD) software have developed and launched certification exams for many of their product offerings. Some have also…
ERIC Educational Resources Information Center
Goldstein, Jeren; Walford, Sylvia
This teacher's guide and student workbook are part of a series of supplementary curriculum packages presenting alternative methods and activities designed to meet the needs of Florida secondary students with mild disabilities or other special learning needs. The Life Management Skills PASS (Parallel Alternative Strategies for Students) teacher's…
Design and Implementation of High Performance Content-Addressable Memories.
1985-12-01
content addressability and two basic implementations of content addressing. The need and application of hardware CAM is presented to motivate the " topic...3r Pass 4th Ps4 Pass Figure 2.15 Maximum SearchUsing All-Parallel CAM - left-most position (the most significant bit) and the other IF bits are zeros
1977-11-01
row of A cages. Direct light reached the animal after passing through two layers of plexiglass that were designed to pass the full spectrum. The...the serum PHI activity. Blood Urea Nitrogen (BUN) Urease converted urea Into ammonia and carbon dioxide. Glutamic dehydrogenase catalyzed the
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Designation of a Longer Period for Commission Action on Proposed Rule Change Relating to Post-Trade Transparency for Agency Pass... 19b-4 thereunder,\\2\\ a proposed rule change related to post-trade transparency for agency pass-through...
Sun, Xiaobo; Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng; Qin, Zhaohui S
2018-06-01
Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.
A virtual size-variable pinhole for single photon confocal microscopy
NASA Astrophysics Data System (ADS)
Gao, Guangjun; Khoobehi, Bahram
2013-03-01
Pinhole is a critical device in single photon confocal microscopy (SPCM) owning to its ability to block the background noise scattered from back and forth of the focal plane. Without pinhole, the sectioning ability of SPCM will be degraded and many background noise signals will occurred together with useful signals, and sometimes these bad noises can submerge the details that we are interested in. However a pinhole with too small diameter will block both background noises and part of signals and decrease the intensity of the image. Therefore in many cases pinhole size should be selected carefully. Unfortunately because of constrains in mechanics, a pinhole that can change its size continuously, for example from 10 μm to 100 μm, is unavailable. For most commercial confocal microscopies, only several discrete pinhole sizes are provided, such as 10 μm, 30 μm, 60 μm etc. Things will be even harder for some imaging systems which use the input interface of a single mode fiber as the pinhole of SPCM, and then the pinhole size of these systems will be fixed, which far limit the optimization of systems' performance. In this paper, we design a size-variable pinhole setup that can offer a virtual pinhole with its diameter adjustable, which includes a physical pinhole (or single mode fiber) and a fine designed zoom relay (ZR) optical system. The magnification ratio of this ZR can vary smoothly while keeping the conjugation distance unchanged. The aberrations of the ZR are well balanced and diffraction-limited image performance are obtained so that the virtual pinhole can block background scattering noise and pass the in-focus signal effectively and accurately. Simulation results are also provided and discussed.
Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng
2018-01-01
Abstract Background Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems. PMID:29762754
Li, Xiao-Jing; Liu, Jin-Ling; Gao, Dong-Sheng; Wan, Wen-Yan; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun
2016-03-01
Previous research showed that a lectin from the mushroom Laetiporus sulphureus, designed LSL, bound to Sepharose and could be eluted by lactose. In this study, by taking advantage of the strong affinity of LSL-tag for Sepharose, we developed a single-step purification method for LSL-tagged fusion proteins. We utilized unmodified Sepharose-4B as a specific adsorbent and 0.2 M lactose solution as an elution buffer. Fusion proteins of LSL-tag and porcine circovirus capsid protein, designated LSL-Cap was recovered with purity of 90 ± 4%, and yield of 87 ± 3% from crude extract of recombinant Escherichia coli. To enable the remove of LSL-tag, tobacco etch virus (TEV) protease recognition sequence was placed downstream of LSL-tag in the expression vector, and LSL-tagged TEV protease, designated LSL-TEV, was also expressed in E. coli., and was recovered with purity of 82 ± 5%, and yield of 85 ± 2% from crude extract of recombinant E. coli. After digestion of LSL-tagged recombinant proteins with LSL-TEV, the LSL tag and LSL-TEV can be easily removed by passing the digested products through the Sepharose column. It is of worthy noting that the Sepharose can be reused after washing with PBS. The LSL affinity purification method enables rapid and inexpensive purification of LSL-tagged fusion proteins and scale-up production of native proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Maneuver sequence design for the post-Jupiter leg of Pioneer Saturn
NASA Technical Reports Server (NTRS)
Frauenholz, R. B.; Brady, W. F.
1976-01-01
After passing the planet Jupiter in December 1974, Pioneer 11 is on a flight path on which it will encounter Saturn in late 1979. Following an uncorrected trajectory, the spacecraft would pass 2 million km behind Saturn. A sequence of midcourse maneuvers for modifying the Pioneer trajectory is discussed. The corrected flight path is to bring the spacecraft within 500,000 km of Saturn's satellite Titan. Attention is given to maneuver capabilities and constraints, the maneuver design concept, questions related to the selection of an interim aimpoint, and aspects of maneuver implementation.
Multi-band filter design with less total film thickness for short-wave infrared
NASA Astrophysics Data System (ADS)
Yan, Yung-Jhe; Chien, I.-Pen; Chen, Po-Han; Chen, Sheng-Hui; Tsai, Yi-Chun; Ou-Yang, Mang
2017-08-01
A multi-band pass filter array was proposed and designed for short wave infrared applications. The central wavelength of the multi-band pass filters are located about 905 nm, 950 nm, 1055 nm and 1550 nm. In the simulation of an optical interference band pass filter, high spectrum performance (high transmittance ratio between the pass band and stop band) relies on (1) the index gap between the selected high/low-index film materials, with a larger gap correlated to higher performance, and (2) sufficient repeated periods of high/low-index thin-film layers. When determining high and low refractive index materials, spectrum performance was improved by increasing repeated periods. Consequently, the total film thickness increases rapidly. In some cases, a thick total film thickness is difficult to process in practice, especially when incorporating photolithography liftoff. Actually the maximal thickness of the photoresist being able to liftoff will bound the total film thickness of the band pass filter. For the application of the short wave infrared with the wavelength range from 900nm to 1700nm, silicone was chosen as a high refractive index material. Different from other dielectric materials used in the visible range, silicone has a higher absorptance in the visible range opposite to higher transmission in the short wave infrared. In other words, designing band pass filters based on silicone as a high refractive index material film could not obtain a better spectrum performance than conventional high index materials like TiO2 or Ta2O5, but also its material cost would reduce about half compared to the total film thickness with the conventional material TiO2. Through the simulation and several experimental trials, the total film thickness below 4 um was practicable and reasonable. The fabrication of the filters was employed a dual electric gun deposition system with ion assisted deposition after the lithography process. Repeating four times of lithography and deposition process and black matrix coating, the optical device processes were completed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galatola, G.; Jazrawi, R.P.; Bridges, C.
The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, whichmore » prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%).« less
Multiprocessor shared-memory information exchange
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoline, L.L.; Bowers, M.D.; Crew, A.W.
1989-02-01
In distributed microprocessor-based instrumentation and control systems, the inter-and intra-subsystem communication requirements ultimately form the basis for the overall system architecture. This paper describes a software protocol which addresses the intra-subsystem communications problem. Specifically the protocol allows for multiple processors to exchange information via a shared-memory interface. The authors primary goal is to provide a reliable means for information to be exchanged between central application processor boards (masters) and dedicated function processor boards (slaves) in a single computer chassis. The resultant Multiprocessor Shared-Memory Information Exchange (MSMIE) protocol, a standard master-slave shared-memory interface suitable for use in nuclear safety systems, ismore » designed to pass unidirectional buffers of information between the processors while providing a minimum, deterministic cycle time for this data exchange.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caspi, S.; Schlueter, R.; Tatchyn, R.
Linac-driven X-Ray Free Electron Lasers (e.g., Linac Coherent Light Sources (LCLSs)), operating on the principle of single-pass saturation in the Self-Amplified Spontaneous Emission (SASE) regime typically require multi-GeV beam energies and undulator lengths in excess of tens of meters to attain sufficient gain in the 1{angstrom}--0.1{angstrom} range. In this parameter regime, the undulator structure must provide: (1) field amplitudes B{sub 0} in excess of 1T within periods of 4cm or less, (2) peak on-axis focusing gradients on the order of 30T/m, and (3) field quality in the 0.1%--0.3% range. In this paper the authors report on designs under consideration formore » a 4.5--1.5 {angstrom} LCLS based on superconducting (SC), hybrid/PM, and pulsed-Cu technologies.« less
Sampling large landscapes with small-scale stratification-User's Manual
Bart, Jonathan
2011-01-01
This manual explains procedures for partitioning a large landscape into plots, assigning the plots to strata, and selecting plots in each stratum to be surveyed. These steps are referred to as the "sampling large landscapes (SLL) process." We assume that users of the manual have a moderate knowledge of ArcGIS and Microsoft ® Excel. The manual is written for a single user but in many cases, some steps will be carried out by a biologist designing the survey and some steps will be carried out by a quantitative assistant. Thus, the manual essentially may be passed back and forth between these users. The SLL process primarily has been used to survey birds, and we refer to birds as subjects of the counts. The process, however, could be used to count any objects. ®
Monitoring of Juvenile Subyearling Chinook Salmon Survival and Passage at John Day Dam, Summer 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.
The purpose of this study was to evaluate dam passage survival of subyearling Chinook salmon (Oncorhynchus tshawytscha; CH0) at John Day Dam (JDA) during summer 2010. This study was conducted by researchers from the Pacific Northwest National Laboratory (PNNL) in collaboration with the Pacific States Marine Fisheries Commission (PSMFC) and the University of Washington (UW). The study was designed to estimate the effects of 30% and 40% spill treatment levels on single release survival rates of CH0 passing through two reaches: (1) the dam, and 40 km of tailwater, (2) the forebay, dam, and 40 km of tailwater. The studymore » also estimated additional passage performance measures which are stipulated in the Columbia Basin Fish Accords.« less
NASA Astrophysics Data System (ADS)
Qi, Yaoyao; Yu, Haijuan; Zhang, Jingyuan; Zhang, Ling; He, Chaojian; Lin, Xuechun
2018-05-01
We demonstrated a high efficiency and high average power picosecond green light source based on SHG (second harmonic generation) of an unpolarized ytterbium-doped fiber amplifier chain. Using single-pass frequency doubling in two temperature-tuned type-I phase-matching LBO crystals, we were able to generate 46 W, >70 ps pulses at 532 nm from a fundamental beam at 1064 nm, whose output is 96 W, 4.8 μJ, with a repetition frequency of 20 MHz and nearly diffraction limited. The optical conversion efficiency was ∼48% in a highly compact design. To the best of our knowledge, this is the first reported on ps green source through SHG of an unpolarized fiber laser with such a high output and high efficiency.
Matrix multiplication on the Intel Touchstone Delta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huss-Lederman, S.; Jacobson, E.M.; Tsao, A.
1993-12-31
Matrix multiplication is a key primitive in block matrix algorithms such as those found in LAPACK. We present results from our study of matrix multiplication algorithms on the Intel Touchstone Delta, a distributed memory message-passing architecture with a two-dimensional mesh topology. We obtain an implementation that uses communication primitives highly suited to the Delta and exploits the single node assembly-coded matrix multiplication. Our algorithm is completely general, able to deal with arbitrary mesh aspect ratios and matrix dimensions, and has achieved parallel efficiency of 86% with overall peak performance in excess of 8 Gflops on 256 nodes for an 8800more » {times} 8800 matrix. We describe our algorithm design and implementation, and present performance results that demonstrate scalability and robust behavior over varying mesh topologies.« less
Issues central to a useful image understanding environment
NASA Astrophysics Data System (ADS)
Beveridge, J. Ross; Draper, Bruce A.; Hanson, Allen R.; Riseman, Edward M.
1992-04-01
A recent DARPA initiative has sparked interested in software environments for computer vision. The goal is a single environment to support both basic research and technology transfer. This paper lays out six fundamental attributes such a system must possess: (1) support for both C and Lisp, (2) extensibility, (3) data sharing, (4) data query facilities tailored to vision, (5) graphics, and (6) code sharing. The first three attributes fundamentally constrain the system design. Support for both C and Lisp demands some form of database or data-store for passing data between languages. Extensibility demands that system support facilities, such as spatial retrieval of data, be readily extended to new user-defined datatypes. Finally, data sharing demands that data saved by one user, including data of a user-defined type, must be readable by another user.
The Raid distributed database system
NASA Technical Reports Server (NTRS)
Bhargava, Bharat; Riedl, John
1989-01-01
Raid, a robust and adaptable distributed database system for transaction processing (TP), is described. Raid is a message-passing system, with server processes on each site to manage concurrent processing, consistent replicated copies during site failures, and atomic distributed commitment. A high-level layered communications package provides a clean location-independent interface between servers. The latest design of the package delivers messages via shared memory in a configuration with several servers linked into a single process. Raid provides the infrastructure to investigate various methods for supporting reliable distributed TP. Measurements on TP and server CPU time are presented, along with data from experiments on communications software, consistent replicated copy control during site failures, and concurrent distributed checkpointing. A software tool for evaluating the implementation of TP algorithms in an operating-system kernel is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crittendon, J. A.; Burke, D. C.; Fuentes, Y. L.P.
2017-01-06
The Cornell-Brookhaven Energy-Recovery-Linac Test Accelerator (CBETA) will provide a 150-MeV electron beam using four acceleration and four deceleration passes through the Cornell Main Linac Cryomodule housing six 1.3-GHz superconducting RF cavities. The return path of this 76-m-circumference accelerator will be provided by 106 fixed-field alternating-gradient (FFAG) cells which carry the four beams of 42, 78, 114 and 150 MeV. Here we describe magnet designs for the splitter and combiner regions which serve to match the on-axis linac beam to the off-axis beams in the FFAG cells, providing the path-length adjustment necessary to energy recovery for each of the four beams.more » The path lengths of the four beamlines in each of the splitter and combiner regions are designed to be adapted to 1-, 2-, 3-, and 4-pass staged operations. Design specifi- cations and modeling for the 24 dipole and 32 quadrupole electromagnets in each region are presented. The CBETA project will serve as the first demonstration of multi-pass energy recovery using superconducting RF cavities with FFAG cell optics for the return loop.« less
Electron density measurements for plasma adaptive optics
NASA Astrophysics Data System (ADS)
Neiswander, Brian W.
Over the past 40 years, there has been growing interest in both laser communications and directed energy weapons that operate from moving aircraft. As a laser beam propagates from an aircraft in flight, it passes through boundary layers, turbulence, and shear layers in the near-region of the aircraft. These fluid instabilities cause strong density gradients which adversely affect the transmission of laser energy to a target. Adaptive optics provides corrective measures for this problem but current technology cannot respond quickly enough to be useful for high speed flight conditions. This research investigated the use of plasma as a medium for adaptive optics for aero-optics applications. When a laser beam passes through plasma, its phase is shifted proportionally to the electron density and gas heating within the plasma. As a result, plasma can be utilized as a dynamically controllable optical medium. Experiments were carried out using a cylindrical dielectric barrier discharge plasma chamber which generated a sub-atmospheric pressure, low-temperature plasma. An electrostatic model of this design was developed and revealed an important design constraint relating to the geometry of the chamber. Optical diagnostic techniques were used to characterize the plasma discharge. Single-wavelength interferometric experiments were performed and demonstrated up to 1.5 microns of optical path difference (OPD) in a 633 nm laser beam. Dual-wavelength interferometry was used to obtain time-resolved profiles of the plasma electron density and gas heating inside the plasma chamber. Furthermore, a new multi-wavelength infrared diagnostic technique was developed and proof-of-concept simulations were conducted to demonstrate the system's capabilities.
Status of a UAV SAR Designed for Repeat Pass Interferometry for Deformation Measurements
NASA Technical Reports Server (NTRS)
Hensley, Scott; Wheeler, Kevin; Hoffman, Jim; Miller, Tim; Lou, Yunling; Muellerschoen, Ron; Zebker, Howard; Madsen, Soren; Rosen, Paul
2004-01-01
Under the NASA ESTO sponsored Instrument Incubator Program we have designed a lightweight, reconfigurable polarimetric L-band SAR designed for repeat pass deformation measurements of rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes. This radar will be installed on an unmanned airborne vehicle (UAV) or a lightweight, high-altitude, and long endurance platform such as the Proteus. After a study of suitable available platforms we selected the Proteus for initial development and testing of the system. We want to control the repeat track capability of the aircraft to be within a 10 m tube to support the repeat deformation capability. We conducted tests with the Proteus using real-time GPS with sub-meter accuracy to see if pilots could fly the aircraft within the desired tube. Our results show that pilots are unable to fly the aircraft with the desired accuracy and therefore an augmented autopilot will be required to meet these objectives. Based on the Proteus flying altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and 16 km range swath. This radar will have an active electronic beam steering antenna to achieve Doppler centroid stability that is necessary for repeat-pass interferometry (RPI). This paper will present are design criteria, current design and expected science applications.
1. West portal of Tunnel 3, contextual view to north ...
1. West portal of Tunnel 3, contextual view to north from milepost 537.6, 210mm lens. The single-lens searchlight-type block signals are Southern Pacific Common Standard signals, a type in use since the 1920s. Many of these have been replaced system-wide as a result of various mergers since the 1980s. Located in the Diamond Peak Wilderness of Willamette National Forest, Tunnel 3 passes beneath Pengra Pass. - Southern Pacific Railroad Natron Cutoff, Tunnel 3, Milepost 537.77, Odell Lake, Klamath County, OR
Li, Meina; Kim, Youn Tae
2017-01-01
Athlete evaluation systems can effectively monitor daily training and boost performance to reduce injuries. Conventional heart-rate measurement systems can be easily affected by artifact movement, especially in the case of athletes. Significant noise can be generated owing to high-intensity activities. To improve the comfort for athletes and the accuracy of monitoring, we have proposed to combine robust heart rate and agility index monitoring algorithms into a small, light, and single node. A band-pass-filter-based R-wave detection algorithm was developed. The agility index was calculated by preprocessing with band-pass filtering and employing the zero-crossing detection method. The evaluation was conducted under both laboratory and field environments to verify the accuracy and reliability of the algorithm. The heart rate and agility index measurements can be wirelessly transmitted to a personal computer in real time by the ZigBee telecommunication system. The results show that the error rate of measurement of the heart rate is within 2%, which is comparable with that of the traditional wired measurement method. The sensitivity of the agility index, which could be distinguished as the activity speed, changed slightly. Thus, we confirmed that the developed algorithm could be used in an effective and safe exercise-evaluation system for athletes. PMID:29039763
Experimental Investigation on Design Enhancement of Axial Fan Using Fixed Guide Vane
NASA Astrophysics Data System (ADS)
Munisamy, K. M.; Govindasamy, R.; Thangaraju, S. K.
2015-09-01
Airflow passes through the rotating blade in an axial flow fan will experience a helical flow pattern. This swirling effect leads the system to experience swirl energy losses or pressure drop yet reducing the total efficiency of the fan system. A robust tool to encounter this air spin past the blade is by introducing guide vane to the system. Owing to its importance, a new approach in designing outlet guide vane design for a commercial usage 1250mm diameter axial fan with a 30° pitch angle impeller has been introduced in this paper. A single line metal of proper curvature guide vane design technique has been adopted for this study. By choosing fan total efficiency as a target variable to be improved, the total and static pressure on the design point were set to be constraints. Therefore, the guide vane design was done based on the improvement target on the static pressure in system. The research shows that, with the improvement in static pressure by 29.63% through guide vane installation, the total fan efficiency is increased by 5.12%, thus reduces the fan power by 5.32%. Good agreement were found, that when the fan total efficiency increases, the power consumption of the fan is reduced. Therefore, this new approach of guide vane design can be applied to improve axial fan performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, T.; Mehendale, H.M.
This study was designed to examine whether chlorphentermine (CP) affects pulmonary disposition of 5-hydroxytryptamine (5-HT) in rat in vivo. Further, the effects of CP were compared with those of phentermine (P), the nonchlorinated congener. The right jugular vein and left carotid artery of male Sprague-Dawley rats were cannulated and fresh saline solution containing 150 micrograms indocyanine green and a mixture of labeled and unlabeled 5-HT was injected into the jugular vein, and arterial blood samples were collected for 20 s. In order to compare the effect of CP and P on pulmonary disposition of 5-HT, 2.6 nmol (/sup 14/C)-5-HT wasmore » employed for in vivo single-pass experiments. Each animal was used for 2 in vivo single-pass experiments. After the first experiment, which served as a control, animals received an indicated dose of CP or P, to commence the second ''drug-treated'' in vivo experiment. Pulmonary clearance of 5-HT was inhibited by prior administration of CP (1 mg/kg) by 42%, whereas at the highest dose (20 mg/kg) P inhibited 5-HT clearance by only 25%. Pulmonary accumulation of CP was greater than P at higher doses, and the inhibition of 5-HT clearance correlated with the pulmonary accumulation of these drugs. In addition to the in vivo demonstration of the CP inhibition of pulmonary clearance of 5-HT in the rat, these studies also demonstrate a higher affinity of the lung tissue for CP than for P and a greater propensity for the impairment of pulmonary 5-HT clearance.« less
Fisher, Jennifer O; Butte, Nancy F; Mendoza, Patricia M; Wilson, Theresa A; Hodges, Eric A; Reidy, Kathleen C; Deming, Denise
2008-08-01
Twenty-four-hour dietary recalls have been used in large surveys of infant and toddler energy intake, but the accuracy of the method for young children is not well documented. We aimed to determine the accuracy of infant and toddler energy intakes by a single, telephone-administered, multiple-pass 24-h recall as compared with 3-d weighed food records. A within-subjects design was used in which a 24-h recall and 3-d weighed food records were completed within 2 wk by 157 mothers (56 non-Hispanic white, 51 non-Hispanic black, and 50 Hispanic) of 7-11-mo-old infants or 12-24-mo-old toddlers. Child and caregiver anthropometrics, child eating patterns, and caregiver demographics and social desirability were evaluated as correlates of reporting bias. Intakes based on 3-d weighed food records were within 5% of estimated energy requirements. Compared with the 3-d weighed food records, the 24-h recall overestimated energy intake by 13% among infants (740 +/- 154 and 833 +/- 255 kcal, respectively) and by 29% among toddlers (885 +/- 197 and 1140 +/- 299 kcal, respectively). Eating patterns (ie, frequency and location) did not differ appreciably between methods. Macronutrient and micronutrient intakes were higher by 24-h recall than by 3-d weighed food record. Dairy and grains contributed the most energy to the diet and accounted for 74% and 54% of the overestimation seen in infants and toddlers, respectively. Greater overestimation was associated with a greater number of food items reported by the caregiver and lower child weight-for-length z scores. The use of a single, telephone-administered, multiple-pass 24-h recall may significantly overestimate infant or toddler energy and nutrient intakes because of portion size estimation errors.
Vanwanseele, Benedicte; Stuelcken, Max; Greene, Andrew; Smith, Richard
2014-09-01
External ankle support has been successfully used to prevent ankle sprains. However, some recent studies have indicated that reducing ankle range of motion can place larger loads on the knee. The aim of this study was to investigate the effect of external ankle support (braces and high-top shoes) on the ankle and knee joint loading during a netball specific landing task. A repeated measure design. High performance netball players with no previously diagnosed severe ankle or knee injury (n=11) were recruited from NSW Institute of Sport netball programme. The kinematic and kinetic data were collected simultaneously using a 3-D Motion Analysis System and one Kistler force plate to measure ground reaction forces. Players performed a single leg landing whilst receiving a pass while wearing a standard netball shoe, the same shoe with a lace-up brace and a high-top shoe. Only the brace condition significantly reduced the ankle range of motion in the frontal plane (in/eversion) by 3.95 ± 3.74 degrees compared to the standard condition. No changes were found for the knee joint loading in the brace condition. The high-top shoes acted to increase the peak knee internal rotation moment by 15%. Both the brace and high-top conditions brought about increases in the peak ankle plantar flexion moment during the landing phase. Lace-up braces can be used by netball players to restrict ankle range of motion during a single leg landing while receiving a pass without increasing the load on the knee joint. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jain, Divya; Seidman, David N.; Barrick, Erin J.; DuPont, John N.
2018-04-01
Newly developed low-carbon 10 wt pct Ni-Mo-Cr-V martensitic steels rely on the Ni-enriched, thermally stable austenite [formed via multistep intercritical Quench-Lamellarization-Tempering ( QLT)-treatment] for their superior mechanical properties, specifically ballistic resistance. Critical to the thermal stability of austenite is its composition, which can be severely affected in the weld heat-affected zones (HAZs) and thus needs investigations. This article represents the first study of the nanoscale redistributions of C, Ni, and Mn in single-pass HAZ microstructures of QLT-treated 10 wt pct Ni steels. Local compositions of Ni-rich regions (representative of austenite compositions) in the HAZs are determined using site-specific 3-D atom-probe tomography (APT). Martensite-start temperatures are then calculated for these compositions, employing the Ghosh-Olson thermodynamic and kinetics approach. These calculations predict that austenite (present at high temperatures) in the HAZs is susceptible to a martensitic transformation upon cooling to room temperature, unlike the austenite in the QLT-treated base-metal. While C in the QLT-treated base-metal is consumed primarily in MC and M2C-type carbide precipitates (M is Mo, Cr, V), its higher concentration in the Ni-rich regions in the HAZs indicates the dissolution of carbide precipitates, particularly M2C carbide precipitates. The role of M2C carbide precipitates and austenite stability is discussed in relation to the increase in microhardness values observed in the HAZs, relative to the QLT-treated base-metal. Insights gained from this research on austenite stability and carbide precipitation in the single-pass HAZ microstructures will assist in designing multiple weld cycles for these novel 10 wt pct Ni steels.
Chun, Dong Hyun; Kim, Do Young; Choi, Sun Kyu; Shin, Dong Ah; Ha, Yoon; Kim, Keung Nyun; Yoon, Do Heum; Yi, Seong
2018-04-01
This retrospective case control study aimed to evaluate the feasibility of using Estimation of Physiological Ability and Surgical Stress (E-PASS) and Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM) systems in patients undergoing spinal surgical procedures. Degenerative spine disease has increased in incidence in aging societies, as has the number of older adult patients undergoing spinal surgery. Many older adults are at a high surgical risk because of comorbidity and poor general health. We retrospectively reviewed 217 patients who had undergone spinal surgery at a single tertiary care. We investigated complications within 1 month after surgery. Criteria for both skin incision in E-PASS and operation magnitude in the POSSUM system were modified to fit spine surgery. We calculated the E-PASS and POSSUM scores for enrolled patients, and investigated the relationship between postoperative complications and both surgical risk scoring systems. To reinforce the predictive ability of the E-PASS system, we adjusted equations and developed modified E-PASS systems. The overall complication rate for spinal surgery was 22.6%. Forty-nine patients experienced 58 postoperative complications. Nineteen major complications, including hematoma, deep infection, pleural effusion, progression of weakness, pulmonary edema, esophageal injury, myocardial infarction, pneumonia, reoperation, renal failure, sepsis, and death, occurred in 17 patients. The area under the receiver operating characteristic curve (AUC) for predicted postoperative complications after spine surgery was 0.588 for E-PASS and 0.721 for POSSUM. For predicted major postoperative complications, the AUC increased to 0.619 for E-PASS and 0.842 for POSSUM. The AUC of the E-PASS system increased from 0.588 to 0.694 with the Modified E-PASS equation. The POSSUM system may be more useful than the E-PASS system for estimating postoperative surgical risk in patients undergoing spine surgery. The preoperative risk scores of E-PASS and POSSUM can be useful for predicting postoperative major complications. To enhance the predictability of the scoring systems, using of modified equations based on spine surgery-specific factors may help ensure surgical outcomes and patient safety. Copyright © 2017. Published by Elsevier Inc.
Design and manufacture of super-multilayer optical filters based on PARMS technology
NASA Astrophysics Data System (ADS)
Lü, Shaobo; Wang, Ruisheng; Ma, Jing; Jiang, Chao; Mu, Jiali; Zhao, Shuaifeng; Yin, Xiaojun
2018-04-01
Three multilayer interference optical filters, including a UV band-pass, a VIS dual-band-pass and a notch filter, were designed by using Ta2O5, Nb2O5, Al2O3 and SiO2 as high- and low-index materials. During the design of the coating process, a hybrid optical monitoring and RATE-controlled layer thickness control scheme was adopted. The coating process was simulated by using the optical monitoring system (OMS) Simulator, and the simulation result indicated that the layer thickness can be controlled within an error of less than ±0.1%. The three filters were manufactured on a plasma-assisted reactive magnetic sputtering (PARMS) coating machine. The measurements indicate that for the UV band-pass filter, the peak transmittance is higher than 95% and the blocking density is better than OD6 in the 300-1100 nm region, whereas for the dual-band-pass filter, the center wavelength positioning accuracy of the two passbands are less than ±2 nm, the peak transmittance is higher than 95% and blocking density is better than OD6 in the 300-950 nm region. Finally, for the notch filter, the minimum transmittance rates are >90% and >94% in the visible and near infrared, respectively, and the blocking density is better than OD5.5 at 808 nm.
ERIC Educational Resources Information Center
Canada, Patricia Oxendine
2012-01-01
In response to the mandates of No Child Left Behind, (NCLB), educators across the country struggle to close the gaps between males and females. Some of the physiological differences existing between the male and female brain suggest support for single-gender instruction, which is on the rise within this country as well as other parts of the world.…
Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals
NASA Astrophysics Data System (ADS)
Uçar, N.
1997-03-01
The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.
36 CFR 1280.26 - May I pass out fliers on NARA property?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false May I pass out fliers on NARA property? 1280.26 Section 1280.26 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... those spaces designated by NARA as public forums. This prohibition does not apply to displays or notices...
36 CFR 1280.26 - May I pass out fliers on NARA property?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false May I pass out fliers on NARA property? 1280.26 Section 1280.26 Parks, Forests, and Public Property NATIONAL ARCHIVES AND RECORDS... those spaces designated by NARA as public forums. This prohibition does not apply to displays or notices...
33 CFR 162.260 - Channel leading to San Juan Harbor, P.R.; use, administration, and navigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and navigation. (a) Steamers passing dredge engaged in improving the channel shall not have a speed... dredge anchors. (b) Vessels using the channel shall pass the dredge on the side designated from the dredge by the signals prescribed in paragraph (c) of this section. (c) Dredge shall display the red flag...
33 CFR 162.260 - Channel leading to San Juan Harbor, P.R.; use, administration, and navigation.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and navigation. (a) Steamers passing dredge engaged in improving the channel shall not have a speed... dredge anchors. (b) Vessels using the channel shall pass the dredge on the side designated from the dredge by the signals prescribed in paragraph (c) of this section. (c) Dredge shall display the red flag...
van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W
2017-01-01
This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farstad, Jan Magnus Granheim; Netland, Øyvind; Welo, Torgeir
2017-10-01
This paper presents the results from a second series of experiments made to study local plastic deformations of a complex, hollow aluminium extrusion formed in roll bending. The first experimental series utilizing a single step roll bending sequence has been presented at the ESAFORM 2016 conference by Farstad et. al. In this recent experimental series, the same aluminium extrusion was formed in incremental steps. The objective was to investigate local distortions of the deformed cross section as a result of different number of steps employed to arrive at the final global shape of the extrusion. Moreover, the results between the two experimental series are compared, focusing on identifying differences in both the desired and the undesired deformations taking place as a result of bending and contact stresses. The profiles formed through multiple passes had less undesirable local distortions of the cross-section than the profiles that were formed in a single pass. However, the springback effect was more pronounced, meaning that the released radii of the profiles were higher.
Variable pathlength cavity spectroscopy development of an automated prototype
NASA Astrophysics Data System (ADS)
Schmeling, Ryan Andrew
Spectroscopy is the study of the interaction of electromagnetic radiation (EMR) with matter to probe the chemical and physical properties of atoms and molecules. The primary types of analytical spectroscopy are absorption, emission, and scattering methods. Absorption spectroscopy can quantitatively determine the chemical concentration of a given species in a sample by the relationship described by Beer's Law. Upon inspection of Beer's Law, it becomes apparent that for a given analyte concentration, the only experimental variable is the pathlength. Over the past ˜75 years, several approaches to physically increasing the pathlength have been reported in the literature. These have included not only larger cuvettes and novel techniques such as Differential Optical Absorption Spectroscopy, but also numerous designs that are based upon the creation of an optical cavity in which multiple reflections through the sample are made possible. The cavity-based designs range from the White Cell (1942) to Cavity Ring-Down Spectroscopy (O'Keefe and Deacon, 1998). In the White Cell approach, the incident beam is directed off-axis to repeatedly reflect concave mirror surfaces. Numerous variations of the White Cell design have been reported, and it has found wide application in infrared absorption spectroscopy in what have become to be known as "light pipes". In the CRDS design, on the other hand, highly reflective dielectric mirrors situated for on-axis reflections result in the measurement of the exponential decay of trapped light that passes through the exit mirror. CRDS has proven over the past two decades to be a powerful technique for ultra-trace analysis (< 10-15 g), with practical applications ranging from atmospheric monitoring of greenhouse gases to biomedical "breath screening" as a means to identify disease states. In this thesis, a novel approach to ultra-trace analysis by absorption spectroscopy is described. In this approach known as Variable Pathlength Cavity Spectroscopy (VPCS), a high finesse optical cavity is created by two flat, parallel, dielectric mirrors -- one of which is rotating. Source light from a pulsed dye laser (488 nm) enters the optical cavity in the same manner as in Cavity Ring-Down Spectroscopy (CRDS), i.e., by passing through the cavity entrance mirror. However, unlike CRDS in which the mirrors are fixed, concave, and mechanically unaltered, the cavity exit mirror contains a slit (1.0 mm diameter) that is rotated at high speed on an axle, thereby transmitting a small fraction of the trapped light to a photomultiplier tube detector. In this approach, unlike CRDS, absorbance is measured directly. In previous prototype designs of the VPCS instrument, instrument control (alignment) and data acquisition and reduction were performed manually; these functions were both inefficient and tedious. Despite this, the VPCS was validated in "proof of concept" testing, as described with a previous prototype (Frost, 2011). Frost demonstrated that the pathlength enhancement increased 53-fold compared to single-pass absorption measurements in monitoring NO2 (g) at part-per-billion levels. The goal of the present work is to improve upon the previous prototype ("P4") that required manual alignment, data collection, and data reduction by creating a completely automated version of VPCS -- i.e., the "P5" prototype. By developing source code in LabVIEW(TM), demonstration that the VPCS can be completely controlled in an automated fashion is described. Computationally, a Field-Programmable Gate Array is used to automate the process of data collection and reduction in real-time. It is shown that the inputs and outputs of the P5 instrument can be continuously monitored, allowing for real-time triggering of the source laser, collection of all data, and reduction of the data to report absorbance. Furthermore, it is shown that the VPCS can be automatically aligned -- also in real-time on the order of microseconds -- to a high degree of precision by using servo-actuators that adjust the beam position based upon the input from a sensitive CCD camera. With the implementation of this hardware and LabVIEW code, more precise data collection and reduction is done. With this new fully automated design, the instrument characteristics (e.g., to include factors such as rotation speed, off-set angle, and pathlength variation) can improve the enhancement by ˜130-fold vs. single-pass absorption measurements.
PASS2: an automated database of protein alignments organised as structural superfamilies.
Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan
2004-04-02
The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html
Alteren, Johanne; Nerdal, Lisbeth
2015-01-01
In Norwegian nurse education, students are required to achieve a perfect score in a medication calculation test before undertaking their first practice period during the second semester. Passing the test is a challenge, and students often require several attempts. Adverse events in medication administration can be related to poor mathematical skills. The purpose of this study was to explore the relationship between high school mathematics grade and the number of attempts required to pass the medication calculation test in nurse education. The study used an exploratory design. The participants were 90 students enrolled in a bachelor’s nursing program. They completed a self-report questionnaire, and statistical analysis was performed. The results provided no basis for the conclusion that a statistical relationship existed between high school mathematics grade and number of attempts required to pass the medication calculation test. Regardless of their grades in mathematics, 43% of the students passed the medication calculation test on the first attempt. All of the students who had achieved grade 5 had passed by the third attempt. High grades in mathematics were not crucial to passing the medication calculation test. Nonetheless, the grade may be important in ensuring a pass within fewer attempts. PMID:27417767
A Compact Via-free Composite Right/Left Handed Low-pass Filter with Improved Selectivity
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar
2017-07-01
In this paper, a compact via-free low pass filter is designed based on composite right/left handed (CRLH) concept. The structure uses open ended concept. Rectangular slots are etched on signal transmission line (TL) to suppress the spurious band without altering the performance and size of filter. The filter is designed for low pass frequency band with cut-off frequency of 3.5 GHz. The proposed metamaterial structure has several prominent advantages in term of selectivity up to 34 dB/GHz and compactness with average insertion loss less than 0.4 dB. It has multiple applications in wireless communication (such as GSM900, global navigation satellite system (1.559-1.610 GHz), GSM1800, WLAN/WiFi (2.4-2.49 GHz) and WiMAX (2.5-2.69 GHz)). The design parameters have been measured and compared with the simulated results and found excellent agreement. The electrical size of proposed filter is 0.14λ0× 0.11λ0 (where λ0 is free space wavelength at zeroth order resonance (ZOR) frequency 2.7 GHz).
DC-pass filter design with notch filters superposition for CPW rectenna at low power level
NASA Astrophysics Data System (ADS)
Rivière, J.; Douyère, A.; Alicalapa, F.; Luk, J.-D. Lan Sun
2016-03-01
In this paper the challenging coplanar waveguide direct current (DC) pass filter is designed, analysed, fabricated and measured. As the ground plane and the conductive line are etched on the same plane, this technology allows the connection of series and shunt elements to the active devices without via holes through the substrate. Indeed, this study presents the first step in the optimization of a complete rectenna in coplanar waveguide (CPW) technology: key element of a radio frequency (RF) energy harvesting system. The measurement of the proposed filter shows good performance in the rejection of F0=2.45 GHz and F1=4.9 GHz. Additionally, a harmonic balance (HB) simulation of the complete rectenna is performed and shows a maximum RF-to-DC conversion efficiency of 37% with the studied DC-pass filter for an input power of 10 µW at 2.45 GHz.
Chen, Wentao; Zhang, Weidong
2009-10-01
In an optical disk drive servo system, to attenuate the external periodic disturbances induced by inevitable disk eccentricity, repetitive control has been used successfully. The performance of a repetitive controller greatly depends on the bandwidth of the low-pass filter included in the repetitive controller. However, owing to the plant uncertainty and system stability, it is difficult to maximize the bandwidth of the low-pass filter. In this paper, we propose an optimality based repetitive controller design method for the track-following servo system with norm-bounded uncertainties. By embedding a lead compensator in the repetitive controller, both the system gain at periodic signal's harmonics and the bandwidth of the low-pass filter are greatly increased. The optimal values of the repetitive controller's parameters are obtained by solving two optimization problems. Simulation and experimental results are provided to illustrate the effectiveness of the proposed method.
RF-MEMS tunable interdigitated capacitor and fixed spiral inductor for band pass filter applications
NASA Astrophysics Data System (ADS)
Bade, Ladon Ahmed; Dennis, John Ojur; Khir, M. Haris Md; Wen, Wong Peng
2016-11-01
This research presents the tunable Radio Frequency Micro Electromechanical Systems (RF-MEMS) coupled band-pass filter (BPF), which possess a wide tuning range and constructed by using the Chebyshev fourth degree equivalent circuit consisting of fixed inductors and interdigitated tunable capacitors. The suggested method was authenticated by designing a new tunable BPF with a 100% tuning range from 3.1 GHz to 4.9 GHz. The Metal Multi-User MEMS Process (Metal MUMPs) was involved in the process of design of this band-pass filter. It aimed to achieve the reconfiguration of frequencies and show high efficiency of RF in the applications that using Ultra Wide Band (UWB) such as wireless sensor networks. The RF performance of this filter was found to be very satisfactory due to its simple fabrication. Moreover, it showed less insertion loss of around 4 dB and high return loss of around 20 dB.
A new streaked soft x-ray imager for the National Ignition Facility
Benstead, J.; Moore, A. S.; Ahmed, M. F.; ...
2016-05-27
Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.
A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were usedmore » to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benstead, J.; Moore, A. S.; Ahmed, M. F.
Here, a new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters weremore » used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.« less
Nd:YLF laser for airborne/spaceborne laser ranging
NASA Technical Reports Server (NTRS)
Dallas, Joseph L.; Selker, Mark D.
1993-01-01
In order to meet the need for light weight, long lifetime, efficient, short pulse lasers, a diode-pumped, Nd:YLF oscillator and regenerative amplifier is being developed. The anticipated output is 20 mJ per 10 picosecond pulse, running at a repetition rate of 40 Hz. The fundamental wavelength is at 1047 nm. The oscillator is pumped by a single laser diode bar and mode locked using an electro-optic, intra-cavity phase modulator. The output from the oscillator is injected as a seed into the regenerative amplifier. The regenerative amplifier laser crystal is optically pumped by two 60W quasi-cw laser diode bars. Each diode is collimated using a custom designed micro-lens bar. The injected 10 ps pulse from the oscillator is kept circulating within the regenerative amplifier until this nanojoule level seed pulse is amplified to 2-3 millijoules. At this point the pulse is ejected and sent on to a more standard single pass amplifier where the energy is boosted to 20 mJ. The footprint of the entire laser (oscillator-regenerative amplifier-amplifier) will fit on a 3 by 4 ft. optical pallet.
Predicting Thermal Behavior of Secondary Organic Aerosols
Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...
Synthesis and Characterization of a New Modification of the Quasi-Low-Dimensional Compound KMo 4O 6
NASA Astrophysics Data System (ADS)
Ramanujachary, K. V.; Greenblatt, D. M.; Jones, E. B.; McCarroll, W. H.
1993-01-01
Prismatic single crystals, up to 3 mm in length, of a third modification of KMo4O6 have been prepared by electrolysis of a melt with a high ratio of K2MoO4 to MoO3. Single-crystal X-ray diffraction analysis shows that the structure conforms more closely than the other two modifications to that reported originally for NaMo4O6. When current is passed parallel to the tetragonal c axis (i.e., parallel to the trans-edge-sharing chains of Mo6 octahedra) the compound displays metallic conductivity down to 100 K, where a broad transition to semiconducting behavior occurs. If the current is passed perpendicular to the c axis the conductivity is approximately a factor of 5 lower. Magnetic susceptibility measurements on a randomly oriented collection of crystals showed Pauli paramagnetic behavior with a small Curie tail at low temperatures.
Ye, Ken; Singh, Parminder J
2014-10-01
The normal labrum is crucial to the biomechanical function of the hip joint, not only increasing the surface area and depth of the acetabulum but also maintaining a suction seal to assist in normal synovial fluid flow from the peripheral to the central compartment. Simple loop suture repairs of the labrum may evert the labrum, thus losing the optimal seal, as well as causing abrasion of the articular cartilage. Vertical mattress suture and labral base fixation techniques aim to leave the free edge of the labrum intact and undisturbed, therefore improving the contact of the labrum to the femoral head and neck to improve the seal of the acetabulum. We aim to describe a double-stranded single-pass vertical mattress suture technique that may allow greater versatility to the surgeon in repairing thinner labrums while still achieving a free and continuous free edge.
Cooling arrangement for a tapered turbine blade
Liang, George
2010-07-27
A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akulov, V A; Kablukov, S I; Babin, Sergei A
2012-02-28
This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less
Pangerc, Urška; Jager, Franc
2015-08-01
In this work, we present the development, architecture and evaluation of a new and robust heart beat detector in multimodal records. The detector uses electrocardiogram (ECG) signals, and/or pulsatile (P) signals, such as: blood pressure, artery blood pressure and pulmonary artery pressure, if present. The base approach behind the architecture of the detector is collecting signal energy (differentiating and low-pass filtering, squaring, integrating). To calculate the detection and noise functions, simple and fast slope- and peak-sensitive band-pass digital filters were designed. By using morphological smoothing, the detection functions were further improved and noise intervals were estimated. The detector looks for possible pacemaker heart rate patterns and repairs the ECG signals and detection functions. Heart beats are detected in each of the ECG and P signals in two steps: a repetitive learning phase and a follow-up detecting phase. The detected heart beat positions from the ECG signals are merged into a single stream of detected ECG heart beat positions. The merged ECG heart beat positions and detected heart beat positions from the P signals are verified for their regularity regarding the expected heart rate. The detected heart beat positions of a P signal with the best match to the merged ECG heart beat positions are selected for mapping into the noise and no-signal intervals of the record. The overall evaluation scores in terms of average sensitivity and positive predictive values obtained on databases that are freely available on the Physionet website were as follows: the MIT-BIH Arrhythmia database (99.91%), the MGH/MF Waveform database (95.14%), the augmented training set of the follow-up phase of the PhysioNet/Computing in Cardiology Challenge 2014 (97.67%), and the Challenge test set (93.64%).
Fiber optic system design for vehicle detection and analysis
NASA Astrophysics Data System (ADS)
Nedoma, Jan; Zboril, Ondrej; Fajkus, Marcel; Zavodny, Petr; Kepak, Stanislav; Bednarek, Lukas; Martinek, Radek; Vasinek, Vladimir
2016-04-01
Fiber optic interferometers belong to a group of highly sensitive and precise devices enabling to measure small changes in the deformation shapes, changes in pressure, temperature, vibration and so on. The basis of their activity is to evaluate the number of fringes over time, not changes in the intensity of the optical signal. The methodology described in the article is based on using the interferometer to monitor traffic density. The base of the solution is a Mach-Zehnder interferometer operating with single-mode G.652 optical fiber at the wavelength of 1550 nm excited by a DFB laser. The power distribution of the laser light into the individual arms of the interferometer is in the ratio 1:1. Realized measuring scheme was terminated by an optical receiver including InGaAs PIN photodiode. Registered signal from the photodetector was through 8 Hz high pass filter fed to the measuring card that captures the analog input voltage using an application written in LabView development environment. The interferometer was stored in a waterproof box and placed at the side of the road. Here panned individual transit of cars in his environs. Vertically across the road was placed in contact removable belt simulating a retarder, which was used when passing cars to create sufficient vibration response detecting interferometer. The results demonstrated that the individual vehicles passing around boxing showed characteristic amplitude spectra, which was unique for each object, and had sufficient value signal to noise ratio (SNR). The signal was processed by applications developed for the amplitude-frequency spectrum. Evaluated was the maximum amplitude of the signal and compared to the noise. The results were verified by repeated transit of the different types of cars.
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
NASA Technical Reports Server (NTRS)
Kaszeta, Richard W.; Simon, Terrence W.; Ashpis, David (Technical Monitor)
2002-01-01
Experimental results from a study of the effects of passing wakes upon laminar-to-turbulent transition in a low-pressure turbine passage are presented. The test section geometry is designed to simulate the effects of unsteady wakes resulting from rotor-stator interaction upon laminar-to-turbulent transition in turbine blade boundary layers and separated flow regions over suction surfaces. Single-wire, thermal anemometry techniques were used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity, and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady state, wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and exit velocity of 50,000 and an approach flow turbulence intensity of 2.5 percent. From these data, the effects of passing wakes and associated increased turbulence levels and varying pressure gradients on transition and separation in the near-wall flow are presented. The results show that the wakes affect transition both by virtue of their difference in turbulence level from that of the free-stream but also by virtue of their velocity deficit relative to the freestream velocity, and the concomitant change in angle of attack and temporal pressure gradients. The results of this study seem to support the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. The data also show a significant lag between when the wake is present over the surface and when transition begins. The accompanying CD-ROM includes tabulated data, animations, higher resolution plots, and an electronic copy of this report.
High-Throughput, Adaptive FFT Architecture for FPGA-Based Spaceborne Data Processors
NASA Technical Reports Server (NTRS)
NguyenKobayashi, Kayla; Zheng, Jason X.; He, Yutao; Shah, Biren N.
2011-01-01
Exponential growth in microelectronics technology such as field-programmable gate arrays (FPGAs) has enabled high-performance spaceborne instruments with increasing onboard data processing capabilities. As a commonly used digital signal processing (DSP) building block, fast Fourier transform (FFT) has been of great interest in onboard data processing applications, which needs to strike a reasonable balance between high-performance (throughput, block size, etc.) and low resource usage (power, silicon footprint, etc.). It is also desirable to be designed so that a single design can be reused and adapted into instruments with different requirements. The Multi-Pass Wide Kernel FFT (MPWK-FFT) architecture was developed, in which the high-throughput benefits of the parallel FFT structure and the low resource usage of Singleton s single butterfly method is exploited. The result is a wide-kernel, multipass, adaptive FFT architecture. The 32K-point MPWK-FFT architecture includes 32 radix-2 butterflies, 64 FIFOs to store the real inputs, 64 FIFOs to store the imaginary inputs, complex twiddle factor storage, and FIFO logic to route the outputs to the correct FIFO. The inputs are stored in sequential fashion into the FIFOs, and the outputs of each butterfly are sequentially written first into the even FIFO, then the odd FIFO. Because of the order of the outputs written into the FIFOs, the depth of the even FIFOs, which are 768 each, are 1.5 times larger than the odd FIFOs, which are 512 each. The total memory needed for data storage, assuming that each sample is 36 bits, is 2.95 Mbits. The twiddle factors are stored in internal ROM inside the FPGA for fast access time. The total memory size to store the twiddle factors is 589.9Kbits. This FFT structure combines the benefits of high throughput from the parallel FFT kernels and low resource usage from the multi-pass FFT kernels with desired adaptability. Space instrument missions that need onboard FFT capabilities such as the proposed DESDynl, SWOT (Surface Water Ocean Topography), and Europa sounding radar missions would greatly benefit from this technology with significant reductions in non-recurring cost and risk.
Rapid and efficient detection of single chromophore molecules in aqueous solution
NASA Astrophysics Data System (ADS)
Li, Li-Qiang; Davis, Lloyd M.
1995-06-01
The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.
Do Medicaid Wage Pass-through Payments Increase Nursing Home Staffing?
Feng, Zhanlian; Lee, Yong Suk; Kuo, Sylvia; Intrator, Orna; Foster, Andrew; Mor, Vincent
2010-01-01
Objective To assess the impact of state Medicaid wage pass-through policy on direct-care staffing levels in U.S. nursing homes. Data Sources Online Survey Certification and Reporting (OSCAR) data, and state Medicaid nursing home reimbursement policies over the period 1996–2004. Study Design A fixed-effects panel model with two-step feasible-generalized least squares estimates is used to examine the effect of pass-through adoption on direct-care staff hours per resident day (HPRD) in nursing homes. Data Collection/Extraction Methods A panel data file tracking annual OSCAR surveys per facility over the study period is linked with annual information on state Medicaid wage pass-through and related policies. Principal Findings Among the states introducing wage pass-through over the study period, the policy is associated with between 3.0 and 4.0 percent net increases in certified nurse aide (CNA) HPRD in the years following adoption. No discernable pass-through effect is observed on either registered nurse or licensed practical nurse HPRD. Conclusions State Medicaid wage pass-through programs offer a potentially effective policy tool to boost direct-care CNA staffing in nursing homes, at least in the short term. PMID:20403054
Zaidman, Jeffrey S; Frederick, William G; Furth, Emma E; Su, Chinyu G; Ginsberg, Gregory G
2006-10-01
The multibite biopsy forceps is intended for consecutive acquisition of numerous tissue specimens with a single pass. The Pelican multibite forceps is equipped with a sleeve for tissue retention that allows up to 6 specimens to be obtained with each pass of the device through the accessory channel. Reducing the need for device exchange could decrease the total procedure time for colon cancer surveillance in patients with longstanding inflammatory bowel disease (IBD). The aim of this study was to evaluate a new multibite biopsy forceps in comparison with a standard double-bite forceps. Prospective randomized animal model trial. Multicenter university and community hospitals. By using a live porcine model, multiple colonoscopic biopsy specimens were obtained with both the Pelican multibite forceps and the Radial Jaw 3 (RJ3) double-bite forceps to mimic colorectal cancer surveillance in patients with IBD. Six biopsy specimens were obtained with each of 6 passes when using the Pelican forceps, and 2 biopsy specimens were obtained with each of 18 passes when using the RJ3 forceps. All trials were timed. Two independent pathologists blinded to the forceps used evaluated the specimens. Tissue acquisition when using the Pelican multibite forceps was significantly faster than with a standard double-bite forceps. The devices compared equivalently for specimen retention and quality. The operator could not be blinded to the devices used. This study uses an animal model to extrapolate how the devices might perform in human use. These findings support the evaluation of the Pelican forceps for colon cancer surveillance in patients with longstanding IBD.
Single cell Enrichment with High Throughput Microfluidic Devices
NASA Astrophysics Data System (ADS)
Pakjesm Pourfard, Pedram
Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.
Practical input optimization for aircraft parameter estimation experiments. Ph.D. Thesis, 1990
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
1993-01-01
The object of this research was to develop an algorithm for the design of practical, optimal flight test inputs for aircraft parameter estimation experiments. A general, single pass technique was developed which allows global optimization of the flight test input design for parameter estimation using the principles of dynamic programming with the input forms limited to square waves only. Provision was made for practical constraints on the input, including amplitude constraints, control system dynamics, and selected input frequency range exclusions. In addition, the input design was accomplished while imposing output amplitude constraints required by model validity and considerations of safety during the flight test. The algorithm has multiple input design capability, with optional inclusion of a constraint that only one control move at a time, so that a human pilot can implement the inputs. It is shown that the technique can be used to design experiments for estimation of open loop model parameters from closed loop flight test data. The report includes a new formulation of the optimal input design problem, a description of a new approach to the solution, and a summary of the characteristics of the algorithm, followed by three example applications of the new technique which demonstrate the quality and expanded capabilities of the input designs produced by the new technique. In all cases, the new input design approach showed significant improvement over previous input design methods in terms of achievable parameter accuracies.
Roberts, Chris; Shadbolt, Narelle; Clark, Tyler; Simpson, Phillip
2014-09-20
Little is known about the technical adequacy of portfolios in reporting multiple complex academic and performance-based assessments. We explored, first, the influencing factors on the precision of scoring within a programmatic assessment of student learning outcomes within an integrated clinical placement. Second, the degree to which validity evidence supported interpretation of student scores. Within generalisability theory, we estimated the contribution that each wanted factor (i.e. student capability) and unwanted factors (e.g. the impact of assessors) made to the variation in portfolio task scores. Relative and absolute standard errors of measurement provided a confidence interval around a pre-determined pass/fail standard for all six tasks. Validity evidence was sought through demonstrating the internal consistency of the portfolio and exploring the relationship of student scores with clinical experience. The mean portfolio mark for 257 students, across 372 raters, based on six tasks, was 75.56 (SD, 6.68). For a single student on one assessment task, 11% of the variance in scores was due to true differences in student capability. The most significant interaction was context specificity (49%), the tendency for one student to engage with one task and not engage with another task. Rater subjectivity was 29%. An absolute standard error of measurement of 4.74%, gave a 95% CI of +/- 9.30%, and a 68% CI of +/- 4.74% around a pass/fail score of 57%. Construct validity was supported by demonstration of an assessment framework, the internal consistency of the portfolio tasks, and higher scores for students who did the clinical placement later in the academic year. A portfolio designed as a programmatic assessment of an integrated clinical placement has sufficient evidence of validity to support a specific interpretation of student scores around passing a clinical placement. It has modest precision in assessing students' achievement of a competency standard. There were identifiable areas for reducing measurement error and providing more certainty around decision-making. Reducing the measurement error would require engaging with the student body on the value of the tasks, more focussed academic and clinical supervisor training, and revisiting the rubric of the assessment in the light of feedback.
Decision on the number of turns in the eRHIC Nov15 design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, S.
2015-12-01
When moving from the “Jun’15” to the “Nov’15” eRHIC FFAG design, the number of accelerating passes through the linac was reduced from 16 to 12. There are an equal number of decelerating passes, so the total reduced from 32 to 24. At the same time, the linac energy was increased from 1.322GeV to 1.665GeV and the RF frequency changed from 422MHz to 647MHz. The maximum beam energy remained approximately constant, changing from 21.164GeV to exactly 20GeV.
An analysis of particle track effects on solid mammalian tissues
NASA Technical Reports Server (NTRS)
Todd, P.; Clarkson, T. W. (Principal Investigator)
1992-01-01
Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.
Ward, David L.; O'neill, Matthew W.; Ka'apu-Lyons, Cassie
2015-01-01
Electrofishing is commonly used when renovating small streams to remove nuisance fishes but the likelihood of complete eradication of unwanted species, particularly warm-water fishes, is unknown. In October of 2008, we electrofished Bonita Creek, a small stream with base flows (<0.56 m3/s) in southern Arizona, and then treated the stream with rotenone to kill all of the remaining fish and quantify the effectiveness of single and multiple-pass electro fishing. Six, 100-m transects were electro fished on three consecutive days followed by a single treatment with rotenone. Fish caught using electrofishing were identified, counted and removed from each transect daily and then compared to numbers of dead fish collected during the subsequent rotenone application. Electrofishing effectiveness was highly variable among transects. Single-pass electrofishing caught an average of 23% (95% CI=5 to 40%) of the fish present, and three-pass electrofishing on consecutive days caught on average 55% (95% CI=28 to 83%) of the fish in each transect. Native Arizona fishes were more susceptible to electrofishing (77 % captured) than non-native species (54% captured), though native fish were rare. Transects in Bonita Creek averaged 3.6±1.5 m wide and 0.25±0.20 m deep (max depth 1.2 m). Bonita Creek is a small first-order stream which exhibits ideal conditions for backpack electrofishing, yet we captured a relatively small percentage of the fish present. This suggests that complete removal of non-native warm-water fishes using backpack electrofishing is not likely to be successful, especially in larger more complex streams.
Technology optimization techniques for multicomponent optical band-pass filter manufacturing
NASA Astrophysics Data System (ADS)
Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.
2016-04-01
Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.
Bidirectional, Automatic Coal-Mining Machine
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1986-01-01
Proposed coal-mining machine operates in both forward and reverse directions along mine face. New design increases efficiency and productivity, because does not stop cutting as it retreats to starting position after completing pass along face. To further increase efficiency, automatic miner carries its own machinery for crushing coal and feeding it to slurry-transport tube. Dual-drum mining machine cuts coal in two layers, crushes, mixes with water, and feeds it as slurry to haulage tube. At end of pass, foward drum raised so it becomes rear drum, and rear drum lowered, becoming forward drum for return pass.
A satellite-based personal communication system for the 21st century
NASA Technical Reports Server (NTRS)
Sue, Miles K.; Dessouky, Khaled; Levitt, Barry; Rafferty, William
1990-01-01
Interest in personal communications (PCOMM) has been stimulated by recent developments in satellite and terrestrial mobile communications. A personal access satellite system (PASS) concept was developed at the Jet Propulsion Laboratory (JPL) which has many attractive user features, including service diversity and a handheld terminal. Significant technical challenges addressed in formulating the PASS space and ground segments are discussed. PASS system concept and basic design features, high risk enabling technologies, an optimized multiple access scheme, alternative antenna coverage concepts, the use of non-geostationary orbits, user terminal radiation constraints, and user terminal frequency reference are covered.
ERIC Educational Resources Information Center
Adesiyan, H. Rose
Prior to the advancement of western education, Liberia had a system of indigenous education, taught by chiefs and respected village elders, and designed to perpetuate the Liberian culture. Formal or western education was introduced in 1830 when the Board of Managers of the American Colonization Society passed a resolution and later passed a public…
You Can't Kill a Wasp with a Postage Stamp, or How to Teach 'Em to Pass Element Nine.
ERIC Educational Resources Information Center
Harden, Heather
For student radio broadcasters to acquire a third class operators permit, they must pass Element 9 of the Federal Communications Commission exam. A course was designed to help these amateurs acquire such technical competencies as meter reading, metric conversions, and familiarity with directional antennas. This course description includes a list…
ERIC Educational Resources Information Center
Laughlin, Kevin; Foley, Andi
2012-01-01
The "Intelligences That Plants Can Pass On" is an activity that involves several of Gardner's Multiple Intelligences and was designed for demonstrating the practical use of Multiple Intelligences in delivering education programs to all ages of learners. Instructions are provided for how to implement this activity, and the activity is linked to…
ERIC Educational Resources Information Center
Foster, Gayla; Alexander, JoAnne C.; Bass, Elaine; Black, Paulette; Cesario, Robert; Clow, Jo Ellen; Dalton, Doug; Dedmon, Charla; Gabbard, Susan; Gabel, Barbara; Goree, Gary; Kyle, Nicholas; Martin, Rita; Merklin, Roxy; Riley, Patrick; Reed, John
This kit is designed to help teachers throughout the state of Oklahoma implement the arts in the core curriculum. Suggestions are included for classroom activities that complement the arts competencies in the "Priority Academic Student Skills (PASS)." The kit is a collection of ideas to introduce or reinforce PASS. In the material is a…
Helping Students with Difficult First Year Subjects through the PASS Program
ERIC Educational Resources Information Center
Sultan, Fauziah K. P. D.; Narayansany, Kannaki S.; Kee, Hooi Ling; Kuan, Chin Hoay; Palaniappa Manickam, M. Kamala; Tee, Meng Yew
2013-01-01
The purpose of this action research was to find out if participants of a pilot PASS program found it to be helpful. The program was implemented for the first time in an institute of higher learning in Malaysia. An action research design guided the study, with surveys, documents, and reflections as primary data sources. The findings were largely…
NASA Astrophysics Data System (ADS)
El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.
2018-07-01
Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.
NASA Astrophysics Data System (ADS)
El-Garaihy, W. H.; Fouad, D. M.; Salem, H. G.
2018-04-01
Multi-channel Spiral Twist Extrusion (MCSTE) is introduced as a novel severe plastic deformation (SPD) technique for producing superior mechanical properties associated with ultrafine grained structure in bulk metals and alloys. The MCSTE design is based on inserting a uniform square cross-sectioned billet within stacked disks that guarantee shear strain accumulation. In an attempt to validate the technique and evaluate its plastic deformation characteristics, a series of experiments were conducted. The influence of the number of MCSTE passes on the mechanical properties and microstructural evolution of AA1100 alloy were investigated. Four passes of MCSTE, at a relatively low twisting angle of 30 deg, resulted in increasing the strength and hardness coupled with retention of ductility. Metallographic observations indicated a significant grain size reduction of 72 pct after 4 passes of MCSTE compared with the as-received (AR) condition. Moreover, the structural uniformity increased with the number of passes, which was reflected in the hardness distribution from the peripheries to the center of the extrudates. The current study showed that the MCSTE technique could be an effective, adaptable SPD die design with a promising potential for industrial applications compared to its counterparts.
Digital carrier demodulator employing components working beyond normal limits
NASA Technical Reports Server (NTRS)
Hurd, William J. (Inventor); Sadr, Ramin (Inventor)
1990-01-01
In a digital device, having an input comprised of a digital sample stream at a frequency F, a method is disclosed for employing a component designed to work at a frequency less than F. The method, in general, is comprised of the following steps: dividing the digital sample stream into odd and even digital samples streams each at a frequency of F/2; passing one of the digital sample streams through the component designed to work at a frequency less than F where the component responds only to the odd or even digital samples in one of the digital sample streams; delaying the other digital sample streams for the time it takes the digital sample stream to pass through the component; and adding the one digital sample stream after passing through the component with the other delayed digital sample streams. In the specific example, the component is a finite impulse response filter of the order ((N + 1)/2) and the delaying step comprised passing the other digital sample streams through a shift register for a time (in sampling periods) of ((N + 1)/2) + r, where r is a pipline delay through the finite impulse response filter.
Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm
NASA Astrophysics Data System (ADS)
Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.
2018-03-01
An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.
Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis
1988-12-01
Figure 5-10. The Linearized Single-Unit Vehicle Model ............................... 41 Figure 5-11. Interpretation of the Single-Unit Model...The starting point for the driver modelling research conducted under this project was a linear preview control model originally proposed by MacAdam 1...regardless of its origin, can pass at least the elementary validation test of exhibiting "cross-over model"-like- behavior in the vicinity of its
33 CFR 66.10-15 - Aids to navigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... may be used singly in staggered fashion on alternate sides of the channel provided they are spaced at... should pass between the buoys. (d) Where there is no well-defined channel or when a body of water is...
33 CFR 66.10-15 - Aids to navigation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... may be used singly in staggered fashion on alternate sides of the channel provided they are spaced at... should pass between the buoys. (d) Where there is no well-defined channel or when a body of water is...
Renal Replacement Therapy in Support of Combat Operations
2008-07-01
potentially cardiotoxic electro- lyte abnormalities ( hyperkalemia , hyper- phosphatemia, hypocalcemia). AKI is ex- acerbated further by hypovolemia...and is inefficient at providing metabolic control for highly catabolic or hyperkalemia pa- tients. Conventional single-pass dialysis sys- tems are the
Seasonal dependence of large-scale Birkeland currents
NASA Technical Reports Server (NTRS)
Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.
1981-01-01
Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.
Ultra-compact UHF Band-pass Filter Designed by Archimedes Spiral Capacitor and Shorted-loaded Stubs
NASA Astrophysics Data System (ADS)
Peng, Lin; Jiang, Xing
2015-01-01
UHF microstrip band-pass filters (BPFs) that much smaller than the referred BPFs are proposed in this communication. For the designing purpose of compactness, archimedes spiral capacitor and ground-loaded stubs are utilized to enhance capacitances and inductance of a filter. Two compact BPFs denoted as BPF 1 and BPF 2 are designed by applying these techniques. The size of BPF 1 and BPF 2 are 0.062 λg × 0.056 λg and 0.047 λg × 0.043 λg, respectively, where λg are guided wavelengths of the centre frequencies of the corresponding filters. The proposed filters were constructed and measured, and the measured results are in good agreement with the simulated ones.
Advanced Geophysical Classification with the Marine Towed Array
NASA Astrophysics Data System (ADS)
Steinhurst, D.; Harbaugh, G.; Keiswetter, D.; Bell, T. W.; Massey, G.; Wright, D.
2017-12-01
The Marine Towed Array, or MTA, is an underwater dual-mode sensor array that has been successfully deployed at multiple marine venues in support of Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) demonstrations beginning in 2004. It provided both marine electromagnetic and marine magnetic sensors for detection and mapping of underwater UXO. The EMI sensor array was based on older technology, which in several ESTCP demonstrations has not been able to support advanced geophysical classification (AGC). Under ESTCP funding, the U.S. Naval Research Laboratory is in the process of upgrading the MTA with modern, advanced electromagnetic (EMI) electronics and replacing the sensor array with a modern, multistatic array design. A half-scale version of the proposed array has been built and tested on land. Six tri-axial receiver cubes were placed inside two- and three- transmit coil configurations in equivalent positions to design locations for the MTA wing. The responses of a variety of munitions items and test spheres were measured over a range of target-to-array geometries and in both static and simulated dynamic data collection modes. The multi-transmit coil configuration was shown to provide enhanced single-pass classification performance over the original single coil design, particularly as a function of target location relative to the centerline. The ability to go beyond anomaly detection and additionally classify detected anomalies from survey data would dramatically improve the state of the art for underwater UXO remediation by reducing costs and improving the efficiency of these efforts. The results of our efforts to return the MTA to service and validating the new EMI array's design for UXO detection and classification in the underwater environment will be the focus of this presentation.
Vidyadhar, A; Chalavadi, G; Das, A
2013-03-30
Gravity separation of metals from plastics in pulverized e-waste using flowing film concentration in a shaking table was investigated. Over 51% rejection of plastics in a single stage operation was achieved under optimum conditions. The shaking table was shown to be suitable for processing ground PCBs. Pulverized e-waste containing 22% metals was enriched to around 40% metals in a single pass. Statistical models for the mass yield of metal-rich stream and its grade were developed by design of experiments. Optimization was carried out to maximize the mass yield at a target product grade and preferred operating regimes were established. Experiments were designed to prevent metal loss and over 95% recovery values were obtained under all conditions. Settling distances of metals and plastics were computed and shown to be good indicators of separation performance. Particle morphology and stratification in the troughs in between the riffles were shown to influence the separation significantly. Water flow-assisted motion of the plastics was captured and its role in determining the effectiveness of separation was described. The efficacy of tabling was well established for treating ground PCBs. The wet process was shown to be environment friendly and sustainable. It is also relatively cheap and has good potential for industrial application. However, rigorous cost estimates will be required before commercial application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bellco Formula Domus Home Care System.
Trewin, Elizabeth
2004-01-01
There are certain characteristics in a dialysis machine that would be desirable for use in home and limited care environments. These features relate to safety, ease of use, consideration of physical space, and reliability. The Bellco Formula Domus Home Care System was designed to meet all these requirements. Bellco's philosophy of patient treatment centers on global biocompatibility. This is evident in the design of the Formula Domus Home Care System. It has the smallest hydraulic fluid pathway of any dialysis machine on the market. Formula is capable of preparing ultrapure dialysate. The ultrafiltration measurement mechanism, the patented Coriolis flow meter, measures the mass of the dialysate, not the volume. For this reason it is the only dialysis machine that detects actual backfiltration, not just the theoretical possibility of it based on transmembrane pressure. The Coriolis flow meter also ensures that dialysate flow is a true single pass. The operator interface is a single window operating control. It is possible to select up to 14 different languages. There is an online help key to assist patients with troubleshooting. Programmable start-up and shutdown times save time for the patient. Formula is the only dialysis machine to offer a backup battery feature. Formula is capable of communicating with any software available. The focus on global biocompatibility ensures the best quality dialysis treatments for a population of patients who will likely remain on dialysis for a longer period of time than conventional dialysis patients.
Experimental analysis of the aerodynamic performance of an innovative low pressure turbine rotor
NASA Astrophysics Data System (ADS)
Infantino, Daniele; Satta, Francesca; Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco
2016-02-01
In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions.
Design of a network for concurrent message passing systems
NASA Astrophysics Data System (ADS)
Song, Paul Y.
1988-08-01
We describe the design of the network design frame (NDF), a self-timed routing chip for a message-passing concurrent computer. The NDF uses a partitioned data path, low-voltage output drivers, and a distributed token-passing arbiter to provide a bandwidth of 450 Mbits/sec into the network. Wormhole routing and bidirectional virtual channels are used to provide low latency communications, less than 2us latency to deliver a 216 bit message across the diameter of a 1K node mess-connected machine. To support concurrent software systems, the NDF provides two logical networks, one for user messages and one for system messages. The two networks share the same set of physical wires. To facilitate the development of network nodes, the NDF is a design frame. The NDF circuitry is integrated into the pad frame of a chip leaving the center of the chip uncommitted. We define an analytic framework in which to study the effects of network size, network buffering capacity, bidirectional channels, and traffic on this class of networks. The response of the network to various combinations of these parameters are obtained through extensive simulation of the network model. Through simulation, we are able to observe the macro behavior of the network as opposed to the micro behavior of the NDF routing controller.
NASA Technical Reports Server (NTRS)
Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)
1985-01-01
A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.
NASA Astrophysics Data System (ADS)
Shope, S. L.; Mazarakis, M. G.; Frost, C. A.; Poukey, J. W.; Turman, B. N.
Self Magnetically Insulated Transmission Lines (MITL) adders were used successfully in a number of Sandia accelerators such as HELIA, HERMES III, and SABRE. Most recently we used at MITL adder in the RADLAC/SMILE electron beam accelerator to produce high quality, small radius (r(sub rho) less than 2 cm), 11 - 15 MeV, 50 - 100-kA beams with a small transverse velocity v(perpendicular)/c = beta(perpendicular) less than or equal to 0.1. In RADLAC/SMILE, a coaxial MITL passed through the eight, 2 MV vacuum envelopes. The MITL summed the voltages of all eight feeds to a single foilless diode. The experimental results are in good agreement with code simulations. Our success with the MITL technology led us to investigate the application to higher energy accelerator designs. We have a conceptual design for a cavity-fed MITL that sums the voltages from 100 identical, inductively-isolated cavities. Each cavity is a toroidal structure that is driven simultaneously by four 8-ohm pulse-forming lines, providing a 1-MV voltage pulse to each of the 100 cavities. The point design accelerator is 100 MV, 500 kA, with a 30 - 50 ns FWHM output pulse.
CO2 capture by means of an enzyme-based reactor
NASA Technical Reports Server (NTRS)
Cowan, R. M.; Ge, J-J; Qin, Y-J; McGregor, M. L.; Trachtenberg, M. C.
2003-01-01
We report a means for efficient and selective extraction of carbon dioxide (CO(2)) at low to medium concentration from mixed gas streams. CO(2) capture was accomplished by use of a novel enzyme-based, facilitated transport contained liquid membrane (EBCLM) reactor. The parametric studies we report explore both structural and operational parameters of this design. The structural parameters include carbonic anhydrase (CA) concentration, buffer concentration and pH, and liquid membrane thickness. The operational parameters are temperature, humidity of the inlet gas stream, and CO(2) concentration in the feed stream. The data show that this system effectively captures CO(2) over the range 400 ppm to at least 100,000 ppm, at or around ambient temperature and pressure. In a single pass across this homogeneous catalyst design, given a feed of 0.1% CO(2), the selectivity of CO(2) versus N(2) is 1,090 : 1 and CO(2) versus O(2) is 790 :1. CO(2) permeance is 4.71 x 10(-8) molm(-2) Pa(-1) sec(-1). The CLM design results in a system that is very stable even in the presence of dry feed and sweep gases.
Design notes for the next generation persistent object manager for CAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isely, M.; Fischler, M.; Galli, M.
1995-05-01
The CAP query system software at Fermilab has several major components, including SQS (for managing the query), the retrieval system (for fetching auxiliary data), and the query software itself. The central query software in particular is essentially a modified version of the `ptool` product created at UIC (University of Illinois at Chicago) as part of the PASS project under Bob Grossman. The original UIC version was designed for use in a single-user non-distributed Unix environment. The Fermi modifications were an attempt to permit multi-user access to a data set distributed over a set of storage nodes. (The hardware is anmore » IBM SP-x system - a cluster of AIX POWER2 nodes with an IBM-proprietary high speed switch interconnect). Since the implementation work of the Fermi-ized ptool, the CAP members have learned quite a bit about the nature of queries and where the current performance bottlenecks exist. This has lead them to design a persistent object manager that will overcome these problems. For backwards compatibility with ptool, the ptool persistent object API will largely be retained, but the implementation will be entirely different.« less
NASA Astrophysics Data System (ADS)
Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.
2015-02-01
The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas-phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a stand-alone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal / noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.
NASA Astrophysics Data System (ADS)
Cazorla, M.; Wolfe, G. M.; Bailey, S. A.; Swanson, A. K.; Arkinson, H. L.; Hanisco, T. F.
2014-08-01
The NASA In Situ Airborne Formaldehyde (ISAF) instrument is a high-performance laser-based detector for gas phase formaldehyde (HCHO). ISAF uses rotational-state specific laser excitation at 353 nm for laser-induced fluorescence (LIF) detection of HCHO. A number of features make ISAF ideal for airborne deployment, including (1) a compact, low-maintenance fiber laser, (2) a single-pass design for stable signal response, (3) a straightforward inlet design, and (4) a standalone data acquisition system. A full description of the instrument design is given, along with detailed performance characteristics. The accuracy of reported mixing ratios is ±10% based on calibration against IR and UV absorption of a primary HCHO standard. Precision at 1 Hz is typically better than 20% above 100 pptv, with uncertainty in the signal background contributing most to variability at low mixing ratios. The 1 Hz detection limit for a signal/noise ratio of 2 is 36 pptv for 10 mW of laser power, and the e-fold time response at typical sample flow rates is 0.19 s. ISAF has already flown on several field missions and platforms with excellent results.
NASA Astrophysics Data System (ADS)
Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang
2018-01-01
Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.
Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.
Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P
2016-08-01
In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee
2018-01-01
A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Computational simulation of weld microstructure and distortion by considering process mechanics
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.
2009-05-01
Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.
A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.
Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting
2013-04-01
In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats.
Diode-laser-based therapy device
NASA Astrophysics Data System (ADS)
Udrea, Mircea V.; Nica, Adriana S.; Florian, Mariana; Poenaru, Daniela; Udrea, Gabriela; Lungeanu, Mihaela; Sporea, Dan G.; Vasiliu, Virgil V.; Vieru, Roxana
2004-10-01
A new therapy laser device is presented. The device consists of a central unit and different types of laser probes. The laser probe model SL7-650 delivers seven red (650 nm), 5 mW diode lasers convergent beams. The beams converge at about 30 cm in front of the laser probe and the irradiated area might be varied by simple displacement of the laser probe with respect to the target. The laser probe SL1-808 emits single infrared laser beam up to 500 mW. The efficiency of the use of this device in physiotherapy, and rheumatology, has been put into evidence after years of testing. Dermatology and microsurgery are users of infrared powerful laser probes. The device has successfully passed technical and clinical tests in order to be certified. The laser device design and some medical results are given.
STI: An objective measure for the performance of voice communication systems
NASA Astrophysics Data System (ADS)
Houtgast, T.; Steeneken, H. J. M.
1981-06-01
A measuring device was developed for determining the quality of speech communication systems. It comprises two parts, a signal source which replaces the talker, producing an artificial speech-like signal, and an analysis part which replaces the listener, by which the signal at the receiving end of the system under test is evaluated. Each single measurement results in an index (ranging from 0-100%) which indicates the effect of that communication system on speech intelligibility. The index is called STI (Speech Transmission Index). A careful design of the characteristics of the test signal and of the type of signal analysis makes the present approach widely applicable. It was verified experimentally that a given STI implies a given effect on speech intelligibility, irrespective of the nature of the actual disturbance (noise interference, band-pass limiting, peak clipping, etc.).
Development of a Dew-Point Generator for Gases Other than Air and Nitrogen and Pressures up to 6 MPa
NASA Astrophysics Data System (ADS)
Bosma, R.; Peruzzi, A.
2012-09-01
A new primary humidity standard is currently being developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated also with special carrier gases such as natural gas and SF6 and at pressures up to 6 MPa. In this paper, the design and construction of this new primary dew-point generator and the preliminary tests performed on the generator are reported. The results of the first efficiency tests, performed for the dew-point temperature range from -50 °C to 20°C, for pressures up to 0.7MPa and for carrier gas flow rates up to 4L· min-1, showed satisfactory generator performance when used in the single-pass mode, i.e., with no recirculation of the carrier gas.
Dissipative cryogenic filters with zero dc resistance.
Bluhm, Hendrik; Moler, Kathryn A
2008-01-01
The authors designed, implemented, and tested cryogenic rf filters with zero dc resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in omega, as typical for skin depth based rf filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.
De Champlain, Andre F; Boulais, Andre-Philippe; Dallas, Andrew
2016-01-01
The aim of this research was to compare different methods of calibrating multiple choice question (MCQ) and clinical decision making (CDM) components for the Medical Council of Canada's Qualifying Examination Part I (MCCQEI) based on item response theory. Our data consisted of test results from 8,213 first time applicants to MCCQEI in spring and fall 2010 and 2011 test administrations. The data set contained several thousand multiple choice items and several hundred CDM cases. Four dichotomous calibrations were run using BILOG-MG 3.0. All 3 mixed item format (dichotomous MCQ responses and polytomous CDM case scores) calibrations were conducted using PARSCALE 4. The 2-PL model had identical numbers of items with chi-square values at or below a Type I error rate of 0.01 (83/3,499 or 0.02). In all 3 polytomous models, whether the MCQs were either anchored or concurrently run with the CDM cases, results suggest very poor fit. All IRT abilities estimated from dichotomous calibration designs correlated very highly with each other. IRT-based pass-fail rates were extremely similar, not only across calibration designs and methods, but also with regard to the actual reported decision to candidates. The largest difference noted in pass rates was 4.78%, which occurred between the mixed format concurrent 2-PL graded response model (pass rate= 80.43%) and the dichotomous anchored 1-PL calibrations (pass rate= 85.21%). Simpler calibration designs with dichotomized items should be implemented. The dichotomous calibrations provided better fit of the item response matrix than more complex, polytomous calibrations.
NASA Technical Reports Server (NTRS)
Kayatin, Matthew J.; Perry, Jay L.
2017-01-01
Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.
Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed
2018-01-01
The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA). PMID:29535925
Yousefinezhad, Sajad; Kermani, Saeed; Hosseinnia, Saeed
2018-01-01
The operational transconductance amplifier-capacitor (OTA-C) filter is one of the best structures for implementing continuous-time filters. It is particularly important to design a universal OTA-C filter capable of generating the desired filter response via a single structure, thus reducing the filter circuit power consumption as well as noise and the occupied space on the electronic chip. In this study, an inverter-based universal OTA-C filter with very low power consumption and acceptable noise was designed with applications in bioelectric and biomedical equipment for recording biomedical signals. The very low power consumption of the proposed filter was achieved through introducing bias in subthreshold MOSFET transistors. The proposed filter is also capable of simultaneously receiving favorable low-, band-, and high-pass filter responses. The performance of the proposed filter was simulated and analyzed via HSPICE software (level 49) and 180 nm complementary metal-oxide-semiconductor technology. The rate of power consumption and noise obtained from simulations are 7.1 nW and 10.18 nA, respectively, so this filter has reduced noise as well as power consumption. The proposed universal OTA-C filter was designed based on the minimum number of transconductance blocks and an inverter circuit by three transconductance blocks (OTA).
NASA Astrophysics Data System (ADS)
Zhu, Chen-Xi; Wang, Chi-Chuan
2018-01-01
This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.
Challenges in conducting post-authorisation safety studies (PASS): A vaccine manufacturer's view.
Cohet, Catherine; Rosillon, Dominique; Willame, Corinne; Haguinet, Francois; Marenne, Marie-Noëlle; Fontaine, Sandrine; Buyse, Hubert; Bauchau, Vincent; Baril, Laurence
2017-05-25
Post-authorisation safety studies (PASS) of vaccines assess or quantify the risk of adverse events following immunisation that were not identified or could not be estimated pre-licensure. The aim of this perspective paper is to describe the authors' experience in the design and conduct of twelve PASS that contributed to the evaluation of the benefit-risk of vaccines in real-world settings. We describe challenges and learnings from selected PASS of rotavirus, malaria, influenza, human papillomavirus and measles-mumps-rubella-varicella vaccines that assessed or identified potential or theoretical risks, which may lead to changes to risk management plans and/or to label updates. Study settings include the use of large healthcare databases and de novo data collection. PASS methodology is influenced by the background incidence of the outcome of interest, vaccine uptake, availability and quality of data sources, identification of the at-risk population and of suitable comparators, availability of validated case definitions, and the frequent need for case ascertainment in large databases. Challenges include the requirement for valid exposure and outcome data, identification of, and access to, adequate data sources, and mitigating limitations including bias and confounding. Assessing feasibility is becoming a key step to confirm that study objectives can be met in a timely manner. PASS provide critical information for regulators, public health agencies, vaccine manufacturers and ultimately, individuals. Collaborative approaches and synergistic efforts between vaccine manufacturers and key stakeholders, such as regulatory and public health agencies, are needed to facilitate access to data, and to drive optimal study design and implementation, with the aim of generating robust evidence. Copyright © 2017 GSK Biologicals SA. Published by Elsevier Ltd.. All rights reserved.
Wavenumber-domain separation of rail contribution to pass-by noise
NASA Astrophysics Data System (ADS)
Zea, Elias; Manzari, Luca; Squicciarini, Giacomo; Feng, Leping; Thompson, David; Arteaga, Ines Lopez
2017-11-01
In order to counteract the problem of railway noise and its environmental impact, passing trains in Europe must be tested in accordance to a noise legislation that demands the quantification of the noise generated by the vehicle alone. However, for frequencies between about 500 Hz and 1600 Hz, it has been found that a significant part of the measured noise is generated by the rail, which behaves like a distributed source and radiates plane waves as a result of the contact with the train's wheels. Thus the need arises for separating the rail contribution to the pass-by noise in that particular frequency range. To this end, the present paper introduces a wavenumber-domain filtering technique, referred to as wave signature extraction, which requires a line microphone array parallel to the rail, and two accelerometers on the rail in the vertical and lateral direction. The novel contributions of this research are: (i) the introduction and application of wavenumber (or plane-wave) filters to pass-by data measured with a microphone array located in the near-field of the rail, and (ii) the design of such filters without prior information of the structural properties of the rail. The latter is achieved by recording the array pressure, as well as the rail vibrations with the accelerometers, before and after the train pass-by. The performance of the proposed method is investigated with a set of pass-by measurements performed in Germany. The results seem to be promising when compared to reference data from TWINS, and the largest discrepancies occur above 1600 Hz and are attributed to plane waves radiated by the rail that so far have not been accounted for in the design of the filters.
10 CFR Appendix B to Part 73 - General Criteria for Security Personnel
Code of Federal Regulations, 2012 CFR
2012-01-01
... or pass an equivalent performance examination designed to measure basic job-related mathematical... equivalent performance examination designed to measure basic mathematical, language, and reasoning skills... administered by a licensed physician. The examination shall be designed to measure the individual's physical...
Evaluation of current centerline rumble strip design(s) to reduce roadside noise and promote safety.
DOT National Transportation Integrated Search
2014-09-01
Noise from vehicles passing over rumble strips is a major source of complaints from residents living : adjacent to highways in Washington state. This project evaluated wayside noise levels from various : centerline rumble strip designs to determine o...
Reversible wavelet filter banks with side informationless spatially adaptive low-pass filters
NASA Astrophysics Data System (ADS)
Abhayaratne, Charith
2011-07-01
Wavelet transforms that have an adaptive low-pass filter are useful in applications that require the signal singularities, sharp transitions, and image edges to be left intact in the low-pass signal. In scalable image coding, the spatial resolution scalability is achieved by reconstructing the low-pass signal subband, which corresponds to the desired resolution level, and discarding other high-frequency wavelet subbands. In such applications, it is vital to have low-pass subbands that are not affected by smoothing artifacts associated with low-pass filtering. We present the mathematical framework for achieving 1-D wavelet transforms that have a spatially adaptive low-pass filter (SALP) using the prediction-first lifting scheme. The adaptivity decisions are computed using the wavelet coefficients, and no bookkeeping is required for the perfect reconstruction. Then, 2-D wavelet transforms that have a spatially adaptive low-pass filter are designed by extending the 1-D SALP framework. Because the 2-D polyphase decompositions are used in this case, the 2-D adaptivity decisions are made nonseparable as opposed to the separable 2-D realization using 1-D transforms. We present examples using the 2-D 5/3 wavelet transform and their lossless image coding and scalable decoding performances in terms of quality and resolution scalability. The proposed 2-D-SALP scheme results in better performance compared to the existing adaptive update lifting schemes.