Sample records for single pass flow

  1. Thermal-hydraulic behavior of a mixed chevron single-pass plate-and-frame heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manglik, R.M.; Muley, A.

    1995-12-31

    Effective heat exchange is very critical for improving the process efficiency and operating economy of chemical and process plants. Here, experimental friction factor and heat transfer data for single-phase water flows in a plate-and-frame heat exchanger are presented. A mixed chevron plate arrangement with {beta} = 30{degree}/60{degree} in a single-pass U-type, counterflow configuration is employed. The friction factor and heat transfer data are for isothermal flow and cooling conditions, respectively, and the flow rates correspond to transition and turbulent flow regimes (300 < Re < 6,000 and 2.4 < Pr < 4.5). Based on these data, Nusselt number and frictionmore » factor correlations for fully developed turbulent flows (Re {ge} 1,000) are presented. The results highlight the effects of {beta} on the thermal-hydraulic performance, transition to turbulent flows, and the relative impact of using symmetric or mixed chevron plate arrangements.« less

  2. Rapid and efficient detection of single chromophore molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Li-Qiang; Davis, Lloyd M.

    1995-06-01

    The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.

  3. Evaluation of a potential generator-produced PET tracer for cerebral perfusion imaging: Single-pass cerebral extraction measurements and imaging with radiolabeled Cu-PTSM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathias, C.J.; Welch, M.J.; Raichle, M.E.

    1990-03-01

    Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM andmore » Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.« less

  4. Histotripsy Thrombolysis on Retracted Clots

    PubMed Central

    Zhang, Xi; Owens, Gabe E.; Cain, Charles A.; Gurm, Hitinder S.; Macoskey, Jonathan; Xu, Zhen

    2016-01-01

    Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free, and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage when compared to the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus, and a dual-pass multi-focus strategy. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results in this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. PMID:27166017

  5. Experimental study of displacement of one liquid by another in a cylindrical capillary

    NASA Astrophysics Data System (ADS)

    Velizhanin, A. A.; Simonov, O. A.

    2017-10-01

    The single-phase flow of liquids (water and oil) in microchannels is experimentally researched, as well as the process of displacement of one liquid by another. Automatic measurements of a pressure drop, and mass of liquid which passed through a microchannel were made. Photo and video recording of the movement of the fronts of displacement was carried out. Qualitative and numerical data allowing to describe character of single-phase and two-phase flow are obtained. Comparison with the theoretical description of correspondence flows was carried out. It is established that the main characteristics of a flow through a capillary constantly change in the course of the experiment that testifies to his non-stationary character.

  6. Engine Handling.

    DTIC Science & Technology

    1983-02-01

    la sells do mosures. Lair eat aspirE & 1’extdriour do la colliule A travers un filtre & poussibres, passe doe 1e conver- gent qui d~livre un dcoulemont...system, so that the spatially nonuniform , steady flow is seen as unsteady but spatially uniform.’ A single-streatube model is used for purely...in Uniform and Nonuniform Flow." Journal of Engineering for Power, Vol. 102, October 1980, pp. 762-769. 12Fabri, J. "Rotating Stall in Axial Flow

  7. The remarkable occurrence of large rainfall-induced debris flows at two different locations on July 12, 2008, Southern Sierra Nevada, CA, USA

    USGS Publications Warehouse

    DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.

    2011-01-01

    On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.

  8. Pulsed single-blow regenerator testing

    NASA Technical Reports Server (NTRS)

    Oldson, J. C.; Knowles, T. R.; Rauch, J.

    1992-01-01

    A pulsed single-blow method has been developed for testing of Stirling regenerator materials performance. The method uses a tubular flow arrangement with a steady gas flow passing through a regenerator matrix sample that packs the flow channel for a short distance. A wire grid heater spanning the gas flow channel is used to heat a plug of gas by approximately 2 K for approximately 350 ms. Foil thermocouples monitor the gas temperature entering and leaving the sample. Data analysis based on a 1D incompressible-flow thermal model allows the extraction of Stanton number. A figure of merit involving heat transfer and pressure drop is used to present results for steel screens and steel felt. The observations show a lower figure of merit for the materials tested than is expected based on correlations obtained by other methods.

  9. Effect of gas-liquid flow pattern and microbial diversity analysis of a pilot-scale biotrickling filter for anoxic biogas desulfurization.

    PubMed

    Almenglo, Fernando; Bezerra, Tercia; Lafuente, Javier; Gabriel, David; Ramírez, Martín; Cantero, Domingo

    2016-08-01

    Hydrogen sulfide removal from biogas was studied under anoxic conditions in a pilot-scale biotrickling filter operated under counter- and co-current gas-liquid flow patterns. The best performance was found under counter-current conditions (maximum elimination capacity of 140 gS m(-3) h(-1)). Nevertheless, switching conditions between co- and counter-current flow lead to a favorable redistribution of biomass and elemental sulfur along the bed height. Moreover, elemental sulfur was oxidized to sulfate when the feeding biogas was disconnected and the supply of nitrate (electron acceptor) was maintained. Removal of elemental sulfur was important to prevent clogging in the packed bed and, thereby, to increase the lifespan of the packed bed between maintenance episodes. The larger elemental sulfur removal rate during shutdowns was 59.1 gS m(-3) h(-1). Tag-encoded FLX amplicon pyrosequencing was used to study the diversity of bacteria under co-current flow pattern with liquid recirculation and counter-current mode with a single-pass flow of the liquid phase. The main desulfurizing bacteria were Sedimenticola while significant role of heterotrophic, opportunistic species was envisaged. Remarkable differences between communities were found when a single-pass flow of industrial water was fed to the biotrickling filter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Histotripsy Thrombolysis on Retracted Clots.

    PubMed

    Zhang, Xi; Owens, Gabe E; Cain, Charles A; Gurm, Hitinder S; Macoskey, Jonathan; Xu, Zhen

    2016-08-01

    Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage compared with the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus and dual-pass multi-focus. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results of this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  12. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  13. Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes

    NASA Technical Reports Server (NTRS)

    Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.

    2001-01-01

    This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.

  14. Size effects on plasticity and fatigue microstructure evolution in FCC single crystals

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar Abbas

    In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.

  15. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.

    2010-04-01

    The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.

  16. Multi-Point Interferometric Rayleigh Scattering using Dual-Pass Light Recirculation

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Danehy, Paul M.; Cutler, Andrew D.

    2008-01-01

    This paper describes for the first time an interferometric Rayleigh scattering system using dual-pass light recirculation (IRS-LR) capable of simultaneously measuring at multiple points two orthogonal components of flow velocity in combustion flows using single shot laser probing. An additional optical path containing the interferometer input mirror, a quarter-wave plate, a polarization dependent beam combiner, and a high reflectivity mirror partially recirculates the light that is rejected by the interferometer. Temporally- and spatially-resolved acquisitions of Rayleigh spectra in a large-scale combustion-heated supersonic axi-symmetric jet were performed to demonstrate the technique. Recirculating of Rayleigh scattered light increases the number of photons analyzed by the system up to a factor of 1.8 compared with previous configurations. This is equivalent to performing measurements with less laser energy or performing measurements with the previous system in gas flows at higher temperatures.

  17. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  18. Randomized Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan

    2017-11-01

    The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.

  19. Heating and cooling system for an on-board gas adsorbent storage vessel

    DOEpatents

    Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio

    2017-06-20

    In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.

  20. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  1. Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers

    NASA Astrophysics Data System (ADS)

    Farough, A.; Lowell, R. P.; Corrigan, R.

    2012-12-01

    Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.

  2. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests conducted in the Bullfrog and Tram intervals. Longitudinal dispersivity values in the Bullfrog and Tram Tuffs ranged from 1.83 to 2.6 meters, flow-porosity values from 0.072 to 0.099, and matrix-porosity values from 0.088 to 0.19. The flow-porosity values indicate that the pathways between boreholes UE-25 c#2 and UE-25 c#3 in the Bullfrog and Tram intervals are not connected well. Tracer testing in the Prow Pass interval indicates different transport characteristics than those obtained in the Bullfrog and Tram intervals. In the Prow Pass Tuff, longitudinal dispersivity was 0.27 meter, flow porosity was 4.5 ? 10?4, and matrix porosity was 0.01. This indicates that the flow network in the Prow Pass is dominated by interconnected fractures, whereas in the Bullfrog and Tram, the flow network is dominated by discontinuous fractures with connecting segments of matrix.

  3. Multicomponent, flow diazotization/Mizoroki-Heck coupling protocol: dispelling myths about working with diazonium salts.

    PubMed

    Nalivela, Kumara S; Tilley, Michael; McGuire, Michael A; Organ, Michael G

    2014-05-26

    A single pass flow diazotization/Mizoroki-Heck protocol has been developed for the production of cinnimoyl and styryl products. The factors that govern aryl diazonium salt stability have been examined in detail leading to the development of a MeOH/DMF co-solvent system in which the diazonium salts can be generated in the presence of all other reaction components and then coupled selectively to give the desired products. Finally the key role of the reaction quench for flow reactions has been demonstrated. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  5. Simultaneous ultrasound and photoacoustics based flow cytometry

    NASA Astrophysics Data System (ADS)

    Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2018-04-01

    We have developed a flow cytometer based on simultaneous detection of ultrasound and photoacoustic waves from individual particles/cells flowing in a microfluidic channel. Our polydimethylsiloxane (PDMS) based hydrodynamic 3-dimensional (3D) flow-focusing microfluidic device contains a cross-junction channel, a micro-needle (ID 100 μm and OD 200 μm) insert, and a 3D printed frame to hold and align a high frequency (center frequency 375 MHz) ultrasound transducer. The focused flow passes through a narrow focal zone with lateral and axial focal lengths of 6-8 μm and 15-20 μm, respectively. Both the lateral and axial alignments are achieved by screwing the transducer to the frame onto the PDMS device. Individual particles pass through an interrogation zone in the microfluidic channel with a collinearly aligned ultrasound transducer and a focused 532 nm wavelength laser beam. The particles are simultaneously insonified by high-frequency ultrasound and irradiated by a laser beam. The ultrasound backscatter and laser generated photoacoustic waves are detected for each passing particle. The backscattered ultrasound and photoacoustic signal are strongly dependent on the size, morphology, mechanical properties, and material properties of the flowing particles; these parameters can be extracted by analyzing unique features in the power spectrum of the signals. Frequencies less than 100 MHz do not have these unique spectral signatures. We show that we can reliably distinguish between different particles in a sample using the acoustic-based flow cytometer. This technique, when extended to biomedical applications, allows us to rapidly analyze the spectral signatures from individual single cells of a large cell population, with applications towards label-free detection and characterization of healthy and diseased cells.

  6. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  7. Three-dimensional flow characteristics of aluminum alloy in multi-pass equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Jin, Young-Gwan; Son, Il-Heon; Im, Yong-Taek

    2010-06-01

    Experiments with a square specimen made of commercially pure aluminum alloy (AA1050) were conducted to investigate deformation behaviour during a multi-pass Equal Channel Angular Pressing (ECAP) for routes A, Bc, and C up to four passes. Three-dimensional finite element numerical simulations of the multi-pass ECAP were carried out in order to evaluate the influence of processing routes and number of passes on local flow behaviour by applying a simplified saturation model of flow stress under an isothermal condition. Simulation results were investigated by comparing them with the experimentally measured data in terms of load variations and microhardness distributions. Also, transmission electron microscopy analysis was employed to investigate the microstructural changes. The present work clearly shows that the three-dimensional flow characteristics of the deformed specimen were dependent on the strain path changes due to the processing routes and number of passes that occurred during the multi-pass ECAP.

  8. Predicted sedimentary record of reflected bores

    USGS Publications Warehouse

    Higman, B.; Gelfenbaum, G.; Lynett, P.; Moore, A.; Jaffe, B.

    2007-01-01

    Where a steep slope blocks an inrushing tsunami, the tsunami commonly reverses direction as a reflected bore. A simple method for relating vertical and horizontal variation in sediment size to output from numerical models of depth-averaged tsunami flow yields predictions about the sedimentary record of reflected bores: 1. Near the reflector, a abrupt slowing of the flow as the reflected bore passes is recorded by a normally graded layer that drapes preexisting topography. 2. At intermediate distances from the reflector, the deposit consists of a single normally graded bed deposited preferentially in depressions, possibly including a sharp fine-over-coarse contact. This contact records a brief period of erosion as the front of the reflected bore passes. 3. Far seaward of the reflector, grading in the deposit includes two distinct normally graded beds deposited preferentially in depressions separated by an erosional unconformity. The second normally graded bed records the reflected bore.

  9. A fast passive and planar liquid sample micromixer.

    PubMed

    Melin, Jessica; Gimenéz, Guillem; Roxhed, Niclas; van der Wijngaart, Wouter; Stemme, Göran

    2004-06-01

    A novel microdevice for passively mixing liquid samples based on surface tension and a geometrical mixing chamber is presented. Due to the laminar flow regime on the microscale, mixing becomes difficult if not impossible. We present a micromixer where a constantly changing time dependent flow pattern inside a two sample liquid plug is created as the plug simply passes through the planar mixer chamber. The device requires no actuation during mixing and is fabricated using a single etch process. The effective mixing of two coloured liquid samples is demonstrated.

  10. Hydrodynamic interaction of two deformable drops in confined shear flow.

    PubMed

    Chen, Yongping; Wang, Chengyao

    2014-09-01

    We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.

  11. Arthroscopic labral repair of the hip, using a through-labral double-stranded single-pass suture technique.

    PubMed

    Ye, Ken; Singh, Parminder J

    2014-10-01

    The normal labrum is crucial to the biomechanical function of the hip joint, not only increasing the surface area and depth of the acetabulum but also maintaining a suction seal to assist in normal synovial fluid flow from the peripheral to the central compartment. Simple loop suture repairs of the labrum may evert the labrum, thus losing the optimal seal, as well as causing abrasion of the articular cartilage. Vertical mattress suture and labral base fixation techniques aim to leave the free edge of the labrum intact and undisturbed, therefore improving the contact of the labrum to the femoral head and neck to improve the seal of the acetabulum. We aim to describe a double-stranded single-pass vertical mattress suture technique that may allow greater versatility to the surgeon in repairing thinner labrums while still achieving a free and continuous free edge.

  12. Soap-film flow induced by electric fields in asymmetric frames

    NASA Astrophysics Data System (ADS)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  13. Soap-film flow induced by electric fields in asymmetric frames.

    PubMed

    Mollaei, S; Nasiri, M; Soltanmohammadi, N; Shirsavar, R; Ramos, A; Amjadi, A

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  14. Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes

    NASA Technical Reports Server (NTRS)

    Kaszeta, Richard W.; Simon, Terrence W.; Ashpis, David (Technical Monitor)

    2002-01-01

    Experimental results from a study of the effects of passing wakes upon laminar-to-turbulent transition in a low-pressure turbine passage are presented. The test section geometry is designed to simulate the effects of unsteady wakes resulting from rotor-stator interaction upon laminar-to-turbulent transition in turbine blade boundary layers and separated flow regions over suction surfaces. Single-wire, thermal anemometry techniques were used to measure time-resolved and phase-averaged, wall-normal profiles of velocity, turbulence intensity, and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady state, wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and exit velocity of 50,000 and an approach flow turbulence intensity of 2.5 percent. From these data, the effects of passing wakes and associated increased turbulence levels and varying pressure gradients on transition and separation in the near-wall flow are presented. The results show that the wakes affect transition both by virtue of their difference in turbulence level from that of the free-stream but also by virtue of their velocity deficit relative to the freestream velocity, and the concomitant change in angle of attack and temporal pressure gradients. The results of this study seem to support the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. The data also show a significant lag between when the wake is present over the surface and when transition begins. The accompanying CD-ROM includes tabulated data, animations, higher resolution plots, and an electronic copy of this report.

  15. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  16. Simulation and analysis of traffic flow based on cellular automaton

    NASA Astrophysics Data System (ADS)

    Ren, Xianping; Liu, Xia

    2018-03-01

    In this paper, single-lane and two-lane traffic model are established based on cellular automaton. Different values of vehicle arrival rate at the entrance and vehicle departure rate at the exit are set to analyze their effects on density, average speed and traffic flow. If the road exit is unblocked, vehicles can pass through the road smoothly despite of the arrival rate at the entrance. If vehicles enter into the road continuously, the traffic condition is varied with the departure rate at the exit. To avoid traffic jam, reasonable vehicle departure rate should be adopted.

  17. Single pass tangential flow filtration to debottleneck downstream processing for therapeutic antibody production.

    PubMed

    Dizon-Maspat, Jemelle; Bourret, Justin; D'Agostini, Anna; Li, Feng

    2012-04-01

    As the therapeutic monoclonal antibody (mAb) market continues to grow, optimizing production processes is becoming more critical in improving efficiencies and reducing cost-of-goods in large-scale production. With the recent trends of increasing cell culture titers from upstream process improvements, downstream capacity has become the bottleneck in many existing manufacturing facilities. Single Pass Tangential Flow Filtration (SPTFF) is an emerging technology, which is potentially useful in debottlenecking downstream capacity, especially when the pool tank size is a limiting factor. It can be integrated as part of an existing purification process, after a column chromatography step or a filtration step, without introducing a new unit operation. In this study, SPTFF technology was systematically evaluated for reducing process intermediate volumes from 2× to 10× with multiple mAbs and the impact of SPTFF on product quality, and process yield was analyzed. Finally, the potential fit into the typical 3-column industry platform antibody purification process and its implementation in a commercial scale manufacturing facility were also evaluated. Our data indicate that using SPTFF to concentrate protein pools is a simple, flexible, and robust operation, which can be implemented at various scales to improve antibody purification process capacity. Copyright © 2011 Wiley Periodicals, Inc.

  18. Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gluesenkamp, Kyle R; BushPE, John D

    2016-01-01

    During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heatermore » (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.« less

  19. Active magnetic regenerator method and apparatus

    DOEpatents

    DeGregoria, Anthony J.; Zimm, Carl B.; Janda, Dennis J.; Lubasz, Richard A.; Jastrab, Alexander G.; Johnson, Joseph W.; Ludeman, Evan M.

    1993-01-01

    In an active magnetic regenerator apparatus having a regenerator bed of material exhibiting the magnetocaloric effect, flow of heat transfer fluid through the bed is unbalanced, so that more fluid flows through the bed from the hot side of the bed to the cold side than from the cold side to the hot side. The excess heat transfer fluid is diverted back to the hot side of the bed. The diverted fluid may be passed through a heat exchanger to draw heat from a fluid to be cooled. The apparatus may be operated at cryogenic temperatures, and the heat transfer fluid may be helium gas and the fluid to be cooled may be hydrogen gas, which is liquified by the device. The apparatus can be formed in multiple stages to allow a greater span of cooling temperatures than a single stage, and each stage may be comprised of two bed parts. Where two bed parts are employed in each stage, a portion of the fluid passing from the hot side to the cold side of a first bed part which does not have a magnetic field applied thereto is diverted back to the cold side of the other bed part in the stage, where it is passed through to the hot side. The remainder of the fluid from the cold side of the bed part of the first stage is passed to the hot side of the bed part of the second stage.

  20. Electrochemical treatment of tannery effluent using a battery integrated DC-DC converter and solar PV power supply--an approach towards environment and energy management.

    PubMed

    Iyappan, K; Basha, C Ahmed; Saravanathamizhan, R; Vedaraman, N; Tahiyah Nou Shene, C A; Begum, S Nathira

    2014-01-01

    Electrochemical oxidation of tannery effluent was carried out in batch, batch recirculation and continuous reactor configurations under different conditions using a battery-integrated DC-DC converter and solar PV power supply. The effect of current density, electrolysis time and fluid flow rate on chemical oxygen demand (COD) removal and energy consumption has been evaluated. The results of batch reactor show that a COD reduction of 80.85% to 96.67% could be obtained. The results showed that after 7 h of operation at a current density of 2.5 A dm(-2) and flow rate of 100 L h(-1) in batch recirculation reactor, the removal of COD is 82.14% and the specific energy consumption was found to be 5.871 kWh (kg COD)(-1) for tannery effluent. In addition, the performance of single pass flow reactors (single and multiple reactors) system of various configurations are analyzed.

  1. Improved aethalometer

    DOEpatents

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  2. Instantaneous flow measurements in a supersonic wind tunnel using spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.

    1995-01-01

    Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.

  3. Contact patterning strategies for 32nm and 28nm technology

    NASA Astrophysics Data System (ADS)

    Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan

    2011-04-01

    As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.

  4. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  5. Simultaneous determination of the intravenous and oral pharmacokinetic parameters of D,L-verapamil using stable isotope-labelled verapamil.

    PubMed

    Eichelbaum, M; Somogyi, A; von Unruh, G E; Dengler, H J

    1981-01-01

    Following i.v. administration, the plasma concentration-time curve of verapamil could best be described by either a mono- or biexponential equation. Total plasma clearance (1.26 1/min) approached liver blood flow (1.51/min), so it can be concluded that its clearance is liver blood flow-dependent. Although absorption was almost complete after oral administration, absolute bioavailability (20%) was low, due to extensive hepatic first-pass metabolism. The approach using stable isotope-labelled and unlabelled drug permits simultaneous administration by the intravascular and extravascular routes, thus allowing determination of absolute bioavailability in a single experiment.

  6. Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure

    USGS Publications Warehouse

    Meador, M.R.; McIntyre, J.P.; Pollock, K.H.

    2003-01-01

    Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of single-pass backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (ps1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, ps1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. Single-pass backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of single-pass sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple-pass electrofishing at some sites may be necessary to better evaluate the adequacy of single-pass electrofishing and to help make meaningful interpretations of fish community structure.

  7. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study

    NASA Astrophysics Data System (ADS)

    Acharya, Nilankush; Das, Kalidas; Kundu, Prabir Kumar

    2018-04-01

    In this piece of writing, we have demonstrated the rotating flow of carbon nanotube passing over a stretching sheet. Two types of carbon nanotube, i.e. single-wall carbon nanotube (SWCNT) and multi-wall carbon nanotube, (MWCNT) have been employed to illustrate the fine points of the flow. Suitable transformations have been consumed to construct its non-dimensional appearance from the partial ones. Transformed forms of equations have been sketched out by RK-4 procedure. Outcomes of the key flow factors on velocity along with temperature outline have been exemplified through tables and graphs, and scrutinized from the sensible judgement. Our investigation authenticates that the temperature of the fluid enhances owing to the improvisation of rotation parameter. Nusselt number goes down with the authority of magnetic parameter.

  8. Frequency-Domain Characterization of Optic Flow and Vision-Based Ocellar Sensing for Rotational Motion

    DTIC Science & Technology

    2017-04-01

    complementary fusion: Fourth-order Butterworth filter was used to high -pass ocelli and low-pass optic flow. The normalized cutoff frequency had to be kept...information introduced by luminance change. The high - frequency cutoff was added to reject the flickering noise for indoor usage. The filtered signals from the...function of the low- pass filter is to attenuate high - frequency noise. The final band-pass filter transfer function is in Eq. 2. (()

  9. Mean velocities and Reynolds stresses upstream of a simulated wing-fuselage juncture

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L. R.

    1983-01-01

    Values of three mean velocity components and six turbulence stresses measured in a turbulent shear layer upstream of a simulated wing-fuselage juncture and immediately downstream of the start of the juncture are presented nd discussed. Two single-sensor hot-wire probes were used in the measurements. The separated region just upstream of the wing contains an area of reversed flow near the fuselage surface where the turbulence level is high. Outside of this area the flow skews as it passes around the body, and in this skewed region the magnitude and distribution of the turbulent normal and shear stresses within the shear layer are modified slightly by the skewing and deceleration of the flow. A short distance downstream of the wing leading edge the secondary flow vortext is tightly rolled up and redistributes both mean flow and turbulence in the juncture. The data acquisition technique employed here allows a hot wire to be used in a reversed flow region to indicate flow direction.

  10. Evaluation of (/sup 18/F)-4-fluoroantipyrine as a new blood flow tracer for multiradionuclide autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sako, K.; Diksic, M.; Kato, A.

    This article reports the evaluation of (/sup 18/F)-4-fluoroantipyrine (FAP) as a quantitative blood flow tracer by comparing blood flow measured with (/sup 18/F)FAP to that determined simultaneously with (/sup 14/C)-4-iodoantipyrine (IAP), a standard blood flow tracer, by means of double-tracer autoradiography. The single-pass extraction value (m), which indicates diffusibility of a tracer, was determined according to the procedure described by Crone. The diffusibility of FAP was essentially the same as that of IAP. The brain-blood partition coefficient for FAP was found to be similar to that for IAP, 0.89 +/- 0.01. Values of local cerebral blood flow obtained with FAPmore » agree with those determined with IAP. From these results, we concluded that FAP is indeed as good a blood flow tracer as IAP. Since /sup 18/F is a positron-emitting radionuclide, it might be a useful tracer for blood flow measurement by positron emission tomography.« less

  11. Late Quaternary history of contourite drifts and variations in Labrador Current flow, Flemish Pass, offshore eastern Canada

    NASA Astrophysics Data System (ADS)

    Marshall, Nicole R.; Piper, David J. W.; Saint-Ange, Francky; Campbell, D. Calvin

    2014-10-01

    Contourite drifts of alternating sand and mud, shaped by the Labrador Current, formed during the late Quaternary in Flemish Pass seaward of the Grand Banks of Newfoundland, Canada. The drifts preserve a record of Labrador Current flow variations through the last glacial maximum. A high-resolution seismic profile and a transect of four cores were collected across Beothuk drift on the southeast side of Flemish Pass. Downcore and lateral trends in grain size and sedimentation rate provide evidence that, between 16 and 13 ka, sediment was partitioned across Beothuk drift and the adjacent Flemish Pass floor by a strong current flow but, from 29 to 16 ka, sedimentation was more of a blanketing style, represented by draped reflections interpreted as being due to a weaker current. The data poorly resolve the low sedimentation rates since 13 ka, but the modern Labrador Current in Flemish Pass is the strongest it has been in at least the past 29 ka. Pre-29 ka current flow is interpreted based on reflection architecture in seismic profiles. A prominent drift on the southwestern side of Flemish Pass formed above a mid-Miocene erosion surface, but was buried by a mass-transport deposit after the penultimate glacial maximum and after drift deposition switched to eastern Flemish Pass. These findings illustrate the temporal complexity of drift sedimentation and provide the first detailed proxy for Labrador Current flow since the last glacial maximum.

  12. Efficient Single-Pass Index Construction for Text Databases.

    ERIC Educational Resources Information Center

    Heinz, Steffen; Zobel, Justin

    2003-01-01

    Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a single-pass inversion method on Web document collections. Shows that the single-pass approach is faster and does not require the complete vocabulary of the indexed…

  13. Imaging electron motion in graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Sagar; Westervelt, Robert M.

    A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less

  14. Imaging electron motion in graphene

    DOE PAGES

    Bhandari, Sagar; Westervelt, Robert M.

    2017-01-05

    A cooled scanning probe microscope (SPM) is an ideal tool to image electronic motion in graphene: the SPM tip acts as a scanning gate, which interacts with the electron gas below. We introduce the technique using our group's previous work on imaging electron flow from a quantum point contact in a GaAs 2DEG and tuning an InAs quantum dot in an InAs/InP nanowire. Carriers in graphene have very different characteristics: electrons and holes travel at a constant speed with no bandgap, and they pass through potential barriers via Klein tunneling. In this paper, we review the extension of SPM imagingmore » techniques to graphene. We image the cyclotron orbits passing between two narrow contacts in a single-atomic-layer graphene device in a perpendicular magnetic field. Magnetic focusing produces a peak in transmission between the contacts when the cyclotron diameter is equal to the contact spacing. The charged SPM tip deflects electrons passing from one contact to the other, changing the transmission when it interrupts the flow. By displaying the change in transmission as the tip is raster scanned above the sample, an image of flow is obtained. In addition, we have developed a complementary technique to image electronic charge using a cooled scanning capacitance microscope (SCM) that uses a sensitive charge preamplifier near the SPM tip to achieve a charge noise level 0.13 e Hz -1/2 with high spatial resolution 100 nm. The cooled SPM and SCM can be used to probe the motion of electrons on the nanoscale in graphene devices.« less

  15. ILAW Glass Testing for Disposal at IDF: Phase 1 Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papathanassiu, Adonia; Muller, Isabelle S.; Brandys, Marek

    2011-04-11

    This document reports the results of the testing of phase 1 ORP LAW (low activity waste) glasses, also identified as enhanced LAW glasses. Testing involved are SPFT (Single Pass Flow Through), VHT (Vapor Hydration Test), and PCT (Product Consistency Test), along with the analytical tests (XRD and SEM-EDS). This report contains the data of the high waste loading ORP LAW glasses that will be used for the performance assessment of the IDF (Integrated Disposal Facility).

  16. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography.

    PubMed

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A

    2017-10-01

    We present a phase-resolved optical coherence tomography (OCT) method to extend Doppler OCT for the accurate measurement of the red blood cell (RBC) velocity in cerebral capillaries. OCT data were acquired with an M-mode scanning strategy (repeated A-scans) to account for the single-file passage of RBCs in a capillary, which were then high-pass filtered to remove the stationary component of the signal to ensure an accurate measurement of phase shift of flowing RBCs. The angular frequency of the signal from flowing RBCs was then quantified from the dynamic component of the signal and used to calculate the axial speed of flowing RBCs in capillaries. We validated our measurement by RBC passage velocimetry using the signal magnitude of the same OCT time series data.

  17. Modeling of the static recrystallization for 7055 aluminum alloy by cellular automaton

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Lu, Shi-hong; Zhang, Jia-bin; Li, Zheng-fang; Chen, Peng; Gong, Hai; Wu, Yun-xin

    2017-09-01

    In order to simulate the flow behavior and microstructure evolution during the pass interval period of the multi-pass deformation process, models of static recovery (SR) and static recrystallization (SRX) by the cellular automaton (CA) method for the 7055 aluminum alloy were established. Double-pass hot compression tests were conducted to acquire flow stress and microstructure variation during the pass interval period. With the basis of the material constants obtained from the compression tests, models of the SR, incubation period, nucleation rate and grain growth were fitted by least square method. A model of the grain topology and a statistical computation of the CA results were also introduced. The effects of the pass interval time, temperature, strain, strain rate and initial grain size on the microstructure variation for the SRX of the 7055 aluminum alloy were studied. The results show that a long pass interval time, large strain, high temperature and large strain rate are beneficial for finer grains during the pass interval period. The stable size of the static recrystallized grain is not concerned with the initial grain size, but mainly depends on the strain rate and temperature. The SRX plays a vital role in grain refinement, while the SR has no effect on the variation of microstructure morphology. Using flow stress and microstructure comparisons of the simulated and experimental CA results, the established CA models can accurately predict the flow stress and microstructure evolution during the pass interval period, and provide guidance for the selection of optimized parameters for the multi-pass deformation process.

  18. Simulation of double-pass stimulated Raman backscattering

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.

    2018-04-01

    Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.

  19. A numerical study of the supercritical CO2 plate heat exchanger subject to U-type, Z-type, and multi-pass arrangements

    NASA Astrophysics Data System (ADS)

    Zhu, Chen-Xi; Wang, Chi-Chuan

    2018-01-01

    This study proposes a numerical model for plate heat exchanger that is capable of handling supercritical CO2 fluid. The plate heat exchangers under investigation include Z-type (1-pass), U-type (1-pass), and 1-2 pass configurations. The plate spacing is 2.9 mm with a plate thickness of 0.8 mm, and the size of the plate is 600 mm wide and 218 mm in height with 60 degrees chevron angle. The proposed model takes into account the influence of gigantic change of CO2 properties. The simulation is first compared with some existing data for water-to-water plate heat exchangers with good agreements. The flow distribution, pressure drop, and heat transfer performance subject to the supercritical CO2 in plate heat exchangers are then investigated. It is found that the flow velocity increases consecutively from the entrance plate toward the last plate for the Z-type arrangement, and this is applicable for either water side or CO2 side. However, the flow distribution of the U-type arrangement in the water side shows opposite trend. Conversely, the flow distribution for U-type arrangement of CO2 depends on the specific flow ratio (C*). A lower C* like 0.1 may reverse the distribution, i.e. the flow velocity increases moderately alongside the plate channel like Z-type while a large C* of 1 would resemble the typical distribution in water channel. The flow distribution of CO2 side at the first and last plate shows a pronounced drop/surge phenomenon while the channels in water side does not reveal this kind of behavior. The performance of 2-pass plate heat exchanger, in terms of heat transfer rate, is better than that of 1-pass design only when C* is comparatively small (C* < 0.5). Multi-pass design is more effective when the dominant thermal resistance falls in the CO2 side.

  20. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    PubMed Central

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2013-01-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency. PMID:25685486

  1. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater.

    PubMed

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2014-03-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  2. Ultrastructural evaluation of multiple pass low energy versus single pass high energy radio-frequency treatment.

    PubMed

    Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian

    2006-02-01

    The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes and at lesser depths with single pass higher fluence settings. Findings suggest that similar collagen fibril alteration can occur with multiple pass low-energy treatments and single pulse high-energy treatments. The lower fluence multiple pass approach is associated with less patient discomfort, less side effects, and more consistent clinical results. Copyright 2005 Wiley-Liss, Inc.

  3. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilpueng, Kitti; Wongwises, Somchai

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less

  4. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.

    PubMed

    Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E

    1976-02-01

    We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.

  5. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  6. MOBILE GAMMA IRRADIATORS FOR FRUIT PRODUCE (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    Mobile irradiators used for the radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons are described. The irradiators are mounted on trailers and each irradiator, including the trailer, weighs 70 to 80 tons. Radiatton doses range from 100,000 to 200,000 rads. Minimum production is 500 lb of fruit per hour. Drawings are included for four types of irradiators: the single-slab twopass, double-slab one-pass, single-slab four-pass, and line-source rotary. In the single-slab two-pass system, the packages make two passes in front of the source. The length of the packages is parallel to the direction of travel. The packages are irradiated on eachmore » side. This system is light in weight, has low capital cost, and is simple to fabricate. The double-slab one- pass system is the same as the above except the source strength is doubled and irradiation time is cut in half. The same arrangement is used in the single-slab four-pass system that is used in the singleslab two-pass system except the packages make two passes on each side of the source. The rotary system combines a linear and rotary motion to provide high dosage. It uses a small Co/sup 60/ source but costs more than a single-slab twopass system. (F.E.S.)« less

  7. Design and Modeling of Turbine Airfoils with Active Flow Control in Realistic Engine Conditions

    DTIC Science & Technology

    2008-07-16

    deficit and turbulence parameters in the wake of a passing blade . An additional objective was to determine the proper cylinder diameter and...we see that in terms of velocity deficit only, the 4mm cylinder at x/D=8 approximates very well the blade wake . However, we see that the problem...Results Blade Wake The computational domain consisted of a single blade with periodic conditions imposed at approximately the mid-passage, as seen in

  8. High-Performance Water-Iodinating Cartridge

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Gibbons, Randall E.; Flanagan, David T.

    1993-01-01

    High-performance cartridge contains bed of crystalline iodine iodinates water to near saturation in single pass. Cartridge includes stainless-steel housing equipped with inlet and outlet for water. Bed of iodine crystals divided into layers by polytetrafluoroethylene baffles. Holes made in baffles and positioned to maximize length of flow path through layers of iodine crystals. Resulting concentration of iodine biocidal; suppresses growth of microbes in stored water or disinfects contaminated equipment. Cartridge resists corrosion and can be stored wet. Reused several times before necessary to refill with fresh iodine crystals.

  9. Modification of the flow pass method as applied to problems of chemistry of planet atmospheres

    NASA Technical Reports Server (NTRS)

    Parshev, V. A.

    1980-01-01

    It was shown that the modified flow pass method possesses considerable effectiveness, both in the case when the coefficient of diffusion changes severely in the examined region and in the case when diffusion is the prevalent process, as compared with chemical reactions. The case when a regular pass proves inapplicable, or applicable in a limited interval of the decisive parameters, was examined.

  10. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  11. Hydraulic flow visualization method and apparatus

    DOEpatents

    Karidis, Peter G.

    1984-01-01

    An apparatus and method for visualizing liquid flow. Pulses of gas bubbles are introduced into a liquid flow stream and a strobe light is operated at a frequency related to the frequency of the gas pulses to shine on the bubbles as they pass through the liquid stream. The gas pulses pass through a probe body having a valve element, and a reciprocating valve stem passes through the probe body to operate the valve element. A stem actuating device comprises a slidable reciprocating member, operated by a crank arm. The actuated member is adjustable to adjust the amount of the valve opening during each pulse.

  12. Two-lane traffic-flow model with an exact steady-state solution.

    PubMed

    Kanai, Masahiro

    2010-12-01

    We propose a stochastic cellular-automaton model for two-lane traffic flow based on the misanthrope process in one dimension. The misanthrope process is a stochastic process allowing for an exact steady-state solution; hence, we have an exact flow-density diagram for two-lane traffic. In addition, we introduce two parameters that indicate, respectively, driver's driving-lane preference and passing-lane priority. Due to the additional parameters, the model shows a deviation of the density ratio for driving-lane use and a biased lane efficiency in flow. Then, a mean-field approach explicitly describes the asymmetric flow by the hop rates, the driving-lane preference, and the passing-lane priority. Meanwhile, the simulation results are in good agreement with an observational data, and we thus estimate these parameters. We conclude that the proposed model successfully produces two-lane traffic flow particularly with the driving-lane preference and the passing-lane priority.

  13. Model of separation performance of bilinear gradients in scanning format counter-flow gradient electrofocusing techniques.

    PubMed

    Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L

    2015-03-01

    Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High temperature helical tubular receiver for concentrating solar power system

    NASA Astrophysics Data System (ADS)

    Hossain, Nazmul

    In the field of conventional cleaner power generation technology, concentrating solar power systems have introduced remarkable opportunity. In a solar power tower, solar energy concentrated by the heliostats at a single point produces very high temperature. Falling solid particles or heat transfer fluid passing through that high temperature region absorbs heat to generate electricity. Increasing the residence time will result in more heat gain and increase efficiency. A novel design of solar receiver for both fluid and solid particle is approached in this paper which can increase residence time resulting in higher temperature gain in one cycle compared to conventional receivers. The helical tubular solar receiver placed at the focused sunlight region meets the higher outlet temperature and efficiency. A vertical tubular receiver is modeled and analyzed for single phase flow with molten salt as heat transfer fluid and alloy625 as heat transfer material. The result is compared to a journal paper of similar numerical and experimental setup for validating our modeling. New types of helical tubular solar receivers are modeled and analyzed with heat transfer fluid turbulent flow in single phase, and granular particle and air plug flow in multiphase to observe the temperature rise in one cyclic operation. The Discrete Ordinate radiation model is used for numerical analysis with simulation software Ansys Fluent 15.0. The Eulerian granular multiphase model is used for multiphase flow. Applying the same modeling parameters and boundary conditions, the results of vertical and helical receivers are compared. With a helical receiver, higher temperature gain of heat transfer fluid is achieved in one cycle for both single phase and multiphase flow compared to the vertical receiver. Performance is also observed by varying dimension of helical receiver.

  15. Effectiveness of backpack electrofishing for removal of non-native fishes from a small warm-water stream

    USGS Publications Warehouse

    Ward, David L.; O'neill, Matthew W.; Ka'apu-Lyons, Cassie

    2015-01-01

    Electrofishing is commonly used when renovating small streams to remove nuisance fishes but the likelihood of complete eradication of unwanted species, particularly warm-water fishes, is unknown. In October of 2008, we electrofished Bonita Creek, a small stream with base flows (<0.56 m3/s) in southern Arizona, and then treated the stream with rotenone to kill all of the remaining fish and quantify the effectiveness of single and multiple-pass electro fishing. Six, 100-m transects were electro fished on three consecutive days followed by a single treatment with rotenone. Fish caught using electrofishing were identified, counted and removed from each transect daily and then compared to numbers of dead fish collected during the subsequent rotenone application. Electrofishing effectiveness was highly variable among transects. Single-pass electrofishing caught an average of 23% (95% CI=5 to 40%) of the fish present, and three-pass electrofishing on consecutive days caught on average 55% (95% CI=28 to 83%) of the fish in each transect. Native Arizona fishes were more susceptible to electrofishing (77 % captured) than non-native species (54% captured), though native fish were rare. Transects in Bonita Creek averaged 3.6±1.5 m wide and 0.25±0.20 m deep (max depth 1.2 m). Bonita Creek is a small first-order stream which exhibits ideal conditions for backpack electrofishing, yet we captured a relatively small percentage of the fish present. This suggests that complete removal of non-native warm-water fishes using backpack electrofishing is not likely to be successful, especially in larger more complex streams.

  16. Hemolytic potential of hydrodynamic cavitation.

    PubMed

    Chambers, S D; Bartlett, R H; Ceccio, S L

    2000-08-01

    The purpose of this study was to determine the hemolytic potentials of discrete bubble cavitation and attached cavitation. To generate controlled cavitation events, a venturigeometry hydrodynamic device, called a Cavitation Susceptibility Meter (CSM), was constructed. A comparison between the hemolytic potential of discrete bubble cavitation and attached cavitation was investigated with a single-pass flow apparatus and a recirculating flow apparatus, both utilizing the CSM. An analytical model, based on spherical bubble dynamics, was developed for predicting the hemolysis caused by discrete bubble cavitation. Experimentally, discrete bubble cavitation did not correlate with a measurable increase in plasma-free hemoglobin (PFHb), as predicted by the analytical model. However, attached cavitation did result in significant PFHb generation. The rate of PFHb generation scaled inversely with the Cavitation number at a constant flow rate, suggesting that the size of the attached cavity was the dominant hemolytic factor.

  17. High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell

    PubMed Central

    Nielsen, S. S.; Møller, M.; Gillilan, R. E.

    2012-01-01

    With the rise in popularity of biological small-angle X-ray scattering (BioSAXS) measurements, synchrotron beamlines are confronted with an ever-increasing number of samples from a wide range of solution conditions. To meet these demands, an increasing number of beamlines worldwide have begun to provide automated liquid-handling systems for sample loading. This article presents an automated sample-loading system for BioSAXS beamlines, which combines single-channel disposable-tip pipetting with a vacuum-enclosed temperature-controlled capillary flow cell. The design incorporates an easily changeable capillary to reduce the incidence of X-ray window fouling and cross contamination. Both the robot-control and the data-processing systems are written in Python. The data-processing code, RAW, has been enhanced with several new features to form a user-friendly BioSAXS pipeline for the robot. The flow cell also supports efficient manual loading and sample recovery. An effective rinse protocol for the sample cell is developed and tested. Fluid dynamics within the sample capillary reveals a vortex ring pattern of circulation that redistributes radiation-damaged material. Radiation damage is most severe in the boundary layer near the capillary surface. At typical flow speeds, capillaries below 2 mm in diameter are beginning to enter the Stokes (creeping flow) regime in which mixing due to oscillation is limited. Analysis within this regime shows that single-pass exposure and multiple-pass exposure of a sample plug are functionally the same with regard to exposed volume when plug motion reversal is slow. The robot was tested on three different beamlines at the Cornell High-Energy Synchrotron Source, with a variety of detectors and beam characteristics, and it has been used successfully in several published studies as well as in two introductory short courses on basic BioSAXS methods. PMID:22509071

  18. Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution

    USGS Publications Warehouse

    Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.

    2005-01-01

    We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.

  19. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong; Wang, Zheming

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less

  20. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.

    PubMed

    Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon

    2017-10-03

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  1. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    PubMed Central

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school office buildings. PMID:26742055

  2. Soap film gas flowmeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lalin, H.S.; Bermudez, J.E.; Fleming, W.T.

    1987-09-08

    A soap film gas flowmeter is described comprising: a flow tube having a hollow body with opposite open ends through which a soap film is propelled and a first closed chamber housing a soap solution. It also includes means for supporting the flow tube in a substantially vertical position with the open bottom end of the flow tube disposed in the first chamber above the soap solution; a second closed chamber into which the open top end of the flow tube extends and gas inlet means for introducing gas into the first chamber at a flow rate to be measuredmore » using the flowmeters. A gas exit means is included for discharging the gas introduced into the first chamber through the second chamber. Plus there are means for generating a single soap bubble from the soap solution substantially at the bottom end of the flow tube and a relatively large opening in the flowtube for providing an open passageway for inlet gas to pass through the flowtube when the bottom open end of the flowtube is covered by the soap solution.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, H.L.; Spronsen, G. van; Klaus, E.H.

    A simulation model of the dynamics of a by-pass pig and related two-phase flow behavior along with field trials of the pig in a dry-gas pipeline have revealed significant gains in use of a by-pass pig in modifying gas and liquid production rates. The method can widen the possibility of applying two-phase flow pipeline transportation to cases in which separator or slug-catcher capacity is limited by practicality or cost. Pigging two-phase pipelines normally generates large liquid slug volumes in front of the pig. These require large separators or slug catchers. Using a high by-pass pig to disperse the liquid andmore » reduce the maximum liquid production rate before pig arrival has been investigated by Shell Exploration and Production companies. A simulation model of the dynamics of the pig and related two-phase flow behavior in the pipeline was used to predict the performance of by-pass pigs. Field trials in a dry-gas pipeline were carried out to provide friction data and to validate the model. The predicted mobility of the high by-pass pig in the pipeline and risers was verified and the beneficial effects due to the by-pass concept exceeded the prediction of the simplified model.« less

  4. Aethalometer

    DOEpatents

    Hansen, Anthony D.

    1990-01-01

    An improved aethalometer (10) having a single light source (18) and a single light detector (20) and two light paths (21, 22) from the light source (18) to the light detector (20). A quartz fiber filter (13) is inserted in the device, the filter (13) having a collection area (23) in one light path (21) and a reference area (24) in the other light path (22). A gas flow path (46) through the aethalometer housing (11) allows ambient air to flow through the collection area (23) of the filter (13) so that aerosol particles can be collected on the filter. A rotating disk (31) with an opening (33) therethrough allows light for the light source (18) to pass alternately through the two light paths (21, 22). The voltage output of the detector (20) is applied to a VCO (52) and the VCO pulses for light transmission separately through the two light paths (21, 22 ) are counted and compared to determine the absorption coefficient of the collected aerosol particles.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Faber, Derrek M.

    This report describes a 2008 acoustic telemetry survival study conducted by the Pacific Northwest National Laboratory for the Portland District of the U.S. Army Corps of Engineers. The study estimated the survival of juvenile Chinook salmon and steelhead passing Bonneville Dam (BON) and its spillway. Of particular interest was the relative survival of smolts detected passing through end spill bays 1-3 and 16-18, which had deep flow deflectors immediately downstream of spill gates, versus survival of smolts passing middle spill bays 4-15, which had shallow flow deflectors.

  6. Experimental study of turbulent flow heat transfer and pressure drop in a plate heat exchanger with chevron plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muley, A.; Manglik, R.M.

    1997-07-01

    Experimental data for isothermal pressure drop and heat transfer in single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. A single-pass, U-type, counterflow PHE, with three different chevron plate arrangements is employed: two symmetric plate arrangements with {beta} = 30/30{degree} and 60/60{degree}, and a mixed-plate arrangement with {beta} = 30/60{degree}. With water flow rates in the turbulent flow regime (600 < Re < 10{sup 4} and 2 < Pr < 6), effects of the chevron corrugation inclination angle {beta} on Nu and f characteristics of the PHE are investigated. As {beta} increases and compared tomore » a flat-plate pack, up to 2 to 5 times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Based on the experimental data for Re {le} 1,000, predictive correlations of the form Nu = C{sub 1}{beta} Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}{beta} Re{sup p2({beta})} are devised. Also, at constant pumping power and depending upon {beta}, the heat transfer is found to be enhanced over 1.8 times that in equivalent flat-plate channels.« less

  7. Flow control using audio tones in resonant microfluidic networks: towards cell-phone controlled lab-on-a-chip devices.

    PubMed

    Phillips, Reid H; Jain, Rahil; Browning, Yoni; Shah, Rachana; Kauffman, Peter; Dinh, Doan; Lutz, Barry R

    2016-08-16

    Fluid control remains a challenge in development of portable lab-on-a-chip devices. Here, we show that microfluidic networks driven by single-frequency audio tones create resonant oscillating flow that is predicted by equivalent electrical circuit models. We fabricated microfluidic devices with fluidic resistors (R), inductors (L), and capacitors (C) to create RLC networks with band-pass resonance in the audible frequency range available on portable audio devices. Microfluidic devices were fabricated from laser-cut adhesive plastic, and a "buzzer" was glued to a diaphragm (capacitor) to integrate the actuator on the device. The AC flowrate magnitude was measured by imaging oscillation of bead tracers to allow direct comparison to the RLC circuit model across the frequency range. We present a systematic build-up from single-channel systems to multi-channel (3-channel) networks, and show that RLC circuit models predict complex frequency-dependent interactions within multi-channel networks. Finally, we show that adding flow rectifying valves to the network creates pumps that can be driven by amplified and non-amplified audio tones from common audio devices (iPod and iPhone). This work shows that RLC circuit models predict resonant flow responses in multi-channel fluidic networks as a step towards microfluidic devices controlled by audio tones.

  8. Turbulence generation through intense kinetic energy sources

    NASA Astrophysics Data System (ADS)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  9. Single-pass incremental force updates for adaptively restrained molecular dynamics.

    PubMed

    Singh, Krishna Kant; Redon, Stephane

    2018-03-30

    Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  11. Method for preparing homogeneous single crystal ternary III-V alloys

    DOEpatents

    Ciszek, Theodore F.

    1991-01-01

    A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.

  12. Continuous Flow Aerobic Alcohol Oxidation Reactions Using a Heterogeneous Ru(OH)x/Al2O3 Catalyst

    PubMed Central

    2015-01-01

    Ru(OH)x/Al2O3 is among the more versatile catalysts for aerobic alcohol oxidation and dehydrogenation of nitrogen heterocycles. Here, we describe the translation of batch reactions to a continuous-flow method that enables high steady-state conversion and single-pass yields in the oxidation of benzylic alcohols and dehydrogenation of indoline. A dilute source of O2 (8% in N2) was used to ensure that the reaction mixture, which employs toluene as the solvent, is nonflammable throughout the process. A packed bed reactor was operated isothermally in an up-flow orientation, allowing good liquid–solid contact. Deactivation of the catalyst during the reaction was modeled empirically, and this model was used to achieve high conversion and yield during extended operation in the aerobic oxidation of 2-thiophene methanol (99+% continuous yield over 72 h). PMID:25620869

  13. Experimental study of combustion in a turbulent free shear layer formed at a rearward facing step

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.; Daily, J. W.

    1981-01-01

    A premixed propane-air flame is stabilized in a turbulent free shear layer formed at a rearward facing step. The mean and rms averages of the turbulent velocity flow field are determined by LDV for both reacting (equivalence ratio 0.57) and nonreacting flows (Reynolds number 15,000-37,000 based on step height). The effect of combustion is to shift the layer toward the recirculation zone and reduce the flame spread. For reacting flow, the growth rate is unchanged except very near the step. The probability density function of the velocity is bimodial near the origin of the reacting layer and single-peaked but often skewed elsewhere. Large-scale structures dominate the reacting shear layer. Measurements of their passing frequency from LDV are consistent with high-speed Schlieren movies of the reacting layer and indicate that the coalescence rate of the eddies in the shear layer is reduced by combustion.

  14. High-speed laser anemometry based on spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1991-01-01

    Laser anemometry in unseeded flows based on the measurement of the spectrum of Rayleigh scattered laser light is reviewed. The use of molecular scattering avoids the well known problems (particle lag, biasing effects, seed generation, seed injection) of seeded flows. The fundamental limits on velocity measurement accuracy are determined using maximum likelihood methods. Measurement of the Rayleigh spectrum with scanning Fabry-Perot interferometers is analyzed and accuracy limits are established for both single pass and multipass configurations. Multipass configurations have much higher selectivity and are needed for measurements where there is a large amount of excess noise caused by stray laser light. It is shown that Rayleigh scattering is particularly useful for supersonic and hypersonic flows. The results of the analysis are compared with measurements obtained with a Rayleigh scattering diagnostic developed for study of the exhaust plume of a small hydrogen-oxygen rocket, where the velocities are in the range of 1000 to 5000 m/sec.

  15. Optical elements formed by compressed gases: Analysis and potential applications

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1986-01-01

    Spherical, cylindrical, and conical shock waves are optically analogous to gas lenses. The geometrical optics of these shock configurations are analyzed as they pertain to flow visualization instruments, particularly the rainbow schlieren apparatus and single-pass interferometers. It is proposed that a lens or mirror formed by gas compressed between plastic sheets has potential as a fluid visualization test object; as the objective mirror in a very large space-based telescope, communication antenna, or energy collector; as the objective mirror in inexpensive commercial telescopes; and as a component in fluid visualization apparatuses.

  16. Physical and hydrologic characteristics of Matlacha Pass, southwestern Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, R.L.; Russell, G.M.

    1994-03-01

    Matlacha Pass is part of the connected inshore waters of the Charlotte Harbor estuary in southwestern Florida. Bathymetry indicates that depths in the main channel of the pass range from 4 to 14 feet below sea level. The channel averages about 8 feet deep in the northern part of the pass and about 5 feet deep in the southern part. Additionally, depths average about 4 feet in a wide section of the middle of the pass and about 2 feet along the mangrove swamps near the shoreline. Tidal flow within Matlacha Pass varies depending on aquatic vegetation densities, oyster beds,more » and tidal flats. Surface-water runoff occurs primarily during the wet season (May to September), with most of the flow entering the Matlacha Pass through two openings in the spreader canal system near the city of Matlacha. Freshwater flow into the pass from the north Cape Coral spreader canal system averaged 113 cubic feet per second from October 1987 to September 1992. Freshwater inflow from the Aries Canal of the south Cape Coral spreader canal system averaged 14.1 cubic feet per second from October 1989 to September 1992. Specific conductance throughout Matlacha Pass ranged from less than 1,000 to 57,000 microsiemens per centimeter. Specific conductance, collected from a continuous monitoring data logger in the middle of the pass from February to September 1992, averaged 36,000 microsiemens per centimeter at 2 feet below the water surface and 40,000 microsiemens per centimeter at 2 feet above the bottom. During both the wet and dry seasons, specific conductance indicated that the primary mixing of tidal waters and freshwater inflow occurs in the mangrove swamps along the shoreline.« less

  17. Medical and Scientific Evaluations aboard the KC-135. Microgravity-Compatible Flow Cytometer

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Nelman-Gonzalez, Mayra; Sams, Clarence

    2005-01-01

    A spaceflight-compatible flow cytometer would be useful for the diagnosis of astronaut illness during long duration spaceflight and for conducting in-flight research to evaluate the effects of microgravity on human physiology. Until recently, the primary limitations preventing the development of a spaceflight compatible flow cytometer have been largely mechanical. Standard commercially available flow cytometers are large, complex instruments that use high-energy lasers and require significant training to operate. Standard flow cytometers function by suspending the particles to be analyzed inside a sheath fluid for analysis. This requires the presence of several liters of sheath fluid for operation, and generates a corresponding amount of liquid hazardous waste. The particles are then passed through a flow cell which uses the fluid mechanical property of hydrodynamic focusing to place the cells in single-file (laminar flow) as they pass through a laser beam for scanning and evaluation. Many spaceflight experiments have demonstrated that fluid physics is dramatically altered in microgravity (MSF [Manned Space Flight] Fluid Physics Data Sheet-August 1997) and previous studies have shown that sheath-fluid based hydrodynamic focusing may also be altered during microgravity (Crucian et al, 2000). For these reasons it is likely that any spaceflight compatible design for a flow cytometer would abandon the sheath fluid requirement. The elimination of sheath fluid would remove both the problems of weight associated with large volumes of liquids as well as the large volume of liquid waste generated. It would also create the need for a method to create laminar particle flow distinct from the standard sheath-fluid based method. The spaceflight prototype instrument is based on a recently developed commercial flow cytometer possessing a novel flow cell design that creates single-particle laser scanning and evaluation without the need for sheath-fluid based hydrodynamic focusing. This instrument also possesses a number of design advances that make it conditionally microgravity compatible: it is highly miniaturized and lightweight, uses a low energy diode laser, has a small number of moving parts, does not use sheath fluid and does not generate significant liquid waste. Although possessing certain limitations, the commercial cytometer functions operationally like a standard bench top laboratory flow cytometer, aspirating liquid particle samples and generating histogram or dot-plot data in standard FCS file format. In its current configuration however, the cytometer is limited to three parameter/two-color capability (two color PMTs + forward scatter), does not allow compensation between colors, does not allow linear analysis and is operated by rather inflexible software with limited capabilities. This is due to the fact that the cytometer has been designed and marketed as an instrument specific to a few particular assays, not as a multipurpose cytometer.

  18. Novel silicon microchannels device for use in red blood cell deformability studies

    NASA Astrophysics Data System (ADS)

    Zheng, Xiao-Lin; Liao, Yan-Jian; Zhang, Wen-Xian

    2001-10-01

    Currently, a number of techniques are used to access cell deformability. We study a novel silicon microchannels device for use in red blood cell deformability. The channels are produced in silicon substrate using microengineering technology. The microgrooves formed in the surface of a single-crystal silicon substrate. They were converted to channels by tightly covering them with an optical flat glass plate. An array of flow channels (number 950 in parallel) have typical dimensions of 5 micrometers width X 5.5 Xm depth, and 30 micrometers length. There the RBC's are forced to pass through channels. Thus, the microchannels are used to simulate human blood capillaries. It provides a specific measurement of individual cell in terms of both flow velocity profile and an index of cell volume while the cell flow through the channels. It dominates the complex cellular flow behavior, such as, the viscosity of whole blood is a nonlinear function of shear rate, index of filtration, etc.

  19. A novel methodology for in-process monitoring of flow forming

    NASA Astrophysics Data System (ADS)

    Appleby, Andrew; Conway, Alastair; Ion, William

    2017-10-01

    Flow forming (FF) is an incremental cold working process with near-net-shape forming capability. Failures by fracture due to high deformation can be unexpected and sometimes catastrophic, causing tool damage. If process failures can be identified in real time, an automatic cut-out could prevent costly tool damage. Sound and vibration monitoring is well established and commercially viable in the machining sector to detect current and incipient process failures, but not for FF. A broad-frequency microphone was used to record the sound signature of the manufacturing cycle for a series of FF parts. Parts were flow formed using single and multiple passes, and flaws were introduced into some of the parts to simulate the presence of spontaneously initiated cracks. The results show that this methodology is capable of identifying both introduced defects and spontaneous failures during flow forming. Further investigation is needed to categorise and identify different modes of failure and identify further potential applications in rotary forming.

  20. Hybrid: Passing

    Science.gov Websites

    accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel . The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels. Main

  1. Analysis of the NASA/MSFC Airborne Doppler Lidar results from San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.

    1984-01-01

    Two days during July of 1981 the NASA/MSFC Airborne Doppler Lidar System (ADLS) was flown aboard the NASA/AMES Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. The vertical and horizontal extent of the fast moving atmospheric flow discharging from the San Gorgonio Pass were examined. Conventional ground measurements were also taken during the tests to assist in validating the ADLS results. This particular region is recognized as a high wind resource region and, as such, a knowledge of the horizontal and vertical extent of this flow was of interest for wind energy applications. The statistics of the atmospheric flow field itself as it discharges from the pass and then spreads out over the desert were also of scientific interests. This data provided the first spatial data for ensemble averaging of spatial correlations to compute longitudinal and lateral integral length scales in the longitudinal and lateral directions for both components.

  2. Method and apparatus for a catalytic firebox reactor

    DOEpatents

    Smith, Lance L.; Etemad, Shahrokh; Ulkarim, Hasan; Castaldi, Marco J.; Pfefferle, William C.

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  3. Re-electrospraying splash-landed proteins and nanoparticles.

    PubMed

    Benner, W Henry; Lewis, Gregory S; Hering, Susanne V; Selgelke, Brent; Corzett, Michelle; Evans, James E; Lightstone, Felice C

    2012-03-06

    FITC-albumin, Lsr-F, or fluorescent polystyrene latex particles were electrosprayed from aqueous buffer and subjected to dispersion by differential electrical mobility at atmospheric pressure. A resulting narrow size cut of singly charged molecular ions or particles was passed through a condensation growth tube collector to create a flow stream of small water droplets, each carrying a single ion or particle. The droplets were splash landed (impacted) onto a solid or liquid temperature controlled surface. Small pools of droplets containing size-selected particles, FITC-albumin, or Lsr-F were recovered, re-electrosprayed, and, when analyzed a second time by differential electrical mobility, showed increased homogeneity. Transmission electron microscopy (TEM) analysis of the size-selected Lsr-F sample corroborated the mobility observation.

  4. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.

    PubMed

    Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C

    2012-12-01

    Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. MANUFACTURE OF UF$sub 4$

    DOEpatents

    Calcott, W.S.

    1959-10-13

    The manufacture of uranium tetrafluoride from urarium dioxide is described. Uranium dioxide is heated to about 500 deg C in a reactor. Anhydrous hydrogen fluoride is passed through the reactor in contact with uranium dioxide for several hours, the flow of hydrogen fluoride is discontinued, and hydrogen passed through the reactor for less than an hour. The flow of hydrogen fluoride is resumed for several hours, and then nitrogen is passed for a few minutes to expel unreacted hydrogen fluoride as water vapor. The reactor is cooled to room temperature and the uranium tetrafluoride removed.

  6. Deflected jet experiments in a turbulent combustor flowfield. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Lilley, D. G.

    1985-01-01

    Experiments were conducted to characterize the time-mean and turbulent flow field of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the tracjectory and spread pattern of the jet. A six-position single hot-wire technique was used to measure the velocities and turbulent stresses in nonswirling crossflow cases. In these cases, measurements confirmed that the deflected jet is symmetrical about the vertical plan passing through the crossflow axis, and the jet penetration was found to be reduced from that of comparable velocity ratio infinite crossflow cases. In the swirling crossflow cases, the flow visualization techniques enabled gross flow field characterization to be obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow.

  7. Processing methods for photoacoustic Doppler flowmetry with a clinical ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Bücking, Thore M.; van den Berg, Pim J.; Balabani, Stavroula; Steenbergen, Wiendelt; Beard, Paul C.; Brunker, Joanna

    2018-02-01

    Photoacoustic flowmetry (PAF) based on time-domain cross correlation of photoacoustic signals is a promising technique for deep tissue measurement of blood flow velocity. Signal processing has previously been developed for single element transducers. Here, the processing methods for acoustic resolution PAF using a clinical ultrasound transducer array are developed and validated using a 64-element transducer array with a -6 dB detection band of 11 to 17 MHz. Measurements were performed on a flow phantom consisting of a tube (580 μm inner diameter) perfused with human blood flowing at physiological speeds ranging from 3 to 25 mm / s. The processing pipeline comprised: image reconstruction, filtering, displacement detection, and masking. High-pass filtering and background subtraction were found to be key preprocessing steps to enable accurate flow velocity estimates, which were calculated using a cross-correlation based method. In addition, the regions of interest in the calculated velocity maps were defined using a masking approach based on the amplitude of the cross-correlation functions. These developments enabled blood flow measurements using a transducer array, bringing PAF one step closer to clinical applicability.

  8. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  9. Method and apparatus for nitrogen oxide determination

    DOEpatents

    Hohorst, Frederick A.

    1990-01-01

    Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

  10. Cooling system having dual suction port compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Guolian

    2017-08-29

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less

  11. Detection of birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Mirhej, Andrew; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. A light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel. The light beam is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. The birefringence of certain crystalline materials present in the fluid sample rotates the plane of polarization of the light beam. The presence of these microcrystals thus causes a component of the beam to pass through the second polarizer and impinge an electronic photo-detector located in the path of the beam. The photo-detector signals the presence of the microcrystals by generating voltage pulses. A display device visually presents the quantitative results of the assay.

  12. Refrigeration system having dual suction port compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Guolian

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less

  13. The stress heat-flow paradox and thermal results from Cajon Pass

    USGS Publications Warehouse

    Lachenbruch, A.H.; Sass, J.H.

    1988-01-01

    Conventional friction models predict a substantial thermal anomaly associated with active traces of strike-slip faults, but no such anomaly is observed from over 100 heat-flow determinations along 1000 km of the San Andreas fault. The Cajon Pass well is being drilled to bring deep heat-flow and stress data to bear on this paradox. Preliminary stress results from Cajon Pass and a new interpretation of regional data by Mark D. Zoback and colleagues suggests that the maximum compressive stress near the fault is almost normal to the trace, and hence the resolved shear stress is low and the fault, weak. The heat-flow data show large variability with depth, probably from three-dimensional structure, and an overall decrease from over 90 mW/m2 in the upper kilometer to less than 80 mW/m2 in the lower 300 m with no evidence of advective heat transfer. -from Authors

  14. Regional Myocardial Blood Volume and Flow: First-Pass MR Imaging with Polylysine-Gd-DTPA

    PubMed Central

    Wilke, Norbert; Kroll, Keith; Merkle, Hellmut; Wang, Ying; Ishibashi, Yukata; Xu, Ya; Zhang, Jiani; Jerosch-Herold, Michael; Mühler, Andreas; Stillman, Arthur E.; Bassingthwaighte, James B.; Bache, Robert; Ugurbil, Kamil

    2010-01-01

    The authors investigated the utility of an intravascular magnetic resonance (MR) contrast agent, poly-L-lysine-gadolinium diethylenetriaminepentaacetic acid (DTPA), for differentiating acutely ischemic from normally perfused myocardium with first-pass MR imaging. Hypoperfused regions, identified with microspheres, on the first-pass images displayed significantly decreased signal intensities compared with normally perfused myocardium (P < .0007). Estimates of regional myocardial blood content, obtained by measuring the ratio of areas under the signal intensity-versus-time curves in tissue regions and the left ventricular chamber, averaged 0.12 mL/g ± 0.04 (n = 35), compared with a value of 0.11 mL/g ± 0.05 measured with radiolabeled albumin in the same tissue regions. To obtain MR estimates of regional myocardial blood flow, in situ calibration curves were used to transform first-pass intensity-time curves into content-time curves for analysis with a multiple-pathway, axially distributed model. Flow estimates, obtained by automated parameter optimization, averaged 1.2 mL/min/g ± 0.5 [n = 29), compared with 1.3 mL/min/g ± 0.3 obtained with tracer microspheres in the same tissue specimens at the same time. The results represent a combination of T1-weighted first-pass imaging, intravascular relaxation agents, and a spatially distributed perfusion model to obtain absolute regional myocardial blood flow and volume. PMID:7766986

  15. The Ultra-filtration of Macromolecules with Different Conformations and Configurations through Nanopores

    NASA Astrophysics Data System (ADS)

    Ge, Hui

    This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. Chapter 2 details basic theory of static and dynamic laser light scattering (LLS), including its instrumentation and our ultrafiltration setup. Chapter 3 briefly introduces the sample preparation, including the history and mechanism of anionic living polymerization, as well as how we used a novel home-made set-up to prepare linear polystyrene with different chain lengths and star polystyrene with various arm numbers and lengths. Chapter 4 summarizes our measured critical flow rates (qc) of linear polymer chains with different lengths for nanopores with different sizes, since the flow rate is directly related to the hydrodynamic force, we have developed a sensitive method (down to tens fN) to directly assess how much the hydrodynamic force (Fh) is required to overcome the weak entropy elasticity and stretch individual coiled chains in solution. Our method is completely different from the using existing optical tweezers or AFM, because they measure the relatively stronger enthalpy elasticity. Our results confirm that qc is indeed independent of the chain length, but decreases as the pore size increases. The value of qc is ˜10--200 times smaller than kBT/(3pieta). Such a discrepancy has been attributed to the rough assumption made by de Gennes and his coworkers; namely, each chain segment "blob" confined inside the pore is not a hard sphere so that the effective length along the flow direction is much longer than the pore diameter. Finally, using the solution temperature, we varied the chain conformation, our result shows that q c has a minimum which is near, but not exactly located at the theta temperature, might leading to a better way to determine the true ideal state of a polymer solution, at which all viral coefficients, not only the second vanish. Chapter 5 uses polymer solutions made of different mixtures of linear and star chains, we have demonstrated that flushing these solution mixtures through a nanopore with a properly chosen flow rate can effectively and cleanly separate linear and star chains no matter whether linear chains are larger or smaller than star chains. Chapter 6 further investigates how star-like polystyrene pass through a given nanopore under the flow field. Star polystyrene chains with different arm lengths (LA) and numbers (f) passing through a nanopore (20 nm) under an elongational flow field was investigated in terms of the flow-rate dependent relative retention ((C0 - C)/C0), where C 0 and C are the polymer concentrations before and after the ultrafiltration. Our results reveal that for a given arm length (LA), the critical flow rate (qc,star), below which star chains are blocked, dramatically increases with the total arm numbers (f); but for a given f, is nearly independent on LA, contradictory to the previous prediction made by de Gennes and Brochard-Wyart. We have revised their theory in the region fin < fout and also accounted for the effective length of each blob, where fin and fout are the numbers of arms inside and outside the pore, respectively. In the revision, we show that qc,star is indeed independent of LA but related to f and f in in two different ways, depending on whether fin ≤ f/2 or ≥ f/2. A comparison of our experimental and calculated results reveals that most of star chains pass through the nanopores with fin ˜ f/2. Further study of the temperature dependent (C0 - C)/C 0 of polystyrene in cyclohexane reveals that there exists a minimum of qc,star at ˜38 °C, close to its theta temperature (-34.5 °C).

  16. Archive of bathymetry data collected in South Florida from 1995 to 2015

    USGS Publications Warehouse

    Hansen, Mark Erik; DeWitt, Nancy T.; Reynolds, Billy J.

    2017-08-10

    DescriptionLand development and alterations of the ecosystem in south Florida over the past 100 years have decreased freshwater and increased nutrient flows into many of Florida's estuaries, bays, and coastal regions. As a result, there has been a decrease in the water quality in many of these critical habitats, often prompting seagrass die-offs and reduced fish and aquatic life populations. Restoration of water quality in many of these habitats will depend partly upon using numerical-circulation and sediment-transport models to establish water-quality targets and to assess progress toward reaching restoration targets. Application of these models is often complicated because of complex sea floor topography and tidal flow regimes. Consequently, accurate and modern sea-floor or bathymetry maps are critical for numerical modeling research. Modern bathymetry data sets will also permit a comparison to historical data in order to help assess sea-floor changes within these critical habitats. New and detailed data sets also support marine biology studies to help understand migratory and feeding habitats of marine life.This data series is a compilation of 13 mapping projects conducted in south Florida between 1995 and 2015 and archives more than 45 million bathymetric soundings. Data were collected primarily with a single beam sound navigation and ranging (sonar) system called SANDS developed by the U.S. Geological Survey (USGS) in 1993. Bathymetry data for the Estero Bay project were supplemented with the National Aeronautics and Space Administration's (NASA) Experimental Advanced Airborne Research Lidar (EAARL) system. Data from eight rivers in southwest Florida were collected with an interferometric swath bathymetry system. The projects represented in this data series were funded by the USGS Coastal and Marine Geology Program (CMGP), the USGS South Florida Ecosystem Restoration Project- formally named Placed Based Studies, and other non-Federal agencies. The purpose of the data collection for all these projects was to support one or more of the following scientific aspects: numerical model applications, sea floor change analysis, or marine habitat investigations.This report serves as an archive of processed bathymetry sounding data, digital bathymetric contours, digital bathymetric maps, sea floor surface grids, and formal Federal Geographic Data Committee (FGDC) metadata. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report. Since 2006, the USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier or Field Activity Number (FAN) for each field data collection. Projects described in this report conducted prior to 2006 do not have a FAN.Data from the 13 projects presented in this report provided critical hydrographic information to support multiple science projects in south Florida. The projects and the types of sounding data collected are:Florida Bay (1995-1999) - single-beamLake Okeechobee (2001) - single-beamTampa Bay (2001-2004) - single-beamCaloosahatchee River (2002)- single-beamEstero Bay to Matlacha Pass and offshore to Wiggins Pass (2003) - single-beam and airborne lidarNorth and Northwest Forks of the Loxahatchee and Lower St. Lucie Rivers (2003) - single-beamSouth Charlotte Harbor and offshore Sanibel Island (2003-2004) - single-beamShark River and Trout Creek (2004) - single-beam and interferometric swathSouthwest Florida Rivers (2004) - interferometric swathOffshore from Wiggins Pass to Cape Romano (2005) - single-beamTen Thousand Islands (2009) - single-beamLemon Bay (2011) - single-beamSouthwest Florida Rivers (2015) - interferometric swath

  17. Performance Capability of Single-Cavity Vortex Gaseous Nuclear Rockets

    NASA Technical Reports Server (NTRS)

    Ragsdale, Robert G.

    1963-01-01

    An analysis was made to determine the maximum powerplant thrust-to-weight ratio possible with a single-cavity vortex gaseous reactor in which all the hydrogen propellant must diffuse through a fuel-rich region. An assumed radial temperature profile was used to represent conduction, convection, and radiation heat-transfer effects. The effect of hydrogen property changes due to dissociation and ionization was taken into account in a hydrodynamic computer program. It is shown that, even for extremely optimistic assumptions of reactor criticality and operating conditions, such a system is limited to reactor thrust-to-weight ratios of about 1.2 x 10(exp -3) for laminar flow. For turbulent flow, the maximum thrust-to-weight ratio is less than 10(exp -3). These low thrusts result from the fact that the hydrogen flow rate is limited by the diffusion process. The performance of a gas-core system with a specific impulse of 3000 seconds and a powerplant thrust-to-weight ratio of 10(exp -2) is shown to be equivalent to that of a 1000-second advanced solid-core system. It is therefore concluded that a single-cavity vortex gaseous reactor in which all the hydrogen must diffuse through the nuclear fuel is a low-thrust device and offers no improvement over a solid-core nuclear-rocket engine. To achieve higher thrust, additional hydrogen flow must be introduced in such a manner that it will by-pass the nuclear fuel. Obviously, such flow must be heated by thermal radiation. An illustrative model of a single-cavity vortex system employing supplementary flow of hydrogen through the core region is briefly examined. Such a system appears capable of thrust-to-weight ratios of approximately 1 to 10. For a high-impulse engine, this capability would be a considerable improvement over solid-core performance. Limits imposed by thermal radiation heat transfer to cavity walls are acknowledged but not evaluated. Alternate vortex concepts that employ many parallel vortices to achieve higher hydrogen flow rates offer the possibility of sufficiently high thrust-to-weight ratios, if they are not limited by short thermal-radiation path lengths.

  18. Blocking Mechanism Study of Self-Compacting Concrete Based on Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Li, Zhida; Zhang, Zhihua

    2017-11-01

    In order to study the influence factors of blocking mechanism of Self-Compaction Concrete (SCC), Roussel’s granular blocking model was verified and extended by establishing the discrete element model of SCC. The influence of different parameters on the filling capacity and blocking mechanism of SCC were also investigated. The results showed that: it was feasible to simulate the blocking mechanism of SCC by using Discrete Element Method (DEM). The passing ability of pebble aggregate was superior to the gravel aggregate and the passing ability of hexahedron particles was bigger than tetrahedron particles, while the tetrahedron particle simulation results were closer to the actual situation. The flow of SCC as another significant factor affected the passing ability that with the flow increased, the passing ability increased. The correction coefficient λ of the steel arrangement (channel section shape) and flow rate γ in the block model were introduced that the value of λ was 0.90-0.95 and the maximum casting rate was 7.8 L/min.

  19. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  20. Discrete sensitivity derivatives of the Navier-Stokes equations with a parallel Krylov solver

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Taylor, Arthur C., III

    1994-01-01

    This paper solves an 'incremental' form of the sensitivity equations derived by differentiating the discretized thin-layer Navier Stokes equations with respect to certain design variables of interest. The equations are solved with a parallel, preconditioned Generalized Minimal RESidual (GMRES) solver on a distributed-memory architecture. The 'serial' sensitivity analysis code is parallelized by using the Single Program Multiple Data (SPMD) programming model, domain decomposition techniques, and message-passing tools. Sensitivity derivatives are computed for low and high Reynolds number flows over a NACA 1406 airfoil on a 32-processor Intel Hypercube, and found to be identical to those computed on a single-processor Cray Y-MP. It is estimated that the parallel sensitivity analysis code has to be run on 40-50 processors of the Intel Hypercube in order to match the single-processor processing time of a Cray Y-MP.

  1. Simulation of heat and mass transfer processes in the experimental section of the air-condensing unit of Scientific Production Company "Turbocon"

    NASA Astrophysics Data System (ADS)

    Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.

    2016-05-01

    A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.

  2. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  3. Experimental study on rotating instability mode characteristics of axial compressor tip flow

    NASA Astrophysics Data System (ADS)

    Tian, Jie; Yao, Dan; Wu, Yadong; Ouyang, Hua

    2018-04-01

    This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.

  4. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  5. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, Neil Reginald

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carriermore » fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.« less

  6. The Effects of Physiological and Environmental Factors on Hepatic Perfusion and First-Pass Metabolism.

    NASA Astrophysics Data System (ADS)

    Modi, Marlene Woodruff

    The interaction of three important parameters; hepatic blood flow (Q_{rm H} ), plasma protein binding (f), and hepatic intrinsic clearance (CL_{rm int}) determines the disposition of agents undergoing extensive first-pass metabolism. This collection of studies focuses on the interaction of these parameters in man and the rat in the presence and absence of a given physiological and environmental perturbation. Potential mechanisms implicated in the "Food Effect" phenomenon whereby concomitant food intake increases the bioavailability a basic lipophilic drug are examined. These investigations provide insight as to the physiological response of the liver in the face of nutritional, pharmacological and physiological perturbations. The measurement of hepatic blood flow is a necessary endeavor before and understanding of the hepatic circulation or hepatic clearance concepts can be realized. Preliminary studies were performed to improve our understanding of the factors affecting the interpretation of hepatic blood flow estimates. It has been postulated that this food effect is caused at least in part by a transient increase in Q _{rm H} with its associated decrease in hepatic first-pass metabolism. Posture was manipulated in such a manner as to simulate the hepatic blood flow pattern observed in postprandial subjects. Although transient changes in Q_{rm H } comparable in magnitude and duration to those encountered after food consumption were observed, the AUC _{rm oral} for propanolol was not affected. It is important to assess the free concentration being presented to the organ which is highly extracting the drug. Single macronutrient feedings of glucose and vitamin-free casein to male Sprague-Dawley rats did not produce significant changes in the serum protein binding of a model basic lipophilic drug (quinidine) in systemic or hepatic blood. It has been postulated that food intake may have a greater influence on the bioavailability of metoprolol (a high clearance drug) in extensive metabolizers of the drug. After a population of extensive and poor metabolizers of metoprolol were identified, the effect of chronic food intake on steady-state concentrations of metoprolol was examined in these two groups.

  7. Propeller noise caused by blade tip radial forces

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1986-01-01

    New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise.

  8. Use of hollow fiber membrane filtration for the removal of DMSO from platelet concentrates.

    PubMed

    Arnaud, F; Kapnik, E; Meryman, H T

    2003-05-01

    It has been hypothesized that, in addition to freezing injury, some damage to platelets may result from the cell packing that occurs during removal of the cryoprotectant. This study examined DMSO removal by fluid exchange across hollow-fiber (HF) filters as an alternative to centrifugation. The DMSO solution with or without cell suspension was passed once through the filter. The optimum exchange during unloading of DMSO was determined by varying the flow rates in the external and internal compartments of the HF filter. Initially, buffered solutions of a 5% DMSO solution in the absence of platelets were pumped into the fibers and exchanged against PBS. The residual DMSO was determined by osmometry. The exchange of DMSO across the membrane was flow dependent and also influenced by the chemical nature of the HF fibers. No protocol using a reasonable rate flow through the fibers removed more than 95% of the DMSO in a single pass. The optimum protocol was achieved with polysynthane fibers with an internal flow rate of approximately 20 mi/min and an external flow rate of 100 ml/min. Subsequently, frozen/thawed platelet concentrates in DMSO were washed using centrifugation and compared to the HF filtration method. Platelet quality was assayed by flow cytometry, cell count, morphology and osmotic stress test. Both filtration and centrifugal washing techniques resulted in comparable morphological scores and numbers of discoid cells. When agents reducing platelet activation were added, platelet quality was improved after washing by either technique. The lower platelet osmotic response with HF filtration than with centrifugation while using activation inhibitors was attributed to the remaining amount of the inhibitors. All other parameters tested were similar. The expression of CD62P was equivalent with both techniques, and centrifugation did not activate platelets more than filtration contrary to what was originally anticipated. In conclusion, platelet quality was comparable after washing by either technique but hollow fiber filtration does remove cryoprotectant more rapidly than does centrifugation.

  9. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange beneath meandering river banks mainly has importance only in large rivers. For solutes entering networks in proportion to water inputs it is the lower order streams that tend to dominate cumulative reaction progress.

  10. Microscopic motion of particles flowing through a porous medium

    NASA Astrophysics Data System (ADS)

    Lee, Jysoo; Koplik, Joel

    1999-01-01

    Stokesian dynamics simulations are used to study the microscopic motion of particles suspended in fluids passing through porous media. Model porous media with fixed spherical particles are constructed, and mobile ones move through this fixed bed under the action of an ambient velocity field. The pore scale motion of individual suspended particles at pore junctions are first considered. The relative particle flux into different possible directions exiting from a single pore, for two- and three-dimensional model porous media is found to approximately equal the corresponding fractional channel width or area. Next the waiting time distribution for particles which are delayed in a junction due to a stagnation point caused by a flow bifurcation is considered. The waiting times are found to be controlled by two-particle interactions, and the distributions take the same form in model porous media as in two-particle systems. A simple theoretical estimate of the waiting time is consistent with the simulations. It is found that perturbing such a slow-moving particle by another nearby one leads to rather complicated behavior. Finally, the stability of geometrically trapped particles is studied. For simple model traps, it is found that particles passing nearby can "relaunch" the trapped particle through its hydrodynamic interaction, although the conditions for relaunching depend sensitively on the details of the trap and its surroundings.

  11. Velocity lag of solid particles in oscillating gases and in gases passing through normal shock waves

    NASA Technical Reports Server (NTRS)

    Maxwell, B. R.; Seasholtz, R. G.

    1974-01-01

    The velocity lag of micrometer size spherical particles is theoretically determined for gas particle mixtures passing through a stationary normal shock wave and also for particles embedded in an oscillating gas flow. The particle sizes and densities chosen are those considered important for laser Doppler velocimeter applications. The governing equations for each flow system are formulated. The deviation from Stokes flow caused by inertial, compressibility, and rarefaction effects is accounted for in both flow systems by use of an empirical drag coefficient. Graphical results are presented which characterize particle tracking as a function of system parameters.

  12. Real Gas Scale Effects on Hypersonic Laminar Boundary-Layer Parameters Including Effects of Entropy-Layer Swallowing

    DTIC Science & Technology

    1975-12-01

    crossed the essentially normal portion of the bow shock is swallowed by the boundary layer. The flow along the edge of the boundary layer on the aft...portions hf the body will then have passed through an oblique part of the bow shock and will be in a different state than had it passed through a normal...determination of the local edge flow conditions may be improvedby taking into con- sideration the inclination of the bow shock where the local flow stream- line

  13. Hydroxyl Tagging Velocimetry in Cavity-Piloted Mach 2 Combustor (Postprint)

    DTIC Science & Technology

    2006-01-01

    combustor with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H...grid of OH tracked by planar laser -induced fluorescence to yield about 120 velocity vectors of the two-dimensional flow over a fixed time delay...with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H + OH to

  14. Evaluation of the prototype surface bypass for salmonid smolts in Spring 1996 and 1997 at Lower Granite Dam on the Snake River, Washington

    USGS Publications Warehouse

    Johnson, G.E.; Adams, N.S.; Johnson, Robert L.; Rondorf, D.W.; Dauble, D.D.; Barila, T.Y.

    2000-01-01

    In spring 1996 and 1997, we studied the prototype surface bypass and collector (SBC) at Lower Granite Dam on the Snake River in Washington. Our objectives were to determine the most efficient SBC configuration and to describe smolt movements and swimming behavior in the forebay. To do this, we used hydroacoustic and radiotelemetry techniques. The SBC was retrofitted onto the upstream face of the north half of the powerhouse to test the surface bypass method of diverting smolts from turbines. The SBC had three entrances, with mean velocities ranging from 0.37 to 1.92 m/s, and it discharged 113 m3/s through its outlet at Spill Bay 1, which was adjacent to the powerhouse. Different SBC configurations were created by altering the size and shape of entrances. During spring 1996 and 1997, river discharge was well above normal (123 and 154% of average, respectively). Powerhouse operations caused a strong downward component of flow upstream of the SBC. Many smolts (primarily steelhead and secondarily chinook salmon) were observed actively swimming upward in the water column. There were four times as many smolts diverted from turbines per unit volume of water with SBC flow than with spill flow, which indicated that the SBC may be an especially important bypass consideration in moderate- or low-flow years. The highest SBC efficiency (the proportion of total fish passing through the north half of the powerhouse by all routes that passed through the SBC) for any configuration tested was about 40%. Although no single SBC configuration stood out as the most efficient, the horizontal surface and maximum area configurations, or some combination of the two, are worth further investigation because they were moderately efficient.

  15. Selenium in the upper Blackfoot River watershed, southeastern Idaho, 2001-12

    USGS Publications Warehouse

    Mebane, Christopher A.; Mladenka, Greg; Van Every, Lynn; Williams, Marshall L.; Hardy, Mark A.; Garbarino, John R.

    2014-11-05

    For the annual spring synoptic samples collected by the IDEQ along the main stem Blackfoot River and major tributaries, selenium concentrations ranged from less than 2 to 870 μg/L in 176 samples. In most years, the synoptic sampling showed that the majority of the selenium loads passing the USGS streamgage at the outlet of the watershed could be attributed to a single tributary, East Mill Creek, which enters the Blackfoot River through Spring Creek. Selenium loads decreased by about half from East Mill Creek before reaching the Blackfoot River, suggesting that much selenium is at least temporarily removed from the water column by uptake by aquatic vegetation or by losses to sediment. Similar decreases in selenium loads occurred through the main stem Blackfoot River before reaching the outlet in low flow years, but not in high flow years.

  16. A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection.

    PubMed

    Horstkotte, Burkhard; Duarte, Carlos M; Cerdà, Víctor

    2011-07-15

    In this article, a simple, economic, and miniature flow analyzer for ammonium in seawater based on the solenoid micropumps is presented. A single reagent of sodium tetraborate, ortho-phthaldialdehyde (OPA), and sodium sulfite was used and optimized applying the modified SIMPLEX method. A special-made detection cell for fluorescence detection of the reaction product isoindol-1-sulfonat was made and combined with a commercial photomultiplier tube, a long-pass optical filter, and an UV-LED as excitation light source. A LOD down to 13 nmol/L was achieved. The fabrication and application of a miniature reaction coil heating device for reaction rate enhancement is further described. The system featured an injection frequency of 32 h(-1) at average standard deviation of 3%. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Internal electrolyte supply system for reliable transport throughout fuel cell stacks

    DOEpatents

    Wright, Maynard K.; Downs, Robert E.; King, Robert B.

    1988-01-01

    An improved internal electrolyte supply system in a fuel cell stack employs a variety of arrangements of grooves and passages in bipolar plates of the multiplicity of repeating fuel cells to route gravity-assisted flowing electrolyte throughout the stack. The grooves route electrolyte flow along series of first paths which extend horizontally through the cells between the plates thereof. The passages route electrolyte flow along series of second paths which extend vertically through the stack so as to supply electrolyte to the first paths in order to expose the electrolyte to the matrices of the cells. Five different embodiments of the supply system are disclosed. Some embodiments employ wicks in the grooves for facilitating transfer of the electrolyte to the matrices as well as providing support for the matrices. Additionally, the passages of some embodiments by-pass certain of the grooves and supply electrolyte directly to other of the grooves. Some embodiments employ single grooves and others have dual grooves. Finally, in some embodiments the passages are connected to the grooves by a step which produces a cascading electrolyte flow.

  18. Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haab, B.B.; Mathies, R.A.

    A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative TO6 as they passed through the nearly 2-{mu}m diameter focused laser beam. Amplified photo-electron pulses from the photomultiplier are grouped into bins of 360-450 {mu}s in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were usedmore » to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The auto-correlation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of nearly 100 DNA molecules/band or better. 45 refs., 10 figs.« less

  19. Interferometric estimation of ice sheet motion and topography

    NASA Technical Reports Server (NTRS)

    Joughlin, Ian; Kwok, Ron; Fahnestock, Mark; Winebrenner, Dale; Tulaczyk, Slawek; Gogenini, Prasad

    1997-01-01

    With ERS-1/2 satellite radar interferometry, it is possible to make measurements of glacier motion with high accuracy and fine spatial resolution. Interferometric techniques were applied to map velocity and topography for several outlet glaciers in Greenland. For the Humboldt and Petermann glaciers, data from several adjacent tracks were combined to make a wide-area map that includes the enhanced flow regions of both glaciers. The discharge flux of the Petermann glacier upstream of the grounding line was estimated, thereby establishing the potential use of ERS-1/2 interferometric data for monitoring ice-sheet discharge. Interferograms collected along a single track are sensitive to only one component of motion. By utilizing data from ascending and descending passes and by making a surface-parallel flow assumption, it is possible to measure the full three-dimensional vector flow field. The application of this technique for an area on the Ryder glacier is demonstrated. Finally, ERS-1/2 interferograms were used to observe a mini-surge on the Ryder glacier that occurred in autumn of 1995.

  20. Preconditioned implicit solvers for the Navier-Stokes equations on distributed-memory machines

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Liou, Meng-Sing; Dyson, Rodger W.

    1994-01-01

    The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-decomposition is used to partition the computational domain amongst the available processing nodes of the parallel machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to develop the parallel code on a 32-node Intel Hypercube and a 512-node Intel Delta machine. The implicit parallel solver is validated for internal and external flow problems, and is found to compare identically with flow solutions obtained on a Cray Y-MP/8. A peak computational speed of 2300 MFlops/sec has been achieved on 512 nodes of the Intel Delta machine,k for a problem size of 1024 K equations (256 K grid points).

  1. Applications of ERTS-A Data Collection System (DCS) in the Arizona Regional Ecological Test Site (ARETS)

    NASA Technical Reports Server (NTRS)

    Schumann, H. H. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Preliminary analysis of DCS data from the USGS Verde River stream flow measuring site indicates the DCS system is furnishing high quality data more frequently than had been expected. During the 43-day period between Nov. 3, and Dec. 15, 1972, 552 DCS transmissions were received during 193 data passes. The amount of data received far exceeded the single high quality transmission per 12-hour period expected from the DCS system. The digital-parallel ERTS-1 data has furnished sufficient to accurately compute mean daily gage heights. These in turn, are used to compute average daily streamflow rates during periods of stable or slowly changing flow conditions. The digital-parallel data has also furnished useful information during peak flow periods. However, the serial-digital DCS capability, currently under development for transmitting streamflow data, should provide data of greater utility for determining times of flood peaks.

  2. Effects of the Canopy and Flux Tube Anchoring on Evaporation Flow of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Unverferth, John; Longcope, Dana

    2018-06-01

    Spectroscopic observations of flare ribbons typically show chromospheric evaporation flows, which are subsonic for their high temperatures. This contrasts with many numerical simulations where evaporation is typically supersonic. These simulations typically assume flow along a flux tube with a uniform cross-sectional area. A simple model of the magnetic canopy, however, includes many regions of low magnetic field strength, where flux tubes achieve local maxima in their cross-sectional area. These are analgous to a chamber in a flow tube. We find that one-third of all field lines in a model have some form of chamber through which evaporation flow must pass. Using a one-dimensional isothermal hydrodynamic code, we simulated supersonic flow through an assortment of chambers and found that a subset of solutions exhibit a stationary standing shock within the chamber. These shocked solutions have slower and denser upflows than a flow through a uniform tube would. We use our solution to construct synthetic spectral lines and find that the shocked solutions show higher emission and lower Doppler shifts. When these synthetic lines are combined into an ensemble representing a single canopy cell, the composite line appears slower, even subsonic, than expected due to the outsized contribution from shocked solutions.

  3. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph D.

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  4. Analysis of Microstructure Refinement During Single-Pass and Multi-Pass Friction Stir Processing of Nial Propeller Bronze

    DTIC Science & Technology

    2010-09-01

    on an Optical Micrograph of the Transverse View of Single-Pass NAB. After [5]............................................... 6 Figure 4 . Vertical...deformed and 6 elongated but does not see the same refinement that is seen inside the SZ [ 4 ]. The grain structure right outside the TMAZ will also...including grinding, polishing, and electropolishing . The first step was to grind the surface using a Buehler ECOMET 4 Variable Speed Grinder

  5. The Edge Detectors Suitable for Retinal OCT Image Segmentation

    PubMed Central

    Yang, Jing; Gao, Qian; Zhou, Sheng

    2017-01-01

    Retinal layer thickness measurement offers important information for reliable diagnosis of retinal diseases and for the evaluation of disease development and medical treatment responses. This task critically depends on the accurate edge detection of the retinal layers in OCT images. Here, we intended to search for the most suitable edge detectors for the retinal OCT image segmentation task. The three most promising edge detection algorithms were identified in the related literature: Canny edge detector, the two-pass method, and the EdgeFlow technique. The quantitative evaluation results show that the two-pass method outperforms consistently the Canny detector and the EdgeFlow technique in delineating the retinal layer boundaries in the OCT images. In addition, the mean localization deviation metrics show that the two-pass method caused the smallest edge shifting problem. These findings suggest that the two-pass method is the best among the three algorithms for detecting retinal layer boundaries. The overall better performance of Canny and two-pass methods over EdgeFlow technique implies that the OCT images contain more intensity gradient information than texture changes along the retinal layer boundaries. The results will guide our future efforts in the quantitative analysis of retinal OCT images for the effective use of OCT technologies in the field of ophthalmology. PMID:29065594

  6. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  7. Performance of a surface bypass structure to enhance juvenile steelhead passage and survival at Lower Granite Dam, Washington

    USGS Publications Warehouse

    Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.

    2014-01-01

    An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was <88% when the RSW was off during the day and increased to >95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.

  8. FY2017 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Asmussen, Robert M.; Cordova, Elsa

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various conditions. To accomplish this, an IDF PA glass dissolution model basedmore » on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon solution concentrations, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the ion exchange process. The effect of temperature, pH, H4SiO4 activity, and the rate of ion exchange can be parameterized and implemented directly into the PA rate model. The rate model parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. The provided data can be used by glass researchers to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate model parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less

  9. Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings.

    PubMed

    Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman

    2011-11-07

    High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.

  10. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.

  11. Analysis of the NASA/MSFC airborne Doppler lidar results from San Gorgonio Pass, California

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.

    1985-01-01

    The NASA/MSFC Airborne Doppler Lidar System was flown in July 1981 aboard the NASA/Ames Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. At this region, the maritime layer from the west coast accelerates through the pass and spreads out over the valley floor on the east side of the pass. The experiment was selected in order to study accelerated flow in and at the exit of the canyon. Ground truth wind data taken concurrently with the flight data were available from approximately 12 meteorological towers and 3 tala kites for limited comparison purposes. The experiment provided the first spatial data for ensemble averaging of spatial correlations to compute lateral and longitudinal length scales in the lateral and longitudinal directions for both components, and information on atmospheric flow in this region of interest from wind energy resource considerations.

  12. DPD simulation on the dynamics of a healthy and infected red blood cell in flow through a constricted channel

    NASA Astrophysics Data System (ADS)

    Hoque, Sazid Zamal; Anand, D. Vijay; Patnaik, B. S. V.

    2017-11-01

    The state of the red blood cell (either healthy or infected RBC) will influence its deformation dynamics. Since the pathological condition related to RBC, primarily originates from a single cell infection, therefore, it is important to relate the deformation dynamics to the mechanical properties (such as, bending rigidity and membrane elasticity). In the present study, numerical simulation of a healthy and malaria infected RBC in a constricted channel is analyzed. The flow simulations are carried out using finite sized dissipative particle dynamics (FDPD) method in conjunction with a discrete model that represents the membrane of the RBC. The numerical equivalent of optical tweezers test is validated against the experimental studies. Two different types of constrictions, viz., a converging-diverging type tapered channel and a stenosed microchannel are considered for the simulation. The effect of degree of constriction and the flow rate effect on the RBC is investigated. It was observed that, as the flow rate decreases, the infected RBC completely blocks the micro vessel. The transit time for infected cell drastically increases compared to healthy RBC. Our simulations indicate that, there is a critical flow rate below which infected RBC cannot pass through the micro capillary.

  13. Nuclear reactor spacer grid and ductless core component

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  14. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    NASA Astrophysics Data System (ADS)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  15. Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan

    2010-03-01

    A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.

  16. Water transport and desalination through double-layer graphyne membranes.

    PubMed

    Akhavan, Mojdeh; Schofield, Jeremy; Jalili, Seifollah

    2018-05-16

    Non-equilibrium molecular dynamics simulations of water-salt solutions driven through single and double-layer graphyne membranes by a pressure difference created by rigid pistons are carried out to determine the relative performance of the membranes as filters in a reverse osmosis desalination process. It is found that the flow rate of water through a graphyne-4 membrane is twice that of a graphyne-3 membrane for both single and double-layer membranes. Although the addition of a second layer to a single-layer membrane reduces the membrane permeability, the double-layer graphyne membranes are still two or three orders of magnitude more permeable than commercial reverse osmosis membranes. The minimum reduction in flow rate for double-layer membranes occurs at a layer spacing of 0.35 nm with an AA stacking configuration, while at a spacing of 0.6 nm the flow rate is close to zero due to a high free energy barrier for permeation. This is caused by the difference in the environments on either side of the membrane sheets and the formation of a compact two-dimensional layer of water molecules in the interlayer space which slows down water permeation. The distribution of residence times of water molecules in the interlayer region suggests that at the critical layer spacing of 0.6 nm, a cross-over occurs in the mechanism of water flow from the collective movement of hydrogen-bonded water sheets to the permeation of individual water molecules. All membranes are demonstrated to have a high salt rejection fraction and the double-layered graphyne-4 membranes can further increase the salt rejection by trapping ions that have passed through the first membrane from the feed solution in the interlayer space.

  17. Comparison of steady and unsteady secondary flows in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Hebert, Gregory J.; Tiederman, William G.

    1989-01-01

    The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades by passing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.

  18. Detailed heat/mass transfer distributions in a rotating two pass coolant channel with engine-near cross section and smooth walls.

    PubMed

    Rathjen, L; Hennecke, D K; Bock, S; Kleinstück, R

    2001-05-01

    This paper shows results obtained by experimental and numerical investigations concerning flow structure and heat/mass transfer in a rotating two-pass coolant channel with engine-near geometry. The smooth two passes are connected by a 180 degrees U-bend in which a 90 degrees turning vane is mounted. The influence of rotation number, Reynolds number and geometry is investigated. The results show a detailed picture of the flow field and distributions of Sherwood number ratios determined experimentally by the use of the naphthalene sublimation technique as well as Nusselt number ratios obtained from the numerical work. Especially the heat/mass transfer distributions in the bend and in the region after the bend show strong gradients, where several separation zones exist and the flow is forced to follow the turbine airfoil shape. Comparisons of numerical and experimental results show only partly good agreement.

  19. High-power single-pass pumped diamond Raman oscillator

    NASA Astrophysics Data System (ADS)

    Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.

  20. Optical steam quality measurement system and method

    DOEpatents

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  1. Synoptic Observations of The Terrestrial Polar Wind

    NASA Astrophysics Data System (ADS)

    Pollock, C. J.; Jahn, J.-M.; Moore, T. E.; Valek, P.; Wiig, J.

    High altitude passes of NASA"s Polar spacecraft, during intevals when the Plasma Source Investigation (PSI) was operating to neutralize the spacecraft charge, are uti- lized to study the relatively low energy outflow of plasma from Earth's polar iono- sphere into the magnetosphere. Four years (1996 - 2000) of data from the Themal Ion Dynamics Experiment (TIDE) are analyzed to determine typical polar wind outflow parameters and their variability. These outflows, which are typically but not always present, are usually of high mach number, are strongly collimated along the outgoing field aligned direction and display significant temporal variability. Multi-species out- flows are distinguished from those of a single-species based on the energy signature. Preliminary results show that single species outflow is the rule and that observation of multi-species outflow is often associated with geomagnetic storms.

  2. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  3. Recuperated atmospheric SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-05-04

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  4. Recuperated atmosphere SOFC/gas turbine hybrid cycle

    DOEpatents

    Lundberg, Wayne

    2010-08-24

    A method of operating an atmospheric-pressure solid oxide fuel cell generator (6) in combination with a gas turbine comprising a compressor (1) and expander (2) where an inlet oxidant (20) is passed through the compressor (1) and exits as a first stream (60) and a second stream (62) the first stream passing through a flow control valve (56) to control flow and then through a heat exchanger (54) followed by mixing with the second stream (62) where the mixed streams are passed through a combustor (8) and expander (2) and the first heat exchanger for temperature control before entry into the solid oxide fuel cell generator (6), which generator (6) is also supplied with fuel (40).

  5. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  6. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow.

    PubMed

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules "acceleration," "deceleration," "randomization," and "motion" of the Nagel-Schreckenberg CA model as well as "overacceleration through lane changing to the faster lane," "comparison of vehicle gap with the synchronization gap," and "speed adaptation within the synchronization gap" of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  7. Category 3: Sound Generation by Interacting with a Gust

    NASA Technical Reports Server (NTRS)

    Scott, James R.

    2004-01-01

    The cascade-gust interaction problem is solved employing a time-domain approach. The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.Nonlinear time dependent Euler equations are solved using higher order spatial differencing and time marching techniques. The solutions indicate the generation and propagation of expected mode orders for the given configuration and flow conditions. The blade passing frequency (BPF) is cut off for this cascade while higher harmonic, 2BPF and 3BPF, modes are cut on.

  8. Energetic Particle Sounding of the Magnetopause Deformed by Hot Flow Anomaly

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Zong, Q.; Zhang, H.

    2017-12-01

    Hot flow anomalies (HFAs), which are frequently observed near Earth's bow shock, are phenomena resulting from the interaction between interplanetary discontinuities and Earth's bow shock. Such transient phenomena upstream the bow shock can cause significant deformation of the bow shock and the magnetosphere, generating traveling convection vortices, field-aligned currents, and ULF waves in the Earth's magnetosphere. A large HFA was observed by MMS on November 19, 2015, lasting about 16 minutes. In this study, energetic particle sounding method with high time resolution (150 ms) Fast Plasma Investigation (FPI) data is used to determine the deformed magnetopause distances, orientations, and structures in the interval when MMS pass through the deformed magnetopause. The energetic particle sounding result from single MMS satellite for every moment in the interval when the distance from the magnetopause to the satellite is less than two proton gyro radii shows the profile of the deformed magnetopause.

  9. A flow-system comparison of the reactivities of calcium superoxide and potassium superoxide with carbon dioxide and water vapor

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1982-01-01

    A single pass flow system was used to test the reactivity of calcium superoxide with respiratory gases and the performance was compared to that of potassium superoxide. The KO2 system is used by coal miners as a self-contained unit in rescue operations. Particular attention was given to the reactivity with carbon dioxide and water vapor at different temperatures and partial pressures of oxygen, carbon dioxide, and water vapor. The calcium superoxide beds were found to absorb CO2 and H2O vapor, releasing O2. The KO2 bed, however, released O2 at twice the rate of CO2 absorption at 37 C. It is concluded that the calcium superoxide material is not a suitable replacement for the KO2 bed, although Ca(O2)2 may be added to the KO2 bed to enhance the CO2 absorption.

  10. Review of critical flow rate, propagation of pressure pulse, and sonic velocity in two-phase media

    NASA Technical Reports Server (NTRS)

    Hsu, Y.

    1972-01-01

    For single-phase media, the critical discharge velocity, the sonic velocity, and the pressure pulse propagation velocity can be expressed in the same form by assuming isentropic, equilibria processes. In two-phase mixtures, the same concept is not valid due to the existence of interfacial transports of momentum, heat, and mass. Thus, the three velocities should be treated differently and separately for each particular condition, taking into account the various transport processes involved under that condition. Various attempts are reviewed to predict the critical discharge rate or the propagation velocities by considering slip ratio (momentum change), evaporation (mass and heat transport), flow pattern, etc. Experimental data were compared with predictions based on various theorems. The importance is stressed of the time required to achieve equilibrium as compared with the time available during the process, for example, of passing a pressure pulse.

  11. 3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter

    PubMed Central

    Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu

    2014-01-01

    We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418

  12. Fabrication and flow characterization of vertically aligned carbon-nanotube/polymer membranes

    NASA Astrophysics Data System (ADS)

    Castellano, Richard; Meshot, Eric; Fornasiero, Francesco; Shan, Jerry

    2017-11-01

    Membranes with well-controlled nanopores are of interest for applications as diverse as chemical separations, water purification, and ``green'' power generation. In particular, membranes incorporating carbon nanotubes (CNTs) as through-pores have been shown to pass fluids at rates orders-of-magnitude faster than predicted by continuum theory. However, cost-effective and scalable solutions for fabricating such membranes are still an area of research. We describe a solution-based fabrication technique for creating polymer composite membranes from bulk nanotubes using electric-field alignment and electrophoretic concentration. We then focus on flow characterization of membranes with single-wall nanotube (SWNT) pores. We demonstrate membrane quality by size-exclusion testing and showing that the flowrate of different gasses scales as the square root of molecular weight. The gas flowrates and moisture-vapor-transmission rates are compared with theoretical predictions and with composite membranes -fabricated from CVD-grown SWNT arrays. Funded by DTRA Grant BA12PHM123.

  13. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve.

    PubMed

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Four cells or two? Are four convection cells really necessary?

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Heelis, R. A.

    1994-01-01

    This paper addresses the question whether a four-cell convection pattern in the polar cap ionosphere is required by observations, or whether the data are fully explainable by a (perhaps highly distorted) two-cell convection pattern. We present convection data from Atmosphere Explorer C, which, if only the flow component in the sunward-antisunward direction were measured, could be explained either as one of two possible distorted two-cell patterns or as a full four-cell pattern. However, neither of the distorted two-cell patterns that are consistent with the sunward-antisunward flow component can be made consistent with the dawn-dusk flow component over the entire spacecraft trajectory, without postulating a severe flow kink and extra field-aligned currents sunward of the spacecraft track. In addition, the zero potential point (which in a four-cell model would mark the division between the two reverse convection cells) also exactly corresponded to the location of the reversal of the east-west component in the flow, a feature predicted from the four-cell model but more difficult to explain in a distorted two-cell model. Because the pattern was repeated on two consecutive passes, time variations can probably be ruled out as a cause of the sunward flow. Between the two northern hemisphere dayside passes, a southern hemisphere nightside pass also showed a region of sunward flow in the polar cap. The fact that in this case the sunward flow was not confined to the dayside also favors a four-cell explanation.

  15. Interrogation cradle and insertable containment fixture for detecting birefringent microcrystals in bile

    DOEpatents

    Darrow, Chris; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.

  16. Terrain forcing and thermal winds in a mountain pass

    NASA Astrophysics Data System (ADS)

    Clifton, A.; Daniels, M. H.; Lehning, M.

    2010-12-01

    As the European wind market matures, energy prospectors are increasingly looking to more challenging terrain and conditions, for example those found in the mountains and passes of the Alps. These locations present very different technical challenges to those found in the flatter plains of Northern Europe, the US midwest or offshore. There is little public data available on wind regimes in these areas, and what information there is is not often examined in conjunction with other data for the same area. Consequently it is difficult to estimate the effect of terrain or surface cover on the wind resource. We present selected data collected in a mountain pass during the winter of 2009 / 2010. Data were collected on site at 36, 54 and 77m above ground using sonic anemometers, and at the surface using small portable weather stations. Preliminary analysis of data from the sonic anemometers shows that flow in the pass is often low shear compared to an unconstrained boundary layer, although the log law using mean velocities does fit around half of the data that was collected. However, the applicability of the log law is questionable as calculated roughness lengths are of a similar order of magnitude to the measurement height. Further analysis of the sonic anemometer data does not suggest an equilibrium flux layer. Flow is generally along the major axis of the pass, indicating that the terrain acted to channel flow, compared to synoptic conditions. Larger-scale data from numerical weather prediction models is also available. These data are analysed in conjunction with simulations using the regional weather prediction model, ARPS, to show both the impact of terrain and surface heat fluxes on the wind profiles at different points in the pass. We use our data and results to show the potential effects on flow characteristics at typical wind turbine disk heights in the pass. We also suggest how future wind resource measurement and modeling campaigns in similar locations might be modified to help identify thermal and terrain effects on the wind resources.

  17. Atrial electrogram quality in single-pass defibrillator leads with floating atrial bipole in patients with permanent atrial fibrillation and cardiac resynchronization therapy.

    PubMed

    Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof

    2018-03-27

    Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  18. On modeling weak sinks in MODPATH

    USGS Publications Warehouse

    Abrams, Daniel B.; Haitjema, Henk; Kauffman, Leon J.

    2012-01-01

    Regional groundwater flow systems often contain both strong sinks and weak sinks. A strong sink extracts water from the entire aquifer depth, while a weak sink lets some water pass underneath or over the actual sink. The numerical groundwater flow model MODFLOW may allow a sink cell to act as a strong or weak sink, hence extracting all water that enters the cell or allowing some of that water to pass. A physical strong sink can be modeled by either a strong sink cell or a weak sink cell, with the latter generally occurring in low resolution models. Likewise, a physical weak sink may also be represented by either type of sink cell. The representation of weak sinks in the particle tracing code MODPATH is more equivocal than in MODFLOW. With the appropriate parameterization of MODPATH, particle traces and their associated travel times to weak sink streams can be modeled with adequate accuracy, even in single layer models. Weak sink well cells, on the other hand, require special measures as proposed in the literature to generate correct particle traces and individual travel times and hence capture zones. We found that the transit time distributions for well water generally do not require special measures provided aquifer properties are locally homogeneous and the well draws water from the entire aquifer depth, an important observation for determining the response of a well to non-point contaminant inputs.

  19. A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McQuillen, J.

    2000-01-01

    The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.

  20. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE PAGES

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  1. Estimating Measures of Pass-Fail Reliability from Parallel Half-Tests.

    ERIC Educational Resources Information Center

    Woodruff, David J.; Sawyer, Richard L.

    Two methods for estimating measures of pass-fail reliability are derived, by which both theta and kappa may be estimated from a single test administration. The methods require only a single test administration and are computationally simple. Both are based on the Spearman-Brown formula for estimating stepped-up reliability. The non-distributional…

  2. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    PubMed

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).

  3. Stratification and segregation features of pulverized electronic waste in flowing film concentration.

    PubMed

    Vidyadhar, A; Chalavadi, G; Das, A

    2013-03-30

    Gravity separation of metals from plastics in pulverized e-waste using flowing film concentration in a shaking table was investigated. Over 51% rejection of plastics in a single stage operation was achieved under optimum conditions. The shaking table was shown to be suitable for processing ground PCBs. Pulverized e-waste containing 22% metals was enriched to around 40% metals in a single pass. Statistical models for the mass yield of metal-rich stream and its grade were developed by design of experiments. Optimization was carried out to maximize the mass yield at a target product grade and preferred operating regimes were established. Experiments were designed to prevent metal loss and over 95% recovery values were obtained under all conditions. Settling distances of metals and plastics were computed and shown to be good indicators of separation performance. Particle morphology and stratification in the troughs in between the riffles were shown to influence the separation significantly. Water flow-assisted motion of the plastics was captured and its role in determining the effectiveness of separation was described. The efficacy of tabling was well established for treating ground PCBs. The wet process was shown to be environment friendly and sustainable. It is also relatively cheap and has good potential for industrial application. However, rigorous cost estimates will be required before commercial application. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu

    2014-09-01

    We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.

  5. Bellco Formula Domus Home Care System.

    PubMed

    Trewin, Elizabeth

    2004-01-01

    There are certain characteristics in a dialysis machine that would be desirable for use in home and limited care environments. These features relate to safety, ease of use, consideration of physical space, and reliability. The Bellco Formula Domus Home Care System was designed to meet all these requirements. Bellco's philosophy of patient treatment centers on global biocompatibility. This is evident in the design of the Formula Domus Home Care System. It has the smallest hydraulic fluid pathway of any dialysis machine on the market. Formula is capable of preparing ultrapure dialysate. The ultrafiltration measurement mechanism, the patented Coriolis flow meter, measures the mass of the dialysate, not the volume. For this reason it is the only dialysis machine that detects actual backfiltration, not just the theoretical possibility of it based on transmembrane pressure. The Coriolis flow meter also ensures that dialysate flow is a true single pass. The operator interface is a single window operating control. It is possible to select up to 14 different languages. There is an online help key to assist patients with troubleshooting. Programmable start-up and shutdown times save time for the patient. Formula is the only dialysis machine to offer a backup battery feature. Formula is capable of communicating with any software available. The focus on global biocompatibility ensures the best quality dialysis treatments for a population of patients who will likely remain on dialysis for a longer period of time than conventional dialysis patients.

  6. Experimental analysis of the aerodynamic performance of an innovative low pressure turbine rotor

    NASA Astrophysics Data System (ADS)

    Infantino, Daniele; Satta, Francesca; Simoni, Daniele; Ubaldi, Marina; Zunino, Pietro; Bertini, Francesco

    2016-02-01

    In the present work the aerodynamic performances of an innovative rotor blade row have been experimentally investigated. Measurements have been carried out in a large scale low speed single stage cold flow facility at a Reynolds number typical of aeroengine cruise, under nominal and off-design conditions. The time-mean blade aerodynamic loadings have been measured at three radial positions along the blade height through a pressure transducer installed inside the hollow shaft, by delivering the signal to the stationary frame with a slip ring. The time mean aerodynamic flow fields upstream and downstream of the rotor have been measured by means of a five-hole probe to investigate the losses associated with the rotor. The investigations in the single stage research turbine allow the reproduction of both wake-boundary layer interaction as well as vortex-vortex interaction. The detail of the present results clearly highlights the strong dissipative effects induced by the blade tip vortex and by the momentum defect as well as the turbulence production, which is generated during the migration of the stator wake in the rotor passage. Phase-locked hot-wire investigations have been also performed to analyze the time-varying flow during the wake passing period. In particular the interaction between stator and rotor structures has been investigated also under off-design conditions to further explain the mechanisms contributing to the loss generation for the different conditions.

  7. Dynamic simulations of under-rib convection-driven flow-field configurations and comparison with experiment in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man

    2015-10-01

    The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.

  8. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  9. Hyperfiltration wash water recovery subsystem - Design and test results. [for extended mission spacecraft such as space stations

    NASA Technical Reports Server (NTRS)

    Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.

    1983-01-01

    The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.

  10. Experimental study of humidity changes on the performance of an elliptical single four-channel PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Gholizadeh, Mohammad; Ghazikhani, Mohsen; Khazaee, Iman

    2017-01-01

    Humidity and humidification in a proton exchange membrane fuel cells (PEM) can significantly affect the performance of these energy generating devices. Since protons (H+) needs to be accompanied by water molecules to pass from the anode side to the cathode side, the PEM fuel cell membrane should be sufficiently wet. Low or high amount of water in the membrane can interrupt the flow of protons and thus reduce the efficiency of the fuel cell. In this context, several experimental studies and modeling have been carried out on PEM fuel cell and interesting results have been achieved. In this paper, the humidity and flow rate of gas in the anode and cathode are modified to examine its effect on fuel cell performance. The results show that the effect of humidity changing in the anode side is greater than that of the cathode so that at zero humidity of anode and 70 % humidity of the cathode, a maximum current flow of 0.512 A/cm2 for 0.12 V was obtained. However, at 70 % anode humidity and zero cathode humidity, a maximum flow of 0.86 A/cm2 for 0.13 V was obtained.

  11. Re: Penetration Behavior of Opposed Rows of Staggered Secondary Air Jets Depending on Jet Penetration Coefficient and Momentum Flux Ratio

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.

    2016-01-01

    The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.

  12. Hydrologic Analyses of Acidic and Alkaline Lakes

    NASA Astrophysics Data System (ADS)

    Chen, C. W.; Gherini, S. A.; Peters, N. E.; Murdoch, P. S.; Newton, R. M.; Goldstein, R. A.

    1984-12-01

    Woods and Panther lakes in the Adirondack Mountains of New York respond differently to the same acidic deposition. A mathematical model study has shown that lake water becomes acidic when hydrologic conditions force precipitation to flow to the lakes as surface flow or as lateral flow through the shallow organic soil horizon. Hydrographic data, capacity of flow through inorganic soil horizons, runoff recession curves, and groundwater level fluctuations of Woods and Panther lake basins provide independent evidence to support the thesis that the acidic state of a lake depends on the paths the tributary water takes as it passes thorough the terrestrial system. It is concluded thot Panther Lake is more alkaline than Woods Lake, because a larger proportion of the precipitation falling on the basin passes through deeper mineral soil horizons.

  13. Groundwater flow modeling of periods with periglacial and glacial climate conditions for the safety assessment of the proposed high-level nuclear waste repository site at Forsmark, Sweden

    NASA Astrophysics Data System (ADS)

    Vidstrand, Patrik; Follin, Sven; Selroos, Jan-Olof; Näslund, Jens-Ove

    2014-09-01

    The impact of periglacial and glacial climate conditions on groundwater flow in fractured crystalline rock is studied by means of groundwater flow modeling of the Forsmark site, which was recently proposed as a repository site for the disposal of spent high-level nuclear fuel in Sweden. The employed model uses a thermal-hydraulically coupled approach for permafrost modeling and discusses changes in groundwater flow implied by the climate conditions found over northern Europe at different times during the last glacial cycle (Weichselian glaciation). It is concluded that discharge of particles released at repository depth occurs very close to the ice-sheet margin in the absence of permafrost. If permafrost is included, the greater part discharges into taliks in the periglacial area. During a glacial cycle, hydraulic gradients at repository depth reach their maximum values when the ice-sheet margin passes over the site; at this time, also, the interface between fresh and saline waters is distorted the most. The combined effect of advances and retreats during several glaciations has not been studied in the present work; however, the results indicate that hydrochemical conditions at depth in the groundwater flow model are almost restored after a single event of ice-sheet advance and retreat.

  14. Calculation of single-pass gain for laser ceramics with losses

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.

    2018-04-01

    Rate equations describing the single-pass gain in an active medium with losses are analytically solved. The found relations illustrate the dependences of the amplification efficiency of Nd : YAG ceramics on the pump power density and specific losses. It is concluded that specific losses can be estimated from comparative measurements of unsaturated and saturated gains.

  15. Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Dept. of Computer Science.

    Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…

  16. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    NASA Technical Reports Server (NTRS)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  17. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions

    PubMed Central

    Akenhead, Michael L.; Horrall, Nolan M.; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y.

    2015-01-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s−1 shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia). PMID:26065495

  18. In Vitro Evaluation of the Link Between Cell Activation State and Its Rheological Impact on the Microscale Flow of Neutrophil Suspensions.

    PubMed

    Akenhead, Michael L; Horrall, Nolan M; Rowe, Dylan; Sethu, Palaniappan; Shin, Hainsworth Y

    2015-09-01

    Activated neutrophils have been reported to affect peripheral resistance, for example, by plugging capillaries or adhering to the microvasculature. In vivo and ex vivo data indicate that activated neutrophils circulating in the blood also influence peripheral resistance. We used viscometry and microvascular mimics for in vitro corroboration. The rheological impact of differentiated neutrophil-like HL-60 promyelocytes (dHL60s) or human neutrophil suspensions stimulated with 10 nM fMet-Leu-Phe (fMLP) was quantified using a cone-plate rheometer (450 s(-1) shear rate). To evaluate their impact on microscale flow resistance, we used 10-μm Isopore® membranes to model capillaries as well as single 200 × 50 μm microchannels and networks of twenty 20 × 50 μm microfluidic channels to mimic noncapillary microvasculature. Stimulation of dHL60 and neutrophil populations significantly altered their flow behavior as evidenced by their impact on suspension viscosity. Notably, hematocrit abrogated the impact of leukocyte activation on blood cell suspension viscosity. In micropore filters, activated cell suspensions enhanced flow resistance. This effect was further enhanced by the presence of erythrocytes. The resistance of our noncapillary microvascular mimics to flow of activated neutrophil suspensions was significantly increased only with hematocrit. Notably, it was elevated to a higher extent within the micronetwork chambers compared to the single-channel chambers. Collectively, our findings provide supportive evidence that activated neutrophils passing through the microcirculation may alter hemodynamic resistance due to their altered rheology in the noncapillary microvasculature. This effect is another way neutrophil activation due to chronic inflammation may, at least in part, contribute to the elevated hemodynamic resistance associated with cardiovascular diseases (e.g., hypertension and hypercholesterolemia).

  19. Deformation Behavior and Microstructure Evolution of As-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua

    2016-11-01

    The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.

  20. Juvenile Salmonid survival, passage, and egress at McNary Dam during tests of temporary spillway weirs, 2009

    USGS Publications Warehouse

    Adams, N.S.; Liedtke, T.L.

    2010-01-01

    The TSWs proved to be a relatively effective way to pass juvenile salmonids at McNary Dam (Summary Tables 1.1, 1.2, and 1.3), as was the case in 2007 and 2008. The TSWs passed about 14% of yearling Chinook salmon and 34% of juvenile steelhead with only 5-10% of total project discharge flowing through the TSWs. The TSWs and adjacent spill bays 16-18 passed 27% of subyearling Chinook salmon in the summer with 6-16% of total project discharge flowing through the TSWs. Based on the number of fish passing per the proportion of water flowing through the spillway (i.e., passage effectiveness), the TSWs were the most effective passage route. Passage effectiveness for fish passing through both TSW structures was 2.0 for yearling Chinook salmon, 5.2 for juvenile steelhead, and 2.7 subyearling Chinook salmon for TSW 20 alone. Higher passage of juvenile steelhead through the TSWs could have resulted from juvenile steelhead being more surface-oriented during migration (Plumb et al. 2004; Beeman et al. 2007; Beeman and Maule 2006). Based on passage performance and effectiveness metrics, TSW 4, located on the north end of the spillway, did not perform as well as TSW 20, located on the south end of the spillway. Passage proportions for TSW 4 were at least half that of the levels observed for TSW 20 for both yearling Chinook salmon and juvenile steelhead. This difference may be attributed to TSW location or other variables such as dam operations. Regardless of which TSW was used by fish passing the dam, survival through both TSWs was high (> 0.98 for paired-release dam survival) for yearling Chinook salmon and juvenile steelhead.

  1. Factors which affect cerebral uptake and retention of /sup 13/NH/sub 3/. [Testing in monkeys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, M.E.; Raichle, M.E.; Hoffman, E.J.

    1977-01-01

    The single pass extraction of ammonia (E) by cerebral capillaries was studied in vivo in Rhesus monkeys with /sup 13/N. The value of E for /sup 13/N-ammonia was found to be less than 100%, inversely related to cerebral blood flow and to be limited by the permeability of the blood brain barrier for ammonia. A vaue of the permeability surface area product was determined to be 0.0040 x 10/sup -4/ cm/sup 3//sec/gm. The single pass extraction fraction, E, for /sup 13/N-ammonia was found to be independent of arterial blood pH (in the range of 7.2 to 7.6) and of arterialmore » blood ammonia concentration (in the range of 80-1400 ..mu..gms/100 cc). An insulin induced hypoglycemic reduction in the cerebral metabolic rate for glucose and oxygen of 54% produced a reduction in E of about 24%. When a condition of elevated arterial blood ammonia was added to hypoglycemia, the value of E and cerebral metabolic rate for oxygen remained low while the cerebral metabolic rate for glucose increased by a factor of 2.5 indicating the presence of a detoxification shunt for ammonia. Positron tomographic images of the equilibrium cross section distribution of /sup 13/N-ammonia appeared to reflect regional differences in capillary density of the cerebral tissue.« less

  2. Streamflow and streambed scour in 2010 at bridge 339, Copper River, Alaska

    USGS Publications Warehouse

    Conaway, Jeffrey S.; Brabets, Timothy P.

    2011-01-01

    The distribution of the Copper River's discharge through the bridges was relatively stable until sometime between 1969-70 and 1982-85. The majority of the total Copper River discharge in 1969-70 passed through three bridges on the western side of the delta, but by 1982-1985, 25 to 62 percent of the flow passed through bridge 342 on the eastern side of the Copper River Delta. In 2004, only 8 percent of the flow passed through the western bridges, while 90 percent of the discharge flowed through two bridges on the eastern side of the delta. Migration of the river across the delta and redistribution of discharge has resulted in streambed scour at some bridges, overtopping of the road during high flows, prolonged highway closures, and formation of new channels through forests. Scour monitoring at the eastern bridges has recorded as much as 44 feet of fill at one pier and 33 feet of scour at another. In 2009, flow distribution began to shift from the larger bridge 342 to bridge 339. In 2010, flow in excess of four times the design discharge scoured the streambed at bridge 339 to a level such that constant on-site monitoring was required to evaluate the potential need for bridge closure. In 2010, instantaneous flow through bridge 339 was never less than 30 percent and was as high as 49 percent of the total Copper River discharge. The percentage of flow through bridge 339 decreased when the overall Copper River discharge increased. The increased discharge through bridge 339 is attributed to a shift in the approach channel 3,500 feet upstream. Bridge channel alignment and analysis of flow distribution as of October 2010 indicate these hydrologic hazards will persist in 2011.

  3. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    PubMed

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Continuous-wave modulation of a femtosecond oscillator using coherent molecules.

    PubMed

    Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D

    2018-03-01

    We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.

  5. Filter desulfation system and method

    DOEpatents

    Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.

    2010-08-10

    A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.

  6. Automated calculation of passing sight distance using GPS data

    DOT National Transportation Integrated Search

    2006-07-01

    Most of the rural highways in the United States of America are two-lane, two-way highways. In order to ensure smooth flow of traffic, maximum-passing opportunities must be provided on these highways, where the fast moving vehicles can overtake slow m...

  7. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  8. New York State oil company gross receipts taxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, P.E., Jr.

    1983-12-01

    New York's Governor Cuomo was able to mediate a settlement with 18 major oil companies subject to gross receipts taxation. The compromise was intended to end three years of litigation and to assure a tax revenue flow to the state of hundreds of millions of dollars. It represents New York's effort to single out a handful of large national companies for special burdens and a final resolution of a dispute over the state's attempt to prevent these companies from passing through their tax liabilities to consumers in the prices of petroleum products. This article reviews oil company taxation in Newmore » York State and the effects of the recent accord. 95 references.« less

  9. Consequences of Spatial Antisymmetry on Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascarenhas, Angelo; Fluegel, Brian

    2016-12-21

    Light propagation in two and three dimensional lattices for which the index of refraction exhibits spatial antisymmetry is investigated in the ray and photonic crystal regimes. In these regimes, all the two dimensional antisymmetry groups for which light fails to propagate are identified. In the ray-regime, it is observed that in tilings described by 7 of the 46 two dimensional antisymmetric groups, light is localized within a fundamental domain and does not propagate through the tiling, in contrast to the behavior in the other 39 groups. To understand the above phenomenon, a rule based on the number of anti-mirror planesmore » passing through a single Bravais lattice point is derived. In the wave regime for photonic crystals, it is observed that there are no propagating eigensolutions for the same 7 tilings as above, whereas propagating solutions and energy pass band dispersion curves can be obtained for the other 39 groups. The reasons underlying this peculiar behavior are analyzed using the topological approach for modeling flow in dynamical billiards to shed light on the applicability of Bloch's theorem for these periodic antisymmetric lattices.« less

  10. Parametric study of fluid flow manipulation with piezoelectric macrofiber composite flaps

    NASA Astrophysics Data System (ADS)

    Sadeghi, O.; Tarazaga, P.; Stremler, M.; Shahab, S.

    2017-04-01

    Active Fluid Flow Control (AFFC) has received great research attention due to its significant potential in engineering applications. It is known that drag reduction, turbulence management, flow separation delay and noise suppression through active control can result in significantly increased efficiency of future commercial transport vehicles and gas turbine engines. In microfluidics systems, AFFC has mainly been used to manipulate fluid passing through the microfluidic device. We put forward a conceptual approach for fluid flow manipulation by coupling multiple vibrating structures through flow interactions in an otherwise quiescent fluid. Previous investigations of piezoelectric flaps interacting with a fluid have focused on a single flap. In this work, arrays of closely-spaced, free-standing piezoelectric flaps are attached perpendicular to the bottom surface of a tank. The coupling of vibrating flaps due to their interacting with the surrounding fluid is investigated in air (for calibration) and under water. Actuated flaps are driven with a harmonic input voltage, which results in bending vibration of the flaps that can work with or against the flow-induced bending. The size and spatial distribution of the attached flaps, and the phase and frequency of the input actuation voltage are the key parameters to be investigated in this work. Our analysis will characterize the electrohydroelastic dynamics of active, interacting flaps and the fluid motion induced by the system.

  11. Simple cellular automaton model for traffic breakdown, highway capacity, and synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.; Klenov, Sergey L.; Schreckenberg, Michael

    2011-10-01

    We present a simple cellular automaton (CA) model for two-lane roads explaining the physics of traffic breakdown, highway capacity, and synchronized flow. The model consists of the rules “acceleration,” “deceleration,” “randomization,” and “motion” of the Nagel-Schreckenberg CA model as well as “overacceleration through lane changing to the faster lane,” “comparison of vehicle gap with the synchronization gap,” and “speed adaptation within the synchronization gap” of Kerner's three-phase traffic theory. We show that these few rules of the CA model can appropriately simulate fundamental empirical features of traffic breakdown and highway capacity found in traffic data measured over years in different countries, like characteristics of synchronized flow, the existence of the spontaneous and induced breakdowns at the same bottleneck, and associated probabilistic features of traffic breakdown and highway capacity. Single-vehicle data derived in model simulations show that synchronized flow first occurs and then self-maintains due to a spatiotemporal competition between speed adaptation to a slower speed of the preceding vehicle and passing of this slower vehicle. We find that the application of simple dependences of randomization probability and synchronization gap on driving situation allows us to explain the physics of moving synchronized flow patterns and the pinch effect in synchronized flow as observed in real traffic data.

  12. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  13. Process for removal of sulfur compounds from fuel gases

    DOEpatents

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  14. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  15. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    PubMed Central

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-01

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883

  16. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures.

    PubMed

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-13

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  17. Automated calculation of passing sight distance using global positioning system data

    DOT National Transportation Integrated Search

    2006-07-01

    Most of the rural highways in the United States of America are two-lane, two-way highways. In order to ensure smooth flow of traffic, maximum-passing opportunities must be provided on these highways, where the fast moving vehicles can overtake slow m...

  18. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignotti, A.; Tamborenea, P.I.

    1988-02-01

    The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

  19. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  20. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  1. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  2. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressures and temperatures used in the tests and shall be checked at zero and at least one flow rate within...: Equation 5 ER18jy97.067 (ii) To successfully pass the flow rate CV measurement accuracy test, the absolute...

  3. Laboratory simulation of rocket-borne D-region blunt probe flows

    NASA Technical Reports Server (NTRS)

    Kaplan, L. B.

    1977-01-01

    The flow of weakly ionized plasmas that is similar to the flow that occurs over rocket-borne blunt probes as they pass through the lower ionosphere has been simulated in a scaled laboratory environment, and electron collection D region blunt probe theories have been evaluated.

  4. Flow-Control Systems Proof of Concept for Snowmelt Runoff at McMurdo Station, Antarctica

    DTIC Science & Technology

    2017-01-01

    flows in the channels. However, the weirs became nonfunctional under high and surge flows. Experimental settling basins were constructed to... Results ................................................................................................................ 22 4.1 Flow and sediment...Runoff from the wa- tershed results almost exclusively from snowmelt, which passes through McMurdo via a system of drainage ditches, gullies, and

  5. Consolidation of Surface Coatings by Friction Stir Techniques

    DTIC Science & Technology

    2010-09-01

    alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments

  6. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  7. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Asmussen, Robert M.; Parruzot, Benjamin PG

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based onmore » Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less

  8. Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps

    PubMed Central

    Vedovato, Natascia

    2014-01-01

    A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. PMID:24688018

  9. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.

  10. A numerical study of viscous vortex rings using a spectral method

    NASA Technical Reports Server (NTRS)

    Stanaway, S. K.; Cantwell, B. J.; Spalart, Philippe R.

    1988-01-01

    Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass.

  11. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    NASA Technical Reports Server (NTRS)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field. Results were compared and shown to agree with numerical simulations of colleagues from EPFL, Switzerland.In addition, a preliminary study was completed on the effect of a Taylor bubble passing through nucleate flow boiling, showing that the thinning thermal boundary layer within the film suppressed nucleation, thereby decreasing the heat transfer coefficient.

  12. Experimental study of turbulent flow heat transfer and pressure drop in plate heat exchanger with chevron plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muley, A.; Manglik, R.M.

    1999-02-01

    Experimental heat transfer and isothermal pressure drop data for single-phase water flows in a plate heat exchanger (PHE) with chevron plates are presented. In a single-pass U-type counterflow PHE, three different chevron plate arrangements are considered: two symmetric plate arrangements with {beta} = 30 deg/30 deg and 60 deg/60 deg, and one mixed-plate arrangement with {beta} = 30 deg/60 deg. For water (2 < Pr < 6) flow rates in the 600 < Re < 10{sup 4} regime, data for Nu and f are presented. The results show significant effects of both the chevron angle {beta} and surface area enlargementmore » factor {phi}. As {beta} increases, and compared to a flat-plate pack, up to two to five times higher Nu are obtained; the concomitant f, however, are 13 to 44 times higher. Increasing {phi} also has a similar, though smaller effect. Based on experimental data for Re {ge} 1000 and 30 deg {le} {beta} {le} 60 deg, predictive correlations of the form Nu = C{sub 1}({beta}) D{sub 1}({phi}) Re{sup p1({beta})} Pr{sup 1/3} ({mu}/{mu}{sub w}){sup 0.14} and f = C{sub 2}({beta}) D{sub 2}({phi}) Re{sup p2({beta})} are devised. Finally, at constant pumping power, and depending upon Re, {beta}, and {phi}, the heat transfer is found to be enhanced by up to 2.8 times that in an equivalent flat-plate channel.« less

  13. The impact of intraglottal vortices on vocal fold dynamics

    NASA Astrophysics Data System (ADS)

    Erath, Byron; Pirnia, Alireza; Peterson, Sean

    2016-11-01

    During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.

  14. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe

    NASA Astrophysics Data System (ADS)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid

    2017-08-01

    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  15. Gap flow in an Alpine valley during a shallow south fo¨hn event: Observations, numerical simulations and hydraulic analogue

    NASA Astrophysics Data System (ADS)

    Flamant, C.; Drobinski, P.; Nance, L.; Banta, R.; Darby, L.; Dusek, J.; Hardesty, M.; Pelon, J.; Richard, E.

    2002-04-01

    This paper examines the three-dimensional structure and dynamics of southerly hybrid gap/mountain flow through the Wipp valley (Wipptal), Austria, observed on 30 October 1999 using high-resolution observations and model simulations. The observations were obtained during a shallow south föhn event documented in the framework of the Mesoscale Alpine Programme (MAP). Three important data sources were used: the airborne differential-absorption lidar LEANDRE 2, the ground-based Doppler lidar TEACO2 and in situ measurements from the National Oceanic and Atmospheric Administration P-3 aircraft. This event was simulated down to 2 km horizontal resolution using the non-hydrostatic mesoscale model Meso-NH. The structure and dynamics of the flow were realistically simulated. The combination of high-resolution observations and numerical simulations provided a comprehensive three-dimensional picture of the flow through the Wipptal: in the gap entrance region (Brenner Pass, Austria), the low-level jet was not solely due to the channelling of the southerly synoptic flow through the elevated gap. Part of the Wipptal flow originated as a mountain wave at the valley head wall of the Brenner Pass. Downstream of the pass, the shallow föhn flow had the characteristics of a downslope windstorm as it rushed down towards the Inn valley (Inntal) and the City of Innsbruck, Austria. Downhill of the Brenner Pass, the strongest flow was observed over a small obstacle along the western side wall (the Nösslachjoch), rather than channelled in the deeper part of the valley just to the east. Further north, the low-level jet was observed in the centre of the valley. Approximately halfway between Brenner Pass and Innsbruck, where the along-axis direction of the valley changes from north to north-north-west, the low-level jet was observed to be deflected to the eastern side wall of the Wipptal. Interaction between the Stubaier Alpen (the largest and highest topographic feature to the west of the Wipptal) and the south-westerly synoptic flow was found to be the primary mechanism responsible for the deflection. The along- and cross-valley structure and dynamics of the flow were observed to be highly variable due to the influence of surrounding mountains, localized steep slopes within the valley and outflows from tributaries (the Gschnitztal and the Stubaital) to the west of the Wipptal. For that shallow föhn case, observations and simulations provided a large body of evidence that downslope flow created thinning/thickening fluid and accelerations/decelerations reminiscent of mountain wave/hydraulic theory. Along the Wipptal, two hydraulic-jump-like transitions were observed and simulated, (i) on the lee slope of the Nösslachjoch and (ii) in the Gschnitztal exit region. A hydraulic solution of the flow was calculated in the framework of reduced-gravity shallow-water theory. The down-valley evolution of the Froude number computed using LEANDRE 2, P-3 flight level and TEACO2 measurements confirmed that these transitions were associated with super- to subcritical transitions.

  16. From Signature-Based Towards Behaviour-Based Anomaly Detection (Extended Abstract)

    DTIC Science & Technology

    2010-11-01

    data acquisition can serve as sensors. De- facto standard for IP flow monitoring is NetFlow format. Although NetFlow was originally developed by Cisco...packets with some common properties that pass through a network device. These collected flows are exported to an external device, the NetFlow ...Thanks to the network-based approach using NetFlow data, the detection algorithm is host independent and highly scalable. Deep Packet Inspection

  17. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE PAGES

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.; ...

    2016-08-11

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  18. Dilute condition corrosion behavior of glass-ceramic waste form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Neeway, James J.; Riley, Brian J.

    Borosilicate glass-ceramics are being developed to immobilize high-level waste generated by aqueous reprocessing into a stable waste form. The corrosion behavior of this multiphase waste form is expected to be complicated by multiple phases and crystal-glass interfaces. A modified single-pass flow-through test was performed on polished monolithic coupons at a neutral pH (25 °C) and 90 °C for 33 d. The measured glass corrosion rates by micro analysis in the samples ranged from 0.019 to 0.29 g m -2 d -1 at a flow rate per surface area = 1.73 × 10 -6 m s -1. The crystal phases (oxyapatitemore » and Ca-rich powellite) corroded below quantifiable rates, by micro analysis. While, Ba-rich powellite corroded considerably in O10 sample. The corrosion rates of C1 and its replicate C20 were elevated an order of magnitude by mechanical stresses at crystal-glass interface caused by thermal expansion mismatch during cooling and unique morphology (oxyapatite clustering).« less

  19. Electrokinetic Sample Preconcentration and Hydrodynamic Sample Injection for Microchip Electrophoresis Using a Pneumatic Microvalve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yongzheng; Katipamula, Shanta; Geng, Tao

    2016-02-01

    A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected intomore » the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.« less

  20. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, D.; Parent, Y.; Hassani, A.V.

    1999-07-20

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.

  1. Method and apparatus for high-efficiency direct contact condensation

    DOEpatents

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  2. Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel

    NASA Technical Reports Server (NTRS)

    Chandra, P. R.; Han, J. C.; Lau, S. C.

    1987-01-01

    The naphthalene sublimation technique is used to investigate the heat transfer characteristics of turbulent air flow in a two-pass channel. A test section that resembles the internal cooling passages of gas turbine airfoils is employed. The local Sherwood numbers on the ribbed walls were found to be 1.5-6.5 times those for a fully developed flow in a smooth square duct. Depending on the rib angle-of-attack and the Reynolds number, the average ribbed-wall Sherwood numbers were 2.5-3.5 times higher than the fully developed values.

  3. Acoustic Telemetry Evaluation of Juvenile Salmonid Passage and Survival at John Day Dam with Emphasis on the Prototype Surface Flow Outlet, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The main purpose of the study was to evaluate the performance of Top Spill Weirs installed at two spillbays at John Day Dam and evaluate the effectiveness of these surface flow outlets at attracting juvenile salmon away from the powerhouse and reducing turbine passage. The Juvenile Salmonid Acoustic Telemetry System (JSATS) was used to estimate survival of juvenile salmonids passing the dam and also for calculating performance metrics used to evaluate the efficiency and effectiveness of the dam at passing juvenile salmonids.

  4. Cold start characteristics of ethanol as an automobile fuel

    DOEpatents

    Greiner, Leonard

    1982-01-01

    An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

  5. Lagrangian analysis of premixed turbulent combustion in hydrogen-air flames

    NASA Astrophysics Data System (ADS)

    Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Lagrangian analysis has long been a tool used to analyze non-reacting turbulent flows, and has recently gained attention in the reacting flow and combustion communities. The approach itself allows one to separate local molecular effects, such as those due to reactions or diffusion, from turbulent advective effects along fluid pathlines, or trajectories. Accurate calculation of these trajectories can, however, be rather difficult due to the chaotic nature of turbulent flows and the added complexity of reactions. In order to determine resolution requirements and verify the numerical algorithm, extensive tests are described in this talk for prescribed steady, unsteady, and chaotic flows, as well as for direct numerical simulations (DNS) of non-reacting homogeneous isotropic turbulence. The Lagrangian analysis is then applied to DNS of premixed hydrogen-air flames at two different turbulence intensities for both single- and multi-step chemical mechanisms. Non-monotonic temperature and fuel-mass fraction evolutions are found to exist along trajectories passing through the flame brush. Such non-monotonicity is shown to be due to molecular diffusion resulting from large spatial gradients created by turbulent advection. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  6. Glass-on-Glass Fabrication of Bottle-Shaped Tunable Microlasers and their Applications

    PubMed Central

    Ward, Jonathan M.; Yang, Yong; Nic Chormaic, Síle

    2016-01-01

    We describe a novel method for making microbottle-shaped lasers by using a CO2 laser to melt Er:Yb glass onto silica microcapillaries or fibres. This is realised by the fact that the two glasses have different melting points. The CO2 laser power is controlled to flow the doped glass around the silica cylinder. In the case of a capillary, the resulting geometry is a hollow, microbottle-shaped resonator. This is a simple method for fabricating a number of glass whispering gallery mode (WGM) lasers with a wide range of sizes on a single, micron-scale structure. The Er:Yb doped glass outer layer is pumped at 980 nm via a tapered optical fibre and WGM lasing is recorded around 1535 nm. This structure facilitates a new way to thermo-optically tune the microlaser modes by passing gas through the capillary. The cooling effect of the gas flow shifts the WGMs towards shorter wavelengths and thermal tuning of the lasing modes over 70 GHz is achieved. Results are fitted using the theory of hot wire anemometry, allowing the flow rate to be calibrated with a flow sensitivity as high as 72 GHz/sccm. Strain tuning of the microlaser modes by up to 60 GHz is also demonstrated. PMID:27121151

  7. Full Hybrid: Passing

    Science.gov Websites

    additional power is needed, the gasoline engine and electric motor are both used to propel the vehicle. Go to , power split device, and electric motor visible while passing another vehicle. There are purple arrows flowing from the generator to the electric motor to the power split device to the front wheels. There are

  8. Solar oxidation and removal of arsenic--Key parameters for continuous flow applications.

    PubMed

    Gill, L W; O'Farrell, C

    2015-12-01

    Solar oxidation to remove arsenic from water has previously been investigated as a batch process. This research has investigated the kinetic parameters for the design of a continuous flow solar reactor to remove arsenic from contaminated groundwater supplies. Continuous flow recirculated batch experiments were carried out under artificial UV light to investigate the effect of different parameters on arsenic removal efficiency. Inlet water arsenic concentrations of up to 1000 μg/L were reduced to below 10 μg/L requiring 12 mg/L iron after receiving 12 kJUV/L radiation. Citrate however was somewhat surprisingly found to promote a detrimental effect on the removal process in the continuous flow reactor studies which is contrary to results found in batch scale tests. The impact of other typical water groundwater quality parameters (phosphate and silica) on the process due to their competition with arsenic for photooxidation products revealed a much higher sensitivity to phosphate ions compared to silicate. Other results showed no benefit from the addition of TiO2 photocatalyst but enhanced arsenic removal at higher temperatures up to 40 °C. Overall, these results have indicated the kinetic envelope from which a continuous flow SORAS single pass system could be more confidently designed for a full-scale community groundwater application at a village level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A low-dose, dual-phase cardiovascular CT protocol to assess left atrial appendage anatomy and exclude thrombus prior to left atrial intervention.

    PubMed

    Lazoura, Olga; Ismail, Tevfik F; Pavitt, Christopher; Lindsay, Alistair; Sriharan, Mona; Rubens, Michael; Padley, Simon; Duncan, Alison; Wong, Tom; Nicol, Edward

    2016-02-01

    Assessment of the left atrial appendage (LAA) for thrombus and anatomy is important prior to atrial fibrillation (AF) ablation and LAA exclusion. The use of cardiovascular CT (CCT) to detect LAA thrombus has been limited by the high incidence of pseudothrombus on single-pass studies. We evaluated the diagnostic accuracy of a two-phase protocol incorporating a limited low-dose delayed contrast-enhanced examination of the LAA, compared with a single-pass study for LAA morphological assessment, and transesophageal echocardiography (TEE) for the exclusion of thrombus. Consecutive patients (n = 122) undergoing left atrial interventions for AF were assessed. All had a two-phase CCT protocol (first-past scan plus a limited, 60-s delayed scan of the LAA) and TEE. Sensitivity, specificity, diagnostic accuracy, positive (PPV) and negative predictive values (NPV) were calculated for the detection of true thrombus on first-pass and delayed scans, using TEE as the gold standard. Overall, 20/122 (16.4 %) patients had filling defects on the first-pass study. All affected the full delineation of the LAA morphology; 17/20 (85 %) were confirmed as pseudo-filling defects. Three (15 %) were seen on late-pass and confirmed as true thrombi on TEE; a significant improvement in diagnostic performance relative to a single-pass scan (McNemar Chi-square 17, p < 0.001). The sensitivity, specificity, diagnostic accuracy, PPV and NPV was 100, 85.7, 86.1, 15.0 and 100 % respectively for first-pass scans, and 100 % for all parameters for the delayed scans. The median (range) additional radiation dose for the delayed scan was 0.4 (0.2-0.6) mSv. A low-dose delayed scan significantly improves the identification of true LAA anatomy and thrombus in patients undergoing LA intervention.

  10. BRANCH JUNCTIONS AND THE FLOW OF WATER THROUGH XYLEM IN DOUGLAS-FIR AND PONDEROSA PINE STEMS

    EPA Science Inventory

    Water flowing through the xylem of most plants from the roots to the leaves must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect ...

  11. Steam exit flow design for aft cavities of an airfoil

    DOEpatents

    Storey, James Michael; Tesh, Stephen William

    2002-01-01

    Turbine stator vane segments have inner and outer walls with vanes extending therebetween. The inner and outer walls have impingement plates. Steam flowing into the outer wall passes through the impingement plate for impingement cooling of the outer wall surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. A skirt or flange structure is provided for shielding the steam cooling impingement holes adjacent the inner wall aerofoil fillet region of the nozzle from the steam flow exiting the aft nozzle cavities. Moreover, the gap between the flash rib boss and the cavity insert is controlled to minimize the flow of post impingement cooling media therebetween. This substantially confines outflow to that exiting via the return channels, thus furthermore minimizing flow in the vicinity of the aerofoil fillet region that may adversely affect impingement cooling thereof.

  12. Interwoven channels for internal cooling of airfoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Adam M.

    An apparatus and method for passing fluid flow through at least a portion of a blade of turbomachinery, such as a gas turbine or the like. The fluid flow is directed through a plurality of flow channels which are interwoven with each other. Each flow channel is non-intersecting with any other flow channel and thus does not contact fluid flowing within any other flow channel. The method and apparatus can be used to reduce heat transfer and thus reduce thermal stresses, particularly in the blade.

  13. Enhanced heat transfer characteristics of viscous liquid flows in a chevron plate heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muley, A.; Manglik, R.M.; Metwally, H.M.

    1999-11-01

    Thermal processing and manufacturing in the chemical, foods, pharmaceutical, hygiene products, and biochemical industries invariably involve heating and cooling of highly viscous fluid media. These fluids tend to flow in the low Reynolds number regime, inherently have relatively low heat transfer coefficients, and are often temperature sensitive and prone to thermal degradation in the presence of large temperature differences. In recent times, plate heat exchangers (PHEs) have found increasing usage in such applications, primarily due to their features that promote enhanced heat transfer, and provide for the flexibility in altering their unit thermal size with ease, close approach temperature operation,more » and mitigation of thermal degradation of the process fluid. Here, steady-state heat transfer and pressure drop data for single-phase viscous fluid flows (2 {le} Re {le} 400) in a single-pass U-type counterflow plate heat exchanger (PHE) with chevron plates are presented. With vegetable oil as test fluid (130 {lt} Pr {lt} 290), three different plate arrangements are employed: two symmetric ({beta} = 30 deg/30 deg and 60 deg/60 deg) and one mixed ({beta} = 30 deg/60 deg). The effects of chevron angle {beta}, corrugation aspect ratio {gamma}, and flow conditions (Re, Pr, {mu}/{mu}{sub w}) on Nu and f characteristics of the PHE are delineated. The results show a rather complex influence of plate surface corrugations on the enhanced thermal-hydraulic behavior. Relative to the performance of equivalent flat-plate packs, chevron plates sustain up to 2.9 times higher heat transfer rates on a fixed geometry and constant pumping power basis, and require up to 48% less surface area for the fixed heat load and pressure drop constraint.« less

  14. Albumin Loss and Citrate Load in Pre-Dilution High Cut-Off-CVVHDF with Regional Citrate (18 mmol/L) and High Cut-Off CVVHD with Systemic Heparin: An in vitro Study.

    PubMed

    Villa, Gianluca; Neri, Mauro; De Rosa, Silvia; Samoni, Sara; Chelazzi, Cosimo; Romagnoli, Stefano; Lorenzin, Anna; de Cal, Massimo; Ronco, Claudio; De Gaudio, Angelo Raffaele

    2018-06-08

    Convective therapies with high cut-off membranes (HCO) are usually not recommended because of theoretical excessive albumin loss. The aim of this in vitro study is to demonstrate the noninferior safety of pre-dilution hemodiafiltration with HCO (HCO-CVVHDF) with isotonic citrate anticoagulation (18 mmol/L) with respect to heparin anticoagulated hemodialysis with HCO (HCO-CVVHD) in terms of albumin removal and citrate load. -Albumin removal was compared in vitro between 3 pre--dilution-HCO-CVVHDF with citrate anticoagulation and 3 -HCO-CVVHD with heparin anticoagulation during 30-min single-pass and 180-min recirculation phases. Considering concentrations and flows in the extracorporeal circuit, the transmembrane albumin removal was 2.06 (1.51; 2.09) g and 2.09 (1.9; 2.8) g respectively for HCO-CVVHDF and HCO-CVVHD, during the single-pass phase; 2.8 (2.67; 4.59) g and 2.54 (2.35; 4.67) g, respectively, for HCO-CVVHDF and HCO-CVVHD during the recirculation phase. Based on the citrate saturation coefficients, a citrate metabolic load of 8.86 mmol/h has been calculated for HCO-CVVHDF. HCO-CVVHDF performed with regional anticoagulation with 18 mmol/L citrate solution does not induce higher -albumin transmembrane removal compared to HCO-CVVHD. © 2018 S. Karger AG, Basel.

  15. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1992-01-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  16. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Owen

    1992-05-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  17. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  18. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    NASA Technical Reports Server (NTRS)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  19. Hydroliquefaction of coal

    DOEpatents

    Sze, Morgan C.; Schindler, Harvey D.

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  20. Fully developed turbulence and complex time singularities

    NASA Astrophysics Data System (ADS)

    Dombre, T.; Gagne, Y.; Hopfinger, E.

    The hypothesis of Frisch and Morf (1981), relating intermittent bursts observed in high-pass-filtered turbulent-flow data to complex time singularities in the solution of the Navier-Stokes equations, is tested experimentally. Velocity signals filtered at high-pass frequency 1 kHz and low-pass frequency 6 kHz are recorded for 7 min at sampling frequency 20 kHz in a flow of mean velocity 6.1 m/s, with mesh length d = 7.5 cm, observation point x/d = 40, R sub lambda = 67, dissipation length eta = 0.5 mm, and Kolmogorov frequency fK = about 2 kHz. The results are presented in graphs, and it is shown that the exponential behavior of the energy spectrum settles well before fK, the spectra of individual bursts having exponential behavior and delta(asterisk) values consistent with the Frisch-Morf hypothesis, at least for high-amplitude events.

  1. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, S.J.; Thomas, T.R.

    1975-11-14

    A method is described for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel, and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  2. Method for the abatement of hydrogen chloride

    DOEpatents

    Winston, Steven J.; Thomas, Thomas R.

    1977-01-01

    The present invention provides a method for reducing the amount of hydrogen chloride contained in a gas stream by reacting the hydrogen chloride with ammonia in the gas phase so as to produce ammonium chloride. The combined gas stream is passed into a condensation and collection vessel and a cyclonic flow is created in the combined gas stream as it passes through the vessel. The temperature of the gas stream is reduced in the vessel to below the condensation temperature of ammonium chloride in order to crystallize the ammonium chloride on the walls of the vessel. The cyclonic flow creates a turbulence which breaks off the larger particles of ammonium chloride which are, in turn, driven to the bottom of the vessel where the solid ammonium chloride can be removed from the vessel. The gas stream exiting from the condensation and collection vessel is further cleaned and additional ammonium chloride is removed by passing through additional filters.

  3. Energy efficient window and skylight assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, W.C. Jr.

    1986-03-25

    A totally self-contained apparatus is described for use as a window or skylight assembly, and adapted for simultaneously controlling the amount of both sunlight and air admitted into a building. The apparatus consists of: a head member and a sill member; a first sheet of material through which sunlight can pass, the first sheet of material forming a major portion of the exterior surface of the apparatus and being mounted between the head and sill members; a second sheet of material through which sunlight can pass, the second sheet of material being spaced from the first sheet of material themore » second sheet of material forming a major portion of the interior surface of the window apparatus and being mounted between the head and sill members; first and second window jams positioned between the first and second sheets of material and extending from the head member to the sill member so as to form an essentially enclosed air flow channel; means, positioned in the air flow channel, for regulating the amount of sunlight passing through the apparatus; and ventilation means for directing air through the air flow channel, and comprising a motor-driven fan mounted within the air flow channel at one end thereof so as to circulate air through the air flow channel together with a plurality of apertures disposed in the head and sill members for placing the air flow channel in communication with the interior and exterior of the building and means for selectively opening and closing the apertures whereby air may selectively flow from one of (a) the outside to the inside of the building, (b) from the inside to the outside of the building, (c) from the inside of the building through the air flow channel and back to the inside of the building and (d) from the outside of the building through the air flow channel and back to the outside of the building.« less

  4. Mode calculations in unstable resonators with flowing saturable gain. 1:hermite-gaussian expansion.

    PubMed

    Siegman, A E; Sziklas, E A

    1974-12-01

    We present a procedure for calculating the three-dimensional mode pattern, the output beam characteristics, and the power output of an oscillating high-power laser taking into account a nonuniform, transversely flowing, saturable gain medium; index inhomogeneities inside the laser resonator; and arbitrary mirror distortion and misalignment. The laser is divided into a number of axial segments. The saturated gain-and-index variation. across each short segment is lumped into a complex gain profile across the midplane of that segment. The circulating optical wave within the resonator is propagated from midplane to midplane in free-space fashion and is multiplied by the lumped complex gain profile upon passing through each midplane. After each complete round trip of the optical wave inside the resonator, the saturated gain profiles are recalculated based upon the circulating fields in the cavity. The procedure when applied to typical unstable-resonator flowing-gain lasers shows convergence to a single distorted steady-state mode of oscillation. Typical near-field and far-field results are presented. Several empirical rules of thumb for finite truncated Hermite-Gaussian expansions, including an approximate sampling theorem, have been developed as part of the calculations.

  5. Cerebral blood flow tomography with xenon-133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassen, N.A.

    1985-10-01

    Cerebral blood flow (CBF) can be measured tomographically by inhalation of Xenon-/sup 133/. The calculation is based on taking a sequence of tomograms during the wash-in and wash-out phase of the tracer. Due to the dynamic nature of the process, a highly sensitive and fast moving single photon emission computed tomograph (SPECT) is required. Two brain-dedicated SPECT systems designed for this purpose are mentioned, and the method is described with special reference to the limitations inherent in the soft energy of the 133Xe primary photons. CBF tomography can be used for a multitude of clinical and investigative purposes. This articlemore » discusses in particular its use for the selection of patients with carotid occlusion for extracranial/intracranial bypass surgery, for detection of severe arterial spasm after aneurysm bleeding, and for detection of low flow areas during severe migraine attacks. The use of other tracers for CBF tomography using SPECT is summarized with emphasis on the /sup 99m/Tc chelates that freely pass the intact blood-brain barrier. The highly sensitive brain-dedicated SPECT systems described are a prerequisite for achieving high resolution tomograms with such tracers.« less

  6. Construction and evaluation of an inexpensive weighing lysimeter for studying contaminant transport

    NASA Astrophysics Data System (ADS)

    Corwin, D. L.; LeMert, R. D.

    1994-01-01

    A description is provided of an above-ground, weighing lysimeter that minimizes the edge flow of water which can occur between the soil and the wall of the casing. The lysimeter was designed to study water flux and the movement of inorganic and/or organic pollutants as they pass through and beyond the root zone. The lysimeter is instrumented at selected depths with thermistors, soil solution extractors, time-domain reflectometry probes, gas extractors and tensiometers. These sensors provide temperature measurements, soil solution samples, water content measurements, soil atmosphere samples and water potential measurements. The horizontal insertion of these instruments from the side of the lysimeter reduces and channeling that might occur along the sides of the instruments, if they had been inserted vertically. Annular-ring baffles are located at selected depths to reduce edge flow between the lysimeter casing and the column of soil. The baffles redirect water flow away from the edge of the column. Data are presented that show a reduction in the hydraulic bypass of the lysimeter compared to a lysimeter without baffles. The total cost of a single lysimeter including materials and labor is under US $4000.

  7. Work Function of Oxide Ultrathin Films on the Ag(100) Surface.

    PubMed

    Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Thomas, Iorwerth O; Netzer, Falko P; Ferrari, Anna Maria; Fortunelli, Alessandro

    2012-02-14

    Theoretical calculations of the work function of monolayer (ML) and bilayer (BL) oxide films on the Ag(100) surface are reported and analyzed as a function of the nature of the oxide for first-row transition metals. The contributions due to charge compression, charge transfer and rumpling are singled out. It is found that the presence of empty d-orbitals in the oxide metal can entail a charge flow from the Ag(100) surface to the oxide film which counteracts the decrease in the work function due to charge compression. This flow can also depend on the thickness of the film and be reduced in passing from ML to BL systems. A regular trend is observed along first-row transition metals, exhibiting a maximum for CuO, in which the charge flow to the oxide is so strong as to reverse the direction of rumpling. A simple protocol to estimate separately the contribution due to charge compression is discussed, and the difference between the work function of the bare metal surface and a Pauling-like electronegativity of the free oxide slabs is used as a descriptor quantity to predict the direction of charge transfer.

  8. Flow plug with length-to-hole size uniformity for use in flow conditioning and flow metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2012-01-01

    A flow plug of varying thickness has a plurality of holes formed therethrough. The plug fits in a conduit such that a fluid flow in the conduit passes through the plug's holes. Each hole is defined by a parameter indicative of size in terms of the cross-sectional area thereof. A ratio of hole length-to-parameter is approximately the same for all of the holes.

  9. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  10. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations

    PubMed Central

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999

  11. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.

    PubMed

    Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.

  12. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  13. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  14. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, Charles C.; Taylor, Larry T.

    1986-01-01

    A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  15. Liquid chromatography/Fourier transform IR spectrometry interface flow cell

    DOEpatents

    Johnson, C.C.; Taylor, L.T.

    1985-01-04

    A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.

  16. Changes to subaqueous delta bathymetry following a high river flow event, Wax Lake Delta, LA, USA

    NASA Astrophysics Data System (ADS)

    Whaling, A. R.; Shaw, J.

    2017-12-01

    Sediment transport capacity is increased during high river flow (flood) events which are characterized by discharges that exceed the 15 year median daily statistic. The Wax Lake Delta (WLD) in coastal Louisiana has experienced 19 of these high flow events in the past 20 years, yet the depositional patterns of single floods are rarely measured in a field-scale deltaic setting. We characterize flood deposition and erosion patterns on the subaqueous portion of the WLD by differencing two Digital Elevation Models (DEMs) constructed from bathymetric surveys before and after the third largest flood in the WLD's recorded history. The total suspended sediment discharge for the 496 day inter-survey period was 2.14x107 cubic meters measured 21 km upstream of the delta apex. The difference map showed 1.06x107 cubic meters of sediment was deposited and 8.2x106 cubic meters was eroded, yielding 2.40x106 cubic meters of net deposition in the survey area ( 79.7 km2 ). Therefore the average deposition rate was 0.061 mm/day. Channel planform remained relatively unchanged for five out of six distributary passes however Gadwall Pass experienced a maximum channel displacement of 166 m ( 1 channel width) measured from the thalweg centerline. Channel tip extension was negligible. In addition, channel displacement was not concentrated at any portion along the channel centerline. Maximum erosion occurred within channel margins and increased upstream whereas maximum deposition occurred immediately outside the channel margins. Sediment eroded from the survey area was either subsequently re-deposited or transported out of the system. Our results show that up to 77.4% of deposition in the survey area originated from sediment eroded during the flood. Surprisingly, only 11.2% of the total suspended sediment discharge was retained in the subaqueous portion of the delta after the flood. We conclude that a high flow event does not produce channel progradation. Rather, high flow causes delta aggradation and channel incision. The role of increased sediment supply versus erosive capabilities during high flow is roughly comparable regarding changes to subaqueous delta bathymetry. These counterintuitive results have important implications for land building from sediment diversions and stratigraphic analysis of deltas.

  17. Combined optical sizing and acoustical characterization of single freely-floating microbubbles

    NASA Astrophysics Data System (ADS)

    Luan, Ying; Renaud, Guillaume; Raymond, Jason L.; Segers, Tim; Lajoinie, Guillaume; Beurskens, Robert; Mastik, Frits; Kokhuis, Tom J. A.; van der Steen, Antonius F. W.; Versluis, Michel; de Jong, Nico

    2016-12-01

    In this study we present a combined optical sizing and acoustical characterization technique for the study of the dynamics of single freely-floating ultrasound contrast agent microbubbles exposed to long burst ultrasound excitations up to the milliseconds range. A co-axial flow device was used to position individual microbubbles on a streamline within the confocal region of three ultrasound transducers and a high-resolution microscope objective. Bright-field images of microbubbles passing through the confocal region were captured using a high-speed camera synchronized to the acoustical data acquisition to assess the microbubble response to a 1-MHz ultrasound burst. Nonlinear bubble vibrations were identified at a driving pressure as low as 50 kPa. The results demonstrate good agreement with numerical simulations based on the shell-buckling model proposed by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499-3505 (2005)]. The system demonstrates the potential for a high-throughput in vitro characterization of individual microbubbles.

  18. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  19. Glovebox stripper system tritium capture efficiency-literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, D. W.; Poore, A. S.

    2015-09-28

    Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.

  20. The volumetric flux through Deception Pass, Washington and its effects on the circulation in the Whidbey Basin.

    NASA Astrophysics Data System (ADS)

    Heinze, K. R.

    2002-05-01

    The volumetric flux through Deception Pass, Washington will be determined by using tidal height differences between Bowman and Cornet Bays, which are located on the seaward and landward sides of Deception Pass respectively in Deception Pass State Park. Hydrolab sensors for measuring temperature, salinity and fluid depth will be attached to public boat docks in each of these bays. The numerical Puget Sound Regional Synthesis Model, PRISM, will be run with and without the flux through Deception Pass and compared to determine theoretically whether or not the flow through Deception Pass plays a significant role in the circulation of the Whidbey Basin, which could affect the circulation in the northern part of the Main Basin known as the Triple Junction. This could influence water movement near the new sewer outfall that King County is proposing to build in that area.

  1. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  2. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model from first principles. The resulting equations, which model the nozzle flow, can be expressed in various forms. In most forms the resulting equations are coupled systems of nonlinear partial differential equations subject to certain boundary conditions. To solve the resulting coupled system of nonlinear partial differential equations, several numerical techniques were investigated: (1) the explicit MacCormack method, (2) the explicit-implicit MacCormack method, (3) the method of operator splitting, (4) factorization schemes, and (5) the Steger-Warming scheme.

  3. Field-scale investigation of pulverized coal mill power consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguli, R.; Bandopadhyay, S.

    2008-08-15

    Twenty field-scale tests were conducted in a 28 MW pulverized coal power plant in Healy, Alaska, to examine mill power consumption in relation to coal grind size. The intent in this field-scale study was to verify if grind size truly impacted power consumption by a detectable amount. The regression model developed from the data indicates that grind size does impact mill power consumption, with finer grinds consuming significantly more power than coarser grinds. However, other factors such as coal hardness (i.e. the lower the Hardgrove Grindability Index, or the harder the coal, the higher the power consumption) and mill throughputmore » (i.e., the higher the throughput, the higher the power consumption) had to be included before the impact of grind size could be isolated. It was also observed that combining amperage and flow rate into a single parameter, i.e., specific amperage, hurt modeling. Cost analysis based on the regression model indicate a power savings of $19,972 per year if the coal were ground to 50% passing 76 {mu}m rather than the industry standard of 70% passing 76 {mu}m. The study also demonstrated that size reduction constituted a significant portion of the power consumption.« less

  4. 1.2.1.1 Harvest, Collection and Storage Quarter 3 Milestone Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Lynn M.; Smith, William A.; Cafferty, Kara G.

    Single pass baling of corn stover is required in order to meet targets for the herbaceous biomass 2017 logistics design case. Single-pass pass stover harvest is based on the grain harvest and generally results in stover with a moisture content of 30-50% wet basis (w.b). Aerobic storage of corn stover with high moisture results in high levels of dry matter loss (DML), up to 25%. Anaerobic storage (ensiling) reduces DML to less than 5%, but additional costs are associated with handling and transporting the extra moisture in the biomass. This milestone provides a best-estimate of costs for using high moisturemore » feedstock within the conventional baled logistics system. The costs of three (3) anaerobic storage systems that reduce dry matter losses (bale wrap, silage tube, and silage drive over pile) are detailed in this milestone and compared to both a conventional dry-baled corn stover case and a high moisture bale case, both stored aerobically. The total logistics cost (harvest, collection, storage, and transportation) of the scenarios are as follows: the conventional multi-pass dry bale case and the single-pass high moisture case stored aerobically were nearly equivalent at $61.15 and $61.24/DMT. The single-pass bale wrap case was the lowest at $57.63/DMT. The bulk anaerobic cases were the most expensive at $84.33 for the silage tube case and $75.97 for the drive over pile, which reflect the additional expense of transporting high-moisture bulk material; however, a reduction in preprocessing costs may occur because these feedstocks are size reduced in the field. In summary, the costs estimates presented in this milestone report can be used to determine if anaerobic storage of high-moisture corn stover is an economical option for dry matter preservation.« less

  5. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, James

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell.

  6. Dialyzer clearances and mass transfer-area coefficients for small solutes at low dialysate flow rates.

    PubMed

    Leypoldt, John K; Kamerath, Craig D; Gilson, Janice F; Friederichs, Goetz

    2006-01-01

    New daily hemodialysis therapies operate at low dialysate flow rates to minimize dialysate volume requirements; however, the dependence of dialyzer clearances and mass transfer-area coefficients for small solutes on dialysate flow rate under these conditions have not been studied extensively. We evaluated in vitro dialyzer clearances for urea and creatinine at dialysate flow rates of 40, 80, 120, 160, and 200 ml/min and ultrafiltration flow rates of 0, 1, and 2 l/h, using a dialyzer containing PUREMA membranes (NxStage Medical, Lawrence, MA). Clearances were measured directly across the dialyzer by perfusing bovine blood with added urea and creatinine single pass through the dialyzer at a nominal blood flow rate of 400 ml/min. Limited, additional studies were performed with the use of dialyzers containing PUREMA membranes at a blood flow rate of 200 ml/min and also with the use of other dialyzers containing polysulfone membranes (Optiflux 160NR, FMC-NA, Ogden, UT) and dialyzers containing Synphan membranes (NxStage Medical). For dialyzers containing PUREMA membranes, urea and creatinine clearances increased (p < 0.001) with increasing dialysate and ultrafiltration flow rates but were not different at blood flow rates of 200 and 400 ml/min. Dialysate saturation, defined as dialysate outlet concentration divided by blood water inlet concentration, for urea and creatinine was independent of blood and ultrafiltration flow rate but varied inversely (p < 0.001) with dialysate flow rate. Mass transfer-area coefficients for urea and creatinine were independent of blood and ultrafiltration flow rate but decreased (p < 0.001) with decreasing dialysate flow rate. Calculated mass transfer-area coefficients at low dialysate flow rates for all dialyzers tested were substantially lower than those reported by the manufacturers under conventional conditions. We conclude that dialyzers require specific characterization under relevant conditions if they are used in novel daily hemodialysis therapies at low dialysate flow rate.

  7. Moving Computational Domain Method and Its Application to Flow Around a High-Speed Car Passing Through a Hairpin Curve

    NASA Astrophysics Data System (ADS)

    Watanabe, Koji; Matsuno, Kenichi

    This paper presents a new method for simulating flows driven by a body traveling with neither restriction on motion nor a limit of a region size. In the present method named 'Moving Computational Domain Method', the whole of the computational domain including bodies inside moves in the physical space without the limit of region size. Since the whole of the grid of the computational domain moves according to the movement of the body, a flow solver of the method has to be constructed on the moving grid system and it is important for the flow solver to satisfy physical and geometric conservation laws simultaneously on moving grid. For this issue, the Moving-Grid Finite-Volume Method is employed as the flow solver. The present Moving Computational Domain Method makes it possible to simulate flow driven by any kind of motion of the body in any size of the region with satisfying physical and geometric conservation laws simultaneously. In this paper, the method is applied to the flow around a high-speed car passing through a hairpin curve. The distinctive flow field driven by the car at the hairpin curve has been demonstrated in detail. The results show the promising feature of the method.

  8. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    PubMed

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  9. Interpretation of surface-water circulation, Aransas Pass, Texas, using Landsat imagery

    NASA Technical Reports Server (NTRS)

    Finley, R. J.; Baumgardner, R. W., Jr.

    1980-01-01

    The development of plumes of turbid surface water in the vicinity of Aransas Pass, Texas has been analyzed using Landsat imagery. The shape and extent of plumes present in the Gulf of Mexico is dependent on the wind regime and astronomical tide prior to and at the time of satellite overpass. The best developed plumes are evident when brisk northerly winds resuspend bay-bottom muds and flow through Aransas Pass is increased by wind stress. Seaward diversion of nearshore waters by the inlet jetties was also observed. A knowledge of surface-water circulation through Aransas Pass under various wind conditions is potentially valuable for monitoring suspended and surface pollutants

  10. Intel NX to PVM 3.2 message passing conversion library

    NASA Technical Reports Server (NTRS)

    Arthur, Trey; Nelson, Michael L.

    1993-01-01

    NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

  11. The impact of injector-based contrast agent administration in time-resolved MRA.

    PubMed

    Budjan, Johannes; Attenberger, Ulrike I; Schoenberg, Stefan O; Pietsch, Hubertus; Jost, Gregor

    2018-05-01

    Time-resolved contrast-enhanced MR angiography (4D-MRA), which allows the simultaneous visualization of the vasculature and blood-flow dynamics, is widely used in clinical routine. In this study, the impact of two different contrast agent injection methods on 4D-MRA was examined in a controlled, standardized setting in an animal model. Six anesthetized Goettingen minipigs underwent two identical 4D-MRA examinations at 1.5 T in a single session. The contrast agent (0.1 mmol/kg body weight gadobutrol, followed by 20 ml saline) was injected using either manual injection or an automated injection system. A quantitative comparison of vascular signal enhancement and quantitative renal perfusion analyses were performed. Analysis of signal enhancement revealed higher peak enhancements and shorter time to peak intervals for the automated injection. Significantly different bolus shapes were found: automated injection resulted in a compact first-pass bolus shape clearly separated from the recirculation while manual injection resulted in a disrupted first-pass bolus with two peaks. In the quantitative perfusion analyses, statistically significant differences in plasma flow values were found between the injection methods. The results of both qualitative and quantitative 4D-MRA depend on the contrast agent injection method, with automated injection providing more defined bolus shapes and more standardized examination protocols. • Automated and manual contrast agent injection result in different bolus shapes in 4D-MRA. • Manual injection results in an undefined and interrupted bolus with two peaks. • Automated injection provides more defined bolus shapes. • Automated injection can lead to more standardized examination protocols.

  12. Effects of Unsteadiness Due to Wake Passing on Rotor Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Rigby, David L.; Heidmann, James; Steinthorsson, Erlendur; Fabian, John C.

    2007-01-01

    14. ABSTRACT In a gas turbine engine, the turbine rotor blades are buffeted by the wakes of the vanes located upstream. There is a transient effect from the passing of wakes on the blade heat transfer. This transient effect has been computed for a representative rotor by introducing a wake upstream via an unsteady inlet flow boundary condition, or "gust" condition. Two cases of turbulent flow and laminar flow with Reynolds numbers of 385,000 and 385 respectively were considered. For the turbulent flow case a quasi-steady calculation was also performed. The variation in the unsteady heat transfer coefficient was found to be as high as 120 percent of the mean. For the turbulent flow case a quasisteady calculation was also performed. The time mean of the unsteady heat transfer, the mean of the quasi-steady variations and the steady results agree reasonably well on all blade locations except for the turbulent results which differ near the leading edge. The quasi-steady heat transfer results do not agree with the instantaneous unsteady results, although the time-mean values are similar.

  13. End-wall boundary layer measurements in a two-stage fan

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Reid, L.; Schmidt, J. F.

    1983-01-01

    Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.

  14. An analysis of artificial viscosity effects on reacting flows using a spectral multi-domain technique

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined.

  15. Flow through a very porous obstacle in a shallow channel.

    PubMed

    Creed, M J; Draper, S; Nishino, T; Borthwick, A G L

    2017-04-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence.

  16. Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms

    DTIC Science & Technology

    2001-10-25

    830- s lead (Medico), during several different body postures, deep respiration, and walking. The algorithm had a pre - determined sensing dynamic range...SINGLE-PASS VDD ATRIAL ELECTROGRAMS J. Kim1, S.H. Lee1, S.Y.Yang2, B. S . Cho2, and W. Huh1 1Department of Electronics Engineering, Myongji...University, Yongin, Korea 2Department of Information and Communication, Dongwon College, Kwangju, Korea S T = 5 0 % x ( B + C ) / 2 S T = 5 0 % x ( A + B

  17. Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias

    2017-01-01

    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.

  18. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.

    PubMed

    Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D

    2009-04-01

    With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.

  19. Pulsed dye laser double-pass treatment of patients with resistant capillary malformations.

    PubMed

    Rajaratnam, Ratna; Laughlin, Sharyn A; Dudley, Denis

    2011-07-01

    The pulsed dye laser is an effective and established treatment for port-wine stains and has become the generally accepted standard of care. However, in many cases, complete clearance cannot be achieved as a significant proportion of lesions become resistant to treatment. Multiple passes or pulse-stacking techniques have been used to improve the extent and rate of fading, but concerns over increased adverse effects have limited this clinical approach. In this work, a double-pass technique with the pulsed dye laser has been described, which may allow for increased depth of vascular injury, greater efficacy, and an acceptable risk profile. Our aim was to determine the efficacy and the rate of side-effects for a double-pass protocol with a pulsed dye laser (PDL) to treat patients previously treated with PDL and/or other laser modalities. A retrospective chart review was conducted of 26 patients treated with a minimum of three double-pass treatments alone, or in combination, with single pass conventional PDL. Almost half of the patients (n = 12) showed either a moderate or significant improvement in fading compared to pre-treatment photographs with the double-pass technique. In a further 12 patients, there was a mild improvement. In two patients, there was no change. Sixteen patients developed mild side-effects: blisters (n = 5), dry scabs (n = 11) and transient hyperpigmentation (n = 4). This preliminary experience suggests that a double-pass technique at defined intervals between the first and second treatment with PDL can further lighten some port-wine stains, which are resistant to conventional single-pass treatments. This technique may be a useful addition to the laser treatment of PWS and deserves further scrutiny with randomized prospective studies and histological analysis to confirm the increased depth of vascular injury.

  20. Multiple sort flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1996-01-01

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane.

  1. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  2. Single-pass BPM system of the Photon Factory storage ring.

    PubMed

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  3. Navier-Stokes solution on the CYBER-203 by a pseudospectral technique

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.

    1983-01-01

    A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.

  4. Computational Prediction of Cryogenic Micro-nano Solid Nitrogen Particle Production Using Laval Nozzle for Physical Photo Resist Removal-cleaning Technology

    NASA Astrophysics Data System (ADS)

    Ishimoto, Jun; Abe, Haruto; Ochiai, Naoya

    The fundamental characteristics of the cryogenic single-component micro-nano solid nitrogen (SN2) particle production using super adiabatic Laval nozzle and its application to the physical photo resist removal-cleaning technology are investigated by a new type of integrated measurement coupled computational technique. As a result of present computation, it is found that high-speed ultra-fine SN2 particles are continuously generated due to the freezing of liquid nitrogen (LN2) droplets induced by rapid adiabatic expansion of transonic subcooled two-phase nitrogen flow passing through the Laval nozzle. Furthermore, the effect of SN2 particle diameter, injection velocity, and attack angle to the wafer substrate on resist removal-cleaning performance is investigated in detail by integrated measurement coupled computational technique.

  5. Detection of microparticles in dynamic processes

    NASA Astrophysics Data System (ADS)

    Ten, K. A.; Pruuel, E. R.; Kashkarov, A. O.; Rubtsov, I. A.; Shechtman, L. I.; Zhulanov, V. V.; Tolochko, B. P.; Rykovanov, G. N.; Muzyrya, A. K.; Smirnov, E. B.; Stolbikov, M. Yu; Prosvirnin, K. M.

    2016-11-01

    When a metal plate is subjected to a strong shock impact, its free surface emits a flow of particles of different sizes (shock-wave “dusting”). Traditionally, the process of dusting is investigated by the methods of pulsed x-ray or piezoelectric sensor or via an optical technique. The particle size ranges from a few microns to hundreds of microns. The flow is assumed to include also finer particles, which cannot be detected with the existing methods yet. On the accelerator complex VEPP-3-VEPP-4 at the BINP there are two experiment stations for research on fast processes, including explosion ones. The stations enable measurement of both passed radiation (absorption) and small-angle x-ray scattering on synchrotron radiation (SR). Radiation is detected with a precision high-speed detector DIMEX. The detector has an internal memory of 32 frames, which enables recording of the dynamics of the process (shooting of movies) with intervals of 250 ns to 2 μs. Flows of nano- and microparticles from free surfaces of various materials (copper and tin) have been examined. Microparticle flows were emitted from grooves of 50-200 μs in size and joints (gaps) between metal parts. With the soft x-ray spectrum of SR one can explore the dynamics of a single microjet of micron size. The dynamics of density distribution along micro jets were determined. Under a shock wave (∼ 60 GPa) acting on tin disks, flows of microparticles from a smooth surface were recorded.

  6. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without passing through the entire length of the exhaust system, including all exhaust system sound attenuation... system means the system comprised of a combination of components which provides for enclosed flow of...

  7. Experimental study on wake structure of single rising clean bubble

    NASA Astrophysics Data System (ADS)

    Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao

    2007-11-01

    Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.

  8. Single cell Enrichment with High Throughput Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Pakjesm Pourfard, Pedram

    Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.

  9. Acceleration of Dense Flowing Plasmas using ICRF Power in the VASIMR Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squire, Jared P.

    2005-09-26

    ICRF power in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept energizes ions (> 100 eV) in a diverging magnetic field to accelerate a dense ({approx} 1019 m-3) flowing plasma to velocities useful for space propulsion ({approx}100 km/s). Theory predicts that an ICRF slow wave launched from the high field side of the resonance will propagate in the magnetic beach to absorb nearly all of the power at the resonance, thus efficiently converting the RF power to ion kinetic energy. The plasma flows through the resonance only once, so the ions are accelerated in a single pass. This process hasmore » proven efficient ({approx} 70%) with an ICRF power level of 1.5 kW at about 3.6 MHz in the VASIMR experiment, VX-30, using deuterium plasma created by a helicon operating in flowing mode. We have measured ICRF plasma loading up to 2 ohms, consistent with computational predictions made using Oak Ridge National Laboratory's EMIR code. Recent helicon power upgrades (20 kW at 13.56 MHz) have enabled a 5 cm diameter target plasma for ICRF with an ion flux of over 3x10 20 s-1 and a high degree of ionization. This paper summarizes our ICRF results and presents the latest helicon developments in VX-30.« less

  10. Parametric Studies of the Ejector Process within a Turbine-Based Combined-Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Walker, James F.; Trefny, Charles J.

    1999-01-01

    Performance characteristics of the ejector process within a turbine-based combined-cycle (TBCC) propulsion system are investigated using the NPARC Navier-Stokes code. The TBCC concept integrates a turbine engine with a ramjet into a single propulsion system that may efficiently operate from takeoff to high Mach number cruise. At the operating point considered, corresponding to a flight Mach number of 2.0, an ejector serves to mix flow from the ramjet duct with flow from the turbine engine. The combined flow then passes through a diffuser where it is mixed with hydrogen fuel and burned. Three sets of fully turbulent Navier-Stokes calculations are compared with predictions from a cycle code developed specifically for the TBCC propulsion system. A baseline ejector system is investigated first. The Navier-Stokes calculations indicate that the flow leaving the ejector is not completely mixed, which may adversely affect the overall system performance. Two additional sets of calculations are presented; one set that investigated a longer ejector region (to enhance mixing) and a second set which also utilized the longer ejector but replaced the no-slip surfaces of the ejector with slip (inviscid) walls in order to resolve discrepancies with the cycle code. The three sets of Navier-Stokes calculations and the TBCC cycle code predictions are compared to determine the validity of each of the modeling approaches.

  11. High spatial resolution measurements in a single stage ram accelerator

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented in this paper. The ram accelerator is a ramjet-in-tube device which operates in a manner similar to that of a conventional ramjet. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Utilization of special highly instrumented sections of tube has allowed the recording of gas dynamic phenomena with high resolution. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) in a single stage gas mixture are presented and reveal the three-dimensional character of the flow field induced by projectile fins and the canting of the fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, three-dimensional CFD code. The knowledge gained from these experiments and simulations is useful in understanding the underlying nature of ram accelerator propulsive regimes, as well as assisting in the validation of three-dimensional CFD coded which model unsteady, chemically reactive flows.

  12. Reverse Flood Routing with the Lag-and-Route Storage Model

    NASA Astrophysics Data System (ADS)

    Mazi, K.; Koussis, A. D.

    2010-09-01

    This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted Kalinin-Miljukov model. The latter applies the lag-and-route model’s single-reservoir inversion scheme sequentially to its cascade of linear reservoirs, the number of which is related to the stream's hydromorphology. For this purpose, we used the example of Bruen & Dooge (2007), who back-routed flow hydrographs in a 100-km long prismatic channel using a scheme for the reverse solution of the St. Venant equations of flood wave motion. The lag-and-route reverse routing model recovered the inflow hydrograph with comparable accuracy to that of the multi-reservoir, inverted Kalinin-Miljukov model, both performing as well as the box-scheme for reverse routing with the St. Venant equations. In conclusion, the success in the regaining of the inflow signal by the devised single-reservoir reverse routing procedure, with multipoint low-pass filtering, can be attributed to its simple computational structure that endows it with remarkable robustness and exceptional efficiency.

  13. Evidence of varying magma chambers and magmatic evolutionary histories for the Table Mountain Formation in the Carson-Iceberg Wilderness region, Sonora Pass, California

    NASA Astrophysics Data System (ADS)

    Asami, R.; Putirka, K. D.; Pluhar, C. J.; Farner, M. J.; Torrez, G.; Shrum, B. L.; Jones, S.

    2012-12-01

    The Sonora Pass- Dardanelles region in the Carson- Iceberg Wilderness area is located in the central Sierra Nevada and home to the type section for latites (Slemmons, 1953), a volcanic rock that contains high potassium, clinopyroxene, and plagioclase phenocysts. Latite lavas and tuffs exposed in the Sonora Pass region originated from the sources in the eastern Sierra Nevada (Noble et al., 1974) where lavas flowed toward California's Great Valley, and were emplaced in stream valleys along the way, which are now inverted to form "table mountains", ergo the name "Table Mountain Latite" (TML) (Slemmons, 1966). Similarly high-K volcanic rocks of the same age are exposed at Grouse Meadows, which is just north of the Walker Lane Caldera east of Sonora Pass, and at the type section, between Red Peak and Bald Peak west of Sonora Pass. Latites lavas and tuffs in all three regions were analyzed for major oxides and trace elements with X-ray fluorescence spectrometry at California State University, Fresno. Analysis of three locations of (TML) at the type section show that they (Ransome, 1898), may have a different magmatic evolutionary history compared to other latites, exposed at Sonora Pass and Grouse Meadows, as the latter two show similar major oxide and trace element compositions. Most compelling is the contrast in the behavior of Al2O3 and CaO at the type section. Variation diagrams show that at the type section Al2O3 and CaO enrichment decreases with increasing amounts of MgO as fractional crystallization occurs. Conversely, at Sonora Peak and Grouse Meadows, CaO and Al2O3 concentrations mostly increase as MgO decreases with fractional crystallization. This contrasts shows that plagioclase was a major fractioning phase at the type section, but not at the other two localities. This suggests that the lava flows at the type section were erupted from a distinct set of magma chambers and vents that underwent a very distinct magmatic evolutionary history, perhaps involving fractionation at shallower depths compared to the Sonora Pass and Grouse Meadows flows, which appear to evolve by clinopyroxene fractionation. These contrasts in the pressures of crystal fractionation may be the result of contrasts in crustal structure or tectonic setting, an issue currently being investigated.

  14. Inference in the brain: Statistics flowing in redundant population codes

    PubMed Central

    Pitkow, Xaq; Angelaki, Dora E

    2017-01-01

    It is widely believed that the brain performs approximate probabilistic inference to estimate causal variables in the world from ambiguous sensory data. To understand these computations, we need to analyze how information is represented and transformed by the actions of nonlinear recurrent neural networks. We propose that these probabilistic computations function by a message-passing algorithm operating at the level of redundant neural populations. To explain this framework, we review its underlying concepts, including graphical models, sufficient statistics, and message-passing, and then describe how these concepts could be implemented by recurrently connected probabilistic population codes. The relevant information flow in these networks will be most interpretable at the population level, particularly for redundant neural codes. We therefore outline a general approach to identify the essential features of a neural message-passing algorithm. Finally, we argue that to reveal the most important aspects of these neural computations, we must study large-scale activity patterns during moderately complex, naturalistic behaviors. PMID:28595050

  15. Detection, Tracking and Analysis of Turbulent Spots and Other Coherent Structures in Unsteady Transition

    NASA Technical Reports Server (NTRS)

    Lewalle, Jacques; Ashpis, David (Technical Monitor)

    2000-01-01

    Transition on turbine blades is an important factor in the determination of eventual flow separation and engine performance. The phenomenon is strongly affected by unsteady flow conditions (wake passing). It is likely that some physics of unsteadiness should be included in advanced models, but it is unclear which properties would best embody this information. In this paper, we use a GEAE experimental database in unsteady transition to test some tools of spot identification, tracking and characterization. In this preliminary study, we identify some parameters that appear to be insensitive to wake passing effects, such as convection speed, and others more likely to require unsteady modeling. The main findings are that wavelet duration can be used as a measure of spot size, and that spot energy density is most closely correlated to the wake passing. The energy density is also correlated to spot size, but spot size appears unrelated to the phase angle. Recommendations are made for further study.

  16. ADAPTIVE TETRAHEDRAL GRID REFINEMENT AND COARSENING IN MESSAGE-PASSING ENVIRONMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallberg, J.; Stagg, A.

    2000-10-01

    A grid refinement and coarsening scheme has been developed for tetrahedral and triangular grid-based calculations in message-passing environments. The element adaption scheme is based on an edge bisection of elements marked for refinement by an appropriate error indicator. Hash-table/linked-list data structures are used to store nodal and element formation. The grid along inter-processor boundaries is refined and coarsened consistently with the update of these data structures via MPI calls. The parallel adaption scheme has been applied to the solution of a transient, three-dimensional, nonlinear, groundwater flow problem. Timings indicate efficiency of the grid refinement process relative to the flow solvermore » calculations.« less

  17. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.

    PubMed

    Yeung, Yik A; Wittrup, K Dane

    2002-01-01

    Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.

  18. Single-Pass Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.

    2005-06-15

    Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to homemore » after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.« less

  19. Method of making a rocket nozzle

    NASA Technical Reports Server (NTRS)

    Campbell, D. H. (Inventor)

    1969-01-01

    A method is described for forming the interior of a nozzle having uneven walls so that a throat of smooth converging and diverging sides is provided for passing flow. A metallic insert material is placed within the flow passageway adjacent to the area where the sharper throat constriction is to be formed, so that the material will flow through the inlet into the throat space when liquefied.

  20. Research on traffic flow characteristics at signal intersection

    NASA Astrophysics Data System (ADS)

    Zeng, Jun-Wei; Yu, Sen-Bin; Qian, Yong-Sheng; Wei, Xu-Ting; Feng, Xiao; Wang, Hui

    2017-09-01

    Based on the cautious driving behavior and the principle of the vehicles at left-side having priority to pass in the intersection, a two-dimensional cellular automata model for planar signalized intersection (NS-STCA) is established. The different turning vehicles are regarded as the research objects and the effect of the left-turn probability, signal cycle, vehicle flow density on traffic flow at the intersection is investigated.

  1. Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington

    USGS Publications Warehouse

    Denlinger, Roger P.

    2012-01-01

    The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage capacity.

  2. Development of a finite volume two-dimensional model and its application in a bay with two inlets: Mobile Bay, Alabama

    NASA Astrophysics Data System (ADS)

    Lee, Jun; Lee, Jungwoo; Yun, Sang-Leen; Oh, Hye-Cheol

    2017-08-01

    The purpose of this study was to develop a two-dimensional shallow water flow model using the finite volume method on a combined unstructured triangular and quadrilateral grid system to simulate coastal, estuarine and river flows. The intercell numerical fluxes were calculated using the classical Osher-Solomon's approximate Riemann solver for the governing conservation laws to be able to handle wetting and drying processes and to capture a tidal bore like phenomenon. The developed model was validated with several benchmark test problems including the two-dimensional dam-break problem. The model results were well agreed with results of other models and experimental results in literature. The unstructured triangular and quadrilateral combined grid system was successfully implemented in the model, thus the developed model would be more flexible when applying in an estuarine system, which includes narrow channels. Then, the model was tested in Mobile Bay, Alabama, USA. The developed model reproduced water surface elevation well as having overall Predictive Skill of 0.98. We found that the primary inlet, Main Pass, only covered 35% of the fresh water exchange while it covered 89% of the total water exchange between the ocean and Mobile Bay. There were also discharge phase difference between MP and the secondary inlet, Pass aux Herons, and this phase difference in flows would act as a critical role in substances' exchange between the eastern Mississippi Sound and the northern Gulf of Mexico through Main Pass and Pass aux Herons in Mobile Bay.

  3. Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys

    NASA Astrophysics Data System (ADS)

    Yue, Xian-hua; Liu, Chun-fang; Liu, Hui-hua; Xiao, Su-fen; Tang, Zheng-hua; Tang, Tian

    2018-02-01

    The main goal of this study is to investigate the microstructure and electrical properties of Al-Zr-La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al3Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.

  4. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick J; Sharma, Vishaldeep

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution willmore » have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility« less

  5. Flow cytometer

    DOEpatents

    Van den Engh, G.

    1995-11-07

    A Faraday cage is described which encloses the flow chamber of a cytometer. Ground planes associated with each field deflection plate inhibit electric fields from varying the charge on designated events/droplets and further concentrates. They also increase forces applied to a passing charged event for accurate focus while concomitantly inhibiting a potential shock hazard. 4 figs.

  6. Flow cytometer

    DOEpatents

    van den Engh, Ger

    1995-01-01

    A Faraday cage enclosing the flow chamber of a cytometer and ground planes associated with each field deflection plate in concert therewith inhibit electric fields from varying the charge on designated events/droplets and further concentrates and increases forces applied to a charged event passing therethrough for accurate focus thereof while concomitantly inhibiting a potential shock hazard.

  7. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    NASA Astrophysics Data System (ADS)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  8. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  9. The implementation of an aeronautical CFD flow code onto distributed memory parallel systems

    NASA Astrophysics Data System (ADS)

    Ierotheou, C. S.; Forsey, C. R.; Leatham, M.

    2000-04-01

    The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier-Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright

  10. Feasibility of dual-chamber (DDD) pacing via a single-pass (VDD) pacing lead employing a floating atrial ring (dipole): case series, future considerations, and refinements.

    PubMed

    Kassotis, John; Voigt, Louis; Mongwa, Mbu; Reddy, C V R

    2005-01-01

    The objective of this study was to assess the feasibility of DDD pacing from a standard single-pass VDD pacemaker system. Over the past 2 decades significant advances have been made in the development of single-pass VDD pacing systems. These have been shown in long-term prospective studies to effectively preserve atrioventricular (AV)synchrony in patients with AV block and normal sinus node function. What remains problematic is the development of a single-pass pacing system capable of DDD pacing. Such a lead configuration would be useful in those patients with peripheral venous anomalies and in younger patients with congenital anomalies, which may require lead revisions in the future. In addition, with the increased use of resynchronization (biventricular pacing) therapy, the availability of a reliable single-pass lead will minimize operative time, enhance patient safety, and minimize the amount of hardware within the heart. The feasibility of DDD pacing via a Medtronic Capsure VDD-2 (Model #5038) pacing lead was evaluated. Twenty patients who presented with AV block and normal sinus node function were recruited for this study. Atrial pacing thresholds and sensitivities were assessed intraoperatively in the supine position with various respiratory maneuvers. Five patients who agreed to participate in long-term follow-up received a dual-chamber generator and were evaluated periodically over a 12-month period. Mean atrial sensitivity was 2.35 +/- 0.83 mV at the time of implantation. Effective atrial stimulation was possible in all patients at the time of implantation (mean stimulation threshold 3.08 +/- 1.04 V at 0.5 ms [bipolar], 3.34 +/- 0.95 V at 0.5 ms [unipolar]). Five of the 20 patients received a Kappa KDR701 generator, and atrial electrical properties were followed up over a 1-year period. There was no significant change in atrial pacing threshold or incidence of phrenic nerve stimulation over the 1-year follow-up. A standard single-pass VDD pacing lead system was capable of DDD pacing intraoperatively and during long-term follow-up. Despite higher than usual thresholds via the atrial dipole, pacemaker telemetry revealed < 10% use of atrial pacing dipole over a 12-month period, which would minimally deplete the pacemaker's battery. In addition, the telemetry confirmed appropriate sensing and pacing of the atrial dipole throughout the study period. At this time such systems can serve as back-up DDD pacing systems with further refinements required to optimize atrial thresholds in all patients.

  11. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Arun, M. S.; Chakkingal, U.

    2014-08-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility & formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 - 1s-1 and deformation temperatures of 200 - 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31.

  12. 0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration

    NASA Astrophysics Data System (ADS)

    Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.

    2010-02-01

    A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.

  13. Experimental analysis of the flow pattern of a pump turbine model in pump mode

    NASA Astrophysics Data System (ADS)

    Guggenberger, Mark; Senn, Florian; Jaberg, Helmut; Gehrer, Arno; Sallaberger, Manfred; Widmer, Christian

    2016-11-01

    Reversible pump turbines are the only means to store primary energy in an highly efficient way. Within a short time their operation can be switched between the different operational regimes thus enhancing the stabilization of the electric grid. These qualities in combination with the operation even at off-design conditions offer a high flexibility to the energy market. However, pump turbines pass through operational regimes where their behaviour becomes unstable. One of these effects occurs when the flowrate is decreased continuously down to a minimum. This point is the physical limitation of the pump operation and is very difficult to predict properly by numerical design without a model test. The purpose of the present study is to identify the fluid mechanical phenomena leading to the occurrence of instabilities of pump turbines in pump mode. A reduced scale model of a ANDRITZ pump turbine was installed on a 4-quadrant test rig for the experimental investigation of unstable conditions in pump mode. The performed measurements are based on the IEC60193-standard. Characteristic measurements at a single guide vane opening were carried out to get a detailed insight into the instabilities in pump mode. The interaction between runner and guide vane was analysed by Particle Image Velocimetry. Furthermore, high-speed visualizations of the suction side part load flow and the suction recirculation were performed. Like never before the flow pattern in the draft tube cone became visible with the help of a high-speed camera by intentionally caused cavitation effects which allow a qualitative view on the flow pattern in the draft tube cone. Suction recirculation is observed in form of single vortices separating from each runner blade and stretching into the draft tube against the main flow direction. To find an explanation for the flow phenomena responsible for the appearance of the unstable head curve also characteristic velocity distributions on the pressure side were combined with high-speed visualizations on the suction side of the pump turbine model. The results enhance the comprehension of the physical background leading to the instability and improve the numerical predictability of the instability in pump mode.

  14. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.

    2005-02-28

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 mmore » deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.« less

  15. Double Pass 595 nm Pulsed Dye Laser Does Not Enhance the Efficacy of Port Wine Stains Compared with Single Pass: A Randomized Comparison with Histological Examination.

    PubMed

    Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi

    2018-03-27

    To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.

  16. CDOM Optical Properties and Connectivity in the Western Gulf of Alaska, the Unimak Pass and the Southeastern Bering Sea in the Spring During a Cold Year

    NASA Astrophysics Data System (ADS)

    D'Sa, E. J.; Goes, J. I.; Mouw, C. B.

    2016-02-01

    Flow through the Aleutian Passes connects the North Pacific to the Bering Sea with the Unimak Pass forming an important conduit for the flow of Gulf of Alaska water to the southeastern Bering shelf. While the biophysical properties have been studied for this region, little is known about the dissolved organic matter (DOM) and its optically active chromophoric component (CDOM) which play key roles in ocean color and several biogeochemical and photochemical processes. Dissolved organic carbon (DOC), and CDOM absorption and fluorescence properties were measured at locations in the western Gulf of Alaska, Unimak Pass and the southeastern Bering Sea in spring 2012, a relatively cold year as indicated by hydrographic field and satellite sea surface temperature data. DOC concentrations were on average higher in the western Gulf of Alaska (112.21 ± 20.05 µM) and Unimak Pass (106.14 ± 16.10 µM), than the southeastern Bering Sea shelf (73.28 ± 11.71 µM) suggesting Gulf of Alaska shelf water to be an important source of DOM to the eastern Bering Sea. Overall, CDOM absorption was relatively low while parallel factor (PARAFAC) analysis of DOM fluorescence identified two humic-like (terrestrial and marine) and one protein-like (tryptophan-like) component in the DOM pool. Relationships between the DOM optical properties and the physical regime will be further examined in this study.

  17. Open-split interface for mass spectrometers

    DOEpatents

    Diehl, John W.

    1991-01-01

    An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.

  18. Capillary red blood cell velocimetry by phase-resolved optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Tang, Jianbo; Erdener, Sefik Evren; Fu, Buyin; Boas, David A.

    2018-02-01

    Quantitative measurement of blood flow velocity in capillaries is challenging due to their small size (around 5-10 μm), and the discontinuity and single-file feature of RBCs flowing in a capillary. In this work, we present a phase-resolved Optical Coherence Tomography (OCT) method for accurate measurement of the red blood cell (RBC) speed in cerebral capillaries. To account for the discontinuity of RBCs flowing in capillaries, we applied an M-mode scanning strategy that repeated A-scans at each scanning position for an extended time. As the capillary size is comparable to the OCT resolution size (3.5×3.5×3.5μm), we applied a high pass filter to remove the stationary signal component so that the phase information of the dynamic component (i.e. from the moving RBC) could be enhanced to provide an accurate estimate of the RBC axial speed. The phase-resolved OCT method accurately quantifies the axial velocity of RBC's from the phase shift of the dynamic component of the signal. We validated our measurements by RBC passage velocimetry using the signal magnitude of the same OCT time series data. These proposed method of capillary velocimetry proved to be a robust method of mapping capillary RBC speeds across the micro-vascular network.

  19. Effect of reduction of area on microstructure and mechanical properties of twinning-induced plasticity steel during wire drawing

    NASA Astrophysics Data System (ADS)

    Hwang, Joong-Ki; Son, Il-Heon; Yoo, Jang-Yong; Zargaran, A.; Kim, Nack J.

    2015-09-01

    The effect of reduction of area (RA), 10%, 20%, and 30%, during wire drawing on the inhomogeneities in microstructure and mechanical properties along the radial direction of Fe-Mn-Al-C twinning-induced plasticity steel has been investigated. After wire drawing, the deformation texture developed into the major <111> and minor <100> duplex fiber texture. However, the <111> texture became more pronounced in both center and surface areas as the RA per pass increased. It also shows that a larger RA per pass resulted in a higher yield strength and smaller elongation than a smaller RA per pass at all strain levels. Although inhomogeneities in microstructure and mechanical properties along the radial direction decreased with increasing RA per pass, there existed an optimum RA per pass for maximum drawing limit. Insufficient penetration of strain from surface to center at small RA per pass (e.g., 10%) and high friction and unsound metal flow at large RA per pass (e.g., 30%) all resulted in heterogeneous microstructure and mechanical properties along the radial direction of drawn wire. On the other hand, 20% RA per pass improved the drawing limit by about 30% as compared to the 10% and 30% RAs per pass.

  20. DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO KITCHEN (RIGHT). VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  1. Magnetic properties and emplacement of the Bishop tuff, California

    USGS Publications Warehouse

    Palmer, H.C.; MacDonald, W.D.; Gromme, C.S.; Ellwood, B.B.

    1996-01-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525-570 ??C Curie temperatures, and maghemite with 610??-640??C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D = 348??, I = 53?? for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D = 353??, I = 54??, k = 172, ??95 = 2.9??, N = 15.

  2. Magnetic properties and emplacement of the Bishop tuff, California

    NASA Astrophysics Data System (ADS)

    Palmer, H. C.; MacDonald, W. D.; Gromme, C. S.; Ellwood, B. B.

    1996-09-01

    Anisotropy of magnetic susceptibility (AMS) and characteristic remanence were measured for 45 sites in the 0.76 Ma Bishop tuff, eastern California. Thirty-three sites were sampled in three stratigraphic sections, two in Owens gorge south of Long Valley caldera, and the third in the Adobe lobe north of Long Valley. The remaining 12 sites are widely distributed, but of limited stratigraphic extent. Weakly indurated, highly porous to dense, welded ash-flow tuffs were sampled. Saturation magnetization vs temperature experiments indicate two principal iron oxide phases: low Ti magnetites with 525 570 °C Curie temperatures, and maghemite with 610° 640 °C Curie temperatures. AF demagnetization spectra of isothermal remanent magnetizations are indicative of magnetite/maghemite predominantly in the multidomain to pseudo-single domain size ranges. Remeasurement of AMS after application of saturating direct fields indicates that randomly oriented single-domain grains are also present. The degree of anisotropy is only a few percent, typical of tuffs. The AMS ellipsoids are oblate with Kmin axes normal to subhorizontal foliation and Kmax axes regionally aligned with published source vents. For 12 of 16 locality means, Kmax axes plunge sourceward, confirming previous observations regarding flow sense. Topographic control on flow emplacement is indicated by the distribution of tuff deposits and by flow directions inferred from Kmax axes. Deposition east of the Benton range occurred by flow around the south end of the range and through two gaps (Benton notch and Chidago gap). Flow down Mammoth pass of the Sierra Nevada is also evident. At least some of the Adobe lobe in the northeast flowed around the west end of Glass mountain. Eastward flow directions in the upper Owens gorge and southeast directions in the lower Owens gorge are parallel to the present canyon, suggesting that the present drainage has been established along the pre-Bishop paleodrainage. Characteristic remanence directions from 45 sites (267 samples) yield an overall mean of D=348°, I=53° for the Bishop tuff. A correlation is found in two of the three profiles between density and remanence inclination. A mean remanence direction based on 13 localities together with data from uncompacted xenoliths and data from the ash-fall tuff at Lake Tecopa is: D=353°, I=54°, k=172, α95=2.9°, N=15.

  3. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  4. Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate.

    PubMed

    Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio

    2008-07-21

    We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.

  5. High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).

    PubMed

    Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M

    2008-12-15

    We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.

  6. Robust-mode analysis of hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  7. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  8. Multiple sort flow cytometer

    DOEpatents

    Engh, G. van den; Esposito, R.J.

    1996-01-09

    A flow cytometer utilizes multiple lasers for excitation and respective fluorescence of identified dyes bonded to specific cells or events to identify and verify multiple events to be sorted from a sheath flow and droplet stream. Once identified, verified and timed in the sheath flow, each event is independently tagged upon separation from the flow by an electrical charge of +60, +120, or +180 volts and passed through oppositely charged deflection plates with ground planes to yield a focused six way deflection of at least six events in a narrow plane. 8 figs.

  9. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, E.G.; Winefordner, J.D.; Jurgensen, A.R.

    1983-11-08

    A liquid-phase chromatography detector comprises a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focusing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof. 5 figs.

  10. Implementation and use of direct-flow connections in a coupled ground-water and surface-water model

    USGS Publications Warehouse

    Swain, Eric D.

    1994-01-01

    The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.

  11. Liquid-phase chromatography detector

    DOEpatents

    Voigtman, Edward G.; Winefordner, James D.; Jurgensen, Arthur R.

    1983-01-01

    A liquid-phase chromatography detector comprising a flow cell having an inlet tubular conduit for receiving a liquid chromatographic effluent and discharging it as a flowing columnar stream onto a vertically adjustable receiving surface spaced apart from and located vertically below and in close proximity to the discharge end of the tubular conduit; a receiver adapted to receive liquid overflowing from the receiving surface; an exit conduit for continuously removing liquid from the receiver; a light source for focussing fluorescence-producing light pulses on the flowing columnar stream as it passes from the outlet of the conduit to the receiving surface and a fluorescence detector to detect the produced fluorescence; a source of light pulse for producing acoustic waves in the columnar stream as it passes from the conduit outlet to the receiving surface; and a piezoelectric transducer adapted to detect those waves; and a source of bias voltage applied to the inlet tubular conduit and adapted to produce ionization of the liquid flowing through the flow cell so as to produce photocurrents therein and an electrical system to detect and record the photocurrents. This system is useful in separating and detecting individual chemical compounds from mixtures thereof.

  12. SOL and Edge Flows in DIII-D

    NASA Astrophysics Data System (ADS)

    Boedo, J. A.; Degrassie, J. S.; Grierson, B. A.; Rudakov, D. A.

    2015-11-01

    Recent measurements at DIII-D edge plasmas at the outer midplane show that, in the absence of external torque, the edge and near-SOL plasma flow is largely dominated by the intrinsic source of rotation most likely due to thermal ion loss. We also show that when NBI heating is present, the core momentum competes with the edge intrinsic momentum and can overwhelm it, in short, NBI-heated discharges at high power tend to determine edge and near SOL flows. Experiments performed in the DIII-D tokamak with OH heated, ECH-heated and NBI-heated discharges are diagnosed for core plasma flow with CER and edge/SOL plasma flow with Mach probes. We have changed the amount of NBI, OH and ECH heating while scanning the discharge collisionality. We have compared the experimental measurements to two complementary thermal ion loss theories that explain most of the observed features, including a scaling with Ti. One theory considers passing and trapped particles that are lost via a loss cone purely due to drifts and the other considers turbulence-enhanced loss of passing particles. Work supported by the US DOE under DE-FC02-04ER54698, DE-FG02-07ER54917 and DE-AC02-09CH111466.

  13. Patent ductus arteriosus: patho-physiology, hemodynamic effects and clinical complications.

    PubMed

    Capozzi, Giovanbattista; Santoro, Giuseppe

    2011-10-01

    During fetal life, patent arterial duct diverts placental oxygenated blood from the pulmonary artery into the aorta by-passing lungs. After birth, decrease of prostacyclins and prostaglandins concentration usually causes arterial duct closure. This process may be delayed, or may even completely fail in preterm infants with arterial duct still remaining patent. If that happens, blood flow by-pass of the systemic circulation through the arterial duct results in pulmonary overflow and systemic hypoperfusion. When pulmonary flow is 50% higher than systemic flow, a hemodynamic "paradox" results, with an increase of left ventricular output without a subsequent increase of systemic output. Cardiac overload support neuro-humoral effects (activation of sympathetic nervous system and renin-angiotensin system) that finally promote heart failure. Moreover, increased pulmonary blood flow can cause vascular congestion and pulmonary edema. However, the most dangerous effect is cerebral under-perfusion due to diastolic reverse-flow and resulting in cerebral hypoxia. At last, blood flow decreases through the abdominal aorta, reducing perfusion of liver, gut and kidneys and may cause hepatic failure, renal insufficiency and necrotizing enterocolitis. Conclusions Large patent arterial duct may cause life-threatening multi-organ effects. In pre-term infant early diagnosis and timely effective treatment are cornerstones in the prevention of cerebral damage and long-term multi-organ failure.

  14. Flow through a very porous obstacle in a shallow channel

    PubMed Central

    Draper, S.; Nishino, T.; Borthwick, A. G. L.

    2017-01-01

    A theoretical model, informed by numerical simulations based on the shallow water equations, is developed to predict the flow passing through and around a uniform porous obstacle in a shallow channel, where background friction is important. This problem is relevant to a number of practical situations, including flow through aquatic vegetation, the performance of arrays of turbines in tidal channels and hydrodynamic forces on offshore structures. To demonstrate this relevance, the theoretical model is used to (i) reinterpret core flow velocities in existing laboratory-based data for an array of emergent cylinders in shallow water emulating aquatic vegetation and (ii) reassess the optimum arrangement of tidal turbines to generate power in a tidal channel. Comparison with laboratory-based data indicates a maximum obstacle resistance (or minimum porosity) for which the present theoretical model is valid. When the obstacle resistance is above this threshold the shallow water equations do not provide an adequate representation of the flow, and the theoretical model over-predicts the core flow passing through the obstacle. The second application of the model confirms that natural bed resistance increases the power extraction potential for a partial tidal fence in a shallow channel and alters the optimum arrangement of turbines within the fence. PMID:28484321

  15. Lock and Dam Number 8 Hydropower Study; Mississippi River Near LaCrosse, Wisconsin. Supplement.

    DTIC Science & Technology

    1985-01-01

    unit used in scheme 3 is a standardized module consisting of an axial flow turbine , a speed increasing gear set, and a generator combined in a short...the flow and generating head ranges associated with specific turbine generator sizes, the program produces annual and monthly flow -duration curves and...open flume turbine passing a rated flow of 14O0 eta at a rated head of 9.75 feat. Cost estimates were made for two and four unit plants having

  16. Steady State Pyrolysis and Ablation Investigation

    DTIC Science & Technology

    2008-03-31

    the heat flux rises with increased transpiration mass flow. For mass 0.050 0.075 Mass flow [g/s] Figure 1.5: Heat flux with and without chocking ...initial species are N2 and 02- As the flow passes through the shock wave surrounding the body, additional species are produced by dis- sociation and...which images the plasma flow after a second reflect on a flat mirror on the entrance of an optical fiber. The captured light is then sent to an Ocean

  17. Low-Cutoff, High-Pass Digital Filtering of Neural Signals

    NASA Technical Reports Server (NTRS)

    Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard

    2004-01-01

    The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).

  18. Out-of-hospital tracheal intubation with single-use versus reusable metal laryngoscope blades: a multicenter randomized controlled trial.

    PubMed

    Jabre, Patricia; Galinski, Michel; Ricard-Hibon, Agnes; Devaud, Marie Laure; Ruscev, Mirko; Kulstad, Erik; Vicaut, Eric; Adnet, Fréderic; Margenet, Alain; Marty, Jean; Combes, Xavier

    2011-03-01

    Emergency tracheal intubation is reported to be more difficult with single-use plastic than with reusable metal laryngoscope blades in both inhospital and out-of-hospital settings. Single-use metal blades have been developed but have not been compared with conventional metal blades. This controlled trial compares the efficacy and safety of single-use metal blades with reusable metal blades in out-of-hospital emergency tracheal intubation. This randomized controlled trial was carried out in France with out-of-hospital emergency medical units (Services de Médecine d'Urgence et de Réanimation). This was a multicenter prospective noninferiority randomized controlled trial in adult out-of-hospital patients requiring emergency tracheal intubation. Patients were randomly assigned to either single-use or reusable metal laryngoscope blades and intubated by a senior physician or a nurse anesthetist. The primary outcome was first-pass intubation success. Secondary outcomes were incidence of difficult intubation, need for alternate airway devices, and early intubation-related complications (esophageal intubation, mainstem intubation, vomiting, pulmonary aspiration, dental trauma, bronchospasm or laryngospasm, ventricular tachycardia, arterial desaturation, hypotension, or cardiac arrest). The study included 817 patients, including 409 intubated with single-use blades and 408 with a reusable blade. First-pass intubation success was similar in both groups: 292 (71.4%) for single-use blades, 290 (71.1%) for reusable blades. The 95% confidence interval (CI) for the difference in treatments (0.3%; 95% CI -5.9% to 6.5%) did not include the prespecified inferiority margin of -7%. There was no difference in rate of difficult intubation (difference 3%; 95% CI -7% to 2%), need for alternate airway (difference 4%; 95% CI -8% to 1%), or early complication rate (difference 3%; 95% CI -3% to 8%). First-pass out-of-hospital tracheal intubation success with single-use metal laryngoscopy blades was noninferior to first-pass success with reusable metal laryngoscope blades. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  19. Proceedings of a workshop on American Eel passage technologies

    USGS Publications Warehouse

    Haro, Alexander J.

    2013-01-01

    Recent concerns regarding a decline in recruitment of American eels (Anguilla rostrata) have prompted efforts to restore this species to historic habitats by providing passage for both upstream migrant juveniles and downstream migrant adults at riverine barriers, including low-head and hydroelectric dams (Castonguay et al. 1994, Haro et al. 2000). These efforts include development of management plans and stock assessment reviews in both the US and Canada (COSEWIC 2006, Canadian Eel Working Group 2009, DFO 2010, MacGregor et al. 2010, ASMFC 2000, ASMFC 2006, ASMFC 2008, Williams and Threader 2007), which target improvement of upstream and downstream passage for eels, as well as identification and prioritization of research needs for development of new and more effective passage technologies for American eels. Traditional upstream fish passage structures, such as fishways and fish lifts, are often ineffective passing juvenile eels, and specialized passage structures for this species are needed. Although designs for such passage structures are available and diverse (Knights and White 1998, Porcher 2002, FAO/DVWK 2002, Solomon and Beach 2004a,b, Environment Agency UK 2011), many biologists, managers, and engineers are unfamiliar with eel pass design and operation, or unaware of the technical options available for upstream eel passage, Better coordination is needed to account for eel passage requirements during restoration efforts for other diadromous fish species. Also, appropriately siting eel passes at hydropower projects is critical, and siting can be difficult and complex due to physical restrictions in access to points of natural concentrations of eels, dynamic hydraulics of tailrace areas, and presence of significant competing flows from turbine outfalls or spill. As a result, some constructed eel passes are sited poorly and may pass only a fraction of the number of eels attempting to pass the barrier. When sited and constructed appropriately, however, eel passes can effectively pass thousands of individuals in a season (Appendix D). technologies for preventing impingement and entrainment mortality and injury of downstream migrant eels at hydropower projects are not well developed. Traditional downstream fish passage mitigative techniques originally developed for salmonids and other species are frequently ineffective passing eels (Richkus and Dixon 2003, EPRI 2001, Bruijs and Durif 2009). Large hydropower projects, with high project flows or intake openings that cannot be fitted with racks or screens with openings small enough to exclude eels, pose significant passage problems for this species, and turbine impingement and entrainment mortality of eels can be as high as 100%. Spill mortality and injury may also be significant for eels, given their tendency to move during high flow events when projects typically spill large amounts of flow. Delays in migration of eels that have difficulty locating and utilizing bypass entrances can also be significant. Therefore, downstream passage technologies are at a much more nebulous state of development than upstream passage technologies, and require further evaluation and improvement before rigorous design guidelines can be established. There have been few studies conducted to evaluate effectiveness of current mitigative measures for both upstream and downstream passage of eels. Research is needed to determine eel migratory timing, behavior, and appropriate mitigation technologies for specific sites and eel life history stages. Both upstream and downstream eel passage structures can be difficult to evaluate in terms of performance, and examples of how evaluation and monitoring can be accomplished were reviewed at the workshop.

  20. A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products.

    PubMed

    Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò

    2018-01-01

    Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.

  1. Model Adaptation in Parametric Space for POD-Galerkin Models

    NASA Astrophysics Data System (ADS)

    Gao, Haotian; Wei, Mingjun

    2017-11-01

    The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.

  2. Estimation of Time Scales in Unsteady Flows in a Turbomachinery Rig

    NASA Technical Reports Server (NTRS)

    Lewalle, Jacques; Ashpis, David E.

    2004-01-01

    Time scales in turbulent and transitional flow provide a link between experimental data and modeling, both in terms of physical content and for quantitative assessment. The problem of interest here is the definition of time scales in an unsteady flow. Using representative samples of data from GEAE low pressure turbine experiment in low speed research turbine facility with wake-induced transition, we document several methods to extract dominant frequencies, and compare the results. We show that conventional methods of time scale evaluation (based on autocorrelation functions and on Fourier spectra) and wavelet-based methods provide similar information when applied to stationary signals. We also show the greater flexibility of the wavelet-based methods when dealing with intermittent or strongly modulated data, as are encountered in transitioning boundary layers and in flows with unsteady forcing associated with wake passing. We define phase-averaged dominant frequencies that characterize the turbulence associated with freestream conditions and with the passing wakes downstream of a rotor. The relevance of these results for modeling is discussed in the paper.

  3. Cooling system for a nuclear reactor

    DOEpatents

    Amtmann, Hans H.

    1982-01-01

    A cooling system for a gas-cooled nuclear reactor is disclosed which includes at least one primary cooling loop adapted to pass coolant gas from the reactor core and an associated steam generator through a duct system having a main circulator therein, and at least one auxiliary cooling loop having communication with the reactor core and adapted to selectively pass coolant gas through an auxiliary heat exchanger and circulator. The main and auxiliary circulators are installed in a common vertical cavity in the reactor vessel, and a common return duct communicates with the reactor core and intersects the common cavity at a junction at which is located a flow diverter valve operative to effect coolant flow through either the primary or auxiliary cooling loops.

  4. High rate fabrication of compression molded components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.

    2016-04-19

    A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; andmore » applying molding pressure to the pre-form to form the composite component.« less

  5. Method and apparatus for generating coherent near 14 and near 16 micron radiation

    DOEpatents

    Krupke, William F.

    1977-01-01

    A method and apparatus for producing coherent radiation in CO.sub.2 vibrational-rotational transitions at wavelengths near 14 and 16 microns. This is accomplished by passing a mixture of N.sub.2 and Ar through a glow discharge producing a high vibrational temperature in the N.sub.2, passing the excited N.sub.2 through a nozzle bank creating a supersonic flow thereof, injecting the CO.sub.2 in the supersonic flow creating a population inversion in the CO.sub.2, and directing the saturating pulse of radiation near 10.6 or 9.6 microns into the excited CO.sub.2 creating a population inversion producing coherent radiation at 14 or 16 microns, respectively.

  6. River channel bars and dunes - Theory of kinematic waves

    USGS Publications Warehouse

    Langbein, Walter Basil; Leopold, Luna Bergere

    1968-01-01

    A kinematic wave is a grouping cf moving objects in zones along a flow path and through which the objects pass. These concentrations may be characterized by a simple relation between the speed of the moving objects and their spacing as a result of interaction between them.Vehicular traffic has long been known to have such properties. Data are introduced to show that beads carried by flowing water in a narrow flume behave in an analogous way. The flux or transport of objects in a single lane of traffic is greatest when the objects are spaced about two diameters apart; beads in a single-lane flume as well as highway traffic conform to this property.By considering the sand in a pipe or flume to a depth affected by dune movement, it is shown that flux-concentration curves similar to the previously known cases can be constructed from experimental data. From the kinematic point of view, concentration of particles in dunes and other wave bed forms results when particles in transport become more numerous or closely spaced and interact to reduce the effectiveness of the ambient water to move them.Field observations over a 5-year period are reported in which individual rocks were painted for identification and placed at various spacings on the bed of ephemeral stream in New Mexico, to study the effect of storm flows on rock movement. The data on about 14,000 rocks so observed show the effect of variable spacing which is quantitatively as well as qualitatively comparable to the spacing effect on small glass beads in a flume. Dunes and gravel bars may be considered kinematic waves caused by particle interaction, and certain of their properties can be related to the characteristics of the flux-concentration curve.

  7. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  8. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  9. Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.

    PubMed

    Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng

    2018-01-01

    Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.

  10. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  11. 3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data

    NASA Astrophysics Data System (ADS)

    Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.

    2016-12-01

    The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.

  12. Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle placement.

    PubMed

    Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L

    2016-07-01

    Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Identifying an influential spreader from a single seed in complex networks via a message-passing approach

    NASA Astrophysics Data System (ADS)

    Min, Byungjoon

    2018-01-01

    Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.

  14. Shock-capturing parabolized Navier-Stokes model /SCIPVIS/ for the analysis of turbulent underexpanded jets

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Wolf, D. E.

    1983-01-01

    A new computational model, SCIPVIS, has been developed to predict the multiple-cell wave/shock structure in under or over-expanded turbulent jets. SCIPVIS solves the parabolized Navier-Stokes jet mixing equations utilizing a shock-capturing approach in supersonic regions of the jet and a pressure-split approach in subsonic regions. Turbulence processes are represented by the solution of compressibility corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive turbulent mixing process occurring behind the disc are handled in a detailed fashion. SCIPVIS presently analyzes jets exhausting into a quiescent or supersonic external stream for which a single-pass spatial marching solution can be obtained. The iterative coupling of SCIPVIS with a potential flow solver for the analysis of subsonic/transonic external streams is under development.

  15. Development of a Dew-Point Generator for Gases Other than Air and Nitrogen and Pressures up to 6 MPa

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Peruzzi, A.

    2012-09-01

    A new primary humidity standard is currently being developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated also with special carrier gases such as natural gas and SF6 and at pressures up to 6 MPa. In this paper, the design and construction of this new primary dew-point generator and the preliminary tests performed on the generator are reported. The results of the first efficiency tests, performed for the dew-point temperature range from -50 °C to 20°C, for pressures up to 0.7MPa and for carrier gas flow rates up to 4L· min-1, showed satisfactory generator performance when used in the single-pass mode, i.e., with no recirculation of the carrier gas.

  16. Detecting underwater improvised explosive threats (DUIET)

    NASA Astrophysics Data System (ADS)

    Feeley, Terry

    2010-04-01

    Improvised Explosive Devices (IEDs) have presented a major threat in the wars in Afghanistan and Iraq. These devices are powerful homemade land mines that can be small and easily hidden near roadsides. They are then remotely detonated when Coalition Forces pass by either singly or in convoys. Their rapid detection, classification and destruction is key to the safety of troops in the area. These land based bombs will have an analogue in the underwater theater especially in ports, lakes, rivers and streams. These devices may be used against Americans on American soil as an element of the global war on terrorism (GWOT) Rapid detection and classification of underwater improvised explosive devices (UIED) is critical to protecting innocent lives and maintaining the day to day flow of commerce. This paper will discuss a strategy and tool set to deal with this potential threat.

  17. Emplacement of inflated Pāhoehoe flows in the Naude's Nek Pass, Lesotho remnant, Karoo continental flood basalt province: use of flow-lobe tumuli in understanding flood basalt emplacement

    NASA Astrophysics Data System (ADS)

    Jay, Anne E.; Marsh, Julian S.; Fluteau, Frédéric; Courtillot, Vincent

    2018-02-01

    Physical volcanological features are presented for a 710-m-thick section, of the Naude's Nek Pass, within the lower part of the Lesotho remnant of the Karoo Large Igneous Province. The section consists of inflated pāhoehoe lava with thin, impersistent sedimentary interbeds towards the base. There are seven discreet packages of compound and hummocky pāhoehoe lobes containing flow-lobe tumuli, making up approximately 50% of the section. Approximately 45% of the sequence consists of 14 sheet lobes, between 10 and 52-m-thick. The majority of the sheet lobes are in two packages indicating prolonged periods of lava supply capable of producing thick sheet lobes. The other sheet lobes are as individual lobes or pairs, within compound flows, suggesting brief increases in lava supply rate. We suggest, contrary to current belief, that there is no evidence that compound flows are proximal to source and sheet lobes (simple flows) are distal to source and we propose that the presence of flow-lobe tumuli in compound flows could be an indicator that a flow is distal to source. We use detailed, previously published, studies of the Thakurvadi Formation (Deccan Traps) as an example. We show that the length of a lobe and therefore the sections that are `medial or distal to source' are specific to each individual lobe and are dependent on the lava supply of each eruptive event, and as such flow lobe tumuli can be used as an indicator of relative distance from source.

  18. Algal Foams Applied in Fixed-Bed Process for Lead(II) Removal Using Recirculation or One-Pass Modes

    PubMed Central

    Wang, Shengye; Vincent, Thierry; Faur, Catherine; Guibal, Eric

    2017-01-01

    The incorporation of brown algae into biopolymer beads or foams for metal sorption has been previously reported. However, the direct use of these biomasses for preparing foams is a new approach. In this study, two kinds of porous foams were prepared by ionotropic gelation using algal biomass (AB, Laminaria digitata) or alginate (as the reference) and applied for Pb(II) sorption. These foams (manufactured as macroporous discs) were packed in filtration holders (simulating fixed-bed column) and the system was operated in either a recirculation or a one-pass mode. Sorption isotherms, uptake kinetics and sorbent reuse were studied in the recirculation mode (analogous to batch system). In the one-pass mode (continuous fixed-bed system), the influence of parameters such as flow rate, feed metal concentration and bed height were investigated on both sorption and desorption. In addition, the effect of Cu(II) on Pb(II) recovery from binary solutions was also studied in terms of both sorption and desorption. Sorption isotherms are well fitted by the Langmuir equation while the pseudo-second order rate equation described well both sorption and desorption kinetic profiles. The study of material regeneration confirms that the reuse of the foams was feasible with a small mass loss, even after 9 cycles. In the one-pass mode, for alginate foams, a slower flow rate led to a smaller saturation volume, while the effect of flow rate was less marked for AB foams. Competitive study suggests that the foams have a preference for Pb(II) over Cu(II) but cannot selectively remove Pb(II) from the binary solution. PMID:29039806

  19. KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE CANEC PANEL CEILING. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  20. 76 FR 31453 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    .... SID TTI data must be processed as defined in Federal Motor Vehicle Safety Standard (FMVSS) part 571...). Pass/fail injury assessments: TTI and pelvic acceleration. 2. One longitudinal test with the Hybrid II... pelvic acceleration. 3. Vertical (14g) test with modified Hybrid II ATDs using existing pass/fail...

  1. Integration of models of various types of aquifers for water quality management in the transboundary area of the Soča/Isonzo river basin (Slovenia/Italy).

    PubMed

    Vižintin, Goran; Ravbar, Nataša; Janež, Jože; Koren, Eva; Janež, Naško; Zini, Luca; Treu, Francesco; Petrič, Metka

    2018-04-01

    Due to intrinsic characteristics of aquifers groundwater frequently passes between various types of aquifers without hindrance. The complex connection of underground water paths enables flow regardless of administrative boundaries. This can cause problems in water resources management. Numerical modelling is an important tool for the understanding, interpretation and management of aquifers. Useful and reliable methods of numerical modelling differ with regard to the type of aquifer, but their connections in a single hydrodynamic model are rare. The purpose of this study was to connect different models into an integrated system that enables determination of water travel time from the point of contamination to water sources. The worst-case scenario is considered. The system was applied in the Soča/Isonzo basin, a transboundary river in Slovenia and Italy, where there is a complex contact of karst and intergranular aquifers and surface flows over bedrock with low permeability. Time cell models were first elaborated separately for individual hydrogeological units. These were the result of numerical hydrological modelling (intergranular aquifer and surface flow) or complex GIS analysis taking into account the vulnerability map and tracer tests results (karst aquifer). The obtained cellular models present the basis of a contamination early-warning system, since it allows an estimation when contaminants can be expected to appear, and in which water sources. The system proves that the contaminants spread rapidly through karst aquifers and via surface flows, and more slowly through intergranular aquifers. For this reason, karst water sources are more at risk from one-off contamination incidents, while water sources in intergranular aquifers are more at risk in cases of long-term contamination. The system that has been developed is the basis for a single system of protection, action and quality monitoring in the areas of complex aquifer systems within or on the borders of administrative units. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Novel Low-Power, High-Performance, Zero-Maintenance Closed-Path Trace Gas Eddy Covariance System with No Water Vapor Dilution or Spectroscopic Corrections

    NASA Astrophysics Data System (ADS)

    Sargent, S.; Somers, J. M.

    2015-12-01

    Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.

  3. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong

    2016-11-01

    A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.

  4. Relations between the single-pass and double-pass transition probabilities in quantum systems with two and three states

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay V.

    2018-05-01

    In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.

  5. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX.

    PubMed

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  6. Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways

    USGS Publications Warehouse

    Castro-Santos, Theodore R.; Shi, Xiaotao; Haro, Alexander

    2017-01-01

    This article describes a study of PIT-tagged sea lamprey (Petromyzon marinus) ascending four fishways comprising three designs at two dams on the Connecticut River, USA. Migration between dams was rapid (median migration rate = 23 km·day−1). Movement through the fishways was much slower, however (median = 0.02–0.33 km·day−1). Overall delay at dams was substantial (median = 13.6–14.6 days); many fish failed to pass (percent passage ranged from 29% to 55%, depending on fishway), and repeated passage attempts compounded delay for both passers and failers. Cox regression revealed that fishway entry rates were influenced by flow, temperature, and diel cycle, with most lampreys entering at night and at elevated flows, but with no apparent effect of sex or length. Overall delay was influenced by slow movement through the fishways, but repeated failures were the primary factor determining delay. These data suggest that although some lamprey were able to pass fishways, they did so with difficulty, and delays incurred as they attempted to pass may act to limit their distribution within their native range.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faber, Derrek M.; Ploskey, Gene R.; Weiland, Mark A.

    Pacific Northwest National Laboratory (PNNL) conducted an acoustic-telemetry study at Bonneville Dam in 2009 to evaluate the effects of a behavioral guidance structure (BGS) in the Bonneville Dam second powerhouse forebay on fish passage and survival through the second powerhouse (B2), the dam as a whole, and through the first powerhouse and spillway combined. The BGS was deployed to increase the survival of fish passing through B2 by increasing the percentage of outmigrating smolts entering the B2 Corner Collector (B2CC)—a surface flow outlet known to be a relatively benign route for downstream passage at this dam. The study relied onmore » releases of live Juvenile Salmon Acoustic Telemetry System tagged smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. Study results indicated that having turbine 11 in service is important for providing flow conditions that are comparable to those observed in pre-BGS years (2004 and 2005) and in 2008. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  8. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy.

    PubMed

    Monfared, Ashkan; Blevins, Nikolas H; Cheung, Eunice L M; Jung, Juergen C; Popelka, Gerald; Schnitzer, Mark J

    2006-02-01

    We sought to develop techniques for visualizing cochlear blood flow in live mammalian subjects using fluorescence microendoscopy. Inner ear microcirculation appears to be intimately involved in cochlear function. Blood velocity measurements suggest that intense sounds can alter cochlear blood flow. Disruption of cochlear blood flow may be a significant cause of hearing impairment, including sudden sensorineural hearing loss. However, inability to image cochlear blood flow in a nondestructive manner has limited investigation of the role of inner ear microcirculation in hearing function. Present techniques for imaging cochlear microcirculation using intravital light microscopy involve extensive perturbations to cochlear structure, precluding application in human patients. The few previous endoscopy studies of the cochlea have suffered from optical resolution insufficient for visualizing cochlear microvasculature. Fluorescence microendoscopy is an emerging minimally invasive imaging modality that provides micron-scale resolution in tissues inaccessible to light microscopy. In this article, we describe the use of fluorescence microendoscopy in live guinea pigs to image capillary blood flow and movements of individual red blood cells within the basal turn of the cochlea. We anesthetized eight adult guinea pigs and accessed the inner ear through the mastoid bulla. After intravenous injection of fluorescein dye, we made a limited cochleostomy and introduced a compound doublet gradient refractive index endoscope probe 1 mm in diameter into the inner ear. We then imaged cochlear blood flow within individual vessels in an epifluorescence configuration using one-photon fluorescence microendoscopy. We observed single red blood cells passing through individual capillaries in several cochlear structures, including the round window membrane, spiral ligament, osseous spiral lamina, and basilar membrane. Blood flow velocities within inner ear capillaries varied widely, with observed speeds reaching up to approximately 500 microm/s. Fluorescence microendoscopy permits visualization of cochlear microcirculation with micron-scale optical resolution and determination of blood flow velocities through analysis of video sequences.

  9. Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.

    2000-01-01

    In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

  10. Microchannel array flow analyzer for measurement of whole blood rheology and flow characteristics of leukocytes activated by bacterial stimulation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yuji; Fujieda, Sadao; Kikuchi, Hiroko E.

    1997-03-01

    Microgrooves (width 6, 7, and 8 micrometer, each with length 20, 30, and 40 micrometers, respectively; depth 4.5 micrometers; number 4704 in parallel of one size per chip; chip dimensions 12 multiplied by 12 mm) photofabricated in the surface of a single-crystal silicon substrate were converted to leak-proof microchannels by tightly covering them with an optically flat glass plate. Using the microchannels as a model of physiological capillaries, total flow rate of heparinized whole blood taken from healthy subjects was determined under a constant suction of 20 cmH2O, while flow behavior of blood cells through individual channels was microscopically observed. The apparent viscosity (ratio to that of saline) of whole blood was obtained as 4.7 plus or minus 0.5, 3.7 plus or minus 0.3, and 3.4 plus or minus 0.2 (mean plus or minus SD, n equals 4) for 6, 7, and 8 micrometer width channels, respectively. Normal leukocytes passed, showing a round shape, through the channels much more slowly then erythrocytes, but caused no appreciable interference with passage of erythrocytes. Meanwhile, cells exposed to the chemotactic peptide FMLP (1 - 10 nM) and bacterial cells (Escherichia coli K 12; 6 multiplied by 106/ml) slowed further greatly, showing very irregular shapes, and eventually blocked the channels. Such a response of leukocytes took place immediately after the exposure to FMLP, but it appeared gradually with time after the exposure to the cells.

  11. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2007-07-01

    We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.

  12. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers.

    PubMed

    Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2007-07-15

    We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.

  13. Designing robust watermark barcodes for multiplex long-read sequencing.

    PubMed

    Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth

    2017-03-15

    To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. CONCEPTUAL DESIGN STUDY OF A MOBILE GAMMA IRRADIATOR FOR FRUIT PRODUCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-05-31

    Engineering Drawings report available as CAPE-944. A conceptual design study was made of a mobile irradiator for radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons. Minimum radiation dose specification for the fruit ranged from 100,000 to 200,000 rads with maximum to minimum dose ratio in the range of 1.5 to 3. Minimum allowable production rates were in the range of 500 to 1000 lb of fruit/hr. The irradiator was required to be mobile, preferably on one truck capable of being put in operation one day after arrival at the site. Preliminary studies compared five types of irradiators, consisting of amore » single source slab, two package pass design; a double slab, single pass design; a single slab, four pass design; a line source rotary design; and a movable source, movable package design. It was concluded that a Co/sup 60/ irradiator can be built to meet the general requirements for radiopasteurization of fruit. The irradiator can be made mobile and can be mounted on a single trailer. The combined weight of the mobile unit would be 70 to 85 tons depending on the type of irradiator. This unit would require a special license from the State Highway Department. (C.H.)« less

  15. Pre- and post-head processing for single- and double-scrambled sentences of a head-final language as measured by the eye tracking method.

    PubMed

    Tamaoka, Katsuo; Asano, Michiko; Miyaoka, Yayoi; Yokosawa, Kazuhiko

    2014-04-01

    Using the eye-tracking method, the present study depicted pre- and post-head processing for simple scrambled sentences of head-final languages. Three versions of simple Japanese active sentences with ditransitive verbs were used: namely, (1) SO₁O₂V canonical, (2) SO₂O₁V single-scrambled, and (3) O₁O₂SV double-scrambled order. First pass reading times indicated that the third noun phrase just before the verb in both single- and double-scrambled sentences required longer reading times compared to canonical sentences. Re-reading times (the sum of all fixations minus the first pass reading) showed that all noun phrases including the crucial phrase before the verb in double-scrambled sentences required longer re-reading times than those required for single-scrambled sentences; single-scrambled sentences had no difference from canonical ones. Therefore, a single filler-gap dependency can be resolved in pre-head anticipatory processing whereas two filler-gap dependencies require much greater cognitive loading than a single case. These two dependencies can be resolved in post-head processing using verb agreement information.

  16. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  17. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C.

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  18. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    1998-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  19. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2005-09-20

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  20. Particle preconcentrator

    DOEpatents

    Linker, Kevin L.; Conrad, Frank J.; Custer, Chad A.; Rhykerd, Jr., Charles L.

    2000-01-01

    An apparatus and method for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents.

  1. Particle preconcentrator

    DOEpatents

    Linker, K.L.; Conrad, F.J.; Custer, C.A.; Rhykerd, C.L. Jr.

    1998-12-29

    An apparatus and method are disclosed for preconcentrating particles and vapors. The preconcentrator apparatus permits detection of highly diluted amounts of particles in a main gas stream, such as a stream of ambient air. A main gas stream having airborne particles entrained therein is passed through a pervious screen. The particles accumulate upon the screen, as the screen acts as a sort of selective particle filter. The flow of the main gas stream is then interrupted by diaphragm shutter valves, whereupon a cross-flow of carrier gas stream is blown parallel past the faces of the screen to dislodge the accumulated particles and carry them to a particle or vapor detector, such as an ion mobility spectrometer. The screen may be heated, such as by passing an electrical current there through, to promote desorption of particles therefrom during the flow of the carrier gas. Various types of screens are disclosed. The apparatus and method of the invention may find particular utility in the fields of narcotics, explosives detection and chemical agents. 3 figs.

  2. Film cooling air pocket in a closed loop cooled airfoil

    DOEpatents

    Yu, Yufeng Phillip; Itzel, Gary Michael; Osgood, Sarah Jane; Bagepalli, Radhakrishna; Webbon, Waylon Willard; Burdgick, Steven Sebastian

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  3. Single Plant Root System Modeling under Soil Moisture Variation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  4. Operating Room Environment Control. Part A: a Valve Cannister System for Anesthetic Gas Adsorption. Part B: a State-of-the-art Survey of Laminar Flow Operating Rooms. Part C: Three Laminar Flow Experiments

    NASA Technical Reports Server (NTRS)

    Meyer, J. S.; Kosovich, J.

    1973-01-01

    An anesthetic gas flow pop-off valve canister is described that is airtight and permits the patient to breath freely. Once its release mechanism is activated, the exhaust gases are collected at a hose adapter and passed through activated coal for adsorption. A survey of laminar air flow clean rooms is presented and the installation of laminar cross flow air systems in operating rooms is recommended. Laminar flow ventilation experiments determine drying period evaporation rates for chicken intestines, sponges, and sections of pig stomach.

  5. Comparison of different wavefront measurement setups to judge the position tolerance of intraocular lenses in a model eye

    NASA Astrophysics Data System (ADS)

    Traxler, Lukas; Reutterer, Bernd; Bayer, Natascha; Drauschke, Andreas

    2017-04-01

    To treat cataract intraocular lenses (IOLs) are used to replace the clouded human eye lens. Due to postoperative healing processes the IOL can displace within the eye, which can lead to deteriorated quality of vision. To test and characterize these effect an IOL can be embedded into a model of the humane eye. One informative measure are wavefront aberrations. In this paper three different setups, the typical double-pass configuration (DP), a single-pass (SP1) where the measured light travels in the same direction as in DP and a single-pass (SP2) with reversed direction, are investigated. All three setups correctly measure the aberrations of the eye, where SP1 is found to be the simplest to set up and align. Because of the lowest complexity it is the proposed method for wavefront measurement in model eyes.

  6. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer.

    PubMed

    Heymans, Sophie V; Martindale, Christine F; Suler, Andrej; Pouliopoulos, Antonios N; Dickinson, Robert J; Choi, James J

    2017-08-01

    Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode. Here, we present a simple, inexpensive, integrated setup, in which a focused single-element transducer can perform ultrasound therapy and monitoring simultaneously. MBs were made to flow through a vessel-mimicking tube, placed within the transducer's focus, and were sonicated with therapeutic pulses (peak rarefactional pressure: 75-827 kPa, pulse lengths: [Formula: see text] and 20 ms). The MB-seeded acoustic emissions were captured using the same transducer. The received signals were separated from the therapeutic signal with a hybrid coupler and a high-pass filter. We discriminated the MB-generated cavitation signal from the primary acoustic field and characterized MB behavior in real time. The simplicity and versatility of our circuit could make existing single-element therapeutic transducers also act as cavitation detectors, allowing the production of compact therapeutic systems with real time monitoring capabilities.

  7. A pilot study of EUS-guided through-the-needle forceps biopsy (with video).

    PubMed

    Nakai, Yousuke; Isayama, Hiroyuki; Chang, Kenneth J; Yamamoto, Natsuyo; Mizuno, Suguru; Mohri, Dai; Kogure, Hirofumi; Matsubara, Saburo; Tada, Minoru; Koike, Kazuhiko

    2016-07-01

    In EUS-guided FNA (EUS-FNA), small-caliber needles are preferable for optimal cytologic yield, whereas large ones are preferable when histologic specimens are needed. Because of the rigidity and friction induced by its large caliber, however, technical limitation does exist in a 19-gauge FNA needle. Recent development of miniature biopsy forceps enables EUS-guided through-the-needle forceps biopsy (EUS-TTNFB). The aim of this study is to evaluate safety and efficacy of EUS-TTNFB. Eighteen sessions of EUS-TTNFB in 17 patients with solid lesions were performed by using a 0.75-mm biopsy forceps through a 19-gauge FNA needle. Technical feasibility, safety, and diagnostic yield of EUS-TTNFB were retrospectively studied. A total of 49 passes, a median of 3 passes per session, were performed, and the needle puncture, advancement and removal of the biopsy forceps, and subsequent EUS-FNA were technically successful in all patients. No adverse events were observed other than one case with hyperamylasemia without pancreatitis. Macroscopic histologic core by EUS-TTNFB was obtained at a rate of 71% per pass. The tissue acquisition rate by EUS-TTNFB alone was 67% per pass and 100% per session. When EUS-TTNFB and subsequent EUS-FNA were combined, the tissue acquisition rate was 94% per pass. The accuracy of combined EUS-TTNFB and EUS-FNA to diagnose malignancy was 88% per pass and 94% per session. With a single pass of EUS-TTNFB and EUS-FNA, the tissue acquisition rate was 89%, and the accuracy to diagnose malignancy was 83%. EUS-TTNFB was safe and technically feasible and provided additional tissue acquisition with a single puncture of a 19-gauge FNA needle. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  8. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment.

    PubMed

    Wei, Cai-Jie; Wu, Wei-Zhong

    2018-09-01

    Two kinds of hybrid two-step multi-soil-layering (MSL) systems loaded with different filter medias (zeolite-ceramsite MSL-1 and ceramsite-red clay MSL-2) were set-up for the low-(C/N)-ratio polluted river water treatment. A long-term pollutant removal performance of these two kinds of MSL systems was evaluated for 214 days. By-pass was employed in MSL systems to evaluate its effect on nitrogen removal enhancement. Zeolite-ceramsite single-pass MSL-1 system owns outstanding ammonia removal capability (24 g NH 4 + -Nm -2 d -1 ), 3 times higher than MSL-2 without zeolite under low aeration rate condition (0.8 × 10 4  L m -2 .h -1 ). Aeration rate up to 1.6 × 10 4  L m -2 .h -1 well satisfied the requirement of complete nitrification in first unit of both two MSLs. However, weak denitrification in second unit was commonly observed. By-pass of 50% influent into second unit can improve about 20% TN removal rate for both MSL-1 and MSL-2. Complete nitrification and denitrification was achieved in by-pass MSL systems after addition of carbon source with the resulting C/N ratio up to 2.5. The characters of biofilms distributed in different sections inside MSL-1 system well illustrated the nitrogen removal mechanism inside MSL systems. Two kinds of MSLs are both promising as an appealing nitrifying biofilm reactor. Recirculation can be considered further for by-pass MSL-2 system to ensure a complete ammonia removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Bathymetric survey of the nearshore from Belle Pass to Caminada Pass, Louisiana: methods and data report

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Hansen, Mark; Kulp, Mark; Reynolds, B.J.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the University of New Orleans (UNO) and the Louisiana Department of Natural Resources (LDNR), conducted a high-resolution, single-beam bathymetric survey along the Louisiana southern coastal zone from Belle Pass to Caminada Pass. The survey consisted of 483 line kilometers of data acquired in July and August of 2005. This report outlines the methodology and provides the data from the survey. Analysis of the data and comparison to a similar bathymetric survey completed in 1989 show significant loss of seafloor and shoreline retreat, which is consistent with previously published estimates of shoreline change in the study area.

  10. The evolution of cooling flows. I - Self-similar cluster flows. [of gas in intergalactic medium

    NASA Technical Reports Server (NTRS)

    Chevalier, Roger A.

    1987-01-01

    The evolution of a cooling flow from an initial state of hydrostatic equilibrium in a cluster of galaxies is investigated. After gas mass and energy are injected into the cluster at an early phase, the gas approaches hydrostatic equilibrium over most of the cluster and cooling becomes important in the dense central regions. As time passes, cooling strongly affects an increasing amount of gas. The effects of mass removal from the flow, the inclusion of magnetic or cosmic-ray pressure, and heat conduction are considered individually.

  11. Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)

    DTIC Science & Technology

    2005-01-01

    tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form

  12. Unsteady flow characteristics in the near-wake of a two-dimensional obstacle

    NASA Technical Reports Server (NTRS)

    Dyment, A.; Gryson, P.

    1984-01-01

    The influence of the characteristics of the boundary layer separation on the formation of vortices and alternate paths in the wake of a bidimensional obstacle at high Reynolds numbers was studied by ultra fast visualization system. It is shown that there are alternate paths for laminar and turbulent flows, with similar flow characteristics. It is found that emission of vortices does not change substantially when the flow passes from laminar to turbulent. A film with a time scale change of 10,000 times illustrates some of the discussed phenomena.

  13. EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES

    EPA Science Inventory

    The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...

  14. An investigation of environmental factors associated with the current and proposed jetty systems at Belle Pass, Louisiana

    NASA Technical Reports Server (NTRS)

    Dantin, E. J.; Whitehurst, C. A.; Durbin, W. T.

    1974-01-01

    The history of the existing jetty system at Belle Pass was investigated to determine its past effect on the littoral currents and beach erosion. Present flow patterns and erosion rates were also studied, along with the prevailing recession rates of local beaches not influenced by the jetty system. Aerial photographs and maps were used in conjunction with periodic hydraulic measurements, ground observations, and physical measurements of beach erosion. A scale model was constructed to further the study of flow patterns and velocities. It is shown that the existing jetty has not adversely affected the coastline in the area; erosive processes have been retarded by the jetty and its companion groin. Future erosion patterns are predicted, and projected effects of the proposed jetty system are given.

  15. Generator configuration for solid oxide fuel cells

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  16. Features of the use of time-frequency distributions for controlling the mixture-producing aggregate

    NASA Astrophysics Data System (ADS)

    Fedosenkov, D. B.; Simikova, A. A.; Fedosenkov, B. A.

    2018-05-01

    The paper submits and argues the information on filtering properties of the mixing unit as a part of the mixture-producing aggregate. Relevant theoretical data concerning a channel transfer function of the mixing unit and multidimensional material flow signals are adduced here. Note that ordinary one-dimensional material flow signals are defined in terms of time-frequency distributions of Cohen’s class representations operating with Gabor wavelet functions. Two time-frequencies signal representations are written about in the paper to show how one can solve controlling problems as applied to mixture-producing systems: they are the so-called Rihaczek and Wigner-Ville distributions. In particular, the latter illustrates low-pass filtering properties that are practically available in any of low-pass elements of a physical system.

  17. In-situ method to remove iron and other metals from solution in groundwater down gradient from permeable reactive barrier

    DOEpatents

    Carpenter, Clay E.; Morrison, Stanley J.

    2001-07-03

    This invention is directed to a process for treating the flow of anaerobic groundwater through an aquifer with a primary treatment media, preferably iron, and then passing the treated groundwater through a second porous media though which an oxygenated gas is passed in order to oxygenate the dissolved primary treatment material and convert it into an insoluble material thereby removing the dissolved primary treatment material from the groundwater.

  18. National Waterways Study. Waterway Science and Technology.

    DTIC Science & Technology

    1981-08-01

    Revetments 278 VII-A Split Hull Type Trailing Suction Hopper Dredge 304 VII-B Drag Heads 306 VII-C Overflow Systems 307 VII-D Trailing Suction Hopper... head reversals are possible. Poor approach conditions currently exist at some locks which could have been mitigated if modern, improved design...of ti,.c that a navigable pass section can be used. Navigation dams must be designed to pass high flows and floods with minor swell head and without in

  19. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    PubMed

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  20. Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C-H Functionalization.

    PubMed

    Rackl, Daniel; Yoo, Chun-Jae; Jones, Christopher W; Davies, Huw M L

    2017-06-16

    A tandem reaction system has been developed for the preparation of donor/acceptor-substituted diazo compounds in continuous flow coupled to dirhodium-catalyzed C-H functionalization or cyclopropanation. Hydrazones were oxidized in flow by solid-supported N-iodo-p-toluenesulfonamide potassium salt (PS-SO 2 NIK) to generate the diazo compounds, which were then purified by passing through a column of molecular sieves/sodium thiosulfate.

  1. Comparing Split and Unsplit Numerical Methods for Simulating Low and High Mach Number Turbulent Flows in Xrage

    NASA Astrophysics Data System (ADS)

    Saenz, Juan; Grinstein, Fernando; Dolence, Joshua; Rauenzahn, Rick; Masser, Thomas; Francois, Marianne; LANL Team

    2017-11-01

    We report progress in evaluating an unsplit hydrodynamic solver being implemented in the radiation adaptive grid Eulerian (xRAGE) code, and compare to a split scheme. xRage is a Eulerian hydrodynamics code used for implicit large eddy simulations (ILES) of multi-material, multi-physics flows where low and high Mach number (Ma) processes and instabilities interact and co-exist. The hydrodynamic solver in xRAGE uses a directionally split, second order Godunov, finite volume (FV) scheme. However, a standard, unsplit, Godunov-type FV scheme with 2nd and 3rd order reconstruction options, low Ma correction and a variety of Riemann solvers has recently become available. To evaluate the hydrodynamic solvers for turbulent low Ma flows, we use simulations of the Taylor Green Vortex (TGV), where there is a transition to turbulence via vortex stretching and production of small-scale eddies. We also simulate a high-low Ma shock-tube flow, where a shock passing over a perturbed surface generates a baroclinic Richtmyer-Meshkov instability (RMI); after the shock has passed, the turbulence in the accelerated interface region resembles Rayleigh Taylor (RT) instability. We compare turbulence spectra and decay in simulated TGV flows, and we present progress in simulating the high-low Ma RMI-RT flow. LANL is operated by LANS LLC for the U.S. DOE NNSA under Contract No. DE-AC52-06NA25396.

  2. Flow analysis system and method

    NASA Technical Reports Server (NTRS)

    Hill, Wayne S. (Inventor); Barck, Bruce N. (Inventor)

    1998-01-01

    A non-invasive flow analysis system and method wherein a sensor, such as an acoustic sensor, is coupled to a conduit for transmitting a signal which varies depending on the characteristics of the flow in the conduit. The signal is amplified and there is a filter, responsive to the sensor signal, and tuned to pass a narrow band of frequencies proximate the resonant frequency of the sensor. A demodulator generates an amplitude envelope of the filtered signal and a number of flow indicator quantities are calculated based on variations in amplitude of the amplitude envelope. A neural network, or its equivalent, is then used to determine the flow rate of the flow in the conduit based on the flow indicator quantities.

  3. A Bayesian Model for Highly Accelerated Phase-Contrast MRI

    PubMed Central

    Rich, Adam; Potter, Lee C.; Jin, Ning; Ash, Joshua; Simonetti, Orlando P.; Ahmad, Rizwan

    2015-01-01

    Purpose Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow imaging in clinical settings. We propose a new data processing approach called Reconstructing Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that accelerates the acquisition by exploiting data structure unique to PC-MRI. Theory and Methods ReVEAL models physical correlations across space, time, and velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on message passing. For validation, prospectively undersampled data are processed from a pulsatile flow phantom and five healthy volunteers. Results ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging (n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10. Conclusion ReVEAL enables accurate quantification of blood flow from highly undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration may be possible due to additional redundancy. PMID:26444911

  4. Laboratory Experiments Modelling Sediment Transport by River Plumes

    NASA Astrophysics Data System (ADS)

    Sutherland, Bruce; Gingras, Murray; Knudson, Calla; Steverango, Luke; Surma, Chris

    2016-11-01

    Through lock-release laboratory experiments, the transport of particles by hypopycnal (surface) currents is examined as they flow into a uniform-density and a two-layer ambient fluid. In most cases the tank is tilted so that the current flows over a slope representing an idealization of a sediment-bearing river flowing into the ocean and passing over the continental shelf. When passing into a uniform-density ambient, the hypopycnal current slows and stops as particles rain out, carrying some of the light interstitial fluid with them. Rather than settling on the bottom, in many cases the descending particles accumulate to form a hyperpycnal (turbidity) current that flows downslope. This current then slows and stops as particles both rain out to the bottom and also rise again to the surface, carried upward by the light interstitial fluid. For a hypopycnal current flowing into a two-layer fluid, the current slows as particles rain out and accumulate at the interface of the two-layer ambient. Eventually these particles penetrate through the interface and settle to the bottom with no apparent formation of a hyperpycnal current. Analyses are performed to characterize the speed of the currents and stopping distances as they depend upon experiment parameters. Natural Sciences and Engineering Research Council.

  5. Improvements in Low-cost Ultrasonic Measurements of Blood Flow in "by-passes" Using Narrow & Broad Band Transit-time Procedures

    NASA Astrophysics Data System (ADS)

    Ramos, A.; Calas, H.; Diez, L.; Moreno, E.; Prohías, J.; Villar, A.; Carrillo, E.; Jiménez, A.; Pereira, W. C. A.; Von Krüger, M. A.

    The cardio-pathology by ischemia is an important cause of death, but the re-vascularization of coronary arteries (by-pass operation) is an useful solution to reduce associated morbidity improving quality of life in patients. During these surgeries, the flow in coronary vessels must be measured, using non-invasive ultrasonic methods, known as transit time flow measurements (TTFM), which are the most accurate option nowadays. TTFM is a common intra-operative tool, in conjunction with classic Doppler velocimetry, to check the quality of these surgery processes for implanting grafts in parallel with the coronary arteries. This work shows important improvements achieved in flow-metering, obtained in our research laboratories (CSIC, ICIMAF, COPPE) and tested under real surgical conditions in Cardiocentro-HHA, for both narrowband NB and broadband BB regimes, by applying results of a CYTED multinational project (Ultrasonic & computational systems for cardiovascular diagnostics). mathematical models and phantoms were created to evaluate accurately flow measurements, in laboratory conditions, before our new electronic designs and low-cost implementations, improving previous ttfm systems, which include analogic detection, acquisition & post-processing, and a portable PC. Both regimes (NB and BB), with complementary performances for different conditions, were considered. Finally, specific software was developed to offer facilities to surgeons in their interventions.

  6. Characterization of Aeromechanics Response and Instability in Fans, Compressors, and Turbine Blades

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.

    2003-01-01

    This study investigated the effect of interaction between tip clearance flow, steady and unsteady upstream wakes in rotor and stator blade rows in terms of blade forced response. In a stator blade row, the interaction of steady wakes in the upstream rotor frame with the stator imply a blade forced response whose spectrum contains the Blade passing frequency (BPF) and its harmonics, with a decaying amplitude as the frequency increases. When the incoming wakes are unsteady, however, the spectrum of blade excitation exhibits unexpectedly amplified high frequencies due to the modulation of BPF with the fluctuation frequency. In a rotor blade row, a tip flow instability has been demonstrated with a frequency (TVF) equal to 0.45 times the Blade Passing frequency corresponding to a reduced frequency (F(sub c) (sup +)) of 0.7. Under uniform inlet flow conditions, the frequency and spatial content of the tip flow region have been characterized. The disturbance TVF was the dominant disturbance in the flow field and was found to imply variations of the pressure coefficient of more than 30% on the blade tip (between 35% to 90% chord) and in the rotor-generated wake (from 75% to 100% hub-to-tip position). In an attempt to better understand the origin of the instability, the structure of the tip flow has also been analyzed. The interface between the tip flow region and the core flow has been found to have periodical wave-like flow patterns which proceed downstream at a speed of approximately 0.42 times the core flow speed at a frequency corresponding to TVF. A list of conclusions derived from these interactions is presented.

  7. Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    USGS Publications Warehouse

    Johnson, G.E.; Anglea, S.M.; Adams, N.S.; Wik, T.O.

    2005-01-01

    A surface flow bypass takes advantage of the natural surface orientation of most juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by providing a route in the upper water column that downstream migrant fishes can use to pass a hydroelectric dam safely. A prototype structure, called the surface bypass and collector (SBC), was retrofitted on the powerhouse of Lower Granite Dam and was evaluated annually with biotelemetry and hydroacoustic techniques during the 5-year life span of the structure (1996-2000) to determine the entrance configuration that maximized passage efficiency and minimized forebay residence time. The best tested entrance configuration had maximum inflow (99 m 3/s) concentrated in a single surface entrance (5 m wide, 8.5 m deep). We identified five important considerations for future surface flow bypass development in the lower Snake River and elsewhere: (1) an extensive flow net should be formed in the forebay by use of relatively high surface flow bypass discharge (>7% of total project discharge); (2) a gradual increase in water velocity with increasing proximity to the surface flow bypass (ideally, acceleration 3 m/s) to entrain the subject juvenile fishes; (4) the shape and orientation of the surface entrance(s) should be adapted to fit site-specific features; and (5) construction of a forebay wall to increase fish availability to the surface flow bypass should be considered. The efficiency of the SBC was not high enough (maximum of 62% relative to passage at turbine units 4-5) for the SBC to operate as a stand-alone bypass. Anywhere that surface-oriented anadromous fish must negotiate hydroelectric dams, surface flow bypass systems can provide cost-effective use of typically limited water supplies to increase the nonturbine passage, and presumably survival, of downstream migrants. ??Copyright by the American Fisheries Society 2005.

  8. Fiber Fabry-Perot Interferometric Sensor for the Measurement of Electric Current Flowing through a Fuse

    NASA Astrophysics Data System (ADS)

    Park, Jaehee

    2007-06-01

    A fiber Fabry-Perot inteferometric sensor bonded close to a fusing element has been studied for the measurement of electric current flowing through a fuse. The phase shift of the sensor output signal is proportional to the square of the electric current passing through the fuse and the sensitivity is 0.827°/mA2.

  9. 15. VIEW SHOWING WATER FLOWING THROUGH THE ORIGINAL DIVERSION GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW SHOWING WATER FLOWING THROUGH THE ORIGINAL DIVERSION GATE FROM THE OUTLET CHANNEL INTO THE BY-PASS CHANNEL LEADING TO THE ORIGINAL SOURIS RIVER CHANNEL (Note: this gate has since been replaced with concrete diversion gates, see HAER Photograph No ND-3-A-7) - Upper Souris National Wildlife Refuge, Dam 83, Souris River Basin, Foxholm, Surrey (England), ND

  10. Regenerable biocide delivery unit

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Colombo, Gerald V. (Inventor); Jolly, Clifford D. (Inventor)

    1993-01-01

    A method and apparatus are disclosed for maintaining continuous, long-term microbial control in the water supply for potable, hygiene, and experimental water for space activities, as well as treatment of water supplies on Earth. The water purification is accomplished by introduction of molecular iodine into the water supply to impart a desired iodine residual. The water is passed through an iodinated anion exchange resin bed. The iodine is bound as I-(sub n) at the anion exchange sites and releases I(sub 2) into the water stream flowing through the bed. The concentration of I(sub 2) in the flowing water gradually decreases and, in the prior art, the ion-exchange bed has had to be replaced. In a preferred embodiment, a bed of iodine crystals is provided with connections for flowing water therethrough to produce a concentrated (substantially saturated) aqueous iodine solution which is passed through the iodinated resin bed to recharge the bed with bound iodine. The bed of iodine crystals is connected in parallel with the iodinated resin bed and is activated periodically (e.g., by timer, by measured flow of water, or by iodine residual level) to recharge the bed. Novelty resides in the capability of inexpensively and repeatedly regenerating the ion-exchange bed in situ.

  11. Density-velocity equations with bulk modulus for computational hydro-acoustics

    NASA Astrophysics Data System (ADS)

    Lin, Po-Hsien; Chen, Yung-Yu; John Yu, S.-T.

    2014-02-01

    This paper reports a new set of model equations for Computational Hydro Acoustics (CHA). The governing equations include the continuity and the momentum equations. The definition of bulk modulus is used to relate density with pressure. For 3D flow fields, there are four equations with density and velocity components as the unknowns. The inviscid equations are proved to be hyperbolic because an arbitrary linear combination of the three Jacobian matrices is diagonalizable and has a real spectrum. The left and right eigenvector matrices are explicitly derived. Moreover, an analytical form of the Riemann invariants are derived. The model equations are indeed suitable for modeling wave propagation in low-speed, nearly incompressible air and water flows. To demonstrate the capability of the new formulation, we use the CESE method to solve the 2D equations for aeolian tones generated by air flows passing a circular cylinder at Re = 89,000, 46,000, and 22,000. Numerical results compare well with previously published data. By simply changing the value of the bulk modulus, the same code is then used to calculate three cases of water flows passing a cylinder at Re = 89,000, 67,000, and 44,000.

  12. 78 FR 50052 - Chief of Engineers Environmental Advisory Board; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... environmentally sustainable manner. Discussions and presentations during this meeting will include flow management...., drivers license, state- issued photo ID, or passport), and pass through the security screening station...

  13. Parallelization of TWOPORFLOW, a Cartesian Grid based Two-phase Porous Media Code for Transient Thermo-hydraulic Simulations

    NASA Astrophysics Data System (ADS)

    Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor

    2014-06-01

    TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.

  14. Lattice Boltzmann model capable of mesoscopic vorticity computation

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  15. Criteria for Modeling in LES of Multicomponent Fuel Flow

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2009-01-01

    A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria.

  16. Performance of a RBCC Engine in Rocket-Operation

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  17. Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2010-03-01

    The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.

  18. Investigation of coaxial jet noise and inlet choking using an F-111A airplane

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1973-01-01

    Measurements of engine noise generated by an F-111A airplane positioned on a thrustmeasuring platform were made at angles of 0 deg to 160 deg from the aircraft heading. Sound power levels, power spectra, and directivity patterns are presented for jet exit velocities between 260 feet per second and 2400 feet per second. The test results indicate that the total acoustic power was proportional to the eighth power of the core jet velocity for core exhaust velocities greater than 300 meters per second (985 feet per second) and that little or no mixing of the core and fan streams occurred. The maximum sideline noise was most accurately predicted by using the average jet velocity for velocities above 300 meters per second (985 feet per second). The acoustic power spectrum was essentially the same for the single jet flow of afterburner operation and the coaxial flow of the nonafterburning condition. By varying the inlet geometry and cowl position, reductions in the sound pressure level of the blade passing frequency on the order of 15 decibels to 25 decibels were observed for inlet Mach numbers of 0.8 to 0.9.

  19. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial

    PubMed Central

    Abraham-Shrauner, Barbara

    2018-01-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger,1 impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen–Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput. PMID:29657769

  20. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial.

    PubMed

    Pickard, William F; Abraham-Shrauner, Barbara

    2018-03-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger, impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen-Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput.

  1. Simplified models of the symmetric single-pass parallel-plate counterflow heat exchanger: a tutorial

    NASA Astrophysics Data System (ADS)

    Pickard, William F.; Abraham-Shrauner, Barbara

    2018-03-01

    The heat exchanger is important in practical thermal processes, especially those of (i) the molten-salt storage schemes, (ii) compressed air energy storage schemes and (iii) other load-shifting thermal storage presumed to undergird a Smart Grid. Such devices, although central to the utilization of energy from sustainable (but intermittent) renewable sources, will be unfamiliar to many scientists, who nevertheless need a working knowledge of them. This tutorial paper provides a largely self-contained conceptual introduction for such persons. It begins by modelling a novel quantized exchanger,1 impractical as a device, but useful for comprehending the underlying thermophysics. It then reviews the one-dimensional steady-state idealization which demonstrates that effectiveness of heat transfer increases monotonically with (device length)/(device throughput). Next, it presents a two-dimensional steady-state idealization for plug flow and from it derives a novel formula for effectiveness of transfer; this formula is then shown to agree well with a finite-difference time-domain solution of the two-dimensional idealization under Hagen-Poiseuille flow. These results are consistent with a conclusion that effectiveness of heat exchange can approach unity, but may involve unwelcome trade-offs among device cost, size and throughput.

  2. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    NASA Astrophysics Data System (ADS)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  3. A statistical model of the wave field in a bounded domain

    NASA Astrophysics Data System (ADS)

    Hellsten, T.

    2017-02-01

    Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.

  4. Comparison of damage to live v. euthanized Atlantic salmon Salmo salar smolts from passage through an Archimedean screw turbine.

    PubMed

    Brackley, R; Lucas, M C; Thomas, R; Adams, C E; Bean, C W

    2018-05-01

    This study assessed the usefulness of passing euthanized Atlantic salmon Salmo salar smolts through an Archimedean screw turbine to test for external damage, as compared with live, actively swimming smolts. Scale loss was the only observed effect. Severe scale loss was 5·9 times more prevalent in euthanized turbine-passed fish (45%) than the live fish (7·6%). Additionally, distinctive patterns of scale loss, consistent with grinding between the turbine helices and housing trough, were observed in 35% of euthanized turbine-passed smolts. This distinctive pattern of scale loss was not seen in live turbine-passed smolts, nor in control groups (live and euthanized smolts released downstream of the turbine), which suggests that the altered behaviour of dead fish in turbine flows generates biased injury outcomes. © 2018 The Fisheries Society of the British Isles.

  5. A Comparison between the Properties of Solid Cylinders and Tube Products in Multi-Pass Hot Radial Forging Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Abedian, A.; Poursina, M.; Golestanian, H.

    2007-05-01

    Radial forging is an open die forging process used for reducing the diameter of shafts, tubes, stepped shafts and axels, and creating internal profiles for tubes such as rifling of gun barrels. In this work, a comprehensive study of multi-pass hot radial forging of short hollow and solid products are presented using 2-D axisymmetric finite element simulation. The workpiece is modeled as an elastic-viscoplastic material. A mixture of Coulomb law and constant limit shear is used to model the die-workpiece and mandrel-workpiece contacts. Thermal effects are also taken in to account. Three-pass radial forging of solid cylinders and tube products are considered. Temperature, stress, strain and metal flow distribution are obtained in each pass through thermo-mechanical simulation. The numerical results are compared with available experimental data and are in good agreement with them.

  6. Transmutation of fullerenes.

    PubMed

    Cross, R James; Saunders, Martin

    2005-03-09

    Fullerenes were pyrolyzed by subliming them into a stream of flowing argon gas and then passing them through an oven heated to approximately 1000 degrees C. C(76), C(78), and C(84) all readily lost carbons to form smaller fullerenes. In the case of C(78), some isomerization was seen. Pyrolysis of (3)He@C(76) showed that all or most of the (3)He was lost during the decomposition. C(60) passes through the apparatus with no decomposition and no loss of helium.

  7. Charon Message-Passing Toolkit for Scientific Computations

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Yan, Jerry (Technical Monitor)

    2000-01-01

    Charon is a library, callable from C and Fortran, that aids the conversion of structured-grid legacy codes-such as those used in the numerical computation of fluid flows-into parallel, high- performance codes. Key are functions that define distributed arrays, that map between distributed and non-distributed arrays, and that allow easy specification of common communications on structured grids. The library is based on the widely accepted MPI message passing standard. We present an overview of the functionality of Charon, and some representative results.

  8. Three-Dimensional Interactions and Vortical Flows with Emphasis on High Speeds

    DTIC Science & Technology

    1980-07-01

    experimental studies ui.ilizing oil-streak flow-visualization techniques. If a flow-visualization -indicator on a wind-tunnel model is very thin, it has...present study . At a saddle point ’Fig. 10c), there are only two particular lines, CC and DD, that pass through the singular point. The directions on ... case the vortex filament emanating from the focus remains distinct ("tornado-like") and is sean as a separate entity on crossflow planes downstream

  9. Methods and systems for fabricating high quality superconducting tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majkic, Goran; Selvamanickam, Venkat

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  10. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, Anstein

    1994-01-01

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.

  11. Liquid metal reactor air cooling baffle

    DOEpatents

    Hunsbedt, A.

    1994-08-16

    A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.

  12. Galapagos Islands taken by the STS-109 crew

    NASA Image and Video Library

    2002-03-10

    STS109-718-102 (1-12 March 2002) --- The astronauts on board the Space Shuttle Columbia took this 70mm picture featuring the Galapagos Islands. For orientation purposes, north is towards the bottom of the view. Most of the largest island in the Galapagos group, Isla Isabela, stretches across the middle of the frame. The circular feature on this island at bottom is Volcano Wolf (1707 meters in altitude). Volcano Darwin (1280 meters in sea level) is the next volcano above and to the left, partly ringed with cloud. The single island top right is Isla Fernandina, the top of another volcano (1547 meters). Recent lava flows appear as darker surfaces and the older surfaces appear green, as a result of unusual rains and vegetational greening in this normally arid part of the world. The Equator passes exactly through Volcano Wolf, roughly left to right.

  13. Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect.

    PubMed

    Choi, Min-Seong; Yoo, Jae-Chern

    2015-04-01

    We report a fully automated DNA purification platform with a micropored membrane in the channel utilizing centrifugal microfluidics on a lab-on-a-disc (LOD). The microfluidic flow in the LOD, into which the reagents are injected for DNA purification, is controlled by a single motor and laser burst valve. The sample and reagents pass successively through the micropored membrane in the channel when each laser burst valve is opened. The Coriolis effect is used by rotating the LOD bi-directionally to increase the purity of the DNA, thereby preventing the mixing of the waste and elution solutions. The total process from the lysed sample injection into the LOD to obtaining the purified DNA was finished within 7 min with only one manual step. The experimental result for Salmonella shows that the proposed microfluidic platform is comparable to the existing devices in terms of the purity and yield of DNA.

  14. Development of a High-Throughput Magnetic Separation Device for Malaria-infected Erythrocytes

    PubMed Central

    Martin, A. Blue; Wu, Wei-Tao; Kameneva, Marina V.; Antaki, James F.

    2017-01-01

    This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in-vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min−1. This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria. PMID:28924724

  15. Structural cooling fluid tube for supporting a turbine component and supplying cooling fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charron, Richard; Pierce, Daniel

    2015-02-24

    A shaft cover support for a gas turbine engine is disclosed. The shaft cover support not only provides enhanced support to a shaft cover of the gas turbine engine, but also includes a cooling fluid chamber for passing fluids from a rotor air cooling supply conduit to an inner ring cooling manifold. As such, the shaft cover support accomplishes in a single component what was only partially accomplished in two components in conventional configurations. The shaft cover support may also provide additional stiffness and reduce interference of the flow from the compressor. In addition, the shaft cover support accommodates amore » transition section extending between compressor and turbine sections of the engine. The shaft cover support has a radially extending region that is offset from the inlet and outlet that enables the shaft cover support to surround the transition, thereby reducing the overall length of this section of the engine.« less

  16. Cooled airfoil in a turbine engine

    DOEpatents

    Vitt, Paul H; Kemp, David A; Lee, Ching-Pang; Marra, John J

    2015-04-21

    An airfoil in a gas turbine engine includes an outer wall and an inner wall. The outer wall includes a leading edge, a trailing edge opposed from the leading edge in a chordal direction, a pressure side, and a suction side. The inner wall is coupled to the outer wall at a single chordal location and includes portions spaced from the pressure and suction sides of the outer wall so as to form first and second gaps between the inner wall and the respective pressure and suction sides. The inner wall defines a chamber therein and includes openings that provide fluid communication between the respective gaps and the chamber. The gaps receive cooling fluid that provides cooling to the outer wall as it flows through the gaps. The cooling fluid, after traversing at least substantial portions of the gaps, passes into the chamber through the openings in the inner wall.

  17. Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes.

    PubMed

    Blue Martin, A; Wu, Wei-Tao; Kameneva, Marina V; Antaki, James F

    2017-12-01

    This study describes a non-dilutive high-gradient magnetic separation (HGMS) device intended to continuously remove malaria-infected red blood cells (iRBCs) from the circulation. A mesoscale prototype device with disposable photo-etched ferromagnetic grid and reusable permanent magnet was designed with a computationally-optimized magnetic force. The prototype device was evaluated in vitro using a non-pathogenic analog for malaria-infected blood, comprised of 24% healthy RBCs, 6% human methemoglobin RBCs (metRBCs), and 70% phosphate buffer solution (PBS). The device provided a 27.0 ± 2.2% reduction of metRBCs in a single pass at a flow rate of 77 μL min -1 . This represents a clearance rate over 380 times greater throughput than microfluidic devices reported previously. These positive results encourage development of a clinical scale system that would economize time and donor blood for treating severe malaria.

  18. Steady-state generation of hydrogen peroxide: kinetics and stability of alcohol oxidase immobilized on nanoporous alumina.

    PubMed

    Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar

    2013-04-01

    Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.

  19. Identification of PM10 air pollution origins at a rural background site

    NASA Astrophysics Data System (ADS)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  20. Induction melter apparatus

    DOEpatents

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  1. Operating an induction melter apparatus

    DOEpatents

    Roach, Jay A.; Richardson, John G.; Raivo, Brian D.; Soelberg, Nicholas R.

    2006-01-31

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  2. Development of a carbon formation reactor for carbon dioxide reduction

    NASA Technical Reports Server (NTRS)

    Noyes, G.

    1985-01-01

    Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.

  3. An Evaluation of Architectural Platforms for Parallel Navier-Stokes Computations

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1996-01-01

    We study the computational, communication, and scalability characteristics of a computational fluid dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architecture platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory multiprocessors with different topologies - the IBM SP and the Cray T3D. We investigate the impact of various networks connecting the cluster of workstations on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  4. Parallelizing Navier-Stokes Computations on a Variety of Architectural Platforms

    NASA Technical Reports Server (NTRS)

    Jayasimha, D. N.; Hayder, M. E.; Pillay, S. K.

    1997-01-01

    We study the computational, communication, and scalability characteristics of a Computational Fluid Dynamics application, which solves the time accurate flow field of a jet using the compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The platforms chosen for this study are a cluster of workstations (the LACE experimental testbed at NASA Lewis), a shared memory multiprocessor (the Cray YMP), distributed memory multiprocessors with different topologies-the IBM SP and the Cray T3D. We investigate the impact of various networks, connecting the cluster of workstations, on the performance of the application and the overheads induced by popular message passing libraries used for parallelization. The work also highlights the importance of matching the memory bandwidth to the processor speed for good single processor performance. By studying the performance of an application on a variety of architectures, we are able to point out the strengths and weaknesses of each of the example computing platforms.

  5. CAMAC driver for the RSX-11M V3 operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tippie, J. W.; Cannon, P. H.

    1977-01-01

    A driver for Kinetic Systems 3911A dedicated crate controller and 3992 serial highway driver for RSX-11M is described. The implementation includes a modified UCB structure. With this structure, multiple active I/O requests are supported to a single controller. The completion of an I/O request may be tied to external events via a WAIT-FOR-LAM command. Features of the driver include the ability to pass a list of FNA's in a single QIO call, serial highway overhead transparent at the QIO level, and special control commands to the driver passed in the FNA list. 1 figure.

  6. MPT Prediction of Aircraft-Engine Fan Noise

    NASA Technical Reports Server (NTRS)

    Connell, Stuart D.

    2004-01-01

    A collection of computer programs has been developed that implements a procedure for predicting multiple-pure-tone (MPT) noise generated by fan blades of an aircraft engine (e.g., a turbofan engine). MPT noise arises when the fan is operating with supersonic relative tip Mach No. Under this flow condition, there is a strong upstream running shock. The strength and position of this shock are very sensitive to blade geometry variations. For a fan where all the blades are identical, the primary tone observed upstream of the fan will be the blade passing frequency. If there are small variations in geometry between blades, then tones below the blade passing frequency arise MPTs. Stagger angle differences as small as 0.1 can give rise to significant MPT. It is also noted that MPT noise is more pronounced when the fan is operating in an unstarted mode. Computational results using a three-dimensional flow solver to compute the complete annulus flow with non-uniform fans indicate that MPT noise can be estimated in a relatively simple way. Hence, once the effect of a typical geometry variation of one blade in an otherwise uniform blade row is known, the effect of all the blades being different can be quickly computed via superposition. Two computer programs that were developed as part of this work are used in conjunction with a user s computational fluid dynamics (CFD) code to predict MPT spectra for a fan with a specified set of geometric variations: (1) The first program ROTBLD reads the users CFD solution files for a single blade passage via an API (Application Program Interface). There are options to replicate and perturb the geometry with typical variations stagger, camber, thickness, and pitch. The multi-passage CFD solution files are then written in the user s file format using the API. (2) The second program SUPERPOSE requires two input files: the first is the circumferential upstream pressure distribution extracted from the CFD solution on the multi-passage mesh, the second file defines the geometry variations of each blade in a complete fan. Superposition is used to predict the spectra resulting from the geometric variations.

  7. Evaluation of a single-scan protocol for radiochromic film dosimetry.

    PubMed

    Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai

    2015-03-08

    The purpose of this study was to evaluate a single-scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24-hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24-hr protocol). The single-scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single-scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity-modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single-scan protocol was within 2% of the 24-hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single-scan and 24-hr protocols were 2.0 ± 1.8 cGy and 1.4 ± 1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single-scan protocol and 95.9% for the 24-hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6 ± 3.5cGy and 2.9 ± 3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7% ± 1.8% for the single-scan protocol and 97.3% ± 1.4% for the 24-hr protocol. Thus, the single-scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency.

  8. Open-loop heat-recovery dryer

    DOEpatents

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  9. Extensible packet processing architecture

    DOEpatents

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  10. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOEpatents

    Beer, Neil Reginald; Kennedy, Ian

    2013-12-17

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  11. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    DOEpatents

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  12. Characterization of Microstructure and Texture of 13Cr4Ni Martensitic Stainless Steel Weld Before and After Tempering =

    NASA Astrophysics Data System (ADS)

    Mokhtabad Amrei, Mohsen

    13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes. Furthermore, low angle interface laths were observed inside martensite sub-blocks over different regions. The hardness profile of a multi-pass weld was explained by the overlaying heat effects of surrounding passes. In some regions, a tempered matrix was observed, while in other regions a double-quenched microstructure was found. The final aspect of this study focused on the effects of post-weld heat treatments on reformed austenite and carbide formations, and evolution of hardness. The effects of tempering duration and temperature on microstructure were investigated. The study found that nanometer-sized carbides form at martensite lath interfaces and sub-block boundaries. Additionally, it was determined that for any holding duration, the maximum austenite percentage is achievable by tempering at 610 °C. Similarly, the maximum softening was reported for tempering at 610 °C, for any given holding period.

  13. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction or to the...

  14. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction to the tank...

  15. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction to the tank...

  16. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction or to the...

  17. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction or to the...

  18. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction to the tank...

  19. 49 CFR 178.338-17 - Pumps and compressors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction to the tank...

  20. 49 CFR 178.337-15 - Pumps and compressors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mechanical, electrical, or hydraulic means. Unless they are of the centrifugal type, they shall be equipped with suitable pressure actuated by-pass valves permitting flow from discharge to suction or to the...

  1. An error analysis of the recovery capability of the relative sea-surface profile over the Puerto Rican trench from multi-station and ship tracking of GEOS-2

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Martin, C. F.; Roy, N. A.; Vetter, J. R.

    1971-01-01

    Error analyses were performed to examine the height error in a relative sea-surface profile as determined by a combination of land-based multistation C-band radars and optical lasers and one ship-based radar tracking the GEOS 2 satellite. It was shown that two relative profiles can be obtained: one using available south-to-north passes of the satellite and one using available north-to-south type passes. An analysis of multi-station tracking capability determined that only Antigua and Grand Turk radars are required to provide satisfactory orbits for south-to-north type satellite passes, while a combination of Merritt Island, Bermuda, and Wallops radars provide secondary orbits for north-to-south passes. Analysis of ship tracking capabilities shows that high elevation single pass range-only solutions are necessary to give only moderate sensitivity to systematic error effects.

  2. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1988-01-01

    A modified cluster analysis method developed for the classification of quasi-stationary events into a few planetary flow regimes and for the examination of transitions between these regimes is described. The method was applied first to a simple deterministic model and then to a 500-mbar data set for Northern Hemisphere (NH), for which cluster analysis was carried out in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters were found in the low-frequency band of more than 10 days, while transient clusters were found in the band-pass frequency window between 2.5 and 6 days. In the low-frequency band, three pairs of clusters determined EOFs 1, 2, and 3, respectively; they exhibited well-known regional features, such as blocking, the Pacific/North American pattern, and wave trains. Both model and low-pass data exhibited strong bimodality.

  3. Flow and clogging of a sheep herd passing through a bottleneck.

    PubMed

    Garcimartín, A; Pastor, J M; Ferrer, L M; Ramos, J J; Martín-Gómez, C; Zuriguel, I

    2015-02-01

    We present an experimental study of a flock passing through a narrow door. Video monitoring of daily routines in a farm has enabled us to collect a sizable amount of data. By measuring the time lapse between the passage of consecutive animals, some features of the flow regime can be assessed. A quantitative definition of clogging is demonstrated based on the passage time statistics. These display broad tails, which can be fitted by power laws with a relatively large exponent. On the other hand, the distribution of burst sizes robustly evidences exponential behavior. Finally, borrowing concepts from granular physics and statistical mechanics, we evaluate the effect of increasing the door size and the performance of an obstacle placed in front of it. The success of these techniques opens new possibilities regarding their eventual extension to the management of human crowds.

  4. Evaluation of the communications impact of a low power arcjet thruster

    NASA Technical Reports Server (NTRS)

    Carney, Lynnette M.

    1988-01-01

    The interaction of a 1 kW arcjet thruster plume with a communications signal is evaluated. A two-parameter, source flow equation has been used to represent the far flow field distribution of the arcjet plume in a realistic spacecraft configuration. Modelling the plume as a plasma slab, the interaction of the plume with a 4 GHz communications signal is then evaluated in terms of signal attenuation and phase shift between transmitting and receiving antennas. Except for propagation paths which pass very near the arcjet source, the impacts to transmission appear to be negligible. The dominant signal loss mechanism is refraction of the beam rather than absorption losses due to collisions. However, significant reflection of the signal at the sharp vacuum-plasma boundary may also occur for propagation paths which pass near the source.

  5. Flow and clogging of a sheep herd passing through a bottleneck

    NASA Astrophysics Data System (ADS)

    Garcimartín, A.; Pastor, J. M.; Ferrer, L. M.; Ramos, J. J.; Martín-Gómez, C.; Zuriguel, I.

    2015-02-01

    We present an experimental study of a flock passing through a narrow door. Video monitoring of daily routines in a farm has enabled us to collect a sizable amount of data. By measuring the time lapse between the passage of consecutive animals, some features of the flow regime can be assessed. A quantitative definition of clogging is demonstrated based on the passage time statistics. These display broad tails, which can be fitted by power laws with a relatively large exponent. On the other hand, the distribution of burst sizes robustly evidences exponential behavior. Finally, borrowing concepts from granular physics and statistical mechanics, we evaluate the effect of increasing the door size and the performance of an obstacle placed in front of it. The success of these techniques opens new possibilities regarding their eventual extension to the management of human crowds.

  6. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    NASA Astrophysics Data System (ADS)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  7. Noninvasive OCT imaging of the retinal morphology and microvasculature based on the combination of the phase and amplitude method

    NASA Astrophysics Data System (ADS)

    Qin, Lin; Fan, Shanhui; Zhou, Chuanqing

    2017-04-01

    To implement the optical coherence tomography (OCT) angiography on the low scanning speed OCT system, we developed a joint phase and amplitude method to generate 3-D angiograms by analysing the frequency distribution of signals from non-moving and moving scatterers and separating the signals from the tissue and blood flow with high-pass filter dynamically. This approach firstly compensates the sample motion between adjacent A-lines. Then according to the corrected phase information, we used a histogram method to determine the bulk non-moving tissue phases dynamically, which is regarded as the cut-off frequency of a high-pass filter, and separated the moving and non-moving scatters using the mentioned high-pass filter. The reconstructed image can visualize the components of moving scatters flowing, and enables volumetric flow mapping combined with the corrected phase information. Furthermore, retinal and choroidal blood vessels can be simultaneously obtained by separating the B-scan into retinal part and choroidal parts using a simple segmentation algorithm along the RPE. After the compensation of axial displacements between neighbouring images, three-dimensional vasculature of ocular vessels has been visualized. Experiments were performed to demonstrate the effectiveness of the proposed method for 3-D vasculature imaging of human retina and choroid. The results revealed depth-resolved vasculatures in retina and choroid, suggesting that our approach can be used for noninvasive and three-dimensional angiography with a low-speed clinical OCT, and it has a great potential for clinic application.

  8. Flow visualizations of perpendicular blade vortex interactions

    NASA Technical Reports Server (NTRS)

    Rife, Michael C.; Davenport, William J.

    1992-01-01

    Helium bubble flow visualizations have been performed to study perpendicular interaction of a turbulent trailing vortex and a rectangular wing in the Virginia Tech Stability Tunnel. Many combinations of vortex strength, vortex-blade separation (Z(sub s)) and blade angle of attack were studied. Photographs of representative cases are presented. A range of phenomena were observed. For Z(sub s) greater than a few percent chord the vortex is deflected as it passes the blade under the influence of the local streamline curvature and its image in the blade. Initially the interaction appears to have no influence on the core. Downstream, however, the vortex core begins to diffuse and grow, presumably as a consequence of its interaction with the blade wake. The magnitude of these effects increases with reduction in Z(sub s). For Z(sub s) near zero the form of the interaction changes and becomes dependent on the vortex strength. For lower strengths the vortex appears to split into two filaments on the leading edge of the blade, one passing on the pressure and one passing on the suction side. At higher strengths the vortex bursts in the vicinity of the leading edge. In either case the core of its remnants then rapidly diffuse with distance downstream. Increase in Reynolds number did not qualitatively affect the flow apart from decreasing the amplitude of the small low-frequency wandering motions of the vortex. Changes in wing tip geometry and boundary layer trip had very little effect.

  9. Geology, ground-water hydrology, geochemistry, and ground-water simulation of the Beaumont and Banning Storage Units, San Gorgonio Pass area, Riverside County, California

    USGS Publications Warehouse

    Rewis, Diane L.; Christensen, Allen H.; Matti, Jonathan; Hevesi, Joseph A.; Nishikawa, Tracy; Martin, Peter

    2006-01-01

    Ground water has been the only source of potable water supply for residential, industrial, and agricultural users in the Beaumont and Banning storage units of the San Gorgonio Pass area, Riverside County, California. Ground-water levels in the Beaumont area have declined as much as 100 feet between the early 1920s and early 2000s, and numerous natural springs have stopped flowing. In 1961, the San Gorgonio Pass Water Agency (SGPWA) entered into a contract with the California State Department of Water Resources to receive 17,300 acre-feet per year of water to be delivered by the California State Water Project (SWP) to supplement natural recharge. Currently (2005), a pipeline is delivering SWP water into the area, and the SGPWA is artificially recharging the ground-water system using recharge ponds located along Little San Gorgonio Creek in Cherry Valley with the SWP water. In addition to artificial recharge, SGPWA is considering the direct delivery of SWP water for the irrigation of local golf courses and for agricultural supply in lieu of ground-water pumpage. To better understand the potential hydrologic effects of different water-management alternatives on ground-water levels and movement in the Beaumont and Banning storage units, existing geohydrologic and geochemical data were compiled, new data from a basin-wide ground-water level and water-quality monitoring network were collected, monitoring wells were installed near the Little San Gorgonio Creek recharge ponds, geohydrologic and geochemical analyses were completed, and a ground-water flow simulation model was developed. The San Gorgonio Pass area was divided into several storage units on the basis of mapped or inferred faults. This study addresses primarily the Beaumont and Banning storage units. The geologic units in the study area were generalized into crystalline basement rocks and sedimentary deposits. The younger sedimentary deposits and the surficial deposits are the main water-bearing deposits in the San Gorgonio Pass area. The water-bearing deposits were divided into three aquifers: (1) the perched aquifer, (2) the upper aquifer, and (3) the lower aquifer based on lithologic and downhole geophysical logs. Natural recharge in the San Gorgonio Pass area was estimated using INFILv3, a deterministic distributed- parameter precipitation-runoff model. The INFILv3 model simulated that the potential recharge of precipitation and runoff in the Beaumont and Banning storage units was about 3,710 acre-feet per year and that the potential recharge in 28 sub-drainage basins upstream of the storage units was about 6,180 acre-feet per year. The water supply for the Beaumont and Banning storage units is supplied by pumping ground water from wells in the Canyon (Edgar and Banning Canyons), Banning Bench, Beaumont, and Banning storage units. Total annual pumpage from the Beaumont and Banning storage units ranged from about 1,630 acre-feet in 1936 to about 20,000 acre-feet in 2003. Ground-water levels declined by as much as 100 feet in the Beaumont storage unit from 1926-2003 in response to ground-water pumping of about 450,160 acre-feet during this period. Since ground-water development began in the San Gorgonio Pass area, there have been several sources of artificial recharge to the basin including return flow from applied water on crops, golf courses, and landscape; septic-tank seepage; and infiltration of storm runoff diversions and imported water into recharge ponds. Return flow from applied water and septic-tank seepage was estimated to reach a maximum of about 8,100 acre-feet per year in 2003. Owing to the great depth of water in much of study area (in excess of 150 feet), the return flow and septic-tank seepage takes years to decades to reach the water table. Stable-isotope data indicate that the source of ground-water recharge was precipitation from storms passing through the San Gorgonio Pass as opposed to runoff from the higher altitudes of the San Bernar

  10. Rock ramp design guidelines

    USGS Publications Warehouse

    Mooney, David M.; Holmquist-Johnson, Christopher L.; Broderick, Susan

    2007-01-01

    Rock ramps or roughened channels consist of steep reaches stabilized by large immobile material (riprap). Primary objectives for rock ramps include: Create adequate head for diversionMaintain fish passage during low-flow conditionsMaintain hydraulic conveyance during high-flow conditionsSecondary objectives for rock ramp design include:Emulate natural systemsMinimize costsThe rock ramp consists of a low-flow channel designed to maintain biologically adequate depth and velocity conditions during periods of small discharges. The remainder of the ramp is designed to withstand and pass large flows with minimal structural damage. The following chapters outline a process for designing rock ramps.

  11. Phlegethon flow: A proposed origin for spicules and coronal heating

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.; Mayr, Hans G.

    1986-01-01

    A model was develped for the mass, energy, and magnetic field transport into the corona. The focus is on the flow below the photosphere which allows the energy to pass into, and be dissipated within, the solar atmosphere. The high flow velocities observed in spicules are explained. A treatment following the work of Bailyn et al. (1985) is examined. It was concluded that within the framework of the model, energy may dissipate at a temperature comparable to the temperature where the waves originated, allowing for an equipartition solution of atmospheric flow, departing the sun at velocities approaching the maximum Alfven speed.

  12. Time-Domain Microfluidic Fluorescence Lifetime Flow Cytometry for High-Throughput Förster Resonance Energy Transfer Screening

    PubMed Central

    Nedbal, Jakub; Visitkul, Viput; Ortiz-Zapater, Elena; Weitsman, Gregory; Chana, Prabhjoat; Matthews, Daniel R; Ng, Tony; Ameer-Beg, Simon M

    2015-01-01

    Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5–5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry PMID:25523156

  13. A new formulation of the dispersion tensor in homogeneous porous media

    NASA Astrophysics Data System (ADS)

    Valdés-Parada, Francisco J.; Lasseux, Didier; Bellet, Fabien

    2016-04-01

    Dispersion is the result of two mass transport processes, namely molecular diffusion, which is a pure mixing effect and hydrodynamic dispersion, which combines mixing and spreading. The identification of each contribution is crucial and is often misinterpreted. Traditionally, under a volume averaging framework, a single closure problem is solved and the resulting fields are substituted into diffusive and dispersive filters. However the diffusive filter (that leads to the effective diffusivity) allows passing information from convection, which leads to an incorrect definition of the effective medium coefficients composing the total dispersion tensor. In this work, we revisit the definitions of the effective diffusivity and hydrodynamic dispersion tensors using the method of volume averaging. Our analysis shows that, in the context of laminar flow with or without inertial effects, two closure problems need to be computed in order to correctly define the corresponding effective medium coefficients. The first closure problem is associated to momentum transport and needs to be solved for a prescribed Reynolds number and flow orientation. The second closure problem is related to mass transport and it is solved first with a zero Péclet number and second with the required Péclet number and flow orientation. All the closure problems are written using closure variables only as required by the upscaling method. The total dispersion tensor is shown to depend on the microstructure, macroscopic flow angles, the cell (or pore) Péclet number and the cell (or pore) Reynolds number. It is non-symmetric in the general case. The condition for quasi-symmetry is highlighted. The functionality of the longitudinal and transverse components of this tensor with the flow angle is investigated for a 2D model porous structure obtaining consistent results with previous studies.

  14. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  15. MERCHANT MARINE SHIP REACTOR

    DOEpatents

    Mumm, J.F.; North, D.C. Jr.; Rock, H.R.; Geston, D.K.

    1961-05-01

    A nuclear reactor is described for use in a merchant marine ship. The reactor is of pressurized light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The foregoing design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass.

  16. Merchant Marine Ship Reactor

    DOEpatents

    Sankovich, M. F.; Mumm, J. F.; North, Jr, D. C.; Rock, H. R.; Gestson, D. K.

    1961-05-01

    A nuclear reactor for use in a merchant marine ship is described. The reactor is of pressurized, light water cooled and moderated design in which three passes of the water through the core in successive regions of low, intermediate, and high heat generation and downflow in a fuel region are made. The design makes a compact reactor construction with extended core life. The core has an egg-crate lattice containing the fuel elements that are confined between a lower flow baffle and upper grid plate, with the latter serving also as part of a turn- around manifold from which the entire coolant is distributed into the outer fuel elements for the second pass through the core. The inner fuel elements are cooled in the third pass. (AEC)

  17. Bioinspired Haircell Receptive Sensors

    DTIC Science & Technology

    2009-07-23

    coupling between the hair and the flowing air . We investigated a high-pass behavior in vibration sensing slit receptors by performing AFM-based force...Bonn Friedrich Barth, University of Vienna Rajesh Naik, Air Force Research Laboratory Agreement Number: FA 9550-05-1-0459 7oUO(i\\^o\\0...layer flows was accomplished in conjunction with laser Doppler velocimetry and laser Doppler vibrometry . Correlation results by different means indicate

  18. Pressure regulator

    DOEpatents

    Ebeling, Jr., Robert W.; Weaver, Robert B.

    1979-01-01

    The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.

  19. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    ENY/08-M22 Abstract Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser -based flow characterization technique that consists of a narrow...linewidth laser , a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have...different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is

  20. Hydrogeologic setting and hydrologic data of the Smoke Creek Desert basin, Washoe County, Nevada, and Lassen County, California, water years 1988-90

    USGS Publications Warehouse

    Maurer, D.K.

    1993-01-01

    Smoke Creek Desert is a potential source of water for urban development in Washoe County, Nevada. Hydrogeologic data were collected from 1988 to 1990 to learn more about surface- and ground-water flow in the basin. Impermeable rocks form a boundary to ground-water flow on the east side of the basin and at unknown depths at the base of the flow system. Permeable volcanic rocks on the west and north sides of the basin represent a previously unrecognized aquifer and provide potential avenues for interbasin flow. Geophysical data indicate that basin-fill sediments are about 2,000 feet thick near the center of the basin. The geometry of the aquifers, however, remains largely unknown. Measurements of water levels, pressure head, flow rate, water temperature, and specific conductance at 19 wells show little change from 1988 to 1990. Chemically, ground water begins as a dilute sodium and calcium bicarbonate water in the mountain blocks, changes to a slightly saline sodium bicarbonate solution beneath the alluvial fans, and becomes a briny sodium chloride water near the playa. Concentrations of several inorganic constituents in the briny water near the playa commonly exceed Nevada drinking-water standards. Ground water in the Honey Lake basin and Smoke Creek Desert basin has similar stable-isotope composition, except near Sand Pass. If interbasin flow takes place, it likely occurs at depths greater than 400-600 feet beneath Sand Pass or through volcanic rocks to the north of Sand Pass. Measure- ments of streamflow indicate that about 2,800 acre-feet/year discharged from volcanic rocks to streamflow and a minimum of 7.300 acre-feet/year infiltrated and recharged unconsolidated sediments near Smoke, Buffalo, and Squaw Creeks during the period of study. Also about 1,500 acre-feet per year was lost to evapotranspiration along the channel of Smoke Creek, and about 1,680 acre-feet per year of runoff from Smoke, Buffalo, and Squaw Creeks was probably lost to evaporation from the playa.

Top