Designing robust watermark barcodes for multiplex long-read sequencing.
Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth
2017-03-15
To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.
2016-06-01
Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.
A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.
Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou
2017-11-01
In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.
Lazoura, Olga; Ismail, Tevfik F; Pavitt, Christopher; Lindsay, Alistair; Sriharan, Mona; Rubens, Michael; Padley, Simon; Duncan, Alison; Wong, Tom; Nicol, Edward
2016-02-01
Assessment of the left atrial appendage (LAA) for thrombus and anatomy is important prior to atrial fibrillation (AF) ablation and LAA exclusion. The use of cardiovascular CT (CCT) to detect LAA thrombus has been limited by the high incidence of pseudothrombus on single-pass studies. We evaluated the diagnostic accuracy of a two-phase protocol incorporating a limited low-dose delayed contrast-enhanced examination of the LAA, compared with a single-pass study for LAA morphological assessment, and transesophageal echocardiography (TEE) for the exclusion of thrombus. Consecutive patients (n = 122) undergoing left atrial interventions for AF were assessed. All had a two-phase CCT protocol (first-past scan plus a limited, 60-s delayed scan of the LAA) and TEE. Sensitivity, specificity, diagnostic accuracy, positive (PPV) and negative predictive values (NPV) were calculated for the detection of true thrombus on first-pass and delayed scans, using TEE as the gold standard. Overall, 20/122 (16.4 %) patients had filling defects on the first-pass study. All affected the full delineation of the LAA morphology; 17/20 (85 %) were confirmed as pseudo-filling defects. Three (15 %) were seen on late-pass and confirmed as true thrombi on TEE; a significant improvement in diagnostic performance relative to a single-pass scan (McNemar Chi-square 17, p < 0.001). The sensitivity, specificity, diagnostic accuracy, PPV and NPV was 100, 85.7, 86.1, 15.0 and 100 % respectively for first-pass scans, and 100 % for all parameters for the delayed scans. The median (range) additional radiation dose for the delayed scan was 0.4 (0.2-0.6) mSv. A low-dose delayed scan significantly improves the identification of true LAA anatomy and thrombus in patients undergoing LA intervention.
A statistical model of the wave field in a bounded domain
NASA Astrophysics Data System (ADS)
Hellsten, T.
2017-02-01
Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.
Meador, M.R.; McIntyre, J.P.; Pollock, K.H.
2003-01-01
Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of single-pass backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (ps1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, ps1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. Single-pass backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of single-pass sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple-pass electrofishing at some sites may be necessary to better evaluate the adequacy of single-pass electrofishing and to help make meaningful interpretations of fish community structure.
Laser Cooling and Slowing of a Diatomic Molecule
2013-12-01
mirror ( Semrock , FF669-Di01) before passing through the interaction region along the 3 mm axis of the slit. Windows are home-made Brewster windows (See... Semrock FF669-Di01 and Semrock FF741-Di01) and a polarizing beam splitter (PBS) to produce a single beam with 1e2 full width intensity waist d = 3.4 mm...pixels as possible, thereby reducing read noise and dark current noise. Behind the camera lens is a single interference filter ( Semrock , FF01-650/60, 24
Efficient Single-Pass Index Construction for Text Databases.
ERIC Educational Resources Information Center
Heinz, Steffen; Zobel, Justin
2003-01-01
Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a single-pass inversion method on Web document collections. Shows that the single-pass approach is faster and does not require the complete vocabulary of the indexed…
Simulation of double-pass stimulated Raman backscattering
NASA Astrophysics Data System (ADS)
Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.
2018-04-01
Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.
CMOS-based carbon nanotube pass-transistor logic integrated circuits
Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao
2012-01-01
Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080
1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system
NASA Astrophysics Data System (ADS)
Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.
2017-02-01
Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.
Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian
2006-02-01
The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes and at lesser depths with single pass higher fluence settings. Findings suggest that similar collagen fibril alteration can occur with multiple pass low-energy treatments and single pulse high-energy treatments. The lower fluence multiple pass approach is associated with less patient discomfort, less side effects, and more consistent clinical results. Copyright 2005 Wiley-Liss, Inc.
MOBILE GAMMA IRRADIATORS FOR FRUIT PRODUCE (Engineering Materials)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-10-31
Mobile irradiators used for the radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons are described. The irradiators are mounted on trailers and each irradiator, including the trailer, weighs 70 to 80 tons. Radiatton doses range from 100,000 to 200,000 rads. Minimum production is 500 lb of fruit per hour. Drawings are included for four types of irradiators: the single-slab twopass, double-slab one-pass, single-slab four-pass, and line-source rotary. In the single-slab two-pass system, the packages make two passes in front of the source. The length of the packages is parallel to the direction of travel. The packages are irradiated on eachmore » side. This system is light in weight, has low capital cost, and is simple to fabricate. The double-slab one- pass system is the same as the above except the source strength is doubled and irradiation time is cut in half. The same arrangement is used in the single-slab four-pass system that is used in the singleslab two-pass system except the packages make two passes on each side of the source. The rotary system combines a linear and rotary motion to provide high dosage. It uses a small Co/sup 60/ source but costs more than a single-slab twopass system. (F.E.S.)« less
Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution
Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.
2005-01-01
We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.
Simple constant-current-regulated power supply
NASA Technical Reports Server (NTRS)
Priebe, D. H. E.; Sturman, J. C.
1977-01-01
Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.
Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters
NASA Technical Reports Server (NTRS)
Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)
2018-01-01
A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.
Single-pass incremental force updates for adaptively restrained molecular dynamics.
Singh, Krishna Kant; Redon, Stephane
2018-03-30
Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Dynamic-Receive Focusing with High-Frequency Annular Arrays
NASA Astrophysics Data System (ADS)
Ketterling, J. A.; Mamou, J.; Silverman, R. H.
High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.
Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C
2012-12-01
Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers
NASA Astrophysics Data System (ADS)
Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca
2014-06-01
We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.
Noyes, Matthew P; Lederman, Evan; Adams, Christopher R; Denard, Patrick J
2018-05-01
To compare the biomechanical properties of single-row repair with triple-loaded (TL) anchor repair versus a knotless rip stop (KRS) repair in a rotator cuff repair model. Rotator cuff tears were created in 8 cadaveric matched-pair specimens and repaired with a TL anchor or KRS construct. In the TL construct, anchors were placed in the greater tuberosity and then all suture limbs were passed through the rotator cuff as simple sutures and tied. In the KRS construct, a 2-mm suture tape was passed through the tendon in an inverted mattress fashion, and a free suture was passed medial to the suture tape to create a rip-stop. Then, the suture tape and free suture were secured with knotless anchors. Displacement was observed with video tracking after cyclic loading, and specimens were loaded to failure. The mean load to failure was 438 ± 59 N in TL anchor repairs compared with 457 ± 110 N in KRS repairs (P = .582). The mean displacement with cyclic loading was 3.8 ± 1.6 mm in TL anchor repairs versus 4.3 ± 1.8 mm in the KRS group (P = .297). Mode of failure was consistent in both groups, with 6 of 8 failures in the TL anchor group and 7 of 8 failures in KRS group occurring from anchor pullout. There is no statistical difference in load to failure and cyclic loading between TL anchor and KRS single-row repair techniques. KRS repair technique may be an alternative method of repairing full-thickness supraspinatus tendon tears with a single-row construct. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Lai, Po-Yen; Chang, Chun-Lin; Huang, Sheng-Lung; Chen, Shih-Hung
2018-05-01
The multipass scheme for a diode-seeded fiber master oscillator power amplifier with a nanojoule-to-millijoule output energy level at a repetition rate of <100 kHz is numerically analyzed for comparison to an experimental benchmark. For a 6/125 single-mode preamplifier with a small input energy (<1 nJ), there is a significant improvement in the output energy from 0.7% to 80% and 95% of the maximum extractable energy using the double-pass and four-pass schemes, respectively. For a 30/250 large-mode-area power amplifier using the double-pass and forward pumping scheme, the required input energy is decreased from 100 μJ to 18 μJ for millijoule energy extraction with accompanying Stokes waves of less than 10% of the total energy. The system based on the full master oscillator power amplifier configuration with an output energy exceeding millijoule level can be optimally simplified to two stages for commercialization.
Implementing Multidisciplinary and Multi-Zonal Applications Using MPI
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.
1995-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.
High peak-power kilohertz laser system employing single-stage multi-pass amplification
Shan, Bing; Wang, Chun; Chang, Zenghu
2006-05-23
The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.
Special-purpose computing for dense stellar systems
NASA Astrophysics Data System (ADS)
Makino, Junichiro
2007-08-01
I'll describe the current status of the GRAPE-DR project. The GRAPE-DR is the next-generation hardware for N-body simulation. Unlike the previous GRAPE hardwares, it is programmable SIMD machine with a large number of simple processors integrated into a single chip. The GRAPE-DR chip consists of 512 simple processors and operates at the clock speed of 500 MHz, delivering the theoretical peak speed of 512/226 Gflops (single/double precision). As of August 2006, the first prototype board with the sample chip successfully passed the test we prepared. The full GRAPE-DR system will consist of 4096 chips, reaching the theoretical peak speed of 2 Pflops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...
2016-04-23
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn;
2014-01-01
EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).
Phase-sensitive two-dimensional neutron shearing interferometer and Hartmann sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kevin
2015-12-08
A neutron imaging system detects both the phase shift and absorption of neutrons passing through an object. The neutron imaging system is based on either of two different neutron wavefront sensor techniques: 2-D shearing interferometry and Hartmann wavefront sensing. Both approaches measure an entire two-dimensional neutron complex field, including its amplitude and phase. Each measures the full-field, two-dimensional phase gradients and, concomitantly, the two-dimensional amplitude mapping, requiring only a single measurement.
Non-integer expansion embedding techniques for reversible image watermarking
NASA Astrophysics Data System (ADS)
Xiang, Shijun; Wang, Yi
2015-12-01
This work aims at reducing the embedding distortion of prediction-error expansion (PE)-based reversible watermarking. In the classical PE embedding method proposed by Thodi and Rodriguez, the predicted value is rounded to integer number for integer prediction-error expansion (IPE) embedding. The rounding operation makes a constraint on a predictor's performance. In this paper, we propose a non-integer PE (NIPE) embedding approach, which can proceed non-integer prediction errors for embedding data into an audio or image file by only expanding integer element of a prediction error while keeping its fractional element unchanged. The advantage of the NIPE embedding technique is that the NIPE technique can really bring a predictor into full play by estimating a sample/pixel in a noncausal way in a single pass since there is no rounding operation. A new noncausal image prediction method to estimate a pixel with four immediate pixels in a single pass is included in the proposed scheme. The proposed noncausal image predictor can provide better performance than Sachnev et al.'s noncausal double-set prediction method (where data prediction in two passes brings a distortion problem due to the fact that half of the pixels were predicted with the watermarked pixels). In comparison with existing several state-of-the-art works, experimental results have shown that the NIPE technique with the new noncausal prediction strategy can reduce the embedding distortion for the same embedding payload.
Parametric analysis of plastic strain and force distribution in single pass metal spinning
NASA Astrophysics Data System (ADS)
Choudhary, Shashank; Tejesh, Chiruvolu Mohan; Regalla, Srinivasa Prakash; Suresh, Kurra
2013-12-01
Metal spinning also known as spin forming is one of the sheet metal working processes by which an axis-symmetric part can be formed from a flat sheet metal blank. Parts are produced by pressing a blunt edged tool or roller on to the blank which in turn is mounted on a rotating mandrel. This paper discusses about the setting up a 3-D finite element simulation of single pass metal spinning in LS-Dyna. Four parameters were considered namely blank thickness, roller nose radius, feed ratio and mandrel speed and the variation in forces and plastic strain were analysed using the full-factorial design of experiments (DOE) method of simulation experiments. For some of these DOE runs, physical experiments on extra deep drawing (EDD) sheet metal were carried out using En31 tool on a lathe machine. Simulation results are able to predict the zone of unsafe thinning in the sheet and high forming forces that are hint to the necessity for less-expensive and semi-automated machine tools to help the household and small scale spinning workers widely prevalent in India.
2010-09-01
on an Optical Micrograph of the Transverse View of Single-Pass NAB. After [5]............................................... 6 Figure 4 . Vertical...deformed and 6 elongated but does not see the same refinement that is seen inside the SZ [ 4 ]. The grain structure right outside the TMAZ will also...including grinding, polishing, and electropolishing . The first step was to grind the surface using a Buehler ECOMET 4 Variable Speed Grinder
Destructive Single-Event Failures in Diodes
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Gigliuto, Robert A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Kim, Hak; Chen, Dakai; Phan, Anthony M.; LaBel, Kenneth A.
2013-01-01
In this summary, we have shown that diodes are susceptible to destructive single-event effects, and that these failures occur along the guard ring. By determining the last passing voltages, a safe operating area can be derived. By derating off of those values, rather than by the rated voltage, like what is currently done with power MOSFETs, we can work to ensure the safety of future missions. However, there are still open questions about these failures. Are they limited to a single manufacturer, a small number, or all of them? Is there a threshold rated voltage that must be exceeded to see these failures? With future work, we hope to answer these questions. In the full paper, laser results will also be presented to verify that failures only occur along the guard ring.
Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman
2011-11-07
High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.
Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper
NASA Astrophysics Data System (ADS)
Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan
2010-03-01
A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.
High-power single-pass pumped diamond Raman oscillator
NASA Astrophysics Data System (ADS)
Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2018-02-01
We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.
MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications
NASA Technical Reports Server (NTRS)
Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)
1994-01-01
Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.
Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof
2018-03-27
Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.
All-fiber bandpass filter based on asymmetrical modes exciting and coupling
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Tao; Shi, Leilei; Liu, Min
2013-01-01
A low cost all-fiber bandpass filter is demonstrated by fabricating an asymmetric long-period fiber grating (LPFG) in an off-set splicing fiber structure of two single mode fibers in this paper. The main principle of the filter is that the asymmetric LPFG written by single-side CO2 laser irradiation is used to couple the asymmetric cladding modes excited by the offset-coupling of the splicing point between the single mode fiber and the grating, and the left core mode of the splicing point cannot be coupled to the right fiber core, hence the interference effect is avoided. So the bandpass characteristics in the transmission spectrum are achieved. The designed filter exhibits a pass band at a central wavelength of 1565.0 nm with a full-width at half-maximum bandwidth of 12.3 nm.
Design of a lock-amplifier circuit
NASA Astrophysics Data System (ADS)
Liu, H.; Huang, W. J.; Song, X.; Zhang, W. Y.; Sa, L. B.
2017-01-01
The lock-in amplifier is recovered by phase sensitive detection technique for the weak signal submerged in the noise background. This design is based on the TI ultra low power LM358, INA129, OPA227, OP07 and other chips as the core design and production of the lock-in amplifier. Signal generator by 10m ohms /1K ohm resistance points pressure network 10 mu V 1mV adjustable sine wave signal s (T). The concomitant interference signal together through the AC amplifier and band-pass filter signal x (T), on the other hand reference signal R (T) driven by square wave phase shift etc. steps to get the signal R (T), two signals and by phase sensitive detector are a DC full wave, again through its low pass filter and a DC amplifier to be measured signal more accurate detection, the final circuit through the AD conversion and the use of single-chip will display the output.
Estimating Measures of Pass-Fail Reliability from Parallel Half-Tests.
ERIC Educational Resources Information Center
Woodruff, David J.; Sawyer, Richard L.
Two methods for estimating measures of pass-fail reliability are derived, by which both theta and kappa may be estimated from a single test administration. The methods require only a single test administration and are computationally simple. Both are based on the Spearman-Brown formula for estimating stepped-up reliability. The non-distributional…
Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu
2017-09-10
Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).
Legitimizing surrogacy in Israel.
Benshushan, A; Schenker, J G
1997-08-01
Recently the Israeli Parliament passed legislation regarding all aspects of assisted reproductive techniques, including surrogacy. The main points of this legislation are presented and discussed. The most important aspects are: (i) a public committee authorizes and supervises every single case; (ii) only full surrogacy is permitted; (iii) the agreement is not commercial, reasonable expenses can be paid to the surrogate mother under the supervision of the Approving Committee; (iv) the surrogate mother must be single or divorced; (v) under certain conditions the surrogate mother can withdraw from the agreement; (vi) the child is under the tutelage of a social worker, representing the state, from birth until the completion of the adoption procedure. The religious, social and legal status of surrogate pregnancies worldwide are discussed.
NASA Astrophysics Data System (ADS)
Bourgoin, Jean-Philippe; Gigov, Nikolay; Higgins, Brendon L.; Yan, Zhizhong; Meyer-Scott, Evan; Khandani, Amir K.; Lütkenhaus, Norbert; Jennewein, Thomas
2015-11-01
Quantum key distribution (QKD) has the potential to improve communications security by offering cryptographic keys whose security relies on the fundamental properties of quantum physics. The use of a trusted quantum receiver on an orbiting satellite is the most practical near-term solution to the challenge of achieving long-distance (global-scale) QKD, currently limited to a few hundred kilometers on the ground. This scenario presents unique challenges, such as high photon losses and restricted classical data transmission and processing power due to the limitations of a typical satellite platform. Here we demonstrate the feasibility of such a system by implementing a QKD protocol, with optical transmission and full post-processing, in the high-loss regime using minimized computing hardware at the receiver. Employing weak coherent pulses with decoy states, we demonstrate the production of secure key bits at up to 56.5 dB of photon loss. We further illustrate the feasibility of a satellite uplink by generating a secure key while experimentally emulating the varying losses predicted for realistic low-Earth-orbit satellite passes at 600 km altitude. With a 76 MHz source and including finite-size analysis, we extract 3374 bits of a secure key from the best pass. We also illustrate the potential benefit of combining multiple passes together: while one suboptimal "upper-quartile" pass produces no finite-sized key with our source, the combination of three such passes allows us to extract 165 bits of a secure key. Alternatively, we find that by increasing the signal rate to 300 MHz it would be possible to extract 21 570 bits of a secure finite-sized key in just a single upper-quartile pass.
Calculation of single-pass gain for laser ceramics with losses
NASA Astrophysics Data System (ADS)
Vatnik, S. M.
2018-04-01
Rate equations describing the single-pass gain in an active medium with losses are analytically solved. The found relations illustrate the dependences of the amplification efficiency of Nd : YAG ceramics on the pump power density and specific losses. It is concluded that specific losses can be estimated from comparative measurements of unsaturated and saturated gains.
Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...
ERIC Educational Resources Information Center
Cornell Univ., Ithaca, NY. Dept. of Computer Science.
Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…
Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo
2012-02-01
In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.
Continuous-wave modulation of a femtosecond oscillator using coherent molecules.
Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D
2018-03-01
We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.
Improved multiple-pass Raman spectrometer
NASA Astrophysics Data System (ADS)
Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.
2011-08-01
An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-01
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883
Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun
2018-01-13
In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.
Full-Duplex Digital Communication on a Single Laser Beam
NASA Technical Reports Server (NTRS)
Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.
2006-01-01
A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.
Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignotti, A.; Tamborenea, P.I.
1988-02-01
The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.
Resist heating effect on e-beam mask writing at 75 kV and 60 A/cm2
NASA Astrophysics Data System (ADS)
Benes, Zdenek; Deverich, Christina; Huang, Chester; Lawliss, Mark
2003-12-01
Resist heating has been known to be one of the main contributors to local CD variation in mask patterning using variable shape e-beam tools. Increasingly complex mask patterns require increased number of shapes which drives the need for higher electron beam current densities to maintain reasonable write times. As beam current density is increased, CD error resulting from resist heating may become a dominating contributor to local CD variations. In this experimental study, the IBM EL4+ mask writer with high voltage and high current density has been used to quantitatively investigate the effect of resist heating on the local CD uniformity. ZEP 7000 and several chemically amplified resists have been evaluated under various exposure conditions (single-pass, multi-pass, variable spot size) and pattern densities. Patterns were designed specifically to allow easy measurement of local CD variations with write strategies designed to maximize the effect of resist heating. Local CD variations as high as 15 nm in 18.75 × 18.75 μm sub-field size have been observed for ZEP 7000 in a single-pass writing with full 1000 nm spots at 50% pattern density. This number can be reduced by increasing the number of passes or by decreasing the maximum spot size. The local CD variation has been reduced to as low as 2 nm for ZEP 7000 for the same pattern under modified exposure conditions. The effectiveness of various writing strategies is discussed as well as their possible deficiencies. Minimal or no resist heating effects have been observed for the chemically amplified resists studied. The results suggest that the resist heating effect can be well controlled by careful selection of the resist/process system and/or writing strategy and that resist heating does not have to pose a problem for high throughput e-beam mask making that requires high voltage and high current densities.
Consolidation of Surface Coatings by Friction Stir Techniques
2010-09-01
alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wulff, J; Huggins, A
Purpose: The shape of a single beam in proton PBS influences the resulting dose distribution. Spot profiles are modelled as two-dimensional Gaussian (single/ double) distributions in treatment planning systems (TPS). Impact of slight deviations from an ideal Gaussian on resulting dose distributions is typically assumed to be small due to alleviation by multiple Coulomb scattering (MCS) in tissue and superposition of many spots. Quantitative limits are however not clear per se. Methods: A set of 1250 deliberately deformed profiles with sigma=4 mm for a Gaussian fit were constructed. Profiles and fit were normalized to the same area, resembling output calibrationmore » in the TPS. Depth-dependent MCS was considered. The deviation between deformed and ideal profiles was characterized by root-mean-squared deviation (RMSD), skewness/ kurtosis (SK) and full-width at different percentage of maximum (FWxM). The profiles were convolved with different fluence patterns (regular/ random) resulting in hypothetical dose distributions. The resulting deviations were analyzed by applying a gamma-test. Results were compared to measured spot profiles. Results: A clear correlation between pass-rate and profile metrics could be determined. The largest impact occurred for a regular fluence-pattern with increasing distance between single spots, followed by a random distribution of spot weights. The results are strongly dependent on gamma-analysis dose and distance levels. Pass-rates of >95% at 2%/2 mm and 40 mm depth (=70 MeV) could only be achieved for RMSD<10%, deviation in FWxM at 20% and root of quadratic sum of SK <0.8. As expected the results improve for larger depths. The trends were well resembled for measured spot profiles. Conclusion: All measured profiles from ProBeam sites passed the criteria. Given the fact, that beam-line tuning can result shape distortions, the derived criteria represent a useful QA tool for commissioning and design of future beam-line optics.« less
Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe
NASA Astrophysics Data System (ADS)
Obeid, Obeid; Alfano, Giulio; Bahai, Hamid
2017-08-01
The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.
Nuclear reactor spacer grid and ductless core component
Christiansen, David W.; Karnesky, Richard A.
1989-01-01
The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.
Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong
2012-08-01
The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Numerical simulation of aerodynamic performance of a couple multiple units high-speed train
NASA Astrophysics Data System (ADS)
Niu, Ji-qiang; Zhou, Dan; Liu, Tang-hong; Liang, Xi-feng
2017-05-01
In order to determine the effect of the coupling region on train aerodynamic performance, and how the coupling region affects aerodynamic performance of the couple multiple units trains when they both run and pass each other in open air, the entrance of two such trains into a tunnel and their passing each other in the tunnel was simulated in Fluent 14.0. The numerical algorithm employed in this study was verified by the data of scaled and full-scale train tests, and the difference lies within an acceptable range. The results demonstrate that the distribution of aerodynamic forces on the train cars is altered by the coupling region; however, the coupling region has marginal effect on the drag and lateral force on the whole train under crosswind, and the lateral force on the train cars is more sensitive to couple multiple units compared to the other two force coefficients. It is also determined that the component of the coupling region increases the fluctuation of aerodynamic coefficients for each train car under crosswind. Affected by the coupling region, a positive pressure pulse was introduced in the alternating pressure produced by trains passing by each other in the open air, and the amplitude of the alternating pressure was decreased by the coupling region. The amplitude of the alternating pressure on the train or on the tunnel was significantly decreased by the coupling region of the train. This phenomenon did not alter the distribution law of pressure on the train and tunnel; moreover, the effect of the coupling region on trains passing by each other in the tunnel is stronger than that on a single train passing through the tunnel.
NASA Astrophysics Data System (ADS)
Florous, Nikolaos J.; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-01
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 μm, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Florous, Nikolaos J; Saitoh, Kunimasa; Murao, Tadashi; Koshiba, Masanori; Skorobogatiy, Maksim
2006-05-29
The objective of the present investigation is to demonstrate the possibility of designing compact ultra-narrow band-pass filters based on the phenomenon of non-proximity resonant tunneling in multi-core photonic band gap fibers (PBGFs). The proposed PBGF consists of three identical air-cores separated by two defected air-holes which act as highly-selective resonators. With a fine adjustment of the design parameters associated with the resonant-air-holes, phase matching at two distinct wavelengths can be achieved, thus enabling very narrow-band resonant directional coupling between the input and the two output cores. The validation of the proposed design is ensured with an accurate PBGF analysis based on finite element modal and beam propagation algorithms. Typical characteristics of the proposed device over a single polarization are: reasonable short coupling length of 2.7 mm, dual bandpass transmission response at wavelengths of 1.339 and 1.357 mum, with corresponding full width at half maximum bandwidths of 1.2 nm and 1.1 nm respectively, and a relatively high transmission of 95% at the exact resonance wavelengths. The proposed ultra-narrow band-pass filter can be employed in various applications such as all-fiber bandpass/bandstop filtering and resonant sensors.
Micro-fractional ablative skin resurfacing with two novel erbium laser systems.
Dierickx, Christine C; Khatri, Khalil A; Tannous, Zeina S; Childs, James J; Cohen, Richard H; Erofeev, Andrei; Tabatadze, David; Yaroslavsky, Ilya V; Altshuler, Gregory B
2008-02-01
Fractional ablation offers the potential benefits of full-surface ablative skin resurfacing while minimizing adverse effects. The purpose of this study was to evaluate the safety, damage profile, and efficacy of erbium fractional lasers. Histology from animal and human skin as well as clinical evaluations were conducted with erbium YAG (2,940 nm) and erbium YSGG (2,790 nm) fractional lasers varying pulse width, microbeam (microb) energy, number of passes, and stacking of pulses. Single-pulse treatment parameters from 1 to 12 mJ per 50-70 microm diameter microbeam and 0.25-5 milliseconds pulse widths produced microcolumns of ablation with border coagulation of up to 100 microm width and 450 microm depth. Stacking of pulses generated deeper microcolumns. Clinical observations and in vivo histology demonstrate rapid re-epithelization and limited adverse side effects. Facial treatments were performed in the periorbital and perioral areas using 1-8 passes of single and stacked pulses. Treatments were well-tolerated and subjects could resume their normal routine in 4 days. A statistically significant reduction in wrinkle scores at 3 months was observed for both periorbital and perioral wrinkles using blinded grading. For periorbital treatments of four passes or more, over 90% had > or =1 score wrinkle reduction (0-9 scale) and 42% had > or =2. For perioral wrinkles, over 50% had substantial improvements (> or =2). The clinical observations and histology findings demonstrate that micro-fractional ablative treatment with 2,790 and 2,940 nm erbium lasers resulted in safe and effective wrinkle reduction with minimal patient downtime. The depth and width of the ablated microcolumns and varying extent of surrounding coagulation can be controlled and used to design new treatment procedures targeted for specific indications and areas such as moderate to severe rhytides and photodamaged skin.
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999
Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.
Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R
2016-01-01
Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.
Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook
2012-01-01
An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.
Ultrashort pulse amplification in cryogenically cooled amplifiers
Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary
2004-10-12
A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Glovebox stripper system tritium capture efficiency-literature review
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, D. W.; Poore, A. S.
2015-09-28
Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.
1.2.1.1 Harvest, Collection and Storage Quarter 3 Milestone Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Lynn M.; Smith, William A.; Cafferty, Kara G.
Single pass baling of corn stover is required in order to meet targets for the herbaceous biomass 2017 logistics design case. Single-pass pass stover harvest is based on the grain harvest and generally results in stover with a moisture content of 30-50% wet basis (w.b). Aerobic storage of corn stover with high moisture results in high levels of dry matter loss (DML), up to 25%. Anaerobic storage (ensiling) reduces DML to less than 5%, but additional costs are associated with handling and transporting the extra moisture in the biomass. This milestone provides a best-estimate of costs for using high moisturemore » feedstock within the conventional baled logistics system. The costs of three (3) anaerobic storage systems that reduce dry matter losses (bale wrap, silage tube, and silage drive over pile) are detailed in this milestone and compared to both a conventional dry-baled corn stover case and a high moisture bale case, both stored aerobically. The total logistics cost (harvest, collection, storage, and transportation) of the scenarios are as follows: the conventional multi-pass dry bale case and the single-pass high moisture case stored aerobically were nearly equivalent at $61.15 and $61.24/DMT. The single-pass bale wrap case was the lowest at $57.63/DMT. The bulk anaerobic cases were the most expensive at $84.33 for the silage tube case and $75.97 for the drive over pile, which reflect the additional expense of transporting high-moisture bulk material; however, a reduction in preprocessing costs may occur because these feedstocks are size reduced in the field. In summary, the costs estimates presented in this milestone report can be used to determine if anaerobic storage of high-moisture corn stover is an economical option for dry matter preservation.« less
Intel NX to PVM 3.2 message passing conversion library
NASA Technical Reports Server (NTRS)
Arthur, Trey; Nelson, Michael L.
1993-01-01
NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.
SU-E-T-472: Improvement of IMRT QA Passing Rate by Correcting Angular Dependence of MatriXX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Q; Watkins, W; Kim, T
2015-06-15
Purpose: Multi-channel planar detector arrays utilized for IMRT-QA, such as the MatriXX, exhibit an incident-beam angular dependent response which can Result in false-positive gamma-based QA results, especially for helical tomotherapy plans which encompass the full range of beam angles. Although MatriXX can use with gantry angle sensor to provide automatically angular correction, this sensor does not work with tomotherapy. The purpose of the study is to reduce IMRT-QA false-positives by correcting for the MatriXX angular dependence. Methods: MatriXX angular dependence was characterized by comparing multiple fixed-angle irradiation measurements with corresponding TPS computed doses. For 81 Tomo-helical IMRT-QA measurements, two differentmore » correction schemes were tested: (1) A Monte-Carlo dose engine was used to compute MatriXX signal based on the angular-response curve. The computed signal was then compared with measurement. (2) Uncorrected computed signal was compared with measurements uniformly scaled to account for the average angular dependence. Three scaling factor (+2%, +2.5%, +3%) were tested. Results: The MatriXX response is 8% less than predicted for a PA beam even when the couch is fully accounted for. Without angular correction, only 67% of the cases pass the >90% points γ<1 (3%, 3mm). After full angular correction, 96% of the cases pass the criteria. Of three scaling factors, +2% gave the highest passing rate (89%), which is still less than the full angular correction method. With a stricter γ(2%,3mm) criteria, the full angular correction method was still able to achieve the 90% passing rate while the scaling method only gives 53% passing rate. Conclusion: Correction for the MatriXX angular dependence reduced the false-positives rate of our IMRT-QA process. It is necessary to correct for the angular dependence to achieve the IMRT passing criteria specified in TG129.« less
Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms
2001-10-25
830- s lead (Medico), during several different body postures, deep respiration, and walking. The algorithm had a pre - determined sensing dynamic range...SINGLE-PASS VDD ATRIAL ELECTROGRAMS J. Kim1, S.H. Lee1, S.Y.Yang2, B. S . Cho2, and W. Huh1 1Department of Electronics Engineering, Myongji...University, Yongin, Korea 2Department of Information and Communication, Dongwon College, Kwangju, Korea S T = 5 0 % x ( B + C ) / 2 S T = 5 0 % x ( A + B
Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry
NASA Technical Reports Server (NTRS)
Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias
2017-01-01
EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.
Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D
2009-04-01
With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.
Pulsed dye laser double-pass treatment of patients with resistant capillary malformations.
Rajaratnam, Ratna; Laughlin, Sharyn A; Dudley, Denis
2011-07-01
The pulsed dye laser is an effective and established treatment for port-wine stains and has become the generally accepted standard of care. However, in many cases, complete clearance cannot be achieved as a significant proportion of lesions become resistant to treatment. Multiple passes or pulse-stacking techniques have been used to improve the extent and rate of fading, but concerns over increased adverse effects have limited this clinical approach. In this work, a double-pass technique with the pulsed dye laser has been described, which may allow for increased depth of vascular injury, greater efficacy, and an acceptable risk profile. Our aim was to determine the efficacy and the rate of side-effects for a double-pass protocol with a pulsed dye laser (PDL) to treat patients previously treated with PDL and/or other laser modalities. A retrospective chart review was conducted of 26 patients treated with a minimum of three double-pass treatments alone, or in combination, with single pass conventional PDL. Almost half of the patients (n = 12) showed either a moderate or significant improvement in fading compared to pre-treatment photographs with the double-pass technique. In a further 12 patients, there was a mild improvement. In two patients, there was no change. Sixteen patients developed mild side-effects: blisters (n = 5), dry scabs (n = 11) and transient hyperpigmentation (n = 4). This preliminary experience suggests that a double-pass technique at defined intervals between the first and second treatment with PDL can further lighten some port-wine stains, which are resistant to conventional single-pass treatments. This technique may be a useful addition to the laser treatment of PWS and deserves further scrutiny with randomized prospective studies and histological analysis to confirm the increased depth of vascular injury.
Single-pass BPM system of the Photon Factory storage ring.
Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y
1998-05-01
At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.
Expression and purification of functional PDGF receptor beta.
Shang, Qingbin; Zhao, Liang; Wang, Xiaojing; Wang, Meimei; Sui, Sen-Fang; Mi, Li-Zhi
2017-07-29
Platelet Derived Growth Factor receptors (PDGFRs), members of receptor tyrosine kinase superfamily, play essential roles in early hematopoiesis, angiogenesis and organ development. Dysregulation of PDGF receptor signaling under pathological conditions associates with cancers, vascular diseases, and fibrotic diseases. Therefore, they are attractive targets in drug development. Like any other membrane proteins with a single-pass transmembrane domain, the high-resolution structural information of the full-length PDGF receptors is still not resolved. It is caused, at least in part, by the technical challenges in the expression and purification of the functional, full-length PDGF receptors. Herein, we reported our experimental details in expression and purification of the full-length PDGFRβ from mammalian cells. We found that purified PDGFRβ remained in two different oligomeric states, presumably the monomer and the dimer, with basal kinase activity in detergent micelles. Addition of PDGF-B promoted dimerization and elevated kinase activity of the receptor, suggesting that purified receptors were functional. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.
2005-06-15
Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to homemore » after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.« less
Kassotis, John; Voigt, Louis; Mongwa, Mbu; Reddy, C V R
2005-01-01
The objective of this study was to assess the feasibility of DDD pacing from a standard single-pass VDD pacemaker system. Over the past 2 decades significant advances have been made in the development of single-pass VDD pacing systems. These have been shown in long-term prospective studies to effectively preserve atrioventricular (AV)synchrony in patients with AV block and normal sinus node function. What remains problematic is the development of a single-pass pacing system capable of DDD pacing. Such a lead configuration would be useful in those patients with peripheral venous anomalies and in younger patients with congenital anomalies, which may require lead revisions in the future. In addition, with the increased use of resynchronization (biventricular pacing) therapy, the availability of a reliable single-pass lead will minimize operative time, enhance patient safety, and minimize the amount of hardware within the heart. The feasibility of DDD pacing via a Medtronic Capsure VDD-2 (Model #5038) pacing lead was evaluated. Twenty patients who presented with AV block and normal sinus node function were recruited for this study. Atrial pacing thresholds and sensitivities were assessed intraoperatively in the supine position with various respiratory maneuvers. Five patients who agreed to participate in long-term follow-up received a dual-chamber generator and were evaluated periodically over a 12-month period. Mean atrial sensitivity was 2.35 +/- 0.83 mV at the time of implantation. Effective atrial stimulation was possible in all patients at the time of implantation (mean stimulation threshold 3.08 +/- 1.04 V at 0.5 ms [bipolar], 3.34 +/- 0.95 V at 0.5 ms [unipolar]). Five of the 20 patients received a Kappa KDR701 generator, and atrial electrical properties were followed up over a 1-year period. There was no significant change in atrial pacing threshold or incidence of phrenic nerve stimulation over the 1-year follow-up. A standard single-pass VDD pacing lead system was capable of DDD pacing intraoperatively and during long-term follow-up. Despite higher than usual thresholds via the atrial dipole, pacemaker telemetry revealed < 10% use of atrial pacing dipole over a 12-month period, which would minimally deplete the pacemaker's battery. In addition, the telemetry confirmed appropriate sensing and pacing of the atrial dipole throughout the study period. At this time such systems can serve as back-up DDD pacing systems with further refinements required to optimize atrial thresholds in all patients.
0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration
NASA Astrophysics Data System (ADS)
Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.
2010-02-01
A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.
Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi
2018-03-27
To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.
Laser Line Scan System for UXO Characterization
2012-04-01
they geometrically rectified. The Year 2 survey collected LLSS images from seven passes over two separate calibration strings and six passes over two...Microsoft DOS-based software tool. According to the side- by-side comparisons shown in Figure 9, the morphometrics were relatively equal between...survey. Note: The imagery in this figure is not presented at full resolution nor geometrically rectified. LLSS Targets, Pass One 1. Danforth
DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO ...
DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO KITCHEN (RIGHT). VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
The conformal limit of inflation in the era of CMB polarimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pajer, Enrico; Wijck, Jaap V.S. van; Pimentel, Guilherme L., E-mail: enrico.pajer@gmail.com, E-mail: g.leitepimentel@uva.nl, E-mail: j.v.s.vanwijck@uu.nl
2017-06-01
We argue that the non-detection of primordial tensor modes has taught us a great deal about the primordial universe. In single-field slow-roll inflation, the current upper bound on the tensor-to-scalar ratio, r <0.07 (95% CL), implies that the Hubble slow-roll parameters obey ε||η , and therefore establishes the existence of a new hierarchy. We dub this regime the conformal limit of (slow-roll) inflation, and show that it includes Starobinsky-like inflation as well as all viable single-field models with a sub-Planckian field excursion. In this limit, all primordial correlators are constrained by the full conformal group to leading non-trivial order inmore » slow-roll. This fixes the power spectrum and the full bispectrum, and leads to the ''conformal'' shape of non-Gaussianity. The size of non-Gaussianity is related to the running of the spectral index by a consistency condition, and therefore it is expected to be small. In passing, we clarify the role of boundary terms in the ζ action, the order to which constraint equations need to be solved, and re-derive our results using the Wheeler-deWitt formalism.« less
The TORCH detector R&D: Status and perspectives
NASA Astrophysics Data System (ADS)
Gys, T.; Brook, N.; García, L. Castillo; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gao, R.; Harnew, N.; Piedigrossi, D.; Rademacker, J.; García, A. Ros; van Dijk, M.
2017-12-01
TORCH (Timing Of internally Reflected CHerenkov photons) is a time-of-flight detector for particle identification at low momentum. It has been originally proposed for the LHCb experiment upgrade. TORCH is using plates of quartz radiator in a modular design. A fraction of the Cherenkov photons produced by charged particles passing through this radiator propagate by total internal reflection, they emerge at the edges and are subsequently focused onto fast, position-sensitive single-photon detectors. The recorded position and arrival time of the photons are used to precisely reconstruct their trajectory and propagation time in the quartz. The on-going R&D programme aims at demonstrating the TORCH basic concept through the realization of a full detector module and has been organized on the following main development lines: micro-channel plate photon detectors featuring the required granularity and lifetime, dedicated fast front-end electronics preserving the picosecond timing information provided by single photons, and high-quality quartz radiator and focussing optics minimizing photon losses. The present paper reports on the TORCH results successfully achieved in the laboratory and in charged particle beam tests. It will also introduce the latest developments towards a final full-scale module prototype.
Narrow-band double-pass superluminescent diodes emitting at 1060 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobintsov, A A; Perevozchikov, M V; Shramenko, M V
2009-09-30
Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)
Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio
2008-07-21
We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.
High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).
Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M
2008-12-15
We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.
Low-Cutoff, High-Pass Digital Filtering of Neural Signals
NASA Technical Reports Server (NTRS)
Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard
2004-01-01
The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).
Jabre, Patricia; Galinski, Michel; Ricard-Hibon, Agnes; Devaud, Marie Laure; Ruscev, Mirko; Kulstad, Erik; Vicaut, Eric; Adnet, Fréderic; Margenet, Alain; Marty, Jean; Combes, Xavier
2011-03-01
Emergency tracheal intubation is reported to be more difficult with single-use plastic than with reusable metal laryngoscope blades in both inhospital and out-of-hospital settings. Single-use metal blades have been developed but have not been compared with conventional metal blades. This controlled trial compares the efficacy and safety of single-use metal blades with reusable metal blades in out-of-hospital emergency tracheal intubation. This randomized controlled trial was carried out in France with out-of-hospital emergency medical units (Services de Médecine d'Urgence et de Réanimation). This was a multicenter prospective noninferiority randomized controlled trial in adult out-of-hospital patients requiring emergency tracheal intubation. Patients were randomly assigned to either single-use or reusable metal laryngoscope blades and intubated by a senior physician or a nurse anesthetist. The primary outcome was first-pass intubation success. Secondary outcomes were incidence of difficult intubation, need for alternate airway devices, and early intubation-related complications (esophageal intubation, mainstem intubation, vomiting, pulmonary aspiration, dental trauma, bronchospasm or laryngospasm, ventricular tachycardia, arterial desaturation, hypotension, or cardiac arrest). The study included 817 patients, including 409 intubated with single-use blades and 408 with a reusable blade. First-pass intubation success was similar in both groups: 292 (71.4%) for single-use blades, 290 (71.1%) for reusable blades. The 95% confidence interval (CI) for the difference in treatments (0.3%; 95% CI -5.9% to 6.5%) did not include the prespecified inferiority margin of -7%. There was no difference in rate of difficult intubation (difference 3%; 95% CI -7% to 2%), need for alternate airway (difference 4%; 95% CI -8% to 1%), or early complication rate (difference 3%; 95% CI -3% to 8%). First-pass out-of-hospital tracheal intubation success with single-use metal laryngoscopy blades was noninferior to first-pass success with reusable metal laryngoscope blades. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.
The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy
NASA Technical Reports Server (NTRS)
Moore, T. J.; Titran, R. H.; Grobstein, T. L.
1986-01-01
Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.
X-Windows Widget for Image Display
NASA Technical Reports Server (NTRS)
Deen, Robert G.
2011-01-01
XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.
Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò
2018-01-01
Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.
Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria
2010-11-22
We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.
A Review of Visual Representations of Physiologic Data
2016-01-01
Background Physiological data is derived from electrodes attached directly to patients. Modern patient monitors are capable of sampling data at frequencies in the range of several million bits every hour. Hence the potential for cognitive threat arising from information overload and diminished situational awareness becomes increasingly relevant. A systematic review was conducted to identify novel visual representations of physiologic data that address cognitive, analytic, and monitoring requirements in critical care environments. Objective The aims of this review were to identify knowledge pertaining to (1) support for conveying event information via tri-event parameters; (2) identification of the use of visual variables across all physiologic representations; (3) aspects of effective design principles and methodology; (4) frequency of expert consultations; (5) support for user engagement and identifying heuristics for future developments. Methods A review was completed of papers published as of August 2016. Titles were first collected and analyzed using an inclusion criteria. Abstracts resulting from the first pass were then analyzed to produce a final set of full papers. Each full paper was passed through a data extraction form eliciting data for comparative analysis. Results In total, 39 full papers met all criteria and were selected for full review. Results revealed great diversity in visual representations of physiological data. Visual representations spanned 4 groups including tabular, graph-based, object-based, and metaphoric displays. The metaphoric display was the most popular (n=19), followed by waveform displays typical to the single-sensor-single-indicator paradigm (n=18), and finally object displays (n=9) that utilized spatiotemporal elements to highlight changes in physiologic status. Results obtained from experiments and evaluations suggest specifics related to the optimal use of visual variables, such as color, shape, size, and texture have not been fully understood. Relationships between outcomes and the users’ involvement in the design process also require further investigation. A very limited subset of visual representations (n=3) support interactive functionality for basic analysis, while only one display allows the user to perform analysis including more than one patient. Conclusions Results from the review suggest positive outcomes when visual representations extend beyond the typical waveform displays; however, there remain numerous challenges. In particular, the challenge of extensibility limits their applicability to certain subsets or locations, challenge of interoperability limits its expressiveness beyond physiologic data, and finally the challenge of instantaneity limits the extent of interactive user engagement. PMID:27872033
Tian, Brian Wei Cheng Anthony
2015-01-01
To demonstrate a combination laser therapy to treat Hori's nevus. A prospective study. A Singapore-based clinic. Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm(2), spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm(2), frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients' subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus.
Tian, Brian Wei Cheng Anthony
2015-01-01
Objective: To demonstrate a combination laser therapy to treat Hori's nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm2, frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients’ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus. PMID:26865788
Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L
2016-07-01
Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Min, Byungjoon
2018-01-01
Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.
KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE ...
KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE CANEC PANEL CEILING. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
76 FR 31453 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
.... SID TTI data must be processed as defined in Federal Motor Vehicle Safety Standard (FMVSS) part 571...). Pass/fail injury assessments: TTI and pelvic acceleration. 2. One longitudinal test with the Hybrid II... pelvic acceleration. 3. Vertical (14g) test with modified Hybrid II ATDs using existing pass/fail...
Randomized Dynamic Mode Decomposition
NASA Astrophysics Data System (ADS)
Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan
2017-11-01
The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.
NASA Astrophysics Data System (ADS)
Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong
2016-11-01
A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay V.
2018-05-01
In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.
Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi
2016-11-01
High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.
NASA Astrophysics Data System (ADS)
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-01
We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi
2007-07-15
We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.
Full Curiosity Traverse Passes One-Mile Mark
2013-08-02
The total distance driven by NASA Mars rover Curiosity passed the one-mile mark a few days before the first anniversary of the rover landing on Mars. The mapped area is within Gale Crater, and north of Mount Sharp, in the middle of the crater.
CONCEPTUAL DESIGN STUDY OF A MOBILE GAMMA IRRADIATOR FOR FRUIT PRODUCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1962-05-31
Engineering Drawings report available as CAPE-944. A conceptual design study was made of a mobile irradiator for radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons. Minimum radiation dose specification for the fruit ranged from 100,000 to 200,000 rads with maximum to minimum dose ratio in the range of 1.5 to 3. Minimum allowable production rates were in the range of 500 to 1000 lb of fruit/hr. The irradiator was required to be mobile, preferably on one truck capable of being put in operation one day after arrival at the site. Preliminary studies compared five types of irradiators, consisting of amore » single source slab, two package pass design; a double slab, single pass design; a single slab, four pass design; a line source rotary design; and a movable source, movable package design. It was concluded that a Co/sup 60/ irradiator can be built to meet the general requirements for radiopasteurization of fruit. The irradiator can be made mobile and can be mounted on a single trailer. The combined weight of the mobile unit would be 70 to 85 tons depending on the type of irradiator. This unit would require a special license from the State Highway Department. (C.H.)« less
Tamaoka, Katsuo; Asano, Michiko; Miyaoka, Yayoi; Yokosawa, Kazuhiko
2014-04-01
Using the eye-tracking method, the present study depicted pre- and post-head processing for simple scrambled sentences of head-final languages. Three versions of simple Japanese active sentences with ditransitive verbs were used: namely, (1) SO₁O₂V canonical, (2) SO₂O₁V single-scrambled, and (3) O₁O₂SV double-scrambled order. First pass reading times indicated that the third noun phrase just before the verb in both single- and double-scrambled sentences required longer reading times compared to canonical sentences. Re-reading times (the sum of all fixations minus the first pass reading) showed that all noun phrases including the crucial phrase before the verb in double-scrambled sentences required longer re-reading times than those required for single-scrambled sentences; single-scrambled sentences had no difference from canonical ones. Therefore, a single filler-gap dependency can be resolved in pre-head anticipatory processing whereas two filler-gap dependencies require much greater cognitive loading than a single case. These two dependencies can be resolved in post-head processing using verb agreement information.
NASA Astrophysics Data System (ADS)
Traxler, Lukas; Reutterer, Bernd; Bayer, Natascha; Drauschke, Andreas
2017-04-01
To treat cataract intraocular lenses (IOLs) are used to replace the clouded human eye lens. Due to postoperative healing processes the IOL can displace within the eye, which can lead to deteriorated quality of vision. To test and characterize these effect an IOL can be embedded into a model of the humane eye. One informative measure are wavefront aberrations. In this paper three different setups, the typical double-pass configuration (DP), a single-pass (SP1) where the measured light travels in the same direction as in DP and a single-pass (SP2) with reversed direction, are investigated. All three setups correctly measure the aberrations of the eye, where SP1 is found to be the simplest to set up and align. Because of the lowest complexity it is the proposed method for wavefront measurement in model eyes.
A pilot study of EUS-guided through-the-needle forceps biopsy (with video).
Nakai, Yousuke; Isayama, Hiroyuki; Chang, Kenneth J; Yamamoto, Natsuyo; Mizuno, Suguru; Mohri, Dai; Kogure, Hirofumi; Matsubara, Saburo; Tada, Minoru; Koike, Kazuhiko
2016-07-01
In EUS-guided FNA (EUS-FNA), small-caliber needles are preferable for optimal cytologic yield, whereas large ones are preferable when histologic specimens are needed. Because of the rigidity and friction induced by its large caliber, however, technical limitation does exist in a 19-gauge FNA needle. Recent development of miniature biopsy forceps enables EUS-guided through-the-needle forceps biopsy (EUS-TTNFB). The aim of this study is to evaluate safety and efficacy of EUS-TTNFB. Eighteen sessions of EUS-TTNFB in 17 patients with solid lesions were performed by using a 0.75-mm biopsy forceps through a 19-gauge FNA needle. Technical feasibility, safety, and diagnostic yield of EUS-TTNFB were retrospectively studied. A total of 49 passes, a median of 3 passes per session, were performed, and the needle puncture, advancement and removal of the biopsy forceps, and subsequent EUS-FNA were technically successful in all patients. No adverse events were observed other than one case with hyperamylasemia without pancreatitis. Macroscopic histologic core by EUS-TTNFB was obtained at a rate of 71% per pass. The tissue acquisition rate by EUS-TTNFB alone was 67% per pass and 100% per session. When EUS-TTNFB and subsequent EUS-FNA were combined, the tissue acquisition rate was 94% per pass. The accuracy of combined EUS-TTNFB and EUS-FNA to diagnose malignancy was 88% per pass and 94% per session. With a single pass of EUS-TTNFB and EUS-FNA, the tissue acquisition rate was 89%, and the accuracy to diagnose malignancy was 83%. EUS-TTNFB was safe and technically feasible and provided additional tissue acquisition with a single puncture of a 19-gauge FNA needle. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
Wei, Cai-Jie; Wu, Wei-Zhong
2018-09-01
Two kinds of hybrid two-step multi-soil-layering (MSL) systems loaded with different filter medias (zeolite-ceramsite MSL-1 and ceramsite-red clay MSL-2) were set-up for the low-(C/N)-ratio polluted river water treatment. A long-term pollutant removal performance of these two kinds of MSL systems was evaluated for 214 days. By-pass was employed in MSL systems to evaluate its effect on nitrogen removal enhancement. Zeolite-ceramsite single-pass MSL-1 system owns outstanding ammonia removal capability (24 g NH 4 + -Nm -2 d -1 ), 3 times higher than MSL-2 without zeolite under low aeration rate condition (0.8 × 10 4 L m -2 .h -1 ). Aeration rate up to 1.6 × 10 4 L m -2 .h -1 well satisfied the requirement of complete nitrification in first unit of both two MSLs. However, weak denitrification in second unit was commonly observed. By-pass of 50% influent into second unit can improve about 20% TN removal rate for both MSL-1 and MSL-2. Complete nitrification and denitrification was achieved in by-pass MSL systems after addition of carbon source with the resulting C/N ratio up to 2.5. The characters of biofilms distributed in different sections inside MSL-1 system well illustrated the nitrogen removal mechanism inside MSL systems. Two kinds of MSLs are both promising as an appealing nitrifying biofilm reactor. Recirculation can be considered further for by-pass MSL-2 system to ensure a complete ammonia removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
DeWitt, Nancy T.; Flocks, James G.; Hansen, Mark; Kulp, Mark; Reynolds, B.J.
2007-01-01
The U.S. Geological Survey (USGS), in cooperation with the University of New Orleans (UNO) and the Louisiana Department of Natural Resources (LDNR), conducted a high-resolution, single-beam bathymetric survey along the Louisiana southern coastal zone from Belle Pass to Caminada Pass. The survey consisted of 483 line kilometers of data acquired in July and August of 2005. This report outlines the methodology and provides the data from the survey. Analysis of the data and comparison to a similar bathymetric survey completed in 1989 show significant loss of seafloor and shoreline retreat, which is consistent with previously published estimates of shoreline change in the study area.
EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES
The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...
Factors affecting weld root morphology in laser keyhole welding
NASA Astrophysics Data System (ADS)
Frostevarg, Jan
2018-02-01
Welding production efficiency is usually optimised if full penetration can be achieved in a single pass. Techniques such as electron and laser beam welding offer deep high speed keyhole welding, especially since multi-kilowatt lasers became available. However, there are limitations for these techniques when considering weld imperfections such as weld cap undercuts, interior porosity or humps at the root. The thickness of sheets during full penetration welding is practically limited by these root humps. The mechanisms behind root morphology formation are not yet satisfactory understood. In this paper root humping is studied by reviewing previous studies and findings and also by sample examination and process observation by high speed imaging. Different process regimes governing root quality are presented, categorized and explained. Even though this study mainly covers laser beam and laser arc hybrid welding, the presented findings can generally be applied full penetration welding in medium to thick sheets, especially the discussion of surface tension effects. As a final result of this analysis, a map of methods to optimise weld root topology is presented.
Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba
2016-01-20
This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.
Bush, Michael; Barnes, Chris; Archer, David T; Hogg, Bob; Bradley, Paul S
2015-02-01
This study aimed to investigate position-specific evolution of physical and technical performance parameters in the English Premier League (EPL). Match performance observations (n=14700) were collected using a multiple-camera computerized tracking system across seven seasons (2006-07 to 2012-13). Data were analyzed relative to five playing positions: central defenders (n=3792), full backs (n=3420), central midfielders (n=3200), wide midfielders (n=2136) and attackers (n=2152). High-intensity running distance increased in the final season versus the first season in all playing positions (p<.05, ES: 0.9-1.3) with full backs displaying the greatest increase (∼36% higher in 2012-13). Similar trends were observed for sprint distance with full backs demonstrating the most pronounced increase across the seven seasons (36-63%, p<.001, ES: 0.8-1.3). Central players (central defenders and midfielders) illustrated the most pronounced increases in total passes and pass success rate (p<.05, ES: 0.7-0.9) whilst wide players (full backs and wide midfielders) demonstrated only small-moderate increases in total passes and pass success rate (p<.05, ES: 0.6-0.8). The data demonstrates that evolving tactics in the EPL have impacted on the physical demands of wide players and the technical requirements of central players. These findings could be used for talent identification or position-specific physical and technical training. Copyright © 2014 Elsevier B.V. All rights reserved.
Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2008-03-01
This paper develops a joint time/frequency-domain inversion for high-resolution single-bounce reflection data, with the potential to resolve fine-scale profiles of sediment velocity, density, and attenuation over small seafloor footprints (approximately 100 m). The approach utilizes sequential Bayesian inversion of time- and frequency-domain reflection data, employing ray-tracing inversion for reflection travel times and a layer-packet stripping method for spherical-wave reflection-coefficient inversion. Posterior credibility intervals from the travel-time inversion are passed on as prior information to the reflection-coefficient inversion. Within the reflection-coefficient inversion, parameter information is passed from one layer packet inversion to the next in terms of marginal probability distributions rotated into principal components, providing an efficient approach to (partially) account for multi-dimensional parameter correlations with one-dimensional, numerical distributions. Quantitative geoacoustic parameter uncertainties are provided by a nonlinear Gibbs sampling approach employing full data error covariance estimation (including nonstationary effects) and accounting for possible biases in travel-time picks. Posterior examination of data residuals shows the importance of including data covariance estimates in the inversion. The joint inversion is applied to data collected on the Malta Plateau during the SCARAB98 experiment.
Setting and validating the pass/fail score for the NBDHE.
Tsai, Tsung-Hsun; Dixon, Barbara Leatherman
2013-04-01
This report describes the overall process used for setting the pass/fail score for the National Board Dental Hygiene Examination (NBDHE). The Objective Standard Setting (OSS) method was used for setting the pass/fail score for the NBDHE. The OSS method requires a panel of experts to determine the criterion items and proportion of these items that minimally competent candidates would answer correctly, the percentage of mastery and the confidence level of the error band. A panel of 11 experts was selected by the Joint Commission on National Dental Examinations (Joint Commission). Panel members represented geographic distribution across the U.S. and had the following characteristics: full-time dental hygiene practitioners with experience in areas of preventive, periodontal, geriatric and special needs care, and full-time dental hygiene educators with experience in areas of scientific basis for dental hygiene practice, provision of clinical dental hygiene services and community health/research principles. Utilizing the expert panel's judgments, the pass/fail score was set and then the score scale was established using the Rasch measurement model. Statistical and psychometric analysis shows the actual failure rate and the OSS failure rate are reasonably consistent (2.4% vs. 2.8%). The analysis also showed the lowest error of measurement, an index of the precision at the pass/fail score point and that the highest reliability (0.97) are achieved at the pass/fail score point. The pass/fail score is a valid guide for making decisions about candidates for dental hygiene licensure. This new standard was reviewed and approved by the Joint Commission and was implemented beginning in 2011.
Community Project for Accelerator Science and Simulation (ComPASS) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, John R.; Cowan, Benjamin M.; Veitzer, S. A.
2016-03-04
Tech-X participated across the full range of ComPASS activities, with efforts in the Energy Frontier primarily through modeling of laser plasma accelerators and dielectric laser acceleration, in the Intensity Frontier primarily through electron cloud modeling, and in Uncertainty Quantification being applied to dielectric laser acceleration. In the following we present the progress and status of our activities for the entire period of the ComPASS project for the different areas of Energy Frontier, Intensity Frontier and Uncertainty Quantification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klymenko, M. V.; Remacle, F., E-mail: fremacle@ulg.ac.be
2014-10-28
A methodology is proposed for designing a low-energy consuming ternary-valued full adder based on a quantum dot (QD) electrostatically coupled with a single electron transistor operating as a charge sensor. The methodology is based on design optimization: the values of the physical parameters of the system required for implementing the logic operations are optimized using a multiobjective genetic algorithm. The searching space is determined by elements of the capacitance matrix describing the electrostatic couplings in the entire device. The objective functions are defined as the maximal absolute error over actual device logic outputs relative to the ideal truth tables formore » the sum and the carry-out in base 3. The logic units are implemented on the same device: a single dual-gate quantum dot and a charge sensor. Their physical parameters are optimized to compute either the sum or the carry out outputs and are compatible with current experimental capabilities. The outputs are encoded in the value of the electric current passing through the charge sensor, while the logic inputs are supplied by the voltage levels on the two gate electrodes attached to the QD. The complex logic ternary operations are directly implemented on an extremely simple device, characterized by small sizes and low-energy consumption compared to devices based on switching single-electron transistors. The design methodology is general and provides a rational approach for realizing non-switching logic operations on QD devices.« less
CAMAC driver for the RSX-11M V3 operating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tippie, J. W.; Cannon, P. H.
1977-01-01
A driver for Kinetic Systems 3911A dedicated crate controller and 3992 serial highway driver for RSX-11M is described. The implementation includes a modified UCB structure. With this structure, multiple active I/O requests are supported to a single controller. The completion of an I/O request may be tied to external events via a WAIT-FOR-LAM command. Features of the driver include the ability to pass a list of FNA's in a single QIO call, serial highway overhead transparent at the QIO level, and special control commands to the driver passed in the FNA list. 1 figure.
Evaluation of a single-scan protocol for radiochromic film dosimetry.
Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai
2015-03-08
The purpose of this study was to evaluate a single-scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24-hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24-hr protocol). The single-scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single-scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity-modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single-scan protocol was within 2% of the 24-hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single-scan and 24-hr protocols were 2.0 ± 1.8 cGy and 1.4 ± 1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single-scan protocol and 95.9% for the 24-hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6 ± 3.5cGy and 2.9 ± 3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7% ± 1.8% for the single-scan protocol and 97.3% ± 1.4% for the 24-hr protocol. Thus, the single-scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency.
2000-01-20
Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:35 p.m. EST, moves into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
NASA Astrophysics Data System (ADS)
Mokhtabad Amrei, Mohsen
13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes. Furthermore, low angle interface laths were observed inside martensite sub-blocks over different regions. The hardness profile of a multi-pass weld was explained by the overlaying heat effects of surrounding passes. In some regions, a tempered matrix was observed, while in other regions a double-quenched microstructure was found. The final aspect of this study focused on the effects of post-weld heat treatments on reformed austenite and carbide formations, and evolution of hardness. The effects of tempering duration and temperature on microstructure were investigated. The study found that nanometer-sized carbides form at martensite lath interfaces and sub-block boundaries. Additionally, it was determined that for any holding duration, the maximum austenite percentage is achievable by tempering at 610 °C. Similarly, the maximum softening was reported for tempering at 610 °C, for any given holding period.
NASA Technical Reports Server (NTRS)
Stanley, H. R.; Martin, C. F.; Roy, N. A.; Vetter, J. R.
1971-01-01
Error analyses were performed to examine the height error in a relative sea-surface profile as determined by a combination of land-based multistation C-band radars and optical lasers and one ship-based radar tracking the GEOS 2 satellite. It was shown that two relative profiles can be obtained: one using available south-to-north passes of the satellite and one using available north-to-south type passes. An analysis of multi-station tracking capability determined that only Antigua and Grand Turk radars are required to provide satisfactory orbits for south-to-north type satellite passes, while a combination of Merritt Island, Bermuda, and Wallops radars provide secondary orbits for north-to-south passes. Analysis of ship tracking capabilities shows that high elevation single pass range-only solutions are necessary to give only moderate sensitivity to systematic error effects.
Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma
NASA Astrophysics Data System (ADS)
Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.
2010-04-01
The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.
1977-11-01
row of A cages. Direct light reached the animal after passing through two layers of plexiglass that were designed to pass the full spectrum. The...the serum PHI activity. Blood Urea Nitrogen (BUN) Urease converted urea Into ammonia and carbon dioxide. Glutamic dehydrogenase catalyzed the
additional power is needed, the gasoline engine and electric motor are both used to propel the vehicle. Go to , power split device, and electric motor visible while passing another vehicle. There are purple arrows flowing from the generator to the electric motor to the power split device to the front wheels. There are
DOT National Transportation Integrated Search
1995-01-01
In its 1995 session, the Virginia General Assembly passed House Bill 2320, which lowered the age at which persons could obtain a learner's permit from 15 years 8 months to 15 years. In the same session, the General Assembly passed House Joint Resolut...
Spacing and length of passing sidings and the incremental capacity of single track.
DOT National Transportation Integrated Search
2016-02-18
The objective of this study is to evaluate the effect of initial siding spacing and distribution of siding length on the incremental capacity of infrastructure investments on single-track railway lines. Previous research has shown a linear reduction ...
Trelles, Mario A; Vélez, Mariano; Mordon, Serge
2008-03-01
Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat deposition in the upper dermis. When performing ablative fractional resurfacing with an Er:YAG laser, treatment of varying degrees of damage could be achieved by varying the number of passes. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Agrawal, B. P.; Ghosh, P. K.
2017-03-01
Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.
Non-destructive single-pass low-noise detection of ions in a beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias
2015-11-15
We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less
Kao, Steven D; Morshedi, Maud M; Narsinh, Kazim H; Kinney, Thomas B; Minocha, Jeet; Picel, Andrew C; Newton, Isabel; Rose, Steven C; Roberts, Anne C; Kuo, Alexander; Aryafar, Hamed
2016-08-01
To assess whether intravascular ultrasound (US) guidance impacts number of needle passes, contrast usage, radiation dose, and procedure time during creation of transjugular intrahepatic portosystemic shunts (TIPS). Intravascular US-guided creation of TIPS in 40 patients was retrospectively compared with conventional TIPS in 49 patients between February 2010 and November 2015 at a single tertiary care institution. Patient sex and age, etiology of liver disease (hepatitis C virus, alcohol abuse, nonalcoholic steatohepatitis), severity of liver disease (mean Model for End-Stage Liver Disease score), and indications for TIPS (variceal bleeding, refractory ascites, refractory hydrothorax) in conventional and intravascular US-guided cases were recorded. The two groups were well matched by sex, age, etiology of liver disease, Child-Pugh class, Model for End-Stage Liver Disease scores, and indication for TIPS (P range = .19-.94). Fewer intrahepatic needle passes were required in intravascular US-guided TIPS creation compared with conventional TIPS (2 passes vs 6 passes, P < .01). Less iodinated contrast material was used in intravascular US cases (57 mL vs 140 mL, P < .01). Radiation exposure, as measured by cumulative dose, dose area product, and fluoroscopy time, was reduced with intravascular US (174 mGy vs 981 mGy, P < .01; 3,793 μGy * m(2) vs 21,414 μGy * m(2), P < .01; 19 min vs 34 min, P < .01). Procedure time was shortened with intravascular US (86 min vs 125 min, P < .01). Intravascular US guidance resulted in fewer intrahepatic needle passes, decreased contrast medium usage, decreased radiation dosage, and shortened procedure time in TIPS creation. Copyright © 2016 SIR. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Ming; Huang, Li
2014-08-01
This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.
Aeroassisted orbit transfer vehicle trajectory analysis
NASA Technical Reports Server (NTRS)
Braun, Robert D.; Suit, William T.
1988-01-01
The emphasis in this study was on the use of multiple pass trajectories for aerobraking. However, for comparison, single pass trajectories, trajectories using ballutes, and trajectories corrupted by atmospheric anomolies were run. A two-pass trajectory was chosen to determine the relation between sensitivity to errors and payload to orbit. Trajectories that used only aerodynamic forces for maneuvering could put more weight into the target orbits but were very sensitive to variations from the planned trajectors. Using some thrust control resulted in less payload to orbit, but greatly reduced the sensitivity to variations from nominal trajectories. When compared to the non-thrusting trajectories investigated, the judicious use of thrusting resulted in multiple pass trajectories that gave 97 percent of the payload to orbit with almost none of the sensitivity to variations from the nominal.
2000-01-20
Traveling west to east, the full moon, viewed from Merritt Island, Fla., at 10:18 p.m. EST, begins moving into the Earth's shadow, at the start of a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
2000-01-20
Viewed from Merritt Island, Fla., at 11:25 p.m. EST, the full moon, traveling west to east, is nearly completely in the Earth's shadow, producing a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
2000-01-20
Viewed from Merritt Island, Fla., at 10:59 p.m. EST, the full moon, traveling west to east, is three-quarters of the way into the Earth's shadow during a lunar eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse. They can only occur when the moon is "full." During a total lunar eclipse the Moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere and this light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse
Variability of Passing Grades in Undergraduate Nursing Education Programs in New York State.
Reynolds, Diane
2015-01-01
The purpose of this descriptive study was to provide information about passing grades and their corresponding numeric grades for undergraduate nursing programs in New York State. An additional purpose was to report on differences in grading between faculty teaching in associate versus baccalaureate nursing programs, full-time versus adjunct faculty, and tenured versus nontenured faculty. There is a paucity of research on grade variability in undergraduate nursing programs. Three hundred eighty-four full-time and 96 adjunct faculty responded to an invitation to complete an online survey. Grades are not uniformly awarded across institutions. Passing grades ranged from 70 to 85 percent (C- to B+, respectively), with a mean of 74.79 percent. Wide variations in grades in different institutions across the country may undermine grade point average as a reliable measure of education, making it difficult to evaluate individual student performance.
Efficient Tracing for On-the-Fly Space-Time Displays in a Debugger for Message Passing Programs
NASA Technical Reports Server (NTRS)
Hood, Robert; Matthews, Gregory
2001-01-01
In this work we describe the implementation of a practical mechanism for collecting and displaying trace information in a debugger for message passing programs. We introduce a trace format that is highly compressible while still providing information adequate for debugging purposes. We make the mechanism convenient for users to access by incorporating the trace collection in a set of wrappers for the MPI (message passing interface) communication library. We implement several debugger operations that use the trace display: consistent stoplines, undo, and rollback. They all are implemented using controlled replay, which executes at full speed in target processes until the appropriate position in the computation is reached. They provide convenient mechanisms for getting to places in the execution where the full power of a state-based debugger can be brought to bear on isolating communication errors.
NASA Astrophysics Data System (ADS)
Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.
In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.
NASA Astrophysics Data System (ADS)
Carette, Yannick; Vanhove, Hans; Duflou, Joost
2018-05-01
Single Point Incremental Forming is a flexible process that is well-suited for small batch production and rapid prototyping of complex sheet metal parts. The distributed nature of the deformation process and the unsupported sheet imply that controlling the final accuracy of the workpiece is challenging. To improve the process limits and the accuracy of SPIF, the use of multiple forming passes has been proposed and discussed by a number of authors. Most methods use multiple intermediate models, where the previous one is strictly smaller than the next one, while gradually increasing the workpieces' wall angles. Another method that can be used is the manufacture of a smoothed-out "base geometry" in the first pass, after which more detailed features can be added in subsequent passes. In both methods, the selection of these intermediate shapes is freely decided by the user. However, their practical implementation in the production of complex freeform parts is not straightforward. The original CAD model can be manually adjusted or completely new CAD models can be created. This paper discusses an automatic method that is able to extract the base geometry from a full STL-based CAD model in an analytical way. Harmonic decomposition is used to express the final geometry as the sum of individual surface harmonics. It is then possible to filter these harmonic contributions to obtain a new CAD model with a desired level of geometric detail. This paper explains the technique and its implementation, as well as its use in the automatic generation of multi-step geometries.
Chemical Plume Detection with an Iterative Background Estimation Technique
2016-05-17
schemes because of contamination of background statistics by the plume. To mitigate the effects of plume contamination , a first pass of the detector...can be used to create a background mask. However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be...is estimated using plume-pixels, the covariance matrix is contaminated and detection performance may be significantly reduced. To avoid Further author
Marini, L
2018-01-01
Aesthetically pleasing results and fast, uneventful recovery are highly desirable after rejuvenating ablative laser procedures. Wound dressings following ablative laser procedures should ideally improve and optimize the wound healing environment. The purpose of this comparative split-face, single-blinded, prospective observational study was to assess the efficacy and acceptability of two primary wound dressings immediately after a full-face fractional CO 2 laser resurfacing procedure. The assessments of an innovative film-forming dressing called Stratacel (SC) vs spring thermal water + Vaseline (V+) were conducted after a standardized, single-pass, full-face ablative fractional CO 2 laser skin resurfacing procedure. Clinical parameters, such as haemoglobin - HB; surface temperature - ST; micro-textural modifications - MT; superficial melanin - M; intrafollicular porphyrins - P, were assessed at different phases of the healing process using standardized, non-invasive technologies. Five female volunteers were enrolled in this inpatient, controlled pilot study. Most of the clinical parameters considered, including 3D surface texture analysis, revealed a better performance of SC vs. V+ during the early, more delicate phases of the healing process. This preliminary study, even if performed on a small number of volunteers, confirmed a definite advantage of the tested semipermeable film-forming formula (SC) over a more conventional postoperative skin care regime (V+). Clinical results could be explained by a better uniformity of distribution of SC over the micro-irregularities induced by ablative fractional CO 2 laser resurfacing. Its thin, semipermeable film might, in fact, act as an efficient, perfectly biocompatible, full contact, temporary skin barrier, able to protect extremely delicate healing surfaces from potential environmental irritations. © 2017 European Academy of Dermatology and Venereology.
Full Ionisation In Binary-Binary Encounters With Small Positive Energies
NASA Astrophysics Data System (ADS)
Sweatman, W. L.
2006-08-01
Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.
NASA Technical Reports Server (NTRS)
Dittmar, James H.
1989-01-01
The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The use of a validated boundary layer refraction model to adjust the data could remove this limitation.
NASA Technical Reports Server (NTRS)
Dittmar, James
1989-01-01
The noise of advanced high speed propeller models measured in the NASA 8- by 6-foot wind tunnel has been compared with model propeller noise measured in another tunnel and with full-scale propeller noise measured in flight. Good agreement was obtained for the noise of a model counterrotation propeller tested in the 8- by 6-foot wind tunnel and in the acoustically treated test section of the Boeing Transonic Wind Tunnel. This good agreement indicates the relative validity of taking cruise noise data on a plate in the 8- by 6-foot wind tunnel compared with the free-field method in the Boeing tunnel. Good agreement was also obtained for both single rotation and counter-rotation model noise comparisons with full-scale propeller noise in flight. The good scale model to full-scale comparisons indicate both the validity of the 8- by 6-foot wind tunnel data and the ability to scale to full size. Boundary layer refraction on the plate provides a limitation to the measurement of forward arc noise in the 8- by 6-foot wind tunnel at the higher harmonics of the blade passing tone. The sue of a validated boundary layer refraction model to adjust the data could remove this limitation.
Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack
2010-07-01
Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.
Base line estimation using single passes of laser data
NASA Technical Reports Server (NTRS)
Dunn, P. J.; Torrence, M.; Smith, D. E.; Kolenkiewicz, R.
1979-01-01
The laser data of the GEOS 3 satellite passes observed by four stations at Greenbelt (Maryland), Bermuda, Grand Turk Island (Bahamas) and Patrick Air Force Base (Florida), were employed to determine precise interstation base lines and relative heights in short orbital arcs of no more than 12-min duration. No more than five arcs of data are required to define the interstation base lines to 30-cm precision. Base lines running parallel to the orbital motion can be defined to submeter precision from a single short arc of data. Combining arcs of different orbital geometry in a common adjustment of two or more stations relative to the base station helps to compensate for weak base line definition in any single arc. This technique can be used for tracking such spacecraft as Lageos, a high-altitude retroreflector-carrying satellite designed for precise laser ranging studies.
Thermal-hydraulic behavior of a mixed chevron single-pass plate-and-frame heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manglik, R.M.; Muley, A.
1995-12-31
Effective heat exchange is very critical for improving the process efficiency and operating economy of chemical and process plants. Here, experimental friction factor and heat transfer data for single-phase water flows in a plate-and-frame heat exchanger are presented. A mixed chevron plate arrangement with {beta} = 30{degree}/60{degree} in a single-pass U-type, counterflow configuration is employed. The friction factor and heat transfer data are for isothermal flow and cooling conditions, respectively, and the flow rates correspond to transition and turbulent flow regimes (300 < Re < 6,000 and 2.4 < Pr < 4.5). Based on these data, Nusselt number and frictionmore » factor correlations for fully developed turbulent flows (Re {ge} 1,000) are presented. The results highlight the effects of {beta} on the thermal-hydraulic performance, transition to turbulent flows, and the relative impact of using symmetric or mixed chevron plate arrangements.« less
Modified current follower-based immittance function simulators
NASA Astrophysics Data System (ADS)
Alpaslan, Halil; Yuce, Erkan
2017-12-01
In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.
3D Imaging and Automated Ice Bottom Tracking of Canadian Arctic Archipelago Ice Sounding Data
NASA Astrophysics Data System (ADS)
Paden, J. D.; Xu, M.; Sprick, J.; Athinarapu, S.; Crandall, D.; Burgess, D. O.; Sharp, M. J.; Fox, G. C.; Leuschen, C.; Stumpf, T. M.
2016-12-01
The basal topography of the Canadian Arctic Archipelago ice caps is unknown for a number of the glaciers which drain the ice caps. The basal topography is needed for calculating present sea level contribution using the surface mass balance and discharge method and to understand future sea level contributions using ice flow model studies. During the NASA Operation IceBridge 2014 arctic campaign, the Multichannel Coherent Radar Depth Sounder (MCoRDS) used a three transmit beam setting (left beam, nadir beam, right beam) to illuminate a wide swath across the ice glacier in a single pass during three flights over the archipelago. In post processing we have used a combination of 3D imaging methods to produce images for each of the three beams which are then merged to produce a single digitally formed wide swath beam. Because of the high volume of data produced by 3D imaging, manual tracking of the ice bottom is impractical on a large scale. To solve this problem, we propose an automated technique for extracting ice bottom surfaces by viewing the task as an inference problem on a probabilistic graphical model. We first estimate layer boundaries to generate a seed surface, and then incorporate additional sources of evidence, such as ice masks, surface digital elevation models, and feedback from human users, to refine the surface in a discrete energy minimization formulation. We investigate the performance of the imaging and tracking algorithms using flight crossovers since crossing lines should produce consistent maps of the terrain beneath the ice surface and compare manually tracked "ground truth" to the automated tracking algorithms. We found the swath width at the nominal flight altitude of 1000 m to be approximately 3 km. Since many of the glaciers in the archipelago are narrower than this, the radar imaging, in these instances, was able to measure the full glacier cavity in a single pass.
Zhang, Jing; Yuan, Changan; Huang, Guohua; Zhao, Yinjun; Ren, Wenyi; Cao, Qizhi; Li, Jianying; Jin, Mingwu
2018-01-01
A snapshot imaging polarimeter using spatial modulation can encode four Stokes parameters allowing instantaneous polarization measurement from a single interferogram. However, the reconstructed polarization images could suffer a severe aliasing signal if the high-frequency component of the intensity image is prominent and occurs in the polarization channels, and the reconstructed intensity image also suffers reduction of spatial resolution due to low-pass filtering. In this work, a method using two anti-phase snapshots is proposed to address the two problems simultaneously. The full-resolution target image and the pure interference fringes can be obtained from the sum and the difference of the two anti-phase interferograms, respectively. The polarization information reconstructed from the pure interference fringes does not contain the aliasing signal from the high-frequency component of the object intensity image. The principles of the method are derived and its feasibility is tested by both computer simulation and a verification experiment. This work provides a novel method for spatially modulated imaging polarization technology with two snapshots to simultaneously reconstruct a full-resolution object intensity image and high-quality polarization components. PMID:29714224
Development of high repetition rate nitric oxide planar laser induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Jiang, Naibo
This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.
Audit Guidelines for 1989-90: Single Audit Act of 1984.
ERIC Educational Resources Information Center
South Carolina State Dept. of Education, Columbia.
Single Audit Act of 1984 was passed to provide guidelines for organizationwide audits of federally funded programs. Explanatory notes for Educational Improvement Act (EIA) summer school accounting are given. Section 1 outlines audit requirements established for state and local governments that receive and administer federal assistance. An…
ERIC Educational Resources Information Center
Ryan, Patricia
This booklet attempts to reassure single parents that they can raise healthy, happy children and provides some suggestions for parents' specific questions and concerns. The first section discusses the emotional stages children pass through when they lose a parent, ways to explain to children the loss of a parent, and ways to handle children's…
UAVSAR Active Electronically-Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark
2010-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.
Overtaking collision effects in a cw double-pass proton linac
Tao, Yue; Qiang, Ji; Hwang, Kilean
2017-12-22
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Overtaking collision effects in a cw double-pass proton linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Yue; Qiang, Ji; Hwang, Kilean
The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
Detection of large-scale concentric gravity waves from a Chinese airglow imager network
NASA Astrophysics Data System (ADS)
Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao
2018-06-01
Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.
Gheza, Federico; Raimondi, Paolo; Solaini, Leonardo; Coccolini, Federico; Baiocchi, Gian Luca; Portolani, Nazario; Tiberio, Guido Alberto Massimo
2018-04-11
Outside the US, FLS certification is not required and its teaching methods are not well standardized. Even if the FLS was designed as "stand alone" training system, most of Academic Institution offer support to residents during training. We present the first systematic application of FLS in Italy. Our aim was to evaluate the role of mentoring/coaching on FLS training in terms of the passing rate and global performance in the search for resource optimization. Sixty residents in general surgery, obstetrics & gynecology, and urology were selected to be enrolled in a randomized controlled trial, practicing FLS with the goal of passing a simulated final exam. The control group practiced exclusively with video material from SAGES, whereas the interventional group was supported by a mentor. Forty-six subjects met the requirements and completed the trial. For the other 14 subjects no results are available for comparison. One subject for each group failed the exam, resulting in a passing rate of 95.7%, with no obvious differences between groups. Subgroup analysis did not reveal any difference between the groups for FLS tasks. We confirm that methods other than video instruction and deliberate FLS practice are not essential to pass the final exam. Based on these results, we suggest the introduction of the FLS system even where a trained tutor is not available. This trial is the first single institution application of the FLS in Italy and one of the few experiences outside the US. Trial Number: NCT02486575 ( https://www.clinicaltrials.gov ).
Transfer of molybdenum disulfide to various metals
NASA Technical Reports Server (NTRS)
Barton, G. C.; Pepper, S. V.
1977-01-01
Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.
Plasmoids as magnetic flux ropes. [in geomagnetic tail
NASA Technical Reports Server (NTRS)
Moldwin, Mark B.; Hughes, W. J.
1991-01-01
A magnetic flux rope model is developed and used to determine whether the principal axis analysis (PAA) of magnetometer signatures from a single satellite pass is sufficient to obtain the magnetic topology of plasmoids. The model is also used to determine if plasmoid observations are best explained by the flux rope, closed loop, or large-amplitude wave picture. It was found that the principal axis directions is highly dependent on the satellite trajectory through the structure and, therefore, the PAA of magnetometer data from a single satellite pass is insufficient to differentiate between magnetic closed loop and flux rope models. Results also indicate that the flux rope model of plasmoid formation is well suited to unify the observations of various magnetic structures observed by ISEE 3.
Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser
NASA Astrophysics Data System (ADS)
Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.
2016-04-01
Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.
NASA Astrophysics Data System (ADS)
Pishevar, M. R.; Mohandesi, J. Aghazadeh; Omidvar, H.; Safarkhanian, M. A.
2015-10-01
Friction stir welding is suitable for joining series 5000 alloys because no fusion welding problems arise for the alloys in this process. The present study examined the effects of double-pass welding and tool rotational and travel speeds for the second-pass welding on the mechanical and microstructural properties of friction stir lap welding of AA5456 (AlMg5)-H321 (5 mm thickness) and AA5456 (AlMg5)-O (2.5 mm thickness). The first pass of all specimens was performed at a rotational speed of 650 rpm and a travel speed of 50 mm/min. The second pass was performed at rotational speeds of 250, 450, and 650 rpm and travel speeds of 25, 50, and 75 mm/min. The results showed that the second pass changed the grain sizes in the center of the nugget zone compared with the first pass. It was observed that the size of the hooking defect of the double-pass-welded specimens was higher than that for the single-pass-welded specimen. The size of the hooking defect was found to be a function of the rotational and travel speeds. The optimal joint tensile shear properties were achieved at a rotational speed of 250 rpm and travel a speed of 75 mm/min.
Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.
Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P
2018-03-01
The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.
Perioral Rejuvenation With Ablative Erbium Resurfacing.
Cohen, Joel L
2015-11-01
Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, A.F.; Modestino, A.J.; Howard, J.B.
1995-12-31
Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With itsmore » high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.« less
Yoshitake, Yasuhide; Shinohara, Minoru
2013-11-01
Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.
Dynamic mask for producing uniform or graded-thickness thin films
Folta, James A [Livermore, CA
2006-06-13
A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.
ABM Drag_Pass Report Generator
NASA Technical Reports Server (NTRS)
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.
NASA Astrophysics Data System (ADS)
Narita, Moe; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Miura, Akira; Tadanaga, Kiyoharu
2018-06-01
Yb:CaYAlO4 single crystals were grown by the floating zone method and their spectral properties were investigated. Void formation was effectively suppressed by using a feed rod of Y-rich composition with the aid of a double zone-pass technique. For the oxygen excess composition of Yb:Ca0.9925Y1.0075AlO4.00375, a void-free crystal was obtained by performing only the double zone-pass. On the other hand, for cation-deficient type of Yb:Ca0.9925Y1.005AlO4, void-free crystal could not be obtained by performing the double zone-pass. The void formation is attributable to the constitutional supercooling caused by segregation of main constituents of Y and Ca, and the congruent composition may exist in the Y-rich region with existence of interstitial excess oxide ions. The absorption cross section for σ-polarization was slightly larger than that for π-polarization, which is reasonable on the basis of the crystal structure of CaYAlO4.
Trelles, Mario A; Shohat, Michael; Urdiales, Fernando
2011-02-01
Carbon dioxide (CO(2)) laser ablative fractional resurfacing produces skin damage, with removal of the epidermis and variable portions of the dermis as well as associated residual heating, resulting in new collagen formation and skin tightening. The nonresurfaced epidermis helps tissue to heal rapidly, with short-term postoperative erythema. The results for 40 patients (8 men and 32 women) after a single session of a fractional CO(2) resurfacing mode were studied. The treatments included resurfacing of the full face, periocular upper lip, and residual acne scars. The patients had skin prototypes 2 to 4 and wrinkle degrees 1 to 3. The histologic effects, efficacy, and treatment safety in various clinical conditions and for different phototypes are discussed. The CO(2) laser for fractional treatment is used in super-pulse mode. The beam is split by a lens into several microbeams, and super-pulse repetition is limited by the pulse width. The laser needs a power adaptation to meet the set fluence per microbeam. Laser pulsing can operate repeatedly on the same spot or be moved randomly over the skin, using several passes to achieve a desired residual thermal effect. Low, medium, and high settings are preprogrammed in the device, and they indicate the strength of resurfacing. A single treatment was given with the patient under topical anesthesia. However, the anesthesia was injected on areas of scar tissue. Medium settings (2 Hz, 30 W, 60 mJ) were used, and two passes were made for dark skins and degree 1 wrinkles. High settings (2 Hz, 60 W, 120 mJ) were used, and three passes were made for degree 3 wrinkles and scar tissue. Postoperatively, resurfaced areas were treated with an ointment of gentamycin, Retinol Palmitate, and DL-methionine (Novartis; Farmaceutics, S.A., Barcelona, Spain). Once epithelialization was achieved, antipigment and sun protection agents were recommended. Evaluations were performed 15 days and 2 months after treatment by both patients and clinicians. Treatment improved wrinkle aspect and scar condition, and no patient reported adverse effects or complications, irrespective of skin type, except for plaques of erythema in areas that received extra laser passes, which were not seen at the 2-month assessment. The results evaluated by clinicians were very much in correlation with those of patients. Immediately after treatment, vaporization was produced by stacked pulses, with clear ablation and collateral heat coagulation. An increased number of random pulses removed more epidermis, and with denser pulses per area, a thermal deposit was noted histologically. At 2 months, a thicker, multicelluar epidermis and an evident increase in collagen were observed. Fractional CO(2) laser permits a variety of resurfacing settings that obtain safe, effective skin rejuvenation and correct scar tissue in a single treatment.
Increasing capacity of baseband digital data communication networks
Frankel, Robert S.; Herman, Alexander
1985-01-01
This invention provides broadband network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Increasing capacity of baseband digital data communication networks
Frankel, R.S.; Herman, A.
This invention provides broadbank network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.
Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.
Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian
2018-01-17
We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.
He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R
2015-07-14
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.
Time-resolved double-slit interference pattern measurement with entangled photons
Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas
2014-01-01
The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360
A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection
He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.
2015-01-01
Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225
Youssef, Nour J; Rizk, Alain G; Ibrahimi, Omar A; Tannous, Zeina S
2017-09-01
BACKGROUND The 800 nm long-pulsed diode laser machine is safe and effective for permanent hair reduction. Traditionally, most long-pulsed diode lasers used for hair removal had a relatively small spot size. Recently, a long-pulsed diode laser with a large spot size and vacuum assisted suction handpiece was introduced. The treatment parameters of each type of handpiece differ. Short and long-term clinical efficacy, treatment associated pain, and patient satisfaction are important factors to be considered. This study aims to conduct a direct head to head comparison of both handpieces of the 800nm long-pulsed diode laser by evaluating long term hair reduction, treatment associated pain and patient satisfaction. Thirteen subjects were enrolled in this prospective, self-controlled, single-center study of axillary laser hair removal. The study involved 4 treatments using a long pulsed diode laser with a large spot size HS handpiece (single pass), HS handpiece (double pass), and a small spot size ET handpiece according to a randomized choice. The treatment sessions were done at 4-8 week intervals with follow up visits taken at 6 and 12 months after the last treatment session. Hair clearance and thickness analysis were assessed using macro hair count photographs taken at baseline visit, at each treatment session visit and at follow up visits. Other factors including pain, treatment duration, and patients' preference were secondary study endpoints. At 6 months follow up visits after receiving four laser treatments, there was statistically significant hair clearance in the three treatment arms with 66.1 % mean percentage hair reduction with the ET handpiece, 43.6% with the HSS (single pass) and 64.1 % with the HSD (double). However, at one year follow up, the results significantly varied from the 6 months follow up. The mean percentage hair reduction was 57.8% with the ET handpiece treated axillas (n=9), 16.5% with the HSS (single pass) handpiece treated axillas (n=7), and 46.9% with the HSD (double pass) handpiece treated axillas (n=6). Thus, at one year follow up, there was a significant hair reduction that was similar in both the ET and HSD treated axillae (57.8% and 46.9 %), but only minimal hair reduction (16.5%)was observed in the HSS treated axillae. This is the first study that compared the long-term efficacy of the ET and HS handpieces after four treatment sessions with up to 12 months follow up after the last treatment session. It is also the first study that provided head to head comparison between HS (double pass), HS (single pass), and ET handpiece taking into consideration the end hair reduction result, the time consumed, the pain score experienced, and the overall patient satisfaction. HSD had better hair clearance and patient satisfaction when compared to ET and HSS. The long term follow up results showed that ET was superior to HSS (P less than .05), but was not superior to HSD (P greater than 0.05). However, HSD treated patients had lower pain scores with HSD than with ET. We conclude that ET handpiece is almost as efficacious as HSD handpiece, and the desired end results could be achieved with HDD with better patient satisfaction, less treatment duration and less pain.
J Drugs Dermatol. 2017;16(9):893-898.
.Competition After Windrowing or Single-Roller Chopping For Site Preparation in the Southern Piedmont
James H. Miller
1980-01-01
For two years, post-treatment regrowth of herbaceous and woody species was sampled on two adjoining areas in the southern Piedmont where they had been either sheared and piled into windrows or chopped by a single pass of a single-drum roller-chopper. Windrowing yielded 55% less total standing crop of woody trees, shrubs, and vines after 2 years than chopping did. But...
Enzymatic Removal of Bilirubin from Blood: A Potential Treatment for Neonatal Jaundice
NASA Astrophysics Data System (ADS)
Lavin, Arthur; Sung, Cynthia; Klibanov, Alexander M.; Langer, Robert
1985-11-01
Current treatments for severe jaundice can result in major complications. Neonatal jaundice is caused by excessive accumulation of bilirubin in the blood. A small blood filter containing immobilized bilirubin oxidase was developed to reduce serum bilirubin concentrations. When human or rat blood was passed through the enzyme filter, more than 90 percent of the bilirubin was degraded in a single pass. This procedure may have important applications in the clinical treatment of neonatal jaundice.
History of Satellite Orbit Determination at NSWCDD
2018-01-31
run . Segment 40 did pass editing and its use was optional after Segment 20. Segment 30 needed to be run before Segment 80. Segment 70 was run as...control cards required to run the program. These included a CHARGE card related to usage charges and various REQUEST, ATTACH, and CATALOG cards...each) could be done in a single run after the long-arc solution had converged. These short arcs used the pass matrices from the long-arc run in their
Ottosson, Johan; Lavesson, Lillian; Pinzke, Stefan; Grahn, Patrik
2015-01-01
Freezing of Gait (FOG) is a common condition in people with Parkinson’s disease (PD). FOG entails suddenly experiencing difficulties moving or feeling that one’s feet are as glued to the ground. It is triggered, e.g., when passing through doorways. Earlier studies suggest that being in natural environments affects FOG in a positive way. Five subjects were recruited to serve as five single subject cases. We used interviews, observations, questionnaires and collected gait pattern data with aid of an accelerometer. A special designed outdoor setting was used, where we investigated whether passing through hedge openings with or without built elements triggered FOG. We found that no one experienced a FOG reaction when they passed through hedge openings without built elements. However, FOG was triggered when a doorframe was inserted into a hedge opening, and/or when peripheral vision was blocked. We interpret the results such that the doorframe triggered a phobic reflex, causing a freezing reaction. Passing through hedge openings does not trigger FOG, which we interpret as a biophilic reaction. Our results, if repeated in future studies, may have significance to everyday lives of PD patients, who could get a simpler life by consciously prioritizing stays in natural surroundings. PMID:26132480
Design of dual ring wavelength filters for WDM applications
NASA Astrophysics Data System (ADS)
Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.
2016-12-01
Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.
Gasification of carbonaceous solids
Coates, Ralph L.
1976-10-26
A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.
Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.
Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho
2016-04-18
We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.
Hao, L-H; Guo, S-C; Liu, C-C; Zhu, H; Wang, B; Fu, L; Chen, M-T; Zhou, L; Chi, J-Y; Yang, W; Nie, W-J; Lu, Y
2014-12-01
The bioavailability of rifampicin (RMP) decreases by ∼30% on interaction with isoniazid (INH) in stomach acid conditions, which can result in the development of drug resistance and treatment failure. To compare the bioavailability in healthy volunteers of five anti-tuberculosis fixed-drug combinations (FDCs) used in China (formulations A-E) containing RMP and INH against single-drug formulations taken as reference. Two- or three-period, two- or three-sequence crossover study of drugs. Only RMP formulation E passed the bioequivalence criteria, with 90% confidence intervals for the log-transformed ratios of AUC₀₋₂₄, AUC₀₋∞, and Cmax of respectively 89.9-103.7, 89.6-102.2 and 87.7-107.9. For INH, formulations A, B, C and D passed the bioequivalence test, but not product E, where the 90%CIs of the log-transformed ratios of AUC₀₋₂₄, AUC₀₋∞, and Cmax were respectively 85.2-100.7, 85.2-100.7 and 73.8-100.9. According to the results of the bioequivalence analysis carried out in this study, RMP formulations A, B, C and D were not within the acceptable range and only formulation E passed the bioequivalence criteria of 80-125%. In comparison, four-test INH formulations (A, B, C and D) were bioequivalent to the corresponding single-drug formulation, while product E failed in the bioequivalence criteria.
[Evaluation on running status of Chinese Polio Laboratories Network in 2008].
Zhu, Shuang-li; Yan, Dong-mei; Zhu, Hui
2010-04-01
In order to evaluate the running status and provide the laboratory data for maintaining polio-free status in China, the virology surveillance database of Chinese Polio Laboratories Network (not include Hong Kong, Macao, and Taiwan)in 2008 were analyzed. The case investigation data of Acute Flaccid Paralysis(AFP)cases reported by 31 provinces (municipal, autonomous regions) through EPI surveillance information management system and the database of National Polio Laboratory (NPL) were analyzed, and the indicators of running status of Chinese Polio Laboratories Network were evaluated. 10,116 stool samples were collected from 5116 AFP cases by Chinese Polio Laboratories Network in 2008, and viral isolation and identification of all stool samples were done according to 4th World Health Organization (WHO) Polio Laboratory Manual. The rate of viral isolation and identification performed within 28d was 94.9%. 189 polioviruses (PV) and 597 of non-polio enteroviruses (NPEV) were isolated from AFP cases, the isolatien rates were 3.72% and 11.74% respectively. 251 polio positive isolates were sent to NPL from 31 provincial polio laboratories. There were 318 single serotype PVs were performed VPI sequencing. And no wild polioviruses and Vaccine-derived Polioviruses (VDPVs) were found in 2008. NPL passed the proficiency test and got full accreditation for on-site review by WHO experts in 2008. All 31 provincial Polio laboratories passed the proficiency test with the same panel as NPL, and 13 provincial Polio laboratories joined and passed the on-site review by WHO experts. The running status of Chinese Polio Laboratories Network was good, polio-free status was maintained in China in 2008. The Chinese polio laboratories network running is normaly, the laboratory surveillance system was sensitive and laboratory data were provided for maintaining the polio-free status in China.
2003-11-09
In this lunar eclipse viewed from Merritt Island, Fla., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through - when it does, it is called a lunar eclipse.
Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.
1976-06-15
A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.
Day, John D; Doshi, Rahul N; Belott, Peter; Birgersdotter-Green, Ulrika; Behboodikhah, Mahnaz; Ott, Peter; Glatter, Kathryn A; Tobias, Serge; Frumin, Howard; Lee, Byron K; Merillat, John; Wiener, Isaac; Wang, Samuel; Grogin, Harlan; Chun, Sung; Patrawalla, Rob; Crandall, Brian; Osborn, Jeffrey S; Weiss, J Peter; Lappe, Donald L; Neuman, Stacey
2007-05-08
Implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators have relied on multiple ventricular fibrillation (VF) induction/defibrillation tests at implantation to ensure that the device can reliably sense, detect, and convert VF. The ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations) is the first large, multicenter, prospective trial comparing vulnerability safety margin testing versus defibrillation safety margin testing with a single VF induction/defibrillation. A total of 426 patients receiving an implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator underwent vulnerability safety margin or defibrillation safety margin screening at 14 J in a randomized order. After this, patients underwent confirmatory testing, which required 2 VF conversions without failure at < or = 21 J. Patients who passed their first 14-J and confirmatory tests, irrespective of the results of their second 14-J test, had their devices programmed to a 21-J shock for ventricular tachycardia (VT) or VF > or = 200 bpm and were followed up for 1 year. Of 420 patients who underwent 14-J vulnerability safety margin screening, 322 (76.7%) passed. Of these, 317 (98.4%) also passed 21-J confirmatory tests. Of 416 patients who underwent 14-J defibrillation safety margin screening, 343 (82.5%) passed, and 338 (98.5%) also passed 21-J confirmatory tests. Most clinical VT/VF episodes (32 of 37, or 86%) were terminated by the first shock, with no difference in first shock success. In all observed cases in which the first shock was unsuccessful, subsequent shocks terminated VT/VF without complication. Although spontaneous episodes of fast VT/VF were limited, there was no difference in the odds of first shock efficacy between groups. Screening with vulnerability safety margin or defibrillation safety margin may allow for inductionless or limited shock testing in most patients.
Multi-pass transmission electron microscopy
Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...
2017-05-10
Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less
Single Pass Streaming BLAST on FPGAs*†
Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom
2008-01-01
Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828
Hopf, H-B; Hochscherf, M; Jehmlich, M; Leischik, M; Ritter, J
2007-07-01
This paper describes the introduction of a single-pass batch hemodialysis system for renal replacement therapy in a 14 bed intensive care unit. The goals were to reduce the workload of intensive care unit physicians using an alternative and simpler method compared to continuous veno-venous hemodiafiltration (CVVHDF) and to reduce the costs of hemofiltrate solutions (80,650 EUR per year in our clinic in 2005). We describe and evaluate the process of implementation of the system as well as the achieved and prospective savings. We conclude that a close cooperation of all participants (physicians, nurses, economists, technicians) of a hospital can achieve substantial benefits for patients and employees as well as reduce the economic burden of a hospital.
Cavity-enhanced Faraday rotation measurement with auto-balanced photodetection.
Chang, Chia-Yu; Shy, Jow-Tsong
2015-10-01
Optical cavity enhancement for a tiny Faraday rotation is demonstrated with auto-balanced photodetection. This configuration is analyzed using the Jones matrix formalism. The resonant rotation signal is amplified, and thus, the angular sensitivity is improved. In the experiment, the air Faraday rotation is measured with an auto-balanced photoreceiver in single-pass and cavity geometries. The result shows that the measured Faraday rotation in the single-pass geometry is enhanced by a factor of 85 in the cavity geometry, and the sensitivity is improved to 7.54×10(-10) rad Hz(-1/2), which agrees well with the Jones matrix analysis. With this verification, we propose an AC magnetic sensor whose magnetic sensitivity is expected to achieve 10 pT Hz(-1/2).
Ionization tube simmer current circuit
Steinkraus, R.F. Jr.
1994-12-13
A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current. 6 figures.
Ionization tube simmer current circuit
Steinkraus, Jr., Robert F.
1994-01-01
A highly efficient flash lamp simmer current circuit utilizes a fifty percent duty cycle square wave pulse generator to pass a current over a current limiting inductor to a full wave rectifier. The DC output of the rectifier is then passed over a voltage smoothing capacitor through a reverse current blocking diode to a flash lamp tube to sustain ionization in the tube between discharges via a small simmer current. An alternate embodiment of the circuit combines the pulse generator and inductor in the form of an FET off line square wave generator with an impedance limited step up output transformer which is then applied to the full wave rectifier as before to yield a similar simmer current.
Initial application of a dual-sweep streak camera to the Duke storage ring OK-4 source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumpkin, A.H.; Yang, B.X.; Litvinenko, V.
1997-08-01
The visible and UV spontaneous emission radiation (SER) from the Duke OK-4 wiggler has been used with a Hamamatsu C5680 dual-sweep streak camera to characterize the stored electron beams. Particle beam energies of 270 and 500 MeV in the Duke storage ring were used in this initial application with the OK-4 adjusted to generate wavelengths from 500 nm to near 200 nm. The OK-4 magnetic system with its 68 periods provided a much stronger radiation source than a nearby bending magnet source point. Sensitivity to single-bunch, single-turn SER was shown down to 4 {mu}A beam current at {lambda} = 450more » nm. The capability of seeing second passes in the FEL resonator at a wavelength near 200 nm was used to assess the cavity length versus orbit length. These tests (besides supporting preparation for UV-visible SR FEL startups) are also relevant to possible diagnostics techniques for single-pass FEL prototype facilities.« less
UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry
NASA Technical Reports Server (NTRS)
Moes, Timothy R.
2009-01-01
The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.
Double passing the Kitt Peak 1-m Fourier transform spectrometer
NASA Technical Reports Server (NTRS)
Jennings, D. E.; Hubbard, R.; Brault, J. W.
1985-01-01
Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.
ERIC Educational Resources Information Center
Orange County Public Schools, Orlando, FL.
The Single Teen Parent Program conducted by the Orange County, Florida, Public Schools, was designed to help single teen parents acquire marketable skills and jobs in order to head independent family units. The parents served were between the ages of 16 and 20 and either had a high school diploma or had passed the General Educational Development…
Creating Single-Subject Design Graphs in Microsoft Excel[TM] 2007
ERIC Educational Resources Information Center
Dixon, Mark R.; Jackson, James W.; Small, Stacey L.; Horner-King, Mollie J.; Mui Ker Lik, Nicholas; Garcia, Yors; Rosales, Rocio
2009-01-01
Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The…
Strategies for lowering attrition rates and raising NCLEX-RN pass rates.
Higgins, Bonnie
2005-12-01
This study was designed to determine strategies to raise the NCLEX-RN pass rate and lower the attrition rate in a community college nursing program. Ex-post facto data were collected from 213 former nursing student records. Qualitative data were collected from 10 full-time faculty, 30 new graduates, and 45 directors of associate degree nursing programs in Texas. The findings linked the academic variables of two biology courses and three components of the preadmission test to completion of the nursing program. A relationship was found between one biology course, the science component of the preadmission test, the HESI Exit Examination score, and the nursing skills course to passing the NCLEX-RN. Qualitative data indicated preadmission requirements, campus counselors, remediation, faculty, test-item writing, and teaching method were instrumental in completion of the program and passing the NCLEX-RN.
Distributed Offline Data Reconstruction in BaBar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pulliam, Teela M
The BaBar experiment at SLAC is in its fourth year of running. The data processing system has been continuously evolving to meet the challenges of higher luminosity running and the increasing bulk of data to re-process each year. To meet these goals a two-pass processing architecture has been adopted, where 'rolling calibrations' are quickly calculated on a small fraction of the events in the first pass and the bulk data reconstruction done in the second. This allows for quick detector feedback in the first pass and allows for the parallelization of the second pass over two or more separate farms.more » This two-pass system allows also for distribution of processing farms off-site. The first such site has been setup at INFN Padova. The challenges met here were many. The software was ported to a full Linux-based, commodity hardware system. The raw dataset, 90 TB, was imported from SLAC utilizing a 155 Mbps network link. A system for quality control and export of the processed data back to SLAC was developed. Between SLAC and Padova we are currently running three pass-one farms, with 32 CPUs each, and nine pass-two farms with 64 to 80 CPUs each. The pass-two farms can process between 2 and 4 million events per day. Details about the implementation and performance of the system will be presented.« less
Sadick, Neil S; Alexiades-Armenakas, Macrene; Bitter, Patrick; Hruza, George; Mulholland, R Stephen
2005-01-01
The authors previously reported their experience achieving non-ablative skin enhancement with serial, full-face, intense pulsed light treatments in a large series of patients. A new method for skin renewal electro-optical synergy (ELOS), which combines intense pulsed optical energy and conducted bipolar radiofrequency (RF) energy into a single pulse, has been recently introduced. Intense pulsed optical energy and bipolar RF energy have been used in dermatologic surgery for many years; however, this study represents the therapeutic impact of the combined energies. The authors report their experience using an ELOS system (Aurora SR, Syneron, Yokneam, Israel) on 108 consecutive patients treated with a series of full-face procedures. Patients received 5 full-face treatments every 3 weeks. Each treatment consisted of 1 to 8 full-face and segmental passes. The number of passes, specific wavelength of pulsed optical energy, and RF energy were determined by the patient's skin type, dyschromia, wrinkle pathology, and presence of a tan. A total of 540 treatments were performed on 108 subjects. All patients had pre- and post-procedural photographs. Results were assessed by double-blinded physician photographic evaluation and patient satisfaction scales. Overall skin improvement was rated at 75.3%. Overall average wrinkle improvement was 41.2%, with an average Class 1 wrinkle improvement of 64.7%, Class 2 wrinkle improvement of 38.6%, and Class 3 wrinkle improvement of 20.4%. Improvement in skin laxity was rated at 62.9%. Skin texture was reported to improve 74.1%. Improvement in the appearance of pore size was rated at 65.1%. Average improvement in erythema and telangiectasia was 68.4%. Average improvement in hyperpigmentation and dyschromia was 79.3%. Overall patient satisfaction was 92%. The overall minor complication rate, including blistering, crusting, and stripping was 8.3%, and the major complication rate was less than 1%. One small, depressed nasal scar was observed in one patient. This study demonstrates the safety and efficacy of a new technology using combined optical and conducted bipolar RF energies for noninvasive skin rejuvenation. The results show improvement in wrinkle reduction and amelioration of erythema, telangiectasia, and hyperpigmentation comparable to that reported for other intense pulsed light technologies.
Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke
2016-01-01
Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school office buildings. PMID:26742055
Evaluation of simulation motion fidelity criteria in the vertical and directional axes
NASA Technical Reports Server (NTRS)
Schroeder, Jeffery A.
1993-01-01
An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.
Swartz, Richard S; Luchansky, John B; Kulas, Megan; Shoyer, Bradley A; Shane, Laura E; Strasser, Hannah; Munson, Madison; Porto-Fett, Anna C S
2015-05-01
Thermal inactivation of Shiga toxin-producing Escherichia coli (STEC) cells within knitted/cubed beef steaks following cooking on a nonstick griddle was quantified. Both faces of each beef cutlet (ca. 64 g; ca. 8.5 cm length by 10.5 cm width by 0.75 cm height) were surface inoculated (ca. 6.6 log CFU/g) with 250 μl of a rifampin-resistant cocktail composed of single strains from each of eight target serogroups of STEC: O26:H11, O45:H2, O103:H2, O104:H4, O111:H(2), O121:H19, O145:NM, and O157:H7. Next, inoculated steaks were (i) passed once through a mechanical tenderizer and then passed one additional time through the tenderizer perpendicular to the orientation of the first pass (single cubed steak; SCS) or (ii) passed once through a mechanical tenderizer, and then two tenderized cutlets were knitted together by passage concomitantly through the tenderizer two additional times perpendicular to the orientation of the previous pass (double cubed steak; DCS). SCS and DCS were individually cooked for up to 3.5 min per side in 30 ml of extra virgin olive oil heated to 191.5°C (376.7°F) on a hard-anodized aluminum nonstick griddle using a flat-surface electric ceramic hot plate. Regardless of steak preparation (i.e., single versus double cubed steaks), as expected, the longer the cooking time, the higher the final internal temperature, and the greater the inactivation of STEC cells within cubed steaks. The average final internal temperatures of SCS cooked for up 2.5 min and DCS cooked for up to 3.5 min ranged from 59.8 to 94.7°C and 40.3 to 82.2°C, respectively. Cooking SCS and DCS on an aluminum griddle set at ca. 191.5°C for 0.5 to 2.5 min and 1.0 to 3.5 min per side, respectively, resulted in total reductions in pathogen levels of ca. 1.0 to ≥6.8 log CFU/g. These data validated that cooking SCS (ca. 0.6 cm thick) or DCS (ca. 1.3 cm thick) on a nonstick aluminum griddle heated at 191.5°C for at least 1.25 and 3.0 min per side, respectively, was sufficient to achieve a 5.0log reduction in the levels of the single strains from each of the eight target STEC serogroups tested.
Cyclone reactor with internal separation and axial recirculation
Becker, F.E.; Smolensky, L.A.
1988-07-19
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.
Cyclone reactor with internal separation and axial recirculation
Becker, Frederick E.; Smolensky, Leo A.
1989-01-01
A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.
UAVSAR Instrument: Current Operations and Planned Upgrades
NASA Technical Reports Server (NTRS)
Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David
2011-01-01
The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these
Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis
NASA Astrophysics Data System (ADS)
Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.
2017-06-01
Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.
Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A
2015-11-20
We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... multiple Issuer MBS is structured so that small issuers, who do not meet the minimum number of loans and... program, securities are backed by single-family or multifamily loans. Under the Ginnie Mae II program, securities are only backed by single family loans. Both the Ginnie Mae I and II MBS are modified pass-through...
2000-01-20
In this lunar eclipse viewed from Merritt Island, Fla., at 11:55 p.m., the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse
2000-01-20
In this lunar eclipse viewed from Merritt Island, Fla., at midnight, the full moon takes on a dark red color because it is being lighted slightly by sunlight passing through the Earth's atmosphere. This light has the blue component preferentially scattered out (this is also why the sky appears blue from the surface of the Earth), leaving faint reddish light to illuminate the Moon during the eclipse. Eclipses occur when the Sun, Earth and Moon line up. They are rare because the Moon usually passes above or below the imaginary line connecting Earth and the Sun. The Earth casts a shadow that the Moon can pass through -when it does, it is called a lunar eclipse
The Radiation Environment for the LISA/Laser Interferometry Space Antenna
NASA Technical Reports Server (NTRS)
Barth, Janet L.; Xapsos, Michael; Poivey, Christian
2005-01-01
The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.
Dilution in single pass arc welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, J.N.; Marder, A.R.
1996-06-01
A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiencymore » can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.« less
Analysis of thermomechanical states in single-pass GMAW surfaced steel element
NASA Astrophysics Data System (ADS)
Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof
2017-03-01
In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.
Choulakian, Mazen Y; Li, Jennifer Y; Ramos, Samuel; Mannis, Mark J
2016-01-01
To evaluate the predictability and reproducibility of stromal bed thickness for single-pass donor Descemet stripping automated endothelial keratoplasty (DSAEK) tissue preparation, using the ML7 Microkeratome Donor Cornea System (Med-logics Inc, Athens, TX). In this retrospective chart review of 256 consecutive corneal tissue preparations for DSAEK surgery, from June 2013 to August 2014, tissue thicknesses were divided into 3 groups, depending on surgeon preference: <91 μm (group A), 90 to 120 μm (group B), and 120 to 160 μm (group C). Precut and postcut data were recorded. Average postcut donor corneal thickness was 114 ± 30 μm (range 60-183 μm), whereas the average in group A was 97 ± 23 μm (range 60-128), in group B was 113 ± 21 μm (range 77-179), and in group C was 134 ± 43 (range 89-183). Average postcut endothelial cell density was very adequate at 3013 ± 250 cells per square millimeter. There were a total of 7 failed procedures from 256 attempts, which represents a rate of 2.7%. This rate decreases to 1.5% when analyzing the last 200 cuts. The ML7 Microkeratome Donor Cornea System allows for reliable and reproducible DSAEK tissue preparation. Ultrathin DSAEK tissues can be prepared with a single-pass. Aiming for a graft thickness between 90 and 120 μm seems to be most reliable.
Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222
Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta
2017-01-01
Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.
Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel
NASA Astrophysics Data System (ADS)
Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.
2011-12-01
A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.
Ion irradiation effects on lithium niobate etalons for tunable spectral filters
NASA Astrophysics Data System (ADS)
Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.
2017-11-01
Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle, coupled with the HV field, could trigger a dielectric breakdown in the Lithium Niobate. In this paper we present the electro-optical results obtained when exposing a set of LN samples and a lowquality full size etalon to different radiation conditions. In a first irradiation campaign, performed at the Centre for Micro Analysis of Materials (CMAM-Madrid) facilities, we were mainly focused on the long-term degradation effects with a series of high flux (109 cm-2 s-1) proton tests at an energy of 10 MeV. In order to study the possibility of a single ion breakdown, a second campaign was carried out, at the Texas A&M University (TAMU), exposing Lithium Niobate to high LET ion species (78Kr, 40Ar, 129Xe, 197Au) accelerated to the GeV energy range to penetrate or even pass through the entire Lithium Niobate thickness.
Electromagnetic navigation system for CT-guided biopsy of small lesions.
Appelbaum, Liat; Sosna, Jacob; Nissenbaum, Yizhak; Benshtein, Alexander; Goldberg, S Nahum
2011-05-01
The purpose of this study was to evaluate an electromagnetic navigation system for CT-guided biopsy of small lesions. Standardized CT anthropomorphic phantoms were biopsied by two attending radiologists. CT scans of the phantom and surface electromagnetic fiducial markers were imported into the memory of the 3D electromagnetic navigation system. Each radiologist assessed the accuracy of biopsy using electromagnetic navigation alone by targeting sets of nine lesions (size range, 8-14 mm; skin to target distance, 5.7-12.8 cm) under eight different conditions of detector field strength and orientation (n = 117). As a control, each radiologist also biopsied two sets of five targets using conventional CT-guided technique. Biopsy accuracy, number of needle passes, procedure time, and radiation dose were compared. Under optimal conditions (phantom perpendicular to the electromagnetic receiver at highest possible field strength), phantom accuracy to the center of the lesion was 2.6 ± 1.1 mm. This translated into hitting 84.4% (38/45) of targets in a single pass (1.1 ± 0.4 CT confirmations), which was significantly fewer than the 3.6 ± 1.3 CT checks required for conventional technique (p < 0.001). The mean targeting time was 38.8 ± 18.2 seconds per lesion. Including procedural planning (∼5.5 minutes) and final CT confirmation of placement (∼3.5 minutes), the full electromagnetic tracking procedure required significantly less time (551.6 ± 87.4 seconds [∼9 minutes]) than conventional CT (833.3 ± 283.8 seconds [∼14 minutes]) for successful targeting (p < 0.001). Less favorable conditions, including nonperpendicular relation between the axis of the machine and weaker field strength, resulted in statistically significant lower accuracy (3.7 ± 1 mm, p < 0.001). Nevertheless, first-pass biopsy accuracy was 58.3% (21/36) and second-pass (35/36) accuracy was 97.2%. Lesions farther from the skin than 20-25 cm were out of range for successful electromagnetic tracking. Virtual electromagnetic tracking appears to have high accuracy in needle placement, potentially reducing time and radiation exposure compared with those of conventional CT techniques in the biopsy of small lesions.
A chimeric path to neuronal synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essaki Arumugam, Easwara Moorthy; Spano, Mark L.
2015-01-15
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy ismore » likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)« less
Nonlinear optics of fibre event horizons.
Webb, Karen E; Erkintalo, Miro; Xu, Yiqing; Broderick, Neil G R; Dudley, John M; Genty, Goëry; Murdoch, Stuart G
2014-09-17
The nonlinear interaction of light in an optical fibre can mimic the physics at an event horizon. This analogue arises when a weak probe wave is unable to pass through an intense soliton, despite propagating at a different velocity. To date, these dynamics have been described in the time domain in terms of a soliton-induced refractive index barrier that modifies the velocity of the probe. Here we complete the physical description of fibre-optic event horizons by presenting a full frequency-domain description in terms of cascaded four-wave mixing between discrete single-frequency fields, and experimentally demonstrate signature frequency shifts using continuous wave lasers. Our description is confirmed by the remarkable agreement with experiments performed in the continuum limit, reached using ultrafast lasers. We anticipate that clarifying the description of fibre event horizons will significantly impact on the description of horizon dynamics and soliton interactions in photonics and other systems.
Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants.
Chung, Eunsook; Kim, Soo-Yong; Yi, So Young; Choi, Doil
2003-06-30
Osmotic stress-related genes were selected from an EST database constructed from 7 cDNA libraries from different tissues of the hot pepper. A full-length cDNA of Capsicum annuum dehydrin (Cadhn), a late embryogenesis abundant (lea) gene, was selected from the 5' single pass sequenced cDNA clones and sequenced. The deduced polypeptide has 87% identity with potato dehydrin C17, but very little identity with the dehydrin genes of other organisms. It contains a serine-tract (S-segment) and 3 conserved lysine-rich domains (K-segments). Southern blot analysis showed that 2 copies are present in the hot pepper genome. Cadhn was induced by osmotic stress in leaf tissues as well as by the application of abscisic acid. The RNA was most abundant in green fruit. The expression of several osmotic stress-related genes was examined and Cadhn proved to be the most abundantly expressed of these in response to osmotic stress.
Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure
Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...
2016-02-10
We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less
A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques
NASA Astrophysics Data System (ADS)
Verel, René; Baldus, Marc; Ernst, Matthias; Meier, Beat H.
1998-05-01
A filtering scheme for the selection of spin pairs (and larger spin clusters) under fast magic-angle spinning is proposed. The scheme exploits the avoided level crossing in spin pairs during an adiabatic amplitude sweep through the so-called HORROR recoupling condition. The advantages over presently used double-quantum filters are twofold. (i) The maximum theoretical filter efficiency is, due to the adiabatic variation, 100% instead of 73% as for transient methods. (ii) Since the filter does not rely on the phase-cycling properties of the double-quantum coherence, there is no need to obtain the full double-quantum intensity for all spins in the sample at one single point in time. The only important requirement is that all coupled spins pass through a two-spin state during the amplitude sweep. This makes the pulse scheme robust with respect to rf-amplitude missetting, rf-field inhomogeneity and chemical-shift offset.
Development of a carbon formation reactor for carbon dioxide reduction
NASA Technical Reports Server (NTRS)
Noyes, G.
1985-01-01
Applied research, engineering development, and performance evaluation were conducted on a process for formation of dense carbon by pyrolysis of methane. Experimental research showed that dense (0.7 to 1.6 g/cc bulk density and 1.6 to 2.2 g/cc solid density) carbon can be produced by methane pyrolysis in quartzwool-packed quartz tubes at temperatrues of 1100 to 1300 C. This result supports the condensation theory of pyrolytic carbon formation from gaseous hydrocarbons. A full-scale Breadboard Carbon Formation Reactor (CFR) was designed, fabricated, and tested at 1100 to 1200 C with 380 to 2280 sccm input flows of methane. Single-pass conversion of methane to carbon ranged from 60 to 100 percent, with 89 percent average conversion. Performance was projected for an Advanced Carbon Reactor Subsystem (ACRS) which indicated that the ACRS is a viable option for management of metabolic carbon on long-duration space missions.
A chimeric path to neuronal synchronization
NASA Astrophysics Data System (ADS)
Essaki Arumugam, Easwara Moorthy; Spano, Mark L.
2015-01-01
Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an "all or none" phenomenon, but can pass through an intermediate stage (chimera).
Li, Wen-Di; Chou, Stephen Y
2010-01-18
We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.
A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li
2018-03-01
Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galatola, G.; Jazrawi, R.P.; Bridges, C.
The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, whichmore » prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%).« less
Geocoding of AIRSAR/TOPSAR SAR Data
NASA Technical Reports Server (NTRS)
Holecz, Francesco; Lou, Yun-Ling; vanZyl, Jakob
1996-01-01
It has been demonstrated and recognized that radar interferometry is a promising method for the determination of digital elevation information and terrain slope from Synthetic Aperture Radar (SAR) data. An important application of Interferometric SAR (InSAR) data in areas with topographic variations is that the derived elevation and slope can be directly used for the absolute radiometric calibration of the amplitude SAR data as well as for scattering mechanisms analysis. On the other hand polarimetric SAR data has long been recognized as permitting a more complete inference of natural surfaces than a single channel radar system. In fact, imaging polarimetry provides the measurement of the amplitude and relative phase of all transmit and receive polarizations. On board the NASA DC-8 aircraft, NASA/JPL operates the multifrequency (P, L and C bands) multipolarimetric radar AIRSAR. The TOPSAR, a special mode of the AIRSAR system, is able to collect single-pass interferometric C- and/or L-band VV polarized data. A possible configuration of the AIRSAR/TOPSAR system is to acquire single-pass interferometric data at C-band VV polarization and polarimetric radar data at the two other lower frequencies. The advantage of this system configuration is to get digital topography information at the same time the radar data is collected. The digital elevation information can therefore be used to correctly calibrate the SAR data. This step is directly included in the new AIRSAR Integrated Processor. This processor uses a modification of the full motion compensation algorithm described by Madsen et al. (1993). However, the Digital Elevation Model (DEM) with the additional products such as local incidence angle map, and the SAR data are in a geometry which is not convenient, since especially DEMs must be referred to a specific cartographic reference system. Furthermore, geocoding of SAR data is important for multisensor and/or multitemporal purposes. In this paper, a procedure to geocode the new AIRSAR/TOPSAR data is presented. As an example an AIRSAR/TOPSAR image acquired in 1994 is geocoded and evaluated in terms of geometric accuracy.
1. West portal of Tunnel 3, contextual view to north ...
1. West portal of Tunnel 3, contextual view to north from milepost 537.6, 210mm lens. The single-lens searchlight-type block signals are Southern Pacific Common Standard signals, a type in use since the 1920s. Many of these have been replaced system-wide as a result of various mergers since the 1980s. Located in the Diamond Peak Wilderness of Willamette National Forest, Tunnel 3 passes beneath Pengra Pass. - Southern Pacific Railroad Natron Cutoff, Tunnel 3, Milepost 537.77, Odell Lake, Klamath County, OR
NASA Astrophysics Data System (ADS)
Wouden, Alex; Cimbala, John; Lewis, Bryan
2014-11-01
While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.
Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing
2018-06-01
A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.
Scattering of waves by impurities in precompressed granular chains.
Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu
2016-05-01
We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.
Chun, Dong Hyun; Kim, Do Young; Choi, Sun Kyu; Shin, Dong Ah; Ha, Yoon; Kim, Keung Nyun; Yoon, Do Heum; Yi, Seong
2018-04-01
This retrospective case control study aimed to evaluate the feasibility of using Estimation of Physiological Ability and Surgical Stress (E-PASS) and Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM) systems in patients undergoing spinal surgical procedures. Degenerative spine disease has increased in incidence in aging societies, as has the number of older adult patients undergoing spinal surgery. Many older adults are at a high surgical risk because of comorbidity and poor general health. We retrospectively reviewed 217 patients who had undergone spinal surgery at a single tertiary care. We investigated complications within 1 month after surgery. Criteria for both skin incision in E-PASS and operation magnitude in the POSSUM system were modified to fit spine surgery. We calculated the E-PASS and POSSUM scores for enrolled patients, and investigated the relationship between postoperative complications and both surgical risk scoring systems. To reinforce the predictive ability of the E-PASS system, we adjusted equations and developed modified E-PASS systems. The overall complication rate for spinal surgery was 22.6%. Forty-nine patients experienced 58 postoperative complications. Nineteen major complications, including hematoma, deep infection, pleural effusion, progression of weakness, pulmonary edema, esophageal injury, myocardial infarction, pneumonia, reoperation, renal failure, sepsis, and death, occurred in 17 patients. The area under the receiver operating characteristic curve (AUC) for predicted postoperative complications after spine surgery was 0.588 for E-PASS and 0.721 for POSSUM. For predicted major postoperative complications, the AUC increased to 0.619 for E-PASS and 0.842 for POSSUM. The AUC of the E-PASS system increased from 0.588 to 0.694 with the Modified E-PASS equation. The POSSUM system may be more useful than the E-PASS system for estimating postoperative surgical risk in patients undergoing spine surgery. The preoperative risk scores of E-PASS and POSSUM can be useful for predicting postoperative major complications. To enhance the predictability of the scoring systems, using of modified equations based on spine surgery-specific factors may help ensure surgical outcomes and patient safety. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Canada, Patricia Oxendine
2012-01-01
In response to the mandates of No Child Left Behind, (NCLB), educators across the country struggle to close the gaps between males and females. Some of the physiological differences existing between the male and female brain suggest support for single-gender instruction, which is on the rise within this country as well as other parts of the world.…
Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals
NASA Astrophysics Data System (ADS)
Uçar, N.
1997-03-01
The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.
van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W
2017-01-01
This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farstad, Jan Magnus Granheim; Netland, Øyvind; Welo, Torgeir
2017-10-01
This paper presents the results from a second series of experiments made to study local plastic deformations of a complex, hollow aluminium extrusion formed in roll bending. The first experimental series utilizing a single step roll bending sequence has been presented at the ESAFORM 2016 conference by Farstad et. al. In this recent experimental series, the same aluminium extrusion was formed in incremental steps. The objective was to investigate local distortions of the deformed cross section as a result of different number of steps employed to arrive at the final global shape of the extrusion. Moreover, the results between the two experimental series are compared, focusing on identifying differences in both the desired and the undesired deformations taking place as a result of bending and contact stresses. The profiles formed through multiple passes had less undesirable local distortions of the cross-section than the profiles that were formed in a single pass. However, the springback effect was more pronounced, meaning that the released radii of the profiles were higher.
PASS2: an automated database of protein alignments organised as structural superfamilies.
Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan
2004-04-02
The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html
Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction
Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon
2016-01-01
The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503
Combat Search and Rescue: Restoring Promise to a Sacred Assurance
2017-05-01
portion generally starts at the Syrian-Saudi-Iraq tri-border then runs southeast, passing just west of Rafha, then goes south to pass just west of...chord rotor blades . They should marginally improve lift and speed. Source: HH-60G data drawn from author’s experience flying and operating the aircraft...totaling 18 airframes – will arrive between 2019 and 2021.64 Full rate production (FRP) will run from 2023 through 2029.65 If the HH-60Gs get upgraded
Centerline pavement markings on two-lane mountain highways.
DOT National Transportation Integrated Search
1983-01-01
The Virginia Department of Highways and Transportation uses a lane marking designated mountain pavement marking (MPM) on two-lane highways in mountainous areas. This special marking consists of a single broken yellow line supplemented with "PASS WITH...
Predicting Thermal Behavior of Secondary Organic Aerosols
Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...
Synthesis and Characterization of a New Modification of the Quasi-Low-Dimensional Compound KMo 4O 6
NASA Astrophysics Data System (ADS)
Ramanujachary, K. V.; Greenblatt, D. M.; Jones, E. B.; McCarroll, W. H.
1993-01-01
Prismatic single crystals, up to 3 mm in length, of a third modification of KMo4O6 have been prepared by electrolysis of a melt with a high ratio of K2MoO4 to MoO3. Single-crystal X-ray diffraction analysis shows that the structure conforms more closely than the other two modifications to that reported originally for NaMo4O6. When current is passed parallel to the tetragonal c axis (i.e., parallel to the trans-edge-sharing chains of Mo6 octahedra) the compound displays metallic conductivity down to 100 K, where a broad transition to semiconducting behavior occurs. If the current is passed perpendicular to the c axis the conductivity is approximately a factor of 5 lower. Magnetic susceptibility measurements on a randomly oriented collection of crystals showed Pauli paramagnetic behavior with a small Curie tail at low temperatures.
Ye, Ken; Singh, Parminder J
2014-10-01
The normal labrum is crucial to the biomechanical function of the hip joint, not only increasing the surface area and depth of the acetabulum but also maintaining a suction seal to assist in normal synovial fluid flow from the peripheral to the central compartment. Simple loop suture repairs of the labrum may evert the labrum, thus losing the optimal seal, as well as causing abrasion of the articular cartilage. Vertical mattress suture and labral base fixation techniques aim to leave the free edge of the labrum intact and undisturbed, therefore improving the contact of the labrum to the femoral head and neck to improve the seal of the acetabulum. We aim to describe a double-stranded single-pass vertical mattress suture technique that may allow greater versatility to the surgeon in repairing thinner labrums while still achieving a free and continuous free edge.
Cooling arrangement for a tapered turbine blade
Liang, George
2010-07-27
A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akulov, V A; Kablukov, S I; Babin, Sergei A
2012-02-28
This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less
Rapid and efficient detection of single chromophore molecules in aqueous solution
NASA Astrophysics Data System (ADS)
Li, Li-Qiang; Davis, Lloyd M.
1995-06-01
The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.
Zaidman, Jeffrey S; Frederick, William G; Furth, Emma E; Su, Chinyu G; Ginsberg, Gregory G
2006-10-01
The multibite biopsy forceps is intended for consecutive acquisition of numerous tissue specimens with a single pass. The Pelican multibite forceps is equipped with a sleeve for tissue retention that allows up to 6 specimens to be obtained with each pass of the device through the accessory channel. Reducing the need for device exchange could decrease the total procedure time for colon cancer surveillance in patients with longstanding inflammatory bowel disease (IBD). The aim of this study was to evaluate a new multibite biopsy forceps in comparison with a standard double-bite forceps. Prospective randomized animal model trial. Multicenter university and community hospitals. By using a live porcine model, multiple colonoscopic biopsy specimens were obtained with both the Pelican multibite forceps and the Radial Jaw 3 (RJ3) double-bite forceps to mimic colorectal cancer surveillance in patients with IBD. Six biopsy specimens were obtained with each of 6 passes when using the Pelican forceps, and 2 biopsy specimens were obtained with each of 18 passes when using the RJ3 forceps. All trials were timed. Two independent pathologists blinded to the forceps used evaluated the specimens. Tissue acquisition when using the Pelican multibite forceps was significantly faster than with a standard double-bite forceps. The devices compared equivalently for specimen retention and quality. The operator could not be blinded to the devices used. This study uses an animal model to extrapolate how the devices might perform in human use. These findings support the evaluation of the Pelican forceps for colon cancer surveillance in patients with longstanding IBD.
AORSA full wave calculations of helicon waves in DIII-D and ITER
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2018-06-01
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.
AORSA full wave calculations of helicon waves in DIII-D and ITER
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola; ...
2018-04-11
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
AORSA full wave calculations of helicon waves in DIII-D and ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
An analysis of particle track effects on solid mammalian tissues
NASA Technical Reports Server (NTRS)
Todd, P.; Clarkson, T. W. (Principal Investigator)
1992-01-01
Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.
Ward, David L.; O'neill, Matthew W.; Ka'apu-Lyons, Cassie
2015-01-01
Electrofishing is commonly used when renovating small streams to remove nuisance fishes but the likelihood of complete eradication of unwanted species, particularly warm-water fishes, is unknown. In October of 2008, we electrofished Bonita Creek, a small stream with base flows (<0.56 m3/s) in southern Arizona, and then treated the stream with rotenone to kill all of the remaining fish and quantify the effectiveness of single and multiple-pass electro fishing. Six, 100-m transects were electro fished on three consecutive days followed by a single treatment with rotenone. Fish caught using electrofishing were identified, counted and removed from each transect daily and then compared to numbers of dead fish collected during the subsequent rotenone application. Electrofishing effectiveness was highly variable among transects. Single-pass electrofishing caught an average of 23% (95% CI=5 to 40%) of the fish present, and three-pass electrofishing on consecutive days caught on average 55% (95% CI=28 to 83%) of the fish in each transect. Native Arizona fishes were more susceptible to electrofishing (77 % captured) than non-native species (54% captured), though native fish were rare. Transects in Bonita Creek averaged 3.6±1.5 m wide and 0.25±0.20 m deep (max depth 1.2 m). Bonita Creek is a small first-order stream which exhibits ideal conditions for backpack electrofishing, yet we captured a relatively small percentage of the fish present. This suggests that complete removal of non-native warm-water fishes using backpack electrofishing is not likely to be successful, especially in larger more complex streams.
Technology optimization techniques for multicomponent optical band-pass filter manufacturing
NASA Astrophysics Data System (ADS)
Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.
2016-04-01
Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.
Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm
NASA Astrophysics Data System (ADS)
Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.
2018-03-01
An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.
Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis
1988-12-01
Figure 5-10. The Linearized Single-Unit Vehicle Model ............................... 41 Figure 5-11. Interpretation of the Single-Unit Model...The starting point for the driver modelling research conducted under this project was a linear preview control model originally proposed by MacAdam 1...regardless of its origin, can pass at least the elementary validation test of exhibiting "cross-over model"-like- behavior in the vicinity of its
33 CFR 66.10-15 - Aids to navigation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... may be used singly in staggered fashion on alternate sides of the channel provided they are spaced at... should pass between the buoys. (d) Where there is no well-defined channel or when a body of water is...
33 CFR 66.10-15 - Aids to navigation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... may be used singly in staggered fashion on alternate sides of the channel provided they are spaced at... should pass between the buoys. (d) Where there is no well-defined channel or when a body of water is...
Renal Replacement Therapy in Support of Combat Operations
2008-07-01
potentially cardiotoxic electro- lyte abnormalities ( hyperkalemia , hyper- phosphatemia, hypocalcemia). AKI is ex- acerbated further by hypovolemia...and is inefficient at providing metabolic control for highly catabolic or hyperkalemia pa- tients. Conventional single-pass dialysis sys- tems are the
Seasonal dependence of large-scale Birkeland currents
NASA Technical Reports Server (NTRS)
Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.
1981-01-01
Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.
The effects and outcomes of electrolyte disturbances and asphyxia on newborns hearing
Liang, Chun; Hong, Qi; Jiang, Tao-Tao; Gao, Yan; Yao, Xiao-Fang; Luo, Xiao-Xing; Zhuo, Xiu-Hui; Shinn, Jennifer B.; Jones, Raleigh O.; Zhao, Hong-Bo; Lu, Guang-Jin
2013-01-01
Objective To determine the effect of electrolyte disturbances (ED) and asphyxia on infant hearing and hearing outcomes. Study Design We conducted newborn hearing screening with transient evoked otoacoustic emission (TEOAE) test on a large scale (>5,000 infants). The effects of ED and asphyxia on infant hearing and hearing outcomes were evaluated. Result The pass rate of TEOAE test was significantly reduced in preterm infants with ED (83.1%, multiple logistic regression analysis: P<0.01) but not in full-term infants with ED (93.6%, P=0.41). However, there was no significant reduction in the pass rate in infants with asphyxia (P=0.85). We further found that hypocalcaemia significantly reduced the pass rate of TEOAE test (86.8%, P<0.01). In the follow-up recheck at 3 months of age, the pass rate remained low (44.4%, P<0.01). Conclusion ED is a high-risk factor for preterm infant hearing. Hypocalcaemia can produce more significant impairment with a low recovery rate. PMID:23648318
Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].
Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph
2018-04-01
Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.
NASA Technical Reports Server (NTRS)
Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)
1985-01-01
A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.
Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.
Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P
2016-08-01
In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee
2018-01-01
A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.
Computational simulation of weld microstructure and distortion by considering process mechanics
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.
2009-05-01
Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.
Pass-band reconfigurable spoof surface plasmon polaritons
NASA Astrophysics Data System (ADS)
Zhang, Hao Chi; He, Pei Hang; Gao, Xinxin; Tang, Wen Xuan; Cui, Tie Jun
2018-04-01
In this paper, we introduce a new scheme to construct the band-pass tunable filter based on the band-pass reconfigurable spoof surface plasmon polaritons (SPPs), whose cut-off frequencies at both sides of the passband can be tuned through changing the direct current (DC) bias of varactors. Compared to traditional technology (e.g. microstrip filters), the spoof SPP structure can provide more tight field confinement and more significant field enhancement, which is extremely valuable for many system applications. In order to achieve this scheme, we proposed a specially designed SPP filter integrated with varactors and DC bias feeding structure to support the spoof SPP passband reconfiguration. Furthermore, the full-wave simulated result verifies the outstanding performance on both efficiency and reconfiguration, which has the potential to be widely used in advanced intelligent systems.
Sequencing thousands of single-cell genomes with combinatorial indexing.
Vitak, Sarah A; Torkenczy, Kristof A; Rosenkrantz, Jimi L; Fields, Andrew J; Christiansen, Lena; Wong, Melissa H; Carbone, Lucia; Steemers, Frank J; Adey, Andrew
2017-03-01
Single-cell genome sequencing has proven valuable for the detection of somatic variation, particularly in the context of tumor evolution. Current technologies suffer from high library construction costs, which restrict the number of cells that can be assessed and thus impose limitations on the ability to measure heterogeneity within a tissue. Here, we present single-cell combinatorial indexed sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single-cell libraries for detection of somatic copy-number variants. We constructed libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex tissue and two human adenocarcinomas, and obtained a detailed assessment of subclonal variation within a pancreatic tumor.
The Performance Evaluation of Single Pass Thin Lift Bituminous Overlays
DOT National Transportation Integrated Search
1992-06-01
In the mid-1980s, the Illinois Department of Transportation (IDOT) found itself challenged to maintain an aging highway network at an acceptable level of service on a limited financial base. This made programming rehabilitations for the rural highway...
Rep. McClintock, Tom [R-CA-4
2013-02-25
Senate - 05/13/2013 Received in the Senate and Read twice and referred to the Committee on Finance. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,
2014-01-01
Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.
Short-term nanostructural effects of high radiofrequency treatment on the skin tissues of rabbits.
Choi, Samjin; Cheong, Youjin; Shin, Jae-Ho; Lee, Hui-Jae; Lee, Gi-Ja; Choi, Seok Keun; Jin, Kyung-Hyun; Park, Hun-Kuk
2012-09-01
The aim of this study is to quantitatively investigate the short-term effects of RF tissue-tightening treatment in in vivo rabbit dermal collagen fibrils. These effects were measured at different energy levels and at varying pass procedures on the nanostructural response level using histology and AFM analysis. Each rabbit was divided into one of seven experimental groups, which included the following: control group, and six RF group according to RF energy (20 W and 40 W) and three RF pass procedures. The progressive changes in the diameter and D-periodicity of rabbit dermal collagen fibrils were investigated in detail over a 7-day post-treatment period. The dermal tissues treated with the RF tissue-tightening device showed more prominent inflammatory responses with inflammatory cell ingrowth compared to the control. This effect showed more prominent with the passage of day after treatment. Although an increase in the diameter and D-periodicity of dermal collagen fibrils was identified immediately after the RF treatment, a decrease in the morphology of dermal collagen fibrils continued until post-operative day 7. Furthermore, RF treatment led to the loss of distinct borders. Increases in RF energy with the same pass procedure, as well as an increase in the number of RF passes, increased the occurrence of irreversible collagen fibril injury. A multiple-pass treatment at low energy rather than a single-pass treatment at high energy showed a large amount of collagen fibrils contraction at the nanostructural level.
2017-08-01
accessories for mounting e. Laser power supply f. TEC power supply 12. Optical filters from SEMROCK ®, THORLABS Inc., EDMUND OPTICS® a. 532-nm, laser...line filter ( SEMROCK ®) b. 550-nm, hard-coated, short-pass filter (THORLABS Inc.) c. 532-nm long-pass filter ( SEMROCK ®) d. 808-nm laser-line filter... SEMROCK ®) e. 850-nm /10-nm full width at half maximum (FWHM) bandpass filter ( SEMROCK ®) f. 980-nm bandpass filter ( SEMROCK ®) g. 976-nm laser-line
Characterization of single-file diffusion in one-dimensional dusty plasma
NASA Astrophysics Data System (ADS)
Theisen, W. L.; Sheridan, T. E.
2010-11-01
Single-file diffusion occurs in one-dimensional systems when particles cannot pass each other and the mean-squared displacement (msd) of these particles increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^1/2. One-dimensional dusty plasma rings have been created under strongly coupled, over-damped conditions. Particle position data from these rings will be analyzed to determine the scaling of the msd with time. Results will be compared with predictions of single-file diffusion theory.
Translocation of single-stranded DNA through single-walled carbon nanotubes.
Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin
2010-01-01
We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.
Characterizing uncertain sea-level rise projections to support investment decisions.
Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions.
Characterizing uncertain sea-level rise projections to support investment decisions
Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions. PMID:29414978
Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Mays, Matthew M; Rapley, Jay H
2010-03-01
To evaluate the strength and suture-tendon interface security of various suture anchors triply and doubly loaded with ultrahigh-molecular weight polyethylene-containing sutures and to evaluate the relative effectiveness of placing these anchors in a single-row or double-row arrangement by cyclic loading and then destructive testing. The infraspinatus muscle was reattached to the original humeral footprint by use of 1 of 5 different repair patterns in 40 bovine shoulders. Two single-row repairs and three double-row repairs were tested. High-strength sutures were used for all repairs. Five groups were studied: group 1, 2 triple-loaded screw suture anchors in a single row with simple stitches; group 2, 2 triple-loaded screw anchors in a single row with simple stitches over a fourth suture passed perpendicularly ("rip-stop" stitch); group 3, 2 medial and 2 lateral screw anchors with a single vertical mattress stitch passed from the medial anchors and 2 simple stitches passed from the lateral anchors; group 4, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors capturing the medial sutures in a "crisscross" spanning stitch; and group 5, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors creating a "suture-bridge" stitch. The specimens were cycled between 10 and 180 N at 1.0 Hz for 3,500 cycles or until failure. Endpoints were cyclic loading displacement (5 and 10 mm), total displacement, and ultimate failure load. A single row of triply loaded anchors was more resistant to stretching to a 5- and 10-mm gap than the double-row repairs with or without the addition of a rip-stop suture (P < .05). The addition of a rip-stop stitch made the repair more resistant to gap formation than a double row repair (P < .05). The crisscross double row created by 2 medial double-loaded suture anchors and 2 lateral push-in anchors stretched more than any other group (P < .05). Double-row repairs with either crossing sutures or 4 separate anchor points were more likely to fail (5- or 10-mm gap) than a single-row repair loaded with 3 simple sutures. The triple-loaded anchors with ultrahigh-molecular weight polyethylene-containing sutures placed in a single row were more resistant to stretching than the double-row groups. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.
Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael
2015-01-01
Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.
NASA Astrophysics Data System (ADS)
Kobayashi, Eiichi; Seo, Junya; Nambu, Akira; Mase, Kazuhiko
2007-09-01
We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be E/Δ E = 20. This value is better than that of the miniature single-pass CMA ( E/Δ E = 12) that was used in the previous APECS analyzer.
Cheng, Q; Wonfor, A; Wei, J L; Penty, R V; White, I H
2014-09-15
For what we believe is the first time, the feasibility of large-port-count nanosecond-reconfiguration-time optical switches is demonstrated using a hybrid approach, where Mach-Zehnder interferometric (MZI) switches provide low-loss, high-speed routing with short semiconductor optical amplifiers (SOAs) being integrated to enhance extinction. By repeatedly passing signals through a monolithic hybrid dilated 2×2 switch module in a recirculating loop, the potential performance of high-port-count switches using the hybrid approach is demonstrated. Experimentally, a single pass switch penalty of only 0.1 dB is demonstrated for the 2×2 module, while even after seven passes through the switch, equivalent to a 128×128 router, a penalty of only 2.4 dB is recorded at a data rate of 10 Gb/s.
Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.
Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less
Nawasreh, Zakariya; Logerstedt, David; Cummerm, Kathleen; Axe, Michael J.; Risberg, May Arna; Snyder-Mackler, Lynn
2017-01-01
Background The variability in outcomes after anterior cruciate ligament reconstruction (ACLR) might be related to the criteria that are used to determine athletes’ readiness to return to their preinjury activity level. A battery of return-to-activity criteria (RTAC) that emphasize normal knee function and movement symmetry has been instituted to quantitatively determine athletes’ readiness to return to preinjury activities. Purpose To investigate performance-based and patient-reported measures at 12 and 24 months after ACLR between patients who passed or failed RTAC at 6 months after ACLR. Study Design Cohort study; Level of evidence, 2. Methods A total of 108 patients who had participated in International Knee Documentation Committee level 1 or 2 sports activities completed RTAC testing at 6, 12, and 24 months after surgery. The RTAC included the isometric quadriceps strength index (QI), 4 single-legged hop tests, the Knee Outcome Survey–activities of daily living subscale (KOS-ADLS), and the global rating scale of perceived function (GRS). Patients who scored ≥90% on all RTAC were classified as the pass group, and those who scored <90% on any RTAC were classified as the fail group. At 12- and 24-month follow-ups, patients were asked if they had returned to the same preinjury activity level. Results At the 6-month follow-up, there were 48 patients in the pass group and 47 in the fail group. At the 12-month follow-up, 31 patients (73.8%) from the pass group and 15 patients (39.5%) from the fail group passed RTAC, and at the 24-month follow-up, 25 patients (75.8%) from the pass group and 14 patients (51.9%) from the fail group passed RTAC. The rate of return to activities in the pass group was 81% and 84% at 12 and 24 months after ACLR, respectively, compared with only 44% and 46% in the fail group (P ≤ .012), respectively; however, some patients in the fail group participated in preinjury activities without being cleared by their therapists. At 12 and 24 months, 60.5% and 48.1% of patients continued to fail again on the criteria, respectively. A statistically significant group × time interaction was found for the single hop and 6-m timed hop limb symmetry indices (LSIs) (P ≤ .037), with only the fail group demonstrating a significant improvement over time. A main effect of group was detected for the QI and the crossover hop and triple hop LSIs (P <.01), with patients in the pass group demonstrating higher performance. A main effect of time was detected for the crossover hop and triple hop LSIs and the GRS, with improvements seen in both groups (P <.05). Conclusion Patients who passed the RTAC early after ACLR were more likely to demonstrate normal knee function and movement symmetry at 12 and 24 months postoperatively, while patients who failed the RTAC early were more likely to demonstrate impaired knee function and movement asymmetry at 12- and 24-month follow-ups. Patients in the pass group had a higher rate of return to their preinjury activity level compared with those in the fail group. A group of patients chose to return to their preinjury activities, even though they were functionally not ready. PMID:28125899
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yunhua; Jones, Susanne B.; Biddy, Mary J.
2012-08-01
This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealedmore » that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.« less
Subcutaneous ICD screening with the Boston Scientific ZOOM programmer versus a 12-lead ECG machine.
Chang, Shu C; Patton, Kristen K; Robinson, Melissa R; Poole, Jeanne E; Prutkin, Jordan M
2018-02-24
The subcutaneous implantable cardioverter-defibrillator (S-ICD) requires preimplant screening to ensure appropriate sensing and reduce risk of inappropriate shocks. Screening can be performed using either an ICD programmer or a 12-lead electrocardiogram (ECG) machine. It is unclear whether differences in signal filtering and digital sampling change the screening success rate. Subjects were recruited if they had a transvenous single-lead ICD without pacing requirements or were candidates for a new ICD. Screening was performed using both a Boston Scientific ZOOM programmer (Marlborough, MA, USA) and General Electric MAC 5000 ECG machine (Fairfield, CT, USA). A pass was defined as having at least one lead that fit within the screening template in both supine and sitting positions. A total of 69 subjects were included and 27 sets of ECG leads had differing screening results between the two machines (7%). Of these sets, 22 (81%) passed using the ECG machine but failed using the programmer and five (19%) passed using the ECG machine but failed using the programmer (P < 0.001). Four subjects (6%) passed screening using the ECG machine but failed using the programmer. No subject passed screening with the programmer but failed with the ECG machine. There can be occasional disagreement in S-ICD patient screening between an ICD programmer and ECG machine, all of whom passed with the ECG machine but failed using the programmer. On a per lead basis, the ECG machine passes more subjects. It is unknown what the inappropriate shock rate would be if an S-ICD was implanted. Clinical judgment should be used in borderline cases. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathias, C.J.; Welch, M.J.; Raichle, M.E.
1990-03-01
Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone) (Cu-PTSM), copper(II) pyruvaldehyde bis(N4-dimethylthiosemicarbazone) (Cu-PTSM2), and copper(II) ethylglyoxal bis(N4-methylthiosemicarbazone) (Cu-ETSM), have been proposed as PET tracers for cerebral blood flow (CBF) when labeled with generator-produced 62Cu (t1/2 = 9.7 min). To evaluate the potential of Cu-PTSM for CBF PET studies, baboon single-pass cerebral extraction measurements and PET imaging were carried out with the use of 67Cu (t1/2 = 2.6 days) and 64Cu (t1/2 = 12.7 hr), respectively. All three chelates were extracted into the brain with high efficiency. There was some clearance of all chelates in the 10-50-sec time frame and Cu-PTSM2 continued to clear. Cu-PTSM andmore » Cu-ETSM have high residual brain activity. PET imaging of baboon brain was carried out with the use of (64Cu)-Cu-PTSM. For comparison with the 64Cu brain image, a CBF (15O-labeled water) image (40 sec) was first obtained. Qualitatively, the H2(15)O and (64Cu)-Cu-PTSM images were very similar; for example, a comparison of gray to white matter uptake resulted in ratios of 2.42 for H2(15)O and 2.67 for Cu-PTSM. No redistribution of 64Cu was observed in 2 hr of imaging, as was predicted from the single-pass study results. Quantitative determination of blood flow using Cu-PTSM showed good agreement with blood flow determined with H2(15)O. This data suggests that (62Cu)-Cu-PTSM may be a useful generator-produced radiopharmaceutical for blood flow studies with PET.« less
Kumar, S Chaitanya; Casals, J Canals; Wei, Junxiong; Ebrahim-Zadeh, M
2015-10-19
We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on β-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.
Dual-contrast agent photon-counting computed tomography of the heart: initial experience.
Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir
2017-08-01
To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.
Biological nanopore MspA for DNA sequencing
NASA Astrophysics Data System (ADS)
Manrao, Elizabeth A.
Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore. Using a DNA polymerase, DNA strands are stepped through MspA one nucleotide at a time. The steps are observable as distinct levels on the ionic-current time-trace and are related to the DNA sequence. These experiments overcome the two fundamental challenges to realizing MspA nanopore sequencing and pave the way to the development of a commercial technology.
Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study.
Bailey, Michael; Cunitz, Bryan; Dunmire, Barbrina; Paun, Marla; Lee, Franklin; Ross, Susan; Lingeman, James; Coburn, Michael; Wessells, Hunter; Sorensen, Mathew; Harper, Jonathan
2014-09-03
One in 11 Americans has experienced kidney stones, with a 50% average recurrence rate within 5-10 years. Ultrasonic propulsion (UP) offers a potential method to expel small stones or residual fragments before they become a recurrent problem. Reported here are preliminary findings from the first investigational use of UP in humans. The device uses a Verasonics ultrasound engine and Philips HDI C5-2 probe to generate real-time B-mode imaging and targeted "push" pulses on demand. There are three arms of the study: de novo stones, post-lithotripsy fragments, and the preoperative setting. A pain questionnaire is completed prior to and following the study. Movement is classified based on extent. Patients are followed for 90 days. Ten subjects have been treated to date: three de novo , five post-lithotripsy, and two preoperative. None of the subjects reported pain associated with the treatment or a treatment related adverse event, beyond the normal discomfort of passing a stone. At least one stone was moved in all subjects. Three of five post-lithotripsy subjects passed a single or multiple stones within 1-2 weeks following treatment; one subject passed two (1-2 mm) fragments before leaving clinic. In the pre-operative studies we successfully moved 7 - 8 mm stones. In four subjects, UP revealed multiple stone fragments where the clinical image and initial ultrasound examination indicated a single large stone.
Organic and inorganic priority pollutants codisposed with municipal solid waste (MSW) in ten pilot-scale simulated landfill columns, operated under single pass leaching or leachate recycle, were capable of being attenuated by microbially-mediated landfill stabilization processes....
Fast single-pass alignment and variant calling using sequencing data
USDA-ARS?s Scientific Manuscript database
Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...
Tehranchi, Amirhossein; Kashyap, Raman
2009-10-12
A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2017-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
System and Method for Generating a Frequency Modulated Linear Laser Waveform
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)
2014-01-01
A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.
Formation and evolution of ripples on ion-irradiated semiconductor surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, M.; Wu, J. H.; Ye, W.
We have examined the formation and evolution of ripples on focused-ion-beam (FIB) irradiated compound semiconductor surfaces. Using initially normal-incidence Ga{sup +} FIB irradiation of InSb, we tuned the local beam incidence angle (θ{sub eff}) by varying the pitch and/or dwell time. For single-pass FIB irradiation, increasing θ{sub eff} induces morphological evolution from pits and islands to ripples to featureless surfaces. Multiple-pass FIB irradiation of the rippled surfaces at a fixed θ{sub eff} leads to island formation on the ripple crests, followed by nanorod (NR) growth. This ripple-NR transition provides an alternative approach for achieving dense arrays of NRs.
Efficient third harmonic generation of a CW-fibered 1.5 µm laser diode
NASA Astrophysics Data System (ADS)
Philippe, Charles; Chea, Erick; Nishida, Yoshiki; du Burck, Frédéric; Acef, Ouali
2016-10-01
We report on frequency tripling of CW-Telecom laser diode using two cascaded PPLN ridge nonlinear crystals, both used in single-pass configuration. All optical components used for this development are fibered, leading to a very compact and easy to use optical setup. We have generated up to 290 mW optical power in the green range, from 800 mW only of infrared power around 1.54 µm. This result corresponds to an optical conversion efficiency P 3 ω / P ω > 36 %. To our knowledge, this is best value ever demonstrated up today for a CW-third harmonic generation in single-pass configuration. This frequency tripling experimental setup was tested over more than 2 years of continuous operation, without any interruption. The compactness and the reliability of our device make it very suitable as a transportable optical oscillator. In particular, it paves the way for embedded applications thanks to the high level of long-term stability of the optical alignments.
NASA Astrophysics Data System (ADS)
Wang, Chengpeng; Li, Fuguo; Liu, Juncheng
2018-04-01
The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.
Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica
Ferrigno, Jane G.; Mullins, Jerry L.; Stapleton, Jo Anne; Bindschadler, Robert; Scambos, Ted A.; Bellisime, Lynda B.; Bowell, Jo-Ann; Acosta, Alex V.
1994-01-01
Fifteen 1: 250000 and one 1: 1000 000 scale Landsat Thematic Mapper (TM) image mosaic maps are currently being produced of the West Antarctic ice streams on the Shirase and Siple Coasts. Landsat TM images were acquired between 1984 and 1990 in an area bounded approximately by 78°-82.5°S and 120°- 160° W. Landsat TM bands 2, 3 and 4 were combined to produce a single band, thereby maximizing data content and improving the signal-to-noise ratio. The summed single band was processed with a combination of high- and low-pass filters to remove longitudinal striping and normalize solar elevation-angle effects. The images were mosaicked and transformed to a Lambert conformal conic projection using a cubic-convolution algorithm. The projection transformation was controled with ten weighted geodetic ground-control points and internal image-to-image pass points with annotation of major glaciological features. The image maps are being published in two formats: conventional printed map sheets and on a CD-ROM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winchell, H.S.; Horst, W.D.; Braun, L.
1980-10-01
The kinetics of N-isopropyl-p-(/sup 123/I)iodoamphetamine in rat brains were determined by serial measurements of brain uptake index (BUI) after intracarotid injection; also studied were its effects on amine uptake and release in rat's brain cortical synaptosomes; and its in vivo distribution in the dog and monkey. No specific localization in brain nuclei of the dog was seen, but there was progressive accumulation in the eyes. Rapid initial brain uptake in the ketamine-sedated monkey was noted, and further slow brain uptake occurred during the next 20 min but without retinal localization. High levels of brain activity were maintained for several hours.more » The quantitative initial single-pass clearance of the agent in the brain suggests its use in evaluation of regional brain perfusion. Its interaction with brain amine-binding sites suggests its possible application in studies of cerebral amine metabolism.« less
Mid-infrared 1 W hollow-core fiber gas laser source.
Xu, Mengrong; Yu, Fei; Knight, Jonathan
2017-10-15
We report the characteristics of a 1 W hollow-core fiber gas laser emitting CW in the mid-IR. Our system is based on an acetylene-filled hollow-core optical fiber guiding with low losses at both the pump and laser wavelengths and operating in the single-pass amplified spontaneous emission regime. Through systematic characterization of the pump absorption and output power dependence on gas pressure, fiber length, and pump intensity, we determine that the reduction of pump absorption at high pump flux and the degradation of gain performance at high gas pressure necessitate the use of increased gain fiber length for efficient lasing at higher powers. Low fiber attenuation is therefore key to efficient high-power laser operation. We demonstrate 1.1 W output power at a 3.1 μm wavelength by using a high-power erbium-doped fiber amplifier pump in a single-pass configuration, approximately 400 times higher CW output power than in the ring cavity previously reported.
Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry
NASA Technical Reports Server (NTRS)
Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto
2006-01-01
We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.
Mechanisms for the epigenetic inheritance of stress response in single cells.
Xue, Yuan; Acar, Murat
2018-05-30
Cells have evolved to dynamically respond to different types of environmental and physiological stress conditions. The information about a previous stress stimulus experience by a mother cell can be passed to its descendants, allowing them to better adapt to and survive in new environments. In recent years, live-cell imaging combined with cell-lineage tracking approaches has elucidated many important principles that guide stress inheritance at the single-cell and population level. In this review, we summarize different strategies that cells can employ to pass the 'memory' of previous stress responses to their descendants. Among these strategies, we focus on a recent discovery of how specific features of Msn2 nucleo-cytoplasmic shuttling dynamics could be inherited across cell lineages. We also discuss how stress response can be transmitted to progenies through changes in chromatin and through partitioning of anti-stress factors and/or damaged macromolecules between mother and daughter cells during cell division. Finally, we highlight how emergent technologies will help address open questions in the field.
Plasma skin regeneration technology.
Bogle, M A
2006-09-01
Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.
Evaluation of spatial filtering on the accuracy of wheat area estimate
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.
1982-01-01
A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.
Chan, Winnie Kwai Yu; Hui, Wun Fung
2016-10-01
High-dose methotrexate therapy (HDMTX) is a common form of chemotherapy used in children with high-grade malignancy such as osteosarcoma. Treatment with HDMTX requires careful monitoring of drug levels with folinic acid (leucovorin) rescue therapy. Toxicity from methotrexate is not uncommon and sometimes causes significant morbidity and mortality. We report an 11-year-old child whose 24-h post-HDMTX serum level was 651.8 μmol/L (recommended level <20 μmol/L), which was complicated by septic shock and progressive renal and liver failure. As carboxypeptidase (glucarpidase) was not available locally, she was treated with the sequential use of charcoal hemoperfusion (CHP) and single-pass albumin dialysis (SPAD). The patient recovered without complications. Both liver and renal function recovered with no significant late sequelae. CHP and SPAD are effective extracorporeal methods of removing methotrexate. They provide alternative treatment options for critical care nephrologists in the management of methotrexate toxicity.
Identifying single bases in a DNA oligomer with electron tunnelling.
Huang, Shuo; He, Jin; Chang, Shuai; Zhang, Peiming; Liang, Feng; Li, Shengqin; Tuchband, Michael; Fuhrmann, Alexander; Ros, Robert; Lindsay, Stuart
2010-12-01
It has been proposed that single molecules of DNA could be sequenced by measuring the physical properties of the bases as they pass through a nanopore. Theoretical calculations suggest that electron tunnelling can identify bases in single-stranded DNA without enzymatic processing, and it was recently experimentally shown that tunnelling can sense individual nucleotides and nucleosides. Here, we report that tunnelling electrodes functionalized with recognition reagents can identify a single base flanked by other bases in short DNA oligomers. The residence time of a single base in a recognition junction is on the order of a second, but pulling the DNA through the junction with a force of tens of piconewtons would yield reading speeds of tens of bases per second.
Method for thermal processing alumina-enriched spinel single crystals
Jantzen, Carol M.
1995-01-01
A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly.
Characterization of directionally solidified lead chloride
NASA Technical Reports Server (NTRS)
Singh, Narsingh Bahadur; Duval, W. M. B.; Rosenthal, B. N.
1988-01-01
A directionally solidified PbCl2 material was prepared and analyzed and subsequently used to grow single crystals. It was found that silicon, halogens, sulfur, magnesium, and phosphorus were the hardest impurities to remove by the single-pass directional freezing. Single crystals grown from the purified material displayed good scattering beam quality and showed no absorption peaks between 0.30 to 20 microns. Direct photographic observations of the solid-liquid interface at several G/V (denoting the temperature gradient and the translation velocity, respectively) ratio values showed that, as the G/V ratio decreased, the interface varied from a smooth convex surface to dendritic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapleton, Mark; Liao, Guochun; Brokstein, Peter
2002-08-12
Collections of full-length nonredundant cDNA clones are critical reagents for functional genomics. The first step toward these resources is the generation and single-pass sequencing of cDNA libraries that contain a high proportion of full-length clones. The first release of the Drosophila Gene Collection Release 1 (DGCr1) was produced from six libraries representing various tissues, developmental stages, and the cultured S2 cell line. Nearly 80,000 random 5prime expressed sequence tags (EST) from these libraries were collapsed into a nonredundant set of 5849 cDNAs, corresponding to {approx}40 percent of the 13,474 predicted genes in Drosophila. To obtain cDNA clones representing the remainingmore » genes, we have generated an additional 157,835 5prime ESTs from two previously existing and three new libraries. One new library is derived from adult testis, a tissue we previously did not exploit for gene discovery; two new cap-trapped normalized libraries are derived from 0-22hr embryos and adult heads. Taking advantage of the annotated D. melanogaster genome sequence, we clustered the ESTs by aligning them to the genome. Clusters that overlap genes not already represented by cDNA clones in the DGCr1 were analyzed further, and putative full-length clones were selected for inclusion in the new DGC. This second release of the DGC (DGCr2) contains 5061 additional clones, extending the collection to 10,910 cDNAs representing >70 percent of the predicted genes in Drosophila.« less
NASA Technical Reports Server (NTRS)
Schairer, Edward; Kushner, Laura K.; Heineck, James T.
2013-01-01
Positions of vortices shed by a full-scale UH-60A rotor in forward flight were measured during a test in the National Full- Scale Aerodynamics Complex at NASA Ames Research Center. Vortices in a region near the tip of the advancing blade were visualized from two directions by Retro-Reflective Background-Oriented Schlieren (RBOS). Correspondence of points on the vortex in the RBOS images from both cameras was established using epipolar geometry. The object-space coordinates of the vortices were then calculated from the image-plane coordinates using stereo photogrammetry. One vortex from the tip of the blade that had most recently passed was visible in most of the data. The visibility of the vortices was greatest at high thrust and low advance ratios. At these favorable conditions, vortices from the most recent passages of all four blades were detected. The vortex positions were in good agreement with PIV data for a case where PIV measurements were also made. RBOS and photogrammetry provided measurements of the angle at which each vortex passed through the PIV plane.
One O'Clock, Two O'Clock, Three O'Clock Rock!
ERIC Educational Resources Information Center
Koontz, Elizabeth Duncan
1975-01-01
Considered the long period identified with the movement to bring women into full citizenship and participation at all social levels and the new effort to pass legislation that will grant women equal rights. (Author/RK)
Interferometric estimation of ice sheet motion and topography
NASA Technical Reports Server (NTRS)
Joughlin, Ian; Kwok, Ron; Fahnestock, Mark; Winebrenner, Dale; Tulaczyk, Slawek; Gogenini, Prasad
1997-01-01
With ERS-1/2 satellite radar interferometry, it is possible to make measurements of glacier motion with high accuracy and fine spatial resolution. Interferometric techniques were applied to map velocity and topography for several outlet glaciers in Greenland. For the Humboldt and Petermann glaciers, data from several adjacent tracks were combined to make a wide-area map that includes the enhanced flow regions of both glaciers. The discharge flux of the Petermann glacier upstream of the grounding line was estimated, thereby establishing the potential use of ERS-1/2 interferometric data for monitoring ice-sheet discharge. Interferograms collected along a single track are sensitive to only one component of motion. By utilizing data from ascending and descending passes and by making a surface-parallel flow assumption, it is possible to measure the full three-dimensional vector flow field. The application of this technique for an area on the Ryder glacier is demonstrated. Finally, ERS-1/2 interferograms were used to observe a mini-surge on the Ryder glacier that occurred in autumn of 1995.
Investigation on Microstructure and Mechanical Properties of ATIG welded alloy C-276 with Fe2O3 flux
NASA Astrophysics Data System (ADS)
Surve, Angad; Bhosage, Sharnappa; Mehta, Akshay; Srikanth, A.; Arivarasu, M.; Manikandan, M.; Gokulkumar, K.; Rajan, Deva. N.
2018-02-01
Alloy C-276 susceptible to hot cracking. The microsegregation occurs during solidification is the largely responsible for the hot cracking in the alloy. The present study investigates the microstructure and mechanical properties of alloy C-276 weld joint fabricated by ATIG welding technique. The macro examination was carried out assess the defects in the weld joints. Optical and scanning electron microscope examination was carried out to see the structural changes in the fusion zone. The tensile test was performed to evaluate the strength of the weld joints. The results show the defect free welding was achieved in the established process parameters. The macrograph shows the full depth of penetration was obtained in the single pass by the effect of Marangoni convection. Energy Dispersive X-ray spectroscopy (EDS) analysis illustrates the absence of microsegregation in the interdendritic zone. The tensile test shows the improved mechanical properties compared to the base metal.
Tough2{_}MP: A parallel version of TOUGH2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Wu, Yu-Shu; Ding, Chris
2003-04-09
TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less
AEOLUS mission: the latest preparations before launch
NASA Astrophysics Data System (ADS)
Culoma, A.; Elfving, A.; Meynart, R.; Straume, A.; Wernham, D.
2017-09-01
The European Space Agency is developing a direct detection Doppler Wind Lidar for measuring wind profiles from space. The main objective of Aeolus is to provide tropospheric and lower stratospheric wind profiles globally for the improvement of weather forecast on short and medium term. Aeolus data are expected to greatly contribute to weather and air quality monitoring and to scientific advances in atmospheric dynamics. The UV Lidar instrument, ALADIN, will deliver horizontally-projected single line-of-sight wind profiles from the Doppler shift of molecular and particle backscatter. The development of the AEOLUS mission passed a major milestone with the integration of the full instrument and its functional and performance tests in 2016 and a 6-month life test of the spare UV laser transmitter. The satellite has been assembled and has successfully been subjected to a programme of functional and environmental (vibration, acoustic, shock, EMC) tests. The preparation of thermal vacuum testing, including instrument performance in vacuum, is close to completion.
Holographic Optical Coherence Imaging of Rat Osteogenic Sarcoma Tumor Spheroids
NASA Astrophysics Data System (ADS)
Yu, Ping; Mustata, Mirela; Peng, Leilei; Turek, John J.; Melloch, Michael R.; French, Paul M. W.; Nolte, David D.
2004-09-01
Holographic optical coherence imaging is a full-frame variant of coherence-domain imaging. An optoelectronic semiconductor holographic film functions as a coherence filter placed before a conventional digital video camera that passes coherent (structure-bearing) light to the camera during holographic readout while preferentially rejecting scattered light. The data are acquired as a succession of en face images at increasing depth inside the sample in a fly-through acquisition. The samples of living tissue were rat osteogenic sarcoma multicellular tumor spheroids that were grown from a single osteoblast cell line in a bioreactor. Tumor spheroids are nearly spherical and have radial symmetry, presenting a simple geometry for analysis. The tumors investigated ranged in diameter from several hundred micrometers to over 1 mm. Holographic features from the tumors were observed in reflection to depths of 500-600 µm with a total tissue path length of approximately 14 mean free paths. The volumetric data from the tumor spheroids reveal heterogeneous structure, presumably caused by necrosis and microcalcifications characteristic of some human avascular tumors.
Using AORSA to simulate helicon waves in DIII-D
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Blazevski, D.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2015-12-01
Recent efforts have shown that helicon waves (fast waves at > 20ωci) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2018-01-31
California's NASA Armstrong Flight Research Center photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon will pass through Earth's shadow and take on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2018-01-31
California’s NASA Armstrong Flight Research Center’s photographer Carla Thomas takes photos on January 31 of the rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
Diederich, S; Padge, B; Vossas, U; Hake, R; Eidt, S
2006-01-01
Purpose: To assess feasibility, results and complications in image-guided biopsies using a single needle design in various organs. Materials and methods: 100 consecutive percutaneous biopsies were performed in 54 females and 46 males aged 24–87 years (mean age/standard deviation: 64.5 +/− 12 years) using a full-core end-cut tri-axial full-automatic biopsy needle (18 gauge BioPince ™, InterV-MDTech, Gainesville, Florida) under CT (n=45) or ultrasound (n=55) guidance. In 63 biopsies a coaxial technique was used. Results: Biopsies were obtained of liver (n=32), lymph nodes (n=17), thyroid (n=11), lung (n=9), adrenal (n=9), pelvis (n=6), chest wall/pleura (n=6), mediastinum (n=4), lytic bone lesions (n=2), retroperitoneum (n=1), muscle (n=1), pancreas (n=1), peritoneum (n=1). Between 1 and 6 (mean/SD 2.83 +/− 0.92) needle passes were performed. In 77 cases a malignant (40 metastases, 37 primary tumours) and in 23 a benign lesion was diagnosed. Of the 23 benign lesions a specific diagnosis was possible in 22. In one case necrosis and haemorrhage was diagnosed. In this patient surgery and autopsy both revealed a mediastinal haematoma of unknown origin. Eight minor complications (mild pain/local haematoma requiring no therapy) and three major complications (three pneumothoraces in nine lung biopsies requiring two aspirations and one drainage) were observed. There was no mortality. Conclusion: Percutaneous image-guided biopsy using the described full-core end-cut needle resulted in a specific diagnosis in 99/100 consecutive biopsies in various organs with a low complication rate. We use this needle type for all CT- or US-guided biopsies in all organs except for solid bone. PMID:16766268
Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.
Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less
Fundamentals of Laparoscopic Surgery: A Surgical Skills Assessment Tool in Gynecology
Arden, Deborah; Dodge, Laura E.; Zheng, Bin; Ricciotti, Hope A.
2011-01-01
Objective: To describe our experience with the Fundamentals of Laparoscopic Surgery (FLS) program as a teaching and assessment tool for basic laparoscopic competency among gynecology residents. Methods: A prospective observational study was conducted at a single academic institution. Before the FLS program was introduced, baseline FLS testing was offered to residents and gynecology division directors. Test scores were analyzed by training level and self-reported surgical experience. After implementing a minimally invasive gynecologic surgical curriculum, third-year residents were retested. Results: The pass rates for baseline FLS skills testing were 0% for first-year residents, 50% for second-year residents, and 75% for third- and fourth-year residents. The pass rates for baseline cognitive testing were 60% for first- and second-year residents, 67% for third-year residents, and 40% for fourth-year residents. When comparing junior and senior residents, there was a significant difference in pass rates for the skills test (P=.007) but not the cognitive test (P=.068). Self-reported surgical experience strongly correlated with skills scores (r-value=0.97, P=.0048), but not cognitive scores (r-value=0.20, P=.6265). After implementing a curriculum, 100% of the third-year residents passed the skills test, and 92% passed the cognitive examination. Conclusions: The FLS skills test may be a valuable assessment tool for gynecology residents. The cognitive test may need further adaptation for applicability to gynecologists. PMID:21902937
Selection of optimal welding condition for GTA pulse welding in root-pass of V-groove butt joint
NASA Astrophysics Data System (ADS)
Yun, Seok-Chul; Kim, Jae-Woong
2010-12-01
In the manufacture of high-quality welds or pipeline, a full-penetration weld has to be made along the weld joint. Therefore, root-pass welding is very important, and its conditions have to be selected carefully. In this study, an experimental method for the selection of optimal welding conditions is proposed for gas tungsten arc (GTA) pulse welding in the root pass which is done along the V-grooved butt-weld joint. This method uses response surface analysis in which the width and height of back bead are chosen as quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, is used as the objective function to obtain the optimal welding conditions. In our experiments, the target values of back bead width and height are 4 mm and zero, respectively, for a V-grooved butt-weld joint of a 7-mm-thick steel plate. The optimal welding conditions could determine the back bead profile (bead width and height) as 4.012 mm and 0.02 mm. From a series of welding tests, it was revealed that a uniform and full-penetration weld bead can be obtained by adopting the optimal welding conditions determined according to the proposed method.
Mathur, S; Symons, S P; Huynh, T J; Muthusami, P; Montanera, W; Bharatha, A
2017-01-01
Spinal epidural AVFs are rare spinal vascular malformations. When there is associated intradural venous reflux, they may mimic the more common spinal dural AVFs. Correct diagnosis and localization before conventional angiography is beneficial to facilitate treatment. We hypothesize that first-pass contrast-enhanced MRA can diagnose and localize spinal epidural AVFs with intradural venous reflux and distinguish them from other spinal AVFs. Forty-two consecutive patients with a clinical and/or radiologic suspicion of spinal AVF underwent MR imaging, first-pass contrast-enhanced MRA, and DSA at a single institute (2000-2015). MR imaging/MRA and DSA studies were reviewed by 2 independent blinded observers. DSA was used as the reference standard. On MRA, all 7 spinal epidural AVFs with intradural venous reflux were correctly diagnosed and localized with no interobserver disagreement. The key diagnostic feature was arterialized filling of an epidural venous pouch with a refluxing radicular vein arising from the arterialized epidural venous system. First-pass contrast-enhanced MRA is a reliable and useful technique for the initial diagnosis and localization of spinal epidural AVFs with intradural venous reflux and can distinguish these lesions from other spinal AVFs. © 2017 by American Journal of Neuroradiology.
ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)
In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...
Harmonic generation with multiple wiggler schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonifacio, R.; De Salvo, L.; Pierini, P.
1995-02-01
In this paper the authors give a simple theoretical description of the basic physics of the single pass high gain free electron laser (FEL), describing in some detail the FEL bunching properties and the harmonic generation technique with a multiple-wiggler scheme or a high gain optical klystron configuration.
Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods
NASA Technical Reports Server (NTRS)
Khutorovsky, Z.; Kamensky, S.; Sbytov, N.; Alfriend, K. T.
2007-01-01
The problem of determining the orbit of a space object from measurements based on one pass through the field of view of a radar is not a new one. Extensive research in this area has been carried out in the USA and Russia since the late 50s when these countries started the development of ballistic missile defense (BMD) and Early Warning systems. In Russia these investigations got additional stimulation in the early 60s after the decision to create a Space Surveillance System, whose primary task would be the maintenance of the satellite catalog. These problems were the focus of research interest until the middle 70s when the appropriate techniques and software were implemented for all radars. Then for more than 20 years no new research papers appeared on this subject. This produced an impression that all the problems of track determination based on one pass had been solved and there was no need for further research. In the late 90s interest in this problem arose again in relation to the following. It was estimated that there would be greater than 100,000 objects with size greater than 1-2 cm and collision of an operational spacecraft with any of these objects could have catastrophic results. Thus, for prevention of hazardous approaches and collisions with valuable spacecraft the existing satellite catalog should be extended by at least an order of magnitude This is a very difficult scientific and engineering task. One of the issues is the development of data fusion procedures and the software capable of maintaining such a huge catalog in near real time. The number of daily processed measurements (of all types, radar and optical) for such a system may constitute millions, thus increasing the number of measurements by at least an order of magnitude. Since we will have ten times more satellites and measurements the computer effort required for the correlation of measurements will be two orders of magnitude greater. This could create significant problems for processing data close to real time even for modern computers. Preliminary "compression" of data for one pass through the field of view of a sensor can significantly reduce the requirements to computers and data communication. This compression will occur when all the single measurements of the sensor are replaced by the orbit determined on their basis. The single measurement here means the radar parameters (range, azimuth, elevation, and in some cases range rate) measured by a single pulse.
Toward General Software Level Silent Data Corruption Detection for Parallel Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrocal, Eduardo; Bautista-Gomez, Leonardo; Di, Sheng
Silent data corruption (SDC) poses a great challenge for high-performance computing (HPC) applications as we move to extreme-scale systems. Mechanisms have been proposed that are able to detect SDC in HPC applications by using the peculiarities of the data (more specifically, its “smoothness” in time and space) to make predictions. However, these data-analytic solutions are still far from fully protecting applications to a level comparable with more expensive solutions such as full replication. In this work, we propose partial replication to overcome this limitation. More specifically, we have observed that not all processes of an MPI application experience the samemore » level of data variability at exactly the same time. Thus, we can smartly choose and replicate only those processes for which the lightweight data-analytic detectors would perform poorly. In addition, we propose a new evaluation method based on the probability that a corruption will pass unnoticed by a particular detector (instead of just reporting overall single-bit precision and recall). In our experiments, we use four applications dealing with different explosions. Our results indicate that our new approach can protect the MPI applications analyzed with 7–70% less overhead (depending on the application) than that of full duplication with similar detection recall.« less
Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks
NASA Astrophysics Data System (ADS)
Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.
2005-09-01
To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.
A Compact High-Brightness Heavy-Ion Injector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westenskow, G A; Grote, D P; Halaxa, E
2005-05-11
To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF) accelerators, we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. In an 80-kV 20-microsecond experiment, the RF plasma source has produced up to 5 mA of Ar{sup +} in a single beamlet. An extraction current density of 100 mA/cm{sup 2} was achieved, and the thermal temperature of the ions was below 1 eV. We have tested at full voltage gradient the first 4 gaps of an injector design. Einzel lens were used to focus the beamlets while reducing the beamletmore » to beamlet space charge interaction. We were able to reach greater than 100 kV/cm in the first four gaps. We also performed experiments on a converging 119 multi-beamlet source. Although the source has the same optics as a full 1.6 MV injector system, these test were carried out at 400 kV due to the test stand HV limit. We have measured the beam's emittance after the beamlets are merged and passed through an electrostatic quadrupole (ESQ). Our goal is to confirm the emittance growth and to demonstrate the technical feasibility of building a driver-scale HIF injector.« less
NASA Astrophysics Data System (ADS)
Zint, M.; Stock, K.; Graser, R.; Ertl, T.; Brauer, E.; Heyninck, J.; Vanbiervliet, J.; Dhondt, S.; De Ceuninck, P.; Hibst, R.
2015-03-01
The presented work describes the development and verification of a novel optical, powder-free intra-oral scanner based on chromatic confocal technology combined with a multifocal approach. The proof of concept for a chromatic confocal area scanner for intra-oral scanning is given. Several prototype scanners passed a verification process showing an average accuracy (distance deviation on flat surfaces) of less than 31μm +/- 21μm and a reproducibility of less than 4μm +/- 3μm. Compared to a tactile measurement on a full jaw model fitted with 4mm ceramic spheres the measured average distance deviation between the spheres was 49μm +/- 12μm for scans of up to 8 teeth (3- unit bridge, single Quadrant) and 104μm +/- 82μm for larger scans and full jaws. The average deviation of the measured sphere diameter compared to the tactile measurement was 27μm +/- 14μm. Compared to μCT scans of plaster models equipped with human teeth the average standard deviation on up to 3 units was less than 55μm +/- 49μm whereas the reproducibility of the scans was better than 22μm +/- 10μm.
Adams, Noah S.; Plumb, John M.; Perry, Russell W.; Rondorf, Dennis W.
2014-01-01
An integral part of efforts to recover stocks of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss in Pacific Northwest rivers is to increase passage efficacy and survival of juveniles past hydroelectric dams. As part of this effort, we evaluated the efficacy of a prototype surface bypass structure, the removable spillway weir (RSW), installed in a spillbay at Lower Granite Dam, Washington, on the Snake River during 2002, 2003, 2005, and 2006. Radio-tagged juvenile steelhead were released upstream from the dam and their route of passage through the turbines, juvenile bypass, spillway, or RSW was recorded. The RSW was operated in an on-or-off condition and passed 3–13% of the total discharge at the dam when it was on. Poisson rate models were fit to the passage counts of hatchery- and natural-origin juvenile steelhead to predict the probability of fish passing the dam. Main-effect predictor variables were RSW operation, diel period, day of the year, proportion of flow passed by the spillway, and total discharge at the dam. The combined fish passage through the RSW and spillway was 55–85% during the day and 37–61% during the night. The proportion of steelhead passing through nonturbine routes was <88% when the RSW was off during the day and increased to >95% when the RSW was on during the day. The ratio of the proportion of steelhead passed to the proportion of water passing the RSW was from 6.3:1 to 10.0:1 during the day and from 2.7:1 to 5.2:1 during the night. Steelhead passing through the RSW exited the tailrace about 15 min faster than fish passing through the spillway. Mark–recapture single-release survival estimates for steelhead passing the RSW ranged from 0.95 to 1.00. The RSW appeared to be an effective bypass structure compared with other routes of fish passage at the dam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, R; Lee, V; Cheung, S
2016-06-15
Purpose: The increasing application of VMAT demands a more efficient workflow and QA solution. This study aims to investigate the feasibility of performing VMAT QA measurements on one linac for plans treated on other beam-matched Elekta Agility linacs. Methods: A single model was used to create 24 clinically approved VMAT plans (12 head-and-neck and 12 prostate using 6MV and 10MV respectively) on Pinnacle v9.10 (Philips, Einhoven, Netherlands). All head-and-neck plans were delivered on three beam-matched machines while all prostate cases were delivered on two beam-matched 10MV Agility machines. All plans were delivered onto PTW Octavius 4D phantom with 1500 detectormore » array (PTW, Freiburg, Germany). Reconstructed volume doses were then compared with the Pinnacle reference plans in Verisoft 6.1 under 3%/3mm gamma criteria at local dose. Plans were considered clinically acceptable if >90% of the voxels passing the gamma criteria. Results: All measurements were passed (3D gamma passing rate >90%) and the result shows that the mean difference of 3D gamma of 12 head-and-neck cases is 1.2% with standard deviation of 0.6%. While for prostate cases, the mean difference of 3D gamma is 0.9% with standard deviation of 0.7%. Maximum difference of 3D gamma of all measurements between beam-matched machines is less than 2.5%. The differences of passing rates between different machines were statistically insignificant (p>0.05). Conclusion. The result suggests that ther Conclusion: The result suggests that there exists a 3D gamma threshold, in our case 92.5%, above which the VMAT QA performed in any one of beam-matched machine will also pass in another one. Therefore, VMAT QA efficiency may be increased and phantom set up time can be saved by implementing such method. A constant performance across all beam matched machines must be maintained to make this QA approach feasible.« less
75 FR 62690 - Radio Broadcasting Services; Grants Pass, Oregon
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
..., adopted September 24, 2010, and released September 27, 2010. The full text of this Commission decision is..., Portals II, 445 12th Street, SW., Room CY-A257, Washington, DC 20554. The complete text of this decision...
Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A
2014-05-06
A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.
Fourier-transform optical microsystems
NASA Technical Reports Server (NTRS)
Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.
1999-01-01
The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.
Modular design attitude control system
NASA Technical Reports Server (NTRS)
Chichester, F. D.
1984-01-01
A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.
Sun, Xiaobo; Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng; Qin, Zhaohui S
2018-06-01
Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)-based high-performance computing (HPC) implementation, and the popular VCFTools. Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems.
Gao, Jingjing; Jin, Peng; Eng, Celeste; Burchard, Esteban G; Beaty, Terri H; Ruczinski, Ingo; Mathias, Rasika A; Barnes, Kathleen; Wang, Fusheng
2018-01-01
Abstract Background Sorted merging of genomic data is a common data operation necessary in many sequencing-based studies. It involves sorting and merging genomic data from different subjects by their genomic locations. In particular, merging a large number of variant call format (VCF) files is frequently required in large-scale whole-genome sequencing or whole-exome sequencing projects. Traditional single-machine based methods become increasingly inefficient when processing large numbers of files due to the excessive computation time and Input/Output bottleneck. Distributed systems and more recent cloud-based systems offer an attractive solution. However, carefully designed and optimized workflow patterns and execution plans (schemas) are required to take full advantage of the increased computing power while overcoming bottlenecks to achieve high performance. Findings In this study, we custom-design optimized schemas for three Apache big data platforms, Hadoop (MapReduce), HBase, and Spark, to perform sorted merging of a large number of VCF files. These schemas all adopt the divide-and-conquer strategy to split the merging job into sequential phases/stages consisting of subtasks that are conquered in an ordered, parallel, and bottleneck-free way. In two illustrating examples, we test the performance of our schemas on merging multiple VCF files into either a single TPED or a single VCF file, which are benchmarked with the traditional single/parallel multiway-merge methods, message passing interface (MPI)–based high-performance computing (HPC) implementation, and the popular VCFTools. Conclusions Our experiments suggest all three schemas either deliver a significant improvement in efficiency or render much better strong and weak scalabilities over traditional methods. Our findings provide generalized scalable schemas for performing sorted merging on genetics and genomics data using these Apache distributed systems. PMID:29762754
NASA Technical Reports Server (NTRS)
Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)
1998-01-01
A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.
Oh, Jeong Rok; Cho, Sang-Hwan; Park, Hoo Keun; Oh, Ji Hye; Lee, Yong-Hee; Do, Young Rag
2010-05-24
This paper reports the possibility of a facile optical structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using a powder-based phosphor-converted LED combined with a long-wave pass filter (LWPF). The capping of a blue-reflecting and amber-passing LWPF enhances both the amber emission from the silicate amber phosphor layer and the color purity due to the blocking and recycling of the pumping blue light from the InGaN LED. The enhancement of the luminous efficacy of the amber pc-LED with a LWPF (phosphor concentration 20 wt%, 39.4 lm/W) is 34% over that of an amber pc-LED without a LWPF (phosphor concentration 55 wt%, 29.4 lm/W) at 100 mA and a high color purity (>96%) with Commission International d'Eclairage (CIE) color coordinates of x=0.57 and y=0.42.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heebner, John E.; Sridharan, Arun K.; Dawson, Jay Walter
Cladding-pumped Raman fiber lasers and amplifiers provide high-efficiency conversion efficiency at high brightness enhancement. Differential loss is applied to both single-pass configurations appropriate for pulsed amplification and laser oscillator configurations applied to high average power cw source generation.
Building Collections: Folklore
ERIC Educational Resources Information Center
Krapp, JoAnn Vergona
2005-01-01
Folklore, the oldest form of storytelling, reflects the culture of a country, hence its nonfiction classification. Through these tales, one senses the values, the humor, and the lifestyles of its peoples. A powerful genre, folklore is the foundation on which high fantasy is created, epic films are produced, and a single story is passed from one…
Kupperman, David S.; Reimann, Karl J.
1982-01-01
The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and analyzed at one time and their positions accurately located in a single pass down the test specimen.
Kupperman, D.S.; Reimann, K.J.
1980-12-09
The invention is an ultrasonic testing device for rapid and complete examination of the test specimen, and is particularly well suited for evaluation of tubular test geometries. A variety of defect categories may be detected and anlayzed at one time and their positions accurately located in a single pass down the test specimen.
Poulsen, Per Rugaard; Eley, John; Langner, Ulrich; Simone, Charles B; Langen, Katja
2018-01-01
To develop and implement a practical repainting method for efficient interplay effect mitigation in proton pencil beam scanning (PBS). A new flexible repainting scheme with spot-adapted numbers of repainting evenly spread out over the whole breathing cycle (assumed to be 4 seconds) was developed. Twelve fields from 5 thoracic and upper abdominal PBS plans were delivered 3 times using the new repainting scheme to an ion chamber array on a motion stage. One time was static and 2 used 4-second, 3-cm peak-to-peak sinusoidal motion with delivery started at maximum inhalation and maximum exhalation. For comparison, all dose measurements were repeated with no repainting and with 8 repaintings. For each motion experiment, the 3%/3-mm gamma pass rate was calculated using the motion-convolved static dose as the reference. Simulations were first validated with the experiments and then used to extend the study to 0- to 5-cm motion magnitude, 2- to 6-second motion periods, patient-measured liver tumor motion, and 1- to 6-fraction treatments. The effect of the proposed method was evaluated for the 5 clinical cases using 4-dimensional (4D) dose reconstruction in the planning 4D computed tomography scan. The target homogeneity index, HI = (D 2 - D 98 )/D mean , of a single-fraction delivery is reported, where D 2 and D 98 is the dose delivered to 2% and 98% of the target, respectively, and D mean is the mean dose. The gamma pass rates were 59.6% ± 9.7% with no repainting, 76.5% ± 10.8% with 8 repaintings, and 92.4% ± 3.8% with the new repainting scheme. Simulations reproduced the experimental gamma pass rates with a 1.3% root-mean-square error and demonstrated largely improved gamma pass rates with the new repainting scheme for all investigated motion scenarios. One- and two-fraction deliveries with the new repainting scheme had gamma pass rates similar to those of 3-4 and 6-fraction deliveries with 8 repaintings. The mean HI for the 5 clinical cases was 14.2% with no repainting, 13.7% with 8 repaintings, 12.0% with the new repainting scheme, and 11.6% for the 4D dose without interplay effects. A novel repainting strategy for efficient interplay effect mitigation was proposed, implemented, and shown to outperform conventional repainting in experiments, simulations, and dose reconstructions. This strategy could allow for safe and more optimal clinical delivery of thoracic and abdominal proton PBS and better facilitate hypofractionated and stereotactic treatments. Copyright © 2017 Elsevier Inc. All rights reserved.
Size effects on plasticity and fatigue microstructure evolution in FCC single crystals
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar Abbas
In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.
No Taxpayer Funding for Abortion and Abortion Insurance Full Disclosure Act of 2014
Rep. Smith, Christopher H. [R-NJ-4
2013-05-14
Senate - 01/29/2014 Received in the Senate and Read twice and referred to the Committee on Finance. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Bergamaschi, Brian A.; Fleck, Jacob A.; Downing, Bryan D.; Boss, Emmanuel; Pellerin, Brian A.; Ganju, Neil K.; Schoellhamer, David H.; Byington, Amy A.; Heim, Wesley A.; Stephenson, Mark; Fujii, Roger
2012-01-01
We used high-resolution in situ measurements of turbidity and fluorescent dissolved organic matter (FDOM) to quantitatively estimate the tidally driven exchange of mercury (Hg) between the waters of the San Francisco estuary and Browns Island, a tidal wetland. Turbidity and FDOM—representative of particle-associated and filter-passing Hg, respectively—together predicted 94 % of the observed variability in measured total mercury concentration in unfiltered water samples (UTHg) collected during a single tidal cycle in spring, fall, and winter, 2005–2006. Continuous in situ turbidity and FDOM data spanning at least a full spring-neap period were used to generate UTHg concentration time series using this relationship, and then combined with water discharge measurements to calculate Hg fluxes in each season. Wetlands are generally considered to be sinks for sediment and associated mercury. However, during the three periods of monitoring, Browns Island wetland did not appreciably accumulate Hg. Instead, gradual tidally driven export of UTHg from the wetland offset the large episodic on-island fluxes associated with high wind events. Exports were highest during large spring tides, when ebbing waters relatively enriched in FDOM, dissolved organic carbon (DOC), and filter-passing mercury drained from the marsh into the open waters of the estuary. On-island flux of UTHg, which was largely particle-associated, was highest during strong winds coincident with flood tides. Our results demonstrate that processes driving UTHg fluxes in tidal wetlands encompass both the dissolved and particulate phases and multiple timescales, necessitating longer term monitoring to adequately quantify fluxes.
NASA Astrophysics Data System (ADS)
Pavic, M.; Cunningham, S. A.; Challenor, P.; Duncan, L.
2003-04-01
Between 1993 and 2001 the UK has completed seven occupations of WOCE section SR1b from Burdwood Bank to Elephant Island across Drake Passage. The section consists of a minimum of 31 full depth CTD stations, shipboard ADCP measurements of currents in the upper 300m, and in three of the years full depth lowered ADCP measurements at each station. The section lies under the satellite track of ERS2. The satellite altimeter can determine the along track slope of the sea surface relative to a reference satellite pass once every 35 days. From this we can calculate the relative SSH slope or geostrophic surface current anomalies. If we measure simultaneously with any satellite pass, we can estimate the absolute surface geostrophic current for any subsequent pass. This says that by combining in situ absolute velocity measurements - the reference velocities with altimetry at one time the absolute geostrophic current can be estimated on any subsequent (or previous) altimeter pass. This is the method of Challenor et al. 1996, though they did not have the data to test this relationship. We have seven estimates of the surface reference velocity: one for each of the seven occupations of the WOCE line. The difference in any pair of reference velocities is predicted by the difference of the corresponding altimeter measurements. Errors in combining the satellite and hydrographic data are estimated by comparing pairs of these differences: errors arise from the in situ observations and from the altimetric measurements. Finally we produce our best estimates of eight years of absolute surface geostrophic currents and transport variability along WOCE section SR1 in Drake Passage.
Laser removal of graffiti from Pink Morelia Quarry
NASA Astrophysics Data System (ADS)
Penide, J.; Quintero, F.; Riveiro, A.; Sánchez-Castillo, A.; Comesaña, R.; del Val, J.; Lusquiños, F.; Pou, J.
2013-11-01
Morelia is an important city sited in Mexico. Its historical center reflects most of their culture and history, especially of the colonial period; in fact, it was appointed World Heritage Site by UNESCO. Sadly, there is a serious problem with graffiti in Morelia and its historical center is the worst affected since its delicate charming is definitely damaged. Hitherto, the conventional methods employed to remove graffiti from Pink Morelia Quarry (the most used building stone in Morelia) are quite aggressive to the appearance of the monuments, so actually, they are not a very good solution. In this work, we performed a study on the removal of graffiti from Pink Morelia Quarry by high power diode laser. We carried out an extensive experimental study looking for the optimal processing parameters, and compared a single-pass with a multi-pass method. Indeed, we achieved an effective cleaning without producing serious side effects in the stone. In conclusion, the multi-pass method emitting in continuous wave was revealed as the more effective operating modes to remove the graffiti.
Synchrony in the onset of mental-state reasoning: evidence from five cultures.
Callaghan, Tara; Rochat, Philippe; Lillard, Angeline; Claux, Mary Louise; Odden, Hal; Itakura, Shoji; Tapanya, Sombat; Singh, Saraswati
2005-05-01
Over the past 20 years, developmental psychologists have shown considerable interest in the onset of a theory of mind, typically marked by children's ability to pass false-belief tasks. In Western cultures, children pass such tasks around the age of 5 years, with variations of the tasks producing small changes in the age at which they are passed. Knowing whether this age of transition is common across diverse cultures is important to understanding what causes this development. Cross-cultural studies have produced mixed findings, possibly because of varying methods used in different cultures. The present study used a single procedure to measure false-belief understanding in five cultures: Canada, India, Peru, Samoa, and Thailand. With a standardized procedure, we found synchrony in the onset of mentalistic reasoning, with children crossing the false-belief milestone at approximately 5 years of age in every culture studied. The meaning of this synchrony for the origins of mental-state understanding is discussed.
Comparison of cryogenic low-pass filters.
Thalmann, M; Pernau, H-F; Strunk, C; Scheer, E; Pietsch, T
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
Comparison of cryogenic low-pass filters
NASA Astrophysics Data System (ADS)
Thalmann, M.; Pernau, H.-F.; Strunk, C.; Scheer, E.; Pietsch, T.
2017-11-01
Low-temperature electronic transport measurements with high energy resolution require both effective low-pass filtering of high-frequency input noise and an optimized thermalization of the electronic system of the experiment. In recent years, elaborate filter designs have been developed for cryogenic low-level measurements, driven by the growing interest in fundamental quantum-physical phenomena at energy scales corresponding to temperatures in the few millikelvin regime. However, a single filter concept is often insufficient to thermalize the electronic system to the cryogenic bath and eliminate spurious high frequency noise. Moreover, the available concepts often provide inadequate filtering to operate at temperatures below 10 mK, which are routinely available now in dilution cryogenic systems. Herein we provide a comprehensive analysis of commonly used filter types, introduce a novel compact filter type based on ferrite compounds optimized for the frequency range above 20 GHz, and develop an improved filtering scheme providing adaptable broad-band low-pass characteristic for cryogenic low-level and quantum measurement applications at temperatures down to few millikelvin.
Tobin, Jr., Kenneth W.; Bingham, Philip R.; Hawari, Ayman I.
2012-11-06
An imaging system employing a coded aperture mask having multiple pinholes is provided. The coded aperture mask is placed at a radiation source to pass the radiation through. The radiation impinges on, and passes through an object, which alters the radiation by absorption and/or scattering. Upon passing through the object, the radiation is detected at a detector plane to form an encoded image, which includes information on the absorption and/or scattering caused by the material and structural attributes of the object. The encoded image is decoded to provide a reconstructed image of the object. Because the coded aperture mask includes multiple pinholes, the radiation intensity is greater than a comparable system employing a single pinhole, thereby enabling a higher resolution. Further, the decoding of the encoded image can be performed to generate multiple images of the object at different distances from the detector plane. Methods and programs for operating the imaging system are also disclosed.
Combined double lung-liver transplantation for cystic fibrosis without cardio-pulmonary by-pass.
Corno, V; Dezza, M C; Lucianetti, A; Codazzi, D; Carrara, B; Pinelli, D; Parigi, P C; Guizzetti, M; Strazzabosco, M; Melzi, M L; Gaffuri, G; Sonzogni, V; Rossi, A; Fagiuoli, S; Colledan, M
2007-10-01
Sequential bilateral single lung-liver transplantation (SBSL-LTx) is a therapeutic option for patients with end stage lung and liver disease (ESLLD) due to cystic fibrosis (CF). A few cases have been reported, all of them were performed with the use of cardio-pulmonary by-pass (CPB). We performed SBSL-LTx in three young men affected by CF. All the recipients had respiratory failure and portal hypertension with hypersplenism. Along with lung transplants, two patients received a whole liver graft and one an extended right graft from an in situ split liver. During transplantation neither CPB nor veno-venous by-pass (VVB) were employed. Immunosuppression was based on basiliximab, tacrolimus, steroids and azathioprine. The three recipients are alive with a median follow-up of 670 days (range 244-1,533). Combined SBSL-LTx is a complex but effective procedure for the treatment of ESLLD due to CF, not necessarily requiring the use of CPB or VVB.
Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming
An U.S. DOE Cooperative Research and Development Agreement (CRADA) between ANL and Optodyne, Inc. has been established to develop a prototype laser Doppler displacement encoder system with ultra-low noise level for linear measurements to sub-nanometer resolution for synchrotron radiation applications. We have improved the heterodyne efficiency and reduced the detector shot noises by proper shielding and adding a low-pass filter. The laser Doppler displacement encoder system prototype demonstrated a ~ 1 nm system output noise floor with single reflection optics. With multiple-pass optical arrangement, 0.1 nm scale closed-loop feedback control is achieved.
Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading
NASA Technical Reports Server (NTRS)
Steeve, B. E.; Wingate, R. J.
2012-01-01
A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.
Method for thermal processing alumina-enriched spinel single crystals
Jantzen, C.M.
1995-05-09
A process for age-hardening alumina-rich magnesium aluminum spinel to obtain the desired combination of characteristics of hardness, clarity, flexural strength and toughness comprises selection of the time-temperature pair for isothermal heating followed by quenching. The time-temperature pair is selected from the region wherein the precipitate groups have the characteristics sought. The single crystal spinel is isothermally heated and will, if heated long enough pass from its single phase through two pre-precipitates and two metastable precipitates to a stable secondary phase precipitate within the spinel matrix. Quenching is done slowly at first to avoid thermal shock, then rapidly. 12 figs.
Scanning electron microscope study of polytetrafluoroethylene sliding on aluminum single crystals
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1973-01-01
Friction experiments were conducted in air with polytetrafluoroethylene (PTFE) sliding on aluminum single crystals. Mechanical scoring of the crystals with (110) and (100) orientations was observed with a single pass of the PTFE slider. No scoring was observed on the (111). The degree of scoring of the crystals is related to the hardness, with the hardest surface (111) showing no damage and the softest surface (110) showing the most severe scoring. Scoring is caused by work-hardened pieces of aluminum which, as a consequence of the adhesion between PTFE and aluminum, were pulled out of the bulk and became embedded in the PTFE polymer.
Soft-state biomicrofluidic pulse generator for single cell analysis
NASA Astrophysics Data System (ADS)
Sabounchi, Poorya; Ionescu-Zanetti, Cristian; Chen, Roger; Karandikar, Manjiree; Seo, Jeonggi; Lee, Luke P.
2006-05-01
We present the design, fabrication, and characterization of a soft-state biomicrofluidic pulse generator for single cell analysis. Hydrodynamic cell trapping via lateral microfluidic junctions allows the trapping of single cells from a bulk suspension. Microfluidic injection sites adjacent to the cell-trapping channels enable the pulsed delivery of nanoliter volumes of biochemical reagent. We demonstrated the application and removal of reagent at a frequency of 10Hz with a rise time of less than 33ms and a reagent consumption rate of 0.2nL/s. It is shown that this system operates as a low-pass filter with a cutoff frequency of 7Hz.
Single-pass environmental chamber for quantifying human responses to airborne chemicals.
Suarez, Joseph C; Warmath, D Stan; Koetz, Kurt P; Hood, Alison F; Thompson, Mark L; Kendal-Reed, Martin S; Walker, Dianne B; Walker, James C
2005-03-01
Despite increasing interest in the short-term effects of airborne environmental contaminants, experimental findings are generated at a very slow pace. This is due in part to the expense and complexity of most environmental chambers, which are needed for quantifying effects of wholebody exposures. We lessened this obstacle by designing, constructing, and testing a single-pass, 10-m3 stainless-steel chamber. Compressed air is purified before being sent to an air dilution olfactometer, which supplies 1000 L (1 m3) per minute (referenced to STP) while maintaining 40% relative humidity (RH) and 22.6 degrees C. Precise control of all stimulus parameters is greatly simplified since air is not recirculated. Vapor-phase odorant concentrations are achieved by varying the proportion of total airflow passing through one or more saturators, and are verified in real time by an infrared (IR) spectrometer. An adjoining 5-m3 anteroom is used for introducing known intensities of more chemically complex vapor and/or particulate stimuli into the chamber. Prior to the point that air is exhausted from the chamber, all components are made of stainless steel, Teflon, or glass. A LabView program contains feedback loops that achieve document chamber conditions and document performance. Additional instrumentation and computer systems provide for the automated collection of perceptual, respiratory, eye blink, heart rate, blood pressure, psychological state, and cognitive data. These endpoints are now being recorded, using this facility, in response to ranges of concentrations of propionic acid and environmental tobacco smoke.
LI, FENFANG; WILKENS, LYNNE R.; NOVOTNY, RACHEL; FIALKOWSKI, MARIE K.; PAULINO, YVETTE C.; NELSON, RANDALL; BERSAMIN, ANDREA; MARTIN, URSULA; DEENIK, JONATHAN; BOUSHEY, CAROL J.
2016-01-01
Objectives Anthropometric standardization is essential to obtain reliable and comparable data from different geographical regions. The purpose of this study is to describe anthropometric standardization procedures and findings from the Children’s Healthy Living (CHL) Program, a study on childhood obesity in 11 jurisdictions in the US-Affiliated Pacific Region, including Alaska and Hawai‘i. Methods Zerfas criteria were used to compare the measurement components (height, waist, and weight) between each trainee and a single expert anthropometrist. In addition, intra- and inter-rater technical error of measurement (TEM), coefficient of reliability, and average bias relative to the expert were computed. Results From September 2012 to December 2014, 79 trainees participated in at least 1 of 29 standardization sessions. A total of 49 trainees passed either standard or alternate Zerfas criteria and were qualified to assess all three measurements in the field. Standard Zerfas criteria were difficult to achieve: only 2 of 79 trainees passed at their first training session. Intra-rater TEM estimates for the 49 trainees compared well with the expert anthropometrist. Average biases were within acceptable limits of deviation from the expert. Coefficient of reliability was above 99% for all three anthropometric components. Conclusions Standardization based on comparison with a single expert ensured the comparability of measurements from the 49 trainees who passed the criteria. The anthropometric standardization process and protocols followed by CHL resulted in 49 standardized field anthropometrists and have helped build capacity in the health workforce in the Pacific Region. PMID:26457888
Series-Coupled Pairs of Silica Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Handley, Tim
2009-01-01
Series-coupled pairs of whispering-gallery-mode optical microresonators have been demonstrated as prototypes of stable, narrow-band-pass photonic filters. Characteristics that are generally considered desirable in a photonic or other narrow-band-pass filter include response as nearly flat as possible across the pass band, sharp roll-off, and high rejection of signals outside the pass band. A single microresonator exhibits a Lorentzian filter function: its peak response cannot be made flatter and its roll-off cannot be made sharper. However, as a matter of basic principle applicable to resonators in general, it is possible to (1) use multiple resonators, operating in series or parallel, to obtain a roll-off sharper, and out-of-band rejection greater, relative to those of a Lorentzian filter function and (2) to make the peak response (the response within the pass band) flatter by tuning the resonators to slightly different resonance frequencies that span the pass band. The first of the two microresonators in each series-coupled pair was a microtorus made of germania-doped silica (containing about 19 mole percent germania), which is a material used for the cores of some optical fibers. The reasons for choosing this material is that exposing it to ultraviolet light causes it to undergo a chemical change that changes its index of refraction and thereby changes the resonance frequency. Hence, this material affords the means to effect the desired slight relative detuning of the two resonators. The second microresonator in each pair was a microsphere of pure silica. The advantage of making one of the resonators a torus instead of a sphere is that its spectrum of whispering-gallery-mode resonances is sparser, as needed to obtain a frequency separation of at least 100 GHz between resonances of the filter as a whole.
Preliminary investigation of single-file diffusion in complex plasma rings
NASA Astrophysics Data System (ADS)
Theisen, W. L.; Sheridan, T. E.
2010-04-01
Particles in one-dimensional (1D) systems cannot pass each other. However, it is still possible to define a diffusion process where the mean-squared displacement (msd) of an ensemble of particles in a 1D chain increases with time t. This process is called single-file diffusion. In contrast to diffusive processes that follow Fick's law, msdt, single-file diffusion is sub-Fickean and the msd is predicted to increase as t^1/2. We have recently created 1D dusty (complex) plasma rings in the DONUT (Dusty ONU experimenT) apparatus. Particle position data from these rings will be analyzed to determine the scaling of the msd with time and results will be compared with predictions of single-file diffusion theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardin, A; Avery, S; Ding, X
2014-06-15
Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulatedmore » proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production of MGS Research, Inc.« less
NASA Technical Reports Server (NTRS)
Plaessmann, Henry (Inventor); Grossman, William M. (Inventor)
1997-01-01
A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A confocal resonator or White Cell resonator is provided, including two or three curvilinearly shaped mirrors facing each other along a resonator axis and an optical gain medium positioned on the resonator axis between the mirrors (confocal resonator) or adjacent to one of the mirrors (White Cell). In a first embodiment, two mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. The optical gain medium may be solid-state, liquid or gaseous medium and may be pumped longitudinally or transversely. In a second embodiment, first and second mirrors face a third mirror in a White Cell configuration, and the optical gain medium is positioned at or adjacent to one of the mirrors. Defocusing means and optical gain medium cooling means are optionally provided with either embodiment, to controllably defocus the light beam, to cool the optical gain medium and to suppress thermal lensing in the gain medium.
Nelissen, Ellen; Ersdal, Hege; Ostergaard, Doris; Mduma, Estomih; Broerse, Jacqueline; Evjen-Olsen, Bjørg; van Roosmalen, Jos; Stekelenburg, Jelle
2014-03-01
To evaluate "Helping Mothers Survive Bleeding After Birth" (HMS BAB) simulation-based training in a low-resource setting. Educational intervention study. Rural referral hospital in Northern Tanzania. Clinicians, nurse-midwives, medical attendants, and ambulance drivers involved in maternity care. In March 2012, health care workers were trained in HMS BAB, a half-day simulation-based training, using a train-the-trainer model. The training focused on basic delivery care, active management of third stage of labor, and treatment of postpartum hemorrhage, including bimanual uterine compression. Evaluation questionnaires provided information on course perception. Knowledge, skills, and confidence of facilitators and learners were tested before and after training. Four master trainers trained eight local facilitators, who subsequently trained 89 learners. After training, all facilitators passed the knowledge test, but pass rates for the skills test were low (29% pass rate for basic delivery and 0% pass rate for management of postpartum hemorrhage). Evaluation revealed that HMS BAB training was considered acceptable and feasible, although more time should be allocated for training, and teaching materials should be translated into the local language. Knowledge, skills, and confidence of learners increased significantly immediately after training. However, overall pass rates for skills tests of learners after training were low (3% pass rate for basic delivery and management of postpartum hemorrhage). The HMS BAB simulation-based training has potential to contribute to education of health care providers. We recommend a full day of training and validation of the facilitators to improve the training. © 2013 Nordic Federation of Societies of Obstetrics and Gynecology.
NASA Technical Reports Server (NTRS)
1978-01-01
A triplex digital flight control system was installed in a NASA F-8C airplane to provide fail operate, full authority control. The triplex digital computers and interface circuitry process the pilot commands and aircraft motion feedback parameters according to the selected control laws, and they output the surface commands as an analog signal to the servoelectronics for position control of the aircraft's power actuators. The system and theory of operation of the computer by pass and servoelectronics are described and an automated ground test for each axis is included.
First Pass Effect: A New Measure for Stroke Thrombectomy Devices.
Zaidat, Osama O; Castonguay, Alicia C; Linfante, Italo; Gupta, Rishi; Martin, Coleman O; Holloway, William E; Mueller-Kronast, Nils; English, Joey D; Dabus, Guilherme; Malisch, Tim W; Marden, Franklin A; Bozorgchami, Hormozd; Xavier, Andrew; Rai, Ansaar T; Froehler, Michael T; Badruddin, Aamir; Nguyen, Thanh N; Taqi, M Asif; Abraham, Michael G; Yoo, Albert J; Janardhan, Vallabh; Shaltoni, Hashem; Novakovic, Roberta; Abou-Chebl, Alex; Chen, Peng R; Britz, Gavin W; Sun, Chung-Huan J; Bansal, Vibhav; Kaushal, Ritesh; Nanda, Ashish; Nogueira, Raul G
2018-03-01
In acute ischemic stroke, fast and complete recanalization of the occluded vessel is associated with improved outcomes. We describe a novel measure for newer generation devices: the first pass effect (FPE). FPE is defined as achieving a complete recanalization with a single thrombectomy device pass. The North American Solitaire Acute Stroke Registry database was used to identify a FPE subgroup. Their baseline features and clinical outcomes were compared with non-FPE patients. Clinical outcome measures included 90-days modified Rankin Scale score, National Institutes of Health Stroke Scale score, mortality, and symptomatic intracranial hemorrhage. Multivariate analyses were performed to determine whether FPE independently resulted in improved outcomes and to identify predictors of FPE. A total of 354 acute ischemic stroke patients underwent thrombectomy in the North American Solitaire Acute Stroke registry. FPE was achieved in 89 out of 354 (25.1%). More middle cerebral artery occlusions (64% versus 52.5%) and fewer internal carotid artery occlusions (10.1% versus 27.7%) were present in the FPE group. Balloon guide catheters were used more frequently with FPE (64.0% versus 34.7%). Median time to revascularization was significantly faster in the FPE group (median 34 versus 60 minutes; P =0.0003). FPE was an independent predictor of good clinical outcome (modified Rankin Scale score ≤2 was seen in 61.3% in FPE versus 35.3% in non-FPE cohort; P =0.013; odds ratio, 1.7; 95% confidence interval, 1.1-2.7). The independent predictors of achieving FPE were use of balloon guide catheters and non-internal carotid artery terminus occlusion. The achievement of complete revascularization from a single Solitaire thrombectomy device pass (FPE) is associated with significantly higher rates of good clinical outcome. The FPE is more frequently associated with the use of balloon guide catheters and less likely to be achieved with internal carotid artery terminus occlusion. © 2018 American Heart Association, Inc.
Hagelstein, P.L.
1984-06-25
A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.
Embracing the Exit: Assessment, Trust, and the Teaching of Writing
ERIC Educational Resources Information Center
Eng, Joseph
2006-01-01
Historically, the Composition Program at Eastern Washington University (EWU), a comprehensive university in Cheney, WA, required a single essay sample from each composition student as the final exit exam; in practice, a student passed or failed the course based on an in-class argumentative essay, written in three consecutive class periods. Such a…
Compression debarking of wood chips.
Rodger A. Arola; John R. Erickson
1973-01-01
Presents results from 2 years testing of a single-pass compression process for debarking wood chips of several species. The most significant variable was season of cut. Depending on species, approximately 70% of the bark was removed from wood cut in the growing season while approximately 45% was removed from wood cut in the dormant season.
Application of semiconductor diffusants to solar cells by screen printing
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr.; Brandhorst, H. W., Jr.; Mazaris, G. A.; Scudder, L. R. (Inventor)
1978-01-01
Diffusants were applied onto semiconductor solar cell substrates, using screen printing techniques. The method was applicable to square and rectangular cells and can be used to apply dopants of opposite types to the front and back of the substrate. Then, simultaneous diffusion of both dopants can be performed with a single furnace pass.
Heritage Literacy: Adoption, Adaptation, and Alienation of Multimodal Literacy Tools
ERIC Educational Resources Information Center
Rumsey, Suzanne Kesler
2009-01-01
This article presents the concept of heritage literacy, a decision-making process by which people adopt, adapt, or alienate themselves from tools and literacies passed on between generations of people. In an auto-ethnographic study, four generations of a single family and Amish participants from the surrounding community were interviewed to…
An improved magnetic tape recorder
NASA Technical Reports Server (NTRS)
Uber, P. W.
1968-01-01
Magnetic tape recorder employs a single capstan for simultaneously driving the supply and take-up reels in such a manner that the tape passing between the reels is kept under a predetermined constant tension. This recorder operates with little power and is sufficiently rugged to withstand the severe stresses encountered in high-altitude balloon flight tests.
VIEW INTO KITCHEN, SHOWING PASSTHRU TO DINING ROOM ON RIGHT ...
VIEW INTO KITCHEN, SHOWING PASS-THRU TO DINING ROOM ON RIGHT HAND SIDE. VIEW FACING WEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 9, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI
Pass the Chocolate: Planning with Teachers
ERIC Educational Resources Information Center
Kimmel, Sue C.
2013-01-01
With all the discourse in school librarianship about collaboration, there is surprisingly little discussion of teacher planning. For teachers, planning is the taken-for-granted work necessary for teaching. Planning focuses on various increments of time, ranging from a single lesson to a day, a week, a grading term, and a school year. Teacher…
A Century of Copyright in the Library of Congress.
ERIC Educational Resources Information Center
Cole, John Y.
Before 1870, copyright registration and deposit were functions of several government departments. After the first Federal copyright law was passed in 1790, copyright registration was performed by the clerk in the U.S. district court for the district where the applicant resided, and single copies of copyright deposits were sent to different…
Crested wheatgrass control and native plant establishment in Utah
April Hulet; Bruce A. Roundy; Brad Jessop
2010-01-01
Effective control methods need to be developed to reduce crested wheatgrass (Agropyron cristatum [L.] Gaertner) monocultures and promote the establishment of native species. This research was designed to determine effective ways to reduce crested wheatgrass and establish native species while minimizing weed invasion. We mechanically (single- or double-pass disking) and...
OVERVIEW OF AERIAL TRAM SUPPORT TOWERS NINE, TEN, AND DEEP ...
OVERVIEW OF AERIAL TRAM SUPPORT TOWERS NINE, TEN, AND DEEP RAVINE,LOOKING SOUTH FROM BREAK OVER TOWER LOCATION. A SINGLE ORE BUCKET HANGS FROM THE CABLE AT CENTER. DEATH VALLEY'S FLOOR IS IN THE DISTANCE (TOP). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Selective cell-surface labeling of the molecular motor protein prestin
McGuire, Ryan M.; Silberg, Jonathan J.; Pereira, Fred A.; Raphael, Robert M.
2011-01-01
Prestin, a multipass transmembrane protein whose N- an C-termini are localized to the cytoplasm, must be trafficked to the plasma membrane to fulfill its cellular function as a molecular motor. One challenge in studying prestin sequence-function relationships within living cells is separating the effects of amino acid substitutions on prestin trafficking, plasma membrane localization and function. To develop an approach for directly assessing prestin levels at the plasma membrane, we have investigated whether fusion of prestin to a single pass transmembrane protein results in a functional fusion protein with a surface-exposed N-terminal tag that can be detected in living cells. We find that fusion of the biotin-acceptor peptide (BAP) and transmembrane domain of the platelet-derived growth factor receptor (PDGFR) to the N-terminus of prestin-GFP yields a membrane protein that can be metabolically-labeled with biotin, trafficked to the plasma membrane, and selectively detected at the plasma membrane using fluorescently-tagged streptavidin. Furthermore, we show that the addition of a surface detectable tag and a single-pass transmembrane domain to prestin does not disrupt its voltage-sensitive activity. PMID:21651892
The TIL commissioning and performance
NASA Astrophysics Data System (ADS)
Zhang, X.; Zheng, W.; Wei, X.; Jing, F.; Sui, Z.; Zheng, K.; Xu, Q.; Yuan, X.; Jiang, X.; Yang, L.; Ma, P.; Li, M.; Wang, J.; Hu, D.; He, S.; Li, F.; Peng, Z.; Feng, B.; Zhou, H.; Guo, L.; Li, X.; Zhang, X.; Su, J.; Zhu, Q.; Yu, H.; Zhao, R.; Ma, C.; He, H.; Fan, D.; Zhang, W.
2008-05-01
The TIL serves for both technological platforms for SG-III construction and physical experiments to study and understand target physics toward ignition and plasma burning [2]. The TIL has been designed to produce 10kJ blue light. Its eight-beam are stacked 4 high by 2 wide, The clear optical aperture is 30cm×30cm The cavity and booster amplifiers have 9 and 6 glass slabs respectively, with thickness of 3.8cm. The cavity is a four-pass amplification stage with the seed pulse injected through its cavity spatial filter, while the booster a single pass amplification stage. The commissioning experiments have successfully been conducted to test the output and control abilities of the system. A single beam line of TIL produced 3-ns pulse of 1645 Joule blue light at the target, which demonstrated that the TIL can deliver ten-thousand-joule blue light to the target. Beam qualities have been investigated jointly with the laser chain simulations using the SG-99 code. The wavefront distortions of the beams will be improved by deformable mirrors.
NASA Astrophysics Data System (ADS)
Pesin, A.; Pustovoytov, D.; Shveyova, T.; Vafin, R.
2017-12-01
The level of a shear strain and equivalent strain plays a key role in terms of the possibility of using the asymmetric rolling process as a method of severe plastic deformation. Strain mode (pure shear or simple shear) can affect very strongly on the equivalent strain and the grain refinement of the material. This paper presents the results of FEM simulations and comparison of the equivalent strain in the aluminium alloy 5083 processed by a single-pass equal channel angular pressing (simple shear), symmetric rolling (pure shear) and asymmetric rolling (simultaneous pure and simple shear). The nonlinear effect of rolls speed ratio on the deformation characteristics during asymmetric rolling was found. Extremely high equivalent strain up to e=4.2 was reached during a single-pass asymmetric rolling. The influence of the shear strain on the level of equivalent strain is discussed. Finite element analysis of the deformation characteristics, presented in this study, can be used for optimization of the asymmetric rolling process as a method of severe plastic deformation.
Giezen, Thijs J; Mantel-Teeuwisse, Aukje K; Straus, Sabine M J M; Egberts, Toine C G; Blackburn, Stella; Persson, Ingemar; Leufkens, Hubert G M
2009-01-01
Since November 2005, an EU Risk Management Plan (EU-RMP) has had to be submitted as part of a marketing application for all new chemical entities in the EU. In the EU-RMP, the safety profile of the medicine has to be described and pharmacovigilance activities should be proposed to study further safety concerns during use of the drug in the real-world setting. These activities include, for example, collection of spontaneously reported adverse events and post-authorization safety studies (PASS). Since the submission of an EU-RMP is a relatively new requirement, there is limited knowledge on the quality and completeness of the study protocols of PASS at the time of approval and there are no data on the influence of certain drug characteristics on the proposed pharmacovigilance activities. To examine the types of proposed pharmacovigilance activities in a sample of EU-RMPs, describe and evaluate the methodology of PASS, identify problems and propose remedies, and compare characteristics between biologicals and small molecules. Eighteen EU-RMPs (nine for biologicals, nine for small molecules) given a positive decision regarding the marketing application by the Committee for Medicinal Products for Human Use between November 2005 and May 2007 were included in this descriptive cohort study. The EU-RMPs were selected over time and different therapeutic areas. Classification of the safety concerns ('important identified risks', 'important potential risks', 'important missing information' within the EU-RMP was studied. For PASS, data source (registry, population-based database, sponsor-owned clinical trial database), source of study population to be included in PASS and comprehensiveness of study protocol (full protocol, limited protocol, study synopsis, short description, commitment without further information) were studied. Compared to small molecules, safety concerns for biologicals were less frequently classified as important identified risks (relative risk [RR] 0.6; 95% CI 0.3, 1.0) and more frequently as important missing information (RR 1.6; 95% CI 1.0, 2.7). Forty-seven PASS were proposed; 31 for biologicals and 16 for small molecules. Compared with studies proposed in population-based databases (4 for biologicals, 8 for small molecules), studies in registries (18 for biologicals, 4 for small molecules) were more frequently proposed for biologicals than for small molecules (RR 2.5; 95% CI 1.1, 5.7). About 60% of the proposed PASS will include EU inhabitants. No full study protocols were submitted; 26% involved a limited study protocol, 33% a study synopsis, 37% a short description and 4% a commitment without further information. Approximately 40% of the study proposals for PASS were classified as a short description or a commitment to perform a study without further information, precluding an adequate scientific assessment. Studying non-EU populations may give rise to difficulties with generalizability of the results to the EU due to differences in patient characteristics, differences in the indication for the medicine and different healthcare systems. This study emphasizes the need for more complete study proposals to be submitted earlier on in the evaluation period and for the inclusion of EU inhabitants in PASS. In addition, differences in the characteristics between biologicals and small molecules, e.g. in the data source proposed, support the need for individualized tailored PASS depending on the type of drug.
Neighbourhood-consensus message passing and its potentials in image processing applications
NASA Astrophysics Data System (ADS)
Ružic, Tijana; Pižurica, Aleksandra; Philips, Wilfried
2011-03-01
In this paper, a novel algorithm for inference in Markov Random Fields (MRFs) is presented. Its goal is to find approximate maximum a posteriori estimates in a simple manner by combining neighbourhood influence of iterated conditional modes (ICM) and message passing of loopy belief propagation (LBP). We call the proposed method neighbourhood-consensus message passing because a single joint message is sent from the specified neighbourhood to the central node. The message, as a function of beliefs, represents the agreement of all nodes within the neighbourhood regarding the labels of the central node. This way we are able to overcome the disadvantages of reference algorithms, ICM and LBP. On one hand, more information is propagated in comparison with ICM, while on the other hand, the huge amount of pairwise interactions is avoided in comparison with LBP by working with neighbourhoods. The idea is related to the previously developed iterated conditional expectations algorithm. Here we revisit it and redefine it in a message passing framework in a more general form. The results on three different benchmarks demonstrate that the proposed technique can perform well both for binary and multi-label MRFs without any limitations on the model definition. Furthermore, it manifests improved performance over related techniques either in terms of quality and/or speed.
Sikora, Bartek; Chen, Yingfeng; Lichti, Cheryl F; Harrison, Melody K; Jennings, Thomas A; Tang, Yong; Tackett, Alan J; Jordan, John B; Sakon, Joshua; Cameron, Craig E; Raney, Kevin D
2008-04-25
HCV NS3 helicase exhibits activity toward DNA and RNA substrates. The DNA helicase activity of NS3 has been proposed to be optimal when multiple NS3 molecules are bound to the same substrate molecule. NS3 catalyzes little or no measurable DNA unwinding under single cycle conditions in which the concentration of substrate exceeds the concentration of enzyme by 5-fold. However, when NS3 (100 nm) is equimolar with the substrate, a small burst amplitude of approximately 8 nm is observed. The burst amplitude increases as the enzyme concentration increases, consistent with the idea that multiple molecules are needed for optimal unwinding. Protein-protein interactions may facilitate optimal activity, so the oligomeric properties of the enzyme were investigated. Chemical cross-linking indicates that full-length NS3 forms higher order oligomers much more readily than the NS3 helicase domain. Dynamic light scattering indicates that full-length NS3 exists as an oligomer, whereas NS3 helicase domain exists in a monomeric form in solution. Size exclusion chromatography also indicates that full-length NS3 behaves as an oligomer in solution, whereas the NS3 helicase domain behaves as a monomer. When NS3 was passed through a small pore filter capable of removing protein aggregates, greater than 95% of the protein and the DNA unwinding activity was removed from solution. In contrast, only approximately 10% of NS3 helicase domain and approximately 20% of the associated DNA unwinding activity was removed from solution after passage through the small pore filter. The results indicate that the optimally active form of full-length NS3 is part of an oligomeric species in vitro.
Wave propagation in elastic and damped structures with stabilized negative-stiffness components
NASA Astrophysics Data System (ADS)
Drugan, W. J.
2017-09-01
Effects on wave propagation achievable by introduction of a negative-stiffness component are investigated via perhaps the simplest discrete repeating element that can remain stable in the component's presence. When the system is elastic, appropriate tuning of the stabilized component's negative stiffness introduces a no-pass zone theoretically extending from zero to an arbitrarily high frequency, tunable by a mass ratio adjustment. When the negative-stiffness component is tuned to the system's stability limit and a mass ratio is sufficiently small, the system restricts propagation to waves of approximately a single arbitrary frequency, adjustable by tuning the stiffness ratio of the positive-stiffness components. The elastic system's general solutions are closed-form and transparent. When damping is added, the general solutions are still closed-form, but so complex that they do not clearly display how the negative stiffness component affects the system's response and how it should best be tuned to achieve desired effects. Approximate solutions having these features are obtained via four perturbation analyses: one for long wavelengths; one for small damping; and two for small mass ratios. The long-wavelengths solution shows that appropriate tuning of the negative-stiffness component can prevent propagation of long-wavelength waves. The small damping solution shows that the zero-damping low-frequency no-pass zone remains, while waves that do propagate are highly damped when a mass ratio is made small. Finally, very interesting effects are achievable at the full system's stability limit. For small mass ratios, the wavelength range of waves prohibited from propagation can be adjusted, from all to none, by tuning the system's damping: When one mass ratio is small, all waves with wavelengths larger than an arbitrary damping-adjusted value can be prohibited from propagation, while when the inverse of this mass ratio is small, all waves with wavelengths outside an arbitrary single adjustable value or range of values can be prohibited from propagation. All of the approximate solutions' analytically-transparent predictions are confirmed by the exact solution. The conclusions are that a stabilized tuned negative-stiffness component greatly enhances control of wave propagation in a purely elastic system, and when adjustable damping is added, even further control is facilitated.
Brandishing Cyberattack Capabilities
2013-01-01
contribution to the analysis contained in this report made by Roger C. Molander, who passed away on March 25, 2012. Dr. Molan- der spent a full career ...its freelance and “patriotic” hackers). Ironically, moves to legitimize such weapons may make it easier for other countries to take ownership, hence
2018-01-31
California’s NASA Armstrong Flight Research Center photographer Ken Ulbrich takes photos of Super Blue Blood Moon eclipse making a time-lapse composition of the event on January 31. The total lunar eclipse provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth’s shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
2017-01-31
NASA Armstrong Flight Research Center photographer Lauren Hughes takes photos of the Super Blue Blood Moon eclipse from California's Trona Pinnacles Desert National Conservation for the Jan. 31 of the total lunar eclipse that provided a rare opportunity to capture a supermoon, a blue moon and a lunar eclipse at the same time. A supermoon occurs when the Moon is closer to Earth in its orbit and appearing 14 percent brighter than usual. As the second full moon of the month, this moon is also commonly known as a blue moon, though it will not be blue in appearance. The super blue moon passed through Earth's shadow and took on a reddish tint, known as a blood moon. This total lunar eclipse occurs when the Sun, Earth, and a full moon form a near-perfect lineup in space. The Moon passes directly behind the Earth into its umbra (shadow).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, P.; /Fermilab; Cary, J.
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.« less
Mathews, Maria; Kandar, Rima; Slade, Steve; Yi, Yanqing; Beardall, Sue; Bourgeault, Ivy
2017-10-01
To describe the postgraduate medical education (PGME) examination outcomes and work locations of international medical graduates (IMGs); and to identify differences between Canadians studying abroad (CSAs) and non-CSAs. Cohort study using data from the National IMG Database and Scott's Medical Database. Canada. All IMGs who had first entered a family medicine residency program between 2005 and 2009, with the exclusion of US graduates, visa trainees, and fellowship trainees. We examined 4 outcomes: passing the Medical Council of Canada Qualifying Examination Part 2 (MCCQE2), obtaining Certification in Family Medicine (CCFP), working in Canada within 2 years of completing PGME training, and working in Canada in 2015. Of the 876 residents in the study, 96.1% passed the MCCQE2, 78.1% obtained a specialty designation, 37.7% worked in Canada within 2 years after their PGME, and 91.2% worked in Canada in 2015. Older graduates were more likely (odds ratio [OR] = 3.45; 95% CI 1.52 to 7.69) than recent graduates were to pass the MCCQE2, and residents who participated in a skills assessment program before their PGME training were more likely (OR = 9.60; 95% CI 1.29 to 71.63) than those who had not were to pass the MCCQE2. Women were more likely (OR = 1.67; 95% CI 1.20 to 2.33) to obtain a specialty designation than men were. Recent graduates were more likely (OR = 1.36; 95% CI 1.03 to 1.79) than older graduates were to work in Canada following training. Residents who were eligible for a full licence were more likely (OR = 3.72; 95% CI 2.30 to 5.99) to work in Canada in 2015 than those who were not eligible for a full licence were. While most IMGs who entered the family medicine PGME program passed the MCCQE2, 1 in 5 did not obtain Certification. Most IMG residents remain in Canada. Canadians studying abroad and non-CSA IMGs share similar examination success rates and retention rates. Copyright© the College of Family Physicians of Canada.
Ishida, Narihiro; Shimabukuro, Katsuya; Matsuno, Yukihiro; Ogura, Hiroki; Takemura, Hirofumi
2014-03-01
A 73-year-old man with a severely stenosed bicuspid valve and an aneurysm of the ascending aorta underwent valve and aortic surgery. Preoperative imaging revealed a single coronary artery arising from the right side of the sinus of Valsalva and a branch that perfused into the left side of the heart to pass through the front of the pulmonary artery. We replaced the aortic valve and ascending aorta, painstakingly avoiding damage to the coronary artery and obstruction of the sole coronary ostium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, William D.
1995-02-01
In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.
1993-10-01
between the link chronologically in the following sections. quality analysis ( LQA ) score measured by ALE and single- tone serial modem performance. A...receiving ends in turn and (propagation permitting), pass traffic and terminate the are used to calculate a combined link quality analysis ( LQA ...score. The LQA score is displayed to the operator NCCOSC RDTE DIV installation team accomplished the as a number on an arbitrary scale of 0 to 120, with a
Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring
NASA Astrophysics Data System (ADS)
Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.
2011-11-01
Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.
Analog design of wireless control for home equipment
NASA Astrophysics Data System (ADS)
Zheng, Shiyong; Li, Zhao; Li, Biqing; Jiang, Suping
2018-04-01
This design consists of a STC89C52 microcontroller, a serial Bluetooth module and the Android system. Production of STC89C52 controlled by single-chip computer telephone systems. The system is composed of mobile phone Android system as a master in the family centre,via serial Bluetooth module pass instructions and information to implement wireless transceiver using STC89C52 MCU wireless Bluetooth transmission to control homedevices. System high reliability, low cost easy to use, stong applicability and other characerristics, can be used in single-user family, has great significance.
Therriault-Proulx, François; Archambault, Louis; Beaulieu, Luc; Beddar, Sam
2013-01-01
Purpose The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. Methods A 2-point mPSD used a band-pass approach that included splitters, color filters, and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6-MV photon beam at various depths and lateral positions in a water tank. Results For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4%, and 0.32±0.19% for BCF-60, BCF-12, and BCF-10, respectively. Conclusions This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry. PMID:23060069
Measuring Ambiguity in HLA Typing Methods
Madbouly, Abeer; Freeman, John; Maiers, Martin
2012-01-01
In hematopoietic stem cell transplantation, donor selection is based primarily on matching donor and patient HLA genes. These genes are highly polymorphic and their typing can result in exact allele assignment at each gene (the resolution at which patients and donors are matched), but it can also result in a set of ambiguous assignments, depending on the typing methodology used. To facilitate rapid identification of matched donors, registries employ statistical algorithms to infer HLA alleles from ambiguous genotypes. Linkage disequilibrium information encapsulated in haplotype frequencies is used to facilitate prediction of the most likely haplotype assignment. An HLA typing with less ambiguity produces fewer high-probability haplotypes and a more reliable prediction. We estimated ambiguity for several HLA typing methods across four continental populations using an information theory-based measure, Shannon's entropy. We used allele and haplotype frequencies to calculate entropy for different sets of 1,000 subjects with simulated HLA typing. Using allele frequencies we calculated an average entropy in Caucasians of 1.65 for serology, 1.06 for allele family level, 0.49 for a 2002-era SSO kit, and 0.076 for single-pass SBT. When using haplotype frequencies in entropy calculations, we found average entropies of 0.72 for serology, 0.73 for allele family level, 0.05 for SSO, and 0.002 for single-pass SBT. Application of haplotype frequencies further reduces HLA typing ambiguity. We also estimated expected confirmatory typing mismatch rates for simulated subjects. In a hypothetical registry with all donors typed using the same method, the entropy values based on haplotype frequencies correspond to confirmatory typing mismatch rates of 1.31% for SSO versus only 0.08% for SBT. Intermediate-resolution single-pass SBT contains the least ambiguity of the methods we evaluated and therefore the most certainty in allele prediction. The presented measure objectively evaluates HLA typing methods and can help define acceptable HLA typing for donor recruitment. PMID:22952712
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurer, J; Sintay, B; Manning, M
Purpose: This study evaluates a novel algorithm that can be used with any treatment planning system for simple and rapid generation of stereotactic radiosurgery (SRS) plans for treating multiple brain metastases using a single isocenter dynamic conformal arc (DCA) approach. This technique is compared with a single isocenter volumetric modulated arc therapy (VMAT) technique in terms of delivery time, conformity, low dose spread and delivery accuracy. Methods: Five patients, with a total of 37 (5 – 11) targets were planned using a previously published method for generating optimal VMAT plans and using the proposed DCA algorithm. All planning target volumesmore » (PTVs) were planned to 20 Gy, meeting a minimum 99% coverage and maximum 135 % hot spot for both techniques. Quality assurance was performed using radiochromic film, with films placed in the high dose regions of each PTV. Normal tissue volumes receiving 12 Gy and 6 Gy (V12 and V6) were computed for each plan. Conformity index (CI) and gamma evaluations (95% of points passing 4%/0.5mm) were computed for each PTV. Results: Delivery times, including beam on and table rotation times, were comparable: 17 – 22 minutes for all deliveries. V12s for DCA plans were (18.5±15.2 cc) vs. VMAT (19.7±14.4 cc). V6s were significantly lower for DCA (69.0±52.0 cc) compared with VMAT (154.0±91.0 cc) (p <<0.05). CIs for VMAT targets were (1.38±0.50) vs. DCA (1.61±0.41). 36 of 37 DCA planned targets passed gamma tests, while 29 of 37 VMAT planned targets passed. Conclusion: Single isocenter DCA plans were easily achieved. The evaluation suggests that DCA may represent a favorable technique compared with VMAT for multiple target SRS by reducing dose to normal tissue and more accurately depicting deliverable dose.« less
Resolving the mystery of milliwatt-threshold opto-mechanical self-oscillation in dual-nanoweb fiber
NASA Astrophysics Data System (ADS)
Koehler, J. R.; Noskov, R. E.; Sukhorukov, A. A.; Butsch, A.; Novoa, D.; Russell, P. St. J.
2016-08-01
It is interesting to pose the question: How best to design an optomechanical device, with no electronics, optical cavity, or laser gain, that will self-oscillate when pumped in a single pass with only a few mW of single-frequency laser power? One might begin with a mechanically resonant and highly compliant system offering very high optomechanical gain. Such a system, when pumped by single-frequency light, might self-oscillate at its resonant frequency. It is well-known, however, that this will occur only if the group velocity dispersion of the light is high enough so that phonons causing pump-to-Stokes conversion are sufficiently dissimilar to those causing pump-to-anti-Stokes conversion. Recently it was reported that two light-guiding membranes 20 μm wide, ˜500 nm thick and spaced by ˜500 nm, suspended inside a glass fiber capillary, oscillated spontaneously at its mechanical resonant frequency (˜6 MHz) when pumped with only a few mW of single-frequency light. This was surprising, since perfect Raman gain suppression would be expected. In detailed measurements, using an interferometric side-probing technique capable of resolving nanoweb movements as small as 10 pm, we map out the vibrations along the fiber and show that stimulated intermodal scattering to a higher-order optical mode frustrates gain suppression, permitting the structure to self-oscillate. A detailed theoretical analysis confirms this picture. This novel mechanism makes possible the design of single-pass optomechanical oscillators that require only a few mW of optical power, no electronics nor any optical resonator. The design could also be implemented in silicon or any other suitable material.
Optical performance of multifocal soft contact lenses via a single-pass method.
Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric
2012-08-01
A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p < 0.05). AirOptix design exhibited good performance for distance and intermediate vision. PureVision design showed improved performance across the test vergences, but only for pupils ≥4 mm in diameter. Performance of Acuvue bifocal was comparable with other MFCLs, but only for pupils >4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, L.N.
Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for 'grating-type' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a 'multi-pass collider', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak powermore » requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.« less
Simultaneous two-wavelength holographic interferometry in a superorbital expansion tube facility.
McIntyre, T J; Wegener, M J; Bishop, A I; Rubinsztein-Dunlop, H
1997-11-01
A new variation of holographic interferometry has been utilized to perform simultaneous two-wavelength measurements, allowing quantitative analysis of the heavy particle and electron densities in a superorbital facility. An air test gas accelerated to 12 km/s was passed over a cylindrical model, simulating reentry conditions encountered by a space vehicle on a superorbital mission. Laser beams with two different wavelengths have been overlapped, passed through the test section, and simultaneously recorded on a single holographic plate. Reconstruction of the hologram generated two separate interferograms at different angles from which the quantitative measurements were made. With this technique, a peak electron concentration of (5.5 +/- 0.5) x 10(23) m(-3) was found behind a bow shock on a cylinder.
NASA Astrophysics Data System (ADS)
Gustafsson, G.; Potemra, T. A.; Favin, S.; Saflekos, N. A.
1981-10-01
Principal oscillations of the TRIAD satellite are studied in 150 passes and are identified as the librations of a gravity-stabilized satellite. The libration periods are T(O)/2 and T(O)/(3) exp 1/2, where T(O) is the orbit period of about 100 min. The amplitude and phase change over periods of a few days, sometimes vanishing altogether, and these attitude changes are numerically evaluated and removed. Data from three consecutive passes spanning over three hours show a magnetic profile which extends as far as 10 deg in latitude from a single region 1 Birkeland current sheet, confirming the permanent and global nature of large-scale Birkeland currents.
Contact patterning strategies for 32nm and 28nm technology
NASA Astrophysics Data System (ADS)
Morgenfeld, Bradley; Stobert, Ian; An, Ju j.; Kanai, Hideki; Chen, Norman; Aminpur, Massud; Brodsky, Colin; Thomas, Alan
2011-04-01
As 193 nm immersion lithography is extended indefinitely to sustain technology roadmaps, there is increasing pressure to contain escalating lithography costs by identifying patterning solutions that can minimize the use of multiple-pass processes. Contact patterning for the 32/28 nm technology nodes has been greatly facilitated by just-in-time introduction of new process enablers that allow the simultaneous support of flexible foundry-oriented ground rules alongside highperformance technology, while also migrating to a single-pass patterning process. The incorporation of device based performance metrics along with rigorous patterning and structural variability studies were critical in the evaluation of material innovation for improved resolution and CD shrink along with novel data preparation flows utilizing aggressive strategies for SRAF insertion and retargeting.
Main stage: See through car with battery, engine, generator, power split device, and electric motor the power split device to the front wheels. Main stage: See through car with battery, engine : See through car with battery, engine, generator, power split device, and electric motor visible while
the recommendations, see the Executive Summary or the Full Report) More than a year has passed, and reports on each recommendation. Comprehensive Inventory (click to read report) Agencies involved: NPS , ACHP (with NCSHPO) Cultural Diversity (click to read report) Agencies involved: NPS Disasters (click to
Effects of changing HOV lane occupancy requirements : El Monte busway case study
DOT National Transportation Integrated Search
2002-06-01
In 1999, the California Legislature passed Senate Bill 63, which lowered the vehicle-occupancy requirement on the El Monte Busway on the San Bernardino (I-10) Freeway from three persons per vehicle (3+) to two persons per vehicle (2+) full time. The ...
Yang, Yali; Huang, Lihui; Cheng, Xiaohua; Fu, Xinxing; Liu, Jiaxing; Ni, Tingting
2014-11-01
To explore the found ways and first diagnosis age of children with large vestibular aqueduct, and their relations with hearing loss. Medical histories of 122 cases of children diagnosed with large vestibular aqueduct by HRCT or MRI had been collected from January 2009 to April 2014 in our hospital children's hearing diagnosis center clinic. Found ways comprise of accepting universal newborn hearing screening (UNHS) group and unaccepting UNHS group. Accepting UNHS children were divided into two ears unpassing group, single ear unpassing group and passing group. The patients in unaccepting UNHS group were divided into not sensitive to sounds, speech stunting, sudden hearing loss, and other group. Analysis the relationship between the found ways and first diagnosis age and their relations with hearing loss. There are 84 cases (68.85%) accepting UNHS, the average age of first diagnosis was (17.24 ± 17.08) months; 37 cases (31.15%) are not accepting UNHS. The average age of first diagnosis was (30.92 ± 18.21) months. The average first diagnosis age of accepting UNHS group was more earlier than the unaccepting UNHS group. The difference was statistically signif- icant (P < 0.01). There were 57 cases (67.85%) whose two ears not pass UNHS; 15 cases (17.86%) single ear not pass; namely the referral rate was 85.71%; 12 cases (14.29%) pass the test. The first diagnosis age of passing UNHS group was more later than two ears unpassing group (P < 0.001). In the unaccepting UNHS group, the average first diagnosis age of not sensitive to sounds group (19.69 ± 11.16 months) was more earlier than words dysplasia group (37.13 ± 15.62 months) and sudden hearing loss group (47.40 ± 24.70 months) (P < 0.01). The difference in the degree of hearing loss between accepting UNHS and unaccepting UNHS group had no statistical significance (P > 0.05). In unaccepting UNHS group ,the average first diagnosis age of the mild-to-moderate hearing loss group was later than the very severe hearing loss group (P < 0.01). Most of large vestibular aqueduct children can be found and receive diagnosis early by UNHS. But part of these patients with late-onset or progressive hearing loss, especially these with mild-to-moderate hearing loss cannot be found early, which should arouse our attention.
Archive of bathymetry data collected in South Florida from 1995 to 2015
Hansen, Mark Erik; DeWitt, Nancy T.; Reynolds, Billy J.
2017-08-10
DescriptionLand development and alterations of the ecosystem in south Florida over the past 100 years have decreased freshwater and increased nutrient flows into many of Florida's estuaries, bays, and coastal regions. As a result, there has been a decrease in the water quality in many of these critical habitats, often prompting seagrass die-offs and reduced fish and aquatic life populations. Restoration of water quality in many of these habitats will depend partly upon using numerical-circulation and sediment-transport models to establish water-quality targets and to assess progress toward reaching restoration targets. Application of these models is often complicated because of complex sea floor topography and tidal flow regimes. Consequently, accurate and modern sea-floor or bathymetry maps are critical for numerical modeling research. Modern bathymetry data sets will also permit a comparison to historical data in order to help assess sea-floor changes within these critical habitats. New and detailed data sets also support marine biology studies to help understand migratory and feeding habitats of marine life.This data series is a compilation of 13 mapping projects conducted in south Florida between 1995 and 2015 and archives more than 45 million bathymetric soundings. Data were collected primarily with a single beam sound navigation and ranging (sonar) system called SANDS developed by the U.S. Geological Survey (USGS) in 1993. Bathymetry data for the Estero Bay project were supplemented with the National Aeronautics and Space Administration's (NASA) Experimental Advanced Airborne Research Lidar (EAARL) system. Data from eight rivers in southwest Florida were collected with an interferometric swath bathymetry system. The projects represented in this data series were funded by the USGS Coastal and Marine Geology Program (CMGP), the USGS South Florida Ecosystem Restoration Project- formally named Placed Based Studies, and other non-Federal agencies. The purpose of the data collection for all these projects was to support one or more of the following scientific aspects: numerical model applications, sea floor change analysis, or marine habitat investigations.This report serves as an archive of processed bathymetry sounding data, digital bathymetric contours, digital bathymetric maps, sea floor surface grids, and formal Federal Geographic Data Committee (FGDC) metadata. Refer to the Abbreviations page for explanations of acronyms and abbreviations used in this report. Since 2006, the USGS St. Petersburg Coastal and Marine Science Center (SPCMSC) assigns a unique identifier or Field Activity Number (FAN) for each field data collection. Projects described in this report conducted prior to 2006 do not have a FAN.Data from the 13 projects presented in this report provided critical hydrographic information to support multiple science projects in south Florida. The projects and the types of sounding data collected are:Florida Bay (1995-1999) - single-beamLake Okeechobee (2001) - single-beamTampa Bay (2001-2004) - single-beamCaloosahatchee River (2002)- single-beamEstero Bay to Matlacha Pass and offshore to Wiggins Pass (2003) - single-beam and airborne lidarNorth and Northwest Forks of the Loxahatchee and Lower St. Lucie Rivers (2003) - single-beamSouth Charlotte Harbor and offshore Sanibel Island (2003-2004) - single-beamShark River and Trout Creek (2004) - single-beam and interferometric swathSouthwest Florida Rivers (2004) - interferometric swathOffshore from Wiggins Pass to Cape Romano (2005) - single-beamTen Thousand Islands (2009) - single-beamLemon Bay (2011) - single-beamSouthwest Florida Rivers (2015) - interferometric swath
Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin
2016-06-23
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.
Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin
2016-01-01
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815
All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror
NASA Astrophysics Data System (ADS)
Offerhaus, H. L.; Godfried, H. P.; Witteman, W. J.
1996-02-01
At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200 μs diode pulses in a stable oscillator. The oscillator is Q-switched and injection seeded with a commercial diode pumped single frequency CW Nd:YAG laser. The output consists of single-transverse, single-longitudinal mode 25 ns FWHM-pulses at 1064 nm. The oscillator slab is imaged on a square aperture that transmits between 3 and 2 mJ (at 100 and 400 Hz, resp.) The aperture is subsequently imaged four times in the amplifier. The amplifier is a 3 by 6 by 60 mm Brewster angle zig-zag slab, pumped by an 80-bar diode stack with pulses up to 250 μs. After the second pass the light is focused in two consecutive cells containing Freon-113 for wave-front reversal in an oscillator/amplifier-setup with a reflectivity of 60%. The light then passes through the amplifier twice more to produce 20 W (at 400 Hz) of output with near diffraction limited beam quality. To increase the output to 50 W at 1 kHz thermal lensing in the oscillator will be reduced.
NASA Astrophysics Data System (ADS)
Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin
2016-06-01
We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.
Quantifying fish habitat associated with stream simulation design culverts in northern Wisconsin
A. Timm; D. Higgins; J. Stanovick; R. Kolka; S. Eggert
2017-01-01
This study investigated the effects of culvert replacement design on fish habitat and fish weight by comparing substrate diversity and weight at three stream simulation (SS)-design and three bankfull and backwater (BB)-design sites on the Chequamegon-Nicolet National Forest, Wisconsin. Stream channel cross-sections, Wolman substrate particle counts, and single-pass...
Atmospheric pressure helium afterglow discharge detector for gas chromatography
Rice, G.; D'Silva, A.P.; Fassel, V.A.
1985-04-05
An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.
Atmospheric pressure helium afterglow discharge detector for gas chromatography
Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.
1986-05-06
An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.
Overestimation of infant and toddler energy intake by 24-h recall compared with weighed food records
USDA-ARS?s Scientific Manuscript database
Twenty-four-hour dietary recalls have been used in large surveys of infant and toddler energy intake, but the accuracy of the method for young children is not well documented. We aimed to determine the accuracy of infant and toddler energy intakes by a single, telephone-administered, multiple-pass 2...
Comparative experimental pharmacokinetics of benzimidazole derivatives.
Sergeeva, S A; Gulyaeva, I L
2008-12-01
Comparative study of experimental kinetics of distribution of benzimidazole derivatives (bemithyl, etomerzole, and thietazole) in organs and tissues was carried out after single and course treatment. The drugs intensely passed into organs and tissues from the blood after treatment by all protocols. Specific features of drug distribution were detected; for example, splenic tissue selectively accumulated thietazole during course treatment.
Guided Discovery of the Nine-Point Circle Theorem and Its Proof
ERIC Educational Resources Information Center
Buchbinder, Orly
2018-01-01
The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through…
Opportunity and Danger: The Two Sides of the American Recovery and Reinvestment Act
ERIC Educational Resources Information Center
Warner, Carolyn
2009-01-01
The American Recovery and Reinvestment Act (ARRA) is likely the greatest single infusion of federal dollars into education since Congress passed the Elementary and Secondary Education Act in 1965 during Lyndon Johnson's presidency. When President Johnson signed that act, he said its purpose was to give every child in America "all the…
Histotripsy Thrombolysis on Retracted Clots
Zhang, Xi; Owens, Gabe E.; Cain, Charles A.; Gurm, Hitinder S.; Macoskey, Jonathan; Xu, Zhen
2016-01-01
Retracted blood clots have been previously recognized to be more resistant to drug-based thrombolysis methods, even with ultrasound and microbubble enhancements. Microtripsy, a new histotripsy approach, has been investigated as a non-invasive, drug-free, and image-guided method that uses ultrasound to break up clots with improved treatment accuracy and a lower risk of vessel damage when compared to the traditional histotripsy thrombolysis approach. Unlike drug-mediated thrombolysis, which is dependent on the permeation of the thrombolytic agents into the clot, microtripsy controls acoustic cavitation to fractionate clots. We hypothesize that microtripsy thrombolysis is effective on retracted clots and that the treatment efficacy can be enhanced using strategies incorporating electronic focal steering. To test our hypothesis, retracted clots were prepared in vitro and the mechanical properties were quantitatively characterized. Microtripsy thrombolysis was applied on the retracted clots in an in vitro flow model using three different strategies: single-focus, electronically-steered multi-focus, and a dual-pass multi-focus strategy. Results show that microtripsy was used to successfully generate a flow channel through the retracted clot and the flow was restored. The multi-focus and the dual-pass treatments incorporating the electronic focal steering significantly increased the recanalized flow channel size compared to the single-focus treatments. The dual-pass treatments achieved a restored flow rate up to 324 mL/min without cavitation contacting the vessel wall. The clot debris particles generated from microtripsy thrombolysis remained within the safe range. The results in this study show the potential of microtripsy thrombolysis for retracted clot recanalization with the enhancement of electronic focal steering. PMID:27166017
Li, Fenfang; Wilkens, Lynne R; Novotny, Rachel; Fialkowski, Marie K; Paulino, Yvette C; Nelson, Randall; Bersamin, Andrea; Martin, Ursula; Deenik, Jonathan; Boushey, Carol J
2016-05-01
Anthropometric standardization is essential to obtain reliable and comparable data from different geographical regions. The purpose of this study is to describe anthropometric standardization procedures and findings from the Children's Healthy Living (CHL) Program, a study on childhood obesity in 11 jurisdictions in the US-Affiliated Pacific Region, including Alaska and Hawai'i. Zerfas criteria were used to compare the measurement components (height, waist, and weight) between each trainee and a single expert anthropometrist. In addition, intra- and inter-rater technical error of measurement (TEM), coefficient of reliability, and average bias relative to the expert were computed. From September 2012 to December 2014, 79 trainees participated in at least 1 of 29 standardization sessions. A total of 49 trainees passed either standard or alternate Zerfas criteria and were qualified to assess all three measurements in the field. Standard Zerfas criteria were difficult to achieve: only 2 of 79 trainees passed at their first training session. Intra-rater TEM estimates for the 49 trainees compared well with the expert anthropometrist. Average biases were within acceptable limits of deviation from the expert. Coefficient of reliability was above 99% for all three anthropometric components. Standardization based on comparison with a single expert ensured the comparability of measurements from the 49 trainees who passed the criteria. The anthropometric standardization process and protocols followed by CHL resulted in 49 standardized field anthropometrists and have helped build capacity in the health workforce in the Pacific Region. Am. J. Hum. Biol. 28:364-371, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Calibrating genomic and allelic coverage bias in single-cell sequencing.
Zhang, Cheng-Zhong; Adalsteinsson, Viktor A; Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L; Meyerson, Matthew; Love, J Christopher
2015-04-16
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1-10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.
Calibrating genomic and allelic coverage bias in single-cell sequencing
Francis, Joshua; Cornils, Hauke; Jung, Joonil; Maire, Cecile; Ligon, Keith L.; Meyerson, Matthew; Love, J. Christopher
2016-01-01
Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (~0.1 ×) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples. PMID:25879913
Production of multi-, oligo- and single-pore membranes using a continuous ion beam
NASA Astrophysics Data System (ADS)
Apel, P. Yu.; Ivanov, O. M.; Lizunov, N. E.; Mamonova, T. I.; Nechaev, A. N.; Olejniczak, K.; Vacik, J.; Dmitriev, S. N.
2015-12-01
Ion track membranes (ITM) have attracted significant interest over the past two decades due to their numerous applications in physical, biological, chemical, biochemical and medical experimental works. A particular feature of ITM technology is the possibility to fabricate samples with a predetermined number of pores, including single-pore membranes. The present report describes a procedure that allowed for the production of multi-, oligo- and single-pore membranes using a continuous ion beam from an IC-100 cyclotron. The beam was scanned over a set of small diaphragms, from 17 to ∼1000 μm in diameter. Ions passed through the apertures and impinged two sandwiched polymer foils, with the total thickness close to the ion range in the polymer. The foils were pulled across the ion beam at a constant speed. The ratio between the transport speed and the scanning frequency determined the distance between irradiation spots. The beam intensity and the aperture diameters were adjusted such that either several, one or no ions passed through the diaphragms during one half-period of scanning. After irradiation, the lower foil was separated from the upper foil and was etched to obtain pores 6-8 μm in diameter. The pores were found using a color chemical reaction between two reagents placed on opposite sides of the foil. The located pores were further confirmed using SEM and optical microscopy. The numbers of tracks in the irradiation spots were consistent with the Poisson statistics. Samples with single or few tracks obtained in this way were employed to study fine phenomena in ion track nanopores.
Single molecule fluorescence burst detection of DNA fragments separated by capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haab, B.B.; Mathies, R.A.
A method has been developed for detecting DNA separated by capillary gel electrophoresis (CGE) using single molecule photon burst counting. A confocal fluorescence microscope was used to observe the fluorescence bursts from single molecules of DNA multiply labeled with the thiazole orange derivative TO6 as they passed through the nearly 2-{mu}m diameter focused laser beam. Amplified photo-electron pulses from the photomultiplier are grouped into bins of 360-450 {mu}s in duration, and the resulting histogram is stored in a computer for analysis. Solutions of M13 DNA were first flowed through the capillary at various concentrations, and the resulting data were usedmore » to optimize the parameters for digital filtering using a low-pass Fourier filter, selecting a discriminator level for peak detection, and applying a peak-calling algorithm. The optimized single molecule counting method was then applied to an electrophoretic separation of M13 DNA and to a separation of pBR 322 DNA from pRL 277 DNA. Clusters of discreet fluorescence bursts were observed at the expected appearance time of each DNA band. The auto-correlation function of these data indicated transit times that were consistent with the observed electrophoretic velocity. These separations were easily detected when only 50-100 molecules of DNA per band traveled through the detection region. This new detection technology should lead to the routine analysis of DNA in capillary columns with an on-column sensitivity of nearly 100 DNA molecules/band or better. 45 refs., 10 figs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernon, E.; De Geronimo, G.; Ackley, K.
We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discriminationmore » with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.« less
Eighteenth-Century Observations of Algol: The First Suggestion of an Exoplanet?
NASA Astrophysics Data System (ADS)
French, Linda M.
2017-10-01
In November of 1782, 18-year old John Goodricke of York, England, was amazed to observe the star Algol (Beta Persei) dim by more than one magnitude and then return to full brightness over a period of seven hours. Goodricke and his mentor, Edward Pigott, speculated that the dimming could only have been caused by a "dark body" passing in front of Algol. Over the succeeding months, the two were able to refine the period between what we now know to be eclipses to 2.87 days. They would determine the periods of other variable stars, including the first two Cepheid variables known. Yet in their lifetime, their suggestion that Algol's variation was due to an eclipse was not accepted. Most astronomers believed the variations were due to spots on the surface of a single star. Only a century later, with the advent of astronomical spectroscopy, was Algol's true nature revealed. Goodricke and Pigott's work is one of the first studies of stellar variation; their methods and occasional pitfalls are ones to which modern astronomers can relate.
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, C., E-mail: lauch@ornl.gov; Blazevski, D.; Green, D. L.
2015-12-10
Recent efforts have shown that helicon waves (fast waves at > 20ω{sub ci}) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored,more » it will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allaria, Enrico; Diviacco, Bruno; Callegari, Carlo
The two single-pass, externally seeded free-electron lasers (FELs) of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independentmore » instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.« less
NASA Astrophysics Data System (ADS)
Tang, Jian-Shun; Wang, Yi-Tao; Yu, Shang; He, De-Yong; Xu, Jin-Shi; Liu, Bi-Heng; Chen, Geng; Sun, Yong-Nan; Sun, Kai; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-10-01
The experimental progress achieved in parity-time () symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for -symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether -symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the -symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a -symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully -symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the -symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.
NASA Astrophysics Data System (ADS)
Tang, Jian-Shun; Wang, Yi-Tao; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
The experimental progress achieved in parity-time (PT) symmetry in classical optics is the most important accomplishment in the past decade and stimulates many new applications, such as unidirectional light transport and single-mode lasers. However, in the quantum regime, some controversial effects are proposed for PT-symmetric theory, for example, the potential violation of the no-signalling principle. It is therefore important to understand whether PT-symmetric theory is consistent with well-established principles. Here, we experimentally study this no-signalling problem related to the PT-symmetric theory using two space-like separated entangled photons, with one of them passing through a post-selected quantum gate, which effectively simulates a PT-symmetric evolution. Our results suggest that the superluminal information transmission can be simulated when the successfully PT-symmetrically evolved subspace is solely considered. However, considering this subspace is only a part of the full Hermitian system, additional information regarding whether the PT-symmetric evolution is successful is necessary, which transmits to the receiver at maximally light speed, maintaining the no-signalling principle.
Unsupervised Feature Learning With Winner-Takes-All Based STDP
Ferré, Paul; Mamalet, Franck; Thorpe, Simon J.
2018-01-01
We present a novel strategy for unsupervised feature learning in image applications inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and ReLU artificial neurons when applied to non-temporal data. We apply this to images using rank-order coding, which allows us to perform a full network simulation with a single feed-forward pass using GPU hardware. Next we introduce a binary STDP learning rule compatible with training on batches of images. Two mechanisms to stabilize the training are also presented : a Winner-Takes-All (WTA) framework which selects the most relevant patches to learn from along the spatial dimensions, and a simple feature-wise normalization as homeostatic process. This learning process allows us to train multi-layer architectures of convolutional sparse features. We apply our method to extract features from the MNIST, ETH80, CIFAR-10, and STL-10 datasets and show that these features are relevant for classification. We finally compare these results with several other state of the art unsupervised learning methods. PMID:29674961
Effects of Sealing Run Welding with Defocused Laser Beam on the Quality of T-joint Fillet Weld
NASA Astrophysics Data System (ADS)
Unt, Anna; Poutiainen, Ilkka; Salminen, Antti
Fillet weld is the predominant weld type used for connecting different elements e.g. in shipbuilding, offshore and bridge structures. One of prevalent research questions is the structural integrity of the welded joint. Post weld improvement techniques are being actively researched, as high stress areas like an incomplete penetration on the root side or fluctuations in penetration depth cannot be avoided. Development of laser and laser-arc hybrid welding processes have greatly contributed to increase of production capacity and reduction of heat-induced distortions by producing single pass full penetration welds in thin- and medium thickness structural steel parts. Present study addresses the issue of how to improve the quality of the fillet welds by welding the sealing run on the root side with defocused laser beam. Welds having incomplete or excessive penetration were produced with several beam angles and laser beam spot sizes on surface. As a conclusion, significant decrease or even complete elimination of the seam irregularities, which act as the failure starting points during service, is achieved.
Using AORSA to simulate helicon waves in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall H; Jaeger, E. F.; Bertelli, Nicola
2015-01-01
Recent efforts have shown that helicon waves (fast waves at >20 omega(ci)) may be an attractive option for driving efficient off-axis current drive during non-inductive tokamak operation for DIII-D, ITER and DEMO. For DIII-D scenarios, the ray tracing code, GENRAY, has been extensively used to study helicon current drive efficiency and location as a function of many plasma parameters. The full wave code, AORSA, which is applicable to arbitrary Larmor radius and can resolve arbitrary ion cyclotron harmonic order, has been recently used to validate the ray tracing technique at these high cyclotron harmonics. If the SOL is ignored, itmore » will be shown that the GENRAY and AORSA calculated current drive profiles are comparable for the envisioned high beta advanced scenarios for DIII-D, where there is high single pass absorption due to electron Landau damping and minimal ion damping. AORSA is also been used to estimate possible SOL effects on helicon current drive coupling and SOL absorption due to collisional and slow wave effects.« less
Inverse free steering law for small satellite attitude control and power tracking with VSCMGs
NASA Astrophysics Data System (ADS)
Malik, M. S. I.; Asghar, Sajjad
2014-01-01
Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.
The implementation of an aeronautical CFD flow code onto distributed memory parallel systems
NASA Astrophysics Data System (ADS)
Ierotheou, C. S.; Forsey, C. R.; Leatham, M.
2000-04-01
The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier-Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright
Role of the orbital degree of freedom in iron-based superconductors
NASA Astrophysics Data System (ADS)
Yi, Ming; Zhang, Yan; Shen, Zhi-Xun; Lu, Donghui
2017-10-01
Almost a decade has passed since the serendipitous discovery of the iron-based high temperature superconductors (FeSCs) in 2008. The fact that, as in the copper oxide high temperature superconductors, long-range antiferromagnetism in the FeSCs arises in proximity to superconductivity immediately raised the question of the degree of similarity between the two. Despite the great resemblance in their phase diagrams, there exist important differences between the FeSCs and the cuprates that need to be considered in order to paint a full picture of these two families of high temperature superconductors. One of the key differences is the multi-orbital multi-band nature of the FeSCs, which contrasts with the effective single-band nature of the cuprates. Systematic studies of orbital related phenomena in FeSCs have been largely lacking. In this review, we summarize angle-resolved photoemission spectroscopy (ARPES) measurements across various FeSC families that have been reported in literature, focusing on the systematic trends of orbital dependent electron correlations and the role of different Fe 3d orbitals in driving the nematic transition, the spin-density-wave transition, and superconductivity.
Heat input and accumulation for ultrashort pulse processing with high average power
NASA Astrophysics Data System (ADS)
Finger, Johannes; Bornschlegel, Benedikt; Reininghaus, Martin; Dohrn, Andreas; Nießen, Markus; Gillner, Arnold; Poprawe, Reinhart
2018-05-01
Materials processing using ultrashort pulsed laser radiation with pulse durations <10 ps is known to enable very precise processing with negligible thermal load. However, even for the application of picosecond and femtosecond laser radiation, not the full amount of the absorbed energy is converted into ablation products and a distinct fraction of the absorbed energy remains as residual heat in the processed workpiece. For low average power and power densities, this heat is usually not relevant for the processing results and dissipates into the workpiece. In contrast, when higher average powers and repetition rates are applied to increase the throughput and upscale ultrashort pulse processing, this heat input becomes relevant and significantly affects the achieved processing results. In this paper, we outline the relevance of heat input for ultrashort pulse processing, starting with the heat input of a single ultrashort laser pulse. Heat accumulation during ultrashort pulse processing with high repetition rate is discussed as well as heat accumulation for materials processing using pulse bursts. In addition, the relevance of heat accumulation with multiple scanning passes and processing with multiple laser spots is shown.
Precision envelope detector and linear rectifier circuitry
Davis, Thomas J.
1980-01-01
Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.
Problem-based learning outcomes: the glass half-full.
Distlehorst, Linda H; Dawson, Elizabeth; Robbs, Randall S; Barrows, Howard S
2005-03-01
To compare the characteristics and outcome data of students from a single institution with a two-track, problem based learning (PBL) and standard (STND) curriculum. PBL and STND students from nine graduating classes at Southern Illinois University School of Medicine were compared using common medical school performance outcomes (USMLE Step 1, USMLE Step 2, clerkship mean ratings, number of clerkship honors and remediation designations, and the senior clinical competency exam), as well as common admission and demographic variables. PBL students were older, and the cohort had a higher proportion of women. The two tracks had similar USMLE Step 1 and 2 mean scores and pass rates. Performance differences were significant for PBL students in two clerkships as well as in the clerkship subcategories of clinical performance, knowledge and clinical reasoning, and noncognitive behaviors. In addition, the proportion of PBL students earning honors was greater. The traditional undergraduate educational outcomes for the PBL and STND students are very positive. In several of the clerkship performance measures, the PBL students performed significantly better, and in no circumstance did they perform worse than the STND students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, X
Purpose: To explore the real-time dose verification method in volumetric modulated arc radiotherapy (VMAT) with a 2D array ion chamber array. Methods: The 2D ion chamber array was fixed on the panel of electronic portal imaging device (EPID). Source-detector distance (SDD)was 140cm. 8mm RW3 solid water was added to the detector panel to achieve maximum readings.The patient plans for esophageal, prostate and liver cancers were selected to deliver on the cylindrical Cheese phantom 5 times in order to validate the reproducibility of doses. Real-time patient transit dose measurements were performed at each fraction. Dose distributions wereevaluated using gamma index criteriamore » of 3mm DTA and 3% dose difference referred to the firsttime Result. Results: The gamma index pass rate in the Cheese phantom were about 98%; The gamma index pass rate for esophageal, liver and prostate cancer patient were about 92%,94%, and 92%, respectively; Gamma pass rate for all single fraction were more than 90%. Conclusion: The 2D array is capable of monitoring the real time transit doses during VMAT delivery. It is helpful to improve the treatment accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spentzouris, Panagiotis; /Fermilab; Cary, John
The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessarymore » accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.« less
Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)
NASA Astrophysics Data System (ADS)
Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team
A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.
Hot cracking susceptibility of Alloy 52M weld overlays onto CF8 stainless steel
NASA Astrophysics Data System (ADS)
Chu, H. A.; Young, M. C.; Chu, H. C.; Tsay, L. W.; Chen, C.
2013-02-01
In this study, weld overlays of Alloy 52M (a nickel-based filler metal) onto CF8 stainless steel (SS) were performed using the gas tungsten arc welding process. Hot cracking in the weld overlays was observed particularly near the interfacial region of the Alloy 52M/CF8 weld overlay. In general, the hot cracks were most likely to occur at the sites with high dilution rates, e.g., at the weld start/end locations of a single pass or in the first and second passes in multi-pass overlays. The region near the weld interface between Alloy 52M and the CF8 SS had a higher hot cracking tendency than the other regions. It was found that the dilution rate and the formation of eutectic-type constituents (i.e., γ/NbC) both played significant roles in the determination of the hot cracking susceptibility of these weld overlays. Nevertheless, hot cracks were entirely eliminated by proper deposition of a SS buffer layer prior to overlaying with Alloy 52M.
ERIC Educational Resources Information Center
Slesnick, Irwin L.
1983-01-01
Discusses and provides questions for use in "Energy Flow in a Wetland," a game in which energy is examined as it passes through a wetland's food chain. Includes full-color, poster-size game board, rules, and an energy loss chart which lists calorie-consuming events organisms encounter during their lives. (JN)
Environmental Progress Through Cooperation in Education.
ERIC Educational Resources Information Center
Horn, Barbara, Ed.
The program agenda, roster of participants, report of the business meeting, and resolutions passed at the conference are reported in these proceedings. Presentations made at the meeting are reproduced in full or summarized. These include: TVA--A Pilot Plant in Environmental Education; Why an Energy Shortage?; Role of National Organizations in…
FULL-SCALE EVALUATION OF RIVERBANK FILTRATION AT THREE MIDWEST WATER TREATMENT PLANTS
Riverbank filtration (or induced infiltration) is a process in which river water passes through ground prior to its use as a drinking water supply. Alluvial aquifers that are hydraulically connected to rivers may provide an alternate source of water supply for water utilities. Ri...
Executive report : effects of changing HOV lane occupancy requirements : El Monte busway case study.
DOT National Transportation Integrated Search
2002-09-01
In 1999, the California Legislature passed Senate Bill 63, which lowered the vehicle-occupancy requirement on the El Monte Busway on the San Bernardino (I-10) Freeway from three persons per vehicle (3+) to two persons per vehicle (2+) full time. The ...
High-resolution spectrometrometry/interferometer
NASA Technical Reports Server (NTRS)
Breckinridge, J. B.; Norton, R. H.; Schindler, R. A.
1980-01-01
Modified double-pass interferometer has several features that maximize its resolution. Proposed for rocket-borne probes of upper atmosphere, it includes cat's-eye retroreflectors in both arms, wedge-shaped beam splitter, and wedged optical-path compensator. Advantages are full tilt compensation, minimal spectrum "channeling," easy tunability, maximum fringe contrast, and even two-sided interferograms.
ERIC Educational Resources Information Center
Morrison, David
1982-01-01
Discusses the effects on astronomy courses/curriculum if equal time were given to the concept that the universe was created in its present form about ten thousand years ago. Includes the full text on a resolution concerning creationism passed by the Board of Directors of the Astronomical Society of the Pacific. (Author/JN)
Screening for prodromal Parkinson's disease in the general community: a sleep-based approach.
Postuma, Ronald B; Pelletier, Amelie; Berg, Daniela; Gagnon, Jean-Francois; Escudier, Frédérique; Montplaisir, Jacques
2016-05-01
Neuroprotective therapy for Parkinson's disease (PD) is most likely to be effective if provided in its prodromal stages. However, identifying prodromal PD is difficult because PD is relatively uncommon, and most markers are nonspecific. Rapid eye movement (REM) sleep behavior disorder (RBD) is by far the strongest clinical marker of prodromal PD, but most patients do not seek out medical attention. Developing an efficient way of diagnosing RBD from the general community may be the most practical method to detect prodromal PD. We developed a screening strategy that began with a newspaper advertisement containing a single-question screen for RBD. All screen-positive subjects underwent an interview based on the Innsbruck RBD inventory aimed to optimize the positive predictive value. Those who passed both screens underwent confirmatory polysomnography. The proportion of screened RBD patients who met the International Parkinson and Movement Disorder Society (MDS) criteria for prodromal PD was assessed. A broad array of clinical markers of neurodegeneration was compared between newspaper-screened RBD patients and 130 RBD patients clinically referred to the sleep center. Of 111 RBD-screen-positive participants, 40 (36%) passed the secondary screen, and 29 underwent full polysomnography. Of these 29 patients, 19 were ultimately proven to have RBD (PPV = 66%), 12 (63%) of whom met the criteria for prodromal PD. Compared to patients referred to the sleep center, newspaper-screened patients had similar age, sex, olfaction, autonomic function, and color vision. However, motor and cognitive assessments were slightly better in newspaper-screened patients. A multistep screening approach using RBD screening questionnaires and telephone follow-up can efficiently identify prodromal PD in the general community. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabhouti, H; Sanli, E; Cebe, M
Purpose: Brain stereotactic radiosurgery involves the use of precisely directed, single session radiation to create a desired radiobiologic response within the brain target with acceptable minimal effects on surrounding structures or tissues. In this study, the dosimetric comparison of Truebeam 2.0 and Cyberknife M6 treatment plans were made. Methods: For Truebeam 2.0 machine, treatment planning were done using 2 full arc VMAT technique with 6 FFF beam on the CT scan of Randophantom simulating the treatment of sterotactic treatments for one brain metastasis. The dose distribution were calculated using Eclipse treatment planning system with Acuros XB algorithm. The treatment planningmore » of the same target were also done for Cyberknife M6 machine with Multiplan treatment planning system using Monte Carlo algorithm. Using the same film batch, the net OD to dose calibration curve was obtained using both machine by delivering 0- 800 cGy. Films were scanned 48 hours after irradiation using an Epson 1000XL flatbed scanner. Dose distribution were measured using EBT3 film dosimeter. The measured and calculated doses were compared. Results: The dose distribution in the target and 2 cm beyond the target edge were calculated on TPSs and measured using EBT3 film. For cyberknife plans, the gamma analysis passing rates between measured and calculated dose distributions were 99.2% and 96.7% for target and peripheral region of target respectively. For Truebeam plans, the gamma analysis passing rates were 99.1% and 95.5% for target and peripheral region of target respectively. Conclusion: Although, target dose distribution calculated accurately by Acuros XB and Monte Carlo algorithms, Monte carlo calculation algorithm predicts dose distribution around the peripheral region of target more accurately than Acuros algorithm.« less
Apparatus and method of determining molecular weight of large molecules
Fuerstenau, S.; Benner, W.H.; Madden, N.M.; Searles, W.
1998-06-23
A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e{sup {minus}} are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation. 14 figs.
Apparatus and method of determining molecular weight of large molecules
Fuerstenau, Stephen; Benner, W. Henry; Madden, Norman; Searles, William
1998-01-01
A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.
[Economic effects of single-pack dental hygienic materials introduced into daily clinical practice].
Sunakawa, Mitsuhiro; Matsumoto, Hiroyuki; Izumi, Yuichi
2011-03-01
To improve and maintain medical safety and quality, it is necessary to construct and manage a safe and economical medical system. Almost five years have passed since single-pack dental hygienic materials were introduced into daily clinical practice in the University Hospital, Faculty of Dentistry, Tokyo Medical and Dental University. The costs of purchasing hygienic materials themselves are higher when using outsourced sterilized single packed ones, compared with when using intra-murally sterilized ones in the past. Proper usage of single-pack hygienic materials sterilized with Ethylene Oxide Gas (EOG) would reduce waste of unused materials and save labor for staff in the Section of Central Supplies. Financially, the use of hygienic materials could be reduced if single-pack dental hygienic materials by outsourcing were introduced into the hospital, because all costs for sterilizing hygienic materials in the hospital could be eliminated.
1986-06-10
system consisting of a sampler, a nonlinear rectifier, and a low-pass filter is evaluated generally , for arbitrary half-wave or full-wave v-th law...spectra, the possibility of using deliberate undersampling with no loss of performance is illustrated. The use of a half-wave rectifier generally ... some cases, significantly so. Programs for all procedures employed are presented so that investigation of additional cases or combinations of
NASA Astrophysics Data System (ADS)
Brown, Shannon E.; Sargent, Steve; Wagner-Riddle, Claudia
2018-03-01
Nitrous oxide (N2O) fluxes measured using the eddy-covariance method capture the spatial and temporal heterogeneity of N2O emissions. Most closed-path trace-gas analyzers for eddy-covariance measurements have large-volume, multi-pass absorption cells that necessitate high flow rates for ample frequency response, thus requiring high-power sample pumps. Other sampling system components, including rain caps, filters, dryers, and tubing, can also degrade system frequency response. This field trial tested the performance of a closed-path eddy-covariance system for N2O flux measurements with improvements to use less power while maintaining the frequency response. The new system consists of a thermoelectrically cooled tunable diode laser absorption spectrometer configured to measure both N2O and carbon dioxide (CO2). The system features a relatively small, single-pass sample cell (200 mL) that provides good frequency response with a lower-powered pump ( ˜ 250 W). A new filterless intake removes particulates from the sample air stream with no additional mixing volume that could degrade frequency response. A single-tube dryer removes water vapour from the sample to avoid the need for density or spectroscopic corrections, while maintaining frequency response. This eddy-covariance system was collocated with a previous tunable diode laser absorption spectrometer model to compare N2O and CO2 flux measurements for two full growing seasons (May 2015 to October 2016) in a fertilized cornfield in Southern Ontario, Canada. Both spectrometers were placed outdoors at the base of the sampling tower, demonstrating ruggedness for a range of environmental conditions (minimum to maximum daily temperature range: -26.1 to 31.6 °C). The new system rarely required maintenance. An in situ frequency-response test demonstrated that the cutoff frequency of the new system was better than the old system (3.5 Hz compared to 2.30 Hz) and similar to that of a closed-path CO2 eddy-covariance system (4.05 Hz), using shorter tubing and no dryer, that was also collocated at the site. Values of the N2O fluxes were similar between the two spectrometer systems (slope = 1.01, r2 = 0.96); CO2 fluxes as measured by the short-tubed eddy-covariance system and the two spectrometer systems correlated well (slope = 1.03, r2 = 0.998). The new lower-powered tunable diode laser absorption spectrometer configuration with the filterless intake and single-tube dryer showed promise for deployment in remote areas.
Jeong, Mi-Yun; Mang, Jin Yeob
2018-03-10
Spatially continuous tunable optical notch and band-pass filter systems that cover the visible (VIS) and near-infrared (NIR) spectral ranges from ∼460 nm to ∼1,000 nm are realized by combining left- and right-handed circular cholesteric liquid crystal (CLC) wedge cells with continuous pitch gradient. The notch filter system is polarization independent in all of the spectral ranges. The band-pass filter system, when the left- and right-handed CLCs are arranged in a row, is polarization independent, while when they are arranged at right angles, they are polarization dependent; furthermore, the full-width at half-maximum of the band-pass filter can be changed reversibly from the original bandwidth of 36 nm to 16 nm. Depending on the CLC materials, this strategy could be applied to the UV, VIS, and IR spectral ranges. Due to the high performance in the broad spectral range, cost-effective facile fabrication process, simple mechanical control, and small size, it is expected that our optical tunable filter strategies could become one of the key parts of laser-based Raman spectroscopy, fluorescence, life science devices, optical communication systems, astronomical telescopes, and so forth.
Persistent aerial video registration and fast multi-view mosaicing.
Molina, Edgardo; Zhu, Zhigang
2014-05-01
Capturing aerial imagery at high resolutions often leads to very low frame rate video streams, well under full motion video standards, due to bandwidth, storage, and cost constraints. Low frame rates make registration difficult when an aircraft is moving at high speeds or when global positioning system (GPS) contains large errors or it fails. We present a method that takes advantage of persistent cyclic video data collections to perform an online registration with drift correction. We split the persistent aerial imagery collection into individual cycles of the scene, identify and correct the registration errors on the first cycle in a batch operation, and then use the corrected base cycle as a reference pass to register and correct subsequent passes online. A set of multi-view panoramic mosaics is then constructed for each aerial pass for representation, presentation and exploitation of the 3D dynamic scene. These sets of mosaics are all in alignment to the reference cycle allowing their direct use in change detection, tracking, and 3D reconstruction/visualization algorithms. Stereo viewing with adaptive baselines and varying view angles is realized by choosing a pair of mosaics from a set of multi-view mosaics. Further, the mosaics for the second pass and later can be generated and visualized online as their is no further batch error correction.
High power regenerative laser amplifier
Miller, John L.; Hackel, Lloyd A.; Dane, Clifford B.; Zapata, Luis E.
1994-01-01
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse.
High power regenerative laser amplifier
Miller, J.L.; Hackel, L.A.; Dane, C.B.; Zapata, L.E.
1994-02-08
A regenerative amplifier design capable of operating at high energy per pulse, for instance, from 20-100 Joules, at moderate repetition rates, for instance from 5-20 Hertz is provided. The laser amplifier comprises a gain medium and source of pump energy coupled with the gain medium; a Pockels cell, which rotates an incident beam in response to application of a control signal; an optical relay system defining a first relay plane near the gain medium and a second relay plane near the rotator; and a plurality of reflectors configured to define an optical path through the gain medium, optical relay and Pockels cell, such that each transit of the optical path includes at least one pass through the gain medium and only one pass through the Pockels cell. An input coupler, and an output coupler are provided, implemented by a single polarizer. A control circuit coupled to the Pockels cell generates the control signal in timed relationship with the input pulse so that the input pulse is captured by the input coupler and proceeds through at least one transit of the optical path, and then the control signal is applied to cause rotation of the pulse to a polarization reflected by the polarizer, after which the captured pulse passes through the gain medium at least once more and is reflected out of the optical path by the polarizer before passing through the rotator again to provide an amplified pulse. 7 figures.
Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin
2017-05-08
During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.
Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space
NASA Astrophysics Data System (ADS)
Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.
2014-05-01
We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.
Single-molecule nanopore enzymology
Wloka, Carsten; Maglia, Giovanni
2017-01-01
Biological nanopores are a class of membrane proteins that open nanoscale water-conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. More recently, proteins and enzymes have started being analysed with nanopores. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here we describe the approaches and challenges in nanopore enzymology. PMID:28630164
Laser beam combining and cleanup by stimulated Brillouin scattering in a multimode optical fiber.
Rodgers, B C; Russell, T H; Roh, W B
1999-08-15
A new technique for combining low-power laser beams has been demonstrated by use of semiconductor diode lasers. The technique, which is appropriate for any single-longitudinal-mode laser, is based on stimulated Brillouin scattering (SBS) in long multimode optical fibers. It produces a clean Gaussian-like beam that corresponds to the fundamental fiber mode, irrespective of the profile of the pump. Coherent as well as incoherent combining was demonstrated, and conversion slope efficiencies as high as 67% and 83% were shown to be achievable for the single-pass and ring-cavity SBS geometries, respectively.
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Clark, B. J.; Groeneweg, J. F.
1987-01-01
The acoustics of an advanced single rotation SR-3 propeller at cruise conditions are studied employing a time-domain approach. The study evaluates the acoustic significance of the differences in blade pressures computed using nonreflecting rather than hard wall boundary conditions in the three-dimensional Euler code solution. The directivities of the harmonics of the blade passing frequency tone and the effects of chordwise loading on tone directivity are examined. The results show that the maximum difference in the computed sound pressure levels due to the use of blade pressure distributions obtained with the nonreflecting rather than the hard wall boundary conditions is about 1.5 dB. The blade passing frequency tone directivity obtained in the present study shows good agreement with jetstar flight data.
NASA Technical Reports Server (NTRS)
Nallasamy, M.; Clark, B. J.; Groeneweg, J. F.
1987-01-01
The acoustics of an advanced single rotation SR-3 propeller at cruise conditions are studied employing a time-domain approach. The study evaluates the acoustic significance of the differences in blade pressures computed using nonreflecting rather than hard wall boundary conditions in the three-dimensional Euler code solution. The directivities of the harmonics of the blade passing frequency tone and the effects of chordwise loading on tone directivity are examined. The results show that the maximum difference in the computed sound pressure levels due to the use of blade pressure distributions obtained with the nonreflecting rather than the hard wall boundary conditions is about 1.5 dB. The blade passing frequency tone directivity obtained in the present study shows good agreement with jetstar flight data.
Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks
Lim, Chiwoo; Kim, Sang-Hyo
2018-01-01
In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery. PMID:29673167
Brodie, Abby J; Crow, Heidi C; Eber, Robert M; Handysides, Robert; Holexa, Roy; Kiat-amnuay, Sudarat; Spallek, Heiko
2011-06-01
Increasingly, U.S. dental schools report pass/fail grades and do not rank students. In addition, the Joint Commission on National Dental Examinations will report National Board Dental Examination (NBDE) scores as pass/fail after January 1, 2012. This article discusses how these changes will force postdoctoral dental program directors to modify how they assess candidates and how noncognitive evaluations might enhance those assessments. The authors propose developing a national qualifying examination for postdoctoral dental programs that will measure knowledge, decision making, and noncognitive traits including empathy, self-confidence, integrity, and emotional intelligence. Without NBDE scores, class rank, and GPA as a basis for decision making, a single national qualifying examination would assist postdoctoral programs in selecting high-quality candidates based on knowledge, critical thinking skills, and noncognitive traits.
Trellis Tone Modulation Multiple-Access for Peer Discovery in D2D Networks.
Lim, Chiwoo; Jang, Min; Kim, Sang-Hyo
2018-04-17
In this paper, a new non-orthogonal multiple-access scheme, trellis tone modulation multiple-access (TTMMA), is proposed for peer discovery of distributed device-to-device (D2D) communication. The range and capacity of discovery are important performance metrics in peer discovery. The proposed trellis tone modulation uses single-tone transmission and achieves a long discovery range due to its low Peak-to-Average Power Ratio (PAPR). The TTMMA also exploits non-orthogonal resource assignment to increase the discovery capacity. For the multi-user detection of superposed multiple-access signals, a message-passing algorithm with supplementary schemes are proposed. With TTMMA and its message-passing demodulation, approximately 1.5 times the number of devices are discovered compared to the conventional frequency division multiple-access (FDMA)-based discovery.
Ultrascalable petaflop parallel supercomputer
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY
2010-07-20
A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
Low capital implementation of distributed distillation in ethylene recovery
Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung
2006-10-31
An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.
Kock, Tobias J.; Liedtke, Theresa L.; Ekstrom, Brian K.; Tomka, Ryan G.; Rondorf, Dennis W.
2012-01-01
Turbine passage was the most common passage route for tagged fish at Cowlitz Falls Dam during 2011. We found that 40 percent of the steelhead, 52 percent of the coho salmon, and 33 percent of the Chinook salmon passed through turbines. An additional 22 percent of the steelhead and 32 percent of the coho salmon passed through turbines or spillways when both passage routes were available. Fish collection numbers were relatively low during 2011 compared to long-term averages. In total, 37 percent of the steelhead, 14 percent of the coho salmon, and 23 percent of the Chinook salmon that entered the forebay were collected, primarily through collection flumes. The FSC collected a single radio-tagged fish (a Chinook salmon) in 2011.
Lateral charge transport from heavy-ion tracks in integrated circuit chips
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.
1988-01-01
A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.