Sample records for single pass linear

  1. MOBILE GAMMA IRRADIATORS FOR FRUIT PRODUCE (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    Mobile irradiators used for the radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons are described. The irradiators are mounted on trailers and each irradiator, including the trailer, weighs 70 to 80 tons. Radiatton doses range from 100,000 to 200,000 rads. Minimum production is 500 lb of fruit per hour. Drawings are included for four types of irradiators: the single-slab twopass, double-slab one-pass, single-slab four-pass, and line-source rotary. In the single-slab two-pass system, the packages make two passes in front of the source. The length of the packages is parallel to the direction of travel. The packages are irradiated on eachmore » side. This system is light in weight, has low capital cost, and is simple to fabricate. The double-slab one- pass system is the same as the above except the source strength is doubled and irradiation time is cut in half. The same arrangement is used in the single-slab four-pass system that is used in the singleslab two-pass system except the packages make two passes on each side of the source. The rotary system combines a linear and rotary motion to provide high dosage. It uses a small Co/sup 60/ source but costs more than a single-slab twopass system. (F.E.S.)« less

  2. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  3. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  4. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis

    DTIC Science & Technology

    1988-12-01

    Figure 5-10. The Linearized Single-Unit Vehicle Model ............................... 41 Figure 5-11. Interpretation of the Single-Unit Model...The starting point for the driver modelling research conducted under this project was a linear preview control model originally proposed by MacAdam 1...regardless of its origin, can pass at least the elementary validation test of exhibiting "cross-over model"-like- behavior in the vicinity of its

  5. Spacing and length of passing sidings and the incremental capacity of single track.

    DOT National Transportation Integrated Search

    2016-02-18

    The objective of this study is to evaluate the effect of initial siding spacing and distribution of siding length on the incremental capacity of infrastructure investments on single-track railway lines. Previous research has shown a linear reduction ...

  6. Modular design attitude control system

    NASA Technical Reports Server (NTRS)

    Chichester, F. D.

    1984-01-01

    A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

  7. Development of a laser Doppler displacement encoder system with ultra-low-noise-level for linear displacement measurement with subnanometer resolution - Final CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming

    An U.S. DOE Cooperative Research and Development Agreement (CRADA) between ANL and Optodyne, Inc. has been established to develop a prototype laser Doppler displacement encoder system with ultra-low noise level for linear measurements to sub-nanometer resolution for synchrotron radiation applications. We have improved the heterodyne efficiency and reduced the detector shot noises by proper shielding and adding a low-pass filter. The laser Doppler displacement encoder system prototype demonstrated a ~ 1 nm system output noise floor with single reflection optics. With multiple-pass optical arrangement, 0.1 nm scale closed-loop feedback control is achieved.

  8. Free electron laser

    DOEpatents

    Villa, Francesco

    1990-01-01

    A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.

  9. Short wavelength laser

    DOEpatents

    Hagelstein, P.L.

    1984-06-25

    A short wavelength laser is provided that is driven by conventional-laser pulses. A multiplicity of panels, mounted on substrates, are supported in two separated and alternately staggered facing and parallel arrays disposed along an approximately linear path. When the panels are illuminated by the conventional-laser pulses, single pass EUV or soft x-ray laser pulses are produced.

  10. Spatial and temporal Brook Trout density dynamics: Implications for conservation, management, and monitoring

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; Kristine, David; John A. Sweka,

    2014-01-01

    Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2 fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated with elevation and negatively correlated with percent developed land use in the network catchment. Probability of capture did not vary substantially across sites or years but was negatively correlated with mean stream width. Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE (catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term linear trends in density.

  11. Generation of 14  W at 589  nm by frequency doubling of high-power CW linearly polarized Raman fiber laser radiation in MgO:sPPLT crystal.

    PubMed

    Surin, A A; Borisenko, T E; Larin, S V

    2016-06-01

    We introduce an efficient, single-mode, linearly polarized continuous wave (CW) Raman fiber laser (RFL), operating at 1178 nm, with 65 W maximum output power and a narrow linewidth of 0.1 nm. Single-pass second-harmonic generation was demonstrated using a 20 mm long MgO-doped stoichiometric periodically polled lithium tantalate (MgO:sPPLT) crystal pumped by RFL radiation. Output power of 14 W at 589 nm with 22% conversion efficiency was achieved. The possibility of further power scaling is considered, as no crystal degradation was observed at these power levels.

  12. Real-time digital signal recovery for a multi-pole low-pass transfer function system.

    PubMed

    Lee, Jhinhwan

    2017-08-01

    In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.

  13. Pros and Cons of the Acceleration Scheme (NF-IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bogacz, Slawomir

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less

  14. 1/f-Noise of open bacterial porin channels.

    PubMed

    Wohnsland, F; Benz, R

    1997-07-01

    General diffusion pores and specific porin channels from outer membranes of gram-negative bacteria were reconstituted into lipid bilayer membranes. The current noise of the channels was investigated for the different porins in the open state and in the ligand-induced closed state using fast Fourier transformation. The open channel noise exhibited 1/f-noise for frequencies up to 200 Hz. The 1/f-noise was investigated using the Hooge formula (Hooge, Phys. Lett. 29A: 139-140 (1969)), and the Hooge parameter alpha was calculated for all bacterial porins used in this study. The 1/f-noise was in part caused by slow inactivation and activation of porin channels. However, when care was taken that during the noise measurement no opening or closing of porin channels occurred, the Hooge Parameter alpha was a meaningful number for a given channel. A linear relationship was observed between alpha and the single-channel conductance, g, of the different porins. This linear relation between single-channel conductance and the Hooge parameter alpha could be qualitatively explained by assuming that the passing of an ion through a bacterial porin channel is-to a certain extent-influenced by nonlinear effects between channel wall and passing ion.

  15. Dynamic mask for producing uniform or graded-thickness thin films

    DOEpatents

    Folta, James A [Livermore, CA

    2006-06-13

    A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.

  16. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  17. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  18. Linear fixed-field multipass arcs for recirculating linear accelerators

    DOE PAGES

    Morozov, V. S.; Bogacz, S. A.; Roblin, Y. R.; ...

    2012-06-14

    Recirculating Linear Accelerators (RLA's) provide a compact and efficient way of accelerating particle beams to medium and high energies by reusing the same linac for multiple passes. In the conventional scheme, after each pass, the different energy beams coming out of the linac are separated and directed into appropriate arcs for recirculation, with each pass requiring a separate fixed-energy arc. In this paper we present a concept of an RLA return arc based on linear combined-function magnets, in which two and potentially more consecutive passes with very different energies are transported through the same string of magnets. By adjusting themore » dipole and quadrupole components of the constituting linear combined-function magnets, the arc is designed to be achromatic and to have zero initial and final reference orbit offsets for all transported beam energies. We demonstrate the concept by developing a design for a droplet-shaped return arc for a dog-bone RLA capable of transporting two beam passes with momenta different by a factor of two. Finally, we present the results of tracking simulations of the two passes and lay out the path to end-to-end design and simulation of a complete dog-bone RLA.« less

  19. Three-dimensional simulation of the motion of a single particle under a simulated turbulent velocity field

    NASA Astrophysics Data System (ADS)

    Moreno-Casas, P. A.; Bombardelli, F. A.

    2015-12-01

    A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.

  20. Optical bandgap of semiconductor nanostructures: Methods for experimental data analysis

    NASA Astrophysics Data System (ADS)

    Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S.

    2017-06-01

    Determination of the optical bandgap (Eg) in semiconductor nanostructures is a key issue in understanding the extent of quantum confinement effects (QCE) on electronic properties and it usually involves some analytical approximation in experimental data reduction and modeling of the light absorption processes. Here, we compare some of the analytical procedures frequently used to evaluate the optical bandgap from reflectance (R) and transmittance (T) spectra. Ge quantum wells and quantum dots embedded in SiO2 were produced by plasma enhanced chemical vapor deposition, and light absorption was characterized by UV-Vis/NIR spectrophotometry. R&T elaboration to extract the absorption spectra was conducted by two approximated methods (single or double pass approximation, single pass analysis, and double pass analysis, respectively) followed by Eg evaluation through linear fit of Tauc or Cody plots. Direct fitting of R&T spectra through a Tauc-Lorentz oscillator model is used as comparison. Methods and data are discussed also in terms of the light absorption process in the presence of QCE. The reported data show that, despite the approximation, the DPA approach joined with Tauc plot gives reliable results, with clear advantages in terms of computational efforts and understanding of QCE.

  1. Multiple pass laser amplifier system

    DOEpatents

    Brueckner, Keith A.; Jorna, Siebe; Moncur, N. Kent

    1977-01-01

    A laser amplification method for increasing the energy extraction efficiency from laser amplifiers while reducing the energy flux that passes through a flux limited system which includes apparatus for decomposing a linearly polarized light beam into multiple components, passing the components through an amplifier in delayed time sequence and recombining the amplified components into an in phase linearly polarized beam.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hand, L.N.

    Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for 'grating-type' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a 'multi-pass collider', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak powermore » requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.« less

  3. Single Pass Stripline Beam Position Monitor Design, Fabrication and Commissioning

    NASA Astrophysics Data System (ADS)

    Tan, Y.-R. E.; Wang, D.; Van Garderen, E.; McKinlay, J.

    2012-10-01

    To monitor the position of the electron beam during transport from the Booster Synchrotron to the Storage Ring at the Australian Synchrotron, a stripline Beam Position Monitor (BPM) has been designed, fabricated and installed in-house. The design was based on an existing stripline in the Booster and modified for the transfer line with a particular emphasis on ensuring the line impedance is properly matched to the detector system. The initial bench tests of a prototype stripline showed that the fabrication of the four individual striplines in the BPM was made precisely, each with a measured standing wave ratio (SWR) of 1.8 at 500 MHz. Further optimization for impedance matching will be done for new stripline BPMs. The linearity and gain factor was measured with the detector system. The detector system that digitizes the signals is an Instrumentation Technologies Brilliance Single Pass [1]. The results show an error of 1 mm at an offset (from the electrical centre) of 10 mm when a linear gain factor is assumed and an RMS noise of ~150 um that decreases to < 10 um with increasing signal intensity. The results were under our requirements for the transport line. The commissioning results of the stripline will also be presented showing a strong signal for an electron beam with an estimated integrated charge of ~50 nC with a position stability of 28 um (horizontal) and 75 um (vertical).

  4. Ultrafast Single-Shot Optical Oscilloscope based on Time-to-Space Conversion due to Temporal and Spatial Walk-Off Effects in Nonlinear Mixing Crystal

    NASA Astrophysics Data System (ADS)

    Takagi, Yoshihiro; Yamada, Yoshifumi; Ishikawa, Kiyoshi; Shimizu, Seiji; Sakabe, Shuji

    2005-09-01

    A simple method for single-shot sub-picosecond optical pulse diagnostics has been demonstrated by imaging the time evolution of the optical mixing onto the beam cross section of the sum-frequency wave when the interrogating pulse passes over the tested pulse in the mixing crystal as a result of the combined effect of group-velocity difference and walk-off beam propagation. A high linearity of the time-to-space projection is deduced from the process solely dependent upon the spatial uniformity of the refractive indices. A snap profile of the accidental coincidence between asynchronous pulses from separate mode-locked lasers has been detected, which demonstrates the single-shot ability.

  5. Beam dynamics simulation of a double pass proton linear accelerator

    DOE PAGES

    Hwang, Kilean; Qiang, Ji

    2017-04-03

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  6. Linear phase compressive filter

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line.

  7. Solvable multistate model of Landau-Zener transitions in cavity QED

    DOE PAGES

    Sinitsyn, Nikolai; Li, Fuxiang

    2016-06-29

    We consider the model of a single optical cavity mode interacting with two-level systems (spins) driven by a linearly time-dependent field. When this field passes through values at which spin energy level splittings become comparable to spin coupling to the optical mode, a cascade of Landau-Zener (LZ) transitions leads to co-flips of spins in exchange for photons of the cavity. We derive exact transition probabilities between different diabatic states induced by such a sweep of the field.

  8. Simulations of laser undulators

    NASA Astrophysics Data System (ADS)

    Milton, S. V.; Biedron, S. B.; Einstein, J. E.

    2016-09-01

    We perform a series of single-pass, one-D free-electron laser simulations based on an electron beam from a standard linear accelerator coupled with a so-called laser undulator, a specialized device that is more compact than a standard undulator based on magnetic materials. The longitudinal field profiles of such lasers undulators are intriguing as one must and can tailor the profile for the needs of creating the virtual undulator. We present and discuss several results of recent simulations and our future steps.

  9. A Terahertz VRT spectrometer employing quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Cole, William T. S.; Hlavacek, Nik C.; Lee, Alan W. M.; Kao, Tsung-Yu; Hu, Qing; Reno, John L.; Saykally, Richard J.

    2015-10-01

    The first application of a commercial Terahertz quantum cascade laser (QCL) system for high resolution spectroscopy of supersonic beams is presented. The QCLs exhibited continuous linear voltage tuning over a 2 GHz range about a center frequency of 3.762 THz with ∼1 ppm resolution. A sensitivity of ∼1 ppm fractional absorption was measured with a single pass optical system. Multipass operation at the quantum noise limit of the stressed photoconductor detector would produce a 100-fold improvement.

  10. MO-F-16A-02: Simulation of a Medical Linear Accelerator for Teaching Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, M; Lamey, M; Anderson, R

    Purpose: Detailed functioning of linear accelerator physics is well known. Less well developed is the basic understanding of how the adjustment of the linear accelerator's electrical components affects the resulting radiation beam. Other than the text by Karzmark, there is very little literature devoted to the practical understanding of linear accelerator functionality targeted at the radiotherapy clinic level. The purpose of this work is to describe a simulation environment for medical linear accelerators with the purpose of teaching linear accelerator physics. Methods: Varian type lineacs were simulated. Klystron saturation and peak output were modelled analytically. The energy gain of anmore » electron beam was modelled using load line expressions. The bending magnet was assumed to be a perfect solenoid whose pass through energy varied linearly with solenoid current. The dose rate calculated at depth in water was assumed to be a simple function of the target's beam current. The flattening filter was modelled as an attenuator with conical shape, and the time-averaged dose rate at a depth in water was determined by calculating kerma. Results: Fifteen analytical models were combined into a single model called SIMAC. Performance was verified systematically by adjusting typical linac control parameters. Increasing klystron pulse voltage increased dose rate to a peak, which then decreased as the beam energy was further increased due to the fixed pass through energy of the bending magnet. Increasing accelerator beam current leads to a higher dose per pulse. However, the energy of the electron beam decreases due to beam loading and so the dose rate eventually maximizes and the decreases as beam current was further increased. Conclusion: SIMAC can realistically simulate the functionality of a linear accelerator. It is expected to have value as a teaching tool for both medical physicists and linear accelerator service personnel.« less

  11. Assessing the efficacy of single-pass backpack electrofishing to characterize fish community structure

    USGS Publications Warehouse

    Meador, M.R.; McIntyre, J.P.; Pollock, K.H.

    2003-01-01

    Two-pass backpack electrofishing data collected as part of the U.S. Geological Survey's National Water-Quality Assessment Program were analyzed to assess the efficacy of single-pass backpack electrofishing. A two-capture removal model was used to estimate, within 10 river basins across the United States, proportional fish species richness from one-pass electrofishing and probabilities of detection for individual fish species. Mean estimated species richness from first-pass sampling (ps1) ranged from 80.7% to 100% of estimated total species richness for each river basin, based on at least seven samples per basin. However, ps1 values for individual sites ranged from 40% to 100% of estimated total species richness. Additional species unique to the second pass were collected in 50.3% of the samples. Of these, cyprinids and centrarchids were collected most frequently. Proportional fish species richness estimated for the first pass increased significantly with decreasing stream width for 1 of the 10 river basins. When used to calculate probabilities of detection of individual fish species, the removal model failed 48% of the time because the number of individuals of a species was greater in the second pass than in the first pass. Single-pass backpack electrofishing data alone may make it difficult to determine whether characterized fish community structure data are real or spurious. The two-pass removal model can be used to assess the effectiveness of sampling species richness with a single electrofishing pass. However, the two-pass removal model may have limited utility to determine probabilities of detection of individual species and, thus, limit the ability to assess the effectiveness of single-pass sampling to characterize species relative abundances. Multiple-pass (at least three passes) backpack electrofishing at a large number of sites may not be cost-effective as part of a standardized sampling protocol for large-geographic-scale studies. However, multiple-pass electrofishing at some sites may be necessary to better evaluate the adequacy of single-pass electrofishing and to help make meaningful interpretations of fish community structure.

  12. Compact single-pass X-ray FEL with harmonic multiplication cascades

    NASA Astrophysics Data System (ADS)

    Zhukovsky, K.

    2018-07-01

    The generation of X-ray radiation in cascaded single-pass free electron laser (FEL), which amplifies high harmonics of a two-frequency undulator, is studied. Power dynamics of FEL harmonics is explored with the help of the phenomenological model of a single pass FEL. The model describes both linear and non-linear harmonic generation, starting from a coherent seed laser and initial shot noise with account for main loss factors for each harmonic in each cascade individually: the energy spread and beam divergence, the coupling losses between FEL cascades, the diffraction etc. The model was validated with the experiment and with relevant 3-D simulations. It is employed for modeling the cascaded FELs with harmonic multiplication and analyzing the evolution of FEL harmonic power with the aim to obtain the maximum high harmonic power in the X-ray band at the shortest possible FEL length with the lowest possible seed frequency. The advantages of two-frequency undulators in HGHG FELs are elucidated. The requirements for the electron beam are studied; the need for low energy spread is evidenced: our evaluations yield σe < 2 × 10-4. Several cascaded HGHG FELs with two-frequency undulators are modeled. Generation of soft X-ray radiation at λ = 2 . 71 nm, reaching ∼50 MW power with I0 ∼ 100 A in a cascaded FEL at just 40 m with 13.51 nm seed, matching peak reflectivity of Mo/Si, is demonstrated. The generation of 40 MW radiation power at λ = 2 . 27 nm with the beam current I0 ∼ 100 A, energy E = 950 MeV and the energy spread σe = 2 × 10-4 is studied, using second and third harmonics in three-stage 45 m long FEL. The multistage FEL is modeled for generating radiation in nanometer band: ∼40 MW power at λ ∼ 2 . 6 nm with I0 ∼ 175 A current in just ∼40 m long FEL with commercially available F2 excimer UV laser seed at 157 nm. The peak radiation power rises to ∼0.5 GW for ∼1 kA beam current.

  13. Pulsed-focusing recirculating linacs for muon acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcsmore » to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.« less

  14. Linear phase compressive filter

    DOEpatents

    McEwan, T.E.

    1995-06-06

    A phase linear filter for soliton suppression is in the form of a laddered series of stages of non-commensurate low pass filters with each low pass filter having a series coupled inductance (L) and a reverse biased, voltage dependent varactor diode, to ground which acts as a variable capacitance (C). L and C values are set to levels which correspond to a linear or conventional phase linear filter. Inductance is mapped directly from that of an equivalent nonlinear transmission line and capacitance is mapped from the linear case using a large signal equivalent of a nonlinear transmission line. 2 figs.

  15. Single-grain growth in Si film by chevron-shaped cw laser beam scanning

    NASA Astrophysics Data System (ADS)

    Yeh, Wenchang; Yamazaki, Satoki; Ishimoto, Akihisa; Morito, Shigekazu

    2016-02-01

    A single grain with a length of 450 µm and a width of 5-6 µm was grown in a 60 nm Si film on SiO2 by scanning a chevron-shaped cw laser beam, which was formed by passing a linear laser beam through a novel one-sided Dove prism. The crystal did not have any dominant orientations in both the growth and normal directions. The orientation rotated about the transverse direction at a rate of 0.47-0.51°/µm in the forward direction, which suggests that the lattice constant at the film surface was 0.049-0.053% larger than that at the film bottom.

  16. Efficient Single-Pass Index Construction for Text Databases.

    ERIC Educational Resources Information Center

    Heinz, Steffen; Zobel, Justin

    2003-01-01

    Discusses index construction for text collections, reviews principal approaches to inverted indexes, analyzes their theoretical cost, and presents experimental results of the use of a single-pass inversion method on Web document collections. Shows that the single-pass approach is faster and does not require the complete vocabulary of the indexed…

  17. An analysis of particle track effects on solid mammalian tissues

    NASA Technical Reports Server (NTRS)

    Todd, P.; Clarkson, T. W. (Principal Investigator)

    1992-01-01

    Relative biological effectiveness (RBE) and quality factor (Q) at extreme values of linear energy transfer (LET) have been determined on the basis of experiments with single-cell systems and specific tissue responses. In typical single-cell systems, each heavy particle (Ar or Fe) passes through a single cell or no cell. In experiments on animal tissues, however, each heavy particle passes through several cells, and the LET can exceed 200 keV micrometers-1 in every cell. In most laboratory animal tissue systems, however, only a small portion of the hit cells are capable of expressing the end-point being measured, such as cell killing, mutation or carcinogenesis. The following question was therefore addressed: do RBEs and Q factors derived from single-cell experiments properly account for the damage at high LET when multiple cells are hit by HZE tracks? A review is offered in which measured radiation effects and known tissue properties are combined to estimate on the one hand, the number of cells at risk, p3n, per track, where n is the number of cells per track based on tissue and organ geometry, and p3 is the probability that a cell in the track is capable of expressing the experimental end-point. On the other hand, the tissue and single-cell responses are compared by determining the ratio RBE in tissue/RBE in corresponding single cells. Experimental data from the literature indicate that tissue RBEs at very high LET (Fe and Ar ions) are higher than corresponding single-cell RBEs, especially in tissues in which p3n is high.

  18. Simulation of double-pass stimulated Raman backscattering

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Chen, Q.; Morozov, A.; Suckewer, S.

    2018-04-01

    Experiments on Stimulated Raman Backscattering (SRBS) in plasma have demonstrated significantly higher energy conversion in a double-pass amplifier where the laser pulses go through the plasma twice compared with a single-pass amplifier with double the plasma length of a single pass. In this paper, the improvement in understanding recent experimental results is presented by considering quite in detail the effects of plasma heating on the modeling of SRBS. Our simulation results show that the low efficiency of single-pass amplifiers can be attributed to Landau damping and the frequency shift of Langmuir waves. In double-pass amplifiers, these issues can be avoided, to some degree, because pump-induced heating could be reduced, while the plasma cools down between the passes. Therefore, double-pass amplifiers yield considerably enhanced energy transfer from the pump to the seed, hence the output pulse intensity.

  19. Ultrastructural evaluation of multiple pass low energy versus single pass high energy radio-frequency treatment.

    PubMed

    Kist, David; Burns, A Jay; Sanner, Roth; Counters, Jeff; Zelickson, Brian

    2006-02-01

    The radio-frequency (RF) device is a system capable of volumetric heating of the mid to deep dermis and selective heating of the fibrous septa strands and fascia layer. Clinically, these effects promote dermal collagen production, and tightening of these deep subcutaneous structures. A new technique of using multiple low energy passes has been described which results in lower patient discomfort and fewer side effects. This technique has also been anecdotally described as giving more reproducible and reliable clinical results of tissue tightening and contouring. This study will compare ultrastructural changes in collagen between a single pass high energy versus up to five passes of a multiple pass lower energy treatment. Three subjects were consented and treated in the preauricular region with the RF device using single or multiple passes (three or five) in the same 1.5 cm(2) treatment area with a slight delay between passes to allow tissue cooling. Biopsies from each treatment region and a control biopsy were taken immediately, 24 hours or 6 months post treatment for electron microscopic examination of the 0-1 mm and 1-2 mm levels. Sections of tissue 1 mm x 1 mm x 80 nm were examined with an RCA EMU-4 Transmission Electron Microscope. Twenty sections from 6 blocks from each 1 mm depth were examined by 2 blinded observers. The morphology and degree of collagen change in relation to area examined was compared to the control tissue, and estimated using a quantitative scale. Ultrastructural examination of tissue showed that an increased amount of collagen fibril changes with increasing passes at energies of 97 J (three passes) and 122 J (five passes), respectively. The changes seen after five multiple passes were similar to those detected after much more painful single pass high-energy treatments. This ultrastructural study shows changes in collagen fibril morphology with an increased effect demonstrated at greater depths of the skin with multiple low-fluence passes and at lesser depths with single pass higher fluence settings. Findings suggest that similar collagen fibril alteration can occur with multiple pass low-energy treatments and single pulse high-energy treatments. The lower fluence multiple pass approach is associated with less patient discomfort, less side effects, and more consistent clinical results. Copyright 2005 Wiley-Liss, Inc.

  20. Modular approach to achieving the next-generation X-ray light source

    NASA Astrophysics Data System (ADS)

    Biedron, S. G.; Milton, S. V.; Freund, H. P.

    2001-12-01

    A modular approach to the next-generation light source is described. The "modules" include photocathode, radio-frequency, electron guns and their associated drive-laser systems, linear accelerators, bunch-compression systems, seed laser systems, planar undulators, two-undulator harmonic generation schemes, high-gain harmonic generation systems, nonlinear higher harmonics, and wavelength shifting. These modules will be helpful in distributing the next-generation light source to many more laboratories than the current single-pass, high-gain free-electron laser designs permit, due to both monetary and/or physical space constraints.

  1. Earthquake studies reveal the magmatic plumbing system of the Katmai volcanoes

    USGS Publications Warehouse

    Thurber, Clifford; Murphy, Rachel; Prejean, Stephanie G.; Haney, Matthew M.; Bennington, Ninfa; Powell, Lee; Paskievitch, John F.

    2012-01-01

    Our main finding is that there is not a single large anomalous zone centered beneath Katmai Pass; rather there are several separate anomalous zones, one each beneath Katmai, Trident-Novarupta, and Martin-Mageik. Furthermore, the earthquakes are tightly clustered beneath the various volcanic centers, and are found to be systematically deeper than previously thought. Linear trends of earthquakes are also revealed, similar to features observed at other volcanoes, possibly outlining previously unidentified fault structures or indicating the path of migrating magma or magmatic fluids and gases.

  2. Linear magnetic motor/generator. [to generate electric energy using magnetic flux for spacecraft power supply

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1982-01-01

    A linear magnetic motor/generator is disclosed which uses magnetic flux to provide mechanical motion or electrical energy. The linear magnetic motor/generator includes an axially movable actuator mechanism. A permament magnet mechanism defines a first magnetic flux path which passes through a first end portion of the actuator mechanism. Another permament magnet mechanism defines a second magnetic flux path which passes through a second end portion of the actuator mechanism. A drive coil defines a third magnetic flux path passing through a third central portion of the actuator mechanism. A drive coil selectively adds magnetic flux to and subtracts magnetic flux from magnetic flux flowing in the first and second magnetic flux path.

  3. Effects of fluid viscosity on a moving sonoluminescing bubble.

    PubMed

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Rezaee, Nastaran; Ebrahimi, Homa

    2011-08-01

    Based on the quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence in water, adiponitrile, and N-methylformamide are calculated for various fluid viscosities. By using a complete form of the hydrodynamic force, the bubble trajectory is calculated for a moving single bubble sonoluminescence (m-SBSL). It is found that as the fluid viscosity increases, the unique circular path changes to an ellipsoidal and then linear form and along this incrementally increase of viscosity the light intensity increases. By using the Bremsstrahlung model to describe the bubble radiation, gradual increase of the viscosity results in brighter emissions. It is found that in fluids with higher viscosity the light intensity decreases as time passes.

  4. A Bayesian model averaging method for improving SMT phrase table

    NASA Astrophysics Data System (ADS)

    Duan, Nan

    2013-03-01

    Previous methods on improving translation quality by employing multiple SMT models usually carry out as a second-pass decision procedure on hypotheses from multiple systems using extra features instead of using features in existing models in more depth. In this paper, we propose translation model generalization (TMG), an approach that updates probability feature values for the translation model being used based on the model itself and a set of auxiliary models, aiming to alleviate the over-estimation problem and enhance translation quality in the first-pass decoding phase. We validate our approach for translation models based on auxiliary models built by two different ways. We also introduce novel probability variance features into the log-linear models for further improvements. We conclude our approach can be developed independently and integrated into current SMT pipeline directly. We demonstrate BLEU improvements on the NIST Chinese-to-English MT tasks for single-system decodings.

  5. Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting.

    PubMed

    Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J

    2006-01-01

    We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.

  6. Catalytic conversion reactions mediated by single-file diffusion in linear nanopores: hydrodynamic versus stochastic behavior.

    PubMed

    Ackerman, David M; Wang, Jing; Wendel, Joseph H; Liu, Da-Jiang; Pruski, Marek; Evans, James W

    2011-03-21

    We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice-gas model for this reaction-diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion in this multispecies system. The h-RDE successfully describe nontrivial aspects of transient behavior, in contrast to the mf-RDE, and also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these fluctuation effects, but cannot describe scaling behavior of the reactivity.

  7. Nanopore analysis of polymers in solution.

    NASA Astrophysics Data System (ADS)

    Deamer, David

    2002-03-01

    Nanopores represent a novel approach for investigating macromolecules in solution. Polymers that have been analyzed by this technique include polyethylene glycol (PEG), certain proteins and nucleic acids. The a-hemolysin pore inserted into lipid bilayers provides continuous non-gated ion current through a pore diameter of approximately 1.5 - 2 nm. Nucleic acid molecules can be driven through the pore by imposing a voltage across the supporting membrane. Single stranded, but not double stranded nucleic acids pass through in strict linear sequence from one end of the molecule to the other. While in the pore, the molecule reduces ionic current, and properties of the ionic current blockade such as duration, mean amplitude and modulations of amplitude provide information about structure and composition of the nucleic acid. For a given molecular species, the duration of the blockade is a function of chain length, and the rate of blockades is linearly related to concentration. More recent studies have shown that the a-hemolysin nanopore can discriminate between synthetic DNA molecules differing by a single base pair or even a single nucleotide. These results indicate that a nanopore may have the resolution required for nucleic acid sequencing applications.

  8. Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

    PubMed

    Symons, Rolf; Cork, Tyler E; Lakshmanan, Manu N; Evers, Robert; Davies-Venn, Cynthia; Rice, Kelly A; Thomas, Marvin L; Liu, Chia-Ying; Kappler, Steffen; Ulzheimer, Stefan; Sandfort, Veit; Bluemke, David A; Pourmorteza, Amir

    2017-08-01

    To determine the feasibility of dual-contrast agent imaging of the heart using photon-counting detector (PCD) computed tomography (CT) to simultaneously assess both first-pass and late enhancement of the myocardium. An occlusion-reperfusion canine model of myocardial infarction was used. Gadolinium-based contrast was injected 10 min prior to PCD CT. Iodinated contrast was infused immediately prior to PCD CT, thus capturing late gadolinium enhancement as well as first-pass iodine enhancement. Gadolinium and iodine maps were calculated using a linear material decomposition technique and compared to single-energy (conventional) images. PCD images were compared to in vivo and ex vivo magnetic resonance imaging (MRI) and histology. For infarct versus remote myocardium, contrast-to-noise ratio (CNR) was maximal on late enhancement gadolinium maps (CNR 9.0 ± 0.8, 6.6 ± 0.7, and 0.4 ± 0.4, p < 0.001 for gadolinium maps, single-energy images, and iodine maps, respectively). For infarct versus blood pool, CNR was maximum for iodine maps (CNR 11.8 ± 1.3, 3.8 ± 1.0, and 1.3 ± 0.4, p < 0.001 for iodine maps, gadolinium maps, and single-energy images, respectively). Combined first-pass iodine and late gadolinium maps allowed quantitative separation of blood pool, scar, and remote myocardium. MRI and histology analysis confirmed accurate PCD CT delineation of scar. Simultaneous multi-contrast agent cardiac imaging is feasible with photon-counting detector CT. These initial proof-of-concept results may provide incentives to develop new k-edge contrast agents, to investigate possible interactions between multiple simultaneously administered contrast agents, and to ultimately bring them to clinical practice.

  9. Evaluating single-pass catch as a tool for identifying spatial pattern in fish distribution

    USGS Publications Warehouse

    Bateman, Douglas S.; Gresswell, Robert E.; Torgersen, Christian E.

    2005-01-01

    We evaluate the efficacy of single-pass electrofishing without blocknets as a tool for collecting spatially continuous fish distribution data in headwater streams. We compare spatial patterns in abundance, sampling effort, and length-frequency distributions from single-pass sampling of coastal cutthroat trout (Oncorhynchus clarki clarki) to data obtained from a more precise multiple-pass removal electrofishing method in two mid-sized (500–1000 ha) forested watersheds in western Oregon. Abundance estimates from single- and multiple-pass removal electrofishing were positively correlated in both watersheds, r = 0.99 and 0.86. There were no significant trends in capture probabilities at the watershed scale (P > 0.05). Moreover, among-sample variation in fish abundance was higher than within-sample error in both streams indicating that increased precision of unit-scale abundance estimates would provide less information on patterns of abundance than increasing the fraction of habitat units sampled. In the two watersheds, respectively, single-pass electrofishing captured 78 and 74% of the estimated population of cutthroat trout with 7 and 10% of the effort. At the scale of intermediate-sized watersheds, single-pass electrofishing exhibited a sufficient level of precision to be effective in detecting spatial patterns of cutthroat trout abundance and may be a useful tool for providing the context for investigating fish-habitat relationships at multiple scales.

  10. 100μJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Fang, Qiang; Fan, Jingli; Cui, Xuelong; Zhang, Zhuo; Li, Jinhui; Zhou, Guoqing

    2017-02-01

    We report a single frequency, linearly polarized, near diffraction-limited, pulsed laser source at 775 nm by frequency doubling a single frequency nanosecond pulsed all fiber based master oscillator-power amplifier, seeded by a fiber coupled semiconductor DFB laser diode at 1550 nm. The laser diode was driven by a pulsed laser driver to generate 5 ns laser pulses at 260 Hz repetition rate with 50 pJ pulse energy. The pulse energy was boosted to 200 μJ using two stages of core-pumped fiber amplifiers and two stages of cladding-pumped fiber amplifiers. The multi-stage synchronous pulse pumping technique was adopted in the four stages of fiber amplifiers to mitigate the ASE. The frequency doubling is implemented in a single pass configuration using a periodically poled lithium niobate (PPLN) crystal. The crystal is 3 mm long, 1.4 mm wide, 1 mm thick, with a 19.36 μm domain period chosen for quasi-phase matching at 33°C. It was AR coated at both 1550 nm and 775 nm. The maximum pulse energy of 97 μJ was achieved when 189 μJ fundamental laser was launched. The corresponding conversion efficiency is about 51.3%. The pulse duration was measured to be 4.8 ns. So the peak power of the generated 775 nm laser pulses reached 20 kW. To the best of our knowledge, this is the first demonstration of a 100 μJ-level, tens of kilowatts-peak-power-level single frequency linearly polarized 775 nm laser based on the frequency doubling of the fiber lasers.

  11. The Ultra-filtration of Macromolecules with Different Conformations and Configurations through Nanopores

    NASA Astrophysics Data System (ADS)

    Ge, Hui

    This Ph. D. thesis presents our study on the ultrafiltration of polymers with different configurations and conformations; namly, theoretically, the passing of polymer chains through a nanopore under an elongational flow filed has been studied for years, but experimental studies are rare because of two following reasons: (1) lacks a precise method to investigate how individual single polymer chain pass through a nanopore; (2) it is difficult, if not impossible, to obtain a set of polymer samples with a narrow molar mass distribution and a uniform structures; except for linear chains. The central question in this study is to find the critical (minimum) flow rate (qc) for each kind of chains, at which the chains can pass through a given nanopore. A comparison of the measured and calculated qc leads to a better understanding how different chains are deformed, stretched and pulled through a nanopore. We have developed a novel method of combinating static and dynamic laser light scattering (LLS) to precisely measure the relative retention concentration ((C0 - C)/C0). Chapter 1 briefly introduces the theoretical background of how applications and lists some of resent research progresses in this area. Polymer with various configurations and conformations pass through nanopores; including polymer linear chains, stars polymer, branched polymers, polymer micelles are introduced. Among them, the de Gennes and Brochard-Wyart's predictions of polymer linear and star chains passing through nanopores are emphasized, in which they predicted that qc of linear chain is qc ≃ kBT/(3pieta), where kB, T and eta are the Boltzmann constant, the absolutely temperature, and the viscosity of solvent, respectively, independent of both the chain length and the pore size; and for star chains passing through nanopores, there exist a optimal entering arm numbers, namely, the star chains passing through nanopores. Chapter 2 details basic theory of static and dynamic laser light scattering (LLS), including its instrumentation and our ultrafiltration setup. Chapter 3 briefly introduces the sample preparation, including the history and mechanism of anionic living polymerization, as well as how we used a novel home-made set-up to prepare linear polystyrene with different chain lengths and star polystyrene with various arm numbers and lengths. Chapter 4 summarizes our measured critical flow rates (qc) of linear polymer chains with different lengths for nanopores with different sizes, since the flow rate is directly related to the hydrodynamic force, we have developed a sensitive method (down to tens fN) to directly assess how much the hydrodynamic force (Fh) is required to overcome the weak entropy elasticity and stretch individual coiled chains in solution. Our method is completely different from the using existing optical tweezers or AFM, because they measure the relatively stronger enthalpy elasticity. Our results confirm that qc is indeed independent of the chain length, but decreases as the pore size increases. The value of qc is ˜10--200 times smaller than kBT/(3pieta). Such a discrepancy has been attributed to the rough assumption made by de Gennes and his coworkers; namely, each chain segment "blob" confined inside the pore is not a hard sphere so that the effective length along the flow direction is much longer than the pore diameter. Finally, using the solution temperature, we varied the chain conformation, our result shows that q c has a minimum which is near, but not exactly located at the theta temperature, might leading to a better way to determine the true ideal state of a polymer solution, at which all viral coefficients, not only the second vanish. Chapter 5 uses polymer solutions made of different mixtures of linear and star chains, we have demonstrated that flushing these solution mixtures through a nanopore with a properly chosen flow rate can effectively and cleanly separate linear and star chains no matter whether linear chains are larger or smaller than star chains. Chapter 6 further investigates how star-like polystyrene pass through a given nanopore under the flow field. Star polystyrene chains with different arm lengths (LA) and numbers (f) passing through a nanopore (20 nm) under an elongational flow field was investigated in terms of the flow-rate dependent relative retention ((C0 - C)/C0), where C 0 and C are the polymer concentrations before and after the ultrafiltration. Our results reveal that for a given arm length (LA), the critical flow rate (qc,star), below which star chains are blocked, dramatically increases with the total arm numbers (f); but for a given f, is nearly independent on LA, contradictory to the previous prediction made by de Gennes and Brochard-Wyart. We have revised their theory in the region fin < fout and also accounted for the effective length of each blob, where fin and fout are the numbers of arms inside and outside the pore, respectively. In the revision, we show that qc,star is indeed independent of LA but related to f and f in in two different ways, depending on whether fin ≤ f/2 or ≥ f/2. A comparison of our experimental and calculated results reveals that most of star chains pass through the nanopores with fin ˜ f/2. Further study of the temperature dependent (C0 - C)/C 0 of polystyrene in cyclohexane reveals that there exists a minimum of qc,star at ˜38 °C, close to its theta temperature (-34.5 °C).

  12. An Alternative Three-Term Decomposition for Single Crystal Deformation Motivated by Non-Linear Elastic Dislocation Solutions

    DTIC Science & Technology

    2014-04-01

    yet fully passed through. This element is free from traction along its external surface , and thus is in a state of self stress. The remainder of...neighbours so that it too is in a state of self stress. External boundaries of the entire slab are also necessarily traction free in this global intermediate...N ⊗ u)dS = 12V0 ∫ [∇u+ (∇u)T]dV0 must vanish in a domain with uniform material properties that is in a state of self stress (that is, a homogeneous

  13. Single-pass incremental force updates for adaptively restrained molecular dynamics.

    PubMed

    Singh, Krishna Kant; Redon, Stephane

    2018-03-30

    Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall-clock time by switching on and off positional degrees of freedoms. This article presents new, single-pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single-pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single-pass algorithm speeds up the convergence of observables in wall-clock time. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Orientation and Polarisation Effects in Reactive Collisions

    DTIC Science & Technology

    1989-01-01

    18 To clock the reaction, an ultrashort laser pulse initiates the experiment by photodis- sociating the HI, ejecting a translationally hot H atom in...the chamber and travels down; the pulsed , linearly polarized u.v. laser beam passes from right to left, going through a polarization rotator before... pulsed beam valve above the chamber; the pulsed linearly polarized laser beam passes through a polarization rotator before entering the chamber. Two

  15. Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.

  16. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.

    PubMed

    Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C

    2012-12-01

    Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Special Year on Numerical Linear Algebra

    DTIC Science & Technology

    1988-09-01

    ORNL) Worley, Pat (ORNL) A special acknowledgement should go to Mary Drake (UT) and Mitzy Denson (ORNL) who carried the burden of making the innumerable...a time step appropriate for the regular cells with no stability restriction. Entrance to Y-12 requires a pass. Contact Mitzy Denson (615) 574-3125 to...requires a pass. Contact Mitzy Denson (615) 574-3125 to obtain one. ’This seminar is part of the Special Year on Numerical Linear Algebra sponsored by the

  18. Implementing Multidisciplinary and Multi-Zonal Applications Using MPI

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.

    1995-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. Unfortunately, simple message passing models, like Intel's NX library, only allow point-to-point and global communication within a single system-defined partition. This makes implementation of these applications quite difficult, if not impossible. In this report it is shown that the new Message Passing Interface (MPI) standard is a viable portable library for implementing the message passing portion of multidisciplinary applications. Further, with the extension of a portable loader, fully portable multidisciplinary application programs can be developed. Finally, the performance of MPI is compared to that of some native message passing libraries. This comparison shows that MPI can be implemented to deliver performance commensurate with native message libraries.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Kilean; Qiang, Ji

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fullymore » 3D space-charge effects through the entire accelerator system.« less

  20. A squeezed light source operated under high vacuum

    PubMed Central

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments. PMID:26657616

  1. A squeezed light source operated under high vacuum

    NASA Astrophysics Data System (ADS)

    Wade, Andrew R.; Mansell, Georgia L.; Chua, Sheon S. Y.; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-12-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass systems, testing harmonic generation and the production of classically correlated photon pairs for space-based applications. Here we demonstrate the production under high-vacuum conditions of non-classical squeezed light with an observed 8.6 dB of quantum noise reduction down to 10 Hz. Demonstration of a resonant non-linear optical device, for the generation of squeezed light under vacuum, paves the way to fully exploit the advantages of in-vacuum operations, adapting this technology for deployment into new extreme environments.

  2. Skylab study of water quality. [Kansas reservoirs

    NASA Technical Reports Server (NTRS)

    Yarger, H. L. (Principal Investigator); Mccauley, J. R.

    1974-01-01

    The author has identified the following significant results. Analysis of S-190A imagery from 1 EREP pass over 3 reservoirs in Kansas establishes a strong linear correlation between the red/green radiance ratio and suspended solids. This result compares quite favorably to ERTS MSS CCT results. The linear fits RMS for Skylab is 6 ppm as compared to 12 ppm for ERTS. All of the ERTS satellite passes yielded fairly linear results with typical RMS values of 12 ppm. However, a few of the individual passes did yield RMS values of 5 or 6 ppm which is comparable to the one Skylab pass analyzed. In view of the cloudy conditions in the Skylab photos, yet good results, the indications are that S-190A may do somewhat better than the ERTS MSS in determining suspended load. More S-190A data is needed to confirm this. As was the case with the ERTS MSS, the Skylab S-190A showed no strong correlation with other water quality parameters. S-190B photos because of their high resolution can provide much first look information regarding relative degrees of turbidity within various parts of large lakes and among smaller bodies of water.

  3. High peak-power kilohertz laser system employing single-stage multi-pass amplification

    DOEpatents

    Shan, Bing; Wang, Chun; Chang, Zenghu

    2006-05-23

    The present invention describes a technique for achieving high peak power output in a laser employing single-stage, multi-pass amplification. High gain is achieved by employing a very small "seed" beam diameter in gain medium, and maintaining the small beam diameter for multiple high-gain pre-amplification passes through a pumped gain medium, then leading the beam out of the amplifier cavity, changing the beam diameter and sending it back to the amplifier cavity for additional, high-power amplification passes through the gain medium. In these power amplification passes, the beam diameter in gain medium is increased and carefully matched to the pump laser's beam diameter for high efficiency extraction of energy from the pumped gain medium. A method of "grooming" the beam by means of a far-field spatial filter in the process of changing the beam size within the single-stage amplifier is also described.

  4. Message passing with parallel queue traversal

    DOEpatents

    Underwood, Keith D [Albuquerque, NM; Brightwell, Ronald B [Albuquerque, NM; Hemmert, K Scott [Albuquerque, NM

    2012-05-01

    In message passing implementations, associative matching structures are used to permit list entries to be searched in parallel fashion, thereby avoiding the delay of linear list traversal. List management capabilities are provided to support list entry turnover semantics and priority ordering semantics.

  5. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator

    NASA Astrophysics Data System (ADS)

    Gatti, G.; Brennan, M. J.; Tehrani, M. G.; Thompson, D. J.

    2016-01-01

    With the advent of wireless sensors, there has been an increasing amount of research in the area of energy harvesting, particularly from vibration, to power these devices. An interesting application is the possibility of harvesting energy from the track-side vibration due to a passing train, as this energy could be used to power remote sensors mounted on the track for strutural health monitoring, for example. This paper describes a fundamental study to determine how much energy could be harvested from a passing train. Using a time history of vertical vibration measured on a sleeper, the optimum mechanical parameters of a linear energy harvesting device are determined. Numerical and analytical investigations are both carried out. It is found that the optimum amount of energy harvested per unit mass is proportional to the product of the square of the input acceleration amplitude and the square of the input duration. For the specific case studied, it was found that the maximum energy that could be harvested per unit mass of the oscillator is about 0.25 J/kg at a frequency of about 17 Hz. The damping ratio for the optimum harvester was found to be about 0.0045, and the corresponding amplitude of the relative displacement of the mass is approximately 5 mm.

  6. A highly linear baseband Gm—C filter for WLAN application

    NASA Astrophysics Data System (ADS)

    Lijun, Yang; Zheng, Gong; Yin, Shi; Zhiming, Chen

    2011-09-01

    A low voltage, highly linear transconductan—C (Gm—C) low-pass filter for wireless local area network (WLAN) transceiver application is proposed. This transmitter (Tx) filter adopts a 9.8 MHz 3rd-order Chebyshev low pass prototype and achieves 35 dB stop-band attenuation at 30 MHz frequency. By utilizing pseudo-differential linear-region MOS transconductors, the filter IIP3 is measured to be as high as 9.5 dBm. Fabricated in a 0.35 μm standard CMOS technology, the proposed filter chip occupies a 0.41 × 0.17 mm2 die area and consumes 3.36 mA from a 3.3-V power supply.

  7. Analysis of Microstructure Refinement During Single-Pass and Multi-Pass Friction Stir Processing of Nial Propeller Bronze

    DTIC Science & Technology

    2010-09-01

    on an Optical Micrograph of the Transverse View of Single-Pass NAB. After [5]............................................... 6 Figure 4 . Vertical...deformed and 6 elongated but does not see the same refinement that is seen inside the SZ [ 4 ]. The grain structure right outside the TMAZ will also...including grinding, polishing, and electropolishing . The first step was to grind the surface using a Buehler ECOMET 4 Variable Speed Grinder

  8. Computer-Based Algorithmic Determination of Muscle Movement Onset Using M-Mode Ultrasonography

    DTIC Science & Technology

    2017-05-01

    contraction images were analyzed visually and with three different classes of algorithms: pixel standard deviation (SD), high-pass filter and Teager Kaiser...Linear relationships and agreements between computed and visual muscle onset were calculated. The top algorithms were high-pass filtered with a 30 Hz...suggest that computer automated determination using high-pass filtering is a potential objective alternative to visual determination in human

  9. Pass rates on the American Board of Family Medicine Certification Exam by residency location and size.

    PubMed

    Falcone, John L; Middleton, Donald B

    2013-01-01

    The Accreditation Council for Graduate Medical Education (ACGME) sets residency performance standards for the American Board of Family Medicine Certification Examination. This study aims are to describe the compliance of residency programs with ACGME standards and to determine whether residency pass rates depend on program size and location. In this retrospective cohort study, residency performance from 2007 to 2011 was compared with the ACGME performance standards. Simple linear regression was performed to see whether program pass rates were dependent on program size. Regional differences in performance were compared with χ(2) tests, using an α level of 0.05. Of 429 total residency programs, there were 205 (47.8%) that violate ACGME performance standards. Linear regression showed that program pass rates were positively correlated and dependent on program size (P < .001). The median pass rate per state was 86.4% (interquartile range, 82.0-90.8. χ(2) Tests showed that states in the West performed higher than the other 3 US Census Bureau Regions (all P < .001). Approximately half of the family medicine training programs do not meet the ACGME examination performance standards. Pass rates are associated with residency program size, and regional variation occurs. These findings have the potential to affect ACGME policy and residency program application patterns.

  10. Direct Determination of Molecular Weight Distribution of Calf-Thymus DNAs and Study of Their Fragmentation under Ultrasonic and Low-Energy IR Irradiations. A Charge Detection Mass Spectrometry Investigation.

    PubMed

    Halim, Mohammad A; Bertorelle, Franck; Doussineau, Tristan; Antoine, Rodolphe

    2018-06-09

    Calf-thymus (CT-DNA) is widely used as binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products might have dramatic consequence on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes of molecular weight distributions in the course of sonication by irradiating ultrasonic wave to CT-DNA. We report for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing to extract their activation energy for unimolecular dissociation. We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs. This article is protected by copyright. All rights reserved.

  11. Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings.

    PubMed

    Tehranchi, Amirhossein; Morandotti, Roberto; Kashyap, Raman

    2011-11-07

    High-efficiency ultra-broadband wavelength converters based on double-pass quasi-phase-matched cascaded sum and difference frequency generation including engineered chirped gratings in lossy lithium niobate waveguides are numerically investigated and compared to the single-pass counterparts, assuming a large twin-pump wavelength difference of 75 nm. Instead of uniform gratings, few-section chirped gratings with the same length, but with a small constant period change among sections with uniform gratings, are proposed to flatten the response and increase the mean efficiency by finding the common critical period shift and minimum number of sections for both single-pass and double-pass schemes whilst for the latter the efficiency is remarkably higher in a low-loss waveguide. It is also verified that for the same waveguide length and power, the efficiency enhancement expected due to the use of the double-pass scheme instead of the single-pass one, is finally lost if the waveguide loss increases above a certain value. For the double-pass scheme, the criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, bandwidth and ripple are presented for the optimum 3-section chirped-gratings-based devices. Efficient conversions with flattop bandwidths > 84 nm for lengths < 3 cm can be obtained.

  12. Estimation of the transmissivity of thin leaky-confined aquifers from single-well pumping tests

    NASA Astrophysics Data System (ADS)

    Worthington, Paul F.

    1981-01-01

    Data from the quasi-equilibrium phases of a step-drawdown test are used to evaluate the coefficient of non-linear head losses subject to the assumption of a constant effective well radius. After applying a well-loss correction to the observed drawdowns of the first step, an approximation method is used to estimate a pseudo-transmissivity of the aquifer from a single value of time-variant drawdown. The pseudo-transmissivities computed for each of a sequence of values of time pass through a minimum when there is least manifestation of casing-storage and leakage effects, phenomena to which pumping-test data of this kind are particularly susceptible. This minimum pseudo-transmissivity, adjusted for partial penetration effects where appropriate, constitutes the best possible estimate of aquifer transmissivity. The ease of application of the overall procedure is illustrated by a practical example.

  13. Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory; Boyter, Chris; Errico, Michael; Vandervoort, Kurt; Salik, Ertan

    2010-03-01

    A single biconical fiber taper is a simple and low-cost yet powerful sensor. With a distinct strength in refractive index (RI) sensing, biconical tapered fiber sensors can find their place in handheld sensor platforms, especially as biosensors that are greatly needed in health care, environmental protection, food safety, and biodefense. We report doubling of sensitivity for these sensors with two passes through the tapered region, which becomes possible through the use of sensitive and high-dynamic-range photodetectors. In a proof-of-principle experiment, we measured transmission through the taper when it was immersed in isopropyl alcohol-water mixtures of varying concentrations, in which a thin gold layer at the tip of the fiber acted as a mirror enabling two passes through the tapered region. This improved the sensitivity from 0.43 dB/vol % in the single-pass case to 0.78 dB/vol % with two passes through the taper. The refractive index detection limit was estimated to be ~1.2×10-5 RI units (RIU) and ~0.6×10-5 RIU in the single- and double-pass schemes, respectively. We predict that further enhancement of sensitivity may be achieved with a higher number of passes through the taper.

  14. Assessing FRET using Spectral Techniques

    PubMed Central

    Leavesley, Silas J.; Britain, Andrea L.; Cichon, Lauren K.; Nikolaev, Viacheslav O.; Rich, Thomas C.

    2015-01-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein–protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP–Epac–YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. PMID:23929684

  15. Assessing FRET using spectral techniques.

    PubMed

    Leavesley, Silas J; Britain, Andrea L; Cichon, Lauren K; Nikolaev, Viacheslav O; Rich, Thomas C

    2013-10-01

    Förster resonance energy transfer (FRET) techniques have proven invaluable for probing the complex nature of protein-protein interactions, protein folding, and intracellular signaling events. These techniques have traditionally been implemented with the use of one or more fluorescence band-pass filters, either as fluorescence microscopy filter cubes, or as dichroic mirrors and band-pass filters in flow cytometry. In addition, new approaches for measuring FRET, such as fluorescence lifetime and acceptor photobleaching, have been developed. Hyperspectral techniques for imaging and flow cytometry have also shown to be promising for performing FRET measurements. In this study, we have compared traditional (filter-based) FRET approaches to three spectral-based approaches: the ratio of acceptor-to-donor peak emission, linear spectral unmixing, and linear spectral unmixing with a correction for direct acceptor excitation. All methods are estimates of FRET efficiency, except for one-filter set and three-filter set FRET indices, which are included for consistency with prior literature. In the first part of this study, spectrofluorimetric data were collected from a CFP-Epac-YFP FRET probe that has been used for intracellular cAMP measurements. All comparisons were performed using the same spectrofluorimetric datasets as input data, to provide a relevant comparison. Linear spectral unmixing resulted in measurements with the lowest coefficient of variation (0.10) as well as accurate fits using the Hill equation. FRET efficiency methods produced coefficients of variation of less than 0.20, while FRET indices produced coefficients of variation greater than 8.00. These results demonstrate that spectral FRET measurements provide improved response over standard, filter-based measurements. Using spectral approaches, single-cell measurements were conducted through hyperspectral confocal microscopy, linear unmixing, and cell segmentation with quantitative image analysis. Results from these studies confirmed that spectral imaging is effective for measuring subcellular, time-dependent FRET dynamics and that additional fluorescent signals can be readily separated from FRET signals, enabling multilabel studies of molecular interactions. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  16. A Glossary for Pre-Calculus

    ERIC Educational Resources Information Center

    Arnold, Bruce; Kracht, Brenda; Ross, Judy; Teegarden, Terrie; Tompkins, Maurice

    2012-01-01

    In the deconstruction of the California state standards for trigonometry, linear algebra and mathematical analysis for the Cal-PASS (California Partnership for Achieving Student Success) Content Standards Deconstruction projects, it became apparent that terms were used for which no definition was given. The San Diego Central Cal-PASS Math…

  17. High-power single-pass pumped diamond Raman oscillator

    NASA Astrophysics Data System (ADS)

    Heinzig, Matthias; Walbaum, Till; Williams, Robert J.; Kitzler, Ondrej; Mildren, Richard P.; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2018-02-01

    We present our recent advances on power scaling of a high-power single-pass pumped CVD-diamond Raman oscillator at 1.2 μm. The single pass scheme reduced feedback to the high gain fiber amplifier, which pumps the oscillator. The Yb-doped multi-stage fiber amplifier itself enables up to 1 kW output power at a narrow linewidth of 0.16 nm. We operate this laser in quasi-cw mode at 10% duty cycle and on-time (pulse) duration of 10 ms. With a maximum conversion efficiency of 39%, a maximum steady-state output power of 380 W and diffraction limited beam quality was achieved.

  18. Verification of Faulty Message Passing Systems with Continuous State Space in PVS

    NASA Technical Reports Server (NTRS)

    Pilotto, Concetta; White, Jerome

    2010-01-01

    We present a library of Prototype Verification System (PVS) meta-theories that verifies a class of distributed systems in which agent commu nication is through message-passing. The theoretic work, outlined in, consists of iterative schemes for solving systems of linear equations , such as message-passing extensions of the Gauss and Gauss-Seidel me thods. We briefly review that work and discuss the challenges in formally verifying it.

  19. Word processing during reading sentences in patients with schizophrenia: evidences from the eyetracking technique.

    PubMed

    Fernández, Gerardo; Sapognikoff, Marcelo; Guinjoan, Salvador; Orozco, David; Agamennoni, Osvaldo

    2016-07-01

    The current study analyze the effect of word properties (i.e., word length, word frequency and word predictability) on the eye movement behavior of patients with schizophrenia (SZ) compared to age-matched controls. 18 SZ patients and 40 age matched controls participated in the study. Eye movements were recorded during reading regular sentences by using the eyetracking technique. Eye movement analyses were performed using linear mixed models. Analysis of eye movements revealed that patients with SZ decreased the amount of single fixations, increased their total number of second pass fixations compared with healthy individuals (Controls). In addition, SZ patients showed an increase in gaze duration, compared to Controls. Interestingly, the effects of current word frequency and current word length processing were similar in Controls and SZ patients. The high rate of second pass fixations and its low rate in single fixation might reveal impairments in working memory when integrating neighbor words. In contrast, word frequency and length processing might require less complex mechanisms, which were functioning in SZ patients. To the best of our knowledge, this is the first study measuring how patients with SZ process dynamically well-defined words embedded in regular sentences. The findings suggest that evaluation of the resulting changes in eye movement behavior may supplement current symptom-based diagnosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. MPIRUN: A Portable Loader for Multidisciplinary and Multi-Zonal Applications

    NASA Technical Reports Server (NTRS)

    Fineberg, Samuel A.; Woodrow, Thomas S. (Technical Monitor)

    1994-01-01

    Multidisciplinary and multi-zonal applications are an important class of applications in the area of Computational Aerosciences. In these codes, two or more distinct parallel programs or copies of a single program are utilized to model a single problem. To support such applications, it is common to use a programming model where a program is divided into several single program multiple data stream (SPMD) applications, each of which solves the equations for a single physical discipline or grid zone. These SPMD applications are then bound together to form a single multidisciplinary or multi-zonal program in which the constituent parts communicate via point-to-point message passing routines. One method for implementing the message passing portion of these codes is with the new Message Passing Interface (MPI) standard. Unfortunately, this standard only specifies the message passing portion of an application, but does not specify any portable mechanisms for loading an application. MPIRUN was developed to provide a portable means for loading MPI programs, and was specifically targeted at multidisciplinary and multi-zonal applications. Programs using MPIRUN for loading and MPI for message passing are then portable between all machines supported by MPIRUN. MPIRUN is currently implemented for the Intel iPSC/860, TMC CM5, IBM SP-1 and SP-2, Intel Paragon, and workstation clusters. Further, MPIRUN is designed to be simple enough to port easily to any system supporting MPI.

  1. Nonlinear to Linear Elastic Code Coupling in 2-D Axisymmetric Media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Explosions within the earth nonlinearly deform the local media, but at typical seismological observation distances, the seismic waves can be considered linear. Although nonlinear algorithms can simulate explosions in the very near field well, these codes are computationally expensive and inaccurate at propagating these signals to great distances. A linearized wave propagation code, coupled to a nonlinear code, provides an efficient mechanism to both accurately simulate the explosion itself and to propagate these signals to distant receivers. To this end we have coupled Sandia's nonlinear simulation algorithm CTH to a linearized elastic wave propagation code for 2-D axisymmetric media (axiElasti)more » by passing information from the nonlinear to the linear code via time-varying boundary conditions. In this report, we first develop the 2-D axisymmetric elastic wave equations in cylindrical coordinates. Next we show how we design the time-varying boundary conditions passing information from CTH to axiElasti, and finally we demonstrate the coupling code via a simple study of the elastic radius.« less

  2. Fiber bundle phase conjugate mirror

    DOEpatents

    Ward, Benjamin G.

    2012-05-01

    An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.

  3. Atrial electrogram quality in single-pass defibrillator leads with floating atrial bipole in patients with permanent atrial fibrillation and cardiac resynchronization therapy.

    PubMed

    Sticherling, Christian; Müller, Dirk; Schaer, Beat A; Krüger, Silke; Kolb, Christof

    2018-03-27

    Many patients receiving cardiac resynchronization therapy (CRT) suffer from permanent atrial fibrillation (AF). Knowledge of the atrial rhythm is important to direct pharmacological or interventional treatment as well as maintaining AV-synchronous biventricular pacing if sinus rhythm can be restored. A single pass single-coil defibrillator lead with a floating atrial bipole has been shown to obtain reliable information about the atrial rhythm but has never been employed in a CRT-system. The purpose of this study was to assess the feasibility of implanting a single coil right ventricular ICD lead with a floating atrial bipole and the signal quality of atrial electrograms (AEGM) in CRT-defibrillator recipients with permanent AF. Seventeen patients (16 males, mean age 73 ± 6 years, mean EF 25 ± 5%) with permanent AF and an indication for CRT-defibrillator placement were implanted with a designated CRT-D system comprising a single pass defibrillator lead with a atrial floating bipole. They were followed-up for 103 ± 22 days using remote monitoring for AEGM transmission. All patients had at last one AEGM suitable for atrial rhythm diagnosis and of 100 AEGM 99% were suitable for visual atrial rhythm assessment. Four patients were discharged in sinus rhythm and one reverted to AF during follow-up. Atrial electrograms retrieved from a single-pass defibrillator lead with a floating atrial bipole can be reliably used for atrial rhythm diagnosis in CRT recipients with permanent AF. Hence, a single pass ventricular defibrillator lead with a floating bipole can be considered in this population. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  4. Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band

    PubMed Central

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang

    2016-01-01

    In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter. PMID:27658929

  5. Corneal birefringence measured by spectrally resolved Mueller matrix ellipsometry and implications for non-invasive glucose monitoring

    PubMed Central

    Westphal, Peter; Kaltenbach, Johannes-Maria; Wicker, Kai

    2016-01-01

    A good understanding of the corneal birefringence properties is essential for polarimetric glucose monitoring in the aqueous humor of the eye. Therefore, we have measured complete 16-element Mueller matrices of single-pass transitions through nine porcine corneas in-vitro, spectrally resolved in the range 300…1000 nm. These ellipsometric measurements have been performed at several angles of incidence at the apex and partially at the periphery of the corneas. The Mueller matrices have been decomposed into linear birefringence, circular birefringence (i.e. optical rotation), depolarization, and diattenuation. We found considerable circular birefringence, strongly increasing with decreasing wavelength, for most corneas. Furthermore, the decomposition revealed significant dependence of the linear retardance (in nm) on the wavelength below 500 nm. These findings suggest that uniaxial and biaxial crystals are insufficient models for a general description of the corneal birefringence, especially in the blue and in the UV spectral range. The implications on spectral-polarimetric approaches for glucose monitoring in the eye (for diabetics) are discussed. PMID:27446644

  6. Ultrabroadband Design for Linear Polarization Conversion and Asymmetric Transmission Crossing X- and K- Band.

    PubMed

    Zhang, Linbo; Zhou, Peiheng; Chen, Haiyan; Lu, Haipeng; Xie, Haiyan; Zhang, Li; Li, En; Xie, Jianliang; Deng, Longjiang

    2016-09-23

    In this work, a high-efficiency and broadband reflective converter using ultrathin planar metamaterial (MM) composed of single-layered SRR is firstly realized. Numerical and experimental results demonstrate that the cross-polarization conversion reflectance above 0.84 is achieved from 8.6 to 18.6 GHz for linearly polarized (LP) incident waves under normal incidence. Subsequently, a multi-layered MM based on SRR enables a dramatic improvement of the recently demonstrated asymmetric transmission (AT) effect. Theoretical and measured results present that strong one-way transmission of two orthogonally polarized waves crossing C- and K- band has been observed. These two separated AT pass-bands have a function of selective polarization filter, which can be switched on/off by changing the polarization state of incident waves. The physical mechanisms are elucidated by taking advantage of electric fields and current distributions. Considering the broad bandwidth and the dual band, we believe that these two structures will be beneficial for designing polarization-controlled and selective transmission converter.

  7. Estimating Measures of Pass-Fail Reliability from Parallel Half-Tests.

    ERIC Educational Resources Information Center

    Woodruff, David J.; Sawyer, Richard L.

    Two methods for estimating measures of pass-fail reliability are derived, by which both theta and kappa may be estimated from a single test administration. The methods require only a single test administration and are computationally simple. Both are based on the Spearman-Brown formula for estimating stepped-up reliability. The non-distributional…

  8. Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System

    PubMed Central

    Blomquist, Patrick; Devor, Anna; Indahl, Ulf G.; Ulbert, Istvan; Einevoll, Gaute T.; Dale, Anders M.

    2009-01-01

    A new method is presented for extraction of population firing-rate models for both thalamocortical and intracortical signal transfer based on stimulus-evoked data from simultaneous thalamic single-electrode and cortical recordings using linear (laminar) multielectrodes in the rat barrel system. Time-dependent population firing rates for granular (layer 4), supragranular (layer 2/3), and infragranular (layer 5) populations in a barrel column and the thalamic population in the homologous barreloid are extracted from the high-frequency portion (multi-unit activity; MUA) of the recorded extracellular signals. These extracted firing rates are in turn used to identify population firing-rate models formulated as integral equations with exponentially decaying coupling kernels, allowing for straightforward transformation to the more common firing-rate formulation in terms of differential equations. Optimal model structures and model parameters are identified by minimizing the deviation between model firing rates and the experimentally extracted population firing rates. For the thalamocortical transfer, the experimental data favor a model with fast feedforward excitation from thalamus to the layer-4 laminar population combined with a slower inhibitory process due to feedforward and/or recurrent connections and mixed linear-parabolic activation functions. The extracted firing rates of the various cortical laminar populations are found to exhibit strong temporal correlations for the present experimental paradigm, and simple feedforward population firing-rate models combined with linear or mixed linear-parabolic activation function are found to provide excellent fits to the data. The identified thalamocortical and intracortical network models are thus found to be qualitatively very different. While the thalamocortical circuit is optimally stimulated by rapid changes in the thalamic firing rate, the intracortical circuits are low-pass and respond most strongly to slowly varying inputs from the cortical layer-4 population. PMID:19325875

  9. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    PubMed

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).

  10. Monitoring of landslide deformation based on the coherent targets of high resolution InSAR data

    NASA Astrophysics Data System (ADS)

    Fan, Jinghui; Xia, Ye; Zhao, Hongli; Li, Man; Wang, Yi; Guo, Xiaofang; Tu, Pengfei; Liu, Guang; Lin, Hao

    2014-05-01

    Landslides are a kind of typical natural disaster in China, which pose serious threats to civil lives, property and living environment. Therefore, the identification, monitoring and prevention of landslides have been considered as a long-term geological work for the public welfare. In this article, 8 TerraSAR-X high resolution strip-map mode images, acquired in the period from January to March 2012 and covering Fanjinping landslide in Zigui county, Hubei province, were used to test the usability in monitoring the deformation of single landslide. The results of two-pass DInSAR sketched the region and the shape of the deformation field of Fanjiaping landslide. Corner reflectors' linear deformation rate using CRInSAR method could be approximately validated by the in-situ GPS measurements. From the coherent pixels' linear deformation rate map, it was inferred that the deformation could be more obvious in the tail of the Muyubao landslide while the lowest frontier of this landslide might prevent the slide. Due to its shorter revisiting period and high bandwidth,,the high resolution TerraSAR-X images can keep better coherence than previous satellite SAR data in the test area and provide basic guarantee to monitor the deformation of single landslides.

  11. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.

    2003-01-01

    The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.

  12. Stability of a family of uniform vortices related to vortex configurations before merging

    NASA Astrophysics Data System (ADS)

    Luzzatto-Fegiz, P.; Williamson, C. H. K.

    2006-11-01

    Motivated by the merger of two corotating vortices, Cerretelli & Williamson (JFM 2003) discovered a family of uniform vorticity patches representing the continuation of two corotating vortices into a single ``dumbbell'' shape. This branch of solutions passes through a bifurcation from the Kirchhoff ellipses (discovered by Kamm 1987 and Saffman 1988) and ends into a cat's eye shape. By using a more accurate method for equilibrium shape calculation, we find some differences in the equilibrium shapes to those discovered by Cerretelli & Williamson, particularly near the topological change (from a two-vortex to a single vortex shape). We implement the approach of Dritschel (1985), and show that all the simply connected shapes are unstable to a three-fold perturbation, while a regime of the two-vortex shapes nearing the topological change is unstable to a two-fold antisymmetric perturbation. The stability of two patches has been source of debate in the literature. Saffman & Szeto (1980) predicted exchange of stability at an extremum in energy and angular momentum; on the other hand, Dritschel (1985) found that conditions for instability from linear analysis did not match those coming from the energy criterion. In the present work, we find precise agreement between results from linear analysis and energy criterion, in accordance with the more recent work of Kamm (1987) and Dritschel (1995).

  13. Kalman filter-based tracking of moving objects using linear ultrasonic sensor array for road vehicles

    NASA Astrophysics Data System (ADS)

    Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang

    2018-01-01

    Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.

  14. Planning Paths Through Singularities in the Center of Mass Space

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Messner, William C.; Juang, Jer-Nan

    1998-01-01

    The center of mass space is a convenient space for planning motions that minimize reaction forces at the robot's base or optimize the stability of a mechanism. A unique problem associated with path planning in the center of mass space is the potential existence of multiple center of mass images for a single Cartesian obstacle, since a single center of mass location can correspond to multiple robot joint configurations. The existence of multiple images results in a need to either maintain multiple center of mass obstacle maps or to update obstacle locations when the robot passes through a singularity, such as when it moves from an elbow-up to an elbow-down configuration. To illustrate the concepts presented in this paper, a path is planned for an example task requiring motion through multiple center of mass space maps. The object of the path planning algorithm is to locate the bang- bang acceleration profile that minimizes the robot's base reactions in the presence of a single Cartesian obstacle. To simplify the presentation, only non-redundant robots are considered and joint non-linearities are neglected.

  15. Two years experience with quality assurance protocol for patient related Rapid Arc treatment plan verification using a two dimensional ionization chamber array

    PubMed Central

    2011-01-01

    Purpose To verify the dose distribution and number of monitor units (MU) for dynamic treatment techniques like volumetric modulated single arc radiation therapy - Rapid Arc - each patient treatment plan has to be verified prior to the first treatment. The purpose of this study was to develop a patient related treatment plan verification protocol using a two dimensional ionization chamber array (MatriXX, IBA, Schwarzenbruck, Germany). Method Measurements were done to determine the dependence between response of 2D ionization chamber array, beam direction, and field size. Also the reproducibility of the measurements was checked. For the patient related verifications the original patient Rapid Arc treatment plan was projected on CT dataset of the MatriXX and the dose distribution was calculated. After irradiation of the Rapid Arc verification plans measured and calculated 2D dose distributions were compared using the gamma evaluation method implemented in the measuring software OmniPro (version 1.5, IBA, Schwarzenbruck, Germany). Results The dependence between response of 2D ionization chamber array, field size and beam direction has shown a passing rate of 99% for field sizes between 7 cm × 7 cm and 24 cm × 24 cm for measurements of single arc. For smaller and larger field sizes than 7 cm × 7 cm and 24 cm × 24 cm the passing rate was less than 99%. The reproducibility was within a passing rate of 99% and 100%. The accuracy of the whole process including the uncertainty of the measuring system, treatment planning system, linear accelerator and isocentric laser system in the treatment room was acceptable for treatment plan verification using gamma criteria of 3% and 3 mm, 2D global gamma index. Conclusion It was possible to verify the 2D dose distribution and MU of Rapid Arc treatment plans using the MatriXX. The use of the MatriXX for Rapid Arc treatment plan verification in clinical routine is reasonable. The passing rate should be 99% than the verification protocol is able to detect clinically significant errors. PMID:21342509

  16. Langevin and Fokker-Planck analyses of inhibited molecular passing processes controlling transport and reactivity in nanoporous materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chi-Jen; Ackerman, David M.; Slowing, Igor I.

    2014-07-14

    Inhibited passing of reactant and product molecules within the linear pores of nanoporous catalytic materials strongly reduces reactivity. The dependence of the passing propensity P on pore radius R is analyzed utilizing Langevin dynamics to account for solvent effects. We find that P~(R-R c) σ, where passing is sterically blocked for R≤R c, with σ below the transition state theory value. Deeper insight comes from analysis of the corresponding high-dimensional Fokker-Planck equation, which facilitates an effective small-P approximation, and dimensional reduction enabling utilization of conformal mapping ideas. We analyze passing for spherical molecules and also assess the effect of rotationalmore » degrees of freedom for elongated molecules.« less

  17. Calculation of single-pass gain for laser ceramics with losses

    NASA Astrophysics Data System (ADS)

    Vatnik, S. M.

    2018-04-01

    Rate equations describing the single-pass gain in an active medium with losses are analytically solved. The found relations illustrate the dependences of the amplification efficiency of Nd : YAG ceramics on the pump power density and specific losses. It is concluded that specific losses can be estimated from comparative measurements of unsaturated and saturated gains.

  18. Clustering Methods; Part IV of Scientific Report No. ISR-18, Information Storage and Retrieval...

    ERIC Educational Resources Information Center

    Cornell Univ., Ithaca, NY. Dept. of Computer Science.

    Two papers are included as Part Four of this report on Salton's Magical Automatic Retriever of Texts (SMART) project report. The first paper: "A Controlled Single Pass Classification Algorithm with Application to Multilevel Clustering" by D. B. Johnson and J. M. Laferente presents a single pass clustering method which compares favorably…

  19. The laser accelerator-another unicorn in the garden

    NASA Astrophysics Data System (ADS)

    Hand, L. N.

    1981-07-01

    Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.

  20. Inferring Pre-shock Acoustic Field From Post-shock Pitot Pressure Measurement

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Xun; Zhang, Chao; Duan, Lian; Xiao, Heng; Virginia Tech Team; Missouri Univ of Sci; Tech Team

    2017-11-01

    Linear interaction analysis (LIA) and iterative ensemble Kalman method are used to convert post-shock Pitot pressure fluctuations to static pressure fluctuations in front of the shock. The LIA is used as the forward model for the transfer function associated with a homogeneous field of acoustic waves passing through a nominally normal shock wave. The iterative ensemble Kalman method is then employed to infer the spectrum of upstream acoustic waves based on the post-shock Pitot pressure measured at a single point. Several test cases with synthetic and real measurement data are used to demonstrate the merits of the proposed inference scheme. The study provides the basis for measuring tunnel freestream noise with intrusive probes in noisy supersonic wind tunnels.

  1. Landsat test of diffuse reflectance models for aquatic suspended solids measurement

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Alfoldi, T. T.

    1979-01-01

    Landsat radiance data were used to test mathematical models relating diffuse reflectance to aquatic suspended solids concentration. Digital CCT data for Landsat passes over the Bay of Fundy, Nova Scotia were analyzed on a General Electric Co. Image 100 multispectral analysis system. Three data sets were studied separately and together in all combinations with and without solar angle correction. Statistical analysis and chromaticity analysis show that a nonlinear relationship between Landsat radiance and suspended solids concentration is better at curve-fitting than a linear relationship. In particular, the quasi-single-scattering diffuse reflectance model developed by Gordon and coworkers is corroborated. The Gordon model applied to 33 points of MSS 5 data combined from three dates produced r = 0.98.

  2. Detection of single-copy functional genes in prokaryotic cells by two-pass TSA-FISH with polynucleotide probes.

    PubMed

    Kawakami, Shuji; Hasegawa, Takuya; Imachi, Hiroyuki; Yamaguchi, Takashi; Harada, Hideki; Ohashi, Akiyoshi; Kubota, Kengo

    2012-02-01

    In situ detection of functional genes with single-cell resolution is currently of interest to microbiologists. Here, we developed a two-pass tyramide signal amplification (TSA)-fluorescence in situ hybridization (FISH) protocol with PCR-derived polynucleotide probes for the detection of single-copy genes in prokaryotic cells. The mcrA gene and the apsA gene in methanogens and sulfate-reducing bacteria, respectively, were targeted. The protocol showed bright fluorescence with a good signal-to-noise ratio and achieved a high efficiency of detection (>98%). The discrimination threshold was approximately 82-89% sequence identity. Microorganisms possessing the mcrA or apsA gene in anaerobic sludge samples were successfully detected by two-pass TSA-FISH with polynucleotide probes. The developed protocol is useful for identifying single microbial cells based on functional gene sequences. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Continuous-wave modulation of a femtosecond oscillator using coherent molecules.

    PubMed

    Gold, D C; Karpel, J T; Mueller, E A; Yavuz, D D

    2018-03-01

    We describe a new method to broaden the frequency spectrum of a femtosecond oscillator in the continuous-wave (CW) domain. The method relies on modulating the femtosecond laser using four-wave mixing inside a Raman-based optical modulator. We prepare the modulator by placing deuterium molecules inside a high-finesse cavity and driving their fundamental vibrational transition using intense pump and Stokes lasers that are locked to the cavity modes. With the molecules prepared, any laser within the optical region of the spectrum can pass through the system and be modulated in a single pass. This constitutes a CW optical modulator at a frequency of 90 THz with a steady-state single-pass efficiency of ∼10 -6 and transient (10 μs-time-scale) single-pass efficiency of ∼10 -4 . Using our modulator, we broaden the initial Ti:sapphire spectrum centered at 800 nm and produce upshifted and downshifted sidebands centered at wavelengths of 650 nm and 1.04 μm, respectively.

  4. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  5. Improved multiple-pass Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Kc, Utsav; Silver, Joel A.; Hovde, David C.; Varghese, Philip L.

    2011-08-01

    An improved Raman gain spectrometer for flame measurements of gas temperature and species concentrations is described. This instrument uses a multiple-pass optical cell to enhance the incident light intensity in the measurement volume. The Raman signal is 83 times larger than from a single pass, and the Raman signal-to-noise ratio (SNR) in room-temperature air of 153 is an improvement over that from a single-pass cell by a factor of 9.3 when the cell is operated with 100 passes and the signal is integrated over 20 laser shots. The SNR improvement with the multipass cell is even higher for flame measurements at atmospheric pressure, because detector readout noise is more significant for single-pass measurements when the gas density is lower. Raman scattering is collected and dispersed in a spectrograph with a transmission grating and recorded with a fast gated CCD array detector to help eliminate flame interferences. The instrument is used to record spontaneous Raman spectra from N2, CO2, O2, and CO in a methane--air flame. Curve fits of the recorded Raman spectra to detailed simulations of nitrogen spectra are used to determine the flame temperature from the shapes of the spectral signatures and from the ratio of the total intensities of the Stokes and anti-Stokes signals. The temperatures measured are in good agreement with radiation-corrected thermocouple measurements for a range of equivalence ratios.

  6. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    PubMed Central

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-01

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883

  7. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures.

    PubMed

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-13

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  8. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    DOE PAGES

    Ackerman, David M.; Evans, James W.

    2017-01-19

    Here, we perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D tr(x), at various positions x within themore » pore. D tr(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.« less

  9. Raman signal enhancement by multiple beam excitation and its application for the detection of chemicals

    NASA Astrophysics Data System (ADS)

    Gupta, Sakshi; Ahmad, Azeem; Gambhir, Vijayeta; Reddy, Martha N.; Mehta, Dalip S.

    2015-08-01

    In a typical Raman based sensor, a single laser beam is used for exciting the sample and the backscattered or forward scattered light is collected using collection optics and is analyzed by a spectrometer. We have investigated that by means of exciting the sample with multiple beams, i.e., by dividing the same input power of the single beam into two or three or more beams and exciting the sample from different angles, the Raman signal enhances significantly. Due to the presence of multiple beams passing through the same volume of the sample, an interference pattern is formed and the volume of interaction of excitation beams with the sample increases. By means of this geometry, the enhancement in the Raman signal is observed and it was found that the signal strength increases linearly with the increase in number of excitation beams. Experimental results of this scheme for excitation of the samples are reported for explosive detection at a standoff distance.

  10. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Evans, James W.

    2017-01-01

    We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient Dtr(x ) , at various positions x within the pore. Dtr(x ) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.

  11. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignotti, A.; Tamborenea, P.I.

    1988-02-01

    The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

  12. Efficient and Accurate Optimal Linear Phase FIR Filter Design Using Opposition-Based Harmony Search Algorithm

    PubMed Central

    Saha, S. K.; Dutta, R.; Choudhury, R.; Kar, R.; Mandal, D.; Ghoshal, S. P.

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems. PMID:23844390

  13. Efficient and accurate optimal linear phase FIR filter design using opposition-based harmony search algorithm.

    PubMed

    Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P

    2013-01-01

    In this paper, opposition-based harmony search has been applied for the optimal design of linear phase FIR filters. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR filter design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR filters are designed with the proposed OHS and other aforementioned algorithms individually for comparative optimization performance. A comparison of simulation results reveals the optimization efficacy of the OHS over the other optimization techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR filter design problems.

  14. MPF: A portable message passing facility for shared memory multiprocessors

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.; Mcguire, Patrick J.

    1987-01-01

    The design, implementation, and performance evaluation of a message passing facility (MPF) for shared memory multiprocessors are presented. The MPF is based on a message passing model conceptually similar to conversations. Participants (parallel processors) can enter or leave a conversation at any time. The message passing primitives for this model are implemented as a portable library of C function calls. The MPF is currently operational on a Sequent Balance 21000, and several parallel applications were developed and tested. Several simple benchmark programs are presented to establish interprocess communication performance for common patterns of interprocess communication. Finally, performance figures are presented for two parallel applications, linear systems solution, and iterative solution of partial differential equations.

  15. Consolidation of Surface Coatings by Friction Stir Techniques

    DTIC Science & Technology

    2010-09-01

    alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments were performed...based coatings onto the Aluminum alloy surface. Results showed that the most successful results were accomplished using a flat, pinless tool, with...properties. Aluminum alloy samples were plasma sprayed with a Titanium-Nickel-Chrome coating or a Titanium coating. Single and multiple pass experiments

  16. Spinal cord stimulation for axial low back pain: a prospective, controlled trial comparing dual with single percutaneous electrodes.

    PubMed

    North, Richard B; Kidd, David H; Olin, John; Sieracki, Jeffrey M; Farrokhi, Farrokh; Petrucci, Loredana; Cutchis, Protagoras N

    2005-06-15

    A prospective, controlled, clinical trial comparing single and dual percutaneous electrodes in the treatment of axial low back pain from failed back surgery syndrome. To clarify technical requirements and test the hypothesis that placing two linear arrays in parallel, thereby doubling the number of contacts, improves outcome. Technical improvements have enhanced outcomes of spinal cord stimulation for chronic axial low back pain. Dual, parallel electrodes reportedly improve these outcomes. Acting as their own controls, 20 patients who passed screening with single, 4-contact electrodes received permanent dual, 4-contact electrodes with 7- or 10-mm intercontact distances at the same vertebral level(s). We quantified and compared the technical and clinical results of the single and dual electrodes, adjusting stimulation parameters to specific psychophysical thresholds. Single electrodes provided significant (P < 0.01) advantages in patient- and computer-calculated ratings of pain coverage by paresthesias and in the scaled amplitude necessary to cover the low back, compared with dual 7-mm electrodes. Slight advantages without statistical significance were observed for the single over the dual 10-mm electrodes. Amplitude requirements were significantly lower for the single electrode than for either dual electrode. At long-term follow-up, 53% of patients met the criteria for clinical success. While we observed disadvantages for dual electrodes in treating axial low back pain, we achieved technical success with single or dual electrodes in most patients and maintained this success clinically with dual electrodes in 53%.

  17. Thermo-Mechanical Analysis of a Single-Pass Weld Overlay and Girth Welding in Lined Pipe

    NASA Astrophysics Data System (ADS)

    Obeid, Obeid; Alfano, Giulio; Bahai, Hamid

    2017-08-01

    The paper presents a nonlinear heat-transfer and mechanical finite-element (FE) analyses of a two-pass welding process of two segments of lined pipe made of a SUS304 stainless steel liner and a C-Mn steel pipe. The two passes consist of the single-pass overlay welding (inner lap weld) of the liner with the C-Mn steel pipe for each segment and the single-pass girth welding (outer butt weld) of the two segments. A distributed power density of the moving welding torch and a nonlinear heat-transfer coefficient accounting for both radiation and convection have been used in the analysis and implemented in user subroutines for the FE code ABAQUS. The modeling procedure has been validated against previously published experimental results for stainless steel and carbon steel welding separately. The model has been then used to determine the isotherms induced by the weld overlay and the girth welding and to clarify their influence on the transient temperature field and residual stress in the lined pipe. Furthermore, the influence of the cooling time between weld overlay and girth welding and of the welding speed have been examined thermally and mechanically as they are key factors that can affect the quality of lined pipe welding.

  18. Applications of Space-Filling-Curves to Cartesian Methods for CFD

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Murman, S. M.; Berger, M. J.

    2003-01-01

    This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.

  19. Model of separation performance of bilinear gradients in scanning format counter-flow gradient electrofocusing techniques.

    PubMed

    Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L

    2015-03-01

    Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Nonlinear fishbone dynamics in spherical tokamaks

    DOE Data Explorer

    Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China

    2017-01-01

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.

  1. Nonlinear fishbone dynamics in spherical tokamaks

    DOE PAGES

    Wang, Feng; Fu, G. Y.; Shen, Wei

    2016-11-22

    Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less

  2. Reverse Flood Routing with the Lag-and-Route Storage Model

    NASA Astrophysics Data System (ADS)

    Mazi, K.; Koussis, A. D.

    2010-09-01

    This work presents a method for reverse routing of flood waves in open channels, which is an inverse problem of the signal identification type. Inflow determination from outflow measurements is useful in hydrologic forensics and in optimal reservoir control, but has been seldom studied. Such problems are ill posed and their solution is sensitive to small perturbations present in the data, or to any related uncertainty. Therefore the major difficulty in solving this inverse problem consists in controlling the amplification of errors that inevitably befall flow measurements, from which the inflow signal is to be determined. The lag-and-route model offers a convenient framework for reverse routing, because not only is formal deconvolution not required, but also reverse routing is through a single linear reservoir. In addition, this inversion degenerates to calculating the intermediate inflow (prior to the lag step) simply as the sum of the outflow and of its time derivative multiplied by the reservoir’s time constant. The remaining time shifting (lag) of the intermediate, reversed flow presents no complications, as pure translation causes no error amplification. Note that reverse routing with the inverted Muskingum scheme (Koussis et al., submitted to the 12th Plinius Conference) fails when that scheme is specialised to the Kalinin-Miljukov model (linear reservoirs in series). The principal functioning of the reverse routing procedure was verified first with perfect field data (outflow hydrograph generated by forward routing of a known inflow hydrograph). The field data were then seeded with random error. To smooth the oscillations caused by the imperfect (measured) outflow data, we applied a multipoint Savitzky-Golay low-pass filter. The combination of reverse routing and filtering achieved an effective recovery of the inflow signal extremely efficiently. Specifically, we compared the reverse routing results of the inverted lag-and-route model and of the inverted Kalinin-Miljukov model. The latter applies the lag-and-route model’s single-reservoir inversion scheme sequentially to its cascade of linear reservoirs, the number of which is related to the stream's hydromorphology. For this purpose, we used the example of Bruen & Dooge (2007), who back-routed flow hydrographs in a 100-km long prismatic channel using a scheme for the reverse solution of the St. Venant equations of flood wave motion. The lag-and-route reverse routing model recovered the inflow hydrograph with comparable accuracy to that of the multi-reservoir, inverted Kalinin-Miljukov model, both performing as well as the box-scheme for reverse routing with the St. Venant equations. In conclusion, the success in the regaining of the inflow signal by the devised single-reservoir reverse routing procedure, with multipoint low-pass filtering, can be attributed to its simple computational structure that endows it with remarkable robustness and exceptional efficiency.

  3. A new method for using Cf-252 in SEU testing

    NASA Astrophysics Data System (ADS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-12-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  4. A new method for using Cf-252 in SEU testing

    NASA Technical Reports Server (NTRS)

    Costantine, A.; Howard, J. W.; Becker, M.; Block, R. C.; Smith, L. S.; Soli, G. A.; Stauber, M. C.

    1990-01-01

    A system using Cf-252 and associated nuclear instrumentation has determined the single-event upset (SEU) cross section versus linear energy transfer (LET) curve for several 2K x 8 static random access memories (SRAMs). The Cf-252 fission fragments pass through a thin-film organic scintillator detector (TFD) on the way to the device under test (DUT). The TFD provides energy information for each transiting fragment. Data analysis provides the energy of the individual ion responsible for each SEU; thus, separate upset cross sections can be developed for different energy and mass regions of the californium spectrum. This californium-based device is quite small and fits onto a bench top. It provides a convenient and inexpensive supplement or alternative to accelerator and high-altitude/space SEU testing.

  5. Analytic solutions to modelling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching.

    PubMed

    Malachowski, George C; Clegg, Robert M; Redford, Glen I

    2007-12-01

    A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.

  6. Precision envelope detector and linear rectifier circuitry

    DOEpatents

    Davis, Thomas J.

    1980-01-01

    Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.

  7. A low-dose, dual-phase cardiovascular CT protocol to assess left atrial appendage anatomy and exclude thrombus prior to left atrial intervention.

    PubMed

    Lazoura, Olga; Ismail, Tevfik F; Pavitt, Christopher; Lindsay, Alistair; Sriharan, Mona; Rubens, Michael; Padley, Simon; Duncan, Alison; Wong, Tom; Nicol, Edward

    2016-02-01

    Assessment of the left atrial appendage (LAA) for thrombus and anatomy is important prior to atrial fibrillation (AF) ablation and LAA exclusion. The use of cardiovascular CT (CCT) to detect LAA thrombus has been limited by the high incidence of pseudothrombus on single-pass studies. We evaluated the diagnostic accuracy of a two-phase protocol incorporating a limited low-dose delayed contrast-enhanced examination of the LAA, compared with a single-pass study for LAA morphological assessment, and transesophageal echocardiography (TEE) for the exclusion of thrombus. Consecutive patients (n = 122) undergoing left atrial interventions for AF were assessed. All had a two-phase CCT protocol (first-past scan plus a limited, 60-s delayed scan of the LAA) and TEE. Sensitivity, specificity, diagnostic accuracy, positive (PPV) and negative predictive values (NPV) were calculated for the detection of true thrombus on first-pass and delayed scans, using TEE as the gold standard. Overall, 20/122 (16.4 %) patients had filling defects on the first-pass study. All affected the full delineation of the LAA morphology; 17/20 (85 %) were confirmed as pseudo-filling defects. Three (15 %) were seen on late-pass and confirmed as true thrombi on TEE; a significant improvement in diagnostic performance relative to a single-pass scan (McNemar Chi-square 17, p < 0.001). The sensitivity, specificity, diagnostic accuracy, PPV and NPV was 100, 85.7, 86.1, 15.0 and 100 % respectively for first-pass scans, and 100 % for all parameters for the delayed scans. The median (range) additional radiation dose for the delayed scan was 0.4 (0.2-0.6) mSv. A low-dose delayed scan significantly improves the identification of true LAA anatomy and thrombus in patients undergoing LA intervention.

  8. Magneto-optical Kerr effect of a Ni2.00Mn1.16Ga0.84 single crystal across austenite and intermartensite transitions

    NASA Astrophysics Data System (ADS)

    Fikáček, Jan; Heczko, Oleg; Kopecký, Vít; Kaštil, Jiří; Honolka, Jan

    2018-04-01

    We carried out magneto-optical Kerr effect (MOKE) and magnetization measurements on a single crystal of Ni2.00Mn1.16Ga0.84, which is a magnetic shape memory material with application potential for actuator devices or for energy recuperation. Up to the time of our study, there had been reports of MOKE measurements in polar geometry. Against earlier predictions, we show that surface magnetic states of the martensite and the austenite can be also probed efficiently via longitudinal MOKE. A single-variant magnetic state prepared at room temperature is characterized by square-shaped ferromagnetic hysteresis loops yielding coercive fields, which are key material properties for future applications. Temperature dependencies of Kerr rotation were found to be linearly proportional to magnetization for martensitic phases. After passing through an inter-martensitic structural transition below room temperature in zero magnetic field, the coercive fields are more than doubled in comparison with the room temperature values. Above room temperature where an austenite structure is formed, MOKE signals are dominated by quadratic contributions and the magnitude of Kerr rotation drops due to changes in the electronic and magnetic domains structure.

  9. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations

    PubMed Central

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999

  10. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.

    PubMed

    Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.

  11. Digital elevation model generation from satellite interferometric synthetic aperture radar: Chapter 5

    USGS Publications Warehouse

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Lei; Lee, Wonjin; Lee, Chang-Wook

    2012-01-01

    An accurate digital elevation model (DEM) is a critical data set for characterizing the natural landscape, monitoring natural hazards, and georeferencing satellite imagery. The ideal interferometric synthetic aperture radar (InSAR) configuration for DEM production is a single-pass two-antenna system. Repeat-pass single-antenna satellite InSAR imagery, however, also can be used to produce useful DEMs. DEM generation from InSAR is advantageous in remote areas where the photogrammetric approach to DEM generation is hindered by inclement weather conditions. There are many sources of errors in DEM generation from repeat-pass InSAR imagery, for example, inaccurate determination of the InSAR baseline, atmospheric delay anomalies, and possible surface deformation because of tectonic, volcanic, or other sources during the time interval spanned by the images. This chapter presents practical solutions to identify and remove various artifacts in repeat-pass satellite InSAR images to generate a high-quality DEM.

  12. Ultrashort pulse amplification in cryogenically cooled amplifiers

    DOEpatents

    Backus, Sterling J.; Kapteyn, Henry C.; Murnane, Margaret Mary

    2004-10-12

    A laser amplifier system amplifies pulses in a single "stage" from .about.10.sup.-9 joules to more than 10.sup.-3 joules, with average power of 1-10 watts, and beam quality M.sup.2 <2. The laser medium is cooled substantially below room temperature, as a means to improve the optical and thermal characteristics of the medium. This is done with the medium inside a sealed, evacuated or purged cell to avoid moisture or other materials condensing on the surface. A "seed" pulse from a separate laser is passed through the laser medium, one or more times, in any of a variety of configurations including single-pass, multiple-pass, and regenerative amplifier configurations.

  13. Applications of Probabilistic Combiners on Linear Feedback Shift Register Sequences

    DTIC Science & Technology

    2016-12-01

    on the resulting output strings show a drastic increase in complexity, while simultaneously passing the stringent randomness tests required by the...a three-variable function. Our tests on the resulting output strings show a drastic increase in complex- ity, while simultaneously passing the...10001101 01000010 11101001 Decryption of a message that has been encrypted using bitwise XOR is quite simple. Since each bit is its own additive inverse

  14. Full-Duplex Digital Communication on a Single Laser Beam

    NASA Technical Reports Server (NTRS)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  15. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuandeng; Liu, Ying D.; Chen, P. F.

    2014-11-10

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using Hα Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments showsmore » weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large-amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are about 26.8 km s{sup –1} and 80.3 minutes, respectively. We propose that the orientation of a filament or prominence relative to the normal vector of the incoming shock should be an important factor for launching transverse or longitudinal filament oscillations. In addition, the restoring forces of the transverse prominence are most likely due to the coupling of gravity and magnetic tension of the supporting magnetic field, while that for the longitudinal filament oscillation is probably the resultant force of gravity and magnetic pressure.« less

  16. Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves

    DOEpatents

    Vincent, Paul

    2005-06-28

    A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.

  17. Glovebox stripper system tritium capture efficiency-literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, D. W.; Poore, A. S.

    2015-09-28

    Glovebox Stripper Systems (GBSS) are intended to minimize tritium emissions from glovebox confinement systems in Tritium facilities. A question was raised to determine if an assumed 99% stripping (decontamination) efficiency in the design of a GBBS was appropriate. A literature review showed the stated 99% tritium capture efficiency used for design of the GBSS is reasonable. Four scenarios were indicated for GBSSs. These include release with a single or dual stage setup which utilizes either single-pass or recirculation for stripping purposes. Examples of single-pass as well as recirculation stripper systems are presented and reviewed in this document.

  18. Collaborative Storytelling Experiences in Social Media: Influence of Peer-Assistance Mechanisms

    ERIC Educational Resources Information Center

    Liu, Chen-Chung; Liu, Kuo-Ping; Chen, Wei-Hong; Lin, Chiu-Pin; Chen, Gwo-Dong

    2011-01-01

    Collaborative storytelling activities in social media environments are generally developed in a linear way in which all participants collaborate on a shared story as it is passed from one to another in a relay form. Difficulties with this linear approach arise when collecting the contributions of participants in to a coherent story. This study…

  19. 1.2.1.1 Harvest, Collection and Storage Quarter 3 Milestone Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Lynn M.; Smith, William A.; Cafferty, Kara G.

    Single pass baling of corn stover is required in order to meet targets for the herbaceous biomass 2017 logistics design case. Single-pass pass stover harvest is based on the grain harvest and generally results in stover with a moisture content of 30-50% wet basis (w.b). Aerobic storage of corn stover with high moisture results in high levels of dry matter loss (DML), up to 25%. Anaerobic storage (ensiling) reduces DML to less than 5%, but additional costs are associated with handling and transporting the extra moisture in the biomass. This milestone provides a best-estimate of costs for using high moisturemore » feedstock within the conventional baled logistics system. The costs of three (3) anaerobic storage systems that reduce dry matter losses (bale wrap, silage tube, and silage drive over pile) are detailed in this milestone and compared to both a conventional dry-baled corn stover case and a high moisture bale case, both stored aerobically. The total logistics cost (harvest, collection, storage, and transportation) of the scenarios are as follows: the conventional multi-pass dry bale case and the single-pass high moisture case stored aerobically were nearly equivalent at $61.15 and $61.24/DMT. The single-pass bale wrap case was the lowest at $57.63/DMT. The bulk anaerobic cases were the most expensive at $84.33 for the silage tube case and $75.97 for the drive over pile, which reflect the additional expense of transporting high-moisture bulk material; however, a reduction in preprocessing costs may occur because these feedstocks are size reduced in the field. In summary, the costs estimates presented in this milestone report can be used to determine if anaerobic storage of high-moisture corn stover is an economical option for dry matter preservation.« less

  20. A 3D Reconstruction Strategy of Vehicle Outline Based on Single-Pass Single-Polarization CSAR Data.

    PubMed

    Leping Chen; Daoxiang An; Xiaotao Huang; Zhimin Zhou

    2017-11-01

    In the last few years, interest in circular synthetic aperture radar (CSAR) acquisitions has arisen as a consequence of the potential achievement of 3D reconstructions over 360° azimuth angle variation. In real-world scenarios, full 3D reconstructions of arbitrary targets need multi-pass data, which makes the processing complex, money-consuming, and time expending. In this paper, we propose a processing strategy for the 3D reconstruction of vehicle, which can avoid using multi-pass data by introducing a priori information of vehicle's shape. Besides, the proposed strategy just needs the single-pass single-polarization CSAR data to perform vehicle's 3D reconstruction, which makes the processing much more economic and efficient. First, an analysis of the distribution of attributed scattering centers from vehicle facet model is presented. And the analysis results show that a smooth and continuous basic outline of vehicle could be extracted from the peak curve of a noncoherent processing image. Second, the 3D location of vehicle roofline is inferred from layover with empirical insets of the basic outline. At last, the basic line and roofline of the vehicle are used to estimate the vehicle's 3D information and constitute the vehicle's 3D outline. The simulated and measured data processing results prove the correctness and effectiveness of our proposed strategy.

  1. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (

  2. Intel NX to PVM 3.2 message passing conversion library

    NASA Technical Reports Server (NTRS)

    Arthur, Trey; Nelson, Michael L.

    1993-01-01

    NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

  3. Relations between basic and specific motor abilities and player quality of young basketball players.

    PubMed

    Marić, Kristijan; Katić, Ratko; Jelicić, Mario

    2013-05-01

    Subjects from 5 first league clubs from Herzegovina were tested with the purpose of determining the relations of basic and specific motor abilities, as well as the effect of specific abilities on player efficiency in young basketball players (cadets). A battery of 12 tests assessing basic motor abilities and 5 specific tests assessing basketball efficiency were used on a sample of 83 basketball players. Two significant canonical correlations, i.e. linear combinations explained the relation between the set of twelve variables of basic motor space and five variables of situational motor abilities. Underlying the first canonical linear combination is the positive effect of the general motor factor, predominantly defined by jumping explosive power, movement speed of the arms, static strength of the arms and coordination, on specific basketball abilities: movement efficiency, the power of the overarm throw, shooting and passing precision, and the skill of handling the ball. The impact of basic motor abilities of precision and balance on specific abilities of passing and shooting precision and ball handling is underlying the second linear combination. The results of regression correlation analysis between the variable set of specific motor abilities and game efficiency have shown that the ability of ball handling has the largest impact on player quality in basketball cadets, followed by shooting precision and passing precision, and the power of the overarm throw.

  4. Effect of geometric nonlinearity on acoustic modulation

    NASA Astrophysics Data System (ADS)

    Warnemuende, Kraig; Wu, Hwai-Chung

    2005-05-01

    Non-linear nondestructive testing is different from linear acoustic in that it correlates the presence and characteristics of a defect with acoustical signals whose frequencies differ from the frequencies of the emitted probe signal. The difference in frequencies between the probe signal and the resulting frequencies is due to a nonlinear transformation of the probe signal as it passes through a defect. Under acoustic interrogation due to longitudinal waves, as the compression phase passes the defect the two sides of the interface are in direct contact and the contact area increases. Similarly, the tensile phase passes through the defect, the two sides separate and the contact area decreases, thereby modulating the signal amplitude. The contact area depends on the roughness of the surface and on the magnitude of the cohesive forces that arise from the small crack openings. Such cohesive forces may be attributed to aggregate interlock (in plain concrete), fiber bridging (in fiber reinforced concrete) or both. In this paper, the frequency shifts of the probe elastic wave will be analytically related to the roughness and varying cohesive forces of the crack-like defect.

  5. Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection

    NASA Astrophysics Data System (ADS)

    Gianella, Michele; Pinto, Tomas H. P.; Wu, Xia; Ritchie, Grant A. D.

    2017-08-01

    We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm-1), consisting of a linear cavity (finesse F =6300 ) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of Vmin=4.7 ×10-14 rad cm-1 G-1 H z-1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6 ×10-10 rad Hz-1/2 and a limit of detection of 0.21 ppbv Hz-1/2 NO.

  6. Research on the Improved Image Dodging Algorithm Based on Mask Technique

    NASA Astrophysics Data System (ADS)

    Yao, F.; Hu, H.; Wan, Y.

    2012-08-01

    The remote sensing image dodging algorithm based on Mask technique is a good method for removing the uneven lightness within a single image. However, there are some problems with this algorithm, such as how to set an appropriate filter size, for which there is no good solution. In order to solve these problems, an improved algorithm is proposed. In this improved algorithm, the original image is divided into blocks, and then the image blocks with different definitions are smoothed using the low-pass filters with different cut-off frequencies to get the background image; for the image after subtraction, the regions with different lightness are processed using different linear transformation models. The improved algorithm can get a better dodging result than the original one, and can make the contrast of the whole image more consistent.

  7. Bifurcation and stability of finite amplitude convection in a rotating layer

    NASA Astrophysics Data System (ADS)

    Soward, A. M.

    1985-01-01

    The nature of small amplitude Rayleigh-Bénard convection for a horizontal plane layer of fluid rotating about a vertical axis and heated from below is considered. When the usual approximations are made the evolution of three convective rolls with axes inclined at 60° one to another is described by the coupled non-linear Gause-Lotka-Volterra equations. For sufficiently large rotation rates they have no steady solutions. Instead there is a degenerate time-periodic solution of infinite period in which the phase space trajectory passes successively from one unstable equilibrium point, a single roll, to another (a heteroclinic orbit). In this paper additional terms, which correspond to vertical asymmetries in the physical system, are included and as a result the degeneracy is removed. The steady state and time-periodic solutions are derived and their stability discussed.

  8. Feasibility of an XUV FEL Oscillator Driven by a SCRF Linear Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Freund, H. P.; Reinsch, M.

    The Advanced Superconducting Test Accelerator (ASTA) facility is currently under construction at Fermi National Accelerator Laboratory. Using a1-ms-long macropulse composed of up to 3000 micropulses, and with beam energies projected from 45 to 800 MeV, the possibility for an extreme ultraviolet (XUV) free-electron laser oscillator (FELO) with the higher energy is evaluated. We have used both GINGER with an oscillator module and the MEDUSA/OPC code to assess FELO saturation prospects at 120 nm, 40 nm, and 13.4 nm. The results support saturation at all of these wavelengths which are also shorter than the demonstrated shortest wavelength record of 176 nmmore » from a storage-ring-based FELO. This indicates linac-driven FELOs can be extended into this XUV wavelength regime previously only reached with single-pass FEL configurations.« less

  9. Diffraction-limited 577 nm true-yellow laser by frequency doubling of a tapered diode laser

    NASA Astrophysics Data System (ADS)

    Christensen, Mathias; Vilera, Mariafernanda; Noordegraaf, Danny; Hansen, Anders K.; Buß, Thomas; Jensen, Ole B.; Skovgaard, Peter M. W.

    2018-02-01

    A wide range of laser medical treatments are based on coagulation of blood by absorption of the laser radiation. It has, therefore, always been a goal of these treatments to maximize the ratio of absorption in the blood to that in the surrounding tissue. For this purpose lasers at 577 nm are ideal since this wavelength is at the peak of the absorption in oxygenated hemoglobin. Furthermore, 577 nm has a lower absorption in melanin when compared to green wavelengths (515 - 532 nm), giving it an advantage when treating at greater penetration depth. Here we present a laser system based on frequency doubling of an 1154 nm Distributed Bragg Reflector (DBR) tapered diode laser, emitting 1.1 W of single frequency and diffraction limited yellow light at 577 nm, corresponding to a conversion efficiency of 30.5%. The frequency doubling is performed in a single pass configuration using a cascade of two bulk non-linear crystals. The system is power stabilized over 10 hours with a standard deviation of 0.13% and the relative intensity noise is measured to be 0.064 % rms.

  10. A linear-to-circular polarization converter based on a second-order band-pass frequency selective surface

    NASA Astrophysics Data System (ADS)

    Lin, Baoqin; Wu, Jia-liang; Da, Xin-yu; Li, Wei; Ma, Jia-jun

    2017-01-01

    In this work, we propose a linear-to-circular transmission polarization converter based on a second-order band-pass frequency selective surface (FSS). The FSS is composed of a three-layer aperture-coupled-patch structure, it can be interpreted as an array of antenna-filter-antenna modules, wherein the antenna is just a circularly polarized corner-truncated square microstrip antenna. A prototype of the proposed polarization converter is analyzed, fabricated and tested. Both simulation and experimental results show that the 3-dB axial ratio relative bandwidth of the polarization converter is over 30%, and the maximum insertion loss is only 1.87 dB; in addition, it can maintain good performance over a wide angular bandwidth at TE incidence.

  11. Polarized organic light-emitting device on a flexible giant birefringent optical reflecting polarizer substrate.

    PubMed

    Park, Byoungchoo; Park, Chan Hyuk; Kim, Mina; Han, Mi-Young

    2009-06-08

    We present the results of a study of highly linear polarized light emissions from an Organic Light-Emitting Device (OLED) that consisted of a flexible Giant Birefringent Optical (GBO) multilayer polymer reflecting polarizer substrate. Luminous Electroluminescent (EL) emissions over 4,500 cd/m(2) were produced from the polarized OLED with high peak efficiencies in excess of 6 cd/A and 2 lm/W at relatively low operating voltages. The direction of polarization for the emitted EL light corresponded to the passing (ordinary) axis of the GBO-reflecting polarizer. Furthermore, the estimated polarization ratio between the brightness of two linearly polarized EL emissions parallel and perpendicular to the passing axis could be as high as 25 when measured over the whole emitted luminance range.

  12. Behavior of an Automatic Pacemaker Sensing Algorithm for Single-Pass VDD Atrial Electrograms

    DTIC Science & Technology

    2001-10-25

    830- s lead (Medico), during several different body postures, deep respiration, and walking. The algorithm had a pre - determined sensing dynamic range...SINGLE-PASS VDD ATRIAL ELECTROGRAMS J. Kim1, S.H. Lee1, S.Y.Yang2, B. S . Cho2, and W. Huh1 1Department of Electronics Engineering, Myongji...University, Yongin, Korea 2Department of Information and Communication, Dongwon College, Kwangju, Korea S T = 5 0 % x ( B + C ) / 2 S T = 5 0 % x ( A + B

  13. Forest Structure Retrieval From EcoSAR P-Band Single-Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Osmanoglu, Batuhan; Rincon, Rafael; Lee, Seung Kuk; Fatoyinbo, Temilola; Bollian, Tobias

    2017-01-01

    EcoSAR is a single-pass (dual antenna) digital beamforming, P-band radar system that is designed for remote sensing of dense forest structure. Forest structure retrievals require the measurement related to the vertical dimension, for which several techniques have been developed over the years. These techniques use polarimetric and interferometric aspects of the SAR data, which can be collected using EcoSAR. In this paper we describe EcoSAR system in light of its interferometric capabilities and investigate forest structure retrieval techniques.

  14. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate.

    PubMed

    Yue, J; She, C-Y; Williams, B P; Vance, J D; Acott, P E; Kawahara, T D

    2009-04-01

    With two cw single-mode Nd:YAG lasers at 1064 and 1319 nm and a periodically poled lithium niobate crystal, 11 mW of 2 kHz/100 ms bandwidth single-mode tunable 589 nm cw radiation has been detected using single-pass sum-frequency generation. The demonstrated conversion efficiency is approximately 3.2%[W(-1) cm(-1)]. This compact solid-state light source has been used in a solid-state-dye laser hybrid sodium fluorescence lidar transmitter to measure temperatures and winds in the upper atmosphere (80-105 km); it is being implemented into the transmitter of a mobile all-solid-state sodium temperature and wind lidar under construction.

  15. Pulsed dye laser double-pass treatment of patients with resistant capillary malformations.

    PubMed

    Rajaratnam, Ratna; Laughlin, Sharyn A; Dudley, Denis

    2011-07-01

    The pulsed dye laser is an effective and established treatment for port-wine stains and has become the generally accepted standard of care. However, in many cases, complete clearance cannot be achieved as a significant proportion of lesions become resistant to treatment. Multiple passes or pulse-stacking techniques have been used to improve the extent and rate of fading, but concerns over increased adverse effects have limited this clinical approach. In this work, a double-pass technique with the pulsed dye laser has been described, which may allow for increased depth of vascular injury, greater efficacy, and an acceptable risk profile. Our aim was to determine the efficacy and the rate of side-effects for a double-pass protocol with a pulsed dye laser (PDL) to treat patients previously treated with PDL and/or other laser modalities. A retrospective chart review was conducted of 26 patients treated with a minimum of three double-pass treatments alone, or in combination, with single pass conventional PDL. Almost half of the patients (n = 12) showed either a moderate or significant improvement in fading compared to pre-treatment photographs with the double-pass technique. In a further 12 patients, there was a mild improvement. In two patients, there was no change. Sixteen patients developed mild side-effects: blisters (n = 5), dry scabs (n = 11) and transient hyperpigmentation (n = 4). This preliminary experience suggests that a double-pass technique at defined intervals between the first and second treatment with PDL can further lighten some port-wine stains, which are resistant to conventional single-pass treatments. This technique may be a useful addition to the laser treatment of PWS and deserves further scrutiny with randomized prospective studies and histological analysis to confirm the increased depth of vascular injury.

  16. Single-pass BPM system of the Photon Factory storage ring.

    PubMed

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  17. Stimulus and recording variables and their effects on mammalian vestibular evoked potentials

    NASA Technical Reports Server (NTRS)

    Jones, Sherri M.; Subramanian, Geetha; Avniel, Wilma; Guo, Yuqing; Burkard, Robert F.; Jones, Timothy A.

    2002-01-01

    Linear vestibular evoked potentials (VsEPs) measure the collective neural activity of the gravity receptor organs in the inner ear that respond to linear acceleration transients. The present study examined the effects of electrode placement, analog filtering, stimulus polarity and stimulus rate on linear VsEP thresholds, latencies and amplitudes recorded from mice. Two electrode-recording montages were evaluated, rostral (forebrain) to 'mastoid' and caudal (cerebellum) to 'mastoid'. VsEP thresholds and peak latencies were identical between the two recording sites; however, peak amplitudes were larger for the caudal recording montage. VsEPs were also affected by filtering. Results suggest optimum high pass filter cutoff at 100-300 Hz, and low pass filter cutoff at 10,000 Hz. To evaluate stimulus rate, linear jerk pulses were presented at 9.2, 16, 25, 40 and 80 Hz. At 80 Hz, mean latencies were longer (0.350-0.450 ms) and mean amplitudes reduced (0.8-1.8 microV) for all response peaks. In 50% of animals, late peaks (P3, N3) disappeared at 80 Hz. The results offer options for VsEP recording protocols. Copyright 2002 Elsevier Science B.V.

  18. Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment.

    PubMed

    Wen, Ning; Kim, Joshua; Doemer, Anthony; Glide-Hurst, Carri; Chetty, Indrin J; Liu, Chang; Laugeman, Eric; Xhaferllari, Ilma; Kumarasiri, Akila; Victoria, James; Bellon, Maria; Kalkanis, Steve; Siddiqui, M Salim; Movsas, Benjamin

    2018-06-01

    The purpose of this study was to investigate the systematic localization accuracy, treatment planning capability, and delivery accuracy of an integrated magnetic resonance imaging guided Linear Accelerator (MR-Linac) platform for stereotactic radiosurgery. The phantom for the end-to-end test comprises three different compartments: a rectangular MR/CT target phantom, a Winston-Lutz cube, and a rectangular MR/CT isocenter phantom. Hidden target tests were performed at gantry angles of 0, 90, 180, and 270 degrees to quantify the systematic accuracy. Five patient plans with a total of eleven lesions were used to evaluate the dosimetric accuracy. Single-isocenter IMRT treatment plans using 10-15 coplanar beams were generated to treat the multiple metastases. The end-to-end localization accuracy of the system was 1.0 ± 0.1 mm. The conformity index, homogeneity index and gradient index of the plans were 1.26 ± 0.22, 1.22 ± 0.10, and 5.38 ± 1.44, respectively. The average absolute point dose difference between measured and calculated dose was 1.64 ± 1.90%, and the mean percentage of points passing the 3%/1 mm gamma criteria was 96.87%. Our experience demonstrates that excellent plan quality and delivery accuracy was achievable on the MR-Linac for treating multiple brain metastases with a single isocenter. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry.

    PubMed

    Haler, Jean R N; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-11-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.

  20. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-08-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.

  1. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  2. Single-Pass Percutaneous Liver Biopsy for Diffuse Liver Disease Using an Automated Device: Experience in 154 Procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Sanfeliz, Gerant, E-mail: gerantrivera@ucsd.edu; Kinney, Thomas B.; Rose, Steven C.

    2005-06-15

    Purpose: To describe our experience with ultrasound (US)-guided percutaneous liver biopsies using the INRAD 18G Express core needle biopsy system.Methods: One hundred and fifty-four consecutive percutaneous core liver biopsy procedures were performed in 153 men in a single institution over 37 months. The medical charts, pathology reports, and radiology files were retrospectively reviewed. The number of needle passes, type of guidance, change in hematocrit level, and adequacy of specimens for histologic analysis were evaluated.Results: All biopsies were performed for histologic staging of chronic liver diseases. The majority of patients had hepatitis C (134/153, 90.2%). All patients were discharged to homemore » after 4 hr of postprocedural observation. In 145 of 154 (94%) biopsies, a single needle pass was sufficient for diagnosis. US guidance was utilized in all but one of the procedures (153/154, 99.4%). The mean hematocrit decrease was 1.2% (44.1-42.9%). Pain requiring narcotic analgesia, the most frequent complication, occurred in 28 of 154 procedures (18.2%). No major complications occurred. The specimens were diagnostic in 152 of 154 procedures (98.7%).Conclusions: Single-pass percutaneous US-guided liver biopsy with the INRAD 18G Express core needle biopsy system is safe and provides definitive pathologic diagnosis of chronic liver disease. It can be performed on an outpatient basis. Routine post-biopsy monitoring of hematocrit level in stable, asymptomatic patients is probably not warranted.« less

  3. Acoustic noise and pneumatic wave vortices energy harvesting on highways

    NASA Astrophysics Data System (ADS)

    Pogacian, S.; Bot, A.; Zotoiu, D.

    2012-02-01

    This paper is aimed to present the structure and the principle of a energy harvesting system that uses the air movement emanated from passing traffic to produce and accumulate electrical energy. Each of the system's elements consists of a inertial mass panel which oscillate when driving cars pass. The panel is attached to a linear electromagnetic mini generator (or/and some piezo electric micro generators) and at the time of passing, it produces energy which is store it in a supercapacitor or in a rechargeable battery. The concept can be applied to busy roads, and to high-frequented rail networks and it can work with street and road lighting, information panels and monitoring devices.

  4. Hybrid X-pinch Experiments on a MA Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Patel, S. G.; Yager-Elorriaga, D. A.; Steiner, A. M.; Gilgenbach, R. M.; Jordan, N. M.; Chalenski, D. A.; Lau, Y. Y.

    2013-10-01

    X-pinch experiments have been conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The x-pinch consists of a single wire separated by conical electrodes between two current return plates. The LTD was charged to +/-70 kV resulting in approximately 0.5 MA passing through a 35 μm Al wire. Multiple, short x-ray bursts were detected over the 400 ns current pulse. Ultimately the x-pinch will be located in parallel with a planar foil in order to backlight the Magneto-Rayleigh-Taylor instability. A smaller 100 kA driver is also in development and may be used to independently energize the x-pinch. The x-pinch chamber has been constructed and the results of these experiments will be presented. This work was supported by DoE award number DE-SC0002590, NSF grant number PHY 0903340, and US DoE through Sandia National Labs award numbers 240985 and 76822 to the U of Michigan. S.G Patel and A.M Steiner are supported by NPSC funded by Sandia National Labs. D.A. Yager-Elorriaga is supported by an NSF fellowship under grant number DGE 1256260.

  5. Feasibility of dual-chamber (DDD) pacing via a single-pass (VDD) pacing lead employing a floating atrial ring (dipole): case series, future considerations, and refinements.

    PubMed

    Kassotis, John; Voigt, Louis; Mongwa, Mbu; Reddy, C V R

    2005-01-01

    The objective of this study was to assess the feasibility of DDD pacing from a standard single-pass VDD pacemaker system. Over the past 2 decades significant advances have been made in the development of single-pass VDD pacing systems. These have been shown in long-term prospective studies to effectively preserve atrioventricular (AV)synchrony in patients with AV block and normal sinus node function. What remains problematic is the development of a single-pass pacing system capable of DDD pacing. Such a lead configuration would be useful in those patients with peripheral venous anomalies and in younger patients with congenital anomalies, which may require lead revisions in the future. In addition, with the increased use of resynchronization (biventricular pacing) therapy, the availability of a reliable single-pass lead will minimize operative time, enhance patient safety, and minimize the amount of hardware within the heart. The feasibility of DDD pacing via a Medtronic Capsure VDD-2 (Model #5038) pacing lead was evaluated. Twenty patients who presented with AV block and normal sinus node function were recruited for this study. Atrial pacing thresholds and sensitivities were assessed intraoperatively in the supine position with various respiratory maneuvers. Five patients who agreed to participate in long-term follow-up received a dual-chamber generator and were evaluated periodically over a 12-month period. Mean atrial sensitivity was 2.35 +/- 0.83 mV at the time of implantation. Effective atrial stimulation was possible in all patients at the time of implantation (mean stimulation threshold 3.08 +/- 1.04 V at 0.5 ms [bipolar], 3.34 +/- 0.95 V at 0.5 ms [unipolar]). Five of the 20 patients received a Kappa KDR701 generator, and atrial electrical properties were followed up over a 1-year period. There was no significant change in atrial pacing threshold or incidence of phrenic nerve stimulation over the 1-year follow-up. A standard single-pass VDD pacing lead system was capable of DDD pacing intraoperatively and during long-term follow-up. Despite higher than usual thresholds via the atrial dipole, pacemaker telemetry revealed < 10% use of atrial pacing dipole over a 12-month period, which would minimally deplete the pacemaker's battery. In addition, the telemetry confirmed appropriate sensing and pacing of the atrial dipole throughout the study period. At this time such systems can serve as back-up DDD pacing systems with further refinements required to optimize atrial thresholds in all patients.

  6. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  7. Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodes.

    PubMed

    Gómez-González, J F; Destexhe, A; Bal, T

    2014-10-01

    Electrophysiological recordings of single neurons in brain tissues are very common in neuroscience. Glass microelectrodes filled with an electrolyte are used to impale the cell membrane in order to record the membrane potential or to inject current. Their high resistance induces a high voltage drop when passing current and it is essential to correct the voltage measurements. In particular, for voltage clamping, the traditional alternatives are two-electrode voltage-clamp technique or discontinuous single electrode voltage-clamp (dSEVC). Nevertheless, it is generally difficult to impale two electrodes in a same neuron and the switching frequency is limited to low frequencies in the case of dSEVC. We present a novel fully computer-implemented alternative to perform continuous voltage-clamp recordings with a single sharp-electrode. To reach such voltage-clamp recordings, we combine an active electrode compensation algorithm (AEC) with a digital controller (AECVC). We applied two types of control-systems: a linear controller (proportional plus integrative controller) and a model-based controller (optimal control). We compared the performance of the two methods to dSEVC using a dynamic model cell and experiments in brain slices. The AECVC method provides an entirely digital method to perform continuous recording and smooth switching between voltage-clamp, current clamp or dynamic-clamp configurations without introducing artifacts.

  8. Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howder, Collin R.; Bell, David M.; Anderson, Scott L.

    2014-01-15

    An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging frommore » 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.« less

  9. 0.4 mJ quasi-continuously pumped picosecond Nd:GdVO4 laser with selectable pulse duration

    NASA Astrophysics Data System (ADS)

    Kubeček, V.; Jelínek, M.; Čech, M.; Hiršl, P.; Diels, J.-C.

    2010-02-01

    A quasi-continuously pumped picosecond oscillator-amplifier Nd:GdVO4 laser system based on two identical slabs in a single bounce geometry is reported. Pulse duration is from 160 to 55 ps resulting from the pulse shortening along the extended mode locked train from passively mode locked oscillator, which was measured directly from a single laser shot. The shortest 55 ps long cavity dumped single pulses from the oscillator with the energy of 15±1 μJ and the contrast better than 10-3 were amplified to the energy of 150 μJ with the contrast better than 10-3 after the single-pass amplification and to the energy of 400 μJ after the double-pass amplification.

  10. Characterizing Lenses and Lensed Stars of High-magnification Single-lens Gravitational Microlensing Events with Lenses Passing over Source Stars

    NASA Astrophysics Data System (ADS)

    Choi, J.-Y.; Shin, I.-G.; Park, S.-Y.; Han, C.; Gould, A.; Sumi, T.; Udalski, A.; Beaulieu, J.-P.; Street, R.; Dominik, M.; Allen, W.; Almeida, L. A.; Bos, M.; Christie, G. W.; Depoy, D. L.; Dong, S.; Drummond, J.; Gal-Yam, A.; Gaudi, B. S.; Henderson, C. B.; Hung, L.-W.; Jablonski, F.; Janczak, J.; Lee, C.-U.; Mallia, F.; Maury, A.; McCormick, J.; McGregor, D.; Monard, L. A. G.; Moorhouse, D.; Muñoz, J. A.; Natusch, T.; Nelson, C.; Park, B.-G.; Pogge, R. W.; "TG" Tan, T.-G.; Thornley, G.; Yee, J. C.; μFUN Collaboration; Abe, F.; Barnard, E.; Baudry, J.; Bennett, D. P.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hearnshaw, J. B.; Hosaka, S.; Itow, Y.; Kamiya, K.; Kilmartin, P. M.; Kobara, S.; Korpela, A.; Lin, W.; Ling, C. H.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Nagaya, M.; Nishimoto, K.; Ohnishi, K.; Okumura, T.; Omori, K.; Perrott, Y. C.; Rattenbury, N.; Saito, To.; Skuljan, L.; Sullivan, D. J.; Suzuki, D.; Suzuki, K.; Sweatman, W. L.; Takino, S.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; MOA Collaboration; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Poleski, R.; Ulaczyk, K.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; OGLE Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Bennett, C. S.; Bowens-Rubin, R.; Brillant, S.; Cassan, A.; Cole, A.; Corrales, E.; Coutures, Ch.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Greenhill, J.; Kane, S. R.; Menzies, J.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; PLANET Collaboration; Allan, A.; Bramich, D. M.; Browne, P.; Clay, N.; Fraser, S.; Horne, K.; Kains, N.; Mottram, C.; Snodgrass, C.; Steele, I.; Tsapras, Y.; RoboNet Collaboration; Alsubai, K. A.; Bozza, V.; Burgdorf, M. J.; Calchi Novati, S.; Dodds, P.; Dreizler, S.; Finet, F.; Gerner, T.; Glitrup, M.; Grundahl, F.; Hardis, S.; Harpsøe, K.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Kerins, E.; Liebig, C.; Maier, G.; Mancini, L.; Mathiasen, M.; Penny, M. T.; Proft, S.; Rahvar, S.; Ricci, D.; Scarpetta, G.; Schäfer, S.; Schönebeck, F.; Skottfelt, J.; Surdej, J.; Southworth, J.; Zimmer, F.; MiNDSTEp Consortium

    2012-05-01

    We present the analysis of the light curves of nine high-magnification single-lens gravitational microlensing events with lenses passing over source stars, including OGLE-2004-BLG-254, MOA-2007-BLG-176, MOA-2007-BLG-233/OGLE-2007-BLG-302, MOA-2009-BLG-174, MOA-2010-BLG-436, MOA-2011-BLG-093, MOA-2011-BLG-274, OGLE-2011-BLG-0990/MOA-2011-BLG-300, and OGLE-2011-BLG-1101/MOA-2011-BLG-325. For all of the events, we measure the linear limb-darkening coefficients of the surface brightness profile of source stars by measuring the deviation of the light curves near the peak affected by the finite-source effect. For seven events, we measure the Einstein radii and the lens-source relative proper motions. Among them, five events are found to have Einstein radii of less than 0.2 mas, making the lenses very low mass star or brown dwarf candidates. For MOA-2011-BLG-274, especially, the small Einstein radius of θE ~ 0.08 mas combined with the short timescale of t E ~ 2.7 days suggests the possibility that the lens is a free-floating planet. For MOA-2009-BLG-174, we measure the lens parallax and thus uniquely determine the physical parameters of the lens. We also find that the measured lens mass of ~0.84 M ⊙ is consistent with that of a star blended with the source, suggesting that the blend is likely to be the lens. Although we did not find planetary signals for any of the events, we provide exclusion diagrams showing the confidence levels excluding the existence of a planet as a function of the separation and mass ratio.

  11. Double-pump-pass singly resonant optical parametric oscillator for efficient generation of infrared light at 2300 nm based on PPMgSLT

    NASA Astrophysics Data System (ADS)

    Lee, Seungmin; Rhee, Bum Ku

    2015-02-01

    The pump laser was a cw-diode-pumped, acousto-optically Q-switched Nd:YAG laser. The laser had a pulse width of ~85 ns when operating at 10 kHz repetition rates. For infrared output of 2300 nm, we used 35-mm-long PPMgSLT which has a grating period of 32.7 μm for the first-order quasi-phase matching, resulting in the signal wavelength of 1980 nm at the crystal temperature of 76.5oC. Our optical parametric oscillator (OPO) was of a simple linear extra-cavity structure, formed by two flat dichroic mirrors with a separation of ~45 mm. The input coupling mirror had a high transmission of 98% for the pump, high reflectance of 98% at the signal and idler wavelengths, whereas the output coupler had a high reflectance of 98% at the pump wavelength. Hence, the OPO can be considered as singly resonant with double-pass pumping. In order to find an optimum reflectance for the efficient generation of infrared radiation of 2300 nm, we used the three different output mirrors whose reflectivity are ranging from 90% to 38% at the signal wavelength. We measured the signal and idler power as a function of the pumping power of Nd:YAG laser for three different output couplers. A maximum extraction efficiency with an optimum reflectance of output mirror was 27% for the idler, corresponding to 5.6 W of average output power. The fluctuations in the idler root-mean-square output power were measured to be below 1.5%. Our result is comparable with the recent one based on PPLN even with a simple cavity.

  12. Double Pass 595 nm Pulsed Dye Laser Does Not Enhance the Efficacy of Port Wine Stains Compared with Single Pass: A Randomized Comparison with Histological Examination.

    PubMed

    Yu, Wenxin; Zhu, Jiafang; Wang, Lizhen; Qiu, Yajing; Chen, Yijie; Yang, Xi; Chang, Lei; Ma, Gang; Lin, Xiaoxi

    2018-03-27

    To compare the efficacy and safety of double-pass pulsed dye laser (DWL) and single-pass PDL (SWL) in treating virgin port wine stain (PWS). The increase in the extent of vascular damage attributed to the use of double-pass techniques for PWS remains inconclusive. A prospective, side-by-side comparison with a histological study for virgin PWS is still lacking. Twenty-one patients (11 flat PWS, 10 hypertrophic PWS) with untreated PWS underwent 3 treatments at 2-month intervals. Each PWS was divided into three treatment sites: SWL, DWL, and untreated control. Chromametric and visual evaluation of the efficacy and evaluation of side effects were conducted 3 months after final treatment. Biopsies were taken at the treated sites immediately posttreatment. Chromametric and visual evaluation suggested that DWL sites showed no significant improvement compared with SWL (p > 0.05) in treating PWS. The mean depth of photothermal damage to the vessels was limited to a maximum of 0.36-0.41 mm in both SWL and DWL sides. Permanent side effects were not observed in any patients. Double-pass PDL does not enhance PWS clearance. To improve the clearance of PWS lesions, either the depth of laser penetration should be increased or greater photothermal damage to vessels should be generated.

  13. Method and apparatus for measuring birefringent particles

    DOEpatents

    Bishop, James K.; Guay, Christopher K.

    2006-04-18

    A method and apparatus for measuring birefringent particles is provided comprising a source lamp, a grating, a first polarizer having a first transmission axis, a sample cell and a second polarizer having a second polarization axis. The second polarizer has a second polarization axis that is set to be perpendicular to the first polarization axis, and thereby blocks linearly polarized light with the orientation of the beam of light passing through the first polarizer. The beam of light passing through the second polarizer is measured using a detector.

  14. DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DINING ROOM SHOWING DOOR TO LANAI AND PASS THRU TO KITCHEN (RIGHT). VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  15. Narrow-band double-pass superluminescent diodes emitting at 1060 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobintsov, A A; Perevozchikov, M V; Shramenko, M V

    2009-09-30

    Experimental data are presented which show that double-pass superluminescent diodes (SLDs) with fibre Bragg grating (FBG) based spectrally selective external reflectors offer emission linewidths in the range 0.1-1.0 nm, i.e., one to two orders of magnitude narrower in comparison with conventional SLDs and considerably broader in comparison with single-frequency semiconductor lasers. Their optical power at the single-mode fibre output reaches 5.0-8.0 mW, and can be raised to 50 mW using a semiconductor optical amplifier. (lasers)

  16. Thermal effects in high-power CW second harmonic generation in Mg-doped stoichiometric lithium tantalate.

    PubMed

    Tovstonog, Sergey V; Kurimura, Sunao; Suzuki, Ikue; Takeno, Kohei; Moriwaki, Shigenori; Ohmae, Noriaki; Mio, Norikatsu; Katagai, Toshio

    2008-07-21

    We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.

  17. High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO(4).

    PubMed

    Samanta, G K; Kumar, S Chaitanya; Mathew, M; Canalias, C; Pasiskevicius, V; Laurell, F; Ebrahim-Zadeh, M

    2008-12-15

    We report efficient generation of high-power, cw, single-frequency radiation in the green in a simple, compact configuration based on single-pass, second-harmonic generation of a cw ytterbium fiber laser at 1064 nm in periodically poled KTiOPO(4). Using a crystal containing a 17 mm single grating with period of 9.01 microm, we generate 6.2 W of cw radiation at 532 nm for a fundamental power of 29.75 W at a single-pass conversion efficiency of 20.8%. Over the entire range of pump powers, the generated green output is single frequency with a linewidth of 8.5 MHz and has a TEM(00) spatial profile with M(2)<1.34. The demonstrated green power can be further improved by proper thermal management of crystal heating effects at higher pump powers and also by optimized design of the grating period to include thermal issues.

  18. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazza, A; Perrin, D; Fontenot, J

    Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration,more » at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.« less

  19. Low-Cutoff, High-Pass Digital Filtering of Neural Signals

    NASA Technical Reports Server (NTRS)

    Mojarradi,Mohammad; Johnson, Travis; Ortiz, Monico; Cunningham, Thomas; Andersen, Richard

    2004-01-01

    The figure depicts the major functional blocks of a system, now undergoing development, for conditioning neural signals acquired by electrodes implanted in a brain. The overall functions to be performed by this system can be summarized as preamplification, multiplexing, digitization, and high-pass filtering. Other systems under development for recording neural signals typically contain resistor-capacitor analog low-pass filters characterized by cutoff frequencies in the vicinity of 100 Hz. In the application for which this system is being developed, there is a requirement for a cutoff frequency of 5 Hz. Because the resistors needed to obtain such a low cutoff frequency would be impractically large, it was decided to perform low-pass filtering by use of digital rather than analog circuitry. In addition, it was decided to timemultiplex the digitized signals from the multiple input channels into a single stream of data in a single output channel. The signal in each input channel is first processed by a preamplifier having a voltage gain of approximately 50. Embedded in each preamplifier is a low-pass anti-aliasing filter having a cutoff frequency of approximately 10 kHz. The anti-aliasing filters make it possible to couple the outputs of the preamplifiers to the input ports of a multiplexer. The output of the multiplexer is a single stream of time-multiplexed samples of analog signals. This stream is processed by a main differential amplifier, the output of which is sent to an analog-to-digital converter (ADC). The output of the ADC is sent to a digital signal processor (DSP).

  20. An incremental analysis of a deep drawing steel’s material behaviour undergoing the predeformation using drawbeads

    NASA Astrophysics Data System (ADS)

    Schmid, H.; Suttner, S.; Merklein, M.

    2017-09-01

    Nowadays lightweight design in metal forming processes leads to complex deep drawing geometries, which can cause multiple damages. Therefore, drawbeads are one way to regulate and control material flow during the forming process. Not only in research, but also in industrial practice, it could be determined that material is work hardened passing drawbead geometries. It particularly means when material is pre-deformed with tensile and alternating bending loads. This incident also gives the opportunity to utilize it in a reasonable way if examined properly. To investigate these findings, a process oriented and comprehensive analysis of the material behaviour during these forming operations is needed. In this paper, sheet metal strips are linearly drawn through a drawbead and stopped after passing the drawbead. Within this forming operation, the material undergoes non-linear straining before reaching the in-plane position again. Here, the process will be stopped to investigate a permanent strengthening local along the sheet thickness. Therefore, microhardness measurements are realized before and after passing the drawbead. Because of its common use and its wide known material data, a deep drawing steel DC will be used for these studies. Additionally, the strategy is applied to advanced high strength steel.

  1. Out-of-hospital tracheal intubation with single-use versus reusable metal laryngoscope blades: a multicenter randomized controlled trial.

    PubMed

    Jabre, Patricia; Galinski, Michel; Ricard-Hibon, Agnes; Devaud, Marie Laure; Ruscev, Mirko; Kulstad, Erik; Vicaut, Eric; Adnet, Fréderic; Margenet, Alain; Marty, Jean; Combes, Xavier

    2011-03-01

    Emergency tracheal intubation is reported to be more difficult with single-use plastic than with reusable metal laryngoscope blades in both inhospital and out-of-hospital settings. Single-use metal blades have been developed but have not been compared with conventional metal blades. This controlled trial compares the efficacy and safety of single-use metal blades with reusable metal blades in out-of-hospital emergency tracheal intubation. This randomized controlled trial was carried out in France with out-of-hospital emergency medical units (Services de Médecine d'Urgence et de Réanimation). This was a multicenter prospective noninferiority randomized controlled trial in adult out-of-hospital patients requiring emergency tracheal intubation. Patients were randomly assigned to either single-use or reusable metal laryngoscope blades and intubated by a senior physician or a nurse anesthetist. The primary outcome was first-pass intubation success. Secondary outcomes were incidence of difficult intubation, need for alternate airway devices, and early intubation-related complications (esophageal intubation, mainstem intubation, vomiting, pulmonary aspiration, dental trauma, bronchospasm or laryngospasm, ventricular tachycardia, arterial desaturation, hypotension, or cardiac arrest). The study included 817 patients, including 409 intubated with single-use blades and 408 with a reusable blade. First-pass intubation success was similar in both groups: 292 (71.4%) for single-use blades, 290 (71.1%) for reusable blades. The 95% confidence interval (CI) for the difference in treatments (0.3%; 95% CI -5.9% to 6.5%) did not include the prespecified inferiority margin of -7%. There was no difference in rate of difficult intubation (difference 3%; 95% CI -7% to 2%), need for alternate airway (difference 4%; 95% CI -8% to 1%), or early complication rate (difference 3%; 95% CI -3% to 8%). First-pass out-of-hospital tracheal intubation success with single-use metal laryngoscopy blades was noninferior to first-pass success with reusable metal laryngoscope blades. Copyright © 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  2. On the analysis of shock implosion

    NASA Astrophysics Data System (ADS)

    Mishkin, Eli A.; Alejaldre, Carlos

    1984-06-01

    An imploding shock wave, coming from infinity, moves through an ideal gas with the adiabatic constant γ. To define a single-valued self-similar coefficient λ(γ), over the whole classical interval 1 < γ < ∞, its boundary values λ(1), λ(∞) are deduced. The conservation equations, cast in form of quadratics, exhibit their singular points P,M,M‧. At P the pressure is maximum, at M the velocity of the gas U1, minus ξ, equals the speed of sound C, at M‧ there is a linear relationship between U1, U˙1 and C. The representative curve of the compressed gas passes analytically through all of them. The relative position of P, M, M‧ leads to three solutions of the quadratic conservation equations. Representative curves of the state of the imploded gas, at various values of γ, are shown. The errors associated with the idealized models of implosion and explosion are evaluated.

  3. Special class of nonlinear damping models in flexible space structures

    NASA Technical Reports Server (NTRS)

    Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.

    1991-01-01

    A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.

  4. Distributed Computation of the knn Graph for Large High-Dimensional Point Sets

    PubMed Central

    Plaku, Erion; Kavraki, Lydia E.

    2009-01-01

    High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over one hundred processors and indicate that similar speedup can be obtained with several hundred processors. PMID:19847318

  5. Steady-state generation of hydrogen peroxide: kinetics and stability of alcohol oxidase immobilized on nanoporous alumina.

    PubMed

    Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar

    2013-04-01

    Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.

  6. Adaptive multiphoton endomicroscopy through a dynamically deformed multicore optical fiber using proximal detection.

    PubMed

    Warren, Sean C; Kim, Youngchan; Stone, James M; Mitchell, Claire; Knight, Jonathan C; Neil, Mark A A; Paterson, Carl; French, Paul M W; Dunsby, Chris

    2016-09-19

    This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

  7. Design and performance of a high resolution, low latency stripline beam position monitor system

    NASA Astrophysics Data System (ADS)

    Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.

    2015-03-01

    A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.

  8. Intracavity Faraday modulation spectroscopy (INFAMOS): A tool for radical detection.

    PubMed

    Gianella, Michele; Pinto, Tomas H P; Wu, Xia; Ritchie, Grant A D

    2017-08-07

    We present the intra-cavity Faraday modulation spectroscopy technique, whereby optical feedback cavity-enhanced spectroscopy is coupled with Faraday modulation spectroscopy to greatly enhance the interaction path length of a laser beam with a paramagnetic sample in a magnetic field. We describe a first prototype based upon a cw quantum cascade laser targeting a selection of fundamental rovibrational R-branch transitions of nitric oxide (1890 cm -1 ), consisting of a linear cavity (finesse F=6300) and a water-cooled solenoid. We demonstrate a minimum detectable Verdet constant of V min =4.7×10 -14  rad cm -1  G -1  Hz -1/2 (at SNR = 1), corresponding to a single-pass rotation angle of 1.6×10 -10  rad Hz -1/2 and a limit of detection of 0.21 ppbv Hz -1/2 NO.

  9. A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products.

    PubMed

    Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò

    2018-01-01

    Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.

  10. Investigation of the effects of sleeper-passing impacts on the high-speed train

    NASA Astrophysics Data System (ADS)

    Wu, Xingwen; Cai, Wubin; Chi, Maoru; Wei, Lai; Shi, Huailong; Zhu, Minhao

    2015-12-01

    The sleeper-passing impact has always been considered negligible in normal conditions, while the experimental data obtained from a High-speed train in a cold weather expressed significant sleeper-passing impacts on the axle box, bogie frame and car body. Therefore, in this study, a vertical coupled vehicle/track dynamic model was developed to investigate the sleeper-passing impacts and its effects on the dynamic performance of the high-speed train. In the model, the dynamic model of vehicle is established with 10 degrees of freedom. The track model is formulated with two rails supported on the discrete supports through the finite element method. The contact forces between the wheel and rail are estimated using the non-linear Hertz contact theory. The parametric studies are conducted to analyse effects of both the vehicle speeds and the discrete support stiffness on the sleeper-passing impacts. The results show that the sleeper-passing impacts become extremely significant with the increased support stiffness of track, especially when the frequencies of sleeper-passing impacts approach to the resonance frequencies of wheel/track system. The damping of primary suspension can effectively lower the magnitude of impacts in the resonance speed ranges, but has little effect on other speed ranges. Finally, a more comprehensively coupled vehicle/track dynamic model integrating with a flexible wheel set is developed to discuss the sleeper-passing-induced flexible vibration of wheel set.

  11. High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser.

    PubMed

    Brown, David C; Singley, Joseph M; Kowalewski, Katie; Guelzow, James; Vitali, Victoria

    2010-11-22

    We report what we believe to be record performance for a high average power Yb:YAG cryogenic laser system with sustained output power. In a CW oscillator-single-pass amplifier configuration, 963 W of output power was measured. In a second configuration, a two amplifier Yb:YAG cryogenic system was driven with a fiber laser picosecond ultrafast oscillator at a 50 MHz repetition rate, double-passed through the first amplifier and single-passed through the second, resulting in 758 W of average power output. Pulses exiting the system have a FWHM pulsewidth of 12.4 ps, an energy/pulse of 15.2 μJ, and a peak power of 1.23 MW. Both systems are force convection-cooled with liquid nitrogen and have been demonstrated to run reliably over long time periods.

  12. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  13. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    PubMed

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high-finesse cavity, should match the sensitivity of linear birefringence measurements (3 × 10(-13) radians), which is several orders of magnitude more sensitive than current chiral detection limits and is expected to transform chiral sensing in many fields.

  14. The influence of filtering and downsampling on the estimation of transfer entropy

    PubMed Central

    Florin, Esther; von Papen, Michael; Timmermann, Lars

    2017-01-01

    Transfer entropy (TE) provides a generalized and model-free framework to study Wiener-Granger causality between brain regions. Because of its nonparametric character, TE can infer directed information flow also from nonlinear systems. Despite its increasing number of applications in neuroscience, not much is known regarding the influence of common electrophysiological preprocessing on its estimation. We test the influence of filtering and downsampling on a recently proposed nearest neighborhood based TE estimator. Different filter settings and downsampling factors were tested in a simulation framework using a model with a linear coupling function and two nonlinear models with sigmoid and logistic coupling functions. For nonlinear coupling and progressively lower low-pass filter cut-off frequencies up to 72% false negative direct connections and up to 26% false positive connections were identified. In contrast, for the linear model, a monotonic increase was only observed for missed indirect connections (up to 86%). High-pass filtering (1 Hz, 2 Hz) had no impact on TE estimation. After low-pass filtering interaction delays were significantly underestimated. Downsampling the data by a factor greater than the assumed interaction delay erased most of the transmitted information and thus led to a very high percentage (67–100%) of false negative direct connections. Low-pass filtering increases the number of missed connections depending on the filters cut-off frequency. Downsampling should only be done if the sampling factor is smaller than the smallest assumed interaction delay of the analyzed network. PMID:29149201

  15. Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle placement.

    PubMed

    Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L

    2016-07-01

    Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Identifying an influential spreader from a single seed in complex networks via a message-passing approach

    NASA Astrophysics Data System (ADS)

    Min, Byungjoon

    2018-01-01

    Identifying the most influential spreaders is one of outstanding problems in physics of complex systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive to the seed. We also show that our approach can be successfully adapted into weighted networks.

  17. KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    KITCHEN SHOWING THE PASS THRU TO DINING ROOM. NOTE THE CANEC PANEL CEILING. VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 7, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  18. 76 FR 31453 - Special Conditions: Gulfstream Model GVI Airplane; Single-Occupant Side-Facing Seats

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    .... SID TTI data must be processed as defined in Federal Motor Vehicle Safety Standard (FMVSS) part 571...). Pass/fail injury assessments: TTI and pelvic acceleration. 2. One longitudinal test with the Hybrid II... pelvic acceleration. 3. Vertical (14g) test with modified Hybrid II ATDs using existing pass/fail...

  19. Randomized Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Erichson, N. Benjamin; Brunton, Steven L.; Kutz, J. Nathan

    2017-11-01

    The dynamic mode decomposition (DMD) is an equation-free, data-driven matrix decomposition that is capable of providing accurate reconstructions of spatio-temporal coherent structures arising in dynamical systems. We present randomized algorithms to compute the near-optimal low-rank dynamic mode decomposition for massive datasets. Randomized algorithms are simple, accurate and able to ease the computational challenges arising with `big data'. Moreover, randomized algorithms are amenable to modern parallel and distributed computing. The idea is to derive a smaller matrix from the high-dimensional input data matrix using randomness as a computational strategy. Then, the dynamic modes and eigenvalues are accurately learned from this smaller representation of the data, whereby the approximation quality can be controlled via oversampling and power iterations. Here, we present randomized DMD algorithms that are categorized by how many passes the algorithm takes through the data. Specifically, the single-pass randomized DMD does not require data to be stored for subsequent passes. Thus, it is possible to approximately decompose massive fluid flows (stored out of core memory, or not stored at all) using single-pass algorithms, which is infeasible with traditional DMD algorithms.

  20. 1.2 MW peak power, all-solid-state picosecond laser with a microchip laser seed and a high gain single-passing bounce geometry amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Chunhua; Shen, Lifeng; Zhao, Zhiliang; Liu, Bin; Jiang, Hongbo; Chen, Jun; Liu, Chong

    2016-11-01

    A semiconductor saturable absorber mirror (SESAM) based passively Q-switched microchip Nd:YVO4 seed laser with pulse duration of 90 ps at repetition rate of 100 kHz is amplified by single-passing a Nd:YVO4 bounce amplifier with varying seed input power from 20 μW to 10 mW. The liquid pure metal greasy thermally conductive material is used to replace the traditional thin indium foil as the thermal contact material for better heat load transfer of the Nd:YVO4 bounce amplifier. Temperature distribution at the pump surface is measured by an infrared imager to compare with the numerically simulated results. A highest single-passing output power of 11.3 W is obtained for 10 mW averaged seed power, achieving a pulse peak power of ~1.25 MW and pulse energy of ~113 μJ. The beam quality is well preserved with M2 ≤1.25. The simple configuration of this bounce laser amplifier made the system flexible, robust and cost-effective, showing attractive potential for further applications.

  1. Relations between the single-pass and double-pass transition probabilities in quantum systems with two and three states

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay V.

    2018-05-01

    In the experimental determination of the population transfer efficiency between discrete states of a coherently driven quantum system it is often inconvenient to measure the population of the target state. Instead, after the interaction that transfers the population from the initial state to the target state, a second interaction is applied which brings the system back to the initial state, the population of which is easy to measure and normalize. If the transition probability is p in the forward process, then classical intuition suggests that the probability to return to the initial state after the backward process should be p2. However, this classical expectation is generally misleading because it neglects interference effects. This paper presents a rigorous theoretical analysis based on the SU(2) and SU(3) symmetries of the propagators describing the evolution of quantum systems with two and three states, resulting in explicit analytic formulas that link the two-step probabilities to the single-step ones. Explicit examples are given with the popular techniques of rapid adiabatic passage and stimulated Raman adiabatic passage. The present results suggest that quantum-mechanical probabilities degrade faster in repeated processes than classical probabilities. Therefore, the actual single-pass efficiencies in various experiments, calculated from double-pass probabilities, might have been greater than the reported values.

  2. 40 CFR 53.34 - Test procedure for methods for PM10 and Class I methods for PM2.5.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... linear regression parameters (slope, intercept, and correlation coefficient) describing the relationship... correlation coefficient. (2) To pass the test for comparability, the slope, intercept, and correlation...

  3. High time resolved electron temperature measurements by using the multi-pass Thomson scattering system in GAMMA 10/PDX.

    PubMed

    Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi

    2016-11-01

    High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.

  4. Deceleration, precooling, and multi-pass stopping of highly charged ions in Be{sup +} Coulomb crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmöger, L., E-mail: lisa.schmoeger@mpi-hd.mpg.de; Schwarz, M.; Versolato, O. O.

    2015-10-15

    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specificallymore » Ar{sup 13+}, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be{sup +} Coulomb crystals.« less

  5. SEMICONDUCTOR INTEGRATED CIRCUITS: An asymmetric MOSFET-C band-pass filter with on-chip charge pump auto-tuning

    NASA Astrophysics Data System (ADS)

    Fangxiong, Chen; Min, Lin; Heping, Ma; Hailong, Jia; Yin, Shi; Forster, Dai

    2009-08-01

    An asymmetric MOSFET-C band-pass filter (BPF) with on chip charge pump auto-tuning is presented. It is implemented in UMC (United Manufacturing Corporation) 0.18 μm CMOS process technology. The filter system with auto-tuning uses a master-slave technique for continuous tuning in which the charge pump outputs 2.663 V, much higher than the power supply voltage, to improve the linearity of the filter. The main filter with third order low-pass and second order high-pass properties is an asymmetric band-pass filter with bandwidth of 2.730-5.340 MHz. The in-band third order harmonic input intercept point (IIP3) is 16.621 dBm, with 50 Ω as the source impedance. The input referred noise is about 47.455 μVrms. The main filter dissipates 3.528 mW while the auto-tuning system dissipates 2.412 mW from a 1.8 V power supply. The filter with the auto-tuning system occupies 0.592 mm2 and it can be utilized in GPS (global positioning system) and Bluetooth systems.

  6. Bi-stability in cooperative transport by ants in the presence of obstacles

    PubMed Central

    Pinkoviezky, Itai; Feinerman, Ofer

    2018-01-01

    To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle. PMID:29746457

  7. Bi-stability in cooperative transport by ants in the presence of obstacles.

    PubMed

    Ron, Jonathan E; Pinkoviezky, Itai; Fonio, Ehud; Feinerman, Ofer; Gov, Nir S

    2018-05-01

    To cooperatively carry large food items to the nest, individual ants conform their efforts and coordinate their motion. Throughout this expedition, collective motion is driven both by internal interactions between the carrying ants and a response to newly arrived informed ants that orient the cargo towards the nest. During the transport process, the carrying group must overcome obstacles that block their path to the nest. Here, we investigate the dynamics of cooperative transport, when the motion of the ants is frustrated by a linear obstacle that obstructs the motion of the cargo. The obstacle contains a narrow opening that serves as the only available passage to the nest, and through which single ants can pass but not with the cargo. We provide an analytical model for the ant-cargo system in the constrained environment that predicts a bi-stable dynamic behavior between an oscillatory mode of motion along the obstacle and a convergent mode of motion near the opening. Using both experiments and simulations, we show how for small cargo sizes, the system exhibits spontaneous transitions between these two modes of motion due to fluctuations in the applied force on the cargo. The bi-stability provides two possible problem solving strategies for overcoming the obstacle, either by attempting to pass through the opening, or take large excursions to circumvent the obstacle.

  8. Optical pressure/density measuring means

    DOEpatents

    Veligdan, James T.

    1995-05-09

    An apparatus and method for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature.

  9. Optical pressure/density measuring means

    DOEpatents

    Veligdan, J.T.

    1995-05-09

    An apparatus and method are disclosed for rapidly and accurately determining the pressure of a fluid medium in either a static or dynamic state. The pressure is determined by making a measurement of the velocity of a light beam that is directed through the fluid medium along a pathway that enables an integrated pressure measurement to be made along the pathway, rather than making such a measurement only at a single point in the medium. A HeNe laser is configured to emit a beam of two frequencies separated by about 2 MHz. One of these beam frequencies is directed through the fluid medium and is reflected back through the medium to a non-linear diode detector. The other beam frequency is passed directly to a diode detector without traversing said medium. The diode detector is operated to determine the frequency shift or beat frequency between the two beam frequencies. Any variation in the frequency of said reflected beam that is caused by a change in its velocity as it is passed through the fluid medium causes a change in the beat frequency. This beat frequency change is then converted to an output signal value corresponding to the pressure of the medium. The measurement instrument apparatus is remotely positioned relative to the medium being measured, thus the apparatus is immune from electro-magnetic interference and can operate in conditions of high radiation, corrosion and extraordinarily high temperature. 4 figs.

  10. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2007-07-01

    We report on a sodium D2 resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.

  11. Sodium D2 resonance radiation in single-pass sum-frequency generation with actively mode-locked Nd:YAG lasers.

    PubMed

    Saito, Norihito; Akagawa, Kazuyuki; Ito, Mayumi; Takazawa, Akira; Hayano, Yutaka; Saito, Yoshihiko; Ito, Meguru; Takami, Hideki; Iye, Masanori; Wada, Satoshi

    2007-07-15

    We report on a sodium D(2) resonance coherent light source achieved in single-pass sum-frequency generation in periodically poled MgO-doped stoichiometric lithium tantalate with actively mode-locked Nd:YAG lasers. Mode-locked pulses at 1064 and 1319 nm are synchronized with a time resolution of 37 ps with the phase adjustment of the radio frequencies fed to acousto-optic mode lockers. An output power of 4.6 W at 589.1586 nm is obtained, and beam quality near the diffraction limit is also achieved in a simple design.

  12. Designing robust watermark barcodes for multiplex long-read sequencing.

    PubMed

    Ezpeleta, Joaquín; Krsticevic, Flavia J; Bulacio, Pilar; Tapia, Elizabeth

    2017-03-15

    To attain acceptable sample misassignment rates, current approaches to multiplex single-molecule real-time sequencing require upstream quality improvement, which is obtained from multiple passes over the sequenced insert and significantly reduces the effective read length. In order to fully exploit the raw read length on multiplex applications, robust barcodes capable of dealing with the full single-pass error rates are needed. We present a method for designing sequencing barcodes that can withstand a large number of insertion, deletion and substitution errors and are suitable for use in multiplex single-molecule real-time sequencing. The manuscript focuses on the design of barcodes for full-length single-pass reads, impaired by challenging error rates in the order of 11%. The proposed barcodes can multiplex hundreds or thousands of samples while achieving sample misassignment probabilities as low as 10-7 under the above conditions, and are designed to be compatible with chemical constraints imposed by the sequencing process. Software tools for constructing watermark barcode sets and demultiplexing barcoded reads, together with example sets of barcodes and synthetic barcoded reads, are freely available at www.cifasis-conicet.gov.ar/ezpeleta/NS-watermark . ezpeleta@cifasis-conicet.gov.ar. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. CONCEPTUAL DESIGN STUDY OF A MOBILE GAMMA IRRADIATOR FOR FRUIT PRODUCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-05-31

    Engineering Drawings report available as CAPE-944. A conceptual design study was made of a mobile irradiator for radiopasteurization of strawberries, grapes, peaches, tomatoes, and lemons. Minimum radiation dose specification for the fruit ranged from 100,000 to 200,000 rads with maximum to minimum dose ratio in the range of 1.5 to 3. Minimum allowable production rates were in the range of 500 to 1000 lb of fruit/hr. The irradiator was required to be mobile, preferably on one truck capable of being put in operation one day after arrival at the site. Preliminary studies compared five types of irradiators, consisting of amore » single source slab, two package pass design; a double slab, single pass design; a single slab, four pass design; a line source rotary design; and a movable source, movable package design. It was concluded that a Co/sup 60/ irradiator can be built to meet the general requirements for radiopasteurization of fruit. The irradiator can be made mobile and can be mounted on a single trailer. The combined weight of the mobile unit would be 70 to 85 tons depending on the type of irradiator. This unit would require a special license from the State Highway Department. (C.H.)« less

  14. Pre- and post-head processing for single- and double-scrambled sentences of a head-final language as measured by the eye tracking method.

    PubMed

    Tamaoka, Katsuo; Asano, Michiko; Miyaoka, Yayoi; Yokosawa, Kazuhiko

    2014-04-01

    Using the eye-tracking method, the present study depicted pre- and post-head processing for simple scrambled sentences of head-final languages. Three versions of simple Japanese active sentences with ditransitive verbs were used: namely, (1) SO₁O₂V canonical, (2) SO₂O₁V single-scrambled, and (3) O₁O₂SV double-scrambled order. First pass reading times indicated that the third noun phrase just before the verb in both single- and double-scrambled sentences required longer reading times compared to canonical sentences. Re-reading times (the sum of all fixations minus the first pass reading) showed that all noun phrases including the crucial phrase before the verb in double-scrambled sentences required longer re-reading times than those required for single-scrambled sentences; single-scrambled sentences had no difference from canonical ones. Therefore, a single filler-gap dependency can be resolved in pre-head anticipatory processing whereas two filler-gap dependencies require much greater cognitive loading than a single case. These two dependencies can be resolved in post-head processing using verb agreement information.

  15. Scattering of waves by impurities in precompressed granular chains.

    PubMed

    Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu

    2016-05-01

    We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.

  16. Progress in understanding heavy-ion stopping

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-09-01

    We report some highlights of our work with heavy-ion stopping in the energy range where Bethe stopping theory breaks down. Main tools are our binary stopping theory (PASS code), the reciprocity principle, and Paul's data base. Comparisons are made between PASS and three alternative theoretical schemes (CasP, HISTOP and SLPA). In addition to equilibrium stopping we discuss frozen-charge stopping, deviations from linear velocity dependence below the Bragg peak, application of the reciprocity principle in low-velocity stopping, modeling of equilibrium charges, and the significance of the so-called effective charge.

  17. Application of conventional and advanced techniques for the interpretation of LANDSAT 2 images for the study of linears in the Friuli earthquake area

    NASA Technical Reports Server (NTRS)

    Cardamone, P.; Lechi, G. M.; Cavallin, A.; Marino, C. M.; Zanferrari, A.

    1977-01-01

    The results obtained in the study of linears derived from the analysis of LANDSAT 2 images recorded over Friuli during 1975 are described. Particular attention is devoted to the comparison of several passes in different bands, scales and photographic supports. Moreover reference is made to aerial photographic interpretation in selected sites and to the information obtained by laser techniques.

  18. Coherent Change Detection: Theoretical Description and Experimental Results

    DTIC Science & Technology

    2006-08-01

    Elementary Linear Algebra With Applications. John Wiley and sons, 1987. 49. J. Lee, K. W. Hoppel, and A. R. Miller, “Intensity and phase statistics of...kx, ky, kz = 0). The nature of the image recovered by the PFA may be ascertained by considering a scene consisting of an elementary point scatter...registered image pair estimate any dominant relative linear phase term between the primary image and the resampled repeat pass image and remove this

  19. Comparison of different wavefront measurement setups to judge the position tolerance of intraocular lenses in a model eye

    NASA Astrophysics Data System (ADS)

    Traxler, Lukas; Reutterer, Bernd; Bayer, Natascha; Drauschke, Andreas

    2017-04-01

    To treat cataract intraocular lenses (IOLs) are used to replace the clouded human eye lens. Due to postoperative healing processes the IOL can displace within the eye, which can lead to deteriorated quality of vision. To test and characterize these effect an IOL can be embedded into a model of the humane eye. One informative measure are wavefront aberrations. In this paper three different setups, the typical double-pass configuration (DP), a single-pass (SP1) where the measured light travels in the same direction as in DP and a single-pass (SP2) with reversed direction, are investigated. All three setups correctly measure the aberrations of the eye, where SP1 is found to be the simplest to set up and align. Because of the lowest complexity it is the proposed method for wavefront measurement in model eyes.

  20. A pilot study of EUS-guided through-the-needle forceps biopsy (with video).

    PubMed

    Nakai, Yousuke; Isayama, Hiroyuki; Chang, Kenneth J; Yamamoto, Natsuyo; Mizuno, Suguru; Mohri, Dai; Kogure, Hirofumi; Matsubara, Saburo; Tada, Minoru; Koike, Kazuhiko

    2016-07-01

    In EUS-guided FNA (EUS-FNA), small-caliber needles are preferable for optimal cytologic yield, whereas large ones are preferable when histologic specimens are needed. Because of the rigidity and friction induced by its large caliber, however, technical limitation does exist in a 19-gauge FNA needle. Recent development of miniature biopsy forceps enables EUS-guided through-the-needle forceps biopsy (EUS-TTNFB). The aim of this study is to evaluate safety and efficacy of EUS-TTNFB. Eighteen sessions of EUS-TTNFB in 17 patients with solid lesions were performed by using a 0.75-mm biopsy forceps through a 19-gauge FNA needle. Technical feasibility, safety, and diagnostic yield of EUS-TTNFB were retrospectively studied. A total of 49 passes, a median of 3 passes per session, were performed, and the needle puncture, advancement and removal of the biopsy forceps, and subsequent EUS-FNA were technically successful in all patients. No adverse events were observed other than one case with hyperamylasemia without pancreatitis. Macroscopic histologic core by EUS-TTNFB was obtained at a rate of 71% per pass. The tissue acquisition rate by EUS-TTNFB alone was 67% per pass and 100% per session. When EUS-TTNFB and subsequent EUS-FNA were combined, the tissue acquisition rate was 94% per pass. The accuracy of combined EUS-TTNFB and EUS-FNA to diagnose malignancy was 88% per pass and 94% per session. With a single pass of EUS-TTNFB and EUS-FNA, the tissue acquisition rate was 89%, and the accuracy to diagnose malignancy was 83%. EUS-TTNFB was safe and technically feasible and provided additional tissue acquisition with a single puncture of a 19-gauge FNA needle. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  1. Performance of single-pass and by-pass multi-step multi-soil-layering systems for low-(C/N)-ratio polluted river water treatment.

    PubMed

    Wei, Cai-Jie; Wu, Wei-Zhong

    2018-09-01

    Two kinds of hybrid two-step multi-soil-layering (MSL) systems loaded with different filter medias (zeolite-ceramsite MSL-1 and ceramsite-red clay MSL-2) were set-up for the low-(C/N)-ratio polluted river water treatment. A long-term pollutant removal performance of these two kinds of MSL systems was evaluated for 214 days. By-pass was employed in MSL systems to evaluate its effect on nitrogen removal enhancement. Zeolite-ceramsite single-pass MSL-1 system owns outstanding ammonia removal capability (24 g NH 4 + -Nm -2 d -1 ), 3 times higher than MSL-2 without zeolite under low aeration rate condition (0.8 × 10 4  L m -2 .h -1 ). Aeration rate up to 1.6 × 10 4  L m -2 .h -1 well satisfied the requirement of complete nitrification in first unit of both two MSLs. However, weak denitrification in second unit was commonly observed. By-pass of 50% influent into second unit can improve about 20% TN removal rate for both MSL-1 and MSL-2. Complete nitrification and denitrification was achieved in by-pass MSL systems after addition of carbon source with the resulting C/N ratio up to 2.5. The characters of biofilms distributed in different sections inside MSL-1 system well illustrated the nitrogen removal mechanism inside MSL systems. Two kinds of MSLs are both promising as an appealing nitrifying biofilm reactor. Recirculation can be considered further for by-pass MSL-2 system to ensure a complete ammonia removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Bathymetric survey of the nearshore from Belle Pass to Caminada Pass, Louisiana: methods and data report

    USGS Publications Warehouse

    DeWitt, Nancy T.; Flocks, James G.; Hansen, Mark; Kulp, Mark; Reynolds, B.J.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with the University of New Orleans (UNO) and the Louisiana Department of Natural Resources (LDNR), conducted a high-resolution, single-beam bathymetric survey along the Louisiana southern coastal zone from Belle Pass to Caminada Pass. The survey consisted of 483 line kilometers of data acquired in July and August of 2005. This report outlines the methodology and provides the data from the survey. Analysis of the data and comparison to a similar bathymetric survey completed in 1989 show significant loss of seafloor and shoreline retreat, which is consistent with previously published estimates of shoreline change in the study area.

  3. Theoretical explanation of the polarization-converting system achieved by beam shaping and combination technique and its performance under high power conditions

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Li, Xiao; Shang, YaPing; Xu, XiaoJun

    2015-10-01

    The fiber laser has very obvious advantages and broad applications in remote welding, 3D cutting and national defense compared with the traditional solid laser. But influenced by heat effect of gain medium, nonlinear effect, stress birefringence effect and other negative factors, it's very difficult to get high power linearly polarized laser just using a single laser. For these limitations a polarization-converting system is designed using beam shaping and combination technique which is able to transform naturally polarized laser to linearly polarized laser at real time to resolve difficulties of generating high-power linearly polarized laser from fiber lasers in this paper. The principle of the Gaussian beam changing into the hollow beam passing through two axicons and the combination of the Gaussian beam and the hollow beam is discussed. In the experimental verification the energy conversion efficiency reached 93.1% with a remarkable enhancement of the extinction ratio from 3% to 98% benefited from the high conversion efficiency of axicons and the system worked fine under high power conditions. The system also kept excellent far field divergence. The experiment phenomenon also agreed with the simulation quite well. The experiment proves that this polarization-converting system will not affect laser structure which controls easily and needs no feedback and controlling system with stable and reliable properties at the same time. It can absolutely be applied to the polarization-conversion of high power laser.

  4. EMISSIONS FROM OUTDOOR WOOD-BURNING RESIDENTIAL HOT WATER FURNACES

    EPA Science Inventory

    The report gives results of measurements of emissions from a single-pass and a double-pass furnace at average heat outputs of 15,000 and 30,000 Btu/hr (4.4 and 8.8 kW) while burning typical oak cordwood fuel. One furnace was also tested once at each heat output while fitted with ...

  5. Short-term absence from industry: II Temporal variation and inter-association with other recorded factors

    PubMed Central

    Froggatt, P.

    1970-01-01

    Froggatt, P. (1970).Brit. J. industr. Med.,27, 211-224. Short-term absence from industry. II. Temporal variation and inter-association with other recorded factors. This paper (a) extends the previous analysis (Froggatt, 1970b) of short-term absence from work among groups of male and female industrial personnel and clerks in government service, and (b) studies other recorded variables, particularly lateness, long-term sickness absence, and passes from work both `medical' and `works'. Multiple regression shows one-day absences to be generally associated with two-day absences, lateness, and medical passes but independent of works passes and long-term sickness absence; and two-day absences to be generally associated with one-day absences and long-term sickness absence but not with lateness or passes from work. Higher order correlations show lateness and works passes, medical passes and works passes, and lateness and age to be (weakly) associated, the last negatively. Irrespective of season, one-day absences were consistently most prevalent on Monday and least so on Friday, with a subsidiary peak for the male groups on Wednesday; two-day absences - as measured by the day each absence starts - were consistently most prevalent on Monday and least so on Thursday (Friday was omitted) and during the summer months. Medical passes were generally independent of the day of the week and the period of the year; lateness was greatest on Friday and during the winter, though the increase was slight; but works passes were relatively prevalent on Friday. Correlation and regression show the association between numbers of one-day absences taken in two periods of time (each one year) to be marked (r = 0·5 to 0·7), unaffected by transforming to normal functions, and explicable on a linear hypothesis, but the value of r to increase as the periods of time increase and to decrease as the interval between the periods of time lengthens. Similar analyses for two-day absences show r = 0·25 to 0·55, acceptance of a linear hypothesis, and a suggestion that the value of r may increase as the periods of time increase and as the interval between them shortens. More limited examination shows corresponding values of r (for contiguous years) to be of the order 0·25 for medical passes, 0·60 for works passes, but > 0·80 for lateness. Values of r between each of these factors in turn for all possible pairs of days of the week are reasonably consistent and show r of the order 0·35 for one-day absences, 0·25 for medical passes, 0·40 for works passes, and 0·80 for lateness (values for two-day absences are irregular and in the range 0 to 0·4). The consistency of lateness experience over days and years is very marked, the correlations being among the highest recorded for any event involving human behaviour. The importance and application of the findings are briefly discussed; detailed consideration is reserved for the third and last paper. PMID:5448119

  6. Efficiency of different methods of extra-cavity second harmonic generation of continuous wave single-frequency radiation.

    PubMed

    Khripunov, Sergey; Kobtsev, Sergey; Radnatarov, Daba

    2016-01-20

    This work presents for the first time to the best of our knowledge a comparative efficiency analysis among various techniques of extra-cavity second harmonic generation (SHG) of continuous-wave single-frequency radiation in nonperiodically poled nonlinear crystals within a broad range of power levels. Efficiency of nonlinear radiation transformation at powers from 1 W to 10 kW was studied in three different configurations: with an external power-enhancement cavity and without the cavity in the case of single and double radiation pass through a nonlinear crystal. It is demonstrated that at power levels exceeding 1 kW, the efficiencies of methods with and without external power-enhancement cavities become comparable, whereas at even higher powers, SHG by a single or double pass through a nonlinear crystal becomes preferable because of the relatively high efficiency of nonlinear transformation and fairly simple implementation.

  7. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    PubMed Central

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  8. Operator pencil passing through a given operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biggs, A., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk; Khudaverdian, H. M., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk

    Let Δ be a linear differential operator acting on the space of densities of a given weight λ{sub 0} on a manifold M. One can consider a pencil of operators Π-circumflex(Δ)=(Δ{sub λ}) passing through the operator Δ such that any Δ{sub λ} is a linear differential operator acting on densities of weight λ. This pencil can be identified with a linear differential operator Δ-circumflex acting on the algebra of densities of all weights. The existence of an invariant scalar product in the algebra of densities implies a natural decomposition of operators, i.e., pencils of self-adjoint and anti-self-adjoint operators. We studymore » lifting maps that are on one hand equivariant with respect to divergenceless vector fields, and, on the other hand, with values in self-adjoint or anti-self-adjoint operators. In particular, we analyze the relation between these two concepts, and apply it to the study of diff (M)-equivariant liftings. Finally, we briefly consider the case of liftings equivariant with respect to the algebra of projective transformations and describe all regular self-adjoint and anti-self-adjoint liftings. Our constructions can be considered as a generalisation of equivariant quantisation.« less

  9. Linear-array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study

    PubMed Central

    Shin, Eun Ji; Topazian, Mark; Goggins, Michael G.; Syngal, Sapna; Saltzman, John R.; Lee, Jeffrey H.; Farrell, James J.; Canto, Marcia I.

    2015-01-01

    Background Studies comparing linear and radial EUS for the detection of pancreatic lesions in an asymptomatic population with increased risk for pancreatic cancer are lacking. Objectives To compare pancreatic lesion detection rates between radial and linear EUS and to determine the incremental diagnostic yield of a second EUS examination. Design Randomized controlled tandem study. Setting Five academic centers in the United States. Patients Asymptomatic high-risk individuals (HRIs) for pancreatic cancer undergoing screening EUS. Interventions Linear and radial EUS performed in randomized order. Main Outcome Measurements Pancreatic lesion detection rate by type of EUS, miss rate of 1 EUS examination, and incremental diagnostic yield of a second EUS examination (second-pass effect). Results Two hundred seventy-eight HRIs were enrolled, mean age 56 years (43.2%), and 90% were familial pancreatic cancer relatives. Two hundred twenty-four HRIs underwent tandem radial and linear EUS. When we used per-patient analysis, the overall prevalence of any pancreatic lesion was 45%. Overall, 16 of 224 HRIs (7.1%) had lesions missed during the initial EUS that were detected by the second EUS examination. The per-patient lesion miss rate was significantly greater for radial followed by linear EUS (9.8%) than for linear followed by radial EUS (4.5%) (P = .03). When we used per-lesion analysis, 73 of 109 lesions (67%) were detected by radial EUS and 99 of 120 lesions (82%) were detected by linear EUS (P < .001) during the first examination. The overall miss rate for a pancreatic lesion after 1 EUS examination was 47 of 229 (25%). The miss rate was significantly lower for linear EUS compared with radial EUS (17.5% vs 33.0%, P = .007). Limitations Most detected pancreatic lesions were not confirmed by pathology. Conclusion Linear EUS detects more pancreatic lesions than radial EUS. There was a “second-pass effect” with additional lesions detected with a second EUS examination. This effect was significantly greater when linear EUS was used after an initial radial EUS examination. PMID:25930097

  10. Linear-array EUS improves detection of pancreatic lesions in high-risk individuals: a randomized tandem study.

    PubMed

    Shin, Eun Ji; Topazian, Mark; Goggins, Michael G; Syngal, Sapna; Saltzman, John R; Lee, Jeffrey H; Farrell, James J; Canto, Marcia I

    2015-11-01

    Studies comparing linear and radial EUS for the detection of pancreatic lesions in an asymptomatic population with increased risk for pancreatic cancer are lacking. To compare pancreatic lesion detection rates between radial and linear EUS and to determine the incremental diagnostic yield of a second EUS examination. Randomized controlled tandem study. Five academic centers in the United States. Asymptomatic high-risk individuals (HRIs) for pancreatic cancer undergoing screening EUS. Linear and radial EUS performed in randomized order. Pancreatic lesion detection rate by type of EUS, miss rate of 1 EUS examination, and incremental diagnostic yield of a second EUS examination (second-pass effect). Two hundred seventy-eight HRIs were enrolled, mean age 56 years (43.2%), and 90% were familial pancreatic cancer relatives. Two hundred twenty-four HRIs underwent tandem radial and linear EUS. When we used per-patient analysis, the overall prevalence of any pancreatic lesion was 45%. Overall, 16 of 224 HRIs (7.1%) had lesions missed during the initial EUS that were detected by the second EUS examination. The per-patient lesion miss rate was significantly greater for radial followed by linear EUS (9.8%) than for linear followed by radial EUS (4.5%) (P = .03). When we used per-lesion analysis, 73 of 109 lesions (67%) were detected by radial EUS and 99 of 120 lesions (82%) were detected by linear EUS (P < .001) during the first examination. The overall miss rate for a pancreatic lesion after 1 EUS examination was 47 of 229 (25%). The miss rate was significantly lower for linear EUS compared with radial EUS (17.5% vs 33.0%, P = .007). Most detected pancreatic lesions were not confirmed by pathology. Linear EUS detects more pancreatic lesions than radial EUS. There was a "second-pass effect" with additional lesions detected with a second EUS examination. This effect was significantly greater when linear EUS was used after an initial radial EUS examination. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  11. Monte-Carlo Orbit/Full Wave Simulation of Fast Alfvén Wave (FW) Damping on Resonant Ions in Tokamaks

    NASA Astrophysics Data System (ADS)

    Choi, M.; Chan, V. S.; Tang, V.; Bonoli, P.; Pinsker, R. I.; Wright, J.

    2005-09-01

    To simulate the resonant interaction of fast Alfvén wave (FW) heating and Coulomb collisions on energetic ions, including finite orbit effects, a Monte-Carlo code ORBIT-RF has been coupled with a 2D full wave code TORIC4. ORBIT-RF solves Hamiltonian guiding center drift equations to follow trajectories of test ions in 2D axisymmetric numerical magnetic equilibrium under Coulomb collisions and ion cyclotron radio frequency quasi-linear heating. Monte-Carlo operators for pitch-angle scattering and drag calculate the changes of test ions in velocity and pitch angle due to Coulomb collisions. A rf-induced random walk model describing fast ion stochastic interaction with FW reproduces quasi-linear diffusion in velocity space. FW fields and its wave numbers from TORIC are passed on to ORBIT-RF to calculate perpendicular rf kicks of resonant ions valid for arbitrary cyclotron harmonics. ORBIT-RF coupled with TORIC using a single dominant toroidal and poloidal wave number has demonstrated consistency of simulations with recent DIII-D FW experimental results for interaction between injected neutral-beam ions and FW, including measured neutron enhancement and enhanced high energy tail. Comparison with C-Mod fundamental heating discharges also yielded reasonable agreement.

  12. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2013-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  13. Apparatus and Methods for Mitigating Electromagnetic Emissions

    NASA Technical Reports Server (NTRS)

    Geng, Steven M. (Inventor); Niedra, Janis M. (Inventor)

    2016-01-01

    Apparatus, methods, and other embodiments associated with mitigation of magnetic fields are described herein. In an embodiment, a method for mitigating an electromagnetic field includes positioning a mitigating coil around a linear alternator of linear motor so that the mitigating coil is coaxially located with an alternator coil; arranging the mitigating coil to generate a field to mitigate an electromagnetic field generated by the alternator coil; and passing an induced current from the alternator coil through the mitigating coil.

  14. Performance parameters of a liquid filled ionization chamber array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluatedmore » using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 ± 0.25) mm at 6 MV and (0.74 ± 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup −1}, respectively. For the inner 5 × 5 cm{sup 2} region and the outer 11 × 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup −1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.« less

  15. A statistical model of the wave field in a bounded domain

    NASA Astrophysics Data System (ADS)

    Hellsten, T.

    2017-02-01

    Numerical simulations of plasma heating with radiofrequency waves often require repetitive calculations of wave fields as the plasma evolves. To enable effective simulations, bench marked formulas of the power deposition have been developed. Here, a statistical model applicable to waves with short wavelengths is presented, which gives the expected amplitude of the wave field as a superposition of four wave fields with weight coefficients depending on the single pass damping, as. The weight coefficient for the wave field coherent with that calculated in the absence of reflection agrees with the coefficient for strong single pass damping of an earlier developed heuristic model, for which the weight coefficients were obtained empirically using a full wave code to calculate the wave field and power deposition. Antennas launching electromagnetic waves into bounded domains are often designed to produce localised wave fields and power depositions in the limit of strong single pass damping. The reflection of the waves changes the coupling that partly destroys the localisation of the wave field, which explains the apparent paradox arising from the earlier developed heuristic formula that only a fraction as2(2-as) and not as of the power is absorbed with a profile corresponding to the power deposition for the first pass of the rays. A method to account for the change in the coupling spectrum caused by reflection for modelling the wave field with ray tracing in bounded media is proposed, which should be applicable to wave propagation in non-uniform media in more general geometries.

  16. Toward a low-cost, low-power, low-complexity DAC-based multilevel (M-ary QAM) coherent transmitter using compact linear optical field modulator

    NASA Astrophysics Data System (ADS)

    Dingel, Benjamin

    2017-01-01

    In this invited paper, we summarize the current developments in linear optical field modulators (LOFMs) for coherent multilevel optical transmitters. Our focus is the presentation of a new, novel LOFM design that provides beneficial and necessary features such as lowest hardware component counts, lowered insertion loss, smaller RF power consumption, smaller footprint, simple structure, and lowered cost. We refer to this modulator as called Double-Pass LOFM (DP-LOFM) that becomes the building block for high-performance, linear Dual-Polarization, In-Phase- Quadrature-Phase (DP-IQ) modulator. We analyze its performance in term of slope linearity, and present one of its unique feature -- a built-in compensation functionality that no other linear modulators possessed till now.

  17. CAMAC driver for the RSX-11M V3 operating system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tippie, J. W.; Cannon, P. H.

    1977-01-01

    A driver for Kinetic Systems 3911A dedicated crate controller and 3992 serial highway driver for RSX-11M is described. The implementation includes a modified UCB structure. With this structure, multiple active I/O requests are supported to a single controller. The completion of an I/O request may be tied to external events via a WAIT-FOR-LAM command. Features of the driver include the ability to pass a list of FNA's in a single QIO call, serial highway overhead transparent at the QIO level, and special control commands to the driver passed in the FNA list. 1 figure.

  18. Evaluation of a single-scan protocol for radiochromic film dosimetry.

    PubMed

    Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Kuwahara, Satoshi; Nagasue, Nozomu; Kai, Yudai

    2015-03-08

    The purpose of this study was to evaluate a single-scan protocol using Gafchromic EBT3 film (EBT3) by comparing it with the commonly used 24-hr measurement protocol for radiochromic film dosimetry. Radiochromic film is generally scanned 24 hr after film exposure (24-hr protocol). The single-scan protocol enables measurement results within a short time using only the verification film, one calibration film, and unirradiated film. The single-scan protocol was scanned 30 min after film irradiation. The EBT3 calibration curves were obtained with the multichannel film dosimetry method. The dose verifications for each protocol were performed with the step pattern, pyramid pattern, and clinical treatment plans for intensity-modulated radiation therapy (IMRT). The absolute dose distributions for each protocol were compared with those calculated by the treatment planning system (TPS) using gamma evaluation at 3% and 3 mm. The dose distribution for the single-scan protocol was within 2% of the 24-hr protocol dose distribution. For the step pattern, the absolute dose discrepancies between the TPS for the single-scan and 24-hr protocols were 2.0 ± 1.8 cGy and 1.4 ± 1.2 cGy at the dose plateau, respectively. The pass rates were 96.0% for the single-scan protocol and 95.9% for the 24-hr protocol. Similarly, the dose discrepancies for the pyramid pattern were 3.6 ± 3.5cGy and 2.9 ± 3.3 cGy, respectively, while the pass rates for the pyramid pattern were 95.3% and 96.4%, respectively. The average pass rates for the four IMRT plans were 96.7% ± 1.8% for the single-scan protocol and 97.3% ± 1.4% for the 24-hr protocol. Thus, the single-scan protocol measurement is useful for dose verification of IMRT, based on its accuracy and efficiency.

  19. Characterization of Microstructure and Texture of 13Cr4Ni Martensitic Stainless Steel Weld Before and After Tempering =

    NASA Astrophysics Data System (ADS)

    Mokhtabad Amrei, Mohsen

    13Cr4Ni martensitic stainless steels are known for their outstanding performances in the hydroelectric industry, where they are mainly used in the construction of turbine components. Considering the size and geometry of turbine runners and blades, multi-pass welding procedures are commonly used in the fabrication and repair of such turbines. The final microstructure and mechanical properties of the weld are sensitive to the welding process parameters and thermal history. In the case of 13Cr4Ni steel, the thermal cycles imposed by the multi-pass welding operation have significant effects on the complex weld microstructure. Additionally, post-weld heat treatments are commonly used to reduce weld heterogeneity and improve the material's mechanical properties by tempering the microstructure and by forming a "room-temperature-stable austenite." In the first phase of this research, the microstructures and crystallographic textures of aswelded single-pass and double-pass welds were studied as a basis to studying the more complex multi-pass weld microstructure. This study found that the maximum hardness is obtained in high temperature heat affected zone inside the base metal. In particular, the results showed that the heat cycle exposed by the second pass increases the hardness of the previous pass because it produces a finer martensite microstructure. In areas of heat affected zone, a tempering effect is reported from 3 up to 6 millimeters far from the fusion line. Finding austenite phase in these areas are matter of interest and it can be indicative of the microstructure complexity of multi-pass welds. In the second phase of research, the microstructure of multi-pass welds was found to be more heterogeneous than that of single- and double-pass welds. Any individual pass in a multi-pass weld consists of several regions formed by adjacent weld passes heat cycle. Results showed that former austenite grains modification occurred in areas close to the subsequent weld passes. Furthermore, low angle interface laths were observed inside martensite sub-blocks over different regions. The hardness profile of a multi-pass weld was explained by the overlaying heat effects of surrounding passes. In some regions, a tempered matrix was observed, while in other regions a double-quenched microstructure was found. The final aspect of this study focused on the effects of post-weld heat treatments on reformed austenite and carbide formations, and evolution of hardness. The effects of tempering duration and temperature on microstructure were investigated. The study found that nanometer-sized carbides form at martensite lath interfaces and sub-block boundaries. Additionally, it was determined that for any holding duration, the maximum austenite percentage is achievable by tempering at 610 °C. Similarly, the maximum softening was reported for tempering at 610 °C, for any given holding period.

  20. An error analysis of the recovery capability of the relative sea-surface profile over the Puerto Rican trench from multi-station and ship tracking of GEOS-2

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Martin, C. F.; Roy, N. A.; Vetter, J. R.

    1971-01-01

    Error analyses were performed to examine the height error in a relative sea-surface profile as determined by a combination of land-based multistation C-band radars and optical lasers and one ship-based radar tracking the GEOS 2 satellite. It was shown that two relative profiles can be obtained: one using available south-to-north passes of the satellite and one using available north-to-south type passes. An analysis of multi-station tracking capability determined that only Antigua and Grand Turk radars are required to provide satisfactory orbits for south-to-north type satellite passes, while a combination of Merritt Island, Bermuda, and Wallops radars provide secondary orbits for north-to-south passes. Analysis of ship tracking capabilities shows that high elevation single pass range-only solutions are necessary to give only moderate sensitivity to systematic error effects.

  1. Observations of single-pass ion cyclotron heating in a trans-sonic flowing plasma

    NASA Astrophysics Data System (ADS)

    Bering, E. A.; Díaz, F. R. Chang; Squire, J. P.; Glover, T. W.; Carter, M. D.; McCaskill, G. E.; Longmier, B. W.; Brukardt, M. S.; Chancery, W. J.; Jacobson, V. T.

    2010-04-01

    The VAriable Specific Impulse Magnetoplasma Rocket (VASIMR®) is a high power electric spacecraft propulsion system, capable of Isp/thrust modulation at constant power [F. R. Chang Díaz et al., Proceedings of the 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 8-11 Jan. 2001]. The VASIMR® uses a helicon discharge to generate plasma. This plasma is energized by an rf booster stage that uses left hand polarized slow mode waves launched from the high field side of the ion cyclotron resonance. In the experiments reported in this paper, the booster uses 2-4 MHz waves with up to 50 kW of power. This process is similar to the ion cyclotron heating (ICH) in tokamaks, but in the VASIMR® the ions only pass through the resonance region once. The rapid absorption of ion cyclotron waves has been predicted in recent theoretical studies. These theoretical predictions have been supported with several independent measurements in this paper. The single-pass ICH produced a substantial increase in ion velocity. Pitch angle distribution studies showed that this increase took place in the resonance region where the ion cyclotron frequency was roughly equal to the frequency on the injected rf waves. Downstream of the resonance region the perpendicular velocity boost should be converted to axial flow velocity through the conservation of the first adiabatic invariant as the magnetic field decreases in the exhaust region of the VASIMR®. This paper will review all of the single-pass ICH ion acceleration data obtained using deuterium in the first VASIMR® physics demonstrator machine, the VX-50. During these experiments, the available power to the helicon ionization stage increased from 3 to 20+ kW. The increased plasma density produced increased plasma loading of the ICH coupler. Starting with an initial demonstration of single-pass ion cyclotron acceleration, the experiments demonstrate significant improvements in coupler efficiency and in ion heating efficiency. In deuterium plasma, ≥80% efficient absorption of 20 kW of ICH input power was achieved. No clear evidence for power limiting instabilities in the exhaust beam has been observed.

  2. A prospective, randomized comparison between single- and multiple-injection techniques for ultrasound-guided subgluteal sciatic nerve block.

    PubMed

    Yamamoto, Hiroto; Sakura, Shinichi; Wada, Minori; Shido, Akemi

    2014-12-01

    It is believed that local anesthetic injected to obtain circumferential spread around nerves produces a more rapid onset and successful blockade after some ultrasound-guided peripheral nerve blocks. However, evidence demonstrating this point is limited only to the popliteal sciatic nerve block, which is relatively easy to perform by via a high-frequency linear transducer. In the present study, we tested the hypothesis that multiple injections of local anesthetic to make circumferential spread would improve the rate of sensory and motor blocks compared with a single-injection technique for ultrasound-guided subgluteal sciatic nerve block, which is considered a relatively difficult block conducted with a low-frequency, curved-array transducer. Ninety patients undergoing knee surgery were divided randomly into 2 groups to receive the ultrasound-guided subgluteal approach to sciatic nerve block with 20 mL of 1.5% mepivacaine with epinephrine. For group M (the multiple-injection technique), the local anesthetic was injected to create circumferential spread around the sciatic nerve without limitation on the number of needle passes. For group S (the single-injection technique), the number of needle passes was limited to 1, and the local anesthetic was injected to create spread along the dorsal surface of the sciatic nerve, during which no adjustment of the needle tip was made. Sensory and motor blockade were assessed in double-blind fashion for 30 minutes after completion of the block. The primary outcome was sensory blockade of all sciatic components tested, including tibial, superficial peroneal, and sural nerves at 30 minutes after injection. Data from 86 patients (43 in each group) were analyzed. Block execution took more time for group M than group S. The proportion of patients with complete sensory blockade of all sciatic components at 30 minutes after injection was significantly larger for group M than group S (41.9% vs 16.3%, P = 0.018). Complete motor blockade of foot and toes extension also was observed more frequently in group M than in group S (67.4% vs 34.9%, P = 0.005 and 51.2% vs 25.6%, P = 0.027, respectively). When ultrasound-guided subgluteal sciatic nerve block is conducted, multiple injections of local anesthetic to make a circumferential spread around the sciatic nerve improve the rate of sensory and motor blocks compared with a single injection.

  3. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  4. Calculations of beam dynamics in Sandia linear electron accelerators, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.

    1985-03-01

    A number of code and analytic studies were made during 1984 which pertain to the Sandia linear accelerators MABE and RADLAC. In this report the authors summarize the important results of the calculations. New results include a better understanding of gap-induced radial oscillations, leakage currents in a typical MABE gas, emittance growth in a beam passing through a series of gaps, some new diocotron results, and the latest diode simulations for both accelerators. 23 references, 30 figures, 1 table.

  5. Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailenko, V. V.; Seok Kim, Jin; Jo, Younghyun

    2014-05-15

    The temporal evolution of the linear diocotron instability of a cylindrical annular plasma column surrounded by a conducting boundary has been investigated by using the methodology of the cylindrical shearing modes. The linear solution of the initial and boundary-value problems is obtained which is valid for any time at which linear effects dominate. The solution reveals that the initial perturbations of the electron density pass through the stage of the non-modal evolution when the perturbation experiences spatio-temporal distortion pertinent to the considered geometry of the electron column. The result is confirmed by a two-dimensional cylindrical particle-in-cell simulation.

  6. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications.

    PubMed

    Trelles, Mario A; Vélez, Mariano; Mordon, Serge

    2008-03-01

    Ablative fractional resurfacing shows promise for skin resurfacing and tightening and also to improve treatment of epidermal and dermal pigmentary disorders. This study aimed at determining any correlation between epidermal ablation and effects on the dermis when using an Er:YAG laser in ablative fractional resurfacing mode. Ten female subjects participated in the study, mean age 52 years, Skin phototypes: 1 Fitzpatrick type II; 8 type III and 1 type IV. The degree of wrinkles (Glogau scale II or III) was similar in all cases. The laser used was the Pixel Er:YAG system (Alma Lasertrade mark, Israel) which delivers the laser beam via a hand-piece equipped with a beam splitter to divide the 2,940 nm beam into various microbeams of 850 microm in diameter in an 11 mmx11 mm treatment area. Using a constant energy of 1,400 mJ/cm(2), on a test area of 4 cmx2 cm. Two, 4, 6, and 8 passes on the preauricular area of the face were evaluated immediately after treatment. In all cases, the handpiece was kept in the same position, and rotated slightly around its perpendicular axis between passes, then moved on to the next spot. Biopsies were performed and tissue samples were routinely processed and stained with hematoxylin and eosin (H&E). No patient reported any noticeable discomfort, even at 8 passes. The histological findings revealed that, independent of the degree of the wrinkles, more laser passes produced more ablative removal of the epidermis. Residual thermal damage (RTD) with 2 laser passes was not observed but with 4 and 6 passes increased thermal effects and vacuole formation in the epidermal cells were noticed. With 8 laser passes, total epidermal removal was seen together with frank RTD-related changes in the upper part of the papillary dermis. In this study, we have demonstrated that high density fractional Er:YAG laser energy in a single session with multiple passes targeted not only the skin surface with elimination of the epidermis, but could also achieve heat deposition in the upper dermis. When performing ablative fractional resurfacing with an Er:YAG laser, treatment of varying degrees of damage could be achieved by varying the number of passes. (c) 2008 Wiley-Liss, Inc.

  7. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  8. Non-destructive single-pass low-noise detection of ions in a beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Stefan; Institut für Kernchemie, Johannes Gutenberg–Universität Mainz, 55099 Mainz; Murböck, Tobias

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highlymore » charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.« less

  9. Comparison of Benchtop Fourier-Transform (FT) and Portable Grating Scanning Spectrometers for Determination of Total Soluble Solid Contents in Single Grape Berry (Vitis vinifera L.) and Calibration Transfer.

    PubMed

    Xiao, Hui; Sun, Ke; Sun, Ye; Wei, Kangli; Tu, Kang; Pan, Leiqing

    2017-11-22

    Near-infrared (NIR) spectroscopy was applied for the determination of total soluble solid contents (SSC) of single Ruby Seedless grape berries using both benchtop Fourier transform (VECTOR 22/N) and portable grating scanning (SupNIR-1500) spectrometers in this study. The results showed that the best SSC prediction was obtained by VECTOR 22/N in the range of 12,000 to 4000 cm -1 (833-2500 nm) for Ruby Seedless with determination coefficient of prediction (R p ²) of 0.918, root mean squares error of prediction (RMSEP) of 0.758% based on least squares support vector machine (LS-SVM). Calibration transfer was conducted on the same spectral range of two instruments (1000-1800 nm) based on the LS-SVM model. By conducting Kennard-Stone (KS) to divide sample sets, selecting the optimal number of standardization samples and applying Passing-Bablok regression to choose the optimal instrument as the master instrument, a modified calibration transfer method between two spectrometers was developed. When 45 samples were selected for the standardization set, the linear interpolation-piecewise direct standardization (linear interpolation-PDS) performed well for calibration transfer with R p ² of 0.857 and RMSEP of 1.099% in the spectral region of 1000-1800 nm. And it was proved that re-calculating the standardization samples into master model could improve the performance of calibration transfer in this study. This work indicated that NIR could be used as a rapid and non-destructive method for SSC prediction, and provided a feasibility to solve the transfer difficulty between totally different NIR spectrometers.

  10. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system

    NASA Astrophysics Data System (ADS)

    Hansen, A. K.; Christensen, M.; Noordegraaf, D.; Heist, P.; Papastathopoulos, E.; Loyo-Maldonado, V.; Jensen, O. B.; Stock, M. L.; Skovgaard, P. M. W.

    2017-02-01

    Semiconductor lasers are ideal sources for efficient electrical-to-optical power conversion and for many applications where their small size and potential for low cost are required to meet market demands. Yellow lasers find use in a variety of bio-related applications, such as photocoagulation, imaging, flow cytometry, and cancer treatment. However, direct generation of yellow light from semiconductors with sufficient beam quality and power has so far eluded researchers. Meanwhile, tapered semiconductor lasers at near-infrared wavelengths have recently become able to provide neardiffraction- limited, single frequency operation with output powers up to 8 W near 1120 nm. We present a 1.9 W single frequency laser system at 562 nm, based on single pass cascaded frequency doubling of such a tapered laser diode. The laser diode is a monolithic device consisting of two sections: a ridge waveguide with a distributed Bragg reflector, and a tapered amplifier. Using single-pass cascaded frequency doubling in two periodically poled lithium niobate crystals, 1.93 W of diffraction-limited light at 562 nm is generated from 5.8 W continuous-wave infrared light. When turned on from cold, the laser system reaches full power in just 60 seconds. An advantage of using a single pass configuration, rather than an external cavity configuration, is increased stability towards external perturbations. For example, stability to fluctuating case temperature over a 30 K temperature span has been demonstrated. The combination of high stability, compactness and watt-level power range means this technology is of great interest for a wide range of biological and biomedical applications.

  11. Intravascular Ultrasound in the Creation of Transhepatic Portosystemic Shunts Reduces Needle Passes, Radiation Dose, and Procedure Time: A Retrospective Study of a Single-Institution Experience.

    PubMed

    Kao, Steven D; Morshedi, Maud M; Narsinh, Kazim H; Kinney, Thomas B; Minocha, Jeet; Picel, Andrew C; Newton, Isabel; Rose, Steven C; Roberts, Anne C; Kuo, Alexander; Aryafar, Hamed

    2016-08-01

    To assess whether intravascular ultrasound (US) guidance impacts number of needle passes, contrast usage, radiation dose, and procedure time during creation of transjugular intrahepatic portosystemic shunts (TIPS). Intravascular US-guided creation of TIPS in 40 patients was retrospectively compared with conventional TIPS in 49 patients between February 2010 and November 2015 at a single tertiary care institution. Patient sex and age, etiology of liver disease (hepatitis C virus, alcohol abuse, nonalcoholic steatohepatitis), severity of liver disease (mean Model for End-Stage Liver Disease score), and indications for TIPS (variceal bleeding, refractory ascites, refractory hydrothorax) in conventional and intravascular US-guided cases were recorded. The two groups were well matched by sex, age, etiology of liver disease, Child-Pugh class, Model for End-Stage Liver Disease scores, and indication for TIPS (P range = .19-.94). Fewer intrahepatic needle passes were required in intravascular US-guided TIPS creation compared with conventional TIPS (2 passes vs 6 passes, P < .01). Less iodinated contrast material was used in intravascular US cases (57 mL vs 140 mL, P < .01). Radiation exposure, as measured by cumulative dose, dose area product, and fluoroscopy time, was reduced with intravascular US (174 mGy vs 981 mGy, P < .01; 3,793 μGy * m(2) vs 21,414 μGy * m(2), P < .01; 19 min vs 34 min, P < .01). Procedure time was shortened with intravascular US (86 min vs 125 min, P < .01). Intravascular US guidance resulted in fewer intrahepatic needle passes, decreased contrast medium usage, decreased radiation dosage, and shortened procedure time in TIPS creation. Copyright © 2016 SIR. All rights reserved.

  12. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  13. Study on the fabrication of low-pass metal powder filters for use at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hoon; Lee, Soon-Gul

    2016-08-01

    We fabricated compact low-pass stainless-steel powder filters for use in low-noise measurements at cryogenic temperatures and investigated their attenuation characteristics for different wire lengths, filter shapes, and preparation methods at frequencies up to 20 GHz. We used nominally 30- μm-sized SUS 304L powder and mixed it with Stycast 2850FT (Emerson and Cumming) with catalyst 23LV. A 0.1-mm insulated copper wire was wound on preformed powder-mixture spools in the shape of a right-circular cylinder, a flattened elliptic cylinder and a toroid, and the coils were encapsulated in metal tubes or boxes filled with the powder mixture. All the fabricated powder filters showed a large attenuation at high frequencies with a cut-off frequency near 1 GHz. However, the toroidal filter showed prominent ripples corresponding to resonance modes in the 0.5-m-long coil wire. A filter with a 2:1 powder/epoxy mixture mass ratio and a wire length of 1.53 m showed an attenuation of -93 dB at 4 GHz, and the attenuation was linearly proportional to the wire's length. As the powder-to-epoxy ratio was increased, the high-frequency attenuation increased. An equally-spaced single-layer coil structure was found to be more efficient in attenuation than a double-layer coil. The geometry of the metal filter's case affected the noise ripples, with the least noise being found for a circular tube.

  14. Aeroassisted orbit transfer vehicle trajectory analysis

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Suit, William T.

    1988-01-01

    The emphasis in this study was on the use of multiple pass trajectories for aerobraking. However, for comparison, single pass trajectories, trajectories using ballutes, and trajectories corrupted by atmospheric anomolies were run. A two-pass trajectory was chosen to determine the relation between sensitivity to errors and payload to orbit. Trajectories that used only aerodynamic forces for maneuvering could put more weight into the target orbits but were very sensitive to variations from the planned trajectors. Using some thrust control resulted in less payload to orbit, but greatly reduced the sensitivity to variations from nominal trajectories. When compared to the non-thrusting trajectories investigated, the judicious use of thrusting resulted in multiple pass trajectories that gave 97 percent of the payload to orbit with almost none of the sensitivity to variations from the nominal.

  15. Tough2{_}MP: A parallel version of TOUGH2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keni; Wu, Yu-Shu; Ding, Chris

    2003-04-09

    TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less

  16. Thin film absorption characterization by focus error thermal lensing

    NASA Astrophysics Data System (ADS)

    Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.

    2017-12-01

    A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.

  17. DIRBE Comet Trails

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.

    2015-01-01

    Re-examination of the COBE DIRBE data reveals the thermal emission of several comet dust trails.The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported.The known trails of 2P/Encke, and 73P/Schwassmann-Wachmann 3 are also seen. The dust trails have 12 and 25 microns surface brightnesses of <0.1 and <0.15 MJy/sr, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals one additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  18. Aerospike Engine Post-Test Diagnostic System Delivered to Rocketdyne

    NASA Technical Reports Server (NTRS)

    Meyer, Claudia M.

    2000-01-01

    The NASA Glenn Research Center at Lewis Field, in cooperation with Rocketdyne, has designed, developed, and implemented an automated Post-Test Diagnostic System (PTDS) for the X-33 linear aerospike engine. The PTDS was developed to reduce analysis time and to increase the accuracy and repeatability of rocket engine ground test fire and flight data analysis. This diagnostic system provides a fast, consistent, first-pass data analysis, thereby aiding engineers who are responsible for detecting and diagnosing engine anomalies from sensor data. It uses analytical methods modeled after the analysis strategies used by engineers. Glenn delivered the first version of PTDS in September of 1998 to support testing of the engine s power pack assembly. The system was used to analyze all 17 power pack tests and assisted Rocketdyne engineers in troubleshooting both data acquisition and test article anomalies. The engine version of PTDS, which was delivered in June of 1999, will support all single-engine, dual-engine, and flight firings of the aerospike engine.

  19. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  20. Liquid-phase membrane extraction of targeted pesticides from manufacturing wastewaters in a hollow fibre contactor with feed-stream recycle.

    PubMed

    Đorđević, Jelena; Vladisavljević, Goran T; Trtić-Petrović, Tatjana

    2017-01-01

    A two-phase membrane extraction in a hollow fibre contactor with feed-stream recycle was applied to remove selected pesticides (tebufenozide, linuron, imidacloprid, acetamiprid and dimethoate) from their mixed aqueous solutions. The contactor consisted of 50 polypropylene hollow fibres impregnated with 5% tri-n-octylphosphine oxide in di-n-hexyl ether. For low-polar pesticides with log P ≥ 2 (tebufenozide and linuron), the maximum removal efficiency increased linearly from 85% to 96% with increasing the feed flow rate. The maximum removal efficiencies of more polar pesticides were significantly higher under feed recirculation (86%) than in a continuous single-pass operation (30%). It was found from the Wilson's plot that the mass transfer resistance of the liquid membrane can be neglected for low-polar pesticides. The pesticide removals from commercial formulations were similar to those from pure pesticide solutions, indicating that built-in adjuvants did not affect the extraction process.

  1. Genetic modification of the relationship between phosphorylated tau and neurodegeneration.

    PubMed

    Hohman, Timothy J; Koran, Mary Ellen I; Thornton-Wells, Tricia A

    2014-11-01

    A subset of individuals present at autopsy with the pathologic features of Alzheimer's disease having never manifest the clinical symptoms. We sought to identify genetic factors that modify the relationship between phosphorylated tau (PTau) and dilation of the lateral inferior ventricles. We used data from 700 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). A genome-wide association study approach was used to identify PTau × single nucleotide polymorphism (SNP) interactions. Variance explained by these interactions was quantified using hierarchical linear regression. Five SNP × PTau interactions passed a Bonferroni correction, one of which (rs4728029, POT1, 2.6% of variance) was consistent across ADNI-1 and ADNI-2/GO subjects. This interaction also showed a trend-level association with memory performance and levels of interleukin-6 receptor. Our results suggest that rs4728029 modifies the relationship between PTau and both ventricular dilation and cognition, perhaps through an altered neuroinflammatory response. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  2. Theoretical Study of the Statistical Properties of Single- and Double-Pass M-Mode Er3+-Ti:LiNbO3 Straight Waveguide Amplifiers

    NASA Astrophysics Data System (ADS)

    Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.

    In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.

  3. Heat profiles of laser-irradiated nails

    NASA Astrophysics Data System (ADS)

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A.; Kendler, Michael; Simon, Jan C.; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  4. Heat profiles of laser-irradiated nails.

    PubMed

    Paasch, Uwe; Nenoff, Pietro; Seitz, Anna-Theresa; Wagner, Justinus A; Kendler, Michael; Simon, Jan C; Grunewald, Sonja

    2014-01-01

    Onychomycosis is a worldwide problem with no tendency for self-healing, and existing systemic treatments achieve disease-free nails in only 35 to 76% of cases. Recently, treatment of nail fungus with a near-infrared laser has been introduced. It is assumed that fungal eradication is mediated by local heat. To investigate if laser treatment has the potential to eradicate fungal hyphae and arthrospores, laser heat application and propagation needs to be studied in detail. This study aimed to measure nail temperatures using real-time videothermography during laser irradiation. Treatment was performed using 808- and 980-nm linear scanning diode lasers developed for hair removal, enabling contact-free homogeneous irradiation of a human nail plate in one pass. Average and peak temperatures increased pass by pass, while the laser beam moved along the nail plates. The achieved mean peak temperatures (808 nm: 74.1 to 112.4°C, 980 nm: 45.8 to 53.5°C), as well as the elevation of average temperatures (808 nm: 29.5 to 38.2°C, 980 nm: 27.1 to 32.6°C) were associated with pain that was equivalent to that of hair removal procedures and was not significantly different for various wavelengths. The linear scanning laser devices provide the benefits of contact-free homogeneous heating of the human nail while ensuring adequate temperature rises.

  5. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    NASA Technical Reports Server (NTRS)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3) varying the light source and spacing on contact time and illuminated catalyst area.

  6. Chemical Plume Detection with an Iterative Background Estimation Technique

    DTIC Science & Technology

    2016-05-17

    schemes because of contamination of background statistics by the plume. To mitigate the effects of plume contamination , a first pass of the detector...can be used to create a background mask. However, large diffuse plumes are typically not removed by a single pass. Instead, contamination can be...is estimated using plume-pixels, the covariance matrix is contaminated and detection performance may be significantly reduced. To avoid Further author

  7. A bounding estimate of neutron dose based on measured photon dose around single pass reactors at the Hanford site.

    PubMed

    Taulbee, Timothy D; Glover, Samuel E; Macievic, Gregory V; Hunacek, Mickey; Smith, Cheryl; DeBord, Gary W; Morris, Donald; Fix, Jack

    2010-07-01

    Neutron and photon radiation survey records have been used to evaluate and develop a neutron to photon (NP) ratio to reconstruct neutron doses to workers around Hanford's single pass reactors that operated from 1945 to 1972. A total of 5,773 paired neutron and photon measurements extracted from 57 boxes of survey records were used in the development of the NP ratio. The development of the NP ratio enables the use of the recorded dose from an individual's photon dosimeter badge to be used to estimate the unmonitored neutron dose. The Pearson rank correlation between the neutron and photon measurements was 0.71. The NP ratio best fit a lognormal distribution with a geometric mean (GM) of 0.8, a geometric standard deviation (GSD) of 2.95, and the upper 95 th % of this distribution was 4.75. An estimate of the neutron dose based on this NP ratio is considered bounding due to evidence that up to 70% of the total photon exposure received by workers around the single pass reactors occurs during shutdown maintenance and refueling activities when there is no significant neutron exposure. Thus when this NP ratio is applied to the total measured photon dose from an individual film badge dosimeter, the resulting neutron dose is considered bounded.

  8. Sensitive determination of mercury by a miniaturized spectrophotometer after in situ single-drop microextraction.

    PubMed

    Yang, Fangwen; Liu, Rui; Tan, Zhiqiang; Wen, Xiaodong; Zheng, Chengbin; Lv, Yi

    2010-11-15

    An in situ single-drop microextraction (SDME) method was developed for trace mercury determination by a miniaturized spectrophotometer, in which a simple and cheap light-emitting diode (LED) was employed as the light source, and a handheld charge coupled device (CCD) was served as the detector. A droplet of 0.006% dithizone-CCl(4) (m/v) was used as extraction phase and hanged on a rolled PTFE tube. LED light was adjusted carefully to pass through the centre of the droplet and the entrance slit of the CCD detector. The radiation intensities of 475 nm before and after SDME (I(0) and I(i)) were recorded for quantification. Under the optimum conditions, the system provided a linear range of 2-50 μg L(-1), with a correlation coefficient of 0.9983 and a limit of detection (3σ) of 0.2 μg L(-1). The enrichment factor was about 69. The present method showed the merits of high sensitivity, simplicity, rapidity, low reagent consumption and field analysis potential. Finally, this method was successfully applied for the determination of the total mercury in spiked tap water sample, spiked river water sample and certified reference material (GBW (E) 080393, simulated water). Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Base line estimation using single passes of laser data

    NASA Technical Reports Server (NTRS)

    Dunn, P. J.; Torrence, M.; Smith, D. E.; Kolenkiewicz, R.

    1979-01-01

    The laser data of the GEOS 3 satellite passes observed by four stations at Greenbelt (Maryland), Bermuda, Grand Turk Island (Bahamas) and Patrick Air Force Base (Florida), were employed to determine precise interstation base lines and relative heights in short orbital arcs of no more than 12-min duration. No more than five arcs of data are required to define the interstation base lines to 30-cm precision. Base lines running parallel to the orbital motion can be defined to submeter precision from a single short arc of data. Combining arcs of different orbital geometry in a common adjustment of two or more stations relative to the base station helps to compensate for weak base line definition in any single arc. This technique can be used for tracking such spacecraft as Lageos, a high-altitude retroreflector-carrying satellite designed for precise laser ranging studies.

  10. Thermal-hydraulic behavior of a mixed chevron single-pass plate-and-frame heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manglik, R.M.; Muley, A.

    1995-12-31

    Effective heat exchange is very critical for improving the process efficiency and operating economy of chemical and process plants. Here, experimental friction factor and heat transfer data for single-phase water flows in a plate-and-frame heat exchanger are presented. A mixed chevron plate arrangement with {beta} = 30{degree}/60{degree} in a single-pass U-type, counterflow configuration is employed. The friction factor and heat transfer data are for isothermal flow and cooling conditions, respectively, and the flow rates correspond to transition and turbulent flow regimes (300 < Re < 6,000 and 2.4 < Pr < 4.5). Based on these data, Nusselt number and frictionmore » factor correlations for fully developed turbulent flows (Re {ge} 1,000) are presented. The results highlight the effects of {beta} on the thermal-hydraulic performance, transition to turbulent flows, and the relative impact of using symmetric or mixed chevron plate arrangements.« less

  11. Modified current follower-based immittance function simulators

    NASA Astrophysics Data System (ADS)

    Alpaslan, Halil; Yuce, Erkan

    2017-12-01

    In this paper, four immittance function simulators consisting of a single modified current follower with single Z- terminal and a minimum number of passive components are proposed. The first proposed circuit can provide +L parallel with +R and the second proposed one can realise -L parallel with -R. The third proposed structure can provide +L series with +R and the fourth proposed one can realise -L series with -R. However, all the proposed immittance function simulators need a single resistive matching constraint. Parasitic impedance effects on all the proposed immittance function simulators are investigated. A second-order current-mode (CM) high-pass filter derived from the first proposed immittance function simulator is given as an application example. Also, a second-order CM low-pass filter derived from the third proposed immittance function simulator is given as an application example. A number of simulation results based on SPICE programme and an experimental test result are given to verify the theory.

  12. SU-E-T-83: A Study On Evaluating the Directional Dependency of 2D Seven 29 Ion Chamber Array Clinically with Different IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Aswathi, C.P.

    Purpose: To evaluate the directional dependency of 2D seven 29 ion chamber array clinically with different IMRT plans. Methods: 25 patients already treated with IMRT plans were selected for the study. Verification plans were created for each treatment plan in eclipse 10 treatment planning system using the AAA algorithm with the 2D array and the Octavius CT phantom. Verification plans were done 2 times for a single patient. First plan with real IMRT (plan-related approach) and second plan with zero degree gantry angle (field-related approach). Measurements were performed on a Varian Clinac-iX, linear accelerator equipped with a millennium 120 multileafmore » collimator. Fluence was measured for all the delivered plans and analyzed using the verisoft software. Comparison was done by selecting the fluence delivered in static gantry (zero degree gantry) versus IMRT with real gantry angles. Results: The gamma pass percentage is greater than 97 % for all IMRT delivered with zero gantry angle and between 95%–98% for real gantry angles. Dose difference between the TPS calculated and measured for IMRT delivered with zero gantry angle was found to be between (0.03 to 0.06Gy) and with real gantry angles between (0.02 to 0.05Gy). There is a significant difference between the gamma analysis between the zero degree and true angle with a significance of 0.002. Standard deviation of gamma pass percentage between the IMRT plans with zero gantry angle was 0.68 and for IMRT with true gantry angle was found to be 0.74. Conclusion: The gamma analysis for IMRT with zero degree gantry angles shows higher pass percentage than IMRT delivered with true gantry angles. Verification plans delivered with true gantry angles lower the verification accuracy when 2D array is used for measurement.« less

  13. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The QMA-based instrument will thus give way to substantial reductions of the mass of flight instruments.

  14. Broadband unidirectional ultrasound propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Dipen N.; Pantea, Cristian

    A passive, linear arrangement of a sonic crystal-based apparatus and method including a 1D sonic crystal, a nonlinear medium, and an acoustic low-pass filter, for permitting unidirectional broadband ultrasound propagation as a collimated beam for underwater, air or other fluid communication, are described. The signal to be transmitted is first used to modulate a high-frequency ultrasonic carrier wave which is directed into the sonic crystal side of the apparatus. The apparatus processes the modulated signal, whereby the original low-frequency signal exits the apparatus as a collimated beam on the side of the apparatus opposite the sonic crystal. The sonic crystalmore » provides a bandpass acoustic filter through which the modulated high-frequency ultrasonic signal passes, and the nonlinear medium demodulates the modulated signal and recovers the low-frequency sound beam. The low-pass filter removes remaining high-frequency components, and contributes to the unidirectional property of the apparatus.« less

  15. Low-pass filtering of noisy field Schlumberger sounding curves. Part II: Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, N.; Wadhwa, R.S.; Shrotri, B.S.

    1986-02-01

    The basic principles of the application of the linear system theory for smoothing noise-degraded d.c. geoelectrical sounding curves were recently established by Patella. A field Schlumberger sounding is presented to demonstrate first their application and validity. To achieve this purpose, firstly it is pointed out that the required smoothing or low-pass filtering can be considered as an intrinsic property of the transformation of original Schlumberger sounding curves into pole-pole (two-electrode) curves. Then the authors sketch a numerical algorithm to perform the transformation, opportunely modified from a known procedure for transforming dipole diagrams into Schlumberger ones. Finally they show a fieldmore » example with the double aim of demonstrating (i) the high quality of the low-pass filtering, and (ii) the reliability of the transformed pole-pole curve as far as quantitative interpretation is concerned.« less

  16. Non-linear wave-particle interactions and fast ion loss induced by multiple Alfvén eigenmodes in the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Kramer, Gerrit J.; Heidbrink, William W.

    2014-05-21

    A new non-linear feature has been observed in fast-ion loss from tokamak plasmas in the form of oscillations at the sum, difference and second harmonic frequencies of two independent Alfvén eigenmodes (AEs). Full orbit calculations and analytic theory indicate this non-linearity is due to coupling of fast-ion orbital response as it passes through each AE — a change in wave-particle phase k • r by one mode alters the force exerted by the next. Furthermore, the loss measurement is of barely confined, non-resonant particles, while similar non-linear interactions can occur between well-confined particles and multiple AEs leading to enhanced fast-ionmore » transport.« less

  17. Single-photon non-linear optics with a quantum dot in a waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-10-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  18. Hierarchy and Scope of Planning in Subject-Verb Agreement Production

    ERIC Educational Resources Information Center

    Gillespie, Maureen; Pearlmutter, Neal J.

    2011-01-01

    Two subject-verb agreement error elicitation studies tested the hierarchical feature-passing account of agreement computation in production and three timing-based alternatives: linear distance to the head noun, semantic integration, and a combined effect of both (a scope of planning account). In Experiment 1, participants completed subject noun…

  19. Construction of mathematical model for measuring material concentration by colorimetric method

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Gao, Lingceng; Yu, Kairong; Tan, Xianghua

    2018-06-01

    This paper use the method of multiple linear regression to discuss the data of C problem of mathematical modeling in 2017. First, we have established a regression model for the concentration of 5 substances. But only the regression model of the substance concentration of urea in milk can pass through the significance test. The regression model established by the second sets of data can pass the significance test. But this model exists serious multicollinearity. We have improved the model by principal component analysis. The improved model is used to control the system so that it is possible to measure the concentration of material by direct colorimetric method.

  20. Table-driven image transformation engine algorithm

    NASA Astrophysics Data System (ADS)

    Shichman, Marc

    1993-04-01

    A high speed image transformation engine (ITE) was designed and a prototype built for use in a generic electronic light table and image perspective transformation application code. The ITE takes any linear transformation, breaks the transformation into two passes and resamples the image appropriately for each pass. The system performance is achieved by driving the engine with a set of look up tables computed at start up time for the calculation of pixel output contributions. Anti-aliasing is done automatically in the image resampling process. Operations such as multiplications and trigonometric functions are minimized. This algorithm can be used for texture mapping, image perspective transformation, electronic light table, and virtual reality.

  1. Development of high repetition rate nitric oxide planar laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Jiang, Naibo

    This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.

  2. Audit Guidelines for 1989-90: Single Audit Act of 1984.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia.

    Single Audit Act of 1984 was passed to provide guidelines for organizationwide audits of federally funded programs. Explanatory notes for Educational Improvement Act (EIA) summer school accounting are given. Section 1 outlines audit requirements established for state and local governments that receive and administer federal assistance. An…

  3. Single Parent Families.

    ERIC Educational Resources Information Center

    Ryan, Patricia

    This booklet attempts to reassure single parents that they can raise healthy, happy children and provides some suggestions for parents' specific questions and concerns. The first section discusses the emotional stages children pass through when they lose a parent, ways to explain to children the loss of a parent, and ways to handle children's…

  4. [Effects of damage and post-radiation reparation of cornea epithelium cells chromosomal apparatus in mice following irradiation by protons with the energy of 25 MeV].

    PubMed

    2012-01-01

    Damage and post-radiation reparation processes were studied in cornea epithelium cells of mice irradiated by protons with the energy of 25 MeV and 60Co gamma-rays singly and in 2 fractions. Protons linear energy transfer (LET) was equal to 2.1 keV/microm, dose rate - 0.5 cGy/s. Animals were irradiated singly by 25 and 750 cGy and doubly (25 + 25; 50 + 50; 125 + 125; 250 + 250 cGy) with a 24-hr interval. Investigations were performed in 24, 72 and 120 hrs. after single and in 24 hrs. after double irradiation. Preparations were analyzed with the anaphase technique. 25 MeV protons were shown to cause more severe damages to the chromosomal apparatus in mammal cells including dramatic suppression of cell division and profuse formation of cells with aberrant mitoses as compared with gamma-induced damages. Exchange-type aberrations were more frequent. There was a reliable decrease of the aberrant mitosis rate in consequence of fractionated irradiation by 25 MeV protons and gamma-rays. On passing 24, 72 and 120 hours, coefficients of relative biological effectiveness (RBE) of 25 MeV protons were equal to 1.4 +/- 0.2; 1.3 +/- 0.1; 1.2 +/- 0.1 for the mitotic index and 1.5 +/- 0.1; 1.3 +/- 0.2; 1.1 +/- 0.1 for aberrant mitosis, respectively.

  5. UAVSAR Active Electronically-Scanned Array

    NASA Technical Reports Server (NTRS)

    Sadowy, Gregory; Brown, Kyle; Chamberlain, Neil; Figueroa, Harry; Fisher, Charlie; Grando, Maurio; Hamilton, Gary; Vorperian, Vatche; Zawadzki, Mark

    2010-01-01

    The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) L-band (1.2-1.3 GHz) repeat pass, interferometric synthetic aperture radar (InSAR) used for Earth science applications. Using complex radar images collected during separate passes on time scales of hours to years, changes in surface topography can be measured. The repeat-pass InSAR technique requires that the radar look angle be approximately the same on successive passes. Due to variations in aircraft attitude between passes, antenna beam steering is required to replicate the radar look angle. This paper describes an active, electronically steered array (AESA) that provides beam steering capability in the antenna azimuth plane. The array contains 24 transmit/receive modules generating 2800 W of radiated power and is capable of pulse-to-pulse beam steering and polarization agility. Designed for high reliability as well as serviceability, all array electronics are contained in single 178cm x 62cm x 12 cm air-cooled panel suitable for operation up 60,000 ft altitude.

  6. Overtaking collision effects in a cw double-pass proton linac

    DOE PAGES

    Tao, Yue; Qiang, Ji; Hwang, Kilean

    2017-12-22

    The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less

  7. Overtaking collision effects in a cw double-pass proton linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Yue; Qiang, Ji; Hwang, Kilean

    The recirculating superconducting proton linac has the advantage of reducing the number of cavities in the accelerator and the corresponding construction and operational costs. Beam dynamics simulations were done recently in a double-pass recirculating proton linac using a single proton beam bunch. For continuous wave (cw) operation, the high-energy proton bunch during the second pass through the linac will overtake and collide with the low-energy bunch during the first pass at a number of locations of the linac. These collisions might cause proton bunch emittance growth and beam quality degradation. Here, we study the collisional effects due to Coulomb space-chargemore » forces between the high-energy bunch and the low-energy bunch. Our results suggest that these effects on the proton beam quality would be small and might not cause significant emittance growth or beam blowup through the linac. A 10 mA, 500 MeV cw double-pass proton linac is feasible without using extra hardware for phase synchronization.« less

  8. Packaged FBG sensors for real-time stress monitoring on deep-water riser

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Yang, Dexing; Jiang, Yajun; Wang, Meirong; Zhai, Huailun; Bai, Yang

    2014-11-01

    The safety of under-water risers in drilling platform is of great significance. A packaged fiber Bragg grating (FBG) sensor for real-time stress monitoring is designed for the applications on oil drilling risers under 3000 meters deep water. A copper tube which is the main component of the sensor has a small hole along its axes and a groove at its each end. The bare FBG is passed through the small hole and fixed to its ends by epoxy resin. Then the copper tube is packaged by filling the groove with structural adhesive. In order to avoid that the outer water-pressure is applied on the epoxy resin through the structural adhesive, a gap between the two types of glues is left. The relationships between the stress of the riser and the tension, pressure, temperature of the single sensor are discussed, respectively. The measured tension sensitivity is 136.75 pm/KN while the minimum R-square value is 0.99997. The experimental results also show that there is a good linear response between water-pressure and the Bragg wavelength from 0 to 30MPa, and the sensor can even survive under the pressure more than 30MPa. In addition, the Bragg wavelength shifts linearly with the increasing temperature from 0 to 40°C. So, the pressure and temperature can be easily compensated if another sensor without tension is used.

  9. A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Klauer, Christian; Gaffuri, Marina; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2014-04-01

    This work aimed at designing a myocontrolled arm neuroprosthesis for both assistive and rehabilitative purposes. The performance of an adaptive linear prediction filter and a high-pass filter to estimate the volitional EMG was evaluated on healthy subjects (N=10) and neurological patients (N=8) during dynamic hybrid biceps contractions. A significant effect of filter (p=0.017 for healthy; p<0.001 for patients) was obtained. The post hoc analysis revealed that for both groups only the adaptive filter was able to reliably detect the presence of a small volitional contribution. An on/off non-linear controller integrated with an exoskeleton for weight support was developed. The controller allowed the patient to activate/deactivate the stimulation intensity based on the residual EMG estimated by the adaptive filter. Two healthy subjects and 3 people with Spinal Cord Injury were asked to flex the elbow while tracking a trapezoidal target with and without myocontrolled-NMES support. Both healthy subjects and patients easily understood how to use the controller in a single session. Two patients reduced their tracking error by more than 60% with NMES support, while the last patient obtained a tracking error always comparable to the healthy subjects performance (<4°). This study proposes a reliable and feasible solution to combine NMES with voluntary effort. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Impact of one-to-one tutoring on fundamentals of laparoscopic surgery (FLS) passing rate in a single center experience outside the United States: a randomized controlled trial.

    PubMed

    Gheza, Federico; Raimondi, Paolo; Solaini, Leonardo; Coccolini, Federico; Baiocchi, Gian Luca; Portolani, Nazario; Tiberio, Guido Alberto Massimo

    2018-04-11

    Outside the US, FLS certification is not required and its teaching methods are not well standardized. Even if the FLS was designed as "stand alone" training system, most of Academic Institution offer support to residents during training. We present the first systematic application of FLS in Italy. Our aim was to evaluate the role of mentoring/coaching on FLS training in terms of the passing rate and global performance in the search for resource optimization. Sixty residents in general surgery, obstetrics & gynecology, and urology were selected to be enrolled in a randomized controlled trial, practicing FLS with the goal of passing a simulated final exam. The control group practiced exclusively with video material from SAGES, whereas the interventional group was supported by a mentor. Forty-six subjects met the requirements and completed the trial. For the other 14 subjects no results are available for comparison. One subject for each group failed the exam, resulting in a passing rate of 95.7%, with no obvious differences between groups. Subgroup analysis did not reveal any difference between the groups for FLS tasks. We confirm that methods other than video instruction and deliberate FLS practice are not essential to pass the final exam. Based on these results, we suggest the introduction of the FLS system even where a trained tutor is not available. This trial is the first single institution application of the FLS in Italy and one of the few experiences outside the US. Trial Number: NCT02486575 ( https://www.clinicaltrials.gov ).

  11. Transfer of molybdenum disulfide to various metals

    NASA Technical Reports Server (NTRS)

    Barton, G. C.; Pepper, S. V.

    1977-01-01

    Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.

  12. Plasmoids as magnetic flux ropes. [in geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Moldwin, Mark B.; Hughes, W. J.

    1991-01-01

    A magnetic flux rope model is developed and used to determine whether the principal axis analysis (PAA) of magnetometer signatures from a single satellite pass is sufficient to obtain the magnetic topology of plasmoids. The model is also used to determine if plasmoid observations are best explained by the flux rope, closed loop, or large-amplitude wave picture. It was found that the principal axis directions is highly dependent on the satellite trajectory through the structure and, therefore, the PAA of magnetometer data from a single satellite pass is insufficient to differentiate between magnetic closed loop and flux rope models. Results also indicate that the flux rope model of plasmoid formation is well suited to unify the observations of various magnetic structures observed by ISEE 3.

  13. Sensitive detection of methane at 3.3 μm using an integrating sphere and interband cascade laser

    NASA Astrophysics Data System (ADS)

    Davis, N. M.; Hodgkinson, J.; Francis, D.; Tatam, R. P.

    2016-04-01

    Detection of methane at 3.3μm using a DFB Interband Cascade Laser and gold coated integrating sphere is performed. A 10cm diameter sphere with effective path length of 54.5cm was adapted for use as a gas cell. A comparison between this system and one using a 25cm path length single-pass gas cell is made using direct TDLS and methane concentrations between 0 and 1000 ppm. Initial investigations suggest a limit of detection of 1.0ppm for the integrating sphere and 2.2ppm for the single pass gas cell. The system has potential applications in challenging or industrial environments subject to high levels of vibration.

  14. Influences of Friction Stir Welding Parameters on Microstructural and Mechanical Properties of AA5456 (AlMg5) at Different Lap Joint Thicknesses

    NASA Astrophysics Data System (ADS)

    Pishevar, M. R.; Mohandesi, J. Aghazadeh; Omidvar, H.; Safarkhanian, M. A.

    2015-10-01

    Friction stir welding is suitable for joining series 5000 alloys because no fusion welding problems arise for the alloys in this process. The present study examined the effects of double-pass welding and tool rotational and travel speeds for the second-pass welding on the mechanical and microstructural properties of friction stir lap welding of AA5456 (AlMg5)-H321 (5 mm thickness) and AA5456 (AlMg5)-O (2.5 mm thickness). The first pass of all specimens was performed at a rotational speed of 650 rpm and a travel speed of 50 mm/min. The second pass was performed at rotational speeds of 250, 450, and 650 rpm and travel speeds of 25, 50, and 75 mm/min. The results showed that the second pass changed the grain sizes in the center of the nugget zone compared with the first pass. It was observed that the size of the hooking defect of the double-pass-welded specimens was higher than that for the single-pass-welded specimen. The size of the hooking defect was found to be a function of the rotational and travel speeds. The optimal joint tensile shear properties were achieved at a rotational speed of 250 rpm and travel a speed of 75 mm/min.

  15. Determining the Optimal Number of Core Needle Biopsy Passes for Molecular Diagnostics.

    PubMed

    Hoang, Nam S; Ge, Benjamin H; Pan, Lorraine Y; Ozawa, Michael G; Kong, Christina S; Louie, John D; Shah, Rajesh P

    2018-03-01

    The number of core biopsy passes required for adequate next-generation sequencing is impacted by needle cut, needle gauge, and the type of tissue involved. This study evaluates diagnostic adequacy of core needle lung biopsies based on number of passes and provides guidelines for other tissues based on simulated biopsies in ex vivo porcine organ tissues. The rate of diagnostic adequacy for pathology and molecular testing from lung biopsy procedures was measured for eight operators pre-implementation (September 2012-October 2013) and post-implementation (December 2013-April 2014) of a standard protocol using 20-gauge side-cut needles for ten core biopsy passes at a single academic hospital. Biopsy pass volume was then estimated in ex vivo porcine muscle, liver, and kidney using side-cut devices at 16, 18, and 20 gauge and end-cut devices at 16 and 18 gauge to estimate minimum number of passes required for adequate molecular testing. Molecular diagnostic adequacy increased from 69% (pre-implementation period) to 92% (post-implementation period) (p < 0.001) for lung biopsies. In porcine models, both 16-gauge end-cut and side-cut devices require one pass to reach the validated volume threshold to ensure 99% adequacy for molecular characterization, while 18- and 20-gauge devices require 2-5 passes depending on needle cut and tissue type. Use of 20-gauge side-cut core biopsy needles requires a significant number of passes to ensure diagnostic adequacy for molecular testing across all tissue types. To ensure diagnostic adequacy for molecular testing, 16- and 18-gauge needles require markedly fewer passes.

  16. Gender identification from high-pass filtered vowel segments: the use of high-frequency energy.

    PubMed

    Donai, Jeremy J; Lass, Norman J

    2015-10-01

    The purpose of this study was to examine the use of high-frequency information for making gender identity judgments from high-pass filtered vowel segments produced by adult speakers. Specifically, the effect of removing lower-frequency spectral detail (i.e., F3 and below) from vowel segments via high-pass filtering was evaluated. Thirty listeners (ages 18-35) with normal hearing participated in the experiment. A within-subjects design was used to measure gender identification for six 250-ms vowel segments (/æ/, /ɪ /, /ɝ/, /ʌ/, /ɔ/, and /u/), produced by ten male and ten female speakers. The results of this experiment demonstrated that despite the removal of low-frequency spectral detail, the listeners were accurate in identifying speaker gender from the vowel segments, and did so with performance significantly above chance. The removal of low-frequency spectral detail reduced gender identification by approximately 16 % relative to unfiltered vowel segments. Classification results using linear discriminant function analyses followed the perceptual data, using spectral and temporal representations derived from the high-pass filtered segments. Cumulatively, these findings indicate that normal-hearing listeners are able to make accurate perceptual judgments regarding speaker gender from vowel segments with low-frequency spectral detail removed via high-pass filtering. Therefore, it is reasonable to suggest the presence of perceptual cues related to gender identity in the high-frequency region of naturally produced vowel signals. Implications of these findings and possible mechanisms for performing the gender identification task from high-pass filtered stimuli are discussed.

  17. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  18. ABM Drag_Pass Report Generator

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.

  19. Float zone growth and spectroscopic properties of Yb:CaYAlO4 single crystal for ultra-short pulse lasers

    NASA Astrophysics Data System (ADS)

    Narita, Moe; Higuchi, Mikio; Ogawa, Takayo; Wada, Satoshi; Miura, Akira; Tadanaga, Kiyoharu

    2018-06-01

    Yb:CaYAlO4 single crystals were grown by the floating zone method and their spectral properties were investigated. Void formation was effectively suppressed by using a feed rod of Y-rich composition with the aid of a double zone-pass technique. For the oxygen excess composition of Yb:Ca0.9925Y1.0075AlO4.00375, a void-free crystal was obtained by performing only the double zone-pass. On the other hand, for cation-deficient type of Yb:Ca0.9925Y1.005AlO4, void-free crystal could not be obtained by performing the double zone-pass. The void formation is attributable to the constitutional supercooling caused by segregation of main constituents of Y and Ca, and the congruent composition may exist in the Y-rich region with existence of interstitial excess oxide ions. The absorption cross section for σ-polarization was slightly larger than that for π-polarization, which is reasonable on the basis of the crystal structure of CaYAlO4.

  20. Head impact exposure measured in a single youth football team during practice drills.

    PubMed

    Kelley, Mireille E; Kane, Joeline M; Espeland, Mark A; Miller, Logan E; Powers, Alexander K; Stitzel, Joel D; Urban, Jillian E

    2017-11-01

    OBJECTIVE This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills. METHODS On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices. Video was recorded for all practices, and video analysis was performed to verify head impacts and assign each head impact to a specific drill. Eleven drills were identified: dummy/sled tackling, install, special teams, Oklahoma, one-on-one, open-field tackling, passing, position skill work, multiplayer tackle, scrimmage, and tackling drill stations. Generalized linear models were fitted to log-transformed data, and Wald tests were used to assess differences in head accelerations and impact rates. RESULTS A total of 2125 impacts were measured during 30 contact practices in 9 athletes (mean age 11.1 ± 0.6 years, mean mass 44.9 ± 4.1 kg). Open-field tackling had the highest median and 95th percentile linear accelerations (24.7 g and 97.8 g, respectively) and resulted in significantly higher mean head accelerations than several other drills. The multiplayer tackle drill resulted in the highest head impact frequency, with an average of 0.59 impacts per minute per athlete, but the lowest 95th percentile linear accelerations of all drills. The front of the head was the most common impact location for all drills except dummy/sled tackling. CONCLUSIONS Head impact exposure varies significantly in youth football practice drills, with several drills exposing athletes to high-magnitude and/or high-frequency head impacts. These data suggest that further study of practice drills is an important step in developing evidence-based recommendations for modifying or eliminating certain high-intensity drills to reduce head impact exposure and injury risk for all levels of play.

  1. Increasing capacity of baseband digital data communication networks

    DOEpatents

    Frankel, Robert S.; Herman, Alexander

    1985-01-01

    This invention provides broadband network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.

  2. Increasing capacity of baseband digital data communication networks

    DOEpatents

    Frankel, R.S.; Herman, A.

    This invention provides broadbank network capabilities for baseband digital collision detection transceiver equipment for communication between a plurality of data stations by affording simultaneous transmission of multiple channels over a broadband pass transmission link such as a coaxial cable. Thus, a fundamental carrier wave is transmitted on said link, received at local data stations and used to detect signals on different baseband channels for reception. For transmission the carrier wave typically is used for segregating a plurality of at least two transmission channels into typically single sideband upper and lower pass bands of baseband bandwidth capability adequately separated with guard bands to permit simple separation for receiving by means of pass band filters, etc.

  3. Negative Differential Conductance in Polyporphyrin Oligomers with Nonlinear Backbones.

    PubMed

    Kuang, Guowen; Chen, Shi Zhang; Yan, Linghao; Chen, Ke Qiu; Shang, Xuesong; Liu, Pei Nian; Lin, Nian

    2018-01-17

    We study negative differential conductance (NDC) effects in polyporphyrin oligomers with nonlinear backbones. Using a low-temperature scanning tunneling microscope, we selectively controlled the charge transport path in single oligomer wires. We observed robust NDC when charge passed through a T-shape junction, bistable NDC when charge passed through a 90° kink and no NDC when charge passed through a 120° kink. Aided by density functional theory with nonequilibrium Green's functions simulations, we attributed this backbone-dependent NDC to bias-modulated hybridization of the electrode states with the resonant transport molecular orbital. We argue this mechanism is generic in molecular systems, which opens a new route of designing molecular NDC devices.

  4. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    PubMed

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  5. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    PubMed Central

    He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225

  6. Long-term Comparison of a Large Spot Vacuum Assisted Handpiece vs the Small Spot Size Traditional Handpiece of the 800 nm Diode Laser.

    PubMed

    Youssef, Nour J; Rizk, Alain G; Ibrahimi, Omar A; Tannous, Zeina S

    2017-09-01

    BACKGROUND The 800 nm long-pulsed diode laser machine is safe and effective for permanent hair reduction. Traditionally, most long-pulsed diode lasers used for hair removal had a relatively small spot size. Recently, a long-pulsed diode laser with a large spot size and vacuum assisted suction handpiece was introduced. The treatment parameters of each type of handpiece differ. Short and long-term clinical efficacy, treatment associated pain, and patient satisfaction are important factors to be considered. This study aims to conduct a direct head to head comparison of both handpieces of the 800nm long-pulsed diode laser by evaluating long term hair reduction, treatment associated pain and patient satisfaction. Thirteen subjects were enrolled in this prospective, self-controlled, single-center study of axillary laser hair removal. The study involved 4 treatments using a long pulsed diode laser with a large spot size HS handpiece (single pass), HS handpiece (double pass), and a small spot size ET handpiece according to a randomized choice. The treatment sessions were done at 4-8 week intervals with follow up visits taken at 6 and 12 months after the last treatment session. Hair clearance and thickness analysis were assessed using macro hair count photographs taken at baseline visit, at each treatment session visit and at follow up visits. Other factors including pain, treatment duration, and patients' preference were secondary study endpoints. At 6 months follow up visits after receiving four laser treatments, there was statistically significant hair clearance in the three treatment arms with 66.1 % mean percentage hair reduction with the ET handpiece, 43.6% with the HSS (single pass) and 64.1 % with the HSD (double). However, at one year follow up, the results significantly varied from the 6 months follow up. The mean percentage hair reduction was 57.8% with the ET handpiece treated axillas (n=9), 16.5% with the HSS (single pass) handpiece treated axillas (n=7), and 46.9% with the HSD (double pass) handpiece treated axillas (n=6). Thus, at one year follow up, there was a significant hair reduction that was similar in both the ET and HSD treated axillae (57.8% and 46.9 %), but only minimal hair reduction (16.5%)was observed in the HSS treated axillae. This is the first study that compared the long-term efficacy of the ET and HS handpieces after four treatment sessions with up to 12 months follow up after the last treatment session. It is also the first study that provided head to head comparison between HS (double pass), HS (single pass), and ET handpiece taking into consideration the end hair reduction result, the time consumed, the pain score experienced, and the overall patient satisfaction. HSD had better hair clearance and patient satisfaction when compared to ET and HSS. The long term follow up results showed that ET was superior to HSS (P less than .05), but was not superior to HSD (P greater than 0.05). However, HSD treated patients had lower pain scores with HSD than with ET. We conclude that ET handpiece is almost as efficacious as HSD handpiece, and the desired end results could be achieved with HDD with better patient satisfaction, less treatment duration and less pain.

    J Drugs Dermatol. 2017;16(9):893-898.

    .

  7. Competition After Windrowing or Single-Roller Chopping For Site Preparation in the Southern Piedmont

    Treesearch

    James H. Miller

    1980-01-01

    For two years, post-treatment regrowth of herbaceous and woody species was sampled on two adjoining areas in the southern Piedmont where they had been either sheared and piled into windrows or chopped by a single pass of a single-drum roller-chopper. Windrowing yielded 55% less total standing crop of woody trees, shrubs, and vines after 2 years than chopping did. But...

  8. Enzymatic Removal of Bilirubin from Blood: A Potential Treatment for Neonatal Jaundice

    NASA Astrophysics Data System (ADS)

    Lavin, Arthur; Sung, Cynthia; Klibanov, Alexander M.; Langer, Robert

    1985-11-01

    Current treatments for severe jaundice can result in major complications. Neonatal jaundice is caused by excessive accumulation of bilirubin in the blood. A small blood filter containing immobilized bilirubin oxidase was developed to reduce serum bilirubin concentrations. When human or rat blood was passed through the enzyme filter, more than 90 percent of the bilirubin was degraded in a single pass. This procedure may have important applications in the clinical treatment of neonatal jaundice.

  9. History of Satellite Orbit Determination at NSWCDD

    DTIC Science & Technology

    2018-01-31

    run . Segment 40 did pass editing and its use was optional after Segment 20. Segment 30 needed to be run before Segment 80. Segment 70 was run as...control cards required to run the program. These included a CHARGE card related to usage charges and various REQUEST, ATTACH, and CATALOG cards...each) could be done in a single run after the long-arc solution had converged. These short arcs used the pass matrices from the long-arc run in their

  10. Impact of Texas high school science teacher credentials on student performance in high school science

    NASA Astrophysics Data System (ADS)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  11. The Significance of Experiences of Nature for People with Parkinson’s Disease, with Special Focus on Freezing of Gait—The Necessity for a Biophilic Environment. A Multi-Method Single Subject Study

    PubMed Central

    Ottosson, Johan; Lavesson, Lillian; Pinzke, Stefan; Grahn, Patrik

    2015-01-01

    Freezing of Gait (FOG) is a common condition in people with Parkinson’s disease (PD). FOG entails suddenly experiencing difficulties moving or feeling that one’s feet are as glued to the ground. It is triggered, e.g., when passing through doorways. Earlier studies suggest that being in natural environments affects FOG in a positive way. Five subjects were recruited to serve as five single subject cases. We used interviews, observations, questionnaires and collected gait pattern data with aid of an accelerometer. A special designed outdoor setting was used, where we investigated whether passing through hedge openings with or without built elements triggered FOG. We found that no one experienced a FOG reaction when they passed through hedge openings without built elements. However, FOG was triggered when a doorframe was inserted into a hedge opening, and/or when peripheral vision was blocked. We interpret the results such that the doorframe triggered a phobic reflex, causing a freezing reaction. Passing through hedge openings does not trigger FOG, which we interpret as a biophilic reaction. Our results, if repeated in future studies, may have significance to everyday lives of PD patients, who could get a simpler life by consciously prioritizing stays in natural surroundings. PMID:26132480

  12. Design of dual ring wavelength filters for WDM applications

    NASA Astrophysics Data System (ADS)

    Sathyadevaki, R.; Shanmuga sundar, D.; Sivanantha Raja, A.

    2016-12-01

    Wavelength division multiplexing plays a prime role in an optical communication due to its advantages such as easy network expansion, longer span lengths etc. In this work, photonic crystal based filters with the dual rings are proposed which act as band pass filters (BPF) and channel drop filter (CDF) that has found a massive applications in C and L-bands used for wavelength selection and noise filtering at erbium doped fiber amplifiers and dense wavelength division multiplexing operation. These filters are formulated on the square lattice with crystal rods of silicon material of refractive index 3.4 which are perforated on an air of refractive index 1. Dual ring double filters (band pass filter and channel drop filter) on single layout possess passing and dropping band of wavelengths in two distinct arrangements with entire band quality factors of 92.09523 & 505.263 and 124.85019 & 456.8633 for the pass and drop filters of initial setup and amended setup respectively. These filters have the high-quality factor with broad and narrow bandwidths of 16.8 nm & 3.04 nm and 12.85 nm & 3.3927 nm. Transmission spectra and band gap of the desired filters is analyzed using Optiwave software suite. Two dual ring filters incorporated on a single layout comprises the size of 15×11 μm which can also be used in the integrated photonic chips for the ultra-compact unification of devices.

  13. White noise analysis of Phycomyces light growth response system. I. Normal intensity range.

    PubMed Central

    Lipson, E D

    1975-01-01

    The Wiener-Lee-Schetzen method for the identification of a nonlinear system through white gaussian noise stimulation was applied to the transient light growth response of the sporangiophore of Phycomyces. In order to cover a moderate dynamic range of light intensity I, the imput variable was defined to be log I. The experiments were performed in the normal range of light intensity, centered about I0 = 10(-6) W/cm2. The kernels of the Wierner functionals were computed up to second order. Within the range of a few decades the system is reasonably linear with log I. The main nonlinear feature of the second-order kernel corresponds to the property of rectification. Power spectral analysis reveals that the slow dynamics of the system are of at least fifth order. The system can be represented approximately by a linear transfer function, including a first-order high-pass (adaptation) filter with a 4 min time constant and an underdamped fourth-order low-pass filter. Accordingly a linear electronic circuit was constructed to simulate the small scale response characteristics. In terms of the adaptation model of Delbrück and Reichardt (1956, in Cellular Mechanisms in Differentiation and Growth, Princeton University Press), kernels were deduced for the dynamic dependence of the growth velocity (output) on the "subjective intensity", a presumed internal variable. Finally the linear electronic simulator above was generalized to accommodate the large scale nonlinearity of the adaptation model and to serve as a tool for deeper test of the model. PMID:1203444

  14. Gasification of carbonaceous solids

    DOEpatents

    Coates, Ralph L.

    1976-10-26

    A process and apparatus for converting coal and other carbonaceous solids to an intermediate heating value fuel gas or to a synthesis gas. A stream of entrained pulverized coal is fed into the combustion stage of a three-stage gasifier along with a mixture of oxygen and steam at selected pressure and temperature. The products of the combustion stage pass into the second or quench stage where they are partially cooled and further reacted with water and/or steam. Ash is solidified into small particles and the formation of soot is suppressed by water/steam injections in the quench stage. The design of the quench stage prevents slag from solidifying on the walls. The products from the quench stage pass directly into a heat recovery stage where the products pass through the tube, or tubes, of a single-pass, shell and tube heat exchanger and steam is generated on the shell side and utilized for steam feed requirements of the process.

  15. Improving liquid chromatography-tandem mass spectrometry determinations by modifying noise frequency spectrum between two consecutive wavelet-based low-pass filtering procedures.

    PubMed

    Chen, Hsiao-Ping; Liao, Hui-Ju; Huang, Chih-Min; Wang, Shau-Chun; Yu, Sung-Nien

    2010-04-23

    This paper employs one chemometric technique to modify the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS/MS) chromatogram between two consecutive wavelet-based low-pass filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. Although similar techniques of using other sets of low-pass procedures such as matched filters have been published, the procedures developed in this work are able to avoid peak broadening disadvantages inherent in matched filters. In addition, unlike Fourier transform-based low-pass filters, wavelet-based filters efficiently reject noises in the chromatograms directly in the time domain without distorting the original signals. In this work, the low-pass filtering procedures sequentially convolve the original chromatograms against each set of low pass filters to result in approximation coefficients, representing the low-frequency wavelets, of the first five resolution levels. The tedious trials of setting threshold values to properly shrink each wavelet are therefore no longer required. This noise modification technique is to multiply one wavelet-based low-pass filtered LC-MS/MS chromatogram with another artificial chromatogram added with thermal noises prior to the other wavelet-based low-pass filter. Because low-pass filter cannot eliminate frequency components below its cut-off frequency, more efficient peak S/N ratio improvement cannot be accomplished using consecutive low-pass filter procedures to process LC-MS/MS chromatograms. In contrast, when the low-pass filtered LC-MS/MS chromatogram is conditioned with the multiplication alteration prior to the other low-pass filter, much better ratio improvement is achieved. The noise frequency spectrum of low-pass filtered chromatogram, which originally contains frequency components below the filter cut-off frequency, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the high frequency regimes, the other low-pass filter is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS/MS chromatograms, of which typically less than 6-fold peak S/N ratio improvement achieved with two consecutive wavelet-based low-pass filters remains the same S/N ratio improvement using one-step wavelet-based low-pass filter, are improved to accomplish much better ratio enhancement 25-folds to 40-folds typically when the noise frequency spectrum is modified between two low-pass filters. The linear standard curves using the filtered LC-MS/MS signals are validated. The filtered LC-MS/MS signals are also reproducible. The more accurate determinations of very low concentration samples (S/N ratio about 7-9) are obtained using the filtered signals than the determinations using the original signals. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Comparative bioavailability of rifampicin and isoniazid in fixed-dose combinations and single-drug formulations.

    PubMed

    Hao, L-H; Guo, S-C; Liu, C-C; Zhu, H; Wang, B; Fu, L; Chen, M-T; Zhou, L; Chi, J-Y; Yang, W; Nie, W-J; Lu, Y

    2014-12-01

    The bioavailability of rifampicin (RMP) decreases by ∼30% on interaction with isoniazid (INH) in stomach acid conditions, which can result in the development of drug resistance and treatment failure. To compare the bioavailability in healthy volunteers of five anti-tuberculosis fixed-drug combinations (FDCs) used in China (formulations A-E) containing RMP and INH against single-drug formulations taken as reference. Two- or three-period, two- or three-sequence crossover study of drugs. Only RMP formulation E passed the bioequivalence criteria, with 90% confidence intervals for the log-transformed ratios of AUC₀₋₂₄, AUC₀₋∞, and Cmax of respectively 89.9-103.7, 89.6-102.2 and 87.7-107.9. For INH, formulations A, B, C and D passed the bioequivalence test, but not product E, where the 90%CIs of the log-transformed ratios of AUC₀₋₂₄, AUC₀₋∞, and Cmax were respectively 85.2-100.7, 85.2-100.7 and 73.8-100.9. According to the results of the bioequivalence analysis carried out in this study, RMP formulations A, B, C and D were not within the acceptable range and only formulation E passed the bioequivalence criteria of 80-125%. In comparison, four-test INH formulations (A, B, C and D) were bioequivalent to the corresponding single-drug formulation, while product E failed in the bioequivalence criteria.

  17. Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.

    PubMed

    Nobukawa, Teruyoshi; Nomura, Takanori

    2016-04-01

    A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.

  18. Analysis of the learning curve for pre-cut corneal specimens in preparation for lamellar transplantation: a prospective, single-centre, consecutive case series prepared at the Lions New South Wales Eye Bank.

    PubMed

    Martin, Aifric Isabel; Devasahayam, Rajnesh; Hodge, Christopher; Cooper, Simon; Sutton, Gerard L

    2017-09-01

    This study is the first paper to establish a learning curve by a single technician. Preparation of pre-cut corneal endothelial grafts commenced at Lions New South Wales Eye Bank in December 2014. The primary objective of this study was to review the safety and reliability of the preparation method during the first year of production. This is a hospital-based, prospective case series. There were 234 consecutive donor corneal lenticules. Donor lenticules were prepared by a single operator using a linear cutting microkeratome. Immediately prior to cutting, central corneal thickness values were recorded. Measurements of the corneal bed were taken immediately following lenticule preparation. Outcomes were separated by blade sizes, and intended thickness was compared to actual thickness for each setting. Early specimens were compared to later ones to assess for a learning curve within the technique. The main parameter measured is the mean difference from intended lamellar cut thickness. The mean final cut thickness was 122.36 ± 20.35 μm, and the mean difference from intended cut was 30.17 ± 37.45 μm. No significant difference was found between results achieved with early specimens versus those achieved with later specimens (P = 0.425). Thin, reproducible endothelial grafts can routinely be produced by trained technicians at their respective eye banks without significant concerns for an extended learning curve. This service can reduce perioperative surgical complexity, required surgical paraphernalia and theatre times. The consistent preparation of single-pass, ultrathin pre-cut corneas may have additional advantages for surgeons seeking to introduce lamellar techniques. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  19. Comparison of steady and unsteady secondary flows in a turbine stator cascade

    NASA Technical Reports Server (NTRS)

    Hebert, Gregory J.; Tiederman, William G.

    1989-01-01

    The effect of periodic rotor wakes on the secondary flow structure in a turbine stator cascade was investigated. A mechanism simulated the wakes shed from rotor blades by passing cylindrical rods across the inlet to a linear cascade installed in a recirculating water flow loop. Velocity measurements showed a passage vortex, similar to that seen in steady flow, during the time associated with undisturbed fluid. However, as the rotor wake passed through the blade row, a large crossflow toward the suction surface was observed in the midspan region. This caused the development of two large areas of circulation between the midspan and endwall regions, significantly distorting and weakening the passage vortices.

  20. Linear variable narrow bandpass optical filters in the far infrared (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rahmlow, Thomas D.

    2017-06-01

    We are currently developing linear variable filters (LVF) with very high wavelength gradients. In the visible, these filters have a wavelength gradient of 50 to 100 nm/mm. In the infrared, the wavelength gradient covers the range of 500 to 900 microns/mm. Filter designs include band pass, long pass and ulta-high performance anti-reflection coatings. The active area of the filters is on the order of 5 to 30 mm along the wavelength gradient and up to 30 mm in the orthogonal, constant wavelength direction. Variation in performance along the constant direction is less than 1%. Repeatable performance from filter to filter, absolute placement of the filter relative to a substrate fiducial and, high in-band transmission across the full spectral band is demonstrated. Applications include order sorting filters, direct replacement of the spectrometer and hyper-spectral imaging. Off-band rejection with an optical density of greater than 3 allows use of the filter as an order sorting filter. The linear variable order sorting filters replaces other filter types such as block filters. The disadvantage of block filters is the loss of pixels due to the transition between filter blocks. The LVF is a continuous gradient without a discrete transition between filter wavelength regions. If the LVF is designed as a narrow band pass filter, it can be used in place of a spectrometer thus reducing overall sensor weight and cost while improving the robustness of the sensor. By controlling the orthogonal performance (smile) the LVF can be sized to the dimensions of the detector. When imaging on to a 2 dimensional array and operating the sensor in a push broom configuration, the LVF spectrometer performs as a hyper-spectral imager. This paper presents performance of LVF fabricated in the far infrared on substrates sized to available detectors. The impact of spot size, F-number and filter characterization are presented. Results are also compared to extended visible LVF filters.

  1. Compressive Coded-Aperture Multimodal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Rueda-Chacon, Hoover F.

    Multimodal imaging refers to the framework of capturing images that span different physical domains such as space, spectrum, depth, time, polarization, and others. For instance, spectral images are modeled as 3D cubes with two spatial and one spectral coordinate. Three-dimensional cubes spanning just the space domain, are referred as depth volumes. Imaging cubes varying in time, spectra or depth, are referred as 4D-images. Nature itself spans different physical domains, thus imaging our real world demands capturing information in at least 6 different domains simultaneously, giving turn to 3D-spatial+spectral+polarized dynamic sequences. Conventional imaging devices, however, can capture dynamic sequences with up-to 3 spectral channels, in real-time, by the use of color sensors. Capturing multiple spectral channels require scanning methodologies, which demand long time. In general, to-date multimodal imaging requires a sequence of different imaging sensors, placed in tandem, to simultaneously capture the different physical properties of a scene. Then, different fusion techniques are employed to mix all the individual information into a single image. Therefore, new ways to efficiently capture more than 3 spectral channels of 3D time-varying spatial information, in a single or few sensors, are of high interest. Compressive spectral imaging (CSI) is an imaging framework that seeks to optimally capture spectral imagery (tens of spectral channels of 2D spatial information), using fewer measurements than that required by traditional sensing procedures which follows the Shannon-Nyquist sampling. Instead of capturing direct one-to-one representations of natural scenes, CSI systems acquire linear random projections of the scene and then solve an optimization algorithm to estimate the 3D spatio-spectral data cube by exploiting the theory of compressive sensing (CS). To date, the coding procedure in CSI has been realized through the use of ``block-unblock" coded apertures, commonly implemented as chrome-on-quartz photomasks. These apertures block or permit to pass the entire spectrum from the scene at given spatial locations, thus modulating the spatial characteristics of the scene. In the first part, this thesis aims to expand the framework of CSI by replacing the traditional block-unblock coded apertures by patterned optical filter arrays, referred as ``color" coded apertures. These apertures are formed by tiny pixelated optical filters, which in turn, allow the input image to be modulated not only spatially but spectrally as well, entailing more powerful coding strategies. The proposed colored coded apertures are either synthesized through linear combinations of low-pass, high-pass and band-pass filters, paired with binary pattern ensembles realized by a digital-micromirror-device (DMD), or experimentally realized through thin-film color-patterned filter arrays. The optical forward model of the proposed CSI architectures will be presented along with the design and proof-of-concept implementations, which achieve noticeable improvements in the quality of the reconstructions compared with conventional block-unblock coded aperture-based CSI architectures. On another front, due to the rich information contained in the infrared spectrum as well as the depth domain, this thesis aims to explore multimodal imaging by extending the range sensitivity of current CSI systems to a dual-band visible+near-infrared spectral domain, and also, it proposes, for the first time, a new imaging device that captures simultaneously 4D data cubes (2D spatial+1D spectral+depth imaging) with as few as a single snapshot. Due to the snapshot advantage of this camera, video sequences are possible, thus enabling the joint capture of 5D imagery. It aims to create super-human sensing that will enable the perception of our world in new and exciting ways. With this, we intend to advance in the state of the art in compressive sensing systems to extract depth while accurately capturing spatial and spectral material properties. The applications of such a sensor are self-evident in fields such as computer/robotic vision because they would allow an artificial intelligence to make informed decisions about not only the location of objects within a scene but also their material properties.

  2. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  3. Path planning for assembly of strut-based structures. Thesis

    NASA Technical Reports Server (NTRS)

    Muenger, Rolf

    1991-01-01

    A path planning method with collision avoidance for a general single chain nonredundant or redundant robot is proposed. Joint range boundary overruns are also avoided. The result is a sequence of joint vectors which are passed to a trajectory planner. A potential field algorithm in joint space computes incremental joint vectors delta-q = delta-q(sub a) + delta-q(sub c) + delta-q(sub r). Adding delta-q to the robot's current joint vector leads to the next step in the path. Delta-q(sub a) is obtained by computing the minimum norm solution of the underdetermined linear system J delta-q(sub a) = x(sub a) where x(sub a) is a translational and rotational force vector that attracts the robot to its goal position and orientation. J is the manipulator Jacobian. Delta-q(sub c) is a collision avoidance term encompassing collisions between the robot (links and payload) and obstacles in the environment as well as collisions among links and payload of the robot themselves. It is obtained in joint space directly. Delta-q(sub r) is a function of the current joint vector and avoids joint range overruns. A higher level discrete search over candidate safe positions is used to provide alternatives in case the potential field algorithm encounters a local minimum and thus fails to reach the goal. The best first search algorithm A* is used for graph search. Symmetry properties of the payload and equivalent rotations are exploited to further enlarge the number of alternatives passed to the potential field algorithm.

  4. TU-FG-201-04: Computer Vision in Autonomous Quality Assurance of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Jenkins, C; Yu, S

    Purpose: Routine quality assurance (QA) of linear accelerators represents a critical and costly element of a radiation oncology center. Recently, a system was developed to autonomously perform routine quality assurance on linear accelerators. The purpose of this work is to extend this system and contribute computer vision techniques for obtaining quantitative measurements for a monthly multi-leaf collimator (MLC) QA test specified by TG-142, namely leaf position accuracy, and demonstrate extensibility for additional routines. Methods: Grayscale images of a picket fence delivery on a radioluminescent phosphor coated phantom are captured using a CMOS camera. Collected images are processed to correct formore » camera distortions, rotation and alignment, reduce noise, and enhance contrast. The location of each MLC leaf is determined through logistic fitting and a priori modeling based on knowledge of the delivered beams. Using the data collected and the criteria from TG-142, a decision is made on whether or not the leaf position accuracy of the MLC passes or fails. Results: The locations of all MLC leaf edges are found for three different picket fence images in a picket fence routine to 0.1mm/1pixel precision. The program to correct for image alignment and determination of leaf positions requires a runtime of 21– 25 seconds for a single picket, and 44 – 46 seconds for a group of three pickets on a standard workstation CPU, 2.2 GHz Intel Core i7. Conclusion: MLC leaf edges were successfully found using techniques in computer vision. With the addition of computer vision techniques to the previously described autonomous QA system, the system is able to quickly perform complete QA routines with minimal human contribution.« less

  5. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation

    PubMed Central

    Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    Purpose To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. Materials and methods A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. Results The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. Conclusion A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm. PMID:28886048

  6. A single-source photon source model of a linear accelerator for Monte Carlo dose calculation.

    PubMed

    Nwankwo, Obioma; Glatting, Gerhard; Wenz, Frederik; Fleckenstein, Jens

    2017-01-01

    To introduce a new method of deriving a virtual source model (VSM) of a linear accelerator photon beam from a phase space file (PSF) for Monte Carlo (MC) dose calculation. A PSF of a 6 MV photon beam was generated by simulating the interactions of primary electrons with the relevant geometries of a Synergy linear accelerator (Elekta AB, Stockholm, Sweden) and recording the particles that reach a plane 16 cm downstream the electron source. Probability distribution functions (PDFs) for particle positions and energies were derived from the analysis of the PSF. These PDFs were implemented in the VSM using inverse transform sampling. To model particle directions, the phase space plane was divided into a regular square grid. Each element of the grid corresponds to an area of 1 mm2 in the phase space plane. The average direction cosines, Pearson correlation coefficient (PCC) between photon energies and their direction cosines, as well as the PCC between the direction cosines were calculated for each grid element. Weighted polynomial surfaces were then fitted to these 2D data. The weights are used to correct for heteroscedasticity across the phase space bins. The directions of the particles created by the VSM were calculated from these fitted functions. The VSM was validated against the PSF by comparing the doses calculated by the two methods for different square field sizes. The comparisons were performed with profile and gamma analyses. The doses calculated with the PSF and VSM agree to within 3% /1 mm (>95% pixel pass rate) for the evaluated fields. A new method of deriving a virtual photon source model of a linear accelerator from a PSF file for MC dose calculation was developed. Validation results show that the doses calculated with the VSM and the PSF agree to within 3% /1 mm.

  7. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.

  8. Slit injection device

    DOEpatents

    Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.

    1976-06-15

    A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

  9. Inductionless or limited shock testing is possible in most patients with implantable cardioverter- defibrillators/cardiac resynchronization therapy defibrillators: results of the multicenter ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations).

    PubMed

    Day, John D; Doshi, Rahul N; Belott, Peter; Birgersdotter-Green, Ulrika; Behboodikhah, Mahnaz; Ott, Peter; Glatter, Kathryn A; Tobias, Serge; Frumin, Howard; Lee, Byron K; Merillat, John; Wiener, Isaac; Wang, Samuel; Grogin, Harlan; Chun, Sung; Patrawalla, Rob; Crandall, Brian; Osborn, Jeffrey S; Weiss, J Peter; Lappe, Donald L; Neuman, Stacey

    2007-05-08

    Implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators have relied on multiple ventricular fibrillation (VF) induction/defibrillation tests at implantation to ensure that the device can reliably sense, detect, and convert VF. The ASSURE Study (Arrhythmia Single Shock Defibrillation Threshold Testing Versus Upper Limit of Vulnerability: Risk Reduction Evaluation With Implantable Cardioverter-Defibrillator Implantations) is the first large, multicenter, prospective trial comparing vulnerability safety margin testing versus defibrillation safety margin testing with a single VF induction/defibrillation. A total of 426 patients receiving an implantable cardioverter-defibrillator or cardiac resynchronization therapy defibrillator underwent vulnerability safety margin or defibrillation safety margin screening at 14 J in a randomized order. After this, patients underwent confirmatory testing, which required 2 VF conversions without failure at < or = 21 J. Patients who passed their first 14-J and confirmatory tests, irrespective of the results of their second 14-J test, had their devices programmed to a 21-J shock for ventricular tachycardia (VT) or VF > or = 200 bpm and were followed up for 1 year. Of 420 patients who underwent 14-J vulnerability safety margin screening, 322 (76.7%) passed. Of these, 317 (98.4%) also passed 21-J confirmatory tests. Of 416 patients who underwent 14-J defibrillation safety margin screening, 343 (82.5%) passed, and 338 (98.5%) also passed 21-J confirmatory tests. Most clinical VT/VF episodes (32 of 37, or 86%) were terminated by the first shock, with no difference in first shock success. In all observed cases in which the first shock was unsuccessful, subsequent shocks terminated VT/VF without complication. Although spontaneous episodes of fast VT/VF were limited, there was no difference in the odds of first shock efficacy between groups. Screening with vulnerability safety margin or defibrillation safety margin may allow for inductionless or limited shock testing in most patients.

  10. Multi-pass transmission electron microscopy

    DOE PAGES

    Juffmann, Thomas; Koppell, Stewart A.; Klopfer, Brannon B.; ...

    2017-05-10

    Feynman once asked physicists to build better electron microscopes to be able to watch biology at work. While electron microscopes can now provide atomic resolution, electron beam induced specimen damage precludes high resolution imaging of sensitive materials, such as single proteins or polymers. Here, we use simulations to show that an electron microscope based on a multi-pass measurement protocol enables imaging of single proteins, without averaging structures over multiple images. While we demonstrate the method for particular imaging targets, the approach is broadly applicable and is expected to improve resolution and sensitivity for a range of electron microscopy imaging modalities,more » including, for example, scanning and spectroscopic techniques. The approach implements a quantum mechanically optimal strategy which under idealized conditions can be considered interaction-free.« less

  11. Single Pass Streaming BLAST on FPGAs*†

    PubMed Central

    Herbordt, Martin C.; Model, Josh; Sukhwani, Bharat; Gu, Yongfeng; VanCourt, Tom

    2008-01-01

    Approximate string matching is fundamental to bioinformatics and has been the subject of numerous FPGA acceleration studies. We address issues with respect to FPGA implementations of both BLAST- and dynamic-programming- (DP) based methods. Our primary contribution is a new algorithm for emulating the seeding and extension phases of BLAST. This operates in a single pass through a database at streaming rate, and with no preprocessing other than loading the query string. Moreover, it emulates parameters turned to maximum possible sensitivity with no slowdown. While current DP-based methods also operate at streaming rate, generating results can be cumbersome. We address this with a new structure for data extraction. We present results from several implementations showing order of magnitude acceleration over serial reference code. A simple extension assures compatibility with NCBI BLAST. PMID:19081828

  12. [Mobile single-pass batch hemodialysis system in intensive care medicine. Reduction of costs and workload in renal replacement therapy].

    PubMed

    Hopf, H-B; Hochscherf, M; Jehmlich, M; Leischik, M; Ritter, J

    2007-07-01

    This paper describes the introduction of a single-pass batch hemodialysis system for renal replacement therapy in a 14 bed intensive care unit. The goals were to reduce the workload of intensive care unit physicians using an alternative and simpler method compared to continuous veno-venous hemodiafiltration (CVVHDF) and to reduce the costs of hemofiltrate solutions (80,650 EUR per year in our clinic in 2005). We describe and evaluate the process of implementation of the system as well as the achieved and prospective savings. We conclude that a close cooperation of all participants (physicians, nurses, economists, technicians) of a hospital can achieve substantial benefits for patients and employees as well as reduce the economic burden of a hospital.

  13. Cavity-enhanced Faraday rotation measurement with auto-balanced photodetection.

    PubMed

    Chang, Chia-Yu; Shy, Jow-Tsong

    2015-10-01

    Optical cavity enhancement for a tiny Faraday rotation is demonstrated with auto-balanced photodetection. This configuration is analyzed using the Jones matrix formalism. The resonant rotation signal is amplified, and thus, the angular sensitivity is improved. In the experiment, the air Faraday rotation is measured with an auto-balanced photoreceiver in single-pass and cavity geometries. The result shows that the measured Faraday rotation in the single-pass geometry is enhanced by a factor of 85 in the cavity geometry, and the sensitivity is improved to 7.54×10(-10)  rad Hz(-1/2), which agrees well with the Jones matrix analysis. With this verification, we propose an AC magnetic sensor whose magnetic sensitivity is expected to achieve 10  pT Hz(-1/2).

  14. Cytochrome P450 3A4 in vivo ketoconazole competitive inhibition: determination of Ki and dangers associated with high clearance drugs in general.

    PubMed

    Boxenbaum, H

    1999-01-01

    Assuming complete hepatic substrate metabolism and system linearity, quantitative effects of in vivo competitive inhibition are investigated. Following oral administration of a substrate in the presence of a competitive inhibitor, determination of the inhibition constant (Ki) is possible when plasma concentration-time profiles of both substrate and inhibitor are available. When triazolam is the P450 3A4 substrate and ketoconazole the competitive inhibitor, Ki approximately 1.2 microg/mL in humans. The effects of competitive inhibition can be divided into two components: first-pass hepatic metabolism and systemic metabolism. For drugs with high hepatic extraction ratios, the impact of competitive inhibition on hepatic first-pass metabolism can be particularly dramatic. For example, human terfenadine hepatic extraction goes from 95% in the absence of a competitive inhibitor to 35% in the presence of one (ketoconazole, 200 mg po Q 12 h dosed to steady-state). First-pass extraction therefore goes from 5% in the absence of the inhibitor to 65% in its presence. The combined effect on first-pass and systemic metabolism produces an approximate 37 fold increase in terfenadine area under the plasma concentration-time curve. Assuming intact drug is active and/or toxic, development of metabolized drugs with extensive first-pass metabolism should be avoided if possible, since inhibition of metabolism may lead to profound increases in exposure.

  15. Initial application of a dual-sweep streak camera to the Duke storage ring OK-4 source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A.H.; Yang, B.X.; Litvinenko, V.

    1997-08-01

    The visible and UV spontaneous emission radiation (SER) from the Duke OK-4 wiggler has been used with a Hamamatsu C5680 dual-sweep streak camera to characterize the stored electron beams. Particle beam energies of 270 and 500 MeV in the Duke storage ring were used in this initial application with the OK-4 adjusted to generate wavelengths from 500 nm to near 200 nm. The OK-4 magnetic system with its 68 periods provided a much stronger radiation source than a nearby bending magnet source point. Sensitivity to single-bunch, single-turn SER was shown down to 4 {mu}A beam current at {lambda} = 450more » nm. The capability of seeing second passes in the FEL resonator at a wavelength near 200 nm was used to assess the cavity length versus orbit length. These tests (besides supporting preparation for UV-visible SR FEL startups) are also relevant to possible diagnostics techniques for single-pass FEL prototype facilities.« less

  16. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs.

    PubMed

    Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin

    2016-09-08

    An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.

  17. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  18. Double passing the Kitt Peak 1-m Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Jennings, D. E.; Hubbard, R.; Brault, J. W.

    1985-01-01

    Attention is given to a simple technique for performing the conversion of the Kitt Peak 1-m Fourier transform spectrometer's dual input/output optical configuration to a double pass configuration that improves spectral resolution by a factor of 2. The modification is made by placing a flat mirror in the output beam from each cat's eye, retroreflecting the beams back through the cat's eyes to the first beam splitter. A single detector is placed at the second input port, which then becomes the instrument's output.

  19. Marketable Skills and Jobs for Single Teen Parents. Final Report, Project No. 480-15170-7-1D05, July 1, 1986 to June 30, 1987.

    ERIC Educational Resources Information Center

    Orange County Public Schools, Orlando, FL.

    The Single Teen Parent Program conducted by the Orange County, Florida, Public Schools, was designed to help single teen parents acquire marketable skills and jobs in order to head independent family units. The parents served were between the ages of 16 and 20 and either had a high school diploma or had passed the General Educational Development…

  20. Creating Single-Subject Design Graphs in Microsoft Excel[TM] 2007

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Jackson, James W.; Small, Stacey L.; Horner-King, Mollie J.; Mui Ker Lik, Nicholas; Garcia, Yors; Rosales, Rocio

    2009-01-01

    Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The…

  1. Formation of template-switching artifacts by linear amplification.

    PubMed

    Chakravarti, Dhrubajyoti; Mailander, Paula C

    2008-07-01

    Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.

  2. Experimental Verification of Predicted Oscillations near a Spin Resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolanoski, Hermann; /Humboldt U., Berlin

    2011-12-05

    The E166 experiment at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme for the production of polarized positrons which is suitable for implementation in a future Linear Collider. A multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with GEANT4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  3. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  4. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  5. Antiferromagnetic domain wall as spin wave polarizer

    NASA Astrophysics Data System (ADS)

    Lan, Jin; Yu, Weichao; Xiao, Jiang

    Spin waves are collective excitations of local magnetizations that can effectively propagate information even in magnetic insulators. In antiferromagnet, spin waves are endowed with additional polarization freedom. Here we propose that the antiferromagnetic domain wall can act as a spin wave polarizer, which perfectly passes one linearly polarized spin wave while substantially reflects the perpendicular one. We show that the polarizing effect lies in the suppression of one linear polarization inside domain wall, in close analogy to the wire-grid optical polarizer. Our finding opens up new possibilities in magnonic processing by harnessing spin wave polarization in antiferromagnet.

  6. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  7. Reduction of B-integral accumulation in lasers

    DOEpatents

    Meyerhofer, David D.; Konoplev, Oleg A.

    2000-01-01

    A pulsed laser is provided wherein the B-integral accumulated in the laser pulse is reduced using a semiconductor wafer. A laser pulse is generated by a laser pulse source. The laser pulse passes through a semiconductor wafer that has a negative nonlinear index of refraction. Thus, the laser pulse accumulates a negative B-integral. The laser pulse is then fed into a laser amplification medium, which has a positive nonlinear index of refraction. The laser pulse may make a plurality of passes through the laser amplification medium and accumulate a positive B-integral during a positive non-linear phase change. The semiconductor and laser pulse wavelength are chosen such that the negative B-integral accumulated in the semiconductor wafer substantially cancels the positive B-integral accumulated in the laser amplification medium. There may be additional accumulation of positive B-integral if the laser pulse passes through additional optical mediums such as a lens or glass plates. Thus, the effects of self-phase modulation in the laser pulse are substantially reduced.

  8. Complex networks untangle competitive advantage in Australian football

    NASA Astrophysics Data System (ADS)

    Braham, Calum; Small, Michael

    2018-05-01

    We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.

  9. Complex networks untangle competitive advantage in Australian football.

    PubMed

    Braham, Calum; Small, Michael

    2018-05-01

    We construct player-based complex network models of Australian football teams for the 2014 Australian Football League season; modelling the passes between players as weighted, directed edges. We show that analysis of these measures can give an insight into the underlying structure and strategy of Australian football teams, quantitatively distinguishing different playing styles. The relationships observed between network properties and match outcomes suggest that successful teams exhibit well-connected passing networks with the passes distributed between all 22 players as evenly as possible. Linear regression models of team scores and match margins show significant improvements in R 2 and Bayesian information criterion when network measures are added to models that use conventional measures, demonstrating that network analysis measures contain useful, extra information. Several measures, particularly the mean betweenness centrality, are shown to be useful in predicting the outcomes of future matches, suggesting they measure some aspect of the intrinsic strength of teams. In addition, several local centrality measures are shown to be useful in analysing individual players' differing contributions to the team's structure.

  10. Optical inspection system for cylindrical objects

    DOEpatents

    Brenden, Byron B.; Peters, Timothy J.

    1989-01-01

    In the inspection of cylindrical objects, particularly O-rings, the object is translated through a field of view and a linear light trace is projected on its surface. An image of the light trace is projected on a mask, which has a size and shape corresponding to the size and shape which the image would have if the surface of the object were perfect. If there is a defect, light will pass the mask and be sensed by a detector positioned behind the mask. Preferably, two masks and associated detectors are used, one mask being convex to pass light when the light trace falls on a projection from the surface and the other concave, to pass light when the light trace falls on a depression in the surface. The light trace may be either dynamic, formed by a scanned laser beam, or static, formed by such a beam focussed by a cylindrical lens. Means are provided to automatically keep the illuminating receiving systems properly aligned.

  11. Fundamental Use of Surgical Energy (FUSE) certification: validation and predictors of success.

    PubMed

    Robinson, Thomas N; Olasky, Jaisa; Young, Patricia; Feldman, Liane S; Fuchshuber, Pascal R; Jones, Stephanie B; Madani, Amin; Brunt, Michael; Mikami, Dean; Jackson, Gretchen P; Mischna, Jessica; Schwaitzberg, Steven; Jones, Daniel B

    2016-03-01

    The Fundamental Use of Surgical Energy (FUSE) program includes a Web-based didactic curriculum and a high-stakes multiple-choice question examination with the goal to provide certification of knowledge on the safe use of surgical energy-based devices. The purpose of this study was (1) to set a passing score through a psychometrically sound process and (2) to determine what pretest factors predicted passing the FUSE examination. Beta-testing of multiple-choice questions on 62 topics of importance to the safe use of surgical energy-based devices was performed. Eligible test takers were physicians with a minimum of 1 year of surgical training who were recruited by FUSE task force members. A pretest survey collected baseline information. A total of 227 individuals completed the FUSE beta-test, and 208 completed the pretest survey. The passing/cut score for the first test form of the FUSE multiple-choice examination was determined using the modified Angoff methodology and for the second test form was determined using a linear equating methodology. The overall passing rate across the two examination forms was 81.5%. Self-reported time studying the FUSE Web-based curriculum for a minimum of >2 h was associated with a passing examination score (p < 0.001). Performance was not different based on increased years of surgical practice (p = 0.363), self-reported expertise on one or more types of energy-based devices (p = 0.683), participation in the FUSE postgraduate course (p = 0.426), or having reviewed the FUSE manual (p = 0.428). Logistic regression found that studying the FUSE didactics for >2 h predicted a passing score (OR 3.61; 95% CI 1.44-9.05; p = 0.006) independent of the other baseline characteristics recorded. The development of the FUSE examination, including the passing score, followed a psychometrically sound process. Self-reported time studying the FUSE curriculum predicted a passing score independent of other pretest characteristics such as years in practice and self-reported expertise.

  12. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J.

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  13. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer

    PubMed Central

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-01-01

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes. PMID:29093762

  14. Eddy covariance carbonyl sulphide flux measurements with a quantum cascade laser absorption spectrometer.

    PubMed

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-26

    The trace gas carbonyl sulphide (COS) has lately received growing interest in the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers (QCLAS)), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterization of the COS measurement with the Aerodyne QCLAS in the context of the EC technique, and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed sensor drift to occur under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO 2 and H 2 O flux measurements obtained with the QCLAS were compared against those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO 2 fluxes are combined in the so-called ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes.

  15. Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Gerdel, Katharina; Spielmann, Felix Maximilian; Hammerle, Albin; Wohlfahrt, Georg

    2017-09-01

    The trace gas carbonyl sulfide (COS) has lately received growing interest from the eddy covariance (EC) community due to its potential to serve as an independent approach for constraining gross primary production and canopy stomatal conductance. Thanks to recent developments of fast-response high-precision trace gas analysers (e.g. quantum cascade laser absorption spectrometers, QCLAS), a handful of EC COS flux measurements have been published since 2013. To date, however, a thorough methodological characterisation of QCLAS with regard to the requirements of the EC technique and the necessary processing steps has not been conducted. The objective of this study is to present a detailed characterisation of the COS measurement with the Aerodyne QCLAS in the context of the EC technique and to recommend best EC processing practices for those measurements. Data were collected from May to October 2015 at a temperate mountain grassland in Tyrol, Austria. Analysis of the Allan variance of high-frequency concentration measurements revealed the occurrence of sensor drift under field conditions after an averaging time of around 50 s. We thus explored the use of two high-pass filtering approaches (linear detrending and recursive filtering) as opposed to block averaging and linear interpolation of regular background measurements for covariance computation. Experimental low-pass filtering correction factors were derived from a detailed cospectral analysis. The CO2 and H2O flux measurements obtained with the QCLAS were compared with those obtained with a closed-path infrared gas analyser. Overall, our results suggest small, but systematic differences between the various high-pass filtering scenarios with regard to the fraction of data retained in the quality control and flux magnitudes. When COS and CO2 fluxes are combined in the ecosystem relative uptake rate, systematic differences between the high-pass filtering scenarios largely cancel out, suggesting that this relative metric represents a robust key parameter comparable between studies relying on different post-processing schemes.

  16. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    PubMed Central

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school office buildings. PMID:26742055

  17. Ultrasensitive electroanalytical tool for detecting, sizing, and evaluating the catalytic activity of platinum nanoparticles.

    PubMed

    Dasari, Radhika; Robinson, Donald A; Stevenson, Keith J

    2013-01-16

    Here we describe a very simple, reliable, low-cost electrochemical approach to detect single nanoparticles (NPs) and evaluate NP size distributions and catalytic activity in a fast and reproducible manner. Single NPs are detected through an increase in current caused by electrocatalytic oxidation of N(2)H(4) at the surface of the NP when it contacts a Hg-modified Pt ultramicroelectrode (Hg/Pt UME). Once the NP contacts the Hg/Pt UME, Hg poisons the Pt NP, deactivating the N(2)H(4) oxidation reaction. Hence, the current response is a "spike" that decays to the background current level rather than a stepwise "staircase" response as previously described for a Au UME. The use of Hg as an electrode material has several quantitative advantages including suppression of the background current by 2 orders of magnitude over a Au UME, increased signal-to-noise ratio for detection of individual collisions, precise integration of current transients to determine charge passed and NP size, reduction of surface-induced NP aggregation and electrode fouling processes, and reproducible and renewable electrodes for routine detection of catalytic NPs. The NP collision frequency was found to scale linearly with the NP concentration (0.016 to 0.024 pM(-1)s(-1)). NP size distributions of 4-24 nm as determined from the current-time transients correlated well with theory and TEM-derived size distributions.

  18. Estimation of Joule heating and its role in nonlinear electrical response of Tb0.5Sr0.5MnO3 single crystal

    NASA Astrophysics Data System (ADS)

    Nhalil, Hariharan; Elizabeth, Suja

    2016-12-01

    Highly non-linear I-V characteristics and apparent colossal electro-resistance were observed in non-charge ordered manganite Tb0.5Sr0.5MnO3 single crystal in low temperature transport measurements. Significant changes were noticed in top surface temperature of the sample as compared to its base while passing current at low temperature. By analyzing these variations, we realize that the change in surface temperature (ΔTsur) is too small to have caused by the strong negative differential resistance. A more accurate estimation of change in the sample temperature was made by back-calculating the sample temperature from the temperature variation of resistance (R-T) data (ΔTcal), which was found to be higher than ΔTsur. This result indicates that there are large thermal gradients across the sample. The experimentally derived ΔTcal is validated with the help of a simple theoretical model and estimation of Joule heating. Pulse measurements realize substantial reduction in Joule heating. With decrease in sample thickness, Joule heating effect is found to be reduced. Our studies reveal that Joule heating plays a major role in the nonlinear electrical response of Tb0.5Sr0.5MnO3. By careful management of the duty cycle and pulse current I-V measurements, Joule heating can be mitigated to a large extent.

  19. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.

    2016-05-15

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2more » mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.« less

  20. DRBE comet trails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBEmore » data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.« less

  1. Architecture and robustness tradeoffs in speed-scaled queues with application to energy management

    NASA Astrophysics Data System (ADS)

    Dinh, Tuan V.; Andrew, Lachlan L. H.; Nazarathy, Yoni

    2014-08-01

    We consider single-pass, lossless, queueing systems at steady-state subject to Poisson job arrivals at an unknown rate. Service rates are allowed to depend on the number of jobs in the system, up to a fixed maximum, and power consumption is an increasing function of speed. The goal is to control the state dependent service rates such that both energy consumption and delay are kept low. We consider a linear combination of the mean job delay and energy consumption as the performance measure. We examine both the 'architecture' of the system, which we define as a specification of the number of speeds that the system can choose from, and the 'design' of the system, which we define as the actual speeds available. Previous work has illustrated that when the arrival rate is precisely known, there is little benefit in introducing complex (multi-speed) architectures, yet in view of parameter uncertainty, allowing a variable number of speeds improves robustness. We quantify the tradeoffs of architecture specification with respect to robustness, analysing both global robustness and a newly defined measure which we call local robustness.

  2. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.

    PubMed

    Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues

    2018-05-28

    We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency-shifting loop seeded with a continuous-wave (CW) monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.

  3. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs

    NASA Astrophysics Data System (ADS)

    Durán, Vicente; Schnébelin, Cȏme; Guillet de Chatellus, Hugues

    2018-05-01

    We propose and characterize experimentally a new source of optical frequency combs for performing multi-heterodyne spectrometry. This comb modality is based on a frequency shifting loop seeded with a CW monochromatic laser. The comb lines are generated by successive passes of the CW laser through an acousto-optic frequency shifter. We report the generation of frequency combs with more than 1500 mutually coherent lines, without resorting to non-linear broadening phenomena or external electronic modulation. The comb line spacing is easily reconfigurable from tens of MHz down to the kHz region. We first use a single acousto-optic frequency comb to conduct self-heterodyne interferometry with a high frequency resolution (500 kHz). By increasing the line spacing to 80 MHz, we demonstrate molecular spectroscopy on the sub-millisecond time scale. In order to reduce the detection bandwidth, we subsequently implement an acousto-optic dual-comb spectrometer with the aid of two mutually coherent frequency shifting loops. In each architecture, the potentiality of acousto-optic frequency combs for spectroscopy is validated by spectral measurements of hydrogen cyanide in the near-infrared region.

  4. Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.

  5. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    PubMed

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  6. Collapse Mechanism Analysis in the Design of Superstructure Vehicle

    NASA Astrophysics Data System (ADS)

    Mohd Nor, M. K.

    2016-11-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for “single deck class II and III vehicles” required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  7. Nonlinear analysis of collapse mechanism in superstructure vehicle

    NASA Astrophysics Data System (ADS)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  8. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  9. Thermal Inactivation of Shiga Toxin-Producing Escherichia coli Cells within Cubed Beef Steaks following Cooking on a Griddle.

    PubMed

    Swartz, Richard S; Luchansky, John B; Kulas, Megan; Shoyer, Bradley A; Shane, Laura E; Strasser, Hannah; Munson, Madison; Porto-Fett, Anna C S

    2015-05-01

    Thermal inactivation of Shiga toxin-producing Escherichia coli (STEC) cells within knitted/cubed beef steaks following cooking on a nonstick griddle was quantified. Both faces of each beef cutlet (ca. 64 g; ca. 8.5 cm length by 10.5 cm width by 0.75 cm height) were surface inoculated (ca. 6.6 log CFU/g) with 250 μl of a rifampin-resistant cocktail composed of single strains from each of eight target serogroups of STEC: O26:H11, O45:H2, O103:H2, O104:H4, O111:H(2), O121:H19, O145:NM, and O157:H7. Next, inoculated steaks were (i) passed once through a mechanical tenderizer and then passed one additional time through the tenderizer perpendicular to the orientation of the first pass (single cubed steak; SCS) or (ii) passed once through a mechanical tenderizer, and then two tenderized cutlets were knitted together by passage concomitantly through the tenderizer two additional times perpendicular to the orientation of the previous pass (double cubed steak; DCS). SCS and DCS were individually cooked for up to 3.5 min per side in 30 ml of extra virgin olive oil heated to 191.5°C (376.7°F) on a hard-anodized aluminum nonstick griddle using a flat-surface electric ceramic hot plate. Regardless of steak preparation (i.e., single versus double cubed steaks), as expected, the longer the cooking time, the higher the final internal temperature, and the greater the inactivation of STEC cells within cubed steaks. The average final internal temperatures of SCS cooked for up 2.5 min and DCS cooked for up to 3.5 min ranged from 59.8 to 94.7°C and 40.3 to 82.2°C, respectively. Cooking SCS and DCS on an aluminum griddle set at ca. 191.5°C for 0.5 to 2.5 min and 1.0 to 3.5 min per side, respectively, resulted in total reductions in pathogen levels of ca. 1.0 to ≥6.8 log CFU/g. These data validated that cooking SCS (ca. 0.6 cm thick) or DCS (ca. 1.3 cm thick) on a nonstick aluminum griddle heated at 191.5°C for at least 1.25 and 3.0 min per side, respectively, was sufficient to achieve a 5.0log reduction in the levels of the single strains from each of the eight target STEC serogroups tested.

  10. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, F.E.; Smolensky, L.A.

    1988-07-19

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture is described. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combustor chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture may be tangentially withdrawn from the outlet end and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture. 10 figs.

  11. Cyclone reactor with internal separation and axial recirculation

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.

    1989-01-01

    A cyclone combustor apparatus contains a circular partition plate containing a central circular aperture. The partition plate divides the apparatus into a cylindrical precombustor chamber and a combustor chamber. A coal-water slurry is passed axially into the inlet end of the precombustor chamber, and primary air is passed tangentially into said chamber to establish a cyclonic air flow. Combustion products pass through the partition plate aperture and into the combustor chamber. Secondary air may also be passed tangentially into the combustor chamber adjacent the partition plate to maintain the cyclonic flow. Flue gas is passed axially out of the combustor chamber at the outlet end and ash is withdrawn tangentially from the combuston chamber at the outlet end. A first mixture of flue gas and ash may be tangentially withdrawn from the combustor chamber at the outlet end and recirculated to the axial inlet of the precombustor chamber with the coal-water slurry. A second mixture of flue gas and ash may be tangentially withdrawn from the outlet end of the combustor chamber and passed to a heat exchanger for cooling. Cooled second mixture is then recirculated to the axial inlet of the precombustor chamber. In another embodiment a single cyclone combustor chamber is provided with both the recirculation streams of the first mixture and the second mixture.

  12. UAVSAR Instrument: Current Operations and Planned Upgrades

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Hensley, Scott; Chao, Roger; Chapin, Elaine; Heavy, Brandon; Jones, Cathleen; Miller, Timothy; Naftel, Chris; Fratello, David

    2011-01-01

    The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) instrument is a pod-based Lband polarimetric synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements. This instrument is currently installed on the NASA Gulfstream- III (G-III) aircraft with precision real-time Global Positioning System (GPS) and a sensor-controlled flight management system for precision repeat-pass data acquisitions. UAVSAR has conducted engineering and preliminary science data flights since October 2007 on the G-III. We are porting the radar to the Global Hawk Unmanned Airborne Vehicle (UAV) to enable long duration/long range data campaigns. We plan to install two radar pods (each with its own active array antenna) under the wings of the Global Hawk to enable the generation of precision topographic maps and single pass polarimetric-interferometry (SPI) providing vertical structure of ice and vegetation. Global Hawk's range of 8000 nm will enable regional surveys with far fewer sorties as well as measurements of remote locations without the need for long and complicated deployments. We are also developing P-band polarimetry and Ka-band single-pass interferometry capabilities on UAVSAR by replacing the radar antenna and front-end electronics to operate at these

  13. 5.7  W cw single-frequency laser at 671  nm by single-pass second harmonic generation of a 17.2  W injection-locked 1342  nm Nd : YVO4 ring laser using periodically poled MgO : LiNbO3.

    PubMed

    Koch, Peter; Ruebel, Felix; Bartschke, Juergen; L'huillier, Johannes A

    2015-11-20

    We demonstrate a continuous wave single-frequency laser at 671.1 nm based on a high-power 888 nm pumped Nd:YVO4 ring laser at 1342.2 nm. Unidirectional operation of the fundamental ring laser is achieved with the injection-locking technique. A Nd:YVO4 microchip laser serves as the injecting seed source, providing a tunable single-frequency power of up to 40 mW. The ring laser emits a single-frequency power of 17.2 W with a Gaussian beam profile and a beam propagation factor of M2<1.1. A 60-mm-long periodically poled MgO-doped LiNbO3 crystal is used to generate the second harmonic in a single-pass scheme. Up to 5.7 W at 671.1 nm with a Gaussian shaped beam profile and a beam propagation factor of M2<1.2 are obtained, which is approximately twice the power of previously reported lasers. This work opens possibilities in cold atoms experiments with lithium, allowing the use of larger ensembles in magneto-optical traps or higher diffraction orders in atomic beam interferometers.

  14. Triple-Loaded Suture Anchors Versus a Knotless Rip Stop Construct in a Single-Row Rotator Cuff Repair Model.

    PubMed

    Noyes, Matthew P; Lederman, Evan; Adams, Christopher R; Denard, Patrick J

    2018-05-01

    To compare the biomechanical properties of single-row repair with triple-loaded (TL) anchor repair versus a knotless rip stop (KRS) repair in a rotator cuff repair model. Rotator cuff tears were created in 8 cadaveric matched-pair specimens and repaired with a TL anchor or KRS construct. In the TL construct, anchors were placed in the greater tuberosity and then all suture limbs were passed through the rotator cuff as simple sutures and tied. In the KRS construct, a 2-mm suture tape was passed through the tendon in an inverted mattress fashion, and a free suture was passed medial to the suture tape to create a rip-stop. Then, the suture tape and free suture were secured with knotless anchors. Displacement was observed with video tracking after cyclic loading, and specimens were loaded to failure. The mean load to failure was 438 ± 59 N in TL anchor repairs compared with 457 ± 110 N in KRS repairs (P = .582). The mean displacement with cyclic loading was 3.8 ± 1.6 mm in TL anchor repairs versus 4.3 ± 1.8 mm in the KRS group (P = .297). Mode of failure was consistent in both groups, with 6 of 8 failures in the TL anchor group and 7 of 8 failures in KRS group occurring from anchor pullout. There is no statistical difference in load to failure and cyclic loading between TL anchor and KRS single-row repair techniques. KRS repair technique may be an alternative method of repairing full-thickness supraspinatus tendon tears with a single-row construct. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. SU-F-T-313: Clinical Results of a New Customer Acceptance Test for Elekta VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusk, B; Fontenot, J

    Purpose: To report the results of a customer acceptance test (CAT) for VMAT treatments for two matched Elekta linear accelerators. Methods: The CAT tests were performed on two clinically matched Elekta linear accelerators equipped with a 160-leaf MLC. Functional tests included performance checks of the control system during dynamic movements of the diaphragms, MLC, and gantry. Dosimetric tests included MLC picket fence tests at static and variable dose rates and a diaphragm alignment test, all performed using the on-board EPID. Additionally, beam symmetry during arc delivery was measured at the four cardinal angles for high and low dose rate modesmore » using a 2D detector array. Results of the dosimetric tests were analyzed using the VMAT CAT analysis tool. Results: Linear accelerator 1 (LN1) met all stated CAT tolerances. Linear accelerator 2 (LN2) passed the geometric, beam symmetry, and MLC position error tests but failed the relative dose average test for the diaphragm abutment and all three picket fence fields. Though peak doses in the abutment regions were consistent, the average dose was below the stated tolerance corresponding to a leaf junction that was too narrow. Despite this, no significant differences in patient specific VMAT quality assurance measured were observed between the accelerators and both passed monthly MLC quality assurance performed with the Hancock test. Conclusion: Results from the CAT showed LN2 with relative dose averages in the abutment regions of the diaphragm and MLC tests outside the tolerances resulting from differences in leaf gap distances. Tolerances of the dose average tests from the CAT may be small enough to detect MLC errors which do not significantly affect patient QA or the routine MLC tests.« less

  16. 77 FR 74022 - Notice of Proposed Information Collection: Comment Request; Ginnie Mae Mortgage-Backed Securities...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... multiple Issuer MBS is structured so that small issuers, who do not meet the minimum number of loans and... program, securities are backed by single-family or multifamily loans. Under the Ginnie Mae II program, securities are only backed by single family loans. Both the Ginnie Mae I and II MBS are modified pass-through...

  17. Unambiguous discrimination between linearly dependent equidistant states with multiple copies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Ren, Gang

    2018-07-01

    Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

  18. Determination of time zero from a charged particle detector

    DOEpatents

    Green, Jesse Andrew [Los Alamos, NM

    2011-03-15

    A method, system and computer program is used to determine a linear track having a good fit to a most likely or expected path of charged particle passing through a charged particle detector having a plurality of drift cells. Hit signals from the charged particle detector are associated with a particular charged particle track. An initial estimate of time zero is made from these hit signals and linear tracks are then fit to drift radii for each particular time-zero estimate. The linear track having the best fit is then searched and selected and errors in fit and tracking parameters computed. The use of large and expensive fast detectors needed to time zero in the charged particle detectors can be avoided by adopting this method and system.

  19. Total and methylmercury partitioning between colloids and true solution: From case studies in sediment overlying and porewaters to a generalized model.

    PubMed

    Guédron, Stéphane; Devin, Simon; Vignati, Davide A L

    2016-02-01

    Tangential flow ultrafiltration was used to determine the partitioning of total mercury (THg) and monomethylmercury (MMHg) between colloids and true solution in sediment overlying and porewaters collected in Lake Geneva (Switzerland and France), Venice Lagoon (Italy), and Baihua Reservoir (China). Overlying water and porewater spanned different ranges of THg and MMHg concentrations, redox conditions, and salinity. Total Hg, MMHg, and dissolved organic carbon (DOC) concentrations were measured in filter-passing (<0.45 μm), colloidal (3 kDa-0.45 μm), and truly dissolved (<3 kDa) fractions. The percentages of filterable Hg and MMHg associated with colloids (arithmetic means ±1 standard deviation [SD]) were 29 ± 11% for THg (range, 4-60%) and 44 ± 17% for MMHg (range, 15-65%). Ultrafiltration DOC mass balances were often not satisfactory. However, this was apparently without consequences on THg/MMHg fractionation, suggesting that only a part of total DOC controlled THg/MMHg partitioning in overlying water and porewater. Linear relationships existed between filter passing and truly dissolved concentrations of THg and MMHg, suggesting that mechanisms controlling their partitioning are, at least partly, similar across aquatic systems. These linear relationships could be extended to data from published studies and ultrafilterable concentrations often could be predicted, within a factor of 2, from the measurement of filter-passing ones. The possibility to easily model THg/MMHg partitioning across aquatic systems will facilitate its consideration in general biogeochemical THg/MMHg models. © 2015 SETAC.

  20. A 9-year follow-up of a self-management group intervention for persistent neck pain in primary health care: a randomized controlled trial

    PubMed Central

    Gustavsson, Catharina; von Koch, Lena

    2017-01-01

    Background and objective In previous short-term and 2-year follow-ups, a pain and stress self-management group intervention (PASS) had better effect on pain-related disability, self-efficacy, catastrophizing, and perceived pain control than individually administered physiotherapy (IAPT) for patients with persistent tension-type neck pain. Studies that have evaluated long-term effects of self-management approaches toward persistent neck pain are sparse. The objective of this study was to compare pain-related disability, self-efficacy for activities of daily living (ADL), catastrophizing, pain, pain control, use of analgesics, and health care utilization in people with persistent tension-type neck pain 9 years after they received the PASS or IAPT. Materials and methods Of 156 people (PASS, n = 77; IAPT, n = 79) originally included in a randomized controlled trial, 129 people (PASS, n = 63; IAPT, n = 66) were eligible and were approached for the 9-year follow-up. They were sent a self-assessment questionnaire, comprising the Neck Disability Index, the Self-Efficacy Scale, the Coping Strategies Questionnaire, and questions regarding pain, analgesics, and health care utilization. Mixed linear models for repeated measures analysis or generalized estimating equations were used to evaluate the differences between groups and within groups over time (baseline, previous follow-ups, and 9-year follow-up) and the interaction effect of “time by group”. Results Ninety-four participants (73%) responded (PASS, n = 48; IAPT, n = 46). At 9 years, PASS participants reported less pain-related disability, pain at worst, and analgesics usage, and a trend toward better self-efficacy compared to IAPT participants. There was a difference between groups in terms of change over time for disability, self-efficacy for ADL, catastrophizing, perceived pain control, and health care visits in favor of PASS. Analyses of simple main effects at 9 years showed that the PASS group had less disability (p = 0.006) and a trend toward better self-efficacy (p = 0.059) than the IAPT group. Conclusion The favorable effects on pain-related disability of PASS were sustained 9 years after the intervention. PMID:28115865

  1. The Radiation Environment for the LISA/Laser Interferometry Space Antenna

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Xapsos, Michael; Poivey, Christian

    2005-01-01

    The purpose of this document is to define the radiation environment for the evaluation of degradation due to total ionizing and non-ionizing dose and of single event effects (SEES) for the Laser Interferometry Space Antenna (LISA) instruments and spacecraft. The analysis took into account the radiation exposure for the nominal five-year mission at 20 degrees behind Earth's orbit of the sun, at 1 AU (astronomical unit) and assumes a launch date in 2014. The transfer trajectory out to final orbit has not yet been defined, therefore, this evaluation does not include the impact of passing through the Van Allen belts. Generally, transfer trajectories do not contribute significantly to degradation effects; however, single event effects and deep dielectric charging effects must be taken into consideration especially if critical maneuvers are planned during the van Allen belt passes.

  2. Dilution in single pass arc welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuPont, J.N.; Marder, A.R.

    1996-06-01

    A study was conducted on dilution of single pass arc welds of type 308 stainless steel filler metal deposited onto A36 carbon steel by the plasma arc welding (PAW), gas tungsten arc welding (GTAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. Knowledge of the arc and melting efficiency was used in a simple energy balance to develop an expression for dilution as a function of welding variables and thermophysical properties of the filler metal and substrate. Comparison of calculated and experimentally determined dilution values shows the approach provides reasonable predictions of dilution when the melting efficiencymore » can be accurately predicted. The conditions under which such accuracy is obtained are discussed. A diagram is developed from the dilution equation which readily reveals the effect of processing parameters on dilution to aid in parameter optimization.« less

  3. Analysis of thermomechanical states in single-pass GMAW surfaced steel element

    NASA Astrophysics Data System (ADS)

    Winczek, Jerzy; Gawronska, Elzbieta; Murcinkova, Zuzana; Hatala, Michal; Pavlenko, Slavko; Makles, Krzysztof

    2017-03-01

    In the paper the model of temperature field, phase changes and stress states calculation during single-pass arc weld surfacing have been presented. In temperature field solution the temperature changes caused by the heat of weld and by electric arc have been taken into consideration. Kinetics of phase changes during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while progress of phase transformations during cooling has been determined on the basis of time-temperature-transformation (TTT) - welding diagram. The analysis of stress state has been presented for S235 steel flat assuming planar section hypothesis and using integral equations of stress equilibrium. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by surfacing using Gas Metal Arc Welding (GMAW) method.

  4. Single-Pass Microkeratome System for Eye Bank DSAEK Tissue Preparation: Is Stromal Bed Thickness Predictable and Reproducible?

    PubMed

    Choulakian, Mazen Y; Li, Jennifer Y; Ramos, Samuel; Mannis, Mark J

    2016-01-01

    To evaluate the predictability and reproducibility of stromal bed thickness for single-pass donor Descemet stripping automated endothelial keratoplasty (DSAEK) tissue preparation, using the ML7 Microkeratome Donor Cornea System (Med-logics Inc, Athens, TX). In this retrospective chart review of 256 consecutive corneal tissue preparations for DSAEK surgery, from June 2013 to August 2014, tissue thicknesses were divided into 3 groups, depending on surgeon preference: <91 μm (group A), 90 to 120 μm (group B), and 120 to 160 μm (group C). Precut and postcut data were recorded. Average postcut donor corneal thickness was 114 ± 30 μm (range 60-183 μm), whereas the average in group A was 97 ± 23 μm (range 60-128), in group B was 113 ± 21 μm (range 77-179), and in group C was 134 ± 43 (range 89-183). Average postcut endothelial cell density was very adequate at 3013 ± 250 cells per square millimeter. There were a total of 7 failed procedures from 256 attempts, which represents a rate of 2.7%. This rate decreases to 1.5% when analyzing the last 200 cuts. The ML7 Microkeratome Donor Cornea System allows for reliable and reproducible DSAEK tissue preparation. Ultrathin DSAEK tissues can be prepared with a single-pass. Aiming for a graft thickness between 90 and 120 μm seems to be most reliable.

  5. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks

    PubMed Central

    Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic. PMID:28245222

  6. Generic, network schema agnostic sparse tensor factorization for single-pass clustering of heterogeneous information networks.

    PubMed

    Wu, Jibing; Meng, Qinggang; Deng, Su; Huang, Hongbin; Wu, Yahui; Badii, Atta

    2017-01-01

    Heterogeneous information networks (e.g. bibliographic networks and social media networks) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is an effective method to understand the semantic information and interpretable structure of the heterogeneous information networks, and it has attracted the attention of many researchers in recent years. However, most studies assume that heterogeneous information networks usually follow some simple schemas, such as bi-typed networks or star network schema, and they can only cluster one type of object in the network each time. In this paper, a novel clustering framework is proposed based on sparse tensor factorization for heterogeneous information networks, which can cluster multiple types of objects simultaneously in a single pass without any network schema information. The types of objects and the relations between them in the heterogeneous information networks are modeled as a sparse tensor. The clustering issue is modeled as an optimization problem, which is similar to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algorithm and a feasible initialization method are proposed to solve the optimization problem. Based on the tensor factorization, we simultaneously partition different types of objects into different clusters. The experimental results on both synthetic and real-world datasets have demonstrated that our proposed clustering framework, STFClus, can model heterogeneous information networks efficiently and can outperform state-of-the-art clustering algorithms as a generally applicable single-pass clustering method for heterogeneous network which is network schema agnostic.

  7. Welding-Induced Microstructure Evolution of a Cu-Bearing High-Strength Blast-Resistant Steel

    NASA Astrophysics Data System (ADS)

    Caron, Jeremy L.; Babu, Sudarsanam Suresh; Lippold, John C.

    2011-12-01

    A new high strength, high toughness steel containing Cu for precipitation strengthening was recently developed for naval, blast-resistant structural applications. This steel, known as BlastAlloy160 (BA-160), is of nominal composition Fe-0.05C-3.65Cu-6.5Ni-1.84Cr-0.6Mo-0.1V (wt pct). The evident solidification substructure of an autogenous gas tungsten arc (GTA) weld suggested fcc austenite as the primary solidification phase. The heat-affected zone (HAZ) hardness ranged from a minimum of 353 HV in the coarse-grained HAZ (CGHAZ) to a maximum of 448 HV in the intercritical HAZ (ICHAZ). After postweld heat treatment (PWHT) of the spot weld, hardness increases were observed in the fusion zone (FZ), CGHAZ, and fine-grained HAZ (FGHAZ) regions. Phase transformation and metallographic analyses of simulated single-pass HAZ regions revealed lath martensite to be the only austenitic transformation product in the HAZ. Single-pass HAZ simulations revealed a similar hardness profile for low heat-input (LHI) and high heat-input (HHI) conditions, with higher hardness values being measured for the LHI samples. The measured hardness values were in good agreement with those from the GTA weld. Single-pass HAZ regions exhibited higher Charpy V-notch impact toughness than the BM at both test temperatures of 293 K and 223 K (20 °C and -50 °C). Hardness increases were observed for multipass HAZ simulations employing an initial CGHAZ simulation.

  8. Bandwidth-variable tunable optical filter unit for illumination and spectral imaging systems using thin-film optical band-pass filters.

    PubMed

    Hennig, Georg; Brittenham, Gary M; Sroka, Ronald; Kniebühler, Gesa; Vogeser, Michael; Stepp, Herbert

    2013-04-01

    An optical filter unit is demonstrated, which uses two successively arranged tunable thin-film optical band-pass filters and allows for simultaneous adjustment of the central wavelength in the spectral range 522-555 nm and of the spectral bandwidth in the range 3-16 nm with a wavelength switching time of 8 ms∕nm. Different spectral filter combinations can cover the complete visible spectral range. The transmitted intensity was found to decrease only linearly with the spectral bandwidth for bandwidths >6 nm, allowing a high maximum transmission efficiency of >75%. The image of a fiber bundle was spectrally filtered and analyzed in terms of position-dependency of the transmitted bandwidth and central wavelength.

  9. A floating-point digital receiver for MRI.

    PubMed

    Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki

    2002-07-01

    A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.

  10. Microiontophoresis of kanamycin from micropipettes in vitro.

    PubMed

    Echeverria, E L; Gonzalez, L Q

    1986-01-01

    1. Currents ranging between 10 and 50 nA were passed during ten minutes through 0,02 M kanamycin (KM) filled micropipettes with tips submerged in 25 microliters of KCl 0,15 M. 2. The amount of KM released was measured by radioimmunoassay. 3. It was found that the amount of kanamycin released could be computed by the equation y = 0,16x + 0,59; where "x" stands for charge passed in micro Coulombs and "y" stands for the amount released in nanograms. 4. When Faraday's law was used to fit the experimental data, it was found that the electrodes behave in an acceptable linear fashion. The range of the transport number for KM was 0,089 to 0,142 for six electrodes.

  11. [Crucial stages of embryogenesis of R. arvalis: Part 1. Linear measurements of embryonic structures].

    PubMed

    Severtsova, E A; Severtsov, A S

    2011-01-01

    Investigations of individual variability have allowed us to reveal the crucial (= nodal) stages in embryogenesis of the moor frog (Rana arvalis Nills.). These crucial stages are: the late gastrula stage (stages 18-20), the hatching stages (stages 32-33) and, apparently, early metamorphosis (stage 39). Moreover, we have found that each embryonic structure passes through its specific crucial stages. For example, stage 34 is crucial for the trait "tail width" but is internodal for all other embryonic traits. At this stage, larva passes from an attached to a free-swimming life style. We also found considerable differences between the different frog populations in the the level of developmental variability. These differences were associated with internodal developmental stages.

  12. Holography with a neutron interferometer

    NASA Astrophysics Data System (ADS)

    Sarenac, Dusan; Cory, David G.; Pushin, Dmitry A.; Heacock, Benjamin; Huber, Michael G.; Arif, M.; Clark, Charles W.; Shahi, Chandra B.; Cfref Collaboration

    2017-01-01

    We demonstrate the first neutron hologram of a macroscopic object. Using a Mach-Zehnder neutron interferometer in a configuration similar to the optical setup of Bazhenov et al., our reference beam passes through a fused silica prism that provides a linear phase gradient, and our object beam beam passes through an aluminum spiral phase plate with a topological charge of l = 2 , which was recently used in studies of neutron orbital angular momentum. Interference of reference and object beams in a two-dimensional imaging detector produces the hologram, which is a fork dislocation structure similar to those used to generate atomic and electronic vortex beams. Our neutron hologram is made in an interferometer in which at most one neutron is present at any given time.

  13. A simple filter circuit for denoising biomechanical impact signals.

    PubMed

    Subramaniam, Suba R; Georgakis, Apostolos

    2009-01-01

    We present a simple scheme for denoising non-stationary biomechanical signals with the aim of accurately estimating their second derivative (acceleration). The method is based on filtering in fractional Fourier domains using well-known low-pass filters in a way that amounts to a time-varying cut-off threshold. The resulting algorithm is linear and its design is facilitated by the relationship between the fractional Fourier transform and joint time-frequency representations. The implemented filter circuit employs only three low-order filters while its efficiency is further supported by the low computational complexity of the fractional Fourier transform. The results demonstrate that the proposed method can denoise the signals effectively and is more robust against noise as compared to conventional low-pass filters.

  14. The Aggregation of Single-Case Results Using Hierarchical Linear Models

    ERIC Educational Resources Information Center

    Van den Noortgate, Wim; Onghena, Patrick

    2007-01-01

    To investigate the generalizability of the results of single-case experimental studies, evaluating the effect of one or more treatments, in applied research various simultaneous and sequential replication strategies are used. We discuss one approach for aggregating the results for single-cases: the use of hierarchical linear models. This approach…

  15. Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

    NASA Astrophysics Data System (ADS)

    Tavassoly, M. K.; Daneshmand, R.; Rustaee, N.

    2018-06-01

    In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function f (n) = √ {n}, the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

  16. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  17. A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface

    NASA Astrophysics Data System (ADS)

    Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li

    2018-03-01

    Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.

  18. CMOS-based carbon nanotube pass-transistor logic integrated circuits

    PubMed Central

    Ding, Li; Zhang, Zhiyong; Liang, Shibo; Pei, Tian; Wang, Sheng; Li, Yan; Zhou, Weiwei; Liu, Jie; Peng, Lian-Mao

    2012-01-01

    Field-effect transistors based on carbon nanotubes have been shown to be faster and less energy consuming than their silicon counterparts. However, ensuring these advantages are maintained for integrated circuits is a challenge. Here we demonstrate that a significant reduction in the use of field-effect transistors can be achieved by constructing carbon nanotube-based integrated circuits based on a pass-transistor logic configuration, rather than a complementary metal-oxide semiconductor configuration. Logic gates are constructed on individual carbon nanotubes via a doping-free approach and with a single power supply at voltages as low as 0.4 V. The pass-transistor logic configurarion provides a significant simplification of the carbon nanotube-based circuit design, a higher potential circuit speed and a significant reduction in power consumption. In particular, a full adder, which requires a total of 28 field-effect transistors to construct in the usual complementary metal-oxide semiconductor circuit, uses only three pairs of n- and p-field-effect transistors in the pass-transistor logic configuration. PMID:22334080

  19. [Use of percutaneous needles in the feasability of single-port laparoscopic cholecystectomy].

    PubMed

    Dávila, Fausto; Tsin, Daniel; González, Gloria; Dávila, M Ruth; Lemus, José; Dávila, Ulises

    2014-04-01

    The usefulness of percutaneous needles (PN) to replace traditional assistance ports in mini-invasive techniques with a single port is analyzed and their feasibility for conducting a single port laparoscopic cholecystectomy (SPLC) is demonstrated. A retrospective, linear and descriptive study covering 2,431 patients with a diagnosis of acute and non-acute gallbladder disease has been conducted. The patients underwent a single port laparoscopic cholecystectomy using some type of PNs, replacing the assisting ports used in traditional laparoscopic cholecystechtomy (TLC). Based on the progressive use of PNs-reins (R), hooked needles (HN) and passing suture needles (PSN)-to carry out the SPLC technique, 3 groups have been established: A, B and C. The results were compared using a Student T test, odds ratio and CI and were analyzed by means of the SPSS software v. 13.0. The use of PNs showed an increased feasibility for the laparoscopic procedure, as they were included in the surgical technique. The R were useful when carrying out the SPLC in 78% of the cases and when the HK were added, the results increased to 88%. When using the 3 types (R, HN and PSN), the results increased by 96%. Statistical significance was obtained with these values: chi 2=67.13 and P<.001; odds ratio and 95% CI became significant when comparing the B/C, A/C, and A-B/C groups. The PNs, replacing the assisting ports in laparoscopy, make it possible to attain a feasibility of the process in 96% of the cases. This percentage was similar to what is achieved with the TLC, which places the one port laparoscopy surgery technique as an advantageous and economic alternative. This application of the PNs could be made extensive to other single-port techniques, with a multi-valve platform and natural orifice surgery. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  20. Model of DNA topology simplification has come full (supercoiled) circle after two decades of research. Comment on "Disentangling DNA molecules" by Alexander Vologodskii

    NASA Astrophysics Data System (ADS)

    Stasiak, Andrzej

    2016-09-01

    Being a geek of DNA topology, I remember very well the stir caused by 1997 Science paper showing that DNA topoisomerases have the ability to simplify DNA topology below the topological equilibrium values [1]. In their seminal experiments Rybenkov et al. [1] started with linear double-stranded DNA molecules with cohesive ends. The mutual cohesiveness of DNA ends was due to mutual complementarity of single-stranded extensions at both ends of linear double-stranded DNA molecules. When such DNA molecules were heated up and then slowly cooled down the single-stranded ends eventually annealed with each other causing DNA circularization. This experimental protocol permitted the authors to establish topological/thermodynamic equilibrium within samples of circularized DNA molecules. Among simple unknotted circles one also observed knotted and catenated DNA molecules. The fraction of knotted molecules in DNA samples at topological equilibrium was increasing with the length of DNA molecules undergoing slow circularization. The fraction of catenated molecules was increasing with the length and the concentration of the molecules undergoing slow circularization. Rybenkov et al. incubated then such equilibrated DNA samples with type II DNA topoisomerases, which pass DNA duplex regions through each other, and observed that as the result of it the fraction of knotted and catenated DNA molecules was dramatically decreased (up to 80-fold). This elegant experiment indicated for the first time that type II DNA topoisomerases acting on knotted or catenated DNA molecules have the ability to select among many potential sites of DNA-DNA passages these that result in DNA unknotting or decatenation. Without such a selection topoisomerases could only maintain the original topological equilibrium obtained during the slow cyclization. The big question was how DNA topoisomerases can be directed to do DNA-DNA passages that preferentially result in DNA unknotting and decatenation.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galatola, G.; Jazrawi, R.P.; Bridges, C.

    The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, whichmore » prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%).« less

  2. Can We Leapfrog? The Potential of Education Innovations to Rapidly Accelerate Progress. Skills for a Changing World

    ERIC Educational Resources Information Center

    Winthrop, Rebecca; McGivney, Eileen

    2017-01-01

    Today, examples of rapid, non-linear progress--sometimes called leapfrogging--are evident in a number of sectors. Often, these instances are most obvious in the developing world, where in telecommunications or banking, for example, whole phases of infrastructure and institution-building that other countries had to go through have been by-passed by…

  3. Random numbers from vacuum fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com; Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  4. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction.

    PubMed

    Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S

    2017-02-01

    B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

  5. Pseudoslit Spectrometer

    NASA Technical Reports Server (NTRS)

    Reuter, Dennis C.; McCabe, George H.

    2004-01-01

    The pseudoslit spectrometer is a conceptual optoelectronic instrument that would offer some of the advantages, without the disadvantages, of prior linear-variable etalon (LVE) spectrometers and prior slit spectrometers. The pseudoslit spectrometer is so named because it would not include a slit, but the combined effects of its optical components would include a spatial filtering effect approximately equivalent to that of a slit. Like a prior LVE spectrometer, the pseudoslit spectrometer would include an LVE (essentially, a wedge-like narrowband- pass filter, the pass wavelength of which varies linearly with position in one dimension) in a focal plane covering an imaging planar array of photodetectors. However, the pseudoslit spectrometer would be more efficient because unlike a prior LVE spectrometer, the pseudoslit spectrometer would not have to be scanned across an entire field of view to obtain the spectrum of an object of interest that may occupy only a small portion of the field of view. Like a prior slit spectrometer, the pseudoslit spectrometer could acquire the entire spectrum of such a small object without need for scanning. However, the pseudoslit spectrometer would be optically and mechanically simpler: it would have fewer components and, hence, would pose less of a problem of alignment of components and would be less vulnerable to misalignment.

  6. Principal Curves on Riemannian Manifolds.

    PubMed

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  7. Timing and technique impact the effectiveness of road-based, mobile acoustic surveys of bats.

    PubMed

    D'Acunto, Laura E; Pauli, Benjamin P; Moy, Mikko; Johnson, Kiara; Abu-Omar, Jasmine; Zollner, Patrick A

    2018-03-01

    Mobile acoustic surveys are a common method of surveying bat communities. However, there is a paucity of empirical studies exploring different methods for conducting mobile road surveys of bats. During 2013, we conducted acoustic mobile surveys on three routes in north-central Indiana, U.S.A., using (1) a standard road survey, (2) a road survey where the vehicle stopped for 1 min at every half mile of the survey route (called a "start-stop method"), and (3) a road survey with an individual using a bicycle. Linear mixed models with multiple comparison procedures revealed that when all bat passes were analyzed, using a bike to conduct mobile surveys detected significantly more bat passes per unit time compared to other methods. However, incorporating genus-level comparisons revealed no advantage to using a bike over vehicle-based methods. We also found that survey method had a significant effect when analyses were limited to those bat passes that could be identified to genus, with the start-stop method generally detecting more identifiable passes than the standard protocol or bike survey. Additionally, we found that significantly more identifiable bat passes (particularly those of the Eptesicus and Lasiurus genera) were detected in surveys conducted immediately following sunset. As governing agencies, particularly in North America, implement vehicle-based bat monitoring programs, it is important for researchers to understand how variations on protocols influence the inference that can be gained from different monitoring schemes.

  8. 1. West portal of Tunnel 3, contextual view to north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West portal of Tunnel 3, contextual view to north from milepost 537.6, 210mm lens. The single-lens searchlight-type block signals are Southern Pacific Common Standard signals, a type in use since the 1920s. Many of these have been replaced system-wide as a result of various mergers since the 1980s. Located in the Diamond Peak Wilderness of Willamette National Forest, Tunnel 3 passes beneath Pengra Pass. - Southern Pacific Railroad Natron Cutoff, Tunnel 3, Milepost 537.77, Odell Lake, Klamath County, OR

  9. Computing symmetrical strength of N-grams: a two pass filtering approach in automatic classification of text documents.

    PubMed

    Agnihotri, Deepak; Verma, Kesari; Tripathi, Priyanka

    2016-01-01

    The contiguous sequences of the terms (N-grams) in the documents are symmetrically distributed among different classes. The symmetrical distribution of the N-Grams raises uncertainty in the belongings of the N-Grams towards the class. In this paper, we focused on the selection of most discriminating N-Grams by reducing the effects of symmetrical distribution. In this context, a new text feature selection method named as the symmetrical strength of the N-Grams (SSNG) is proposed using a two pass filtering based feature selection (TPF) approach. Initially, in the first pass of the TPF, the SSNG method chooses various informative N-Grams from the entire extracted N-Grams of the corpus. Subsequently, in the second pass the well-known Chi Square (χ(2)) method is being used to select few most informative N-Grams. Further, to classify the documents the two standard classifiers Multinomial Naive Bayes and Linear Support Vector Machine have been applied on the ten standard text data sets. In most of the datasets, the experimental results state the performance and success rate of SSNG method using TPF approach is superior to the state-of-the-art methods viz. Mutual Information, Information Gain, Odds Ratio, Discriminating Feature Selection and χ(2).

  10. Genetic parameters for racing records in trotters using linear and generalized linear models.

    PubMed

    Suontama, M; van der Werf, J H J; Juga, J; Ojala, M

    2012-09-01

    Heritability and repeatability and genetic and phenotypic correlations were estimated for trotting race records with linear and generalized linear models using 510,519 records on 17,792 Finnhorses and 513,161 records on 25,536 Standardbred trotters. Heritability and repeatability were estimated for single racing time and earnings traits with linear models, and logarithmic scale was used for racing time and fourth-root scale for earnings to correct for nonnormality. Generalized linear models with a gamma distribution were applied for single racing time and with a multinomial distribution for single earnings traits. In addition, genetic parameters for annual earnings were estimated with linear models on the observed and fourth-root scales. Racing success traits of single placings, winnings, breaking stride, and disqualifications were analyzed using generalized linear models with a binomial distribution. Estimates of heritability were greatest for racing time, which ranged from 0.32 to 0.34. Estimates of heritability were low for single earnings with all distributions, ranging from 0.01 to 0.09. Annual earnings were closer to normal distribution than single earnings. Heritability estimates were moderate for annual earnings on the fourth-root scale, 0.19 for Finnhorses and 0.27 for Standardbred trotters. Heritability estimates for binomial racing success variables ranged from 0.04 to 0.12, being greatest for winnings and least for breaking stride. Genetic correlations among racing traits were high, whereas phenotypic correlations were mainly low to moderate, except correlations between racing time and earnings were high. On the basis of a moderate heritability and moderate to high repeatability for racing time and annual earnings, selection of horses for these traits is effective when based on a few repeated records. Because of high genetic correlations, direct selection for racing time and annual earnings would also result in good genetic response in racing success.

  11. Emittance growth due to multiple passes through H-minus stripping foil in Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, C. J.

    Expressions for transverse emittance growth due to turn-by-turn passes through the H-minus stripping foil in Booster are developed here from simple principles of statistics and simple assumptions about the initial distribution of particles incident on the foil. These are meant to complement work already presented by Zeno [1, 2, 3] and Brown [4]. The expressions show that while the average emittance hEi of the distribution simply increases linearly with turn number, the emittance E based on the mean square particle position does so with an additional oscillatory term that depends on the machine tune. It is shown that this termmore » can be ignored as long as the turn number is su ciently large and the tune is su ciently far from integer and half-integer values. Under these conditions the relation between hEi and E is simply hEi = 2 E. This relation is shown to hold for a Gaussian distribution that is matched to the machine lattice. Two symmetry conditions which help characterize the particle distribution are identi ed. These provide justi cation for calling E an emittance. It is shown that if the conditions are satis ed by the initial distribution, they will not be satis ed after a single traversal of the foil and one turn around the machine. However, on subsequent turns the distribution can (and does) return to satisfying the conditions. Moreover, for su ciently large turn number, the symmetry conditions are approximately satis ed. As already noted in [4], the emittance growth per turn is proportional to the lattice beta at the foil and the mean square angular kick received by protons passing through the foil. We take the former to be 5 m. The latter is obtained from simulations performed with the code TRIM [5]. Having these numbers in hand, actual numbers for emittance growth are presented. The reader may wish to start with Section 11 and refer to previous sections as needed or desired.« less

  12. Experimental evaluation of x-ray acoustic computed tomography for radiotherapy dosimetry applications.

    PubMed

    Hickling, Susannah; Lei, Hao; Hobson, Maritza; Léger, Pierre; Wang, Xueding; El Naqa, Issam

    2017-02-01

    The aim of this work was to experimentally demonstrate the feasibility of x-ray acoustic computed tomography (XACT) as a dosimetry tool in a clinical radiotherapy environment. The acoustic waves induced following a single pulse of linear accelerator irradiation in a water tank were detected with an immersion ultrasound transducer. By rotating the collimator and keeping the transducer stationary, acoustic signals at varying angles surrounding the field were detected and reconstructed to form an XACT image. Simulated XACT images were obtained using a previously developed simulation workflow. Profiles extracted from experimental and simulated XACT images were compared to profiles measured with an ion chamber. A variety of radiation field sizes and shapes were investigated. XACT images resembling the geometry of the delivered radiation field were obtained for fields ranging from simple squares to more complex shapes. When comparing profiles extracted from simulated and experimental XACT images of a 4 cm × 4 cm field, 97% of points were found to pass a 3%/3 mm gamma test. Agreement between simulated and experimental XACT images worsened when comparing fields with fine details. Profiles extracted from experimental XACT images were compared to profiles obtained through clinical ion chamber measurements, confirming that the intensity of XACT images is related to deposited radiation dose. Seventy-seven percent of the points in a profile extracted from an experimental XACT image of a 4 cm × 4 cm field passed a 7%/4 mm gamma test when compared to an ion chamber measured profile. In a complicated puzzle-piece shaped field, 86% of the points in an XACT extracted profile passed a 7%/4 mm gamma test. XACT images with intensity related to the spatial distribution of deposited dose in a water tank were formed for a variety of field sizes and shapes. XACT has the potential to be a useful tool for absolute, relative and in vivo dosimetry. © 2016 American Association of Physicists in Medicine.

  13. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  14. Distributed coupling high efficiency linear accelerator

    DOEpatents

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  15. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  16. Feasibility of a Modified E-PASS and POSSUM System for Postoperative Risk Assessment in Patients with Spinal Disease.

    PubMed

    Chun, Dong Hyun; Kim, Do Young; Choi, Sun Kyu; Shin, Dong Ah; Ha, Yoon; Kim, Keung Nyun; Yoon, Do Heum; Yi, Seong

    2018-04-01

    This retrospective case control study aimed to evaluate the feasibility of using Estimation of Physiological Ability and Surgical Stress (E-PASS) and Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity (POSSUM) systems in patients undergoing spinal surgical procedures. Degenerative spine disease has increased in incidence in aging societies, as has the number of older adult patients undergoing spinal surgery. Many older adults are at a high surgical risk because of comorbidity and poor general health. We retrospectively reviewed 217 patients who had undergone spinal surgery at a single tertiary care. We investigated complications within 1 month after surgery. Criteria for both skin incision in E-PASS and operation magnitude in the POSSUM system were modified to fit spine surgery. We calculated the E-PASS and POSSUM scores for enrolled patients, and investigated the relationship between postoperative complications and both surgical risk scoring systems. To reinforce the predictive ability of the E-PASS system, we adjusted equations and developed modified E-PASS systems. The overall complication rate for spinal surgery was 22.6%. Forty-nine patients experienced 58 postoperative complications. Nineteen major complications, including hematoma, deep infection, pleural effusion, progression of weakness, pulmonary edema, esophageal injury, myocardial infarction, pneumonia, reoperation, renal failure, sepsis, and death, occurred in 17 patients. The area under the receiver operating characteristic curve (AUC) for predicted postoperative complications after spine surgery was 0.588 for E-PASS and 0.721 for POSSUM. For predicted major postoperative complications, the AUC increased to 0.619 for E-PASS and 0.842 for POSSUM. The AUC of the E-PASS system increased from 0.588 to 0.694 with the Modified E-PASS equation. The POSSUM system may be more useful than the E-PASS system for estimating postoperative surgical risk in patients undergoing spine surgery. The preoperative risk scores of E-PASS and POSSUM can be useful for predicting postoperative major complications. To enhance the predictability of the scoring systems, using of modified equations based on spine surgery-specific factors may help ensure surgical outcomes and patient safety. Copyright © 2017. Published by Elsevier Inc.

  17. Comparison of PASS Assessment Scores in Single-Gender and Heterogeneous Middle Schools in South Carolina

    ERIC Educational Resources Information Center

    Canada, Patricia Oxendine

    2012-01-01

    In response to the mandates of No Child Left Behind, (NCLB), educators across the country struggle to close the gaps between males and females. Some of the physiological differences existing between the male and female brain suggest support for single-gender instruction, which is on the rise within this country as well as other parts of the world.…

  18. Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals

    NASA Astrophysics Data System (ADS)

    Uçar, N.

    1997-03-01

    The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.

  19. 3' Homologous Free Ends are Required for Stable Joint Molecule Formation by the RecA and Single-Stranded Binding Proteins of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Konforti, Boyana B.; Davis, Ronald W.

    1987-02-01

    The RecA protein of Escherichia coli is important for genetic recombination in vivo and can promote synapsis and strand exchange in vitro. The DNA pairing and strand exchange reactions have been well characterized in reactions with circular single strands and linear duplexes, but little is known about these two processes using substrates more characteristic of those likely to exist in the cell. Single-stranded linear DNAs were prepared by separating strands of duplex molecules or by cleaving single-stranded circles at a unique restriction site created by annealing a short defined oligonucleotide to the circle. Analysis by gel electrophoresis and electron microscopy revealed that, in the presence of RecA and single-stranded binding proteins, a free 3' homologous end is essential for stable joint molecule formation between linear single-stranded and circular duplex DNA.

  20. On the use of Lineal Energy Measurements to Estimate Linear Energy Transfer Spectra

    NASA Technical Reports Server (NTRS)

    Adams, David A.; Howell, Leonard W., Jr.; Adam, James H., Jr.

    2007-01-01

    This paper examines the error resulting from using a lineal energy spectrum to represent a linear energy transfer spectrum for applications in the space radiation environment. Lineal energy and linear energy transfer spectra are compared in three diverse but typical space radiation environments. Different detector geometries are also studied to determine how they affect the error. LET spectra are typically used to compute dose equivalent for radiation hazard estimation and single event effect rates to estimate radiation effects on electronics. The errors in the estimations of dose equivalent and single event rates that result from substituting lineal energy spectra for linear energy spectra are examined. It is found that this substitution has little effect on dose equivalent estimates in interplanetary quiet-time environment regardless of detector shape. The substitution has more of an effect when the environment is dominated by solar energetic particles or trapped radiation, but even then the errors are minor especially if a spherical detector is used. For single event estimation, the effect of the substitution can be large if the threshold for the single event effect is near where the linear energy spectrum drops suddenly. It is judged that single event rate estimates made from lineal energy spectra are unreliable and the use of lineal energy spectra for single event rate estimation should be avoided.

  1. Discerning measures of conscious brain processes associated with superior early motor performance: Capacity, coactivation, and character.

    PubMed

    van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W

    2017-01-01

    This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.

  2. Comparison of distortions of complex aluminium sections formed in single-step and incremental roll bending

    NASA Astrophysics Data System (ADS)

    Farstad, Jan Magnus Granheim; Netland, Øyvind; Welo, Torgeir

    2017-10-01

    This paper presents the results from a second series of experiments made to study local plastic deformations of a complex, hollow aluminium extrusion formed in roll bending. The first experimental series utilizing a single step roll bending sequence has been presented at the ESAFORM 2016 conference by Farstad et. al. In this recent experimental series, the same aluminium extrusion was formed in incremental steps. The objective was to investigate local distortions of the deformed cross section as a result of different number of steps employed to arrive at the final global shape of the extrusion. Moreover, the results between the two experimental series are compared, focusing on identifying differences in both the desired and the undesired deformations taking place as a result of bending and contact stresses. The profiles formed through multiple passes had less undesirable local distortions of the cross-section than the profiles that were formed in a single pass. However, the springback effect was more pronounced, meaning that the released radii of the profiles were higher.

  3. PASS2: an automated database of protein alignments organised as structural superfamilies.

    PubMed

    Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2004-04-02

    The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html

  4. Centerline pavement markings on two-lane mountain highways.

    DOT National Transportation Integrated Search

    1983-01-01

    The Virginia Department of Highways and Transportation uses a lane marking designated mountain pavement marking (MPM) on two-lane highways in mountainous areas. This special marking consists of a single broken yellow line supplemented with "PASS WITH...

  5. Predicting Thermal Behavior of Secondary Organic Aerosols

    EPA Science Inventory

    Volume concentrations of steady-state secondary organic aerosol (SOA) were measured in 139 steadystate single precursor hydrocarbon oxidation experiments after passing through a temperature controlled inlet tube. Higher temperatures resulted in greater loss of particle volume, wi...

  6. Synthesis and Characterization of a New Modification of the Quasi-Low-Dimensional Compound KMo 4O 6

    NASA Astrophysics Data System (ADS)

    Ramanujachary, K. V.; Greenblatt, D. M.; Jones, E. B.; McCarroll, W. H.

    1993-01-01

    Prismatic single crystals, up to 3 mm in length, of a third modification of KMo4O6 have been prepared by electrolysis of a melt with a high ratio of K2MoO4 to MoO3. Single-crystal X-ray diffraction analysis shows that the structure conforms more closely than the other two modifications to that reported originally for NaMo4O6. When current is passed parallel to the tetragonal c axis (i.e., parallel to the trans-edge-sharing chains of Mo6 octahedra) the compound displays metallic conductivity down to 100 K, where a broad transition to semiconducting behavior occurs. If the current is passed perpendicular to the c axis the conductivity is approximately a factor of 5 lower. Magnetic susceptibility measurements on a randomly oriented collection of crystals showed Pauli paramagnetic behavior with a small Curie tail at low temperatures.

  7. Arthroscopic labral repair of the hip, using a through-labral double-stranded single-pass suture technique.

    PubMed

    Ye, Ken; Singh, Parminder J

    2014-10-01

    The normal labrum is crucial to the biomechanical function of the hip joint, not only increasing the surface area and depth of the acetabulum but also maintaining a suction seal to assist in normal synovial fluid flow from the peripheral to the central compartment. Simple loop suture repairs of the labrum may evert the labrum, thus losing the optimal seal, as well as causing abrasion of the articular cartilage. Vertical mattress suture and labral base fixation techniques aim to leave the free edge of the labrum intact and undisturbed, therefore improving the contact of the labrum to the femoral head and neck to improve the seal of the acetabulum. We aim to describe a double-stranded single-pass vertical mattress suture technique that may allow greater versatility to the surgeon in repairing thinner labrums while still achieving a free and continuous free edge.

  8. Cooling arrangement for a tapered turbine blade

    DOEpatents

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  9. Frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akulov, V A; Kablukov, S I; Babin, Sergei A

    2012-02-28

    This paper presents an experimental study of frequency doubling of a tunable ytterbium-doped fibre laser in KTP crystals phase-matched in the XY and YZ planes. In the XY plane, we obtained continuous tuning in the range 528 - 540 nm through intracavity frequency doubling. The second-harmonic power reached 450 mW for 18 W of multimode diode pump power, which was five times higher in comparison with single-pass frequency doubling. In a single-pass configuration in the YZ plane, we obtained a wide tuning range (527 - 551 nm) in the green spectral region and a second-harmonic power of {approx}10 mW. Themore » tuning range was only limited by the mechanical performance of the fibre Bragg grating and can potentially be extended to the entire lasing range of the ytterbium-doped fibre laser.« less

  10. Rapid and efficient detection of single chromophore molecules in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Li-Qiang; Davis, Lloyd M.

    1995-06-01

    The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.

  11. Comparison of Pelican single-use multibite biopsy forceps and traditional double-bite forceps: evaluation in a porcine model.

    PubMed

    Zaidman, Jeffrey S; Frederick, William G; Furth, Emma E; Su, Chinyu G; Ginsberg, Gregory G

    2006-10-01

    The multibite biopsy forceps is intended for consecutive acquisition of numerous tissue specimens with a single pass. The Pelican multibite forceps is equipped with a sleeve for tissue retention that allows up to 6 specimens to be obtained with each pass of the device through the accessory channel. Reducing the need for device exchange could decrease the total procedure time for colon cancer surveillance in patients with longstanding inflammatory bowel disease (IBD). The aim of this study was to evaluate a new multibite biopsy forceps in comparison with a standard double-bite forceps. Prospective randomized animal model trial. Multicenter university and community hospitals. By using a live porcine model, multiple colonoscopic biopsy specimens were obtained with both the Pelican multibite forceps and the Radial Jaw 3 (RJ3) double-bite forceps to mimic colorectal cancer surveillance in patients with IBD. Six biopsy specimens were obtained with each of 6 passes when using the Pelican forceps, and 2 biopsy specimens were obtained with each of 18 passes when using the RJ3 forceps. All trials were timed. Two independent pathologists blinded to the forceps used evaluated the specimens. Tissue acquisition when using the Pelican multibite forceps was significantly faster than with a standard double-bite forceps. The devices compared equivalently for specimen retention and quality. The operator could not be blinded to the devices used. This study uses an animal model to extrapolate how the devices might perform in human use. These findings support the evaluation of the Pelican forceps for colon cancer surveillance in patients with longstanding IBD.

  12. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    NASA Technical Reports Server (NTRS)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  13. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm

    PubMed Central

    2015-01-01

    This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168

  14. The relationship between hospital managers' leadership style and effectiveness with passing managerial training courses.

    PubMed

    Saleh Ardestani, Abbas; Sarabi Asiabar, Ali; Ebadifard Azar, Farbod; Abtahi, Seyyed Ali

    2016-01-01

    Background: Effective leadership that rises from managerial training courses is highly constructive in managing hospitals more effectively. This study aims at investigating the relationship between leadership effectiveness with providing management training courses for hospital managers. Methods: This was a cross-sectional study carried out on top and middle managers of 16 hospitals of Iran University of Medical Sciences. As a sample, 96 participants were selected through census method. Data were collected using leadership effectiveness and style questionnaire, whose validity and reliability were certified in previous studies. Pearson correlation coefficient and linear regressions were used for data analysis. Results: Leadership effectiveness score was estimated to be 4.36, showing a suitable status for managers' leadership effectiveness compared to the set criteria. No significant difference was found between leadership effectiveness and styles among managers who had passed the training courses with those who had not (p>0.05). Conclusion: Passing managerial training courses may have no significant effect on managers' leadership effectiveness, but there may be some other variables which should be meticulously studied.

  15. High pressure homogenization vs heat treatment: safety and functional properties of liquid whole egg.

    PubMed

    Patrignani, Francesca; Vannini, Lucia; Sado Kamdem, Sylvain L; Hernando, Isabel; Marco-Molés, Raquel; Guerzoni, M Elisabetta; Lanciotti, Rosalba

    2013-10-01

    This research investigated the potential of multi-pass homogenization treatment for the inactivation of Salmonella enterica serovar Enteritidis inoculated at different levels in liquid whole egg (LWE) comparing the efficacy of this treatment with a traditional thermal one performed at 65 °C. Moreover, the effects of high pressure treatment (HPH) on structural and functional properties such as viscosity, microstructure and foaming abilities of LWE were investigated. The data obtained suggested that the multi-pass high pressure treatment at 100 MPa of S. enterica serovar Enteritidis inoculated in LWE at 7 and 4 log CFU/ml resulted in a first order inactivation kinetic, while the thermal inactivation curves of S. enterica serovar Enteritidis inoculated at 8 and 4 log CFU/ml presented a non-linear behaviour, with a marked tail after 3 min of treatment at 65 °C. Additionally, HPH treatment caused an increase in foaming capacity of LWE, with respect to the untreated samples, passing from values of 26% of the control to 50% of pressure treated samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Detection of volatile organic compounds using an optical fiber sensor coated with a sol-gel silica layer containing immobilized Nile red

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Lian, Xiaokang; Mallik, Arun Kumar; Han, Wei; Wei, Fangfang; Yuan, Jinhui; Yu, Chongxiu; Farrell, Gerald; Semenova, Yuliya; Wu, Qiang

    2017-04-01

    A simple volatile organic compound (VOC) sensor based on a tapered small core singlemode fiber (SCSMF) structure is reported. The tapered SCSMF fiber structure with a waist diameter of 7.0 μm is fabricated using a customized microheater brushing technique. Silica based material containing immobilized Nile red was prepared by a sol-gel method and was used as a coating applied to the surface of the tapered fiber structure. Different coating thicknesses created by a 2-pass and 4-pass coating process are investigated. The experiments demonstrate that both sensors show a linear response at different gas concentrations to all three tested VOCs (methanol, ethanol and acetone). The sensor with a thicker coating shows better sensitivities but longer response and recovery times. The best measurement resolutions for the 4-pass coating sensor are estimated to be 2.3 ppm, 1.5 ppm and 3.1 ppm for methanol, ethanol and acetone, respectively. The fastest response and recovery time of 1 min and 5 min are demonstrated by the sensor in the case of methanol.

  17. The relationship between hospital managers' leadership style and effectiveness with passing managerial training courses

    PubMed Central

    Saleh Ardestani, Abbas; Sarabi Asiabar, Ali; Ebadifard Azar, Farbod; Abtahi, Seyyed Ali

    2016-01-01

    Background: Effective leadership that rises from managerial training courses is highly constructive in managing hospitals more effectively. This study aims at investigating the relationship between leadership effectiveness with providing management training courses for hospital managers. Methods: This was a cross-sectional study carried out on top and middle managers of 16 hospitals of Iran University of Medical Sciences. As a sample, 96 participants were selected through census method. Data were collected using leadership effectiveness and style questionnaire, whose validity and reliability were certified in previous studies. Pearson correlation coefficient and linear regressions were used for data analysis. Results: Leadership effectiveness score was estimated to be 4.36, showing a suitable status for managers' leadership effectiveness compared to the set criteria. No significant difference was found between leadership effectiveness and styles among managers who had passed the training courses with those who had not (p>0.05). Conclusion: Passing managerial training courses may have no significant effect on managers' leadership effectiveness, but there may be some other variables which should be meticulously studied. PMID:28491840

  18. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  19. Parallel and fault-tolerant algorithms for hypercube multiprocessors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aykanat, C.

    1988-01-01

    Several techniques for increasing the performance of parallel algorithms on distributed-memory message-passing multi-processor systems are investigated. These techniques are effectively implemented for the parallelization of the Scaled Conjugate Gradient (SCG) algorithm on a hypercube connected message-passing multi-processor. Significant performance improvement is achieved by using these techniques. The SCG algorithm is used for the solution phase of an FE modeling system. Almost linear speed-up is achieved, and it is shown that hypercube topology is scalable for an FE class of problem. The SCG algorithm is also shown to be suitable for vectorization, and near supercomputer performance is achieved on a vectormore » hypercube multiprocessor by exploiting both parallelization and vectorization. Fault-tolerance issues for the parallel SCG algorithm and for the hypercube topology are also addressed.« less

  20. Advanced statistics: linear regression, part I: simple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    Simple linear regression is a mathematical technique used to model the relationship between a single independent predictor variable and a single dependent outcome variable. In this, the first of a two-part series exploring concepts in linear regression analysis, the four fundamental assumptions and the mechanics of simple linear regression are reviewed. The most common technique used to derive the regression line, the method of least squares, is described. The reader will be acquainted with other important concepts in simple linear regression, including: variable transformations, dummy variables, relationship to inference testing, and leverage. Simplified clinical examples with small datasets and graphic models are used to illustrate the points. This will provide a foundation for the second article in this series: a discussion of multiple linear regression, in which there are multiple predictor variables.

  1. Navigation and Dispersion Analysis of the First Orion Exploration Mission

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; D'Souza, Christopher

    2015-01-01

    This paper seeks to present the Orion EM-1 Linear Covariance Analysis for the DRO mission. The delta V statistics for each maneuver are presented. Included in the memo are several sensitivity analyses: variation in the time of OTC-1 (the first outbound correction maneuver), variation in the accuracy of the trans-Lunar injection, and variation in the length of the optical navigation passes.

  2. Effectiveness of backpack electrofishing for removal of non-native fishes from a small warm-water stream

    USGS Publications Warehouse

    Ward, David L.; O'neill, Matthew W.; Ka'apu-Lyons, Cassie

    2015-01-01

    Electrofishing is commonly used when renovating small streams to remove nuisance fishes but the likelihood of complete eradication of unwanted species, particularly warm-water fishes, is unknown. In October of 2008, we electrofished Bonita Creek, a small stream with base flows (<0.56 m3/s) in southern Arizona, and then treated the stream with rotenone to kill all of the remaining fish and quantify the effectiveness of single and multiple-pass electro fishing. Six, 100-m transects were electro fished on three consecutive days followed by a single treatment with rotenone. Fish caught using electrofishing were identified, counted and removed from each transect daily and then compared to numbers of dead fish collected during the subsequent rotenone application. Electrofishing effectiveness was highly variable among transects. Single-pass electrofishing caught an average of 23% (95% CI=5 to 40%) of the fish present, and three-pass electrofishing on consecutive days caught on average 55% (95% CI=28 to 83%) of the fish in each transect. Native Arizona fishes were more susceptible to electrofishing (77 % captured) than non-native species (54% captured), though native fish were rare. Transects in Bonita Creek averaged 3.6±1.5 m wide and 0.25±0.20 m deep (max depth 1.2 m). Bonita Creek is a small first-order stream which exhibits ideal conditions for backpack electrofishing, yet we captured a relatively small percentage of the fish present. This suggests that complete removal of non-native warm-water fishes using backpack electrofishing is not likely to be successful, especially in larger more complex streams.

  3. Technology optimization techniques for multicomponent optical band-pass filter manufacturing

    NASA Astrophysics Data System (ADS)

    Baranov, Yuri P.; Gryaznov, Georgiy M.; Rodionov, Andrey Y.; Obrezkov, Andrey V.; Medvedev, Roman V.; Chivanov, Alexey N.

    2016-04-01

    Narrowband optical devices (like IR-sensing devices, celestial navigation systems, solar-blind UV-systems and many others) are one of the most fast-growing areas in optical manufacturing. However, signal strength in this type of applications is quite low and performance of devices depends on attenuation level of wavelengths out of operating range. Modern detectors (photodiodes, matrix detectors, photomultiplier tubes and others) usually do not have required selectivity or have higher sensitivity to background spectrum at worst. Manufacturing of a single component band-pass filter with high attenuation level of wavelength is resource-intensive task. Sometimes it's not possible to find solution for this problem using existing technologies. Different types of filters have technology variations of transmittance profile shape due to various production factors. At the same time there are multiple tasks with strict requirements for background spectrum attenuation in narrowband optical devices. For example, in solar-blind UV-system wavelengths above 290-300 nm must be attenuated by 180dB. In this paper techniques of multi-component optical band-pass filters assembly from multiple single elements with technology variations of transmittance profile shape for optimal signal-tonoise ratio (SNR) were proposed. Relationships between signal-to-noise ratio and different characteristics of transmittance profile shape were shown. Obtained practical results were in rather good agreement with our calculations.

  4. Study of free-piston Stirling engine driven linear alternators

    NASA Technical Reports Server (NTRS)

    Nasar, S. A.; Chen, C.

    1987-01-01

    The analysis, design and operation of single phase, single slot tubular permanent magnet linear alternator is presented. Included is the no-load and on-load magnetic field investigation, permanent magnet's leakage field analysis, parameter identification, design guidelines and an optimal design of a permanent magnet linear alternator. For analysis of the magnetic field, a simplified magnetic circuit is utilized. The analysis accounts for saturation, leakage and armature reaction.

  5. Comparison of the sensitivity and specificity of 5 image sets of dual-energy computed tomography for detecting first-pass myocardial perfusion defects compared with positron emission tomography.

    PubMed

    Li, Wenhuan; Zhu, Xiaolian; Li, Jing; Peng, Cheng; Chen, Nan; Qi, Zhigang; Yang, Qi; Gao, Yan; Zhao, Yang; Sun, Kai; Li, Kuncheng

    2014-12-01

    The sensitivity and specificity of 5 different image sets of dual-energy computed tomography (DECT) for the detection of first-pass myocardial perfusion defects have not systematically been compared using positron emission tomography (PET) as a reference standard. Forty-nine consecutive patients, with known or strongly suspected of coronary artery disease, were prospectively enrolled in our study. Cardiac DECT was performed at rest state using a second-generation 128-slice dual-source CT. The DECT data were reconstructed to iodine maps, monoenergetic images, 100 kV images, nonlinearly blended images, and linearly blended images by different postprocessing techniques. The myocardial perfusion defects on DECT images were visually assessed by 5 observers, using standard 17-segment model. Diagnostic accuracy of 5 image sets was assessed using nitrogen-13 ammonia PET as the gold standard. Discrimination was quantified using the area under the receiver operating characteristic curve (AUC), and AUCs were compared using the method of DeLong. The DECT and PET examinations were successfully completed in 30 patients and a total of 90 territories and 510 segments were analyzed. Cardiac PET revealed myocardial perfusion defects in 56 territories (62%) and 209 segments (41%). The AUC of iodine maps, monoenergetic images, 100 kV images, nonlinearly blended images, and linearly blended images were 0.986, 0.934, 0.913, 0.881, and 0.871, respectively, on a per-territory basis. These values were 0.922, 0.813, 0.779, 0.763, and 0.728, respectively, on a per-segment basis. DECT iodine maps shows high sensitivity and specificity, and is superior to other DECT image sets for the detection of myocardial perfusion defects in the first-pass myocardial perfusion.

  6. Improved nine-node shell element MITC9i with reduced distortion sensitivity

    NASA Astrophysics Data System (ADS)

    Wisniewski, K.; Turska, E.

    2017-11-01

    The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447-1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.

  7. ELM: the status of the 2010 eukaryotic linear motif resource

    PubMed Central

    Gould, Cathryn M.; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E.; Haslam, Niall; Weatheritt, Robert J.; Budd, Aidan; Hughes, Tim; Paś, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J.

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  8. Solid-state Yb : YAG amplifier pumped by a single-mode laser at 920 nm

    NASA Astrophysics Data System (ADS)

    Obronov, I. V.; Demkin, A. S.; Myasnikov, D. V.

    2018-03-01

    An optical amplifier scheme for ultrashort 1030-nm pulses is proposed based on an Yb : YAG crystal with axial pumping by a transverse single-mode laser at a wavelength of 920 nm. A small-signal gain up to 40 dB per pass with a high output beam quality is demonstrated. The maximum average power is 14 W with a slope efficiency exceeding 50%.

  9. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... may be used singly in staggered fashion on alternate sides of the channel provided they are spaced at... should pass between the buoys. (d) Where there is no well-defined channel or when a body of water is...

  10. 33 CFR 66.10-15 - Aids to navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... may be used singly in staggered fashion on alternate sides of the channel provided they are spaced at... should pass between the buoys. (d) Where there is no well-defined channel or when a body of water is...

  11. Renal Replacement Therapy in Support of Combat Operations

    DTIC Science & Technology

    2008-07-01

    potentially cardiotoxic electro- lyte abnormalities ( hyperkalemia , hyper- phosphatemia, hypocalcemia). AKI is ex- acerbated further by hypovolemia...and is inefficient at providing metabolic control for highly catabolic or hyperkalemia pa- tients. Conventional single-pass dialysis sys- tems are the

  12. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er:fiber lasers

    NASA Astrophysics Data System (ADS)

    Cassinerio, Marco; Gambetta, Alessio; Coluccelli, Nicola; Laporta, Paolo; Galzerano, Gianluca

    2014-06-01

    We report on a compact scheme for absolute referencing and coherent averaging for dual-comb based spectrometers, exploiting a single continuous-wave (CW) laser in a transfer oscillator configuration. The same CW laser is used for both absolute calibration of the optical frequency axis and the generation of a correction signal which is used for a real-time jitter compensation in a fully electrical feed-forward scheme. The technique is applied to a near-infrared spectrometer based on a pair of free-running mode-locked Er:fiber lasers, allowing to perform real-time absolute-frequency measurements over an optical bandwidth of more than 25 nm, with coherent interferogram averaging over 1-s acquisition time, leading to a signal-to-noise ratio improvement of 29 dB over the 50 μs single shot acquisition. Using 10-cm single pass cell, a value of 1.9 × 10-4 cm-1 Hz-0.5 noise-equivalent-absorption over 1 s integration time is obtained, which can be further scaled down with a multi-pass or resonant cavity. The adoption of a single CW laser, together with the absence of optical locks, and the full-fiber design makes this spectrometer a robust and compact system to be employed in gas-sensing applications.

  13. Seasonal dependence of large-scale Birkeland currents

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Iijima, T.; Potemra, T. A.; Sugiura, M.

    1981-01-01

    Seasonal variations of large-scale Birkeland currents are examined in a study of the source mechanisms and the closure of the three-dimensional current systems in the ionosphere. Vector magnetic field data acquired by the TRIAD satellite in the Northern Hemisphere were analyzed for the statistics of single sheet and double sheet Birkeland currents during 555 passes during the summer and 408 passes during the winter. The single sheet currents are observed more frequently in the dayside of the auroral zone, and more often in summer than in winter. The intensities of both the single and double dayside currents are found to be greater in the summer than in the winter by a factor of two, while the intensities of the double sheet Birkeland currents on the nightside do not show a significant difference from summer to winter. Both the single and double sheet currents are found at higher latitudes in the summer than in the winter on the dayside. Results suggest that the Birkeland current intensities are controlled by the ionospheric conductivity in the polar region, and that the currents close via the polar cap when the conductivity there is sufficiently high. It is also concluded that an important source of these currents must be a voltage generator in the magnetosphere.

  14. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  15. Variational theory of the tapered impedance transformer

    NASA Astrophysics Data System (ADS)

    Erickson, Robert P.

    2018-02-01

    Superconducting amplifiers are key components of modern quantum information circuits. To minimize information loss and reduce oscillations, a tapered impedance transformer of new design is needed at the input/output for compliance with other 50 Ω components. We show that an optimal tapered transformer of length ℓ, joining the amplifier to the input line, can be constructed using a variational principle applied to the linearized Riccati equation describing the voltage reflection coefficient of the taper. For an incident signal of frequency ωo, the variational solution results in an infinite set of equivalent optimal transformers, each with the same form for the reflection coefficient, each able to eliminate input-line reflections. For the special case of optimal lossless transformers, the group velocity vg is shown to be constant, with characteristic impedance dependent on frequency ωc = πvg/ℓ. While these solutions inhibit input-line reflections only for frequency ωo, a subset of optimal lossless transformers with ωo significantly detuned from ωc does exhibit a wide bandpass. Specifically, by choosing ωo → 0 (ωo → ∞), we obtain a subset of optimal low-pass (high-pass) lossless tapers with bandwidth (0, ˜ ωc) [(˜ωc, ∞)]. From the subset of solutions, we derive both the wide-band low-pass and high-pass transformers, and we discuss the extent to which they can be realized given fabrication constraints. In particular, we demonstrate the superior reflection response of our high-pass transformer when compared to other taper designs. Our results have application to amplifiers, transceivers, and other components sensitive to impedance mismatch.

  16. The Impact of Dose Rate on the Accuracy of Step-and-Shoot Intensity-modulated Radiation Therapy Quality Assurance Using Varian 2300CD.

    PubMed

    Njeh, Christopher F; Salmon, Howard W; Schiller, Claire

    2017-01-01

    Intensity-modulated radiation therapy (IMRT) delivery using "step-and-shoot" technique on Varian C-Series linear accelerator (linac) is influenced by the communication frequency between the multileaf collimator and linac controllers. Hence, the dose delivery accuracy is affected by the dose rate. Our aim was to quantify the impact of using two dose rates on plan quality assurance (QA). Twenty IMRT patients were selected for this study. The plan QA was measured at two different dose rates. A gamma analysis was performed, and the degree of plan modulation on the QA pass rate was also evaluated in terms of average monitor unit per segment (MU/segment) and the total number of segments. The mean percentage gamma pass rate of 94.9% and 93.5% for 300 MU/min and 600 MU/min dose rate, respectively, was observed. There was a significant ( P = 0.001) decrease in percentage gamma pass rate when the dose rate was increased from 300 MU/min to 600 MU/min. There was a weak, but significant association between the percentage pass rate at both dose rate and total number of segments. The total number of MU was significantly correlated to the total number of segments ( r = 0.59). We found a positive correlation between the percentage pass rate and mean MU/segment, r = 0.52 and r = 0.57 for 300 MU/min and 600 MU/min, respectively. IMRT delivery using step-and-shoot technique on Varian 2300CD is impacted by the dose rate and the total amount of segments.

  17. Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].

    PubMed

    Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph

    2018-04-01

    Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.

  18. Rotary engine cooling system

    NASA Technical Reports Server (NTRS)

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  19. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.

    PubMed

    Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P

    2016-08-01

    In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel

    NASA Astrophysics Data System (ADS)

    Kang, Yongjoon; Park, Gitae; Jeong, Seonghoon; Lee, Changhee

    2018-01-01

    A large fraction of reheated weld metal is formed during multi-pass welding, which significantly affects the mechanical properties (especially toughness) of welded structures. In this study, the low-temperature toughness of the simulated reheated zone in multi-pass weld metal was evaluated and compared to that of the as-deposited zone using microstructural analyses. Two kinds of high-strength steel welds with different hardenabilities were produced by single-pass, bead-in-groove welding, and both welds were thermally cycled to peak temperatures above Ac3 using a Gleeble simulator. When the weld metals were reheated, their toughness deteriorated in response to the increase in the fraction of detrimental microstructural components, i.e., grain boundary ferrite and coalesced bainite in the weld metals with low and high hardenabilities, respectively. In addition, toughness deterioration occurred in conjunction with an increase in the effective grain size, which was attributed to the decrease in nucleation probability of acicular ferrite; the main cause for this decrease changed depending on the hardenability of the weld metal.

  1. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  2. Computational simulation of weld microstructure and distortion by considering process mechanics

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  3. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    Meridional diffusivity is assessed in this paper for a baroclinically unstable jet in a high-latitudeIdealized Circumpolar Current (ICC) using the Model for Prediction Across Scales-Ocean (MPAS-O) and the online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) diagnostic via space-time dispersion of particle clusters over 120 monthly realizations of O(10 6) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000 m 2 s -1) and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100 m 2 s -1) due tomore » the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥ 80% of the total diffusivity relative to mean shear [O(100 m 2 s -1)], linear waves [O(1000 m 2 s -1)], and undecomposed full diffusivity [O(6000 m 2 s -1)]. Finally, diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.« less

  5. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  6. Non-linear optical crystal vibration sensing device

    DOEpatents

    Kalibjian, R.

    1994-08-09

    A non-linear optical crystal vibration sensing device including a photorefractive crystal and a laser is disclosed. The laser produces a coherent light beam which is split by a beam splitter into a first laser beam and a second laser beam. After passing through the crystal the first laser beam is counter-propagated back upon itself by a retro-mirror, creating a third laser beam. The laser beams are modulated, due to the mixing effect within the crystal by vibration of the crystal. In the third laser beam, modulation is stable and such modulation is converted by a photodetector into a usable electrical output, intensity modulated in accordance with vibration applied to the crystal. 3 figs.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasiello, Matteo; Vlah, Zvonimir

    A specific value for the cosmological constant Λ can account for late-time cosmic acceleration. However, motivated by the so-called cosmological constant problem(s), several alternative mechanisms have been explored. To date, a host of well-studied dynamical dark energy and modified gravity models exists. Going beyond ΛCDM often comes with additional degrees of freedom (dofs). For these to pass existing observational tests, an efficient screening mechanism must be in place. Furthermore, the linear and quasi-linear regimes of structure formation are ideal probes of such dofs and can capture the onset of screening. We propose here a semi-phenomenological “filter” to account for screeningmore » dynamics on LSS observables, with special emphasis on Vainshtein-type screening.« less

  8. Linear and/or curvilinear rail mount system

    NASA Technical Reports Server (NTRS)

    Thomas, Jackie D. (Inventor); Harris, Lawanna L. (Inventor)

    2012-01-01

    One or more linear and/or curvilinear mounting rails are coupled to a structure. Each mounting rail defines a channel and at least one cartridge assembly is engaged in the channel. Each cartridge assembly includes a housing that slides within the channel. The housing defines a curvilinearly-shaped recess longitudinally aligned with the channel when the housing is in engagement therewith. The cartridge assembly also includes a cleat fitted in the recess for sliding engagement therealong. The cleat can be coupled to a fastener that passes through the mounting rail and the housing when the housing is so-engaged in the channel. The cleat is positioned in the recess by a position of the fastener.

  9. Method for extracting long-equivalent wavelength interferometric information

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor)

    1991-01-01

    A process for extracting long-equivalent wavelength interferometric information from a two-wavelength polychromatic or achromatic interferometer. The process comprises the steps of simultaneously recording a non-linear sum of two different frequency visible light interferograms on a high resolution film and then placing the developed film in an optical train for Fourier transformation, low pass spatial filtering and inverse transformation of the film image to produce low spatial frequency fringes corresponding to a long-equivalent wavelength interferogram. The recorded non-linear sum irradiance derived from the two-wavelength interferometer is obtained by controlling the exposure so that the average interferogram irradiance is set at either the noise level threshold or the saturation level threshold of the film.

  10. Step-response of a torsional device with multiple discontinuous non-linearities: Formulation of a vibratory experiment

    NASA Astrophysics Data System (ADS)

    Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra

    2016-03-01

    A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.

  11. Sequencing thousands of single-cell genomes with combinatorial indexing.

    PubMed

    Vitak, Sarah A; Torkenczy, Kristof A; Rosenkrantz, Jimi L; Fields, Andrew J; Christiansen, Lena; Wong, Melissa H; Carbone, Lucia; Steemers, Frank J; Adey, Andrew

    2017-03-01

    Single-cell genome sequencing has proven valuable for the detection of somatic variation, particularly in the context of tumor evolution. Current technologies suffer from high library construction costs, which restrict the number of cells that can be assessed and thus impose limitations on the ability to measure heterogeneity within a tissue. Here, we present single-cell combinatorial indexed sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single-cell libraries for detection of somatic copy-number variants. We constructed libraries for 16,698 single cells from a combination of cultured cell lines, primate frontal cortex tissue and two human adenocarcinomas, and obtained a detailed assessment of subclonal variation within a pancreatic tumor.

  12. The Performance Evaluation of Single Pass Thin Lift Bituminous Overlays

    DOT National Transportation Integrated Search

    1992-06-01

    In the mid-1980s, the Illinois Department of Transportation (IDOT) found itself challenged to maintain an aging highway network at an acceptable level of service on a limited financial base. This made programming rehabilitations for the rural highway...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnek, D.F.

    A method and apparatus for making X-ray photographs which can be viewed in three dimensions with the use of a lenticular screen. The apparatus includes a linear tomograph having a moving X-ray source on one side of a support on which an object is to be placed so that X-rays can pass through the object to the opposite side of the support. A movable cassette on the opposite side of the support moves in a direction opposite to the direction of travel of the X-ray source as the source moves relative to the support. The cassette has an intensifying screen,more » a grating mask provided with uniformly spaced slots for passing X-rays, a lenticular member adjacent to the mask, and a photographic emulsion adjacent to the opposite side of the lenticular member. The cassette has a power device for moving the lenticular member and the emulsion relative to the mask a distance equal to the spacing between a pair of adjacent slots in the mask. The X-rays from the source, after passing through an object on the support, pass into the cassette through the slots of the mask and are focused on the photographic emulsion to result in a continuum of X-ray views of the object. When the emulsion is developed and viewed through the lenticular member, the object can be seen in three dimensions.« less

  14. Genome Therapy of Myotonic Dystrophy Type 1 iPS Cells for Development of Autologous Stem Cell Therapy.

    PubMed

    Gao, Yuanzheng; Guo, Xiuming; Santostefano, Katherine; Wang, Yanlin; Reid, Tammy; Zeng, Desmond; Terada, Naohiro; Ashizawa, Tetsuo; Xia, Guangbin

    2016-08-01

    Myotonic dystrophy type 1 (DM1) is caused by expanded Cytosine-Thymine-Guanine (CTG) repeats in the 3'-untranslated region (3' UTR) of the Dystrophia myotonica protein kinase (DMPK) gene, for which there is no effective therapy. The objective of this study is to develop genome therapy in human DM1 induced pluripotent stem (iPS) cells to eliminate mutant transcripts and reverse the phenotypes for developing autologous stem cell therapy. The general approach involves targeted insertion of polyA signals (PASs) upstream of DMPK CTG repeats, which will lead to premature termination of transcription and elimination of toxic mutant transcripts. Insertion of PASs was mediated by homologous recombination triggered by site-specific transcription activator-like effector nuclease (TALEN)-induced double-strand break. We found genome-treated DM1 iPS cells continue to maintain pluripotency. The insertion of PASs led to elimination of mutant transcripts and complete disappearance of nuclear RNA foci and reversal of aberrant splicing in linear-differentiated neural stem cells, cardiomyocytes, and teratoma tissues. In conclusion, genome therapy by insertion of PASs upstream of the expanded DMPK CTG repeats prevented the production of toxic mutant transcripts and reversal of phenotypes in DM1 iPS cells and their progeny. These genetically-treated iPS cells will have broad clinical application in developing autologous stem cell therapy for DM1.

  15. Molecular adsorbent recirculating system and single-pass albumin dialysis in liver failure--a prospective, randomised crossover study.

    PubMed

    Sponholz, Christoph; Matthes, Katja; Rupp, Dina; Backaus, Wolf; Klammt, Sebastian; Karailieva, Diana; Bauschke, Astrid; Settmacher, Utz; Kohl, Matthias; Clemens, Mark G; Mitzner, Steffen; Bauer, Michael; Kortgen, Andreas

    2016-01-04

    The aim of extracorporeal albumin dialysis (ECAD) is to reduce endogenous toxins accumulating in liver failure. To date, ECAD is conducted mainly with the Molecular Adsorbents Recirculating System (MARS). However, single-pass albumin dialysis (SPAD) has been proposed as an alternative. The aim of this study was to compare the two devices with a prospective, single-centre, non-inferiority crossover study design with particular focus on reduction of bilirubin levels (primary endpoint) and influence on paraclinical and clinical parameters (secondary endpoints) associated with liver failure. Patients presenting with liver failure were screened for eligibility and after inclusion were randomly assigned to be started on either conventional MARS or SPAD (with 4% albumin and a dialysis flow rate of 700 ml/h). Statistical analyses were based on a linear mixed-effects model. Sixty-nine crossover cycles of ECAD in 32 patients were completed. Both systems significantly reduced plasma bilirubin levels to a similar extent (MARS: median -68 μmol/L, interquartile range [IQR] -107.5 to -33.5, p = 0.001; SPAD: -59 μmol/L, -84.5 to +36.5, p = 0.001). However, bile acids (MARS: -39 μmol/L, -105.6 to -8.3, p < 0.001; SPAD: -9 μmol/L, -36.9 to +11.4, p = 0.131), creatinine (MARS: -24 μmol/L, -46.5 to -8.0, p < 0.001; SPAD: -2 μmol/L, -9.0 to +7.0/L, p = 0.314) and urea (MARS: -0.9 mmol/L, -1.93 to -0.10, p = 0.024; SPAD: -0.1 mmol/L, -1.0 to +0.68, p = 0.523) were reduced and albumin-binding capacity was increased (MARS: +10%, -0.8 to +20.9%, p < 0.001; SPAD: +7%, -7.5 to +15.5%, p = 0.137) only by MARS. Cytokine levels of interleukin (IL)-6 and IL-8 and hepatic encephalopathy were altered by neither MARS nor SPAD. Both procedures were safe for temporary extracorporeal liver support. While in clinical practice routinely assessed plasma bilirubin levels were reduced by both systems, only MARS affected other paraclinical parameters (i.e., serum bile acids, albumin-binding capacity, and creatinine and urea levels). Caution should be taken with regard to metabolic derangements and electrolyte disturbances, particularly in SPAD using regional citrate anti-coagulation. German Clinical Trials Register ( www.drks.de) DRKS00000371. Registered 8 April 2010.

  16. On Spectral Invariance of Single Scattering Albedo for Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2011-01-01

    This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda(r))/omega(sub O lambda(r(sub O)) of two single scattering albedo spectra, omega(sub O lambda(r) and omega(sub O lambda(r (sub O)), is a linear function of omega(sub O lambda(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo omega(sub O lambda(r) via one known spectrum omega(sub O lambda(r(sub O)). The note provides a simple physical explanation of the discovered relationship. In addition to water droplets, similar linear relationships were found for the single scattering albedo of non-spherical ice crystals.

  17. Beam dynamics in MABE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poukey, J.W.; Coleman, P.D.; Sanford, T.W.L.

    1985-10-01

    MABE is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA, final energy 7 MeV, and guide field 20 kG. We report recent progress via theory and simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps.

  18. Ultra-Stable Laser Clock.

    DTIC Science & Technology

    1983-03-01

    43. L circumference of ring laser cavity 44. LF pathlength through Faraday rotator 45. 1 distance between resonator mirrors of linear laser 46. M...limited clock stability 68. q mode number 69. Ri reflectivity of mirror i 70. eF angle between magnetic field and direction of light propagation 71...containing low pressure methane. The light reflects off a mirror and passes back through the cell. Then the light reflects from the beam splitter into

  19. Short-term nanostructural effects of high radiofrequency treatment on the skin tissues of rabbits.

    PubMed

    Choi, Samjin; Cheong, Youjin; Shin, Jae-Ho; Lee, Hui-Jae; Lee, Gi-Ja; Choi, Seok Keun; Jin, Kyung-Hyun; Park, Hun-Kuk

    2012-09-01

    The aim of this study is to quantitatively investigate the short-term effects of RF tissue-tightening treatment in in vivo rabbit dermal collagen fibrils. These effects were measured at different energy levels and at varying pass procedures on the nanostructural response level using histology and AFM analysis. Each rabbit was divided into one of seven experimental groups, which included the following: control group, and six RF group according to RF energy (20 W and 40 W) and three RF pass procedures. The progressive changes in the diameter and D-periodicity of rabbit dermal collagen fibrils were investigated in detail over a 7-day post-treatment period. The dermal tissues treated with the RF tissue-tightening device showed more prominent inflammatory responses with inflammatory cell ingrowth compared to the control. This effect showed more prominent with the passage of day after treatment. Although an increase in the diameter and D-periodicity of dermal collagen fibrils was identified immediately after the RF treatment, a decrease in the morphology of dermal collagen fibrils continued until post-operative day 7. Furthermore, RF treatment led to the loss of distinct borders. Increases in RF energy with the same pass procedure, as well as an increase in the number of RF passes, increased the occurrence of irreversible collagen fibril injury. A multiple-pass treatment at low energy rather than a single-pass treatment at high energy showed a large amount of collagen fibrils contraction at the nanostructural level.

  20. Transition play in team performance of volleyball: a log-linear analysis.

    PubMed

    Eom, H J; Schutz, R W

    1992-09-01

    The purpose of this study was to develop and test a method to analyze and evaluate sequential skill performances in a team sport. An on-line computerized system was developed to record and summarize the sequential skill performances in volleyball. Seventy-two sample games from the third Federation of International Volleyball Cup men's competition were videotaped and grouped into two categories according to the final team standing and game outcome. Log-linear procedures were used to investigate the nature and degree of the relationship in the first-order (pass-to-set, set-to-spike) and second-order (pass-to-spike) transition plays. Results showed that there was a significant dependency in both the first-order and second-order transition plays, indicating that the outcome of a skill performance is highly influenced by the quality of a preceding skill performance. In addition, the pattern of the transition plays was stable and consistent, regardless of the classification status: Game Outcome, Team Standing, or Transition Process. The methodology and subsequent results provide valuable aids for a thorough understanding of the characteristics of transition plays in volleyball. In addition, the concept of sequential performance analysis may serve as an example for sport scientists in investigating probabilistic patterns of motor performance.

  1. Reversal of orbital angular momentum arising from an extreme Doppler shift

    PubMed Central

    Toninelli, Ermes; Horsley, Simon A. R.; Hendry, Euan; Phillips, David B.; Padgett, Miles J.

    2018-01-01

    The linear Doppler shift is familiar as the rise and fall in pitch of a siren as it passes by. Less well known is the rotational Doppler shift, proportional to the rotation rate between source and receiver, multiplied by the angular momentum carried by the beam. In extreme cases the Doppler shift can be larger than the rest-frame frequency and for a red shift, the observed frequency then becomes “negative.” In the linear case, this effect is associated with the time reversal of the received signal, but it can be observed only with supersonic relative motion between the source and receiver. However, the rotational case is different; if the radius of rotation is smaller than the wavelength, then the velocities required to observe negative frequencies are subsonic. Using an acoustic source at ≈100 Hz we create a rotational Doppler shift larger than the laboratory-frame frequency. We observe that once the red-shifted wave passes into the “negative frequency” regime, the angular momentum associated with the sound is reversed in sign compared with that of the laboratory frame. These low-velocity laboratory realizations of extreme Doppler shifts have relevance to superoscillatory fields and offer unique opportunities to probe interactions with rotating bodies and aspects of pseudorelativistic frame translation. PMID:29581257

  2. Viscoelastic effect on acoustic band gaps in polymer-fluid composites

    NASA Astrophysics Data System (ADS)

    Merheb, B.; Deymier, P. A.; Muralidharan, K.; Bucay, J.; Jain, M.; Aloshyna-Lesuffleur, M.; Greger, R. W.; Mohanty, S.; Berker, A.

    2009-10-01

    In this paper, we present a theoretical analysis of the propagation of acoustic waves through elastic and viscoelastic two-dimensional phononic crystal structures. Numerical calculations of transmission spectra are conducted by extending the finite-difference-time-domain method to account for linear viscoelastic materials with time-dependent moduli. We study a phononic crystal constituted of a square array of cylindrical air inclusions in a solid viscoelastic matrix. The elastic properties of the solid are those of a silicone rubber. This system exhibits very wide band gaps in its transmission spectrum that extend to frequencies in the audible range of the spectrum. These gaps are characteristic of fluid matrix/air inclusion systems and result from the very large contrast between the longitudinal and transverse speeds of sound in rubber. By treating the matrix as a viscoelastic medium within the standard linear solid (SLS) model, we demonstrate that viscoelasticity impacts the transmission properties of the rubber/air phononic crystal not only by attenuating the transmitted acoustic waves but also by shifting the passing bands frequencies toward lower values. The ranges of frequencies exhibiting attenuation or frequency shift are determined by the value of the relaxation time in the SLS model. We show that viscoelasticity can be used to decrease the frequency of pass bands (and consequently stop bands) in viscoelastic/air phononic crystals.

  3. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.

    PubMed

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance

    NASA Astrophysics Data System (ADS)

    Bashyam, Ashvin; Li, Matthew; Cima, Michael J.

    2018-07-01

    Single-sided NMR has the potential for broad utility and has found applications in healthcare, materials analysis, food quality assurance, and the oil and gas industry. These sensors require a remote, strong, uniform magnetic field to perform high sensitivity measurements. We demonstrate a new permanent magnet geometry, the Unilateral Linear Halbach, that combines design principles from "sweet-spot" and linear Halbach magnets to achieve this goal through more efficient use of magnetic flux. We perform sensitivity analysis using numerical simulations to produce a framework for Unilateral Linear Halbach design and assess tradeoffs between design parameters. Additionally, the use of hundreds of small, discrete magnets within the assembly allows for a tunable design, improved robustness to variability in magnetization strength, and increased safety during construction. Experimental validation using a prototype magnet shows close agreement with the simulated magnetic field. The Unilateral Linear Halbach magnet increases the sensitivity, portability, and versatility of single-sided NMR.

  5. Wireless remote weather monitoring system based on MEMS technologies.

    PubMed

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  6. Multicenter Collaborative Quality Assurance Program for the Province of Ontario, Canada: First-Year Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Létourneau, Daniel, E-mail: daniel.letourneau@rmp.uh.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; McNiven, Andrea

    2013-05-01

    Purpose: The objective of this work was to develop a collaborative quality assurance (CQA) program to assess the performance of intensity modulated radiation therapy (IMRT) planning and delivery across the province of Ontario, Canada. Methods and Materials: The CQA program was designed to be a comprehensive end-to-end test that can be completed on multiple planning and delivery platforms. The first year of the program included a head-and-neck (H and N) planning exercise and on-site visit to acquire dosimetric measurements to assess planning and delivery performance. A single dosimeter was used at each institution, and the planned to measured dose agreementmore » was evaluated for both the H and N plan and a standard plan (linear-accelerator specific) that was created to enable a direct comparison between centers with similar infrastructure. Results: CQA program feasibility was demonstrated through participation of all 13 radiation therapy centers in the province. Planning and delivery was completed on a variety of infrastructure (treatment planning systems and linear accelerators). The planning exercise was completed using both static gantry and rotational IMRT, and planned-to-delivered dose agreement (pass rates) for 3%/3-mm gamma evaluation were greater than 90% (92.6%-99.6%). Conclusions: All centers had acceptable results, but variation in planned to delivered dose agreement for the same planning and delivery platform was noted. The upper end of the range will provide an achievable target for other centers through continued quality improvement, aided by feedback provided by the program through the use of standard plans and simple test fields.« less

  7. Spatial variation analyses of Thematic Mapper data for the identification of linear features in agricultural landscapes

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.

    1984-01-01

    A need exists for digitized information pertaining to linear features such as roads, streams, water bodies and agricultural field boundaries as component parts of a data base. For many areas where this data may not yet exist or is in need of updating, these features may be extracted from remotely sensed digital data. This paper examines two approaches for identifying linear features, one utilizing raw data and the other classified data. Each approach uses a series of data enhancement procedures including derivation of standard deviation values, principal component analysis and filtering procedures using a high-pass window matrix. Just as certain bands better classify different land covers, so too do these bands exhibit high spectral contrast by which boundaries between land covers can be delineated. A few applications for this kind of data are briefly discussed, including its potential in a Universal Soil Loss Equation Model.

  8. Simple Test Functions in Meshless Local Petrov-Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.

    2016-01-01

    Two meshless local Petrov-Galerkin (MLPG) methods based on two different trial functions but that use a simple linear test function were developed for beam and column problems. These methods used generalized moving least squares (GMLS) and radial basis (RB) interpolation functions as trial functions. These two methods were tested on various patch test problems. Both methods passed the patch tests successfully. Then the methods were applied to various beam vibration problems and problems involving Euler and Beck's columns. Both methods yielded accurate solutions for all problems studied. The simple linear test function offers considerable savings in computing efforts as the domain integrals involved in the weak form are avoided. The two methods based on this simple linear test function method produced accurate results for frequencies and buckling loads. Of the two methods studied, the method with radial basis trial functions is very attractive as the method is simple, accurate, and robust.

  9. Characterization of single-file diffusion in one-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.; Sheridan, T. E.

    2010-11-01

    Single-file diffusion occurs in one-dimensional systems when particles cannot pass each other and the mean-squared displacement (msd) of these particles increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^1/2. One-dimensional dusty plasma rings have been created under strongly coupled, over-damped conditions. Particle position data from these rings will be analyzed to determine the scaling of the msd with time. Results will be compared with predictions of single-file diffusion theory.

  10. Translocation of single-stranded DNA through single-walled carbon nanotubes.

    PubMed

    Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag; Joseph, Sony; Lindsay, Stuart; Nuckolls, Colin

    2010-01-01

    We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10(7) charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.

  11. Biomechanical advantages of triple-loaded suture anchors compared with double-row rotator cuff repairs.

    PubMed

    Barber, F Alan; Herbert, Morley A; Schroeder, F Alexander; Aziz-Jacobo, Jorge; Mays, Matthew M; Rapley, Jay H

    2010-03-01

    To evaluate the strength and suture-tendon interface security of various suture anchors triply and doubly loaded with ultrahigh-molecular weight polyethylene-containing sutures and to evaluate the relative effectiveness of placing these anchors in a single-row or double-row arrangement by cyclic loading and then destructive testing. The infraspinatus muscle was reattached to the original humeral footprint by use of 1 of 5 different repair patterns in 40 bovine shoulders. Two single-row repairs and three double-row repairs were tested. High-strength sutures were used for all repairs. Five groups were studied: group 1, 2 triple-loaded screw suture anchors in a single row with simple stitches; group 2, 2 triple-loaded screw anchors in a single row with simple stitches over a fourth suture passed perpendicularly ("rip-stop" stitch); group 3, 2 medial and 2 lateral screw anchors with a single vertical mattress stitch passed from the medial anchors and 2 simple stitches passed from the lateral anchors; group 4, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors capturing the medial sutures in a "crisscross" spanning stitch; and group 5, 2 medial double-loaded screw anchors tied in 2 mattress stitches and 2 push-in lateral anchors creating a "suture-bridge" stitch. The specimens were cycled between 10 and 180 N at 1.0 Hz for 3,500 cycles or until failure. Endpoints were cyclic loading displacement (5 and 10 mm), total displacement, and ultimate failure load. A single row of triply loaded anchors was more resistant to stretching to a 5- and 10-mm gap than the double-row repairs with or without the addition of a rip-stop suture (P < .05). The addition of a rip-stop stitch made the repair more resistant to gap formation than a double row repair (P < .05). The crisscross double row created by 2 medial double-loaded suture anchors and 2 lateral push-in anchors stretched more than any other group (P < .05). Double-row repairs with either crossing sutures or 4 separate anchor points were more likely to fail (5- or 10-mm gap) than a single-row repair loaded with 3 simple sutures. The triple-loaded anchors with ultrahigh-molecular weight polyethylene-containing sutures placed in a single row were more resistant to stretching than the double-row groups. Copyright 2010 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  12. On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP.

    PubMed

    Winkler, Irene; Debener, Stefan; Müller, Klaus-Robert; Tangermann, Michael

    2015-01-01

    Standard artifact removal methods for electroencephalographic (EEG) signals are either based on Independent Component Analysis (ICA) or they regress out ocular activity measured at electrooculogram (EOG) channels. Successful ICA-based artifact reduction relies on suitable pre-processing. Here we systematically evaluate the effects of high-pass filtering at different frequencies. Offline analyses were based on event-related potential data from 21 participants performing a standard auditory oddball task and an automatic artifactual component classifier method (MARA). As a pre-processing step for ICA, high-pass filtering between 1-2 Hz consistently produced good results in terms of signal-to-noise ratio (SNR), single-trial classification accuracy and the percentage of `near-dipolar' ICA components. Relative to no artifact reduction, ICA-based artifact removal significantly improved SNR and classification accuracy. This was not the case for a regression-based approach to remove EOG artifacts.

  13. Development of a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA), and its application to Auger photoelectron coincidence spectroscopy (APECS)

    NASA Astrophysics Data System (ADS)

    Kobayashi, Eiichi; Seo, Junya; Nambu, Akira; Mase, Kazuhiko

    2007-09-01

    We have developed a miniature double-pass cylindrical mirror electron energy analyzer (DPCMA) with an outer diameter of 26 mm. The DPCMA consists of a shield for the electric field, inner and outer cylinders, two pinholes with a diameter of 2.0 mm, and an electron multiplier. By assembling the DPCMA in a coaxially symmetric mirror electron energy analyzer (ASMA) coaxially and confocally we developed an analyzer for Auger photoelectron coincidence spectroscopy (APECS). The performance was estimated by measuring the Si-LVV-Auger Si-1s-photoelectron coincidence spectra of clean Si(1 1 1). The electron-energy resolution of the DPCMA was estimated to be E/Δ E = 20. This value is better than that of the miniature single-pass CMA ( E/Δ E = 12) that was used in the previous APECS analyzer.

  14. Demonstration of the feasibility of large-port-count optical switching using a hybrid Mach-Zehnder interferometer-semiconductor optical amplifier switch module in a recirculating loop.

    PubMed

    Cheng, Q; Wonfor, A; Wei, J L; Penty, R V; White, I H

    2014-09-15

    For what we believe is the first time, the feasibility of large-port-count nanosecond-reconfiguration-time optical switches is demonstrated using a hybrid approach, where Mach-Zehnder interferometric (MZI) switches provide low-loss, high-speed routing with short semiconductor optical amplifiers (SOAs) being integrated to enhance extinction. By repeatedly passing signals through a monolithic hybrid dilated 2×2 switch module in a recirculating loop, the potential performance of high-port-count switches using the hybrid approach is demonstrated. Experimentally, a single pass switch penalty of only 0.1 dB is demonstrated for the 2×2 module, while even after seven passes through the switch, equivalent to a 128×128 router, a penalty of only 2.4 dB is recorded at a data rate of 10 Gb/s.

  15. Survival and Passage of Juvenile Chinook Salmon and Steelhead Passing Through Bonneville Dam, 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Hughes, James S.

    Pacific Northwest National Laboratory (PNNL) and subcontractors conducted an acoustic-telemetry study of juvenile salmonid fish passage and survival at Bonneville Dam in 2010. The study was conducted to assess the readiness of the monitoring system for official compliance studies under the 2008 Biological Opinion and Fish Accords and to assess performance measures including route-specific fish passage proportions, travel times, and survival based upon a single-release model. This also was the last year of evaluation of effects of a behavioral guidance device installed in the Powerhouse 2 forebay. The study relied on releases of live Juvenile Salmon Acoustic Telemetry System taggedmore » smolts in the Columbia River and used acoustic telemetry to evaluate the approach, passage, and survival of passing juvenile salmon. This study supports the U.S. Army Corps of Engineers continual effort to improve conditions for juvenile anadromous fish passing through Columbia River dams.« less

  16. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  17. Do Patients Failing Return-to-Activity Criteria at 6 Months After Anterior Cruciate Ligament Reconstruction Continue Demonstrating Deficits at 2 Years?

    PubMed Central

    Nawasreh, Zakariya; Logerstedt, David; Cummerm, Kathleen; Axe, Michael J.; Risberg, May Arna; Snyder-Mackler, Lynn

    2017-01-01

    Background The variability in outcomes after anterior cruciate ligament reconstruction (ACLR) might be related to the criteria that are used to determine athletes’ readiness to return to their preinjury activity level. A battery of return-to-activity criteria (RTAC) that emphasize normal knee function and movement symmetry has been instituted to quantitatively determine athletes’ readiness to return to preinjury activities. Purpose To investigate performance-based and patient-reported measures at 12 and 24 months after ACLR between patients who passed or failed RTAC at 6 months after ACLR. Study Design Cohort study; Level of evidence, 2. Methods A total of 108 patients who had participated in International Knee Documentation Committee level 1 or 2 sports activities completed RTAC testing at 6, 12, and 24 months after surgery. The RTAC included the isometric quadriceps strength index (QI), 4 single-legged hop tests, the Knee Outcome Survey–activities of daily living subscale (KOS-ADLS), and the global rating scale of perceived function (GRS). Patients who scored ≥90% on all RTAC were classified as the pass group, and those who scored <90% on any RTAC were classified as the fail group. At 12- and 24-month follow-ups, patients were asked if they had returned to the same preinjury activity level. Results At the 6-month follow-up, there were 48 patients in the pass group and 47 in the fail group. At the 12-month follow-up, 31 patients (73.8%) from the pass group and 15 patients (39.5%) from the fail group passed RTAC, and at the 24-month follow-up, 25 patients (75.8%) from the pass group and 14 patients (51.9%) from the fail group passed RTAC. The rate of return to activities in the pass group was 81% and 84% at 12 and 24 months after ACLR, respectively, compared with only 44% and 46% in the fail group (P ≤ .012), respectively; however, some patients in the fail group participated in preinjury activities without being cleared by their therapists. At 12 and 24 months, 60.5% and 48.1% of patients continued to fail again on the criteria, respectively. A statistically significant group × time interaction was found for the single hop and 6-m timed hop limb symmetry indices (LSIs) (P ≤ .037), with only the fail group demonstrating a significant improvement over time. A main effect of group was detected for the QI and the crossover hop and triple hop LSIs (P <.01), with patients in the pass group demonstrating higher performance. A main effect of time was detected for the crossover hop and triple hop LSIs and the GRS, with improvements seen in both groups (P <.05). Conclusion Patients who passed the RTAC early after ACLR were more likely to demonstrate normal knee function and movement symmetry at 12 and 24 months postoperatively, while patients who failed the RTAC early were more likely to demonstrate impaired knee function and movement asymmetry at 12- and 24-month follow-ups. Patients in the pass group had a higher rate of return to their preinjury activity level compared with those in the fail group. A group of patients chose to return to their preinjury activities, even though they were functionally not ready. PMID:28125899

  18. Unified description of the slip phenomena in sheared polymer films: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai

    2010-03-01

    The dynamic behavior of the slip length in shear flow of polymer melts past atomically smooth surfaces is investigated using MD simulations. The polymer melt was modeled as a collection of FENE-LJ bead-spring chains. We consider shear flow conditions at low pressures and weak wall-fluid interaction energy so that fluid velocity profiles are linear throughout the channel at all shear rates examined. In agreement with earlier studies we confirm that for shear- thinning fluids the slip length passes through a local minimum at low shear rates and then increases rapidly at higher shear rates. We found that the rate dependence of the slip length depends on the lattice orientation at high shear rates. The MD results show that the ratio of slip length to viscosity follows a master curve when plotted as a function of a single variable that depends on the structure factor, contact density and temperature of the first fluid layer near the solid wall. The universal dependence of the slip length holds for a number of parameters of the interface: fluid density and structure (chain length), wall-fluid interaction energy, wall density, lattice orientation, thermal or solid walls.

  19. Dilated contour extraction and component labeling algorithm for object vector representation

    NASA Astrophysics Data System (ADS)

    Skourikhine, Alexei N.

    2005-08-01

    Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.

  20. A remote monitor of bed patient cardiac vibration, respiration and movement.

    PubMed

    Mukai, Koji; Yonezawa, Yoshiharu; Ogawa, Hidekuni; Maki, Hiromichi; Caldwell, W Morton

    2009-01-01

    We have developed a remote system for monitoring heart rate, respiration rate and movement behavior of at-home elderly people who are living alone. The system consists of a 40 kHz ultrasonic transmitter and receiver, linear integrated circuits, a low-power 8-bit single chip microcomputer and an Internet server computer. The 40 kHz ultrasonic transmitter and receiver are installed into a bed mattress. The transmitted signal diffuses into the bed mattress, and the amplitude of the received ultrasonic wave is modulated by the shape of the mattress and parameters such as respiration, cardiac vibration and movement. The modulated ultrasonic signal is received and demodulated by an envelope detection circuit. Low, high and band pass filters separate the respiration, cardiac vibration and movement signals, which are fed into the microcontroller and digitized at a sampling rate of 50 Hz by 8-bit A/D converters. The digitized data are sent to the server computer as a serial signal. This computer stores the data and also creates a graphic chart of the latest hour. The person's family or caregiver can download this chart via the Internet at any time.

Top