Sample records for single phase forced

  1. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  2. Can a double stranded DNA be unzipped by pulling a single strand?: phases of adsorbed DNA.

    PubMed

    Kapri, Rajeev

    2009-04-14

    We study the unzipping of a double stranded DNA (dsDNA) by applying an external force on a single strand while leaving the other strand free. We find that the dsDNA can be unzipped to two single strands if the external force exceeds a critical value. We obtain the phase diagram, which is found to be different from the phase diagram of unzipping by pulling both the strands in opposite directions. In the presence of an attractive surface near DNA, the phase diagram gets modified drastically and shows richer surprises including a critical end point and a triple point.

  3. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatkowski, G.; Cheban, S.; Dhanaraj, N.

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantagesmore » which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids« less

  4. Chaotic phase synchronization in bursting-neuron models driven by a weak periodic force

    NASA Astrophysics Data System (ADS)

    Ando, Hiroyasu; Suetani, Hiromichi; Kurths, Jürgen; Aihara, Kazuyuki

    2012-07-01

    We investigate the entrainment of a neuron model exhibiting a chaotic spiking-bursting behavior in response to a weak periodic force. This model exhibits two types of oscillations with different characteristic time scales, namely, long and short time scales. Several types of phase synchronization are observed, such as 1:1 phase locking between a single spike and one period of the force and 1:l phase locking between the period of slow oscillation underlying bursts and l periods of the force. Moreover, spiking-bursting oscillations with chaotic firing patterns can be synchronized with the periodic force. Such a type of phase synchronization is detected from the position of a set of points on a unit circle, which is determined by the phase of the periodic force at each spiking time. We show that this detection method is effective for a system with multiple time scales. Owing to the existence of both the short and the long time scales, two characteristic phenomena are found around the transition point to chaotic phase synchronization. One phenomenon shows that the average time interval between successive phase slips exhibits a power-law scaling against the driving force strength and that the scaling exponent has an unsmooth dependence on the changes in the driving force strength. The other phenomenon shows that Kuramoto's order parameter before the transition exhibits stepwise behavior as a function of the driving force strength, contrary to the smooth transition in a model with a single time scale.

  5. Phase shift in atom interferometry due to spacetime curvature

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Brown, Daniel; Hogan, Jason; Kasevich, Mark

    2017-04-01

    In previous matter wave interferometers, the interferometer arm separation was small enough that gravitational tidal forces across the arms can be neglected. Gravitationally-induced phase shifts in such experiments arise from the acceleration of the interfering particles with respect to the interferometer beam splitters and mirrors. By increasing the interferometer arm separation, we enter a new regime in which the arms experience resolvably different gravitational forces. Using a single-source gravity gradiometer, we measure a phase shift associated with the tidal forces induced by a nearby test mass. This is the first observation of spacetime curvature across the spatial extent of a single quantum system. CO acknowledges funding from the Stanford Graduate Fellowship.

  6. Coil planet centrifugation as a means for small particle separation

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  7. First-order reversal curve of the magnetostructural phase transition in FeTe

    DOE PAGES

    Frampton, M. K.; Crocker, J.; Gilbert, D. A.; ...

    2017-06-05

    We apply the first-order reversal curve (FORC) method, adapted from studies of ferromagnetic materials, to the magnetostructural phase transition of Fe 1+yTe. FORC measurements reveal two features in the hysteretic phase transition, even in samples where traditional temperature measurements display only a single transition. For Fe 1.13Te, the influence of magnetic field suggests that the main feature is primarily structural while a smaller, slightly higher-temperature transition is magnetic in origin. By contrast, Fe 1.03Te has a single transition which shows a uniform response to magnetic field, indicating a stronger coupling of the magnetic and structural phase transitions. We also introducemore » uniaxial stress, which spreads the distribution width without changing the underlying energy barrier of the transformation. Finally, the work shows how FORC can help disentangle the roles of the magnetic and structural phase transitions in FeTe.« less

  8. Disappearance of the force-free current configuration at the first order vortex lattice phase transition in YBa 2Cu 3O 7-δ single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.

    1997-08-01

    The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.

  9. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    PubMed

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  10. Phase coexistence and domain configuration in Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Xu, Han; Yang, Bin

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  11. Fabrication of single domain GdBCO bulk superconductors by a new modified TSIG technique

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Zhi, X.; Chen, S. L.; Wang, M.; Li, J. W.; Ma, J.; Chao, X. X.

    2014-01-01

    Single domain GdBCO bulk superconductors have been fabricated with new and traditional solid phases by a top seeded infiltration and growth (TSIG) process technique. In the conventional TSIG process, three types of powders, such as Gd2BaCuO5, GdBa2Cu3O7-x and Ba3Cu5O8, must be prepared, but in our new modified TSIG technique, only BaCuO2 powders are required during the fabrication of the single domain GdBCO bulk superconductors. The solid phase used in the conventional process is Gd2BaCuO5 instead of the solid phase (Gd2O3 + BaCuO2) utilized in the new process. The liquid phase used in the conventional process is a mixture of (GdBa2Cu3O7-x + Ba3Cu5O8), and the liquid phase in the new process is a mixture of (Gd2O3 + 10BaCuO2 + 6CuO). Single domain GdBCO bulk superconductors have been fabricated with the new solid and liquid phases. The levitation force of the GdBCO bulk samples fabricated by the new solid phase is 28 N, which is slightly higher than that of the samples fabricated using the conventional solid phases (26 N). The microstructure and the levitation force of the samples indicate that this new method can greatly simplify the fabrication process, introduce nanometer-sized flux centers, improve the levitation force and working efficiency, and greatly reduce the cost of fabrication of single domain GdBCO bulk superconductors by the TSIG process.

  12. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  13. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    PubMed

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analysis of force profile during a maximum voluntary isometric contraction task.

    PubMed

    Househam, Elizabeth; McAuley, John; Charles, Thompson; Lightfoot, Timothy; Swash, Michael

    2004-03-01

    This study analyses maximum voluntary isometric contraction (MVIC) and its measurement by recording the force profile during maximal-effort, 7-s hand-grip contractions. Six healthy subjects each performed three trials repeated at short intervals to study variation from fatigue. These three trials were performed during three separate sessions at daily intervals to look at random variation. A pattern of force development during a trial was identified. An initiation phase, with or without an initiation peak, was followed by a maintenance phase, sometimes with secondary pulses and an underlying decline in force. Of these three MVIC parameters, maximum force during the maintenance phase showed less random variability compared to intertrial fatigue variability than did maximum force during the initiation phase or absolute maximum force. Analysis of MVIC as a task, rather than a single, maximal value reveals deeper levels of motor control in its generation. Thus, force parameters other than the absolute maximum force may be better suited to quantification of muscle performance in health and disease.

  15. FIELD IMPLEMENTATION OF A WINSOR TYPE I SURFACTANT/ALCOHOL MIXTURE FOR IN SITU SOLUBILIZATION OF A COMPLEX LNAPL AS A SINGLE-PHASE MICROEMULSION

    EPA Science Inventory

    A Winsor Type I surfactant/alcohol mixture was used as an in situ flushing agent to solubilize a muticomponent nonaqueous phase liquid (NAPL) as a single-phase microemulsion (SPME) in a hydraulically isolated test cell at Hill Air Force Base (AFB), Utah. The surfactant (polyoxye...

  16. Phase coexistence and domain configuration in Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} single crystal revealed by synchrotron-based X-ray diffractive three-dimensional reciprocal space mapping and piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Yang, Bin, E-mail: binyang@hit.edu.cn; Sun, Enwei

    The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.34PbTiO{sub 3} (PMN-0.34PT) single crystal have been investigated by synchrotron-based X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic M{sub C} phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, themore » lattice parameters of T and M{sub C} phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less

  17. Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer.

    PubMed

    Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y

    2008-11-10

    A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.

  18. Adopting a Single Planning Model in the Bulgarian Armed Forces at the Operational Level of War

    DTIC Science & Technology

    2013-06-13

    Analysis ................................................................................. 36 BPP Phase 2 Operational Assessments of the Response Options...40 BPP Phase 3 Operational Orientation ....................................................................... 42

  19. Boundary of Phase Co-existence in Docosahexaenoic Acid System

    NASA Astrophysics Data System (ADS)

    Lor, Chai; Hirst, Linda S.

    2011-11-01

    Docosahexaenoic acid (DHA) is a highly polyunsaturated fatty acid (PUFA) that exhibits six double bonds in the hydrocarbon tail. It induces phase separation of the membrane into liquid order and liquid disorder in mixtures containing other lipids with more saturation and cholesterol. With the utilization of atomic force microscopy, phase co-existence is observed in lipid mixtures containing DHA on a single supported lipid bilayer. The boundary of phase co-existence with decreasing DHA concentration is explored. The elastic force, thickness, and roughness of the different phases are investigated.

  20. Time series of ground reaction forces following a single leg drop jump landing in elite youth soccer players consist of four distinct phases.

    PubMed

    Fransz, Duncan P; Huurnink, Arnold; de Boode, Vosse A; Kingma, Idsart; van Dieën, Jaap H

    2016-10-01

    The single leg drop jump landing test may assess dynamic and static balance abilities in different phases of the landing. However objective definitions of different phases following landing and associated reliability are lacking. Therefore, we determined the existence of possible distinct phases of single leg drop jump landing on a force plate in 82 elite youth soccer players. Three outcome measures were calculated over moving windows of five sizes: center of pressure (COP) speed, COP sway and horizontal ground reaction force (GRF). Per outcome measure, a Factor Analysis was employed with all windows as input variables. It showed that four factors (patterns of variance) largely (>75%) explained the variance across subjects/trials along the 12s time series. Each factor was highly associated with a distinct phase of the time series signal: dynamic (0.4-2.7s), late dynamic (2.5-5.0s), static 1 (5.0-8.3s) and static 2 (8.1-11.7s). Intra-class correlations (ICC) between trials were lower for the dynamic phases (0.45-0.68) than for the static phases (0.60-0.86). The COP speed showed higher ICC's (0.63-0.86) than COP sway (0.45-0.61) and GRF (0.57-0.71) for all four phases. In conclusion, following a drop jump landing unique information is available in four distinct phases. The COP speed is most reliable, with higher reliability in the static phases compared to the dynamic phases. Future studies should assess the sensitivity of information from dynamic, late dynamic and static phases. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study.

    PubMed

    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu

    2017-11-18

    Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force were estimated from motion capture data and synchronized force data from the force plate. One-way repeated measures analysis of variance and the post hoc Bonferroni test were conducted to compare the peak time of the vertical ground reaction force, quadriceps force and anterior tibial force during the single-leg landing. In addition, we examined the contribution of vertical and posterior ground reaction force, knee flexion angle and moment to peak quadriceps force using multiple linear regression. The peak times of the estimated quadriceps force (96.0 ± 23.0 ms) and anterior tibial force (111.9 ± 18.9 ms) were significantly later than that of the vertical ground reaction force (63.5 ± 6.8 ms) during the single-leg landing. The peak quadriceps force was positively correlated with the peak anterior tibial force (R = 0.953, P < 0.001). Multiple linear regression analysis showed that the peak knee flexion moment contributed significantly to the peak quadriceps force (R 2  = 0.778, P < 0.001). The peak times of the quadriceps force and the anterior tibial force were obviously later than that of the vertical ground reaction force for the female athletes during successful single-leg landings. Studies have reported that the peak time of the vertical ground reaction force was close to the time of anterior cruciate ligament (ACL) disruption in ACL injury cases. It is possible that early contraction of the quadriceps during landing might induce ACL disruption as a result of excessive anterior tibial force in unanticipated situations in ACL injury cases.

  2. An equivalent dipole analysis of PZT ceramics and lead-free piezoelectric single crystals

    NASA Astrophysics Data System (ADS)

    Bell, Andrew J.

    2016-04-01

    The recently proposed Equivalent Dipole Model for describing the electromechanical properties of ionic solids in terms of 3 ions and 2 bonds has been applied to PZT ceramics and lead-free single crystal piezoelectric materials, providing analysis in terms of an effective ionic charge and the asymmetry of the interatomic force constants. For PZT it is shown that, as a function of composition across the morphotropic phase boundary, the dominant bond compliance peaks at 52% ZrO2. The stiffer of the two bonds shows little composition dependence with no anomaly at the phase boundary. The effective charge has a maximum value at 50% ZrO2, decreasing across the phase boundary region, but becoming constant in the rhombohedral phase. The single crystals confirm that both the asymmetry in the force constants and the magnitude of effective charge are equally important in determining the values of the piezoelectric charge coefficient and the electromechanical coupling coefficient. Both are apparently temperature dependent, increasing markedly on approaching the Curie temperature.

  3. A new RE + 011 TSIG method for the fabrication of high quality and large size single domain YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Chen, L. P.; Wang, X. J.

    2016-02-01

    High quality single domain YBCO bulk superconductors, 20 mm in diameter, have been fabricated using a new top seeded infiltration and growth method (called the RE + 011 TSIG method), with a new solid phase (Y2O3 + xBaCuO2) instead of the conventional Y2BaCuO5 solid phase, x = 0, 0.5, 1.0, 1.2, 1.5, 1.8, 2.0, 2.5, 3.0. The effects of different BaCuO2 contents x on the growth morphology, microstructure, and levitation force have been investigated. The results show that the levitation force of the YBCO bulks first increases and then decreases with increasing x, and reaches maximum levitation forces of about 49.2 N (77 K, 0.5 T, with the traditional liquid phase of YBa2Cu3O y + 3 BaCuO2 + 2 CuO) and 47 N (77.3 K, 0.5 T, with the new liquid phase of Y2O3 + 10 BaCuO2 + 6 CuO) when x = 1.2, which is much higher than that of the samples fabricated with the conventional solid phases (23 N). The average Y2BaCuO5 particle size is about 1 μm, which is much smaller than the 3.4 μm in the samples prepared with the conventional Y2BaCuO5 solid phase; this means that the flux pinning force of the sample can be improved by using the new solid phase. Based on this method, single domain YBCO bulks 40 mm, 59 mm, and 93 mm in diameter have also been fabricated using the TSIG process with the new solid phases (Y2O3 + 1.2BaCuO2). These results indicate that the new TSIG process developed by our lab is a very important and practical method for the fabrication of low cost, large size, and high quality single domain REBCO bulk superconductors.

  4. Changes in in vivo knee contact forces through gait modification.

    PubMed

    Kinney, Allison L; Besier, Thor F; Silder, Amy; Delp, Scott L; D'Lima, Darryl D; Fregly, Benjamin J

    2013-03-01

    Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non-invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force-measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0-100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal-Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis. Copyright © 2012 Orthopaedic Research Society.

  5. Quantifying gait patterns in Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Romero, Mónica; Atehortúa, Angélica; Romero, Eduardo

    2017-11-01

    Parkinson's disease (PD) is constituted by a set of motor symptoms, namely tremor, rigidity, and bradykinesia, which are usually described but not quantified. This work proposes an objective characterization of PD gait patterns by approximating the single stance phase a single grounded pendulum. This model estimates the force generated by the gait during the single support from gait data. This force describes the motion pattern for different stages of the disease. The model was validated using recorded videos of 8 young control subjects, 10 old control subjects and 10 subjects with Parkinson's disease in different stages. The estimated force showed differences among stages of Parkinson disease, observing a decrease of the estimated force for the advanced stages of this illness.

  6. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, R. C.; Foss, J. F.

    1989-01-01

    The detailed response of a large single-stream shear layer to a sinusoidal forcing at x = 0 is quantitatively defined. Phase-averaged data are used to characterize the increased disturbance convection velocity and a width measure of the disturbance field. These findings are consistent with and complement those of Fiedler and Mensing (1985).

  7. Long period seismic signals observed before the Caldera formation during the 2000 Miyake- jima volcanic activity

    NASA Astrophysics Data System (ADS)

    Ohminato, T.; Kobayashi, T.; Ida, Y.; Fujita, E.

    2006-12-01

    During the 2000 Miyake-jima volcanic activity started on 26 June 2000, an intense earthquake swarm occurred initially beneath the southwest flank near the summit and gradually migrated west of the island. A volcanic earthquake activity in the island was reactivated beneath the summit, leading to a summit eruption with a significant summit subsidence on 8 July. We detected small but numerous number of long period (LP) seismic signals during these activities. Most of them include both 0.2 and 0.4 Hz components suggesting an existence of a harmonic oscillator. Some of them have dominant frequency peak at 0.2Hz (LP1), while others have one at 0.4 Hz (LP2). At the beginning of each waveform of both LP1 and LP2, an impulsive signal with a pulse-width of about 2 s is clearly identified. The major axis of the particle motion for the initial impulsive signal is almost horizontal suggesting a shallow source beneath the summit, while the inclined particle motion for the latter phase suggests deeper source beneath the island. For both LP1 and LP2, we can identify a clear positive correlation between the amplitude of the initial pulse and that of the latter phase. We conducted waveform inversions for the LP events assuming a point source and determined the locations and mechanisms simultaneously. We assumed three types of source mechanisms; three single forces, six moment tensor components, and a combination of moment tensor and single forces. We used AIC to decide the optimal solutions. Firstly, we applied the method to the entire waveform including both the initial pulse and the latter phase. The source type with a combination of moment tensor and single force components yields the minimum values of the AIC for both LP events. However, the spatial distribution of the residual errors tends to have two local minima. Considering the error distribution and the characteristic particle motions, it is likely that the source of the LP event consists of two different parts. We thus divided the LP events into two parts; the initial and the latter phases, and applied the same waveform inversion procedure separately for each part of the waveform. The inversion results show that the initial impulsive phase and the latter oscillatory phase are well explained by a nearly horizontal single force and a moment solution, respectively. The single force solutions of the initial pulse are positioned at the depth of about 2 km beneath the summit. The single force initially oriented to the north, and then to the south. On the other hand, the sources of the moment solutions are significantly deeper than the single force solutions. The hypocenter of the later phase of LP1 is located at the depth of 5.5 km in the southern region of the island, while that for the LP2 event is at 5.1 km beneath the summit. The horizontal oscillations are relatively dominant for both the LP1 and LP2 events. Although the two sources are separated each other by several kilometers, the positive correlation between the amplitudes of the initial pulse and the latter phase strongly suggests that the shallow sources trigger the deeper sources. The source time histories of the 6 moment tensor components of the latter portion of the LP1 and LP2 are not in phase. This makes it difficult to extract information on source geometry using the amplitude ratio among moment tensor components in a traditional manner. It may suggest that the source is composed of two independent sources whose oscillations are out of phase.

  8. Measurement of Intramolecular Energy Dissipation and Stiffness of a Single Peptide Molecule by Magnetically Modulated Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kageshima, Masami; Takeda, Seiji; Ptak, Arkadiusz; Nakamura, Chikashi; Jarvis, Suzanne P.; Tokumoto, Hiroshi; Miyake, Jun

    2004-12-01

    A method for measuring intramolecular energy dissipation as well as stiffness variation in a single biomolecule in situ by atomic force microscopy (AFM) is presented. An AFM cantilever is magnetically modulated at an off-resonance frequency while it elongates a single peptide molecule in buffer solution. The molecular stiffness and the energy dissipation are measured via the amplitude and phase lag in the response signal. Data showing a peculiar feature in both profiles of stiffness and dissipation is presented. This suggests that the present method is more sensitive to the state of the molecule than the conventional force-elongation measurement is.

  9. Voluntary stepping behavior under single- and dual-task conditions in chronic stroke survivors: A comparison between the involved and uninvolved legs.

    PubMed

    Melzer, Itshak; Goldring, Melissa; Melzer, Yehudit; Green, Elad; Tzedek, Irit

    2010-12-01

    If balance is lost, quick step execution can prevent falls. Research has shown that speed of voluntary stepping was able to predict future falls in old adults. The aim of the study was to investigate voluntary stepping behavior, as well as to compare timing and leg push-off force-time relation parameters of involved and uninvolved legs in stroke survivors during single- and dual-task conditions. We also aimed to compare timing and leg push-off force-time relation parameters between stroke survivors and healthy individuals in both task conditions. Ten stroke survivors performed a voluntary step execution test with their involved and uninvolved legs under two conditions: while focusing only on the stepping task and while a separate attention-demanding task was performed simultaneously. Temporal parameters related to the step time were measured including the duration of the step initiation phase, the preparatory phase, the swing phase, and the total step time. In addition, force-time parameters representing the push-off power during stepping were calculated from ground reaction data and compared with 10 healthy controls. The involved legs of stroke survivors had a significantly slower stepping time than uninvolved legs due to increased swing phase duration during both single- and dual-task conditions. For dual compared to single task, the stepping time increased significantly due to a significant increase in the duration of step initiation. In general, the force time parameters were significantly different in both legs of stroke survivors as compared to healthy controls, with no significant effect of dual compared with single-task conditions in both groups. The inability of stroke survivors to swing the involved leg quickly may be the most significant factor contributing to the large number of falls to the paretic side. The results suggest that stroke survivors were unable to rapidly produce muscle force in fast actions. This may be the mechanism of delayed execution of a fast step when balance is lost, thus increasing the likelihood of falls in stroke survivors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  11. The forces on a single interacting Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Thu, Nguyen Van

    2018-04-01

    Using double parabola approximation for a single Bose-Einstein condensate confined between double slabs we proved that in grand canonical ensemble (GCE) the ground state with Robin boundary condition (BC) is favored, whereas in canonical ensemble (CE) our system undergoes from ground state with Robin BC to the one with Dirichlet BC in small-L region and vice versa for large-L region and phase transition in space of the ground state is the first order. The surface tension force and Casimir force are also considered in both CE and GCE in detail.

  12. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes.

    PubMed

    Salameh, Samir; van der Veen, Monique A; Kappl, Michael; van Ommen, J Ruud

    2017-03-14

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles.

  13. Armored Force: The Rapid Development of a Uniquely American Force

    DTIC Science & Technology

    2010-03-19

    tank dominated the Armored Force in 1940. The latest model, the M2A4 , weighed 12 tons and carried a 37mm main gun mounted in a single turret. It also...exploitation phase. Second, armor was concentrated in sufficient mass at the point of the breakthrough. This enabled the armored units to blast their

  14. Shortcuts to Adiabaticity in Transport of a Single Trapped Ion

    NASA Astrophysics Data System (ADS)

    An, Shuoming; Lv, Dingshun; Campo, Adolfo Del; Kim, Kihwan

    2015-05-01

    We report an experimental study on shortcuts to adiabaticity in the transport of a single 171Yb+ ion trapped in a harmonic potential. In these driving schemes, the application of a force induces a nonadiabatic dynamics in which excitations are tailored so as to preserve the ion motional state in the ground state upon completion of the process. We experimentally apply the laser induced force and realize three different protocols: (1) a transitionless driving with a counterdiabatic term out of phase with the displacement force, (2) a classical protocol assisted by counterdiabatic fields in phase with the main force, (3) and an engineered transport protocol based on the Fourier transform of the trap acceleration. We experimentally compare and discuss the robustness of these protocols under given experimental limitations such as trap frequency drifts. This work was supported by the National Basic Research Program of China under Grants No. 2011CBA00300 (No. 2011CBA00301), the National Natural Science Foundation of China 11374178, and the University of Massachusetts Boston (No. P20150000029279).

  15. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  16. Contact Forces between Single Metal Oxide Nanoparticles in Gas-Phase Applications and Processes

    PubMed Central

    2017-01-01

    In this work we present a comprehensive experimental study to determine the contact forces between individual metal oxide nanoparticles in the gas-phase using atomic force microscopy. In addition, we determined the amount of physisorbed water for each type of particle surface. By comparing our results with mathematical models of the interaction forces, we could demonstrate that classical continuum models of van der Waals and capillary forces alone cannot sufficiently describe the experimental findings. Rather, the discrete nature of the molecules has to be considered, which leads to ordering at the interface and the occurrence of solvation forces. We demonstrate that inclusion of solvation forces in the model leads to quantitative agreement with experimental data and that tuning of the molecular order by addition of isopropanol vapor allows us to control the interaction forces between the nanoparticles. PMID:28186771

  17. The application of single particle hydrodynamics in continuum models of multiphase flow

    NASA Technical Reports Server (NTRS)

    Decker, Rand

    1988-01-01

    A review of the application of single particle hydrodynamics in models for the exchange of interphase momentum in continuum models of multiphase flow is presented. Considered are the equations of motion for a laminar, mechanical two phase flow. Inherent to this theory is a model for the interphase exchange of momentum due to drag between the dispersed particulate and continuous fluid phases. In addition, applications of two phase flow theory to de-mixing flows require the modeling of interphase momentum exchange due to lift forces. The applications of single particle analysis in deriving models for drag and lift are examined.

  18. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2016-09-13

    Here we numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinalmore » to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. Lastly, we map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.« less

  19. Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. Olson

    2016-09-01

    We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.

  20. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    PubMed

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  1. Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition.

    PubMed

    Skvortsov, Alexander M; Klushin, Leonid I; Polotsky, Alexey A; Binder, Kurt

    2012-03-01

    The phase transition occurring when a single polymer chain adsorbed at a planar solid surface is mechanically desorbed is analyzed in two statistical ensembles. In the force ensemble, a constant force applied to the nongrafted end of the chain (that is grafted at its other end) is used as a given external control variable. In the z-ensemble, the displacement z of this nongrafted end from the surface is taken as the externally controlled variable. Basic thermodynamic parameters, such as the adsorption energy, exhibit a very different behavior as a function of these control parameters. In the thermodynamic limit of infinite chain length the desorption transition with the force as a control parameter clearly is discontinuous, while in the z-ensemble continuous variations are found. However, one should not be misled by a too-naive application of the Ehrenfest criterion to consider the transition as a continuous transition: rather, one traverses a two-phase coexistence region, where part of the chain is still adsorbed and the other part desorbed and stretched. Similarities with and differences from two-phase coexistence at vapor-liquid transitions are pointed out. The rounding of the singularities due to finite chain length is illustrated by exact calculations for the nonreversal random walk model on the simple cubic lattice. A new concept of local order parameter profiles for the description of the mechanical desorption of adsorbed polymers is suggested. This concept give evidence for both the existence of two-phase coexistence within single polymer chains for this transition and the anomalous character of this two-phase coexistence. Consequences for the proper interpretation of experiments performed in different ensembles are briefly mentioned.

  2. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with biological surfactants. We have found that subtle changes by surfactant additives to phosphatidylcholines (PC) produce dramatic changes in the microstructure of the composite that are impossible to determine from simple scattering experiments. Novel microstructures were observed at mole ratios from 4/1 to 9/1 long chain (Di-C_{16}PC)/short chain lipid (Di-C_7PC), including disc-like micelles and rippled bilayers at room temperature. We have also observed for the first time the formation of single layered ripple phase bilayer fragments. The formation of such fragments eliminates a number of theories of formation of this unique structure that depend on coupling between bilayers. In a similar system, dimyristoyl phosphatidylcholine (DMPC) mixed with the branched alcohol geraniol produces a bluish and extremely viscoelastic phase of giant multilamellar wormy vesicles. This phase shows the Weissenberg effect under flow due to the distortion of the entangled vesicles and may be related to fluid lamellar phases and L _3 phases often seen in surfactant-alcohol -water systems. Lysophosphatidylcholine, the single-chain counterpart of the diacyl phospholipids, can also form bilayer phases when combined with long-chain fatty acids in water. The phase transition characteristics and appearance of the bilayers in equimolar mixtures of lysolipid and fatty acid are similar to those of the diacyl-PC. Electron microscopy reveals large extended multilayers in mixtures with excess lysolipid and multilamellar vesicles in mixtures with excess fatty acid.

  3. Phase control of austenitic chrome-nickel steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korkh, M. K., E-mail: KorkhMK@imp.uran.ru; Davidov, D. I., E-mail: davidov@imp.uran.ru; Korkh, J. V., E-mail: Korkh@imp.uran.ru

    2015-10-27

    The paper presents the results of the comparative study of the possibilities of different structural and magnetic methods for detection and visualization of the strain-induced martensitic phase in low carbon austenitic chromium-nickel steel. Results of TEM, SEM, optical microscopy, atomic and magnetic force microscopy, and magnetic measurements are presented. Amount of the magnetic strain-induced martensite was estimated. We pioneered magnetic force microscopic images of the single domain cluster distribution of the strain-induced martensite in austenite-ferrite materials.

  4. Structured Water Layers Adjacent to Biological Membranes

    PubMed Central

    Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2006-01-01

    Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815

  5. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  6. Collective effects in force generation by multiple cytoskeletal filaments pushing an obstacle

    NASA Astrophysics Data System (ADS)

    Aparna, J. S.; Das, Dipjyoti; Padinhateeri, Ranjith; Das, Dibyendu

    2015-09-01

    We report here recent findings that multiple cytoskeletal filaments (assumed rigid) pushing an obstacle typically generate more force than just the sum of the forces due to individual ones. This interesting phenomenon, due to the hydrolysis process being out of equilibrium, escaped attention in previous experimental and theoretical literature. We first demonstrate this numerically within a constant force ensemble, for a well known model of cytoskeletal filament dynamics with random mechanism of hydrolysis. Two methods of detecting the departure from additivity of the collective stall force, namely from the force-velocity curve in the growing phase, and from the average collapse time versus force curve in the bounded phase, is discussed. Since experiments have already been done for a similar system of multiple microtubules in a harmonic optical trap, we study the problem theoretically under harmonic force. We show that within the varying harmonic force ensemble too, the mean collective stall force of N filaments is greater than N times the mean stall force due to a single filament; the actual extent of departure is a function of the monomer concentration.

  7. Local twin domains and tip-voltage-induced domain switching of monoclinic M C phase in Pb ( M g 1 / 3 N b 2 / 3 ) O 3 - 0.34 PbTi O 3 single crystal revealed by piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixue; Yang, Bin; Luo, Zhenlin

    2016-08-29

    Here, the monoclinic (M) phases in high-performance relaxor-based ferroelectric single crystals have been recognized to be a vital structural factor for the outstanding piezoelectric property. However, due to the complexity of the structure in M phases, the understanding about it is still limited. In this paper, the local twin domains and tip-voltage-induced domain switching of the M C phase in Pb(Mg 1/3Nb 2/3)O 3 - 0.34PbTiO 3 (PMN-0.34PT) single crystal have been intensively investigated by piezoresponse force microscopy (PFM). By theoretically analyzing the experimental patterns of domain walls on the (001) C face, the specific M C twin domains inmore » the initial annealed state of a selected area have been clarified, and the polarization orientation of the M C phase in this sample is determined to be at an angle of 29 degrees to the < 001 > C directions. In addition, based on the evolution of domains and the motion of domain walls under the step-increased PFM tip dc voltage (V dc), the switching process and features of different types of M C domain variants are visually revealed« less

  8. Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    Arauz, Grigory L.; SanAndres, Luis

    1996-01-01

    Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass content of vapor. Under these conditions, an increase on direct stiffness and reduction of whirl frequency ratio are shown to occur. Prediction of such important effects will motivate experimental studies as well as a more judicious selection of the operating conditions for seals used in cryogenic turbomachinery.

  9. ff14ipq: A Self-Consistent Force Field for Condensed-Phase Simulations of Proteins

    PubMed Central

    2015-01-01

    We present the ff14ipq force field, implementing the previously published IPolQ charge set for simulations of complete proteins. Minor modifications to the charge derivation scheme and van der Waals interactions between polar atoms are introduced. Torsion parameters are developed through a generational learning approach, based on gas-phase MP2/cc-pVTZ single-point energies computed of structures optimized by the force field itself rather than the quantum benchmark. In this manner, we sacrifice information about the true quantum minima in order to ensure that the force field maintains optimal agreement with the MP2/cc-pVTZ benchmark for the ensembles it will actually produce in simulations. A means of making the gas-phase torsion parameters compatible with solution-phase IPolQ charges is presented. The ff14ipq model is an alternative to ff99SB and other Amber force fields for protein simulations in programs that accommodate pair-specific Lennard–Jones combining rules. The force field gives strong performance on α-helical and β-sheet oligopeptides as well as globular proteins over microsecond time scale simulations, although it has not yet been tested in conjunction with lipid and nucleic acid models. We show how our choices in parameter development influence the resulting force field and how other choices that may have appeared reasonable would actually have led to poorer results. The tools we developed may also aid in the development of future fixed-charge and even polarizable biomolecular force fields. PMID:25328495

  10. Double minute chromosomes in mouse methotrexate-resistant cells studied by atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng Xinyu; Zhang Liangyu; Zhang Yu

    2006-08-11

    Double minute chromosomes (DMs) are acentric, autonomously replicating extra-chromosomes and frequently mediate gene amplification in tumor and drug resistant cells. Atomic force microscopy (AFM) is a powerful tool in microbiology. We used AFM to explore the ultrastructure of DMs in mouse fibroblasts 3T3R500. DMs in various phases of cell cycle were also studied in order to elucidate the mechanisms of their duplication and separation. Metaphase spread and induced premature condensed chromosomes (PCCs) were observed under the AFM. DMs were detected to be composed of two compact spheres linked by fibers. The fibers of DMs directly connected with metaphase chromosomes weremore » observed. Many single-minutes and few DMs were detected in G1 PCCs, while more DMs were detected in S PCCs than in G1 PCCs. Besides, all of the DMs in G2 PCCs were coupled. Our present results suggested that DMs might divide into single-minutes during or before G1-phase, followed by duplication of the single-minutes in S-phase. Moreover, we introduced a new powerful tool to study DMs and got some ideal results.« less

  11. Step-to-step spatiotemporal variables and ground reaction forces of intra-individual fastest sprinting in a single session.

    PubMed

    Nagahara, Ryu; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-06-01

    We aimed to investigate the step-to-step spatiotemporal variables and ground reaction forces during the acceleration phase for characterising intra-individual fastest sprinting within a single session. Step-to-step spatiotemporal variables and ground reaction forces produced by 15 male athletes were measured over a 50-m distance during repeated (three to five) 60-m sprints using a long force platform system. Differences in measured variables between the fastest and slowest trials were examined at each step until the 22nd step using a magnitude-based inferences approach. There were possibly-most likely higher running speed and step frequency (2nd to 22nd steps) and shorter support time (all steps) in the fastest trial than in the slowest trial. Moreover, for the fastest trial there were likely-very likely greater mean propulsive force during the initial four steps and possibly-very likely larger mean net anterior-posterior force until the 17th step. The current results demonstrate that better sprinting performance within a single session is probably achieved by 1) a high step frequency (except the initial step) with short support time at all steps, 2) exerting a greater mean propulsive force during initial acceleration, and 3) producing a greater mean net anterior-posterior force during initial and middle acceleration.

  12. Acoustic radiation force expansions in terms of partial wave phase shifts for scattering: Applications

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Zhang, Likun

    2016-11-01

    When evaluating radiation forces on spheres in soundfields (with or without orbital-angular momentum) the interpretation of analytical results is greatly simplified by retaining the use of s-function notation for partial-wave coefficients imported into acoustics from quantum scattering theory in the 1970s. This facilitates easy interpretation of various efficiency factors. For situations in which dissipation is negligible, each partial-wave s-function becomes characterized by a single parameter: a phase shift allowing for all possible situations. These phase shifts are associated with scattering by plane traveling waves and the incident wavefield of interest is separately parameterized. (When considering outcomes, the method of fabricating symmetric objects having a desirable set of phase shifts becomes a separate issue.) The existence of negative radiation force "islands" for beams reported in 2006 by Marston is manifested. This approach and consideration of conservation theorems illustrate the unphysical nature of various claims made by other researchers. This approach is also directly relevant to objects in standing waves. Supported by ONR.

  13. Fluid flow in solidifying monotectic alloys

    NASA Technical Reports Server (NTRS)

    Ecker, A.; Frazier, D. O.; Alexander, J. Iwan D.

    1989-01-01

    Use of a two-wavelength holographic technique results in a simultaneous determination of temperature and composition profiles during directional solidification in a system with a miscibility gap. The relationships among fluid flow, phase separation, and mass transport during the solidification of the monotectic alloy are discussed. The primary sources of fluid motion in this system are buoyancy and thermocapillary forces. These forces act together when phase separation results in the formation of droplets (this occurs at the solid-liquid interface and in the bulk melt). In the absence of phase separation, buoyancy results from density gradients related to temperature and compositional gradients in the single-phase bulk melt. The effects of buoyancy are especially evident in association with water- or ethanol-rich volumes created at the solid-liquid growth interface.

  14. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  15. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  16. Phase-field modeling of mixing/demixing of regular binary mixtures with a composition-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2017-04-01

    We simulate the mixing (demixing) process of a quiescent binary liquid mixture with a composition-dependent viscosity which is instantaneously brought from the two-phase (one-phase) to the one-phase (two-phase) region of its phase diagram. Our theoretical approach follows a standard diffuse-interface model of partially miscible regular binary mixtures wherein convection and diffusion are coupled via a nonequilibrium capillary force, expressing the tendency of the phase-separating system to minimize its free energy. Based on 2D simulation results, we discuss the influence of viscosity ratio on basic statistics of the mixing (segregation) process triggered by a rapid heating (quench), assuming that the ratio of capillary to viscous forces (a.k.a. the fluidity coefficient) is large. We show that, for a phase-separating system, at a fixed value of the fluidity coefficient (with the continuous phase viscosity taken as a reference), the separation depth and the characteristic length of single-phase microdomains decrease monotonically for increasing values of the viscosity of the dispersed phase. This variation, however, is quite small, in agreement with experimental results. On the other hand, as one might expect, at a fixed viscosity of the dispersed phase both of the above statistics increase monotonically as the viscosity of the continuous phase decreases. Finally, we show that for a mixing system the attainment of a single-phase equilibrium state by coalescence and diffusion is retarded by an increase in the viscosity ratio at a fixed fluidity for the dispersed phase. In fact, for large enough values of the viscosity ratio, a thin film of the continuous phase becomes apparent when two drops of the minority phase approach each other, which further retards coalescence.

  17. Relation between peak knee flexion angle and knee ankle kinetics in single-leg jump landing from running: a pilot study on male handball players to prevent ACL injury.

    PubMed

    Ameer, Mariam A; Muaidi, Qassim I

    2017-09-01

    The relationship between knee kinematics and knee-ankle kinetics during the landing phase of single leg jumping has been widely studied to identify proper strategies for preventing non-contact ACL injury. However, there is a lack of study on knee-ankle kinetics at peak knee flexion angle during jumping from running. Hence, the purpose of this study is to establish the relationship between peak knee flexion angle, knee extension moment, ankle plantar flexion moment and ground reaction force in handball players in order to protect ACL from excessive stress during single leg jumping. In addition, the study also clarifies the role of calf muscles in relieving part of ACL stresses with different knee flexion angles during landing. Fifteen active male elite handball players of Saudi Arabia have participated in this study (Age = 22.6 ± 3.5years, Height = 182 ± 3.7 cm, Weight = 87.5 ± 10.2 kg). The players performed three successful landings of single-leg jump following running a fixed distance of about 450cm. The data were collected using a 3D motion capture and analysis system (VICON). Pearson product moment correlation coefficients showed that greater peak knee flexion angle is related significantly to both lesser knee extension moment (r = -.623, P = .013) and vertical component of ground reaction force (VGRF) (r = -.688, P = .005) in landing phase. Moreover, increasing the peak knee flexion angle in landing phase tends to increase the ankle plantar flexion moment significantly (r = .832, P = .000). With an increase of the peak knee flexion angle during single leg jump landing from running, there would be less knee extension moment, low impact force and more plantar flexion moment. As such, the clinical implication of this study is that there may be a possible protective mechanism by increasing the knee flexion angle during landing phase, which tends to protect the ACL from vigorous strain and injuries.

  18. Inertial piezoelectric linear motor driven by a single-phase harmonic wave with automatic clamping mechanism

    NASA Astrophysics Data System (ADS)

    He, Liangguo; Chu, Yuheng; Hao, Sai; Zhao, Xiaoyong; Dong, Yuge; Wang, Yong

    2018-05-01

    A novel, single-phase, harmonic-driven, inertial piezoelectric linear motor using an automatic clamping mechanism was designed, fabricated, and tested to reduce the sliding friction and simplify the drive mechanism and power supply control of the inertial motor. A piezoelectric bimorph and a flexible hinge were connected in series to form the automatic clamping mechanism. The automatic clamping mechanism was used as the driving and clamping elements. A dynamic simulation by Simulink was performed to prove the feasibility of the motor. The finite element method software COMSOL was used to design the structure of the motor. An experimental setup was built to validate the working principle and evaluate the performance of the motor. The prototype motor outputted a no-load velocity of 3.178 mm/s at a voltage of 220 Vp-p and a maximum traction force of 4.25 N under a preload force of 8 N. The minimum resolution of 1.14 μm was achieved at a driving frequency of 74 Hz, a driving voltage of 50 Vp-p, and a preload force of 0 N.

  19. The effects of capillary forces on the axisymmetric propagation of two-phase, constant-flux gravity currents in porous media

    NASA Astrophysics Data System (ADS)

    Golding, Madeleine J.; Huppert, Herbert E.; Neufeld, Jerome A.

    2013-03-01

    The effects of capillary forces on the propagation of two-phase, constant-flux gravity currents in a porous medium are studied analytically and numerically in an axisymmetric geometry. The fluid within a two-phase current generally only partially saturates the pore space it invades. For long, thin currents, the saturation distribution is set by the vertical balance between gravitational and capillary forces. The capillary pressure and relative permeability of the fluid in the current depend on this saturation. The action of capillary forces reduces the average saturation, thereby decreasing the relative permeability throughout the current. This results in a thicker current, which provides a steeper gradient to drive flow, and a more blunt-nose profile. The relative strength of gravity and capillary forces remains constant within a two-phase gravity current fed by a constant flux and spreading radially, due to mass conservation. For this reason, we use an axisymmetric representation of the framework developed by Golding et al. ["Two-phase gravity currents in porous media," J. Fluid Mech. 678, 248-270 (2011)], 10.1017/jfm.2011.110, to investigate the effect on propagation of varying the magnitude of capillary forces and the pore-size distribution. Scaling analysis indicates that axisymmetric two-phase gravity currents fed by a constant flux propagate like t1/2, similar to their single-phase counterparts [S. Lyle, H. E. Huppert, M. Hallworth, M. Bickle, and A. Chadwick, "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)], 10.1017/S0022112005006713, with the effects of capillary forces encapsulated in the constant of proportionality. As a practical application of our new concepts and quantitative evaluations, we discuss the implications of our results for the process of carbon dioxide (CO2) sequestration, during which gravity currents consisting of supercritical CO2 propagate in rock saturated with aqueous brine. We apply our two-phase model including capillary forces to quantitatively assess seismic images of CO2 spreading at Sleipner underneath the North Sea.

  20. Mathematical and experimental modelling of the dynamic bubble processes occurring in a two-phase cyclonic separation device

    NASA Astrophysics Data System (ADS)

    Schrage, Dean Stewart

    1998-11-01

    This dissertation presents a combined mathematical and experimental analysis of the fluid dynamics of a gas- liquid, dispersed-phase cyclonic separation device. The global objective of this research is to develop a simulation model of separation process in order to predict the void fraction field within a cyclonic separation device. The separation process is approximated by analyzing the dynamic motion of many single-bubbles, moving under the influence of the far-field, interacting with physical boundaries and other bubbles. The dynamic motion of the bubble is described by treating the bubble as a point-mass and writing an inertial force balance, equating the force applied to the bubble-point-location to the inertial acceleration of the bubble mass (also applied to the point-location). The forces which are applied to the bubble are determined by an integration of the surface pressure over the bubble. The surface pressure is coupled to the intrinsic motion of the bubble, and is very difficult to obtain exactly. However, under moderate Reynolds number, the wake trailing a bubble is small and the near-field flow field can be approximated as an inviscid flow field. Unconventional potential flow techniques are employed to solve for the surface pressure; the hydrodyamic forces are described as a hydrodynamic mass tensor operating on the bubble acceleration vector. The inviscid flow model is augmented with adjunct forces which describe: drag forces, dynamic lift, far-field pressure forces. The dynamic equations of motion are solved both analytically and numerically for the bubble trajectory in specific flow field examples. A validation of these equations is performed by comparing to an experimentally-derived trajectory of a single- bubble, which is released into a cylindrical Couette flow field (inner cylinder rotating) at varying positions. Finally, a simulation of a cyclonic separation device is performed by extending the single-bubble dynamic model to a multi-bubble ensemble. A simplified model is developed to predict the effects of bubble-interaction. The simulation qualitatively depicts the separation physics encountered in an actual cyclonic separation device, supporting the original tenet that the separation process can be approximated by the collective motions of single- bubbles.

  1. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  2. Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography

    NASA Astrophysics Data System (ADS)

    Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano

    2018-01-01

    We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.

  3. Analysis of Instantaneous Attractive-Normal Force and Vertical Vibration Control of Combined-Levitation-and-Propulsion SLIM Vehicle

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi

    Combined-levitation-and-propulsion single-sided linear induction motor (SLIM) vehicle can be levitated without any additional levitation system. When the vehicle runs, the attractive-normal force varies depending on the phase of primary current because of the short primary end effect. The ripple of the attractive-normal force causes the vertical vibration of the vehicle. In this paper, instantaneous attractive-normal force is analyzed by using space harmonic analysis method. And based on the analysis, vertical vibration control is proposed. The validity of the proposed control method is verified by numerical simulation.

  4. A model of stereocilia adaptation based on single molecule mechanical studies of myosin I.

    PubMed Central

    Batters, Christopher; Wallace, Mark I; Coluccio, Lynne M; Molloy, Justin E

    2004-01-01

    We have used an optical tweezers-based apparatus to perform single molecule mechanical experiments using the unconventional myosins, Myo1b and Myo1c. The single-headed nature and slow ATPase kinetics of these myosins make them ideal for detailed studies of the molecular mechanism of force generation by acto-myosin. Myo1c exhibits several features that have not been seen using fast skeletal muscle myosin II. (i) The working stroke occurs in two, distinct phases, producing an initial 3 nm and then a further 1.5 nm of movement. (ii) Two types of binding interaction were observed: short-lived ATP-independent binding events that produced no movement and longer-lived, ATP-dependent events that produced a full working stroke. The stiffness of both types of interaction was similar. (iii) In a new type of experiment, using feedback to apply controlled displacements to a single acto-myosin cross-bridge, we found abrupt changes in force during attachment of the acto-Myo1b cross-bridge, a result that is consistent with the classical 'T2' behaviour of single muscle fibres. Given that these myosins might exhibit the classical T2 behaviour, we propose a new model to explain the slow phase of sensory adaptation of the hair cells of the inner ear. PMID:15647165

  5. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  6. Forced tearing of ductile and brittle thin sheets.

    PubMed

    Tallinen, T; Mahadevan, L

    2011-12-09

    Tearing a thin sheet by forcing a rigid object through it leads to complex crack morphologies; a single oscillatory crack arises when a tool is driven laterally through a brittle sheet, while two diverging cracks and a series of concertinalike folds forms when a tool is forced laterally through a ductile sheet. On the other hand, forcing an object perpendicularly through the sheet leads to radial petallike tears in both ductile and brittle materials. To understand these different regimes we use a combination of experiments, simulations, and simple theories. In particular, we describe the transition from brittle oscillatory tearing via a single crack to ductile concertina tearing with two tears by deriving laws that describe the crack paths and wavelength of the concertina folds and provide a simple phase diagram for the morphologies in terms of the material properties of the sheet and the relative size of the tool.

  7. Driving forces of redistribution of elements during quasicrystalline phase formation under heating of mechanically alloyed Al65Cu23Fe12 powder

    NASA Astrophysics Data System (ADS)

    Tcherdyntsev, V. V.; Kaloshkin, S. D.; Shelekhov, E. V.; Principi, G.; Rodin, A. O.

    2008-02-01

    Al65Cu23Fe12 alloys were prepared by ball milling of the elemental powders mixture. Phase and structural transformations at heating of as-milled powders were investigated by X-ray diffraction analysis. Precision analysis of Mössbauer spectra was performed to check the adequacy of the fitting of X-ray diffraction patterns. The results were compared with the data of differential scanning and solution calorimetry, as well as with the thermodynamic literature data, in order to estimate the driving forces of redistribution of elements that preceded the formation of single-phase quasicrystalline structure. The heat of elements mixing, which is positive for Cu-Fe system and negative for Al-Fe and Al-Cu systems, was supposed to be a decisive factor for phase transformations during heating of the alloy. The correlation between sequence of phase transformations during heating and the thermodynamic data was discussed and the scheme describing phase transformations observed was proposed.

  8. Structural Transitions in Supercoiled Stretched DNA

    NASA Astrophysics Data System (ADS)

    v, Croquette

    1998-03-01

    Using magnetic micromanipulation techniques [Strick 96]( uc(T.R.) Strick, J.-F. Allemand, D. Bensimon, A. Bensimon) and uc(V.) Croquette, "The elasticity of a single supercoiled DNA molecule", Science, 271, 1835 (1996)., we have studied the mechanical properties (force versus extension) of single DNA molecules under a wide range of torsional stresses (supercoiling). We show that unwinding the DNA double helix leads to a phase separation between regular B-DNA and denaturation bubbles. The fraction of denatured molecule increases linearly with the degree of unwinding, beginning at a value of 1% unwinding. We have confirmed this denatured state by hybridization of homologous single-stranded DNA probes and by a chemical attack of the exposed bases. Surprisingly, when we overwind the molecule, the elasticity curves we obtain may also be interpreted by the coexistence of two phases, B-DNA and a new phase which we note P-DNA. The fraction of this new phase increases smoothly with overwinding, beginning at 3 % and continuing up to 300 %. Our results indicate that this new phase is four times more twisted that the standard B-DNA and is 1.75 times longer. Although the structure of this phase is not yet known, such a high twisting can only be attained if the sugar-phosphate backbones of the two strands are twisted closely while the bases are expelled outside of the molecule's core, in a structure reminiscent of the one proposed by Pauling. Indeed we have shown that this new phase is sensitive to chemical attack whereas the B-DNA is not. This new phase begins to appear on a molecule overwound by 3 % and stretched by a force of 5 pN, conditions typically encountered in vivo during gene transcription. This new phase may thus play a biological role (for more details).

  9. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  10. Measurement of grain wall contact forces in a granular bed using frequency-scanning interferometry

    NASA Astrophysics Data System (ADS)

    Osman, M. S.; Huntley, J. M.; Wildman, R. D.

    2005-07-01

    Micro-mechanical theories have recently been developed to model the propagation of force through a granular material based on single grain interactions. We describe here an experimental technique, developed to validate such theories, that is able to measure the individual contact forces between the grains and the wall of the containing vessel, thereby avoiding the spatial averaging effect of conventional pressure transducers. The method involves measuring interferometrically the deflection of an interface within a triple-layer elastic substrate consisting of epoxy, silicone rubber, and glass. A thin coating of gold between the epoxy and rubber acts as a reflective film, with the reference wave provided by the glass/air interface. Phase shifting is carried out by means of a tunable laser. Phase difference maps are calculated using a 15-frame phase-shifting formula based on a Hanning window. The resulting displacement resolution of order 1 nm allows the wall stiffness to be increased by some two orders of magnitude compared to previously described methods in the literature.

  11. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressures P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  12. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  13. Influence of ZnO doping on the properties of single domain YBCO bulks fabricated by RE+011 TSIG process

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Yuan, X. C.; Guo, Y. X.

    2017-10-01

    Single domain YBCO bulk superconductors with different additions of ZnO have been successfully fabricated by RE+011 TSIG process with a new solid phase of [(100-x)(Y2O3 + 1.2BaCuO2)+xZnO] and a new liquid phase of (Y2O3+6CuO+10BaCuO2). The effects of ZnO additions on the growth morphology, microstructure, critical temperature (Tc), the levitation force and trapped field of the YBCO bulks have been investigated. It is found that within the range of ZnO additions x=0-1.0 wt.%, all the samples are of the typical characteristic of single-domain YBCO bulk; the Tc of the samples decreases from 92 K to 80 K when the ZnO addition x increases from x=0 wt.% to x=1.0 wt.%; the levitation force and trapped field of the samples firstly increase and then decrease with increase of ZnO additions after going through a maximum, which is closely related with the ZnO addition and the resulting flux pinning force caused by lattice distortion due to the substitution of Zn2+ for Cu2+ site in the YBCO crystal; the largest levitation force 36.8 N (77 K, 0.5 T) and trapped field 0.416 T (77 K, 0.5 T) of the samples are obtained when x=0.1 wt.%, respectively. This result is significantly important and helpful for us to improve the properties of YBCO bulk superconductors.

  14. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid-vapor for multi-phase flows

    NASA Astrophysics Data System (ADS)

    Nemati, Maedeh; Shateri Najaf Abady, Ali Reza; Toghraie, Davood; Karimipour, Arash

    2018-01-01

    The incorporation of different equations of state into single-component multiphase lattice Boltzmann model is considered in this paper. The original pseudopotential model is first detailed, and several cubic equations of state, the Redlich-Kwong, Redlich-Kwong-Soave, and Peng-Robinson are then incorporated into the lattice Boltzmann model. A comparison of the numerical simulation achievements on the basis of density ratios and spurious currents is used for presentation of the details of phase separation in these non-ideal single-component systems. The paper demonstrates that the scheme for the inter-particle interaction force term as well as the force term incorporation method matters to achieve more accurate and stable results. The velocity shifting method is demonstrated as the force term incorporation method, among many, with accuracy and stability results. Kupershtokh scheme also makes it possible to achieve large density ratio (up to 104) and to reproduce the coexistence curve with high accuracy. Significant reduction of the spurious currents at vapor-liquid interface is another observation. High-density ratio and spurious current reduction resulted from the Redlich-Kwong-Soave and Peng-Robinson EOSs, in higher accordance with the Maxwell construction results.

  15. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.

    PubMed

    Reinhold, Matthew; Watson, Chad; Knowlton, William B; Müllner, Peter

    2010-06-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni-Mn-Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni-Mn-Ga single crystal. Experiments were performed in the martensite phase at 25 degrees C and in the austenite phase at 55 degrees C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 degrees C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 degrees C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys.

  16. Transformation twinning of Ni–Mn–Ga characterized with temperature-controlled atomic force microscopy

    PubMed Central

    Reinhold, Matthew; Watson, Chad; Knowlton, William B.; Müllner, Peter

    2010-01-01

    The magnetomechanical properties of ferromagnetic shape memory alloy Ni–Mn–Ga single crystals depend strongly on the twin microstructure, which can be modified through thermomagnetomechanical training. Atomic force microscopy (AFM) and magnetic force microscopy (MFM) were used to characterize the evolution of twin microstructures during thermomechanical training of a Ni–Mn–Ga single crystal. Experiments were performed in the martensite phase at 25 °C and in the austenite phase at 55 °C. Two distinct twinning surface reliefs were observed at room temperature. At elevated temperature (55 °C), the surface relief of one twinning mode disappeared while the other relief remained unchanged. When cooled back to 25 °C, the twin surface relief recovered. The relief persisting at elevated temperature specifies the positions of twin boundaries that were present when the sample was polished prior to surface characterization. AFM and MFM following thermomechanical treatment provide a nondestructive method to identify the crystallographic orientation of each twin and of each twin boundary plane. Temperature dependent AFM and MFM experiments reveal the twinning history thereby establishing the technique as a unique predictive tool for revealing the path of the martensitic and reverse transformations of magnetic shape memory alloys. PMID:20589105

  17. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    DOE PAGES

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; ...

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less

  18. The Design of Phase II Clinical Trials Testing Cancer Therapeutics: Consensus Recommendations from the Clinical Trial Design Task Force of the National Cancer Institute Investigational Drug Steering Committee

    PubMed Central

    Seymour, Lesley; Ivy, S. Percy; Sargent, Daniel; Spriggs, David; Baker, Laurence; Rubinstein, Larry; Ratain, Mark J; Le Blanc, Michael; Stewart, David; Crowley, John; Groshen, Susan; Humphrey, Jeffrey S; West, Pamela; Berry, Donald

    2010-01-01

    The optimal design of phase II studies continues to be the subject of vigorous debate, especially with regards to studies of newer molecularly targeted agents. The observations that many new therapeutics ‘fail’ in definitive phase III studies, coupled with the numbers of new agents to be tested as well as the increasing costs and complexity of clinical trials further emphasizes the critical importance of robust and efficient phase II design. The Clinical Trial Design Task Force(CTD-TF)of the NCI Investigational Drug Steering Committee (IDSC) has published a series of discussion papers on Phase II trial design in Clinical Cancer Research. The IDSC has developed formal recommendations regarding aspects of phase II trial design which are the subject of frequent debate such as endpoints(response vs. progression free survival), randomization(single arm designs vs. randomization), inclusion of biomarkers, biomarker based patient enrichment strategies, and statistical design(e.g. two stage designs vs. multiple-group adaptive designs). While these recommendations in general encourage the use of progression-free survival as the primary endpoint, the use of randomization, the inclusion of biomarkers and the incorporation of newer designs, we acknowledge that objective response as an endpoint, and single arm designs, remain relevant in certain situations. The design of any clinical trial should always be carefully evaluated and justified based on the characteristic specific to the situation. PMID:20215557

  19. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  20. Deterministic Impulsive Vacuum Foundations for Quantum-Mechanical Wavefunctions

    NASA Astrophysics Data System (ADS)

    Valentine, John S.

    2013-09-01

    By assuming that a fermion de-constitutes immediately at source, that its constituents, as bosons, propagate uniformly as scalar vacuum terms with phase (radial) symmetry, and that fermions are unique solutions for specific phase conditions, we find a model that self-quantizes matter from continuous waves, unifying bosons and fermion ontologies in a single basis, in a constitution-invariant process. Vacuum energy has a wavefunction context, as a mass-energy term that enables wave collapse and increases its amplitude, with gravitational field as the gradient of the flux density. Gravitational and charge-based force effects emerge as statistics without special treatment. Confinement, entanglement, vacuum statistics, forces, and wavefunction terms emerge from the model's deterministic foundations.

  1. Temporal and Spatial Response of a Turbulent Boundary Layer to Forcing by Synthetic Jets

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald; Ganapathisubramani, Bharathram; Lavoie, Philippe

    2016-11-01

    In this experimental study we examine the spatial and temporal response of a turbulent boundary layer affected by a single, and pair of, synthetic jet actuator(s). The spatial signature of the boundary layer mean-flow has been previously shown to result from large vortical motions caused by the interaction between the synthetic jets and the cross flow. By means of hot-wire measurements, phase-locked to the synthetic jet input, the propagation of the unsteady disturbance can be quantified over the actuation cycle of a synthetic jet. Using long samples both the phase-locked variation of the periodic (actuation cycle) and turbulent fluctuations are examined. It is shown that both the mean flow and turbulence characteristics are markedly different across the span, owing to the three dimensionality of the upstream input. Further, the disturbance shape and phase of the phase-locked disturbance varies significantly with forcing level, in part owing to the disruption of the mean velocity. Particular focus is given to the interaction occurring between the near-wall and outer region scales, which vary across the span, with respect to various forcing conditions. The financial support of Airbus is gratefully acknowledged.

  2. Development of a method to analyze single cell activity by using dielectrophoretic levitation.

    PubMed

    Hakoda, M; Hachisu, T; Wakizaka, Y; Mii, S; Kitajima, N

    2005-01-01

    In cell fusion and genetic recombination, although the activity of single cells is extremely important, there is no method to analyze single cell activity. Development of a quick analyzing method for single cell activity is desired in various fields. Dielectrophoresis (DEP) refers to the force exerted on the induced dipole moment of an uncharged dielectric and/or conductive particle by a nonuniform electric field. By applying DEP, we obtained experimentally a relationship between the cell activity and the dielectric property, Re[K(omega)], and examined how to evaluate the single cell activity by measuring Re[K(omega)] of a single cell. A cone and plate electrode geometry was adapted in order to achieve the feedback-controlled DEP levitation. The single cell is exposed to a nonuniform field induced by the cone and plate electrode, and a more polarizable cell is moved to the direction of the cone electrode by the DEP force. The cell settles in the position where the DEP force and gravity are balanced by controlling applied voltage. This settled position, measured on the center axis of the cone electrode, depended on the dielectric constant of the cell. From these results, the relationship between the specific growth rates in cell growth phase and the dielectric properties Re[K(omega)] was obtained. Furthermore, the effect on the cell activity of various stresses, such as concentration of carbon dioxide, temperature, etc., was examined.

  3. Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors

    NASA Astrophysics Data System (ADS)

    Sheinin, Maxim Y.; Forth, Scott; Marko, John F.; Wang, Michelle D.

    2011-09-01

    DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, the melted DNA assumes a left-handed structure as opposed to an open bubble conformation and is highly torsionally compliant. We have also discovered that at low forces melted DNA properties are highly dependent on DNA sequence. These results provide a more comprehensive picture of the global DNA force-torque phase diagram.

  4. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  5. Interaction of cationic surfactants with DNA: a single-molecule study

    PubMed Central

    Husale, Sudhir; Grange, Wilfried; Karle, Marc; Bürgi, Stephan; Hegner, Martin

    2008-01-01

    The interaction of cationic surfactants with single dsDNA molecules has been studied using force-measuring optical tweezers. For hydrophobic chains of length 12 and greater, pulling experiments show characteristic features (e.g. hysteresis between the pulling and relaxation curves, force-plateau along the force curves), typical of a condensed phase (compaction of a long DNA into a micron-sized particle). Depending on the length of the hydrophobic chain of the surfactant, we observe different mechanical behaviours of the complex (DNA-surfactants), which provide evidence for different binding modes. Taken together, our measurements suggest that short-chain surfactants, which do not induce any condensation, could lie down on the DNA surface and directly interact with the DNA grooves through hydrophobic–hydrophobic interactions. In contrast, long-chain surfactants could have their aliphatic tails pointing away from the DNA surface, which could promote inter-molecular interactions between hydrophobic chains and subsequently favour DNA condensation. PMID:18203749

  6. Determination of gas & liquid two-phase flow regime transitions in wellbore annulus by virtual mass force coefficient when gas cut

    NASA Astrophysics Data System (ADS)

    Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi

    2017-10-01

    With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.

  7. The cross-bridge dynamics is determined by two length-independent kinetics: Implications on muscle economy and Frank-Starling Law.

    PubMed

    Amiad Pavlov, Daria; Landesberg, Amir

    2016-01-01

    The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides

    PubMed Central

    Jana, Madhurima; MacKerell, Alexander D.

    2015-01-01

    An empirical all-atom CHARMM polarizable force filed for aldopentofuranoses and methyl-aldopentofuranosides based on the classical Drude oscillator is presented. A single electrostatic model is developed for eight different diastereoisomers of aldopentofuranoses by optimizing the existing electrostatic and bonded parameters as transferred from ethers, alcohols and hexopyranoses to reproduce quantum mechanical (QM) dipole moments, furanose-water interaction energies and conformational energies. Optimization of selected electrostatic and dihedral parameters was performed to generate a model for methyl-aldopentofuranosides. Accuracy of the model was tested by reproducing experimental data for crystal intramolecular geometries and lattice unit cell parameters, aqueous phase densities, and ring pucker and exocyclic rotamer populations as obtained from NMR experiments. In most cases the model is found to reproduce both QM data and experimental observables in an excellent manner, while for the remainder the level of agreement is in the satisfactory regimen. In aqueous phase simulations the monosaccharides have significantly enhanced dipoles as compared to the gas phase. The final model from this study is transferrable for future studies on carbohydrates and can be used with the existing CHARMM Drude polarizable force field for biomolecules. PMID:26018564

  9. Solution of mixed convection heat transfer from isothermal in-line fins

    NASA Technical Reports Server (NTRS)

    Khalilollahi, Amir

    1993-01-01

    Transient and steady state combined natural and forced convective flows over two in-line finite thickness fins (louvers) in a vertical channel are numerically solved using two methods. The first method of solution is based on the 'Simple Arbitrary Lagrangian Eulerian' (SALE) technique which incorporates mainly two computational phases: (1) a Lagrangian phase in which the velocity field is updated by the effects of all forces, and (2) an Eulerian phase that executes all advective fluxes of mass, momentum and energy. The second method of solution uses the finite element code entitled FIDAP. In the first part, comparison of the results by FIDAP, SALE, and available experimental work were done and discussed for steady state forced convection over louvered fins. Good agreements were deduced between the three sets of results especially for the flow over a single fin. In the second part and in the absence of experimental literature, the numerical predictions were extended to the transient transports and to the opposing flow where pressure drop is reversed. Results are presented and discussed for heat transfer and pressure drop in assisting and opposing mixed convection flows.

  10. Quantitative refractive index distribution of single cell by combining phase-shifting interferometry and AFM imaging.

    PubMed

    Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu

    2017-05-31

    Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.

  11. Circulating Tumor Cells (CTCs): Emerging Technologies for Detection, Diagnosis and Treatment

    NASA Astrophysics Data System (ADS)

    McCarty, Owen

    2010-03-01

    Circulating tumor cell enumeration and characterization have the potential of providing real-time access to epithelial cancers in patients. This fluid phase biopsy of solid phase tumors is crucial to the development of quantitative diagnostic aiding personalized medicine. Cancer is a highly heterogeneous disease over space and time. Our goal is to generate a mechanistic, yet comprehensive view of both the `FORCE-journey' of a cancer cell during the metastatic phase, and a `TIME-journey' of the disease as it progresses. The approach will correlate the `FORCE' and `TIME' journey with both the bio-clinical aspects and the genomics of this complex problem. Presented will be results from a case study in lung cancer patients for which CTC analysis is compared with clinical progression. Morphologic and molecular characterization at the single cell level will be discussed in the context of the data set and in the context of individual patient management. Preliminary data will be shown to guide a future research agenda to investigate the fluid phase of solid tumors.

  12. Nanomedicine photoluminescence crystal-inspired brain sensing approach

    NASA Astrophysics Data System (ADS)

    Fang, Yan; Wang, Fangzhen; Wu, Rong

    2018-02-01

    Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.

  13. A simple method of equine limb force vector analysis and its potential applications.

    PubMed

    Hobbs, Sarah Jane; Robinson, Mark A; Clayton, Hilary M

    2018-01-01

    Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t -tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling's T 2 tests on normalized stance phase data using SPM. Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is more influenced by the longitudinal force and impulse. When used to evaluate mean data from the group of ten sound horses, SPM did not identify differences between the left and right contralateral limb pairs or between limb pairs classified according to directional asymmetry. When evaluating a single horse, three periods were identified during which differences in the forces between the left and right forelimbs exceeded the critical threshold ( p  < .01). Traditional statistical analysis of 2D GRF peak values, summary vector variables and visual evaluation of force vector diagrams gave harmonious results and both methods identified the same inter-limb asymmetries. As alpha was more tightly controlled using SPM, significance was only found in the individual horse although T 2 plots followed the same trends as discrete analysis for the group. The techniques of force vector analysis and SPM hold promise for investigations of sidedness and asymmetry in horses.

  14. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    PubMed

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  15. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift

    PubMed Central

    Sun, Xiaojing; Wang, Yihua; Ajtai, Katalin

    2017-01-01

    Myosin motors in cardiac ventriculum convert ATP free energy to the work of moving blood volume under pressure. The actin bound motor cyclically rotates its lever-arm/light-chain complex linking motor generated torque to the myosin filament backbone and translating actin against resisting force. Previous research showed that the unloaded in vitro motor is described with high precision by single molecule mechanical characteristics including unitary step-sizes of approximately 3, 5, and 8 nm and their relative step-frequencies of approximately 13, 50, and 37%. The 3 and 8 nm unitary step-sizes are dependent on myosin essential light chain (ELC) N-terminus actin binding. Step-size and step-frequency quantitation specifies in vitro motor function including duty-ratio, power, and strain sensitivity metrics. In vivo, motors integrated into the muscle sarcomere form the more complex and hierarchically functioning muscle machine. The goal of the research reported here is to measure single myosin step-size and step-frequency in vivo to assess how tissue integration impacts motor function. A photoactivatable GFP tags the ventriculum myosin lever-arm/light-chain complex in the beating heart of a live zebrafish embryo. Detected single GFP emission reports time-resolved myosin lever-arm orientation interpreted as step-size and step-frequency providing single myosin mechanical characteristics over the active cycle. Following step-frequency of cardiac ventriculum myosin transitioning from low to high force in relaxed to auxotonic to isometric contraction phases indicates that the imposition of resisting force during contraction causes the motor to down-shift to the 3 nm step-size accounting for >80% of all the steps in the near-isometric phase. At peak force, the ATP initiated actomyosin dissociation is the predominant strain inhibited transition in the native myosin contraction cycle. The proposed model for motor down-shifting and strain sensing involves ELC N-terminus actin binding. Overall, the approach is a unique bottom-up single molecule mechanical characterization of a hierarchically functional native muscle myosin. PMID:28423017

  16. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.

    PubMed

    Sleep, John; Irving, Malcolm; Burton, Kevin

    2005-03-15

    The time course of isometric force development following photolytic release of ATP in the presence of Ca(2+) was characterized in single skinned fibres from rabbit psoas muscle. Pre-photolysis force was minimized using apyrase to remove contaminating ATP and ADP. After the initial force rise induced by ATP release, a rapid shortening ramp terminated by a step stretch to the original length was imposed, and the time course of the subsequent force redevelopment was again characterized. Force development after ATP release was accurately described by a lag phase followed by one or two exponential components. At 20 degrees C, the lag was 5.6 +/- 0.4 ms (s.e.m., n = 11), and the force rise was well fitted by a single exponential with rate constant 71 +/- 4 s(-1). Force redevelopment after shortening-restretch began from about half the plateau force level, and its single-exponential rate constant was 68 +/- 3 s(-1), very similar to that following ATP release. When fibres were activated by the addition of Ca(2+) in ATP-containing solution, force developed more slowly, and the rate constant for force redevelopment following shortening-restretch reached a maximum value of 38 +/- 4 s(-1) (n = 6) after about 6 s of activation. This lower value may be associated with progressive sarcomere disorder at elevated temperature. Force development following ATP release was much slower at 5 degrees C than at 20 degrees C. The rate constant of a single-exponential fit to the force rise was 4.3 +/- 0.4 s(-1) (n = 22), and this was again similar to that after shortening-restretch in the same activation at this temperature, 3.8 +/- 0.2 s(-1). We conclude that force development after ATP release and shortening-restretch are controlled by the same steps in the actin-myosin ATPase cycle. The present results and much previous work on mechanical-chemical coupling in muscle can be explained by a kinetic scheme in which force is generated by a rapid conformational change bracketed by two biochemical steps with similar rate constants -- ATP hydrolysis and the release of inorganic phosphate -- both of which combine to control the rate of force development.

  17. Development of a single-phase thermosiphon for cold collection and storage of radiative cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongliang; Martini, Christine Elizabeth; Jiang, Siyu

    A single-phase thermosiphon is developed for cold collection and storage of radiative cooling. Compared to the conventional nocturnal radiative cooling systems that use an electric pump to drive the heat transfer fluid, the proposed single-phase thermosiphon uses the buoyancy force to drive heat transfer fluid. This solution does not require electricity, therefore improving the net gain of the radiative cooling system. A single-phase thermosiphon was built, which consists of a flat panel, a cold collection tank, a water return tube, and a water distribution tank. Considering that outdoor radiative cooling flux is constantly changing (i.e. uncontrollable), an indoor testing facilitymore » was developed to provide a controllable cooling flux (comparable to a radiative cooling flux of 100 W/m2) for the evaluation of thermosiphon performance. The testing apparatus is a chilled aluminum flat plate that has a controlled air gap separation relative to the flat panel surface of the thermosiphon to emulate radiative cooling. With an average of 105 W/m2 cooling flux, the 18 liters of water in the thermosiphon was cooled to an average temperature of 12.5 degrees C from an initial temperature of 22.2 degrees C in 2 h, with a cold collection efficiency of 96.8%. The results obtained have demonstrated the feasibility of using a single-phase thermosiphon for cold collection and storage of radiative cooling. Additionally, the effects of the thermosiphon operation conditions, such as tilt angle of the flat panel, initial water temperature, and cooling energy flux, on the performance have been experimentally investigated. Modular design of the single-phase thermosiphon gives flexibility for its scalability. A radiative cooling system with multiple thermosiphon modules is expected to play an important role in cooling buildings and power plant condensers.« less

  18. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Roszko, Aleksandra; Fornalik-Wajs, Elzbieta

    2017-10-01

    Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.

  19. DNA unzipping phase diagram calculated via replica theory.

    PubMed

    Roland, C Brian; Hatch, Kristi Adamson; Prentiss, Mara; Shakhnovich, Eugene I

    2009-05-01

    We show how single-molecule unzipping experiments can provide strong evidence that the zero-force melting transition of long molecules of natural dsDNA should be classified as a phase transition of the higher-order type (continuous). Toward this end, we study a statistical-mechanics model for the fluctuating structure of a long molecule of dsDNA, and compute the equilibrium phase diagram for the experiment in which the molecule is unzipped under applied force. We consider a perfect-matching dsDNA model, in which the loops are volume-excluding chains with arbitrary loop exponent c . We include stacking interactions, hydrogen bonds, and main-chain entropy. We include sequence heterogeneity at the level of random sequences; in particular, there is no correlation in the base-pairing (bp) energy from one sequence position to the next. We present heuristic arguments to demonstrate that the low-temperature macrostate does not exhibit degenerate ergodicity breaking. We use this claim to understand the results of our replica-theoretic calculation of the equilibrium properties of the system. As a function of temperature, we obtain the minimal force at which the molecule separates completely. This critical-force curve is a line in the temperature-force phase diagram that marks the regions where the molecule exists primarily as a double helix versus the region where the molecule exists as two separate strands. We compare our random-sequence model to magnetic tweezer experiments performed on the 48 502 bp genome of bacteriophage lambda . We find good agreement with the experimental data, which is restricted to temperatures between 24 and 50 degrees C . At higher temperatures, the critical-force curve of our random-sequence model is very different for that of the homogeneous-sequence version of our model. For both sequence models, the critical force falls to zero at the melting temperature T_{c} like |T-T_{c}|;{alpha} . For the homogeneous-sequence model, alpha=1/2 almost exactly, while for the random-sequence model, alpha approximately 0.9 . Importantly, the shape of the critical-force curve is connected, via our theory, to the manner in which the helix fraction falls to zero at T_{c} . The helix fraction is the property that is used to classify the melting transition as a type of phase transition. In our calculation, the shape of the critical-force curve holds strong evidence that the zero-force melting transition of long natural dsDNA should be classified as a higher-order (continuous) phase transition. Specifically, the order is 3rd or greater.

  20. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime

    NASA Astrophysics Data System (ADS)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric

    2013-12-01

    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  1. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.

    2013-01-01

    The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.

  2. Ionic effects on the temperature-force phase diagram of DNA.

    PubMed

    Amnuanpol, Sitichoke

    2017-12-01

    Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature-force phase diagram the critical force F c (T) increases logarithmically with the Na + concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

  3. Harmonic motion detection in a vibrating scattering medium.

    PubMed

    Urban, Matthew W; Chen, Shigao; Greenleaf, James

    2008-09-01

    Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10 degrees or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously.

  4. Harmonic Motion Detection in a Vibrating Scattering Medium

    PubMed Central

    Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2008-01-01

    Elasticity imaging is an emerging medical imaging modality that seeks to map the spatial distribution of tissue stiffness. Ultrasound radiation force excitation and motion tracking using pulse-echo ultrasound have been used in numerous methods. Dynamic radiation force is used in vibrometry to cause an object or tissue to vibrate, and the vibration amplitude and phase can be measured with exceptional accuracy. This paper presents a model that simulates harmonic motion detection in a vibrating scattering medium incorporating 3-D beam shapes for radiation force excitation and motion tracking. A parameterized analysis using this model provides a platform to optimize motion detection for vibrometry applications in tissue. An experimental method that produces a multifrequency radiation force is also presented. Experimental harmonic motion detection of simultaneous multifrequency vibration is demonstrated using a single transducer. This method can accurately detect motion with displacement amplitude as low as 100 to 200 nm in bovine muscle. Vibration phase can be measured within 10° or less. The experimental results validate the conclusions observed from the model and show multifrequency vibration induction and measurements can be performed simultaneously. PMID:18986892

  5. Spiral Countercurrent Chromatography

    PubMed Central

    Ito, Yoichiro; Knight, Martha; Finn, Thomas M.

    2013-01-01

    For many years, high-speed countercurrent chromatography conducted in open tubing coils has been widely used for the separation of natural and synthetic compounds. In this method, the retention of the stationary phase is solely provided by the Archimedean screw effect by rotating the coiled column in the centrifugal force field. However, the system fails to retain enough of the stationary phase for polar solvent systems such as the aqueous–aqueous polymer phase systems. To address this problem, the geometry of the coiled channel was modified to a spiral configuration so that the system could utilize the radially acting centrifugal force. This successfully improved the retention of the stationary phase. Two different types of spiral columns were fabricated: the spiral disk assembly, made by stacking multiple plastic disks with single or four interwoven spiral channels connected in series, and the spiral tube assembly, made by inserting the tetrafluoroethylene tubing into a spiral frame (spiral tube support). The capabilities of these column assemblies were successfully demonstrated by separations of peptides and proteins with polar two-phase solvent systems whose stationary phases had not been well retained in the earlier multilayer coil separation column for high-speed countercurrent chromatography. PMID:23833207

  6. Phase measurement by using a forced delay-line oscillator and its application for an acoustic fiber sensor.

    PubMed

    Fleyer, Michael; Horowitz, Moshe

    2018-04-02

    We demonstrate, theoretically and experimentally, a new method to measure small changes in the cavity length of oscillators. The method is based on the high sensitivity of the phase of forced delay-line oscillators to changes in their cavity length. The oscillator phase is directly detected by mixing the oscillator output with the injected signal. We describe a comprehensive theoretical model for studying the signal and the noise at the output of a general forced delay-line oscillator with an instantaneous gain saturation and an amplitude-to-phase conversion. The results indicate that the magnitude and the bandwidth of the oscillator response to a small perturbation can be controlled by adjusting the injection ratio and the injected frequency. For signals with a frequency that is smaller than the device bandwidth, the oscillator noise is dominated by the noise of the injected signal. This noise is highly suppressed by mixing the oscillator output with the injected signal. Hence, the device sensitivity at frequencies below its bandwidth is limited only by the internal noise that is added in a single roundtrip in the oscillator cavity. We demonstrate the use of a forced oscillator as an acoustic fiber sensor in an optoelectronic oscillator. A good agreement is obtained between theory and experiments. The magnitude of the output signal can be controlled by adjusting the injection ratio while the noise power at low frequencies is not enhanced as in sensors that are based on a free-running oscillator.

  7. Probing cooperative force generation in collective cancer invasion

    NASA Astrophysics Data System (ADS)

    Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo

    2017-08-01

    Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.

  8. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  9. New force replica exchange method and protein folding pathways probed by force-clamp technique.

    PubMed

    Kouza, Maksim; Hu, Chin-Kun; Li, Mai Suan

    2008-01-28

    We have developed a new extended replica exchange method to study thermodynamics of a system in the presence of external force. Our idea is based on the exchange between different force replicas to accelerate the equilibrium process. This new approach was applied to obtain the force-temperature phase diagram and other thermodynamical quantities of the three-domain ubiquitin. Using the C(alpha)-Go model and the Langevin dynamics, we have shown that the refolding pathways of single ubiquitin depend on which terminus is fixed. If the N end is fixed then the folding pathways are different compared to the case when both termini are free, but fixing the C terminal does not change them. Surprisingly, we have found that the anchoring terminal does not affect the pathways of individual secondary structures of three-domain ubiquitin, indicating the important role of the multidomain construction. Therefore, force-clamp experiments, in which one end of a protein is kept fixed, can probe the refolding pathways of a single free-end ubiquitin if one uses either the polyubiquitin or a single domain with the C terminus anchored. However, it is shown that anchoring one end does not affect refolding pathways of the titin domain I27, and the force-clamp spectroscopy is always capable to predict folding sequencing of this protein. We have obtained the reasonable estimate for unfolding barrier of ubiquitin, using the microscopic theory for the dependence of unfolding time on the external force. The linkage between residue Lys48 and the C terminal of ubiquitin is found to have the dramatic effect on the location of the transition state along the end-to-end distance reaction coordinate, but the multidomain construction leaves the transition state almost unchanged. We have found that the maximum force in the force-extension profile from constant velocity force pulling simulations depends on temperature nonlinearly. However, for some narrow temperature interval this dependence becomes linear, as have been observed in recent experiments.

  10. An Evaluation of a Phase-Lag Boundary Condition for Francis Hydroturbine Simulations Using a Pressure-Based Solver

    NASA Astrophysics Data System (ADS)

    Wouden, Alex; Cimbala, John; Lewis, Bryan

    2014-11-01

    While the periodic boundary condition is useful for handling rotational symmetry in many axisymmetric geometries, its application fails for analysis of rotor-stator interaction (RSI) in multi-stage turbomachinery flow. The inadequacy arises from the underlying geometry where the blade counts per row differ, since the blade counts are crafted to deter the destructive harmonic forces of synchronous blade passing. Therefore, to achieve the computational advantage of modeling a single blade passage per row while preserving the integrity of the RSI, a phase-lag boundary condition is adapted to OpenFOAM® software's incompressible pressure-based solver. The phase-lag construct is accomplished through restating the implicit periodic boundary condition as a constant boundary condition that is updated at each time step with phase-shifted data from the coupled cells adjacent to the boundary. Its effectiveness is demonstrated using a typical Francis hydroturbine modeled as single- and double-passages with phase-lag boundary conditions. The evaluation of the phase-lag condition is based on the correspondence of the overall computational performance and the calculated flow parameters of the phase-lag simulations with those of a baseline full-wheel simulation. Funded in part by DOE Award Number: DE-EE0002667.

  11. A simple method of equine limb force vector analysis and its potential applications

    PubMed Central

    Robinson, Mark A.; Clayton, Hilary M.

    2018-01-01

    Background Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. Methods GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t-tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling’s T2 tests on normalized stance phase data using SPM. Results Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is more influenced by the longitudinal force and impulse. When used to evaluate mean data from the group of ten sound horses, SPM did not identify differences between the left and right contralateral limb pairs or between limb pairs classified according to directional asymmetry. When evaluating a single horse, three periods were identified during which differences in the forces between the left and right forelimbs exceeded the critical threshold (p < .01). Discussion Traditional statistical analysis of 2D GRF peak values, summary vector variables and visual evaluation of force vector diagrams gave harmonious results and both methods identified the same inter-limb asymmetries. As alpha was more tightly controlled using SPM, significance was only found in the individual horse although T2 plots followed the same trends as discrete analysis for the group. Conclusions The techniques of force vector analysis and SPM hold promise for investigations of sidedness and asymmetry in horses. PMID:29492341

  12. Molecular Dynamics Simulations of Strain-Induced Phase Transition of Poly(ethylene oxide) in Water.

    PubMed

    Donets, Sergii; Sommer, Jens-Uwe

    2018-01-11

    We study the dilute aqueous solutions of poly(ethylene oxide) (PEO) oligomers that are subject to an elongating force dipole acting on both chain ends using atomistic molecular dynamics. By increasing the force, liquid-liquid demixing can be observed at room temperature far below the lower critical solution temperature. For forces above 35 pN, fibrillar nanostructures are spontaneously formed related to a decrease in hydrogen bonding between PEO and water. Most notable is a rapid decrease in the bifurcated hydrogen bonds during stretching, which can also be observed for isolated single chains. The phase-segregated structures display signs of chain ordering, but a clear signature of the crystalline order is not obtained during the simulation time, indicating a liquid-liquid phase transition induced by chain stretching. Our results indicate that the solvent quality of the aqueous solution of PEO depends on the conformational state of the chains, which is most likely related to the specific hydrogen-bond-induced solvation of PEO in water. The strain-induced demixing of PEO opens the possibility to obtain polymer fibers with low energy costs because crystallization starts via the strain-induced demixing in the extended state only.

  13. Nucleation and Epitaxy-Mediated Phase Transformation of a Precursor Cadmium Carbonate Phase at the Calcite/Water Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riechers, Shawn L.; Rosso, Kevin M.; Kerisit, Sebastien N.

    Mineral nucleation can be catalyzed by the presence of mineral substrates; however, the mechanisms of heterogeneous nucleation remain poorly understood. A combination of in situ time-sequenced measurements and nano-manipulation experiments were performed using atomic force microscopy (AFM) to probe the mechanisms of heteroepitaxial nucleation of otavite (CdCO3) on calcite (CaCO3) single crystals that exposed the (10-14) surface. Otavite and calcite are isostructural carbonates that display a 4% lattice mismatch, based on their (10-14) surface areas. AFM observations revealed a two-stage process in the nucleation of cadmium carbonate surface precipitates. As evidenced by changes in height, shape, growth behavior, and frictionmore » signal of the precipitates, a precursor phase was observed to initially form on the surface and subsequently undergo an epitaxy-mediated phase transformation to otavite, which then grew epitaxially. Nano-manipulation experiments, in which the applied force was increased progressively until precipitates were removed from the surface, showed that adhesion of the precursor phase to the substrate was distinctively weaker than that of the epitaxial phase, consistent with that of an amorphous phase. These findings demonstrate for the first time that heterogeneous mineral nucleation can follow a non-classical pathway like that found in homogenous aqueous conditions.« less

  14. Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak

    2017-11-01

    We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.

  15. Thermal effects in two-phase flow through face seals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Basu, Prithwish

    1988-01-01

    When liquid is sealed at high temperature, it flashes inside the seal due to pressure drop and/or viscous heat dissipation. Two-phase seals generally exhibit more erratic behavior than their single phase counterparts. Thermal effects, which are often neglected in single phase seal analyses, play an important role in determining seal behavior under two-phase operation. It is necessary to consider the heat generation due to viscous shear, conduction into the seal rings and convection with the leakage flow. Analytical models developed work reasonably well at the two extremes - for low leakage rates when convection is neglected and for higher leakage rates when conduction is neglected. A preliminary model, known as the Film Coefficient Model, is presented which considers conduction and convection both, and allows continuous boiling over an extended region unlike the previous low-leakage rate model which neglects convection and always forces a discrete boiling interface. Another simplified, semi-analytical model, based on the assumption of isothermal conditions along the seal interafce, has been developed for low leakage rates. The Film Coefficient Model may be used for more accurate and realistic description.

  16. Acoustic radiation force control: Pulsating spherical carriers.

    PubMed

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required power supply for distinct cases of zero, negative and positive radiation force states along with the frequency dependent asymmetry index. In addition, considering the effect of phase difference between the incident wave field and the pulsating object, and its possible variation with respect to spatial position of object, some practical points about the spatial average of generated radiation force, the optimal state of operation, the stability of zero radiation force states and the possibly of precise motion control are discussed. This work would extend the novel concept of smart carriers to and may be helpful for robust single-beam acoustic handling techniques. Furthermore, the shown capability of precise motion control may be considered as a new way toward smart acoustic driven micro-mechanisms and micro-machines. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Landing mechanics during single hop for distance in females following anterior cruciate ligament reconstruction compared to healthy controls.

    PubMed

    Trigsted, Stephanie M; Post, Eric G; Bell, David R

    2017-05-01

    To determine possible differences in single-hop kinematics and kinetics in females with anterior cruciate ligament reconstruction compared to healthy controls. A second purpose was to make comparisons between the healthy and reconstructed limbs. Subjects were grouped based on surgical status (33 ACLR patients and 31 healthy controls). 3D motion capture synchronized with force plates was used to capture the landing phase of three successful trials of single hop for distance during a single data collection session. Peak values during the loading phase were analysed. Subjects additionally completed three successful trials of the triple hop for distance Tegner activity scale and International Knee Document Committee 2000 (IKDC). Controls demonstrated greater peak knee flexion and greater internal knee extension moment and hip extension moment than ACLR subjects. Within the ACLR group, the healthy limb exhibited greater peak knee flexion, hip flexion, hip extension moment, single hop and triple hops for distance and normalized quadriceps strength. Patients who undergo anterior cruciate ligament reconstruction land in a more extended posture when compared to healthy controls and compared to their healthy limb. III.

  18. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing. Therefore, improving sagittal-plane landing mechanics is important in reducing harmful magnitudes and directions of impact forces on the anterior cruciate ligament. PMID:27723362

  19. Enhanced optical gradient forces between coupled graphene sheets

    PubMed Central

    Xu, Xinbiao; Shi, Lei; Liu, Yang; Wang, Zheqi; Zhang, Xinliang

    2016-01-01

    Optical gradient forces between monolayer infinite-width graphene sheets as well as single-mode graphene nanoribbon pairs of graphene surface plasmons (GSPs) at mid-infrared frequencies were theoretically investigated. Although owing to the strongly enhanced optical field, the normalized optical force, fn, can reach 50 nN/μm/mW, which is the largest fn as we know, the propagation loss is also large. But we found that by changing the chemical potential of graphene, fn and the optical propagation loss can be balanced. The total optical force acted on the nanoribbon waveguides can thus enhance more than 1 order of magnitude than that in metallic surface plasmons (MSPs) waveguides with the same length and the loss can be lower. Owing to the enhanced optical force and the significant neff tuning by varying the chemical potential of graphene, we also propose an ultra-compact phase shifter. PMID:27338252

  20. New method for introducing nanometer flux pinning centers into single domain YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Wang, Miao

    2013-10-01

    Single domain YBCO superconductors with different additions of Bi2O3 have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi2O3 additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi2O3 less than 2 wt%; Bi2O3 can be reacted with Y2BaCuO5 and liquid phase and finally form Y2Ba4CuBiOx(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi2O3 addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.

  1. Parabolized Stability Equations analysis of nonlinear interactions with forced eigenmodes to control subsonic jet instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itasse, Maxime, E-mail: Maxime.Itasse@onera.fr; Brazier, Jean-Philippe, E-mail: Jean-Philippe.Brazier@onera.fr; Léon, Olivier, E-mail: Olivier.Leon@onera.fr

    2015-08-15

    Nonlinear evolution of disturbances in an axisymmetric, high subsonic, high Reynolds number hot jet with forced eigenmodes is studied using the Parabolized Stability Equations (PSE) approach to understand how modes interact with one another. Both frequency and azimuthal harmonic interactions are analyzed by setting up one or two modes at higher initial amplitudes and various phases. While single mode excitation leads to harmonic growth and jet noise amplification, controlling the evolution of a specific mode has been made possible by forcing two modes (m{sub 1}, n{sub 1}), (m{sub 2}, n{sub 2}), such that the difference in azimuth and in frequencymore » matches the desired “target” mode (m{sub 1} − m{sub 2}, n{sub 1} − n{sub 2}). A careful setup of the initial amplitudes and phases of the forced modes, defined as the “killer” modes, has allowed the minimizing of the initially dominant instability in the near pressure field, as well as its estimated radiated noise with a 15 dB loss. Although an increase of the overall sound pressure has been found in the range of azimuth and frequency analyzed, the present paper reveals the possibility to make the initially dominant instability ineffective acoustically using nonlinear interactions with forced eigenmodes.« less

  2. Acrivos Award Talk

    NASA Astrophysics Data System (ADS)

    Datta, Sujit Sankar

    2015-11-01

    Filtering water and brewing coffee are familiar examples of forcing a fluid through a porous material. Such flows are also crucial to many technological applications, including oil recovery, groundwater remediation, waste CO2 sequestration, and even transporting nutrients through mammalian tissues. I will present an experimental approach by which we directly visualize flow within a disordered 3D porous medium over a broad range of length scales, from the scale of individual pores to that of the entire medium. I will describe how we use this approach to learn about fluctuations and instabilities in single-phase and multi-phase flows.

  3. Modular Organization of Exploratory Force Development Under Isometric Conditions in the Human Arm.

    PubMed

    Roh, Jinsook; Lee, Sang Wook; Wilger, Kevin D

    2018-01-31

    Muscle coordination of isometric force production can be explained by a smaller number of modules. Variability in force output, however, is higher during exploratory/transient force development phases than force maintenance phase, and it is not clear whether the same modular structure underlies both phases. In this study, eight neurologically-intact adults isometrically performed target force matches in 54 directions at hands, and electromyographic (EMG) data from eight muscles were parsed into four sequential phases. Despite the varying degree of motor complexity across phases (significant between-phase differences in EMG-force correlation, angular errors, and between-force correlations), the number/composition of motor modules were found equivalent across phases, suggesting that the CNS systematically modulated activation of the same set of motor modules throughout sequential force development.

  4. Computer game-based upper extremity training in the home environment in stroke persons: a single subject design.

    PubMed

    Slijper, Angelique; Svensson, Karin E; Backlund, Per; Engström, Henrik; Sunnerhagen, Katharina Stibrant

    2014-03-13

    The objective of the present study was to assess whether computer game-based training in the home setting in the late phase after stroke could improve upper extremity motor function. Twelve subjects with prior stroke were recruited; 11 completed the study. The study had a single subject design; there was a baseline test (A1), a during intervention test (B) once a week, a post-test (A2) measured directly after the treatment phase, plus a follow-up (C) 16-18 weeks after the treatment phase. Information on motor function (Fugl-Meyer), grip force (GrippitR) and arm function in activity (ARAT, ABILHAND) was gathered at A1, A2 and C. During B, only Fugl-Meyer and ARAT were measured. The intervention comprised five weeks of game-based computer training in the home environment. All games were designed to be controlled by either the affected arm alone or by both arms. Conventional formulae were used to calculate the mean, median and standard deviations. Wilcoxon's signed rank test was used for tests of dependent samples. Continuous data were analyzed by methods for repeated measures and ordinal data were analyzed by methods for ordered multinomial data using cumulative logistic models. A p-value of < 0.05 was considered statistically significant. Six females and five males, participated in the study with an average age of 58 years (range 26-66). FMA-UE A-D (motor function), ARAT, the maximal grip force and the mean grip force on the affected side show significant improvements at post-test and follow-up compared to baseline. No significant correlation was found between the amount of game time and changes in the outcomes investigated in this study. The results indicate that computer game-based training could be a promising approach to improve upper extremity function in the late phase after stroke, since in this study, changes were achieved in motor function and activity capacity.

  5. Application of Phased-array Vibrator System in shallow oil shale exploration

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Lin, J.; Xu, X.

    2011-12-01

    Due to the huge oil and gas demands in China, exploration of unconventional oil shale at shallow depths becomes more critical. 52.83% of the identified reserves in China are from Jilin province and Nong'an is one of the main areas of oil shale in Jilin. The average buried depth of oil shale in Nong'an is between 300m and 800m. Since explosive sources are not allowed to operate in civil area and the inconvenience of vibroseis, Phased-array Vibrator System (PAVS) is applied in the exploration of oil shale in Nong'an. We have developed a series electromagnetic Portable High-frequency Vibrator System (PHVS), including single, combination, and phased-array modes. Single mode is the simplest mode, with output force less than 500N, and thus is only suitable for engineering seismic prospecting. Combination mode is a source array, which uses a controller to synchronize all vibrator units and let them work consistently with each other. Thus, it can increase output force than single case. The field test indicates that it can improve signal-to-noise ratio (SNR) of reflected waves in deep layer significantly. However, it contributes little for signals from shallow layers and sometimes it can even deteriorate shallow reflected signals than single source. This is because for signals reflected from shallow depths, the assumption in combination mode that seismic waves propagate along vertical rays is no longer valid. Therefore, they are not stacked constructively. Phased-array mode belongs to a new source array, whose key part is so-called delay/phase controller. By coordinating the signal of each unit using the controller, the seismic waves can be beamed into any interested direction, based on the underground structure and the depth of interested reflected layer. In this case, SNR of the concerned reflected wave can be improved apparently. PHVS in phased-array mode is called PAVS. We made two field tests to evaluate the performance of PAVS. In the first test, we compare PAVS with PHVS in single and combination modes in the Qinjiatun test site. The parameters of PAVS are set as follows: sweep bandwidth of 50~500Hz, 5.3s for the duration of sweep, spacing between adjacent unit is 2m and the number of units is 3; In addition, 5 different delay parameters, 0.802ms, 0.384ms, 0.241ms, 0.174ms, 0.123ms, are used in PAVS test. In this test, we analyzed the signal reflected from the shallowest identified layer to compare the performances of different methods. It showed that 3-unit PAVS improved SNR up to 8.02dB, 6.05dB, 5.03dB, 4.54dB and 4.04dB than single mode, and 4.70dB, 2.74dB, 1.71dB, 1.22dB, 0.72dB higher than the combination case, respectively. For the second test, we made a similar test in Gansu between PAVS and Minivib T15000, which is a hydraulic source with 27kN output force. We set the same control signals to be at 10~120Hz. We observe all signals from electromagnetic vibrators have wider bandwidth than that from hydraulic source, which in turn has a higher resolution. In summary, our results show PAVS can significantly improve the SNR and resolution for shallow reflected layer. Therefore, PAVS is eventually adopted in oil shale exploration in Nong'an. The updated results will be presented in the meeting.

  6. Monolayer adsorption of noble gases on graphene

    NASA Astrophysics Data System (ADS)

    Maiga, Sidi M.; Gatica, Silvina M.

    2018-02-01

    We report our results of simulations of the adsorption of noble gases (Kr, Ar, Xe) on graphene. For Kr, we consider two configurations: supported and free-standing graphene, where atoms are adsorbed only on one or two sides of the graphene. For Ar and Xe, we studied only the case of supported graphene. For the single-side adsorption, we calculated the two-dimensional gas-liquid critical temperature for each adsorbate. We determined the different phases of the monolayers and constructed the phase diagrams. We found two-dimensional incommensurate solid phases for krypton, argon and xenon, and a two-dimensional commensurate solid phase for krypton. For double side adsorption of Kr, we do not see evidence of an ordering transition driven by the interlayer forces.

  7. Co-axial Electrospun Polyacrylonitrile-Poly(methylmethacrylate) Nanofibers: Atomic Force Microscopy and Compositional Characterization

    PubMed Central

    Zander, N.E.; Strawhecker, K.E.; Orlicki, J.A.; Rawlett, A.M.; Beebe, T.P.

    2011-01-01

    Poly(methylmethacrylate) (PMMA)- Polyacrylonitrile (PAN) fibers were prepared using a conventional single-nozzle electrospinning technique. The as-spun fibers exhibited core-shell morphology as verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM). AFM-phase and modulus mapping images of the fiber cross-section and x-ray photoelectron spectroscopy (XPS) analysis indicated PAN formed the shell and PMMA the core material. XPS, thermal gravimetric analysis (TGA), and elemental analysis were used to determine fiber compositional information. Soaking the fibers in solvent demonstrated removal of the core material, generating hollow PAN fibers. PMID:21928836

  8. Pinning in BSCCO above the ordinary irreversibility line

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Motohira, N.; Berger, H.; Benoit, W.

    1996-12-01

    Frequency-dependent observations of magnetic flux structures are used to show that pinning plays a principal role in the whole mixed state in Bi2Sr2CaCu2O8 (BSCCO) single crystals. We speculate that the random pinning force on the moving vortices may dominate over thermal fluctuations and considerably modify the position of the vortex lattice phase transition.

  9. Two-phase flows within systems with ambient pressure

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Wheeler, R. L., III; Mullen, R. L.

    1985-01-01

    In systems where the design inlet and outlet pressures are maintained above the thermodynamic critical pressure, it is often assumed that two phase flows within the system cannot occur. Designers rely on this simple rule of thumb to circumvent problems associated with a highly compressible two phase flow occurring within the supercritical pressure system along with the uncertainties in rotordynamics, load capacity, heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low power designs but is inadequate for high performance turbomachines and linear systems, where two phase regions can exist even though outlet pressure is greater than critical pressure. Rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two phase zone can differ significantly from those for a single-phase zone. Using the Reynolds equation the angular velocity, eccentricity, geometry, and ambient conditions are varied to determine the point of two phase flow incipience.

  10. An experimental study of the velocity-forced flame response of a lean-premixed multi-nozzle can combustor for gas turbines

    NASA Astrophysics Data System (ADS)

    Szedlmayer, Michael Thomas

    The velocity forced flame response of a multi-nozzle, lean-premixed, swirl-stabilized, turbulent combustor was investigated at atmospheric pressure. The purpose of this study was to analyze the mechanisms that allowed velocity fluctuations to cause fluctuations in the rate of heat release in a gas turbine combustor experiencing combustion instability. Controlled velocity fluctuations were introduced to the combustor by a rotating siren device which periodically allowed the air-natural gas mixture to flow. The velocity fluctuation entering the combustor was measured using the two-microphone method. The resulting heat release rate fluctuation was measured using CH* chemiluminescence. The global response of the flame was quantified using the flame transfer function with the velocity fluctuation as the input and the heat release rate fluctuation as the output. Velocity fluctuation amplitude was initially maintained at 5% of the inlet velocity in order to remain in the linear response regime. Flame transfer function measurements were acquired at a wide range of operating conditions and forcing frequencies. The selected range corresponds to the conditions and instability frequencies typical of real gas turbine combustors. Multi-nozzle flame transfer functions were found to bear a qualitative similarity to the single-nozzle flame transfer functions in the literature. The flame transfer function gain exhibited alternating minima and maxima while the phase decreased linearly with increasing forcing frequency. Several normalization techniques were applied to all flame transfer function data in an attempt to collapse the data into a single curve. The best collapse was found to occur using a Strouhal number which was the ratio of the characteristic flame length to the wavelength of the forced disturbance. Critical values of Strouhal number are used to predict the shedding of vortical structures in shear layers. Because of the collapse observed when the flame transfer functions are plotted versus Strouhal number, vortical structures are thought to have a strong influence on the response of this multi-nozzle configuration. The structure of heat release rate fluctuations throughout the flame is analyzed using CH* chemiluminescence acquired with a high speed camera. Flames with a similar level of flame transfer function gain are found to exhibit similarity in the spatial distribution of their heat release rate fluctuations, regardless of the operating condition. Flames with high gain are found to have high amplitude fluctuations near the downstream end of the flame, with weak fluctuations near the flame base. The phase of the downstream fluctuations changes minimally across the downstream region, indicating that they occur inphase. Flames with low gain exhibit stronger fluctuations near the flame base, but weak fluctuations in the downstream region. The phase of the fluctuations near the flame base changes continuously along the flame axis, indicating that parts of the flame will fluctuate out-of-phase. Accordingly, from a global perspective, destructive interference between heat release rate fluctuations in different parts of the flame can be expected. The behavior observed in the flame is ascribed to the interaction of acoustic velocity fluctuations, vortical disturbances and swirl fluctuations. The response of the multi-nozzle flame to high amplitude velocity fluctuations was tested for a single operating condition. Based on the global flame response, most frequencies responded linearly over the tested range of amplitudes. Nonlinear effects were found to occur at three frequencies. The behaviors observed at these frequencies matched those observed in the literature and included flame response saturation and mode triggering. For conditions which responded linearly at all amplitudes, the structure of heat release rate fluctuations was found to remain nearly constant. For conditions with nonlinear behavior, the structure of the fluctuations was a function of the forcing amplitude, particularly in the downstream region. The behavior of the multi-nozzle flame was compared directly to that of a single-nozzle flame of the same nozzle design. The multi-nozzle characteristic flame length was found to be on average 10% longer than for the single-nozzle flame. The flame transfer functions from the two cases were found to exhibit qualitative similarity, where the frequencies at which the extrema occur are similar. The actual value of gain for the same operating condition and frequency does, however, vary by more than a factor of two in some cases. The phase value can also vary by as much as pi radians. These differences indicate that single-nozzle flame transfer functions should not be used directly to predict the instability driving force of real gas turbine combustors.

  11. Twin rotor damper for the damping of stochastically forced vibrations using a power-efficient control algorithm

    NASA Astrophysics Data System (ADS)

    Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe

    2018-01-01

    The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.

  12. Proximity effect on hydrodynamic interaction between a sphere and a plane measured by force feedback microscopy at different frequencies

    NASA Astrophysics Data System (ADS)

    Carpentier, Simon; Rodrigues, Mario S.; Charlaix, Elisabeth; Chevrier, Joël

    2015-07-01

    In this article, we measure the viscous damping G″, and the associated stiffness G', of a liquid flow in sphere-plane geometry over a large frequency range. In this regime, the lubrication approximation is expected to dominate. We first measure the static force applied to the tip. This is made possible thanks to a force feedback method. Adding a sub-nanometer oscillation of the tip, we obtain the dynamic part of the interaction with solely the knowledge of the lever properties in the experimental context using a linear transformation of the amplitude and phase change. Using a Force Feedback Microscope (FFM), we are then able to measure simultaneously the static force, the stiffness, and the dissipative part of the interaction in a broad frequency range using a single AFM probe. Similar measurements have been performed by the Surface Force Apparatus (SFA) with a probe radius hundred times bigger. In this context, the FFM can be called nano-SFA.

  13. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-02

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures.

  14. Sequencing sit-to-stand and upright posture for mobility limitation assessment: determination of the timing of the task phases from force platform data.

    PubMed

    Mazzà, Claudia; Zok, Mounir; Della Croce, Ugo

    2005-06-01

    The identification of quantitative tools to assess an individual's mobility limitation is a complex and challenging task. Several motor tasks have been designated as potential indicators of mobility limitation. In this study, a multiple motor task obtained by sequencing sit-to-stand and upright posture was used. Algorithms based on data obtained exclusively from a single force platform were developed to detect the timing of the motor task phases (sit-to-stand, preparation to the upright posture and upright posture). To test these algorithms, an experimental protocol inducing predictable changes in the acquired signals was designed. Twenty-two young, able-bodied subjects performed the task in four different conditions: self-selected natural and high speed with feet kept together, and self-selected natural and high speed with feet pelvis-width apart. The proposed algorithms effectively detected the timing of the task phases, the duration of which was sensitive to the four different experimental conditions. As expected, the duration of the sit-to-stand was sensitive to the speed of the task and not to the foot position, while the duration of the preparation to the upright posture was sensitive to foot position but not to speed. In addition to providing a simple and effective description of the execution of the motor task, the correct timing of the studied multiple task could facilitate the accurate determination of variables descriptive of the single isolated phases, allowing for a more thorough description of the motor task and therefore could contribute to the development of effective quantitative functional evaluation tests.

  15. Spatial-temporal parameters of gait in women with fibromyalgia.

    PubMed

    Heredia Jiménez, José María; Aparicio García-Molina, Virginia A; Porres Foulquie, Jesús M; Delgado Fernández, Manuel; Soto Hermoso, Victor M

    2009-05-01

    The aim of the present study was to determine if there are differences in such parameters among patients affected by fibromyalgia (FM) and healthy subjects and whether the degree of affectation by FM can decrease the gait parameters. We studied 55 women with FM and 44 controls. Gait analysis was performed using an instrumented walkway for measurement of the kinematic parameters of gait (GAITRite system), and patients completed a Spanish version of Fibromyalgia Impact Questionnaire (FIQ). Significant differences (p < 0.001) between FM and control groups were found in velocity, stride length, cadence, single support ratio, double support ratio, stance phase ratio, and swing phase ratio. There were significant inverse correlations between FIQ and velocity, stride length, swing phase, and single support, whereas significant direct correlations were found with stance phase and double support. Gait parameters of women affected by FM were severely impaired when compared to those of healthy women. Different factors such as lack of physical activity, bradikinesia, overweight, fatigue, and pain together with a lower isometric force in the legs can be responsible for the alterations in gait and poorer life quality of women with FM.

  16. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    NASA Astrophysics Data System (ADS)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field <0.18 MV/m under mechanical stress. This methodology was extended in the present work to propose magnetoelectric (ME) composite hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  17. Copenhagen's single system premise prevents a unified view of integer and fractional quantum hall effect

    NASA Astrophysics Data System (ADS)

    Post, Evert Jan

    1999-05-01

    This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction between ensemble disorder as in the normal Hall effect versus ensemble order in the plateau states. Since the order of the latter permits a view of the plateau states as a macro- or meso-scopic single system, the period integral description applies, yielding a straightforward unified description of integer and fractional quantum Hall effects.

  18. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe

    NASA Astrophysics Data System (ADS)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin

    2017-08-01

    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  19. A two-layer linear piezoelectric micromotor.

    PubMed

    Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A first bending (B1) mode two-layer piezoelectric ultrasonic linear micromotor has been developed for microoptics driving applications. The piezo-vibrator of the micromotor was composed of two small Pb(Zr,Ti)O3 (PZT-5) plates, with overall dimensions and mass of only 2.0 × 2.0 × 5.0 mm(3) and 0.2 g, respectively. The proposed micromotor could operate either in single-phase voltage (standing wave) mode or two-phase voltage (traveling wave) mode to drive a slider via friction force to provide bidirectional linear motion. A large thrust of up to 0.30 N, which corresponds to a high unit volume direct driving force of 15 mN/mm(3), and a linear movement velocity of up to 230 mm/s were obtained under an applied voltage of 80 Vpp at the B1 mode resonance frequency of 174 kHz.

  20. Phase Transition of Single-Layer Molybdenum Disulfide Nanosheets under Mechanical Loading Based on Molecular Dynamics Simulations.

    PubMed

    Pang, Haosheng; Li, Minglin; Gao, Chenghui; Huang, Haili; Zhuo, Weirong; Hu, Jianyue; Wan, Yaling; Luo, Jing; Wang, Weidong

    2018-03-27

    The single-layer molybdenum disulfide (SLMoS2) nanosheets have been experimentally discovered to exist in two different polymorphs, which exhibit different electrical properties, metallic or semiconducting. Herein, molecular dynamics (MD) simulations of nanoindentation and uniaxial compression were conducted to investigate the phase transition of SLMoS2 nanosheets. Typical load-deflection curves, stress-strain curves, and local atomic structures were obtained. The loading force decreases sharply and then increases again at a critical deflection under the nanoindentation, which is inferred to the phase transition. In addition to the layer thickness, some related bond lengths and bond angles were also found to suddenly change as the phase transition occurs. A bell-like hollow, so-called residual deformation, was found to form, mainly due to the lattice distortion around the waist of the bell. The effect of indenter size on the residual hollow was also analyzed. Under the uniaxial compression along the armchair direction, a different phase transition, a uniformly quadrilateral structure, was observed when the strain is greater than 27.7%. The quadrilateral structure was found to be stable and exhibit metallic conductivity in view of the first-principle calculation.

  1. Successful treatment of deep vein thrombosis caused by iliac vein compression syndrome with a single-dose direct oral anti-coagulant.

    PubMed

    Nakashima, Naoya; Sueta, Daisuke; Kanemaru, Yusuke; Takashio, Seiji; Yamamoto, Eiichiro; Hanatani, Shinsuke; Kanazawa, Hisanori; Izumiya, Yasuhiro; Kojima, Sunao; Kaikita, Koichi; Hokimoto, Seiji; Tsujita, Kenichi

    2017-01-01

    Although vein stenting is popular for treatment for venous thromboembolism due to mechanical compression, some cases are forced to avoid inserting align agents because of immunodeficiency. An 82-year-old man with left extremity redness and swelling presented to a hospital for a medical evaluation. The patient was immunodeficient because of the adverse effects of his treatment for Castleman's disease. A contrast-enhanced computed tomography scan revealed a venous thromboembolism in inferior vena cava and the left lower extremity. Magnetic resonance venography showed that the iliac artery was compressing the iliac vein. We were reluctant to place a stent in the iliac vein has because of the patient's immunodeficient status. Three months of treatment using single-dose edoxaban (30 mg daily) resulted in complete resolution of the thrombus. This is the first report demonstrating that single-dose edoxaban without acute-phase parenteral anticoagulation is effective in the treatment of iliac vein compression. A single-dose direct oral anti-coagulant without acute-phase parenteral anticoagulation is effective for mechanical compression.

  2. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  3. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy.

    PubMed

    Masia, Lorenzo; Frascarelli, Flaminia; Morasso, Pietro; Di Rosa, Giuseppe; Petrarca, Maurizio; Castelli, Enrico; Cappa, Paolo

    2011-05-21

    It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Spatial abnormalities in children affected by cerebral palsy may be related not only to disturbance in motor control signals generating weakness and spasticity, but also to an inefficient control strategy which is not based on a robust knowledge of the dynamical features of their upper limb. This lack of information could be related to the congenital nature of the brain damage and may contribute to a better delineation of therapeutic intervention.

  4. Inertial Oscillation of a Vertical Rotating Draft with Application to a Supercell Storm: Video Supplement to NASA-TP-3230

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Stock, Larry V.

    1992-01-01

    In this video (8 min., color, sound, VHS), animation depicts the inertial oscillation of a new mathematical model ('vertical rotating draft') for spinning up a single supercell storm. The oscillation consists of a long quiescent phase when the draft is large in diameter and rotates anticyclonically and a short intense phase when the draft is small and cyclonic. During the intense phase, the rotating draft resembles a supercell. The physical basis for the oscillation is depicted by tracking air parcels in the draft as they move along inertial circles (projected on a horizontal plane), where the horizontal pressure gradient is zero and the Coriolis force balances the centrifugal force. A side view of the oscillation shows that contraction and expansion are linked, respectively, to buoyantly driven compressible downdraft and updraft. An aerial view tracks the draft as it moves above the surface of the Earth and turns to the right during the intense phase. Radar echoes from a supercell storm are superimposed for comparison. The data appear to support only the intense phase. A critical experiment would measure the predominantly downward flow that theoretically occurs before the right turn in a supercell track and causes contraction and spin-up.

  5. Laminar flow effects in the coil planet centrifuge

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1984-01-01

    The coil planet centrifuge designed by Ito employs flow of a single liquid phase, through a rotating coiled tube in a centrifugal force field, to provide a separation of particles based on sedimentation rates. Mathematical solutions are derived for the linear differential equations governing particle behavior in the coil planet centrifuge device. These solutions are then applied as the basis of a model for optimizing particle separations.

  6. Elastic light scattering from single cells: orientational dynamics in optical trap.

    PubMed

    Watson, Dakota; Hagen, Norbert; Diver, Jonathan; Marchand, Philippe; Chachisvilis, Mirianas

    2004-08-01

    Light-scattering diagrams (phase functions) from single living cells and beads suspended in an optical trap were recorded with 30-ms time resolution. The intensity of the scattered light was recorded over an angular range of 0.5-179.5 degrees using an optical setup based on an elliptical mirror and rotating aperture. Experiments revealed that light-scattering diagrams from biological cells exhibit significant and complex time dependence. We have attributed this dependence to the cell's orientational dynamics within the trap. We have also used experimentally measured phase function information to calculate the time dependence of the optical radiation pressure force on the trapped particle and show how it changes depending on the orientation of the particle. Relevance of these experiments to potential improvement in the sensitivity of label-free flow cytometry is discussed.

  7. Non-linear scale interactions in a forced turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Duvvuri, Subrahmanyam; McKeon, Beverley

    2015-11-01

    A strong phase-organizing influence exerted by a single synthetic large-scale spatio-temporal mode on directly-coupled (through triadic interactions) small scales in a turbulent boundary layer forced by a spatially-impulsive dynamic wall-roughness patch was previously demonstrated by the authors (J. Fluid Mech. 2015, vol. 767, R4). The experimental set-up was later enhanced to allow for simultaneous forcing of multiple scales in the flow. Results and analysis are presented from a new set of novel experiments where two distinct large scales are forced in the flow by a dynamic wall-roughness patch. The internal non-linear forcing of two other scales with triadic consistency to the artificially forced large scales, corresponding to sum and difference in wavenumbers, is dominated by the latter. This allows for a forcing-response (input-output) type analysis of the two triadic scales, and naturally lends itself to a resolvent operator based model (e.g. McKeon & Sharma, J. Fluid Mech. 2010, vol. 658, pp. 336-382) of the governing Navier-Stokes equations. The support of AFOSR (grant #FA 9550-12-1-0469, program manager D. Smith) is gratefully acknowledged.

  8. Characterization and application of Shape Memory Alloy wires for micro and meso positioning systems

    NASA Astrophysics Data System (ADS)

    Khan, Afzal

    The properties of Shape Memory Alloy (SMA) wires are determined by experimentation, and previously used experimental equipment contributes to measurement errors in data. In this study, various characterization experiments are designed and carried out using a precision characterization instrument for shape memory alloy wires to determine the properties and parameters of the alloy. These experiments demonstrate the behavior of SMA wires under different thermal and loading conditions as they occur in actuation applications. As SMA wires go through phase transformation, a significant amount of contraction force is produced. This actuation force has been used in bias spring actuators and differential actuators. In this dissertation, the force generated during the twinning of martensite is used to actuate positioning systems with small displacements at the micrometer level. A micropositioning system is designed and tested that has a positioning accuracy of about +/-0.15 mum. A relation between the current input and the displacement output is determined for the specific preload. The transformation force generated during the phase change from martensite to austenite is used as an actuation force for a second positioning system that uses linear bearing with a displacement range of about a millimeter. This positioning system actuated with a single nitinol wire and guided by symmetric parallel diaphragm flexures, was designed and tested. The actuation is repeatable to about +/-15 mum with variation of about +/-5 mum in postion at steady temperature.

  9. Breakpoint Forcing Revisited: Phase Between Forcing and Response

    NASA Astrophysics Data System (ADS)

    Contardo, S.; Symonds, G.; Dufois, F.

    2018-02-01

    Using the breakpoint forcing model, for long wave generation in the surf zone, expressions for the phase difference between the breakpoint-forced long waves and the incident short wave groups are obtained. Contrary to assumptions made in previous studies, the breakpoint-forced long waves and incident wave groups are not in phase and outgoing breakpoint-forced long waves and incident wave groups are not π out of phase. The phase between the breakpoint-forced long wave and the incident wave group is shown to depend on beach geometry and wave group parameters. The breakpoint-forced incoming long wave lags behind the wave group, by a phase smaller than π/2. The phase lag decreases as the beach slope decreases and the group frequency increases, approaching approximately π/16 within reasonable limits of the parameter space. The phase between the breakpoint-forced outgoing long wave and the wave group is between π/2 and π and it increases as the beach slope decreases and the group frequency increases, approaching 15π/16 within reasonable limits of the parameter space. The phase between the standing long wave (composed of the incoming long wave and its reflection) and the incident wave group tends to zero when the wave group is long compared to the surf zone width. These results clarify the phase relationships in the breakpoint forcing model and provide a new base for the identification of breakpoint forcing signal from observations, laboratory experiments and numerical modeling.

  10. Impact Forces of Plyometric Exercises Performed on Land and in Water

    PubMed Central

    Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki

    2011-01-01

    Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022

  11. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Moses; Qin, Hong; Davidson, Ronald C.

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less

  12. Generalized Kapchinskij-Vladimirskij Distribution and Beam Matrix for Phase-Space Manipulations of High-Intensity Beams

    DOE PAGES

    Chung, Moses; Qin, Hong; Davidson, Ronald C.; ...

    2016-11-23

    In an uncoupled linear lattice system, the Kapchinskij-Vladimirskij (KV) distribution formulated on the basis of the single-particle Courant-Snyder invariants has served as a fundamental theoretical basis for the analyses of the equilibrium, stability, and transport properties of high-intensity beams for the past several decades. Recent applications of high-intensity beams, however, require beam phase-space manipulations by intentionally introducing strong coupling. Here in this Letter, we report the full generalization of the KV model by including all of the linear (both external and space-charge) coupling forces, beam energy variations, and arbitrary emittance partition, which all form essential elements for phase-space manipulations. Themore » new generalized KV model yields spatially uniform density profiles and corresponding linear self-field forces as desired. Finally, the corresponding matrix envelope equations and beam matrix for the generalized KV model provide important new theoretical tools for the detailed design and analysis of high-intensity beam manipulations, for which previous theoretical models are not easily applicable.« less

  13. [Optimization of the pseudorandom input signals used for the forced oscillation technique].

    PubMed

    Liu, Xiaoli; Zhang, Nan; Liang, Hong; Zhang, Zhengbo; Li, Deyu; Wang, Weidong

    2017-10-01

    The forced oscillation technique (FOT) is an active pulmonary function measurement technique that was applied to identify the mechanical properties of the respiratory system using external excitation signals. FOT commonly includes single frequency sine, pseudorandom and periodic impulse excitation signals. Aiming at preventing the time-domain amplitude overshoot that might exist in the acquisition of combined multi sinusoidal pseudorandom signals, this paper studied the phase optimization of pseudorandom signals. We tried two methods including the random phase combination and time-frequency domain swapping algorithm to solve this problem, and used the crest factor to estimate the effect of optimization. Furthermore, in order to make the pseudorandom signals met the requirement of the respiratory system identification in 4-40 Hz, we compensated the input signals' amplitudes at the low frequency band (4-18 Hz) according to the frequency-response curve of the oscillation unit. Resuts showed that time-frequency domain swapping algorithm could effectively optimize the phase combination of pseudorandom signals. Moreover, when the amplitudes at low frequencies were compensated, the expected stimulus signals which met the performance requirements were obtained eventually.

  14. Rate control and quality assurance during rhythmic force tracking.

    PubMed

    Huang, Cheng-Ya; Su, Jyong-Huei; Hwang, Ing-Shiou

    2014-02-01

    Movement characteristics can be coded in the single neurons or in the summed activity of neural populations. However, whether neural oscillations are conditional to the frequency demand and task quality of rhythmic force regulation is still unclear. This study was undertaken to investigate EEG dynamics and behavior correlates during force-tracking at different target rates. Fourteen healthy volunteers conducted load-varying isometric abduction of the index finger by coupling the force output to sinusoidal targets at 0.5 Hz, 1.0 Hz, and 2.0 Hz. Our results showed that frequency demand significantly affected EEG delta oscillation (1-4 Hz) in the C3, CP3, CPz, and CP4 electrodes, with the greatest delta power and lowest delta peak around 1.5 Hz for slower tracking at 0.5 Hz. Those who had superior tracking congruency also manifested enhanced alpha oscillation (8-12 Hz). Alpha rhythms of the skilled performers during slow tracking spread through the whole target cycle, except for the phase of direction changes. However, the alpha rhythms centered at the mid phase of a target cycle with increasing target rate. In conclusion, our findings clearly suggest two advanced roles of cortical oscillation in rhythmic force regulation. Rate-dependent delta oscillation involves a paradigm shift in force control under different time scales. Phasic organization of alpha rhythms during rhythmic force tracking is related to behavioral success underlying the selective use of bimodal controls (feedback and feedforward processes) and the timing of attentional focus on the target's peak velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Challenges and complexities of multifrequency atomic force microscopy in liquid environments.

    PubMed

    Solares, Santiago D

    2014-01-01

    This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip-sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods.

  16. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    NASA Astrophysics Data System (ADS)

    Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.

    2016-12-01

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.

  17. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    PubMed Central

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  18. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  19. Tug of war in motility assay experiments

    NASA Astrophysics Data System (ADS)

    Hexner, Daniel; Kafri, Yariv

    2009-09-01

    The dynamics of two groups of molecular motors pulling in opposite directions on a rigid filament is studied theoretically. To this end we first consider the behavior of one set of motors pulling in a single direction against an external force using a new mean-field approach. Based on these results we analyze a similar setup with two sets of motors pulling in opposite directions in a tug of war in the presence of an external force. In both cases we find that the interplay of fluid friction and protein friction leads to a complex phase diagram where the force-velocity relations can exhibit regions of bistability and spontaneous symmetry breaking. Finally, motivated by recent work, we turn to the case of motility assay experiments where motors bound to a surface push on a bundle of filaments. We find that, depending on the absence or the presence of bistability in the force-velocity curve at zero force, the bundle exhibits anomalous or biased diffusion on long-time and large-length scales.

  20. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface.

    PubMed

    Kisley, Lydia; Poongavanam, Mohan-Vivekanandan; Kourentzi, Katerina; Willson, Richard C; Landes, Christy F

    2016-02-01

    pH is a common mobile phase variable used to control protein separations due to the tunable nature of amino acid and adsorbent charge. Like other column variables such as column density and ligand loading density, pH is usually optimized empirically. Single-molecule spectroscopy extracts molecular-scale data to provide a framework for mechanistic optimization of pH. The adsorption and diffusion of a model globular protein, α-lactalbumin, was studied by single-molecule microscopy at a silica-aqueous interface analogous to aqueous normal phase and hydrophilic interaction chromatography and capillary electrophoresis interfaces at varied pH. Electrostatic repulsion resulting in free diffusion was observed at pH above the isoelectric point of the protein. In contrast, at low pH strong adsorption and surface diffusion with either no (D ∼ 0.01 μm(2) /s) or translational (D ∼ 0.3 μm(2) /s) motion was observed where the protein likely interacted with the surface through electrostatic, hydrophobic, and hydrogen bonding forces. The fraction of proteins immobilized could be increased by lowering the pH. These results show that retention of proteins at the silica interface cannot be viewed solely as an adsorption/desorption process and that the type of surface diffusion, which ultimately leads to ensemble chromatographic separations, can be controlled by tuning long-range electrostatic and short-range hydrophobic and hydrogen bonding forces with pH. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  2. Complex myograph allows the examination of complex muscle contractions for the assessment of muscle force, shortening, velocity, and work in vivo

    PubMed Central

    Rahe-Meyer, Niels; Pawlak, Matthias; Weilbach, Christian; Osthaus, Wilhelm Alexander; Ruhschulte, Hainer; Solomon, Cristina; Piepenbrock, Siegfried; Winterhalter, Michael

    2008-01-01

    Background The devices used for in vivo examination of muscle contractions assess only pure force contractions and the so-called isokinetic contractions. In isokinetic experiments, the extremity and its muscle are artificially moved with constant velocity by the measuring device, while a tetanic contraction is induced in the muscle, either by electrical stimulation or by maximal voluntary activation. With these systems, experiments cannot be performed at pre-defined, constant muscle length, single contractions cannot be evaluated individually and the separate examination of the isometric and the isotonic components of single contractions is not possible. Methods The myograph presented in our study has two newly developed technical units, i.e. a). a counterforce unit which can load the muscle with an adjustable, but constant force and b). a length-adjusting unit which allows for both the stretching and the contraction length to be infinitely adjustable independently of one another. The two units support the examination of complex types of contraction and store the counterforce and length-adjusting settings, so that these conditions may be accurately reapplied in later sessions. Results The measurement examples presented show that the muscle can be brought to every possible pre-stretching length and that single isotonic or complex isometric-isotonic contractions may be performed at every length. The applied forces act during different phases of contraction, resulting into different pre- and after-loads that can be kept constant – uninfluenced by the contraction. Maximal values for force, shortening, velocity and work may be obtained for individual muscles. This offers the possibility to obtain information on the muscle status and to monitor its changes under non-invasive measurement conditions. Conclusion With the Complex Myograph, the whole spectrum of a muscle's mechanical characteristics may be assessed. PMID:18616815

  3. Gait strategy changes with acceleration to accommodate the biomechanical constraint on push-off propulsion.

    PubMed

    Oh, Keonyoung; Baek, Juhyun; Park, Sukyung

    2012-11-15

    To maintain steady and level walking, push-off propulsion during the double support phase compensates for the energy loss through heel strike collisions in an energetically optimal manner. However, a large portion of daily gait activities also contains transient gait responses, such as acceleration or deceleration, during which the observed dominance of the push-off work or the energy optimality may not hold. In this study, we examined whether the push-off propulsion during the double support phase served as a major energy source for gait acceleration, and we also studied the energetic optimality of accelerated gait using a simple bipedal walking model. Seven healthy young subjects participated in the over-ground walking experiments. The subjects walked at four different constant gait speeds ranging from a self-selected speed to a maximum gait speed, and then they accelerated their gait from zero to the maximum gait speed using a self-selected acceleration ratio. We measured the ground reaction force (GRF) of three consecutive steps and the corresponding leg configuration using force platforms and an optical marker system, respectively, and we compared the mechanical work performed by the GRF during each single and double support phase. In contrast to the model prediction of an increase in the push-off propulsion that is proportional to the acceleration and minimizes the mechanical energy cost, the push-off propulsion was slightly increased, and a significant increase in the mechanical work during the single support phase was observed. The results suggest that gait acceleration occurs while accommodating a feasible push-off propulsion constraint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Intradomain phase transitions in flexible block copolymers with self-aligning segments.

    PubMed

    Burke, Christopher J; Grason, Gregory M

    2018-05-07

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ε). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ε needed to induce this intra-domain phase transition.

  5. Intradomain phase transitions in flexible block copolymers with self-aligning segments

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Grason, Gregory M.

    2018-05-01

    We study a model of flexible block copolymers (BCPs) in which there is an enlthalpic preference for orientational order, or local alignment, among like-block segments. We describe a generalization of the self-consistent field theory of flexible BCPs to include inter-segment orientational interactions via a Landau-de Gennes free energy associated with a polar or nematic order parameter for segments of one component of a diblock copolymer. We study the equilibrium states of this model numerically, using a pseudo-spectral approach to solve for chain conformation statistics in the presence of a self-consistent torque generated by inter-segment alignment forces. Applying this theory to the structure of lamellar domains composed of symmetric diblocks possessing a single block of "self-aligning" polar segments, we show the emergence of spatially complex segment order parameters (segment director fields) within a given lamellar domain. Because BCP phase separation gives rise to spatially inhomogeneous orientation order of segments even in the absence of explicit intra-segment aligning forces, the director fields of BCPs, as well as thermodynamics of lamellar domain formation, exhibit a highly non-linear dependence on both the inter-block segregation (χN) and the enthalpy of alignment (ɛ). Specifically, we predict the stability of new phases of lamellar order in which distinct regions of alignment coexist within the single mesodomain and spontaneously break the symmetries of the lamella (or smectic) pattern of composition in the melt via in-plane tilt of the director in the centers of the like-composition domains. We further show that, in analogy to Freedericksz transition confined nematics, the elastic costs to reorient segments within the domain, as described by the Frank elasticity of the director, increase the threshold value ɛ needed to induce this intra-domain phase transition.

  6. On the pulsating electric wind of a Single Dielectric Barrier Discharge (SDBD) plasma actuator

    NASA Astrophysics Data System (ADS)

    Vernet, Julie; Örlü, Ramis; Alfredsson, P. Henrik

    2014-11-01

    An experimental study is conducted on the electric wind produced by a Single Dielectric Barrier Discharge (SDBD) plasma actuator placed at the top of a half cylinder. Laser Doppler Velocimetry (LDV) measurements were performed and results show that increasing the driving voltage (6-16 kV peak-to-peak) and frequency (0.5-2 kHz) of the actuator increases the induced jet velocity (up to 4 m/s) and thus the momentum added by the actuator. The focus of the present study is on the phase-resolved behavior of the electric wind, in particular, its two strokes. Phase-averaged LDV data reveals that while the velocity during both strokes remains positive, there is nearly a factor of two in amplitude. The difference of behavior between the two strokes and its downstream and wall-normal evolution are mapped for various driving voltages. Results indicate that this difference is restricted to the vicinity of the actuator, thereby justifying the assumption of a steady force in simulations to model the induced force. The study is part of a larger investigation aiming at separation control on the A-pillar of a truck cabin. The support of the Swedish Energy Agency and SCANIA CV of the project Flow Research on Active and Novel Control Efficiency (FRANCE) is greatly acknowledged.

  7. Domain and phase change contributions to response in high strain piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Cross, L. Eric

    2000-09-01

    Current solid state actuators are briefly compared to traditional actuator technologies to highlight the major need for enhanced strain capability. For the ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a large entrinsic contribution to the field induced strain from ferroelectric-ferroelastic domain wall motion. Here-to-fore the intrinsic single domain contribution has been derived indirectly from phenomenological analysis. Now, new evidence of a stable monoclinic phase at compositions very close to the MPB suggest that the previous assessment will need to be revised. Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT) single crystal shows most unusual anisotropic behavior. For 111 oriented field poled crystals in the rhombohedral phase normal low induced strain is observed. For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic strain can be induced. Since the 001 oriented field in the rhombohedral phase can not drive ferroelastic domain walls it is suggested that the strain must be intrinsic. The suggestion is that it is due to an induced monoclinic phase in which the Ps vector tilts under increasing field up to more than 20° from 111, before the vector switches to the tetragonal 001 direction. Such a polarization rotation mechanism has also been suggested by Fu and Cohen. Calculations of induced single domain strain using measured electrostriction constants agree well with observed behavior. Recent measurements by Park et al. and Wada et al. on single crystal BaTiO3 show strongly enhanced piezoelectricity at temperatures near the ferroelectric phase transitions. Of particular relevance is the inverse experiment forcing the tetragonal over to the rhombohedral phase with high 111 oriented field. From this result it is suggested that both cubic and dodecahedral mirrors participate in the reorientation through orthorhombic to the rhombohedral state giving rise to different value of the induced d33 at different field levels.

  8. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.

  9. High-Performance InGaAs/InP Composite-Channel High Electron Mobility Transistors Grown by Metal-Organic Vapor-Phase Epitaxy

    NASA Astrophysics Data System (ADS)

    Sugiyama, Hiroki; Kosugi, Toshihiko; Yokoyama, Haruki; Murata, Koichi; Yamane, Yasuro; Tokumitsu, Masami; Enoki, Takatomo

    2008-04-01

    This paper reports InGaAs/InP composite-channel (CC) high electron mobility transistors (HEMTs) grown by metal-organic vapor-phase epitaxy (MOVPE) with excellent breakdown and high-speed characteristics. Atomic force microscopy (AFM) reveals high-quality heterointerfaces between In(Ga,Al)As and In(Al)P. Fabricated 80-nm-gate CC HEMTs exhibit on- and off-state breakdown (burnout) voltages estimated at higher than 3 and 8 V. An excellent current-gain cutoff frequency ( fT) of 186 GHz is also obtained in the CC HEMTs. The on-wafer uniformity of CC-HEMT characteristics is comparable to those of our mature 100-nm-gate InGaAs single-channel HEMTs. Bias-stress aging tests reveals that the lifetime of CC HEMTs is expected to be comparable to that of our conventional InGaAs single-channel HEMTs.

  10. Energetics analysis of interstitial loops in single-phase concentrated solid-solution alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xin-Xin; Niu, Liang-Liang; Wang, Shaoqing

    2018-04-01

    Systematic energetics analysis on the shape preference, relative stability and radiation-induced segregation of interstitial loops in nickel-containing single-phase concentrated solid-solution alloys have been conducted using atomistic simulations. It is shown that the perfect loops prefer rhombus shape for its low potential energy, while the Frank faulted loops favor ellipse for its low potential energy and the possible large configurational entropy. The decrease of stacking fault energy with increasing compositional complexity provides the energetic driving force for the formation of faulted loops, which, in conjunction with the kinetic factors, explains the experimental observation that the fraction of faulted loops rises with increasing compositional complexity. Notably, the kinetics is primarily responsible for the absence of faulted loops in nickel-cobalt with a very low stacking fault energy. We further demonstrate that the simultaneous nickel enrichment and iron/chromium depletion on interstitial loops can be fully accounted for by their energetics.

  11. Scale effect of slip boundary condition at solid–liquid interface

    PubMed Central

    Nagayama, Gyoko; Matsumoto, Takenori; Fukushima, Kohei; Tsuruta, Takaharu

    2017-01-01

    Rapid advances in microelectromechanical systems have stimulated the development of compact devices, which require effective cooling technologies (e.g., microchannel cooling). However, the inconsistencies between experimental and classical theoretical predictions for the liquid flow in microchannel remain unclarified. Given the larger surface/volume ratio of microchannel, the surface effects increase as channel scale decreases. Here we show the scale effect of the boundary condition at the solid–liquid interface on single-phase convective heat transfer characteristics in microchannels. We demonstrate that the deviation from classical theory with a reduction in hydraulic diameters is due to the breakdown of the continuum solid–liquid boundary condition. The forced convective heat transfer characteristics of single-phase laminar flow in a parallel-plate microchannel are investigated. Using the theoretical Poiseuille and Nusselt numbers derived under the slip boundary condition at the solid–liquid interface, we estimate the slip length and thermal slip length at the interface. PMID:28256536

  12. Preliminary Phase Field Computational Model Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yulan; Hu, Shenyang Y.; Xu, Ke

    2014-12-15

    This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus ofmore » the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in experiments, special experimental methods were devised to create similar boundary conditions in the iron films. Preliminary MFM studies conducted on single and polycrystalline iron films with small sub-areas created with focused ion beam have correlated quite well qualitatively with phase-field simulations. However, phase-field model dimensions are still small relative to experiments thus far. We are in the process of increasing the size of the models and decreasing specimen size so both have identical dimensions. Ongoing research is focused on validation of the phase-field model. Validation is being accomplished through comparison with experimentally obtained MFM images (in progress), and planned measurements of major hysteresis loops and first order reversal curves. Extrapolation of simulation sizes to represent a more stochastic bulk-like system will require sampling of various simulations (i.e., with single non-magnetic defect, single magnetic defect, single grain boundary, single dislocation, etc.) with distributions of input parameters. These outputs can then be compared to laboratory magnetic measurements and ultimately to simulate magnetic Barkhausen noise signals.« less

  13. Single-Cell Force Spectroscopy of Probiotic Bacteria

    PubMed Central

    Beaussart, Audrey; El-Kirat-Chatel, Sofiane; Herman, Philippe; Alsteens, David; Mahillon, Jacques; Hols, Pascal; Dufrêne, Yves F.

    2013-01-01

    Single-cell force spectroscopy is a powerful atomic force microscopy modality in which a single living cell is attached to the atomic force microscopy cantilever to quantify the forces that drive cell-cell and cell-substrate interactions. Although various single-cell force spectroscopy protocols are well established for animal cells, application of the method to individual bacterial cells remains challenging, mainly owing to the lack of appropriate methods for the controlled attachment of single live cells on cantilevers. We present a nondestructive protocol for single-bacterial cell force spectroscopy, which combines the use of colloidal probe cantilevers and of a bioinspired polydopamine wet adhesive. Living cells from the probiotic species Lactobacillus plantarum are picked up with a polydopamine-coated colloidal probe, enabling us to quantify the adhesion forces between single bacteria and biotic (lectin monolayer) or abiotic (hydrophobic monolayer) surfaces. These minimally invasive single-cell experiments provide novel, to our knowledge, insight into the specific and nonspecific forces driving the adhesion of L. plantarum, and represent a generic platform for studying the molecular mechanisms of cell adhesion in probiotic and pathogenic bacteria. PMID:23663831

  14. Single-molecule study of the DNA denaturation phase transition in the force-torsion space.

    PubMed

    Salerno, D; Tempestini, A; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F

    2012-09-14

    We use the "magnetic tweezers" technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  15. Single-Molecule Study of the DNA Denaturation Phase Transition in the Force-Torsion Space

    NASA Astrophysics Data System (ADS)

    Salerno, D.; Tempestini, A.; Mai, I.; Brogioli, D.; Ziano, R.; Cassina, V.; Mantegazza, F.

    2012-09-01

    We use the “magnetic tweezers” technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.

  16. Forces between functionalized silica nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Lorenz, Christian D.; Grest, Gary S.

    2009-05-01

    To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner’s analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres.

  17. Tunable top-down fabrication and functional surface coating of single-crystal titanium dioxide nanostructures and nanoparticles

    NASA Astrophysics Data System (ADS)

    Ha, Seungkyu; Janissen, Richard; Ussembayev, Yera Ye.; van Oene, Maarten M.; Solano, Belen; Dekker, Nynke H.

    2016-05-01

    Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale.Titanium dioxide (TiO2) is a key component of diverse optical and electronic applications that exploit its exceptional material properties. In particular, the use of TiO2 in its single-crystalline phase can offer substantial advantages over its amorphous and polycrystalline phases for existing and yet-to-be-developed applications. However, the implementation of single-crystal TiO2 has been hampered by challenges in its fabrication and subsequent surface functionalization. Here, we introduce a novel top-down approach that allows for batch fabrication of uniform high-aspect-ratio single-crystal TiO2 nanostructures with targeted sidewall profiles. We complement our fabrication approach with a functionalization strategy that achieves dense, uniform, and area-selective coating with a variety of biomolecules. This allows us to fabricate single-crystal rutile TiO2 nanocylinders tethered with individual DNA molecules for use as force- and torque-transducers in an optical torque wrench. These developments provide the means for increased exploitation of the superior material properties of single-crystal TiO2 at the nanoscale. Electronic supplementary information (ESI) available: Experimental details (ESI Methods) of the optic axis orientation of TiO2 nanocylinders, Cr etch mask fabrication, surface functionalization and its evaluation using fluorescence microscopy, preparation of DNA constructs, assembly of flow cells, bioconjugation of TiO2 nanocylinders, OTW instrumentation and measurements; TiO2 dry etching optimization and the etching parameters employed (Tables S1 and S2); dimensional analysis of TiO2 nanocylinders (Table S3); diverse applications of TiO2 at the nanoscale (Fig. S1); selection of etch mask material (Fig. S2); control of sidewall profiles in TiO2 etching (Fig. S3); size distributions of TiO2 nanocylinders (Fig. S4); quantitative comparisons of different surface linker molecules (Fig. S5); DLS measurements on TiO2 nanocylinders (Fig. S6); optical trap calibration (Fig. S7); and supplementary references. See DOI: 10.1039/c6nr00898d

  18. Motion of deformable drops through granular media and other confined geometries.

    PubMed

    Davis, Robert H; Zinchenko, Alexander Z

    2009-06-15

    This article features recent simulation studies of the flow of emulsions containing deformable drops through pores, constrictions, and granular media. The flow is assumed to be at low Reynolds number, so that viscous forces dominate, and boundary-integral methods are used to determine interfacial velocities and, hence, track the drop motion and shapes. A single drop in a flat channel migrates to the channel centerplane due to deformation-induced drift, which increases its steady-state velocity along the channel. A drop moving towards a smaller interparticle constriction squeezes through the constriction if the capillary number (ratio of viscous deforming forces and interfacial tension forces) is large enough, but it becomes trapped when the capillary number is below a critical value. These concepts then influence the flow of an emulsion through a granular medium, for which the drop phase moves faster than the suspending liquid at large capillary numbers but slower than the suspending liquid at smaller capillary numbers. The permeabilities of the granular medium to both phases increase with increasing capillary number, due to the reduced resistance to squeezing of easily deformed drops, though drop breakup must also be considered at large capillary numbers.

  19. Differences of ballet turns (pirouette) performance between experienced and novice ballet dancers.

    PubMed

    Lin, Chia-Wei; Chen, Shing-Jye; Su, Fong-Chin; Wu, Hong-Wen; Lin, Cheng-Feng

    2014-09-01

    This study investigated the different postural control strategies exhibited by experienced and novice dancers in ballet turns (pirouettes). Thirteen novice and 13 experienced dancers performed ballet turns with dominant-leg support. The peak push force was measured in the double-leg support phase. The inclination angles of rotation axis with respect to vertical axis were calculated in the early single-leg support phase as well as the initiation sequence of ankle, knee, and hip joints on the supporting leg. Moreover, the anchoring index of the head was computed in the transverse plane during turning. The novice dancers applied a greater push force, an increased inclination angle of rotation axis, and an insufficient proximal-to-distal extension sequence pattern. The novice dancers also had a smaller head-anchoring index compared with experienced dancers, which meant novice dancers were not using a space target as a stability reference. A poorer performance in novice dancers could result from higher push force in propulsion, lack of a "proximal-to-distal extension sequence" pattern, and lack of visual spotting for postural stability. Training on sequential initiation of lower-extremity joints and rehearsal of visual spotting are essential for novice dancers to obtain better performance on ballet turns.

  20. Inertial oscillation of a vertical rotating draft with application to a supercell storm

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Stock, Larry V.

    1992-01-01

    An analytic model (vertical rotating draft) which includes the gross features of a supercell storm on an f-plane, undergoes an inertial oscillation that appears to have been overlooked in previous analytic and numerical models. The oscillation is nonlinear and consists of a long quiescent phase and a short intense phase. During the intense phase, the rotating draft has the following features of a supercell: the diameter of the core contracts as it spins up and expands as it spins down; if vertical wind shear is included, the track of the rotating draft turns to the right (an anticyclonic rotating draft turns to the left); this turning point is followed by a predominantly upward flow; and the horizontal pressure gradient is very small (a property of most tornadoless supercells). The rapid spin-up during the intense phase and the high Rossby numbers obtainable establish the ability of the Coriolis force to spin up single cyclonic or anticyclonic supercells by means of this inertial oscillation. This surprising result has implications for numerical supercell simulations, which generally do not rely on the Coriolis force as a source of rotation. The physics and mathematics of the inertial oscillation are given, and the solution is applied to a documented supercell.

  1. Challenges and complexities of multifrequency atomic force microscopy in liquid environments

    PubMed Central

    2014-01-01

    Summary This paper illustrates through numerical simulation the complexities encountered in high-damping AFM imaging, as in liquid enviroments, within the specific context of multifrequency atomic force microscopy (AFM). The focus is primarily on (i) the amplitude and phase relaxation of driven higher eigenmodes between successive tip–sample impacts, (ii) the momentary excitation of non-driven higher eigenmodes and (iii) base excitation artifacts. The results and discussion are mostly applicable to the cases where higher eigenmodes are driven in open loop and frequency modulation within bimodal schemes, but some concepts are also applicable to other types of multifrequency operations and to single-eigenmode amplitude and frequency modulation methods. PMID:24778952

  2. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    PubMed

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  3. Analysis of results from wind tunnel tests of inlets for an advanced turboprop nacelle installation

    NASA Technical Reports Server (NTRS)

    Hancock, J. P.; Lyman, V.; Pennock, A. P.

    1986-01-01

    Inlets for tractor installations of advanced turboprop propulsion systems were tested in three phases, covering a period from November, 1982 to January, 1984. Nacelle inlet configuration types included single scoop, twin scoop, and annular arrangements. Tests were performed with and without boundary layer diverters and several different diverter heights were tested for the single scoop inlet. This same inlet was also tested at two different axial positions. Test Mach numbers ranged from Mach 0.20 to 0.80. Types of data taken were: (1) internal and external pressures, including inlet throat recoveries; (2) balance forces, including thrust-minus-drag; and (3) propellar blade stresses.

  4. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  5. Role of phase synchronisation in turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Teaca, Bogdan; Anderson, Johan

    2017-11-01

    The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved numerically. The system is forced via a known external force, with two components that are added into the evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation (RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to ± π/2. The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in which the phases of the modes in a wide k range are now locked to ± π/2, leading to a change in the dynamics of both phases and amplitudes, with a significant localization of the real space flow structures.

  6. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    DOE PAGES

    Zhou, S. H.; Liu, C.; Yao, Y. X.; ...

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less

  7. Two modes resonant combined motion for insect wings kinematics reproduction and lift generation

    NASA Astrophysics Data System (ADS)

    Faux, D.; Thomas, O.; Cattan, E.; Grondel, S.

    2018-03-01

    This paper presents an original concept using a two resonant vibration modes combined motion to reproduce insect wings kinematics and generate lift. The key issue is to design the geometry and the elastic characteristics of artificial wings such that a combination of flapping and twisting motions in a quadrature phase shift could be obtained. This qualitatively implies to bring the frequencies of the two resonant modes closer. For this purpose, a polymeric prototype was micromachined with a wingspan of 3 cm, flexible wings and a single actuator. An optimal wings configuration was determined with a modeling and validated through experimental modal analyses to verify the proximity of the two modes frequencies. A dedicated lift force measurement bench was developed and used to demonstrate a lift force equivalent to the prototype weight. Finally, at the maximum lift frequency, high-speed camera measurements confirmed a kinematics of the flexible wings with flapping and twisting motions in phase quadrature as expected.

  8. Pretest predictions for degraded shutdown heat-removal tests in THORS-SHRS Assembly 1. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, S.D.; Carbajo, J.J.

    The recent modification of the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility at ORNL will allow testing of parallel simulated fuel assemblies under natural-convection and low-flow forced-convection conditions similar to those that might occur during a partial failure of the Shutdown Heat Removal System (SHRS) of an LMFBR. An extensive test program has been prepared and testing will be started in September 1983. THORS-SHRS Assembly 1 consists of two 19-pin bundles in parallel with a third leg serving as a bypass line and containing a sodium-to-sodium intermediate heat exchanger. Testing at low powers wil help indicate the maximum amount of heat thatmore » can be removed from the reactor core during conditions of degraded shutdown heat removal. The thermal-hydraulic behavior of the test bundles will be characterized for single-phase and two-phase conditions up to dryout. The influence of interassembly flow redistribution including transients from forced- to natural-convection conditions will be investigated during testing.« less

  9. Effects of wide step walking on swing phase hip muscle forces and spatio-temporal gait parameters.

    PubMed

    Bajelan, Soheil; Nagano, Hanatsu; Sparrow, Tony; Begg, Rezaul K

    2017-07-01

    Human walking can be viewed essentially as a continuum of anterior balance loss followed by a step that re-stabilizes balance. To secure balance an extended base of support can be assistive but healthy young adults tend to walk with relatively narrower steps compared to vulnerable populations (e.g. older adults and patients). It was, therefore, hypothesized that wide step walking may enhance dynamic balance at the cost of disturbed optimum coupling of muscle functions, leading to additional muscle work and associated reduction of gait economy. Young healthy adults may select relatively narrow steps for a more efficient gait. The current study focused on the effects of wide step walking on hip abductor and adductor muscles and spatio-temporal gait parameters. To this end, lower body kinematic data and ground reaction forces were obtained using an Optotrak motion capture system and AMTI force plates, respectively, while AnyBody software was employed for muscle force simulation. A single step of four healthy young male adults was captured during preferred walking and wide step walking. Based on preferred walking data, two parallel lines were drawn on the walkway to indicate 50% larger step width and participants targeted the lines with their heels as they walked. In addition to step width that defined walking conditions, other spatio-temporal gait parameters including step length, double support time and single support time were obtained. Average hip muscle forces during swing were modeled. Results showed that in wide step walking step length increased, Gluteus Minimus muscles were more active while Gracilis and Adductor Longus revealed considerably reduced forces. In conclusion, greater use of abductors and loss of adductor forces were found in wide step walking. Further validation is needed in future studies involving older adults and other pathological populations.

  10. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  11. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE PAGES

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...

    2016-10-27

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  12. A study of nonlinear dynamics of single- and two-phase flow oscillations

    NASA Astrophysics Data System (ADS)

    Mawasha, Phetolo Ruby

    The dynamics of single- and two-phase flows in channels can be contingent on nonlinearities which are not clearly understood. These nonlinearities could be interfacial forces between the flowing fluid and its walls, variations in fluid properties, growth of voids, etc. The understanding of nonlinear dynamics of fluid flow is critical in physical systems which can undergo undesirable system operating scenarios such an oscillatory behavior which may lead to component failure. A nonlinear lumped mathematical model of a surge tank with a constant inlet flow into the tank and an outlet flow through a channel is derived from first principles. The model is used to demonstrate that surge tanks with inlet and outlet flows contribute to oscillatory behavior in laminar, turbulent, single-phase, and two-phase flow systems. Some oscillations are underdamped while others are self-sustaining. The mechanisms that are active in single-phase oscillations with no heating are presented using specific cases of simplified models. Also, it is demonstrated how an external mechanism such as boiling contributes to the oscillations observed in two-phase flow and gives rise to sustained oscillations (or pressure drop oscillations). A description of the pressure drop oscillation mechanism is presented using the steady state pressure drop versus mass flow rate characteristic curve of the heated channel, available steady state pressure drop versus mass flow rate from the surge tank, and the transient pressure drop versus mass flow rate limit cycle. Parametric studies are used to verify the theoretical pressure drop oscillations model using experimental data by Yuncu's (1990). The following contributions are unique: (1) comparisons of nonlinear pressure drop oscillation models with and without the effect of the wall thermal heat capacity and (2) comparisons of linearized pressure drop oscillation models with and without the effect of the wall thermal heat capacity to identify stability boundaries.

  13. Vortex-induced vibration for an isolated circular cylinder under the wake interference of an oscillating airfoil: Part II. Single degree of freedom

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; Ji, L. C.; Hu, X.

    2017-04-01

    The vortex-induced vibration behind an isolated cylinder under the wake interference of an oscillating airfoil at different oscillating frequencies and amplitudes have been studied numerically. Our previous research [11] mainly focused on the two degree of freedom vibration problem, several types of the phase portraits of the displacement have been newly found, including the "half -8″ and "cone-net" types as reduced velocity increases. At present, we have continued the research to the single degree of freedom vibration, the corresponding results had been found that under the wake of the free steady flow, as the reduced velocity increases, the phase portraits displacements of the single degree of freedom vibrating cylinder will begin to rotate counterclockwise from the first and third quadrants to the second and fourth quadrants in a Cartesian coordinate system. Under the wake of the oscillating airfoil, the single bending curve and the single closed orbit (double "8-shape" like) of the displacements are newly found in the drag and thrust producing cases respectively. Except this, the two triplets of vortices have also been newly found in the pair and single plus pair wakes at each cycle. The vorticity dynamics behind the vibrating cylinder together with the corresponding force variations have also been obtained computationally and analyzed in details.

  14. Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy.

    PubMed

    Thompson, Hank T; Barroso-Bujans, Fabienne; Herrero, Julio Gomez; Reifenberger, Ron; Raman, Arvind

    2013-04-05

    The characterization of dispersion and connectivity of carbon nanotube (CNT) networks inside polymers is of great interest in polymer nanocomposites in new material systems, organic photovoltaics, and in electrodes for batteries and supercapacitors. We focus on a technique using amplitude modulation atomic force microscopy (AM-AFM) in the attractive regime of operation, using both single and dual mode excitation, which upon the application of a DC tip bias voltage allows, via the phase channel, the in situ, nanoscale, subsurface imaging of CNT networks dispersed in a polymer matrix at depths of 10-100 nm. We present an in-depth study of the origins of phase contrast in this technique and demonstrate that an electrical energy dissipation mechanism in the Coulomb attractive regime is key to the formation of the phase contrast which maps the spatial variations in the local capacitance and resistance due to the CNT network. We also note that dual frequency excitation can, under some conditions, improve the contrast for such samples. These methods open up the possibility for DC-biased amplitude modulation AFM to be used for mapping the variations in local capacitance and resistance in nanocomposites with conducting networks.

  15. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns.

    PubMed

    Zhao, Dong; Banks, Scott A; Mitchell, Kim H; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2007-06-01

    The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. This study uses in vivo data collected from a single subject with an instrumented knee implant to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe-out) with simultaneous collection of instrumented implant, video motion, and ground reaction data. For each trial, the knee adduction torque was measured externally while the total axial force applied to the tibial insert was measured internally. Based on data collected from the same subject performing treadmill gait under fluoroscopic motion analysis, a regression equation was developed to calculate medial contact force from the implant load cell measurements. Correlation analyses were performed for the stance phase and entire gait cycle to quantify the relationship between the knee adduction torque and both the medial contact force and the medial to total contact force ratio. When the entire gait cycle was analyzed, R(2) for medial contact force was 0.77 when all gait trials were analyzed together and between 0.69 and 0.93 when each gait trial was analyzed separately (p < 0.001 in all cases). For medial to total force ratio, R(2) was 0.69 for all trials together and between 0.54 and 0.90 for each trial separately (p < 0.001 in all cases). When only the stance phase was analyzed, R(2) values were slightly lower. These results support the hypothesis that the knee adduction torque is highly correlated with medial compartment contact force and medial to total force ratio during gait. (c) 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Force-motion phase relations and aerodynamic performance of a plunging plate

    NASA Astrophysics Data System (ADS)

    Son, Onur; Cetiner, Oksan

    2018-02-01

    Due to the unsteady motion of a plunging plate, forces acting on the body experience a phase difference with respect to the motion. These phase relations are investigated experimentally for a harmonically plunging plate within an amplitude range of 0.05≤ {a/c}≤ 0.6, reduced frequency range of 0.78<{k}<7.06, and at a constant Reynolds number of 10,000. Both streamwise and cross-stream force components are found to have a phase lag following the motion; however, their variations are different. The phase lag of the force on the cross-stream direction increases as the amplitude increases. Drag-thrust transition has an influence on the streamwise force phase lags, which starts to increase when the thrust starts to be produced. Particle image velocimetry measurements are also performed to reveal the relations between vortex structures and force measurements. Leading edge vortex shedding characteristics are observed to be changing from drag occurring cases to thrust producing cases in parallel with the increment in phase lags.

  17. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  18. Improved force prediction model for grinding Zerodur based on the comprehensive material removal mechanism.

    PubMed

    Sun, Guoyan; Zhao, Lingling; Zhao, Qingliang; Gao, Limin

    2018-05-10

    There have been few investigations dealing with the force model on grinding brittle materials. However, the dynamic material removal mechanisms have not yet been sufficiently explicated through the grain-workpiece interaction statuses while considering the brittle material characteristics. This paper proposes an improved grinding force model for Zerodur, which contains ductile removal force, brittle removal force, and frictional force, corresponding to the ductile and brittle material removal phases, as well as the friction process, respectively. The critical uncut chip thickness a gc of brittle-ductile transition and the maximum uncut chip thickness a gmax of a single abrasive grain are calculated to identify the specified material removal mode, while the comparative result between a gmax and a gc can be applied to determine the selection of effective grinding force components. Subsequently, indentation fracture tests are carried out to acquire accurate material mechanical properties of Zerodur in establishing the brittle removal force model. Then, the experiments were conducted to derive the coefficients in the grinding force prediction model. Simulated through this model, correlations between the grinding force and grinding parameters can be predicted. Finally, three groups of grinding experiments are carried out to validate the mathematical grinding force model. The experimental results indicate that the improved model is capable of predicting the realistic grinding force accurately with the relative mean errors of 6.04% to the normal grinding force and 7.22% to the tangential grinding force, respectively.

  19. Changes in the Width of the Tibiofibular Syndesmosis Related to Lower Extremity Joint Dynamics and Neuromuscular Coordination on Drop Landing During the Menstrual Cycle.

    PubMed

    Okazaki, Michie; Kaneko, Masaaki; Ishida, Yukisato; Murase, Norio; Katsumura, Toshihito

    2017-09-01

    Many injuries of the lower extremities, especially the knee and ankle, occur during sports activity, and the incidence rate is higher in women than in men. The hypothesis was that phases of the menstrual cycle affect the width of the tibiofibular syndesmosis during drop landing in healthy young women and that such changes at the tibiofibular joint also affect the dynamics and neuromuscular coordination of the lower extremities. Descriptive laboratory study. Participants included 28 healthy young women (mean age, 21.0 ± 0.8 years). Blood samples were collected to determine plasma levels of estradiol and progesterone immediately before the performance of the task: drop landing on a single leg from a 30-cm platform. Using ultrasonography, the distance between the tibia and the distal end of the fibula, regarded as the width of the tibiofibular syndesmosis, was measured in an upright position without flexion of the ankle. The peak ground-reaction force (GRF) on landing was measured using a force platform. The time to peak GRF (Tp-GRF) was measured as the time from initial ground contact to the peak GRF. Hip, knee, and ankle joint angles during the single-leg landing were calculated using a 3-dimensional motion analysis system. Muscle activities of the lower extremities were measured using surface electromyography. The width of the tibiofibular syndesmosis was significantly greater in the luteal phase when compared with the menstrual, follicular, and ovulation phases (by 5%-8% of control). Also, during the luteal phase, the Tp-GRF was significantly shorter than in the follicular phase (by 6%); hip internal rotation and knee valgus were significantly greater than in the menstrual phase (by 43% and 34%, respectively); knee flexion was significantly less than in the menstrual and follicular phases (by 7%-9%); ankle dorsiflection was significantly less than in the follicular phase (by 11%); ankle adduction and eversion were significantly greater than in the menstrual and follicular phases (by 26%-46%, and 27%-33%, respectively); and activation of the gluteus maximus before landing was significantly lower than in the menstrual and follicular phases (by 20%-22%). The luteal phase appears to be associated with decreased strength and laxity of the ankle as well as lower extremity muscle activity in women. The changes presumably represent a greater risk for sports injuries. The results of this study suggest that the luteal phase may be related to the greater incidence of lower extremity injuries in women.

  20. Rolling Circle Amplification For Spatially Directed Synthesis Of A Solid Phase Anchored Single-Stranded DNA Molecule

    NASA Astrophysics Data System (ADS)

    Reiß, Edda; Hölzel, Ralph; von Nickisch-Rosenegk, Markus; Bier, Frank F.

    2006-09-01

    In this article the usefulness of the enzyme phi29 DNA polymerase and the principle of rolling circle amplification (RCA) for creating single-stranded DNA (ssDNA) nanostructures is described. Currently we are working on the spatial orientation of a growing ssDNA molecule during its RCA-based synthesis by the application of a hydrodynamic force. Starting at an immobilized primer at single molecule level, the aim is to construct a nanostructure of known location and orientation, providing multiple repeating binding sites that can be addressed via complementary base-pairing. Proof-of-principle experiments demonstrate the potential of the enzymatic reaction. ssDNA molecules of more than 20 μm length were created at an immobilized primer and detected by means of fluorescence microscopy.

  1. Force transients and minimum cross-bridge models in muscular contraction

    PubMed Central

    Halvorson, Herbert R.

    2010-01-01

    Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Châtelier–Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model (A → B → C → A) makes it possible to account for all three phases if we assume that the A → B transition is fast (corresponding to phase 2), the B → C transition is of intermediate speed (corresponding to phase 3), and the C → A transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: B → A or B → C. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition C → A) to: phase 4 of step analysis, the rate constant ktr of the quick-release and restretch experiment, and the rate constant kact for force development time course following Ca2+ activation. PMID:18425593

  2. Force transients and minimum cross-bridge models in muscular contraction.

    PubMed

    Kawai, Masataka; Halvorson, Herbert R

    2007-01-01

    Two- and three-state cross-bridge models are considered and examined with respect to their ability to predict three distinct phases of the force transients that occur in response to step change in muscle fiber length. Particular attention is paid to satisfying the Le Châtelier-Brown Principle. This analysis shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the number of cross-bridges in the detached state. The three-state model (A-->B-->C-->A) makes it possible to account for all three phases if we assume that the A-->B transition is fast (corresponding to phase 2), the B-->A transition is of intermediate speed (corresponding to phase 3), and the C-->A transition is slow; in such a scenario, states A and C can support or generate force (high force states) but state B cannot (detached, or low-force state). This model involves at least one ratchet mechanism. In this model, force can be generated by either of two transitions: B-->A or B-->C. To determine which of these is the major force-generating step that consumes ATP and transduces energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so, we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for all the effects of ligands, it is necessary to expand the three-state model into a six-state model that includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be explained by any of the models described unless an additional mechanism is introduced. Here we suggest a role of series compliance to account for this phase, and propose a model that correlates the slowest step of the cross-bridge cycle (transition C-->A) to: phase 4 of step analysis, the rate constant k(tr) of the quick-release and restretch experiment, and the rate constant k(act) for force development time course following Ca(2+) activation.

  3. Friction phenomena and phase transition in the underdamped two-dimensional Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Duan, Wen-Shan; Chen, Jian-Min; Yang, Lei; Tekić, Jasmina; Shao, Zhi-Gang; Wang, Cang-Long

    2010-11-01

    Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.

  4. The nonlinear model for emergence of stable conditions in gas mixture in force field

    NASA Astrophysics Data System (ADS)

    Kalutskov, Oleg; Uvarova, Liudmila

    2016-06-01

    The case of M-component liquid evaporation from the straight cylindrical capillary into N - component gas mixture in presence of external forces was reviewed. It is assumed that the gas mixture is not ideal. The stable states in gas phase can be formed during the evaporation process for the certain model parameter valuesbecause of the mass transfer initial equationsnonlinearity. The critical concentrations of the resulting gas mixture components (the critical component concentrations at which the stable states occur in mixture) were determined mathematically for the case of single-component fluid evaporation into two-component atmosphere. It was concluded that this equilibrium concentration ratio of the mixture components can be achieved by external force influence on the mass transfer processes. It is one of the ways to create sustainable gas clusters that can be used effectively in modern nanotechnology.

  5. Defending the Driniumor. Covering Force Operations in New Guinea, 1944 (Leavenworth Papers, Number 9)

    DTIC Science & Technology

    1984-02-01

    remains Robert Ross Smith’s The Approach to the Philippines . This Leavenworth Paper adds tactical detail to a single phase of the complex operations...divisions, supported by the U.S. Pacific Fleet, attack Hollandia on 15 April as a step toward MacArt the Philippines . One week later, the JCS...controlling the southern approach to the Philippines and the Caroline Islands. The Japanese primary defense line, decided at an imperial conference on

  6. A System-of-Systems Engineering Approach for Australian Land Force Capability Integration

    DTIC Science & Technology

    2012-09-01

    projects are those that, by their very scale and influence, shape many other projects and existing capabilities. Examples include Land 400 Land...challenges to the inherently single- project acquisition ethos predominant in both the defence and civil sectors. For example , see Henshaw (2012). This is...been applied are SoS- type glue projects , for example Land 19 Phase 7, Ground Based Air Missile Defence, and Land 400, the Land Combat Vehicle System

  7. Control of finger forces during fast, slow and moderate rotational hand movements.

    PubMed

    Kazemi, Hamed; Kearney, Robert E; Milner, Theodore E

    2014-01-01

    The goal of this study was to investigate the effect of speed on patterns of grip forces during twisting movement involving forearm supination against a torsional load (combined elastic and inertial load). For slow and moderate speed rotations, the grip force increased linearly with load torque. However, for fast rotations in which the contribution of the inertia to load torque was significantly greater than slower movements, the grip force-load torque relationship could be segmented into two phases: a linear ascending phase corresponding to the acceleration part of the movement followed by a plateau during deceleration. That is, during the acceleration phase, the grip force accurately tracked the combined elastic and inertial load. However, the coupling between grip force and load torque was not consistent during the deceleration phase of the movement. In addition, as speed increased, both the position and the force profiles became smoother. No differences in the baseline grip force, safety margin to secure the grasp during hold phase or the overall change in grip force were observed across different speeds.

  8. Granular Contact Forces: Proof of "Self-Ergodicity" by Generalizing Boltzmann's Stosszahlansatz and H Theorem

    NASA Technical Reports Server (NTRS)

    Metzger, Philip T.

    2006-01-01

    Ergodicity is proved for granular contact forces. To obtain this proof from first principles, this paper generalizes Boltzmann's stosszahlansatz (molecular chaos) so that it maintains the necessary correlations and symmetries of granular packing ensembles. Then it formally counts granular contact force states and thereby defines the proper analog of Boltzmann's H functional. This functional is used to prove that (essentially) all static granular packings must exist at maximum entropy with respect to their contact forces. Therefore, the propagation of granular contact forces through a packing is a truly ergodic process in the Boltzmannian sense, or better, it is self-ergodic. Self-ergodicity refers to the non-dynamic, internal relationships that exist between the layer-by-layer and column-by-column subspaces contained within the phase space locus of any particular granular packing microstate. The generalized H Theorem also produces a recursion equation that may be solved numerically to obtain the density of single particle states and hence the distribution of granular contact forces corresponding to the condition of self-ergodicity. The predictions of the theory are overwhelmingly validated by comparison to empirical data from discrete element modeling.

  9. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    PubMed

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Hanford Waste End Effector Phase I Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglin, Eric J.; Hatchell, Brian K.; Mount, Jason C.

    This test plan describes the Phase 1 testing program of the Hanford Waste End Effector (HWEE) at the Washington River Protection Solutions’ Cold Test Facility (CTF) using a Pacific Northwest National Laboratory (PNNL)-designed testing setup. This effort fulfills the informational needs for initial assessment of the HWEE to support Hanford single-shell tank A-105 retrieval. This task will install the HWEE on a PNNL-designed robotic gantry system at CTF, install and calibrate instrumentation to measure reaction forces and process parameters, prepare and characterize simulant materials, and implement the test program. The tests will involve retrieval of water, sludge, and hardpan simulantsmore » to determine pumping rate, dilution factors, and screen fouling rate.« less

  11. Relationship of scattering phase shifts to special radiation force conditions for spheres in axisymmetric wave-fields.

    PubMed

    Marston, Philip L; Zhang, Likun

    2017-05-01

    When investigating the radiation forces on spheres in complicated wave-fields, the interpretation of analytical results can be simplified by retaining the s-function notation and associated phase shifts imported into acoustics from quantum scattering theory. For situations in which dissipation is negligible, as taken to be the case in the present investigation, there is an additional simplification in that partial-wave phase shifts become real numbers that vanish when the partial-wave index becomes large and when the wave-number-sphere-radius product vanishes. By restricting attention to monopole and dipole phase shifts, transitions in the axial radiation force for axisymmetric wave-fields are found to be related to wave-field parameters for traveling and standing Bessel wave-fields by considering the ratio of the phase shifts. For traveling waves, the special force conditions concern negative forces while for standing waves, the special force conditions concern vanishing radiation forces. An intermediate step involves considering the functional dependence on phase shifts. An appendix gives an approximation for zero-force plane standing wave conditions. Connections with early investigations of acoustic levitation are mentioned and some complications associated with viscosity are briefly noted.

  12. Continuously phase-modulated standing surface acoustic waves for separation of particles and cells in microfluidic channels containing multiple pressure nodes

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Rhyou, Chanryeol; Kang, Byungjun; Lee, Hyungsuk

    2017-04-01

    This paper describes continuously phase-modulated standing surface acoustic waves (CPM-SSAW) and its application for particle separation in multiple pressure nodes. A linear change of phase in CPM-SSAW applies a force to particles whose magnitude depends on their size and contrast factors. During continuous phase modulation, we demonstrate that particles with a target dimension are translated in the direction of moving pressure nodes, whereas smaller particles show oscillatory movements. The rate of phase modulation is optimized for separation of target particles from the relationship between mean particle velocity and period of oscillation. The developed technique is applied to separate particles of a target dimension from the particle mixture. Furthermore, we also demonstrate human keratinocyte cells can be separated in the cell and bead mixture. The separation technique is incorporated with a microfluidic channel spanning multiple pressure nodes, which is advantageous over separation in a single pressure node in terms of throughput.

  13. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.

    PubMed

    Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J

    2006-04-01

    A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.

  14. Modeling pedestrian evacuation by means of game theory

    NASA Astrophysics Data System (ADS)

    Shi, Dongmei; Zhang, Wenyao; Wang, Binghong

    2017-04-01

    Pedestrian evacuation is studied based on a modified lattice model. The payoff matrix in this model represents the complicated interactions between selfish individuals, and the mean force imposed on an individual is given by considering the impacts of neighbors, walls, and defector herding. Each passer-by moves to his selected location according to the Fermi function, and the average velocity of pedestrian flow is defined as a function of the motion rule. Two pedestrian types are included: cooperators, who adhere to the evacuation instructions; and defectors, who ignore the rules and act individually. It is observed that the escape time increases as fear degree increases, and the system remains smooth for a low fear degree, but exhibits three stages for a high fear degree. We prove that the fear degree determines the dynamics of this system, and the initial density of cooperators has a negligible impact. The system experiences three phases, a single phase of cooperator, a mixed two-phase pedestrian, and a single phase of defector sequentially as the fear degree upgrades. The phase transition has been proven basically robust to the changes of empty site contribution, wall’s pressure, and noise amplitude in the motion rule. It is further shown that pedestrians derive the greatest benefit from overall cooperation, but are trapped in the worst situation if they are all defectors. Dynamics of pedestrian evacuation.

  15. A high-efficiency acoustic chamber and the anomalous sample rotation

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G.; Allen, J. L.

    1992-01-01

    A high efficiency acoustic chamber for the levitation and manipulation of liquid or molten samples in a microgravity environment has been developed. The chamber uses two acoustic drivers that are mounted at opposite corners of the chamber; by driving these at the same frequency, with 18-deg phase shifts, an increase in force of a factor of 3-4 is obtainable relative to the force of a single-driver system that is operated at the same power level. This enhancement is due to the increased coupling between the sound driver and the chamber. An anomalous rotation is noted to be associated with the chamber; this is found to be eliminated by a physically as-yet inexplicable empirical solution.

  16. Simulation of the spreading of a gas-propelled micro-droplet upon impact on a dry surface using a lattice-Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Ebrahim, Mahsa; Ortega, Alfonso; Delbosc, Nicolas; Wilson, Mark C. T.; Summers, Jonathan L.

    2017-07-01

    Spray cooling is one of the most promising methods of cooling high heat flux electronics. Depending on the type of the nozzle, spray cooling can be categorized as single-phase or two-phase. In the latter, which is known to be more effective, a secondary gas is used to further pressurize the liquid and form smaller droplets at higher velocities. The gas is also assumed to assist the spreading phase by imposing normal and tangential forces on the droplet free surface which adds to the complicated hydrodynamics of the droplet impact. Moreover, the order of magnitude of droplet size in spray cooling is 10-6 m, thereby introducing a low Weber and Reynolds numbers' impact regime which heretofore has not been well understood. A 3D lattice Boltzmann method was implemented to simulate the impact of a single micro-droplet on a dry surface both in ambient air and under a stagnation gas flow. Two cases were closely compared and correlations were proposed for the instantaneous spreading diameter. Contrary to recent findings at higher impact Weber and Reynolds numbers, it was found that a stagnation flow only significantly affects the spreading phase for Ca* ≥ 0.35 but has little influence on the receding physics.

  17. Hysteresis Bearingless Slice Motors with Homopolar Flux-biasing.

    PubMed

    Noh, Minkyun; Gruber, Wolfgang; Trumper, David L

    2017-10-01

    We present a new concept of bearingless slice motor that levitates and rotates a ring-shaped solid rotor. The rotor is made of a semi-hard magnetic material exhibiting magnetic hysteresis, such as D2 steel. The rotor is radially biased with a homopolar permanent-magnetic flux, on which the stator can superimpose 2-pole flux to generate suspension forces. By regulating the suspension forces based on position feedback, the two radial rotor degrees of freedom are actively stabilized. The two tilting degrees of freedom and the axial translation are passively stable due to the reluctance forces from the bias flux. In addition, the stator can generate a torque by superimposing 6- pole rotating flux, which drags the rotor via hysteresis coupling. This 6-pole flux does not generate radial forces in conjunction with the homopolar flux or 2-pole flux, and therefore the suspension force generation is in principle decoupled from the driving torque generation. We have developed a prototype system as a proof of concept. The stator has twelve teeth, each of which has a single phase winding that is individually driven by a linear transconductance power amplifier. The system has four reflective-type optical sensors to differentially measure the two radial degrees of freedom of the rotor. The suspension control loop is implemented such that the phase margin is 25 degrees at the cross-over frequency of 110 Hz. The prototype system can levitate the rotor and drive it up to about 1730 rpm. The maximum driving torque is about 2.7 mNm.

  18. Single-leg drop landing motor control strategies following acute ankle sprain injury.

    PubMed

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2015-08-01

    No research currently exists investigating the effect of acute injury on single-limb landing strategies. The aim of the current study was to analyze the coordination strategies of participants in the acute phase of lateral ankle sprain (LAS) injury. Thirty-seven participants with acute, first-time LAS and 19 uninjured participants completed a single-leg drop landing task on both limbs. Three-dimensional kinematic (angular displacement) and sagittal plane kinetic (moment-of-force) data were acquired for the joints of the lower extremity from 200 ms pre-initial contact (IC) to 200 ms post-IC. The peak magnitude of the vertical component of the ground reaction force (GRF) was also computed. Injured participants displayed a bilateral increase in hip flexion, with altered transverse plane kinematic profiles at the knee and ankle for both limbs (P < 0.05). This coincided with a reduction in the net-supporting flexor moment of the lower extremity (P < 0.05) and magnitude of the peak vertical GRF for the injured limb (21.82 ± 2.44 N/kg vs 24.09 ± 2.77 N/kg; P = 0.013) in injured participants compared to control participants. These results demonstrate that compensatory movement strategies are utilized by participants with acute LAS to successfully reduce the impact forces of landing. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model.

    PubMed

    Dadashzadeh, Behnam; Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles.

  20. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model

    PubMed Central

    Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401

  1. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    PubMed

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  2. Modeling Degradation Product Partitioning in Chlorinated-DNAPL Source Zones

    NASA Astrophysics Data System (ADS)

    Boroumand, A.; Ramsburg, A.; Christ, J.; Abriola, L.

    2009-12-01

    Metabolic reductive dechlorination degrades aqueous phase contaminant concentrations, increasing the driving force for DNAPL dissolution. Results from laboratory and field investigations suggest that accumulation of cis-dichloroethene (cis-DCE) and vinyl chloride (VC) may occur within DNAPL source zones. The lack of (or slow) degradation of cis-DCE and VC within bioactive DNAPL source zones may result in these dechlorination products becoming distributed among the solid, aqueous, and organic phases. Partitioning of cis-DCE and VC into the organic phase may reduce aqueous phase concentrations of these contaminants and result in the enrichment of these dechlorination products within the non-aqueous phase. Enrichment of degradation products within DNAPL may reduce some of the advantages associated with the application of bioremediation in DNAPL source zones. Thus, it is important to quantify how partitioning (between the aqueous and organic phases) influences the transport of cis-DCE and VC within bioactive DNAPL source zones. In this work, abiotic two-phase (PCE-water) one-dimensional column experiments are modeled using analytical and numerical methods to examine the rate of partitioning and the capacity of PCE-DNAPL to reversibly sequester cis-DCE. These models consider aqueous-phase, nonaqueous phase, and aqueous plus nonaqueous phase mass transfer resistance using linear driving force and spherical diffusion expressions. Model parameters are examined and compared for different experimental conditions to evaluate the mechanisms controlling partitioning. Biot number, a dimensionless number which is an index of the ratio of the aqueous phase mass transfer rate in boundary layer to the mass transfer rate within the NAPL, is used to characterize conditions in which either or both processes are controlling. Results show that application of a single aqueous resistance is capable to capture breakthrough curves when DNAPL is distributed in porous media as low-saturation ganglia, while diffusion within the DNAPL should be considered for larger NAPL pools. These results offer important insights to the monitoring and interpretation of bioremediation strategies employed within DNAPL source zones.

  3. Kinetics of force recovery following length changes in active skinned single fibres from rabbit psoas muscle

    PubMed Central

    Burton, Kevin; Simmons, Robert M; Sleep, John; Smith, David A

    2006-01-01

    Redevelopment of isometric force following shortening of skeletal muscle is thought to result from a redistribution of cross-bridge states. We varied the initial force and cross-bridge distribution by applying various length-change protocols to active skinned single fibres from rabbit psoas muscle, and observed the effect on the slowest phase of recovery (‘late recovery’) that follows transient changes. In response to step releases that reduced force to near zero (∼8 nm (half sarcomere)−1) or prolonged shortening at high velocity, late recovery was well described by two exponentials of approximately equal amplitude and rate constants of ∼2 s−1 and ∼9 s−1 at 5°C. When a large restretch was applied at the end of rapid shortening, recovery was accelerated by (1) the introduction of a slow falling component that truncated the rise in force, and (2) a relative increase in the contribution of the fast exponential component. The rate of the slow fall was similar to that observed after a small isometric step stretch, with a rate of 0.4–0.8 s−1, and its effects could be reversed by reducing force to near zero immediately after the stretch. Force at the start of late recovery was varied in a series of shortening steps or ramps in order to probe the effect of cross-bridge strain on force redevelopment. The rate constants of the two components fell by 40–50% as initial force was raised to 75–80% of steady isometric force. As initial force increased, the relative contribution of the fast component decreased, and this was associated with a length constant of about 2 nm. The results are consistent with a two-state strain-dependent cross-bridge model. In the model there is a continuous distribution of recovery rate constants, but two-exponential fits show that the fast component results from cross-bridges initially at moderate positive strain and the slow component from cross-bridges at high positive strain. PMID:16497718

  4. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  5. Experiment and Lattice Boltzmann numerical study on nanofluids flow in a micromodel as porous medium

    NASA Astrophysics Data System (ADS)

    Meghdadi Isfahani, A. H.; Afrand, Masoud

    2017-10-01

    Al2O3 nanofluids flow has been studied in etched glass micromodel which is idealization of porous media by using a pseudo 2D Lattice Boltzmann Method (LBM). The predictions were compared with experimental results. Pressure drop / flow rate relations have been measured for pure water and Al2O3 nanofluids. Because the size of Al2O3 nanoparticles is tiny enough to permit through the pore throats of the micromodel, blockage does not occur and the permeability is independent of the nanofluid volume fraction. Therefore, the nanofluid behaves as a single phase fluid, and a single phase LBM is able to simulate the results of this experiment. Although the flow in micromodels is 3D, we showed that 2D LBM can be used provided an effective viscous drag force, representing the effect of the third dimension, is considered. Good qualitative and quantitative agreement is seen between the numerical and experimental results.

  6. Ultrafast lithium diffusion in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  7. Bio-inspired piezoelectric linear motor driven by a single-phase harmonic wave with an asymmetric stator.

    PubMed

    Pan, Qiaosheng; Miao, Enming; Wu, Bingxuan; Chen, Weikang; Lei, Xiujun; He, Liangguo

    2017-07-01

    A novel, bio-inspired, single-phase driven piezoelectric linear motor (PLM) using an asymmetric stator was designed, fabricated, and tested to avoid mode degeneracy and to simplify the drive mechanism of a piezoelectric motor. A piezoelectric transducer composed of two piezoelectric stacks and a displacement amplifier was used as the driving element of the PLM. Two simple and specially designed claws performed elliptical motion. A numerical simulation was performed to design the stator and determine the feasibility of the design mechanism of the PLM. Moreover, an experimental setup was built to validate the working principles, as well as to evaluate the performance, of the PLM. The prototype motor outputs a no-load speed of 233.7 mm/s at a voltage of 180 V p-p and a maximum thrust force of 2.3 N under a preload of 10 N. This study verified the feasibility of the proposed design and provided a method to simplify the driving harmonic signal and structure of PLMs.

  8. Fundamental High-Speed Limits in Single-Molecule, Single-Cell, and Nanoscale Force Spectroscopies

    PubMed Central

    2016-01-01

    Force spectroscopy is enhancing our understanding of single-biomolecule, single-cell, and nanoscale mechanics. Force spectroscopy postulates the proportionality between the interaction force and the instantaneous probe deflection. By studying the probe dynamics, we demonstrate that the total force acting on the probe has three different components: the interaction, the hydrodynamic, and the inertial. The amplitudes of those components depend on the ratio between the resonant frequency and the frequency at which the data are measured. A force–distance curve provides a faithful measurement of the interaction force between two molecules when the inertial and hydrodynamic components are negligible. Otherwise, force spectroscopy measurements will underestimate the value of unbinding forces. Neglecting the above force components requires the use of frequency ratios in the 50–500 range. These ratios will limit the use of high-speed methods in force spectroscopy. The theory is supported by numerical simulations. PMID:27359243

  9. Results from the UK 3rd generation programme: Albion

    NASA Astrophysics Data System (ADS)

    McEwen, R. K.; Axcell, C.; Knowles, P.; Hoade, K. P.; Wilson, M.; Dennis, P. N. J.; Backhouse, P.; Gordon, N. T.

    2008-10-01

    Following the development of 1st Generation systems in the 1970s, thermal imaging has been in service with the UK armed forces for over 25 years and has proven itself to be a battle winning technology. More recently the wider accessibility to similar technologies within opposing forces has reduced the military advantage provided by these 1st Generation systems and a clear requirement has been identified by the UK MOD for thermal imaging sensors providing increased detection, recognition and identification (DRI) ranges together with a simplified logistical deployment burden and reduced through-life costs. In late 2005, the UK MOD initiated a programme known as "Albion" to develop high performance 3rd Generation single waveband infrared detectors to meet this requirement. At the same time, under a separate programme supporting higher risk technology, a dual waveband infrared detector was also developed. The development phase of the Albion programme has now been completed and prototype detectors are now available and have been integrated into demonstration thermal imaging cameras. The Albion programme has now progressed into the second phase, incorporating both single and dual waveband devices, focussing on low rate initial production (LRIP) and qualification of the devices for military applications. All of the detectors have been fabricated using cadmium mercury telluride material (CMT), grown by metal organic vapour phase epitaxy (MOVPE) on low cost, gallium arsenide (GaAs) substrates and bump bonded to the silicon read out circuit (ROIC). This paper discusses the design features of the 3rd Generation detectors developed in the UK together with the results obtained from the prototype devices both in the laboratory and when integrated into field deployable thermal imaging cameras.

  10. Study of the second magnetization peak and the pinning behaviour in Ba(Fe0.935Co0.065)2As2 pnictide superconductor

    NASA Astrophysics Data System (ADS)

    Sundar, Shyam; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Sefat, A. S.; Salem-Sugui, S., Jr.

    2017-12-01

    Isothermal magnetic field dependence of magnetization and magnetic relaxation measurements were performed for the H\\parallel {{c}} axis on a single crystal of Ba(Fe0.935 Co0.065)2As2 pnictide superconductor having T c = 21.7 K. The second magnetization peak (SMP) for each isothermal M(H) was observed in a wide temperature range from T c to the lowest temperature of measurement (2 K). The magnetic field dependence of relaxation rate R(H), showed a peak (H spt) between H on (onset of SMP in M(H)) and H p (peak field of SMP in M(H)), which is likely to be related to a vortex-lattice structural phase transition, as suggested in the literature for a similar sample. In addition, the magnetic relaxation measured for magnetic fields near H spt showed some noise, which might be the signature of the structural phase transition of the vortex lattice. Analysis of the magnetic relaxation data using Maley’s criterion and the collective pinning theory suggested that the SMP in the sample was due to the collective (elastic) to plastic creep crossover, which was also accompanied by a rhombic to square vortex lattice phase transition. Analysis of the pinning force density suggested a single dominating pinning mechanism in the sample, which did not showing the usual δ {l} and δ {T}{{c}} nature of pinning. The critical current density (J c), estimated using the Bean critical state model, was found to be 5 × 105 A cm- 2 at 2 K in the zero magnetic field limit. Surprisingly, the maximum of the pinning force density was not responsible for the maximum value of the critical current density in the sample.

  11. Compressive Force Spectroscopy: From Living Cells to Single Proteins.

    PubMed

    Wang, Jiabin; Liu, Meijun; Shen, Yi; Sun, Jielin; Shao, Zhifeng; Czajkowsky, Daniel Mark

    2018-03-23

    One of the most successful applications of atomic force microscopy (AFM) in biology involves monitoring the effect of force on single biological molecules, often referred to as force spectroscopy. Such studies generally entail the application of pulling forces of different magnitudes and velocities upon individual molecules to resolve individualistic unfolding/separation pathways and the quantification of the force-dependent rate constants. However, a less recognized variation of this method, the application of compressive force, actually pre-dates many of these "tensile" force spectroscopic studies. Further, beyond being limited to the study of single molecules, these compressive force spectroscopic investigations have spanned samples as large as living cells to smaller, multi-molecular complexes such as viruses down to single protein molecules. Correspondingly, these studies have enabled the detailed characterization of individual cell states, subtle differences between seemingly identical viral structures, as well as the quantification of rate constants of functionally important, structural transitions in single proteins. Here, we briefly review some of the recent achievements that have been obtained with compressive force spectroscopy using AFM and highlight exciting areas of its future development.

  12. Installation Restoration Program. Phase 1. Records Search 15th ABW Satellite Installations, Hawaii

    DTIC Science & Technology

    1984-09-01

    Hickam POL Storage Facilities and Pipeline The POL storage facilities remotely located from Hickam Air Force Base (AFB...airfield with less activity than nearby Wheeler and Hickam Air Force Bases . Aircraft activity was significantly reduced in the late 1940’s and the...United States Air Force to conduct the Phase I Records Search at the 15th Air Base Wing 1-2 ES ENGINEERING-SCIENCE PHASE I PHASE 11 PHASE IV

  13. Exploring the folding pattern of a polymer chain in a single crystal by combining single-molecule force spectroscopy and steered molecular dynamics simulations.

    PubMed

    Song, Yu; Feng, Wei; Liu, Kai; Yang, Peng; Zhang, Wenke; Zhang, Xi

    2013-03-26

    Understanding the folding pattern of a single polymer chain within its single crystal will shed light on the mechanism of crystallization. Here, we use the combined techniques of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) and steered molecular dynamics (SMD) simulations to study the folding pattern of a polyethylene oxide (PEO) chain in its single crystal. Our results show that the folding pattern of a PEO chain in the crystal formed in dilute solution follows the adjacent re-entry folding model. While in the crystal obtained from the melt, the nonadjacent folding with large and irregular loops contributes to big force fluctuations in the force-extension curves. The method established here can offer a novel strategy to directly unravel the chain-folding pattern of polymer single crystals at single-molecule level.

  14. Turbulent convection in microchannels

    NASA Astrophysics Data System (ADS)

    Adams, Thomas Mcdaniel

    1998-10-01

    Single-phase forced convection in microchannels is an effective cooling mechanism capable of accommodating the high heat fluxes encountered in fission reactor cores, accelerator targets, microelectronic heat sinks and micro-heat exchangers. Traditional Nusselt type correlations, however, have generally been obtained using data from channels with hydraulic diameters >2 cm. Application of such relationships to microchannels is therefore questionable. A diameter limit below which traditional correlations are invalid had not been established. The objective of this investigation was to systematically address the effect of small hydraulic diameter on turbulent single-phase forced convection of water. A number of microchannels having hydraulic diameters ranging from 0.76 to 1.13 mm were constructed and tested over a wide range of flow rates and heat fluxes. Experimentally obtained Nusselt numbers were significantly higher than the values predicted by the Gnielinski correlation for large channels, the effect of decreasing diameter being to further increase heat transfer enhancement. A working correlation predicting the heat transfer enhancement for turbulent convection in microchannels was developed. The correlation predicts the lower diameter limit below which traditional correlations are no longer valid to be approximately 1.2 mm. Of further interest was the effect of the desorption of noncondensable gases dissolved in the water on turbulent convection. In large channels noncondensables undergo little desorption and their effect is negligible. The large pressure drops coupled with large temperature increases for high heat fluxes in microchannels, however, leads to a two-phase, two-component flow thereby enhancing heat transfer coefficients above their liquid- only values. A detailed mathematical model was developed to predict the resulting void fractions and liquid- coolant accelerations due to the desorption of noncondensables in microchannels. Experiments were also performed to compare heat transfer coefficients for fully-degassed water to water saturated with air at test section inlet conditions. The data showed significant heat transfer enhancement for the air-saturated case over the fully-degassed case. The degree of enhancement was greatly under-predicted by current two-phase, two- component heat transfer correlations.

  15. A biomechanical analysis of common lunge tasks in badminton.

    PubMed

    Kuntze, Gregor; Mansfield, Neil; Sellers, William

    2010-01-01

    The lunge is regularly used in badminton and is recognized for the high physical demands it places on the lower limbs. Despite its common occurrence, little information is available on the biomechanics of lunging in the singles game. A video-based pilot study confirmed the relatively high frequency of lunging, approximately 15% of all movements, in competitive singles games. The biomechanics and performance characteristics of three badminton-specific lunge tasks (kick, step-in, and hop lunge) were investigated in the laboratory with nine experienced male badminton players. Ground reaction forces and kinematic data were collected and lower limb joint kinetics calculated using an inverse dynamics approach. The step-in lunge was characterized by significantly lower mean horizontal reaction force at drive-off and lower mean peak hip joint power than the kick lunge. The hop lunge resulted in significantly larger mean reaction forces during loading and drive-off phases, as well as significantly larger mean peak ankle joint moments and knee and ankle joint powers than the kick or step-in lunges. These findings indicate that, within the setting of this investigation, the step-in lunge may be beneficial for reducing the muscular demands of lunge recovery and that the hop lunge allows for higher positive power output, thereby presenting an efficient lunging method.

  16. Forskolin compared with beclomethasone for prevention of asthma attacks: a single-blind clinical trial.

    PubMed

    Huerta, M; Urzúa, Z; Trujillo, X; González-Sánchez, R; Trujillo-Hernández, B

    2010-01-01

    This single-blind study compared the efficacy of oral forskolin versus inhaled beclomethasone for mild or moderately persistent adult asthma. Patients were randomly assigned to receive forskolin (one 10-mg capsule orally per day; n = 30) or beclomethasone (two 50 microg inhalations every 12 h; n = 30) for 2 months. No statistically significant improvement occurred in any lung function parameter in the forskolin-treated patients. Subjects in the beclomethasone-treated group presented a slight but statistically significant improvement in percentage forced expiratory volume in 1 s (FEV(1)), percentage forced expiratory flow in the middle (25 - 75%) expiratory phase (FEF(25 - 75%)) and percentage forced vital capacity (FVC) after 2 months of treatment, though the improvement in absolute values for FEV(1), FEF(25 - 75%), FVC and FEV(1):FVC did not reach statistical significance. There was no statistically significant difference between the forskolin and beclomethasone treatment groups for any lung function parameter at baseline or after treatment. None of the beclomethasone-treated patients had an asthma attack and one forskolin-treated patient had a mild asthma attack during the 2-month study period. More studies are needed in adult asthma patients to confirm whether forskolin may be a useful preventive treatment for mild or moderately persistent adult asthma.

  17. Active control of sound radiation from a vibrating rectangular panel by sound sources and vibration inputs - An experimental comparison

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.; Hansen, C. H.; Snyder, S. D.

    1991-01-01

    Active control of sound radiation from a rectangular panel by two different methods has been experimentally studied and compared. In the first method a single control force applied directly to the structure is used with a single error microphone located in the radiated acoustic field. Global attenuation of radiated sound was observed to occur by two main mechanisms. For 'on-resonance' excitation, the control force had the effect of increasing the total panel input impedance presented to the nosie source, thus reducing all radiated sound. For 'off-resonance' excitation, the control force tends not significantly to modify the panel total response amplitude but rather to restructure the relative phases of the modes leading to a more complex vibration pattern and a decrease in radiation efficiency. For acoustic control, the second method, the number of acoustic sources required for global reduction was seen to increase with panel modal order. The mechanism in this case was that the acoustic sources tended to create an inverse pressure distribution at the panel surface and thus 'unload' the panel by reducing the panel radiation impedance. In general, control by structural inputs appears more effective than control by acoustic sources for structurally radiated noise.

  18. Sinc or Sine? The Band Excitation Method and Energy Dissipation Measurements by SPM

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Kalinin, Sergei

    2007-03-01

    Quantitative energy dissipation measurements in force-based SPM is the key to understanding fundamental mechanisms of energy transformations on the nanoscale, molecular, and atomic levels. To date, these measurements are invariably based on either phase and amplitude detection in constant frequency mode, or as amplitude detection in frequency-tracking mode. The analysis in both cases implicitly assumes that amplitude is inversely proportional to the Q-factor and is not applicable when the driving force is position dependent, as is the case for virtually all SPM measurements. All current SPM methods sample only a single frequency in the Fourier domain of the system. Thus, only two out of three parameters (amplitude, resonance, and Q) can be determined independently. Here, we developed and implemented a new approach for SPM detection based on the excitation and detection of a signal having a finite amplitude over a selected region in the Fourier domain and allows simultaneous determination of all three parameters. This band excitation method allows acquisition of the local spectral response at a 10ms/pixel rate, compatible with fast imaging, and is illustrated for electromechanical and mechanical imaging and force-distance spectroscopy. The BE method thus represents a new paradigm in SPM, beyond traditional single-frequency excitation.

  19. Effects of subsurface ocean dynamics on instability waves in the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.

    1998-08-01

    Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.

  20. Piezoelectric and optoelectronic properties of electrospinning hybrid PVDF and ZnO nanofibers

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Qian; Lin, Kabin; Zhou, Lei; Ni, Zhonghua

    2018-03-01

    Polyvinylidene fluoride (PVDF) is a unique ferroelectric polymer with significant promise for energy harvesting, data storage, and sensing applications. ZnO is a wide direct band gap semiconductor (3.37 eV), commonly used as ultraviolet photodetectors, nanoelectronics, photonicsand piezoelectric generators. In this study, we produced high output piezoelectric energy harvesting materials using hybrid PVDF/ZnO nanofibers deposited via electrospinning. The strong electric fields and stretching forces during the electrospinning process helps to align dipoles in the nanofiber crystal such that the nonpolar α-phase (random orientation of dipoles) is transformed into polar β-phase in produced nanofibers. The effect of the additional ZnO nanowires on the nanofiber β-phase composition and output voltage are investigated. The maximum output voltage generated by a single hybrid PVDF and ZnO nanofiber (33 wt% ZnO nanowires) is over 300% of the voltage produced by a single nanofiber made of pure PVDF. The ZnO NWs served not only as a piezoelectric material, but also as a semiconducting material. The electrical conductivity of the hybrid PVDF/ZnO nanofibers increased by more than a factor of 4 when exposed under ultraviolet (UV) light.

  1. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    NASA Astrophysics Data System (ADS)

    Ruiz, Maritza

    Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.

  2. Vesicle Origami and the Influence of Cholesterol on Lipid Packing.

    PubMed

    Tanasescu, Radu; Lanz, Martin A; Mueller, Dennis; Tassler, Stephanie; Ishikawa, Takashi; Reiter, Renate; Brezesinski, Gerald; Zumbuehl, Andreas

    2016-05-17

    The artificial phospholipid Pad-PC-Pad was analyzed in 2D (monolayers at the air/water interface) and 3D (aqueous lipid dispersions) systems. In the gel phase, the two leaflets of a Pad-PC-Pad bilayer interdigitate completely, and the hydrophobic bilayer region has a thickness comparable to the length of a single phospholipid acyl chain. This leads to a stiff membrane with no spontaneous curvature. Forced into a vesicular structure, Pad-PC-Pad has faceted geometry, and in its extreme form, tetrahedral vesicles were found as predicted a decade ago. Above the main transition temperature, a noninterdigitated Lα phase with fluid chains has been observed. The addition of cholesterol leads to a slight decrease of the main transition temperature and a gradual decrease in the transition enthalpy until the transition vanishes at 40 mol % cholesterol in the mixture. Additionally, cholesterol pulls the chains apart, and a noninterdigitated gel phase is observed. In monolayers, cholesterol has an ordering effect on liquid-expanded phases and disorders condensed phases. The wavenumbers of the methylene stretching vibration indicate the formation of a liquid-ordered phase in mixtures with 40 mol % cholesterol.

  3. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    PubMed

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  4. Single cell manipulation utilizing femtosecond laser-induced shock and stress waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2017-02-01

    When an intense femtosecond laser pulse is focused into a culture medium through an objective lens, an impulsive force is loaded on the cells with generations of the shock and stress waves at the laser focal point. The shock and stress waves were acted to single cells in the vicinity of the laser focal point as an impulsive force. We have applied the impulsive force to manipulate single cells. As the transient intensity of the impulsive force is over 1000 times stronger than the force due to optical tweezers, drastic single manipulation which is difficult by the optical tweezers can be realized. The generation process of the impulsive force and behavior of animal cell after loading the impulsive force were reviewed, and then our original quantification method of the impulsive force utilizing atomic force microscope (AFM) was introduced with its applications for evaluating adhesions between animal cells and between sub-organelles in plant cell.

  5. Influences of rolling method on deformation force in cold roll-beating forming process

    NASA Astrophysics Data System (ADS)

    Su, Yongxiang; Cui, Fengkui; Liang, Xiaoming; Li, Yan

    2018-03-01

    In process, the research object, the gear rack was selected to study the influence law of rolling method on the deformation force. By the mean of the cold roll forming finite element simulation, the variation regularity of radial and tangential deformation was analysed under different rolling methods. The variation of deformation force of the complete forming racks and the single roll during the steady state under different rolling modes was analyzed. The results show: when upbeating and down beating, radial single point average force is similar, the tangential single point average force gap is bigger, the gap of tangential single point average force is relatively large. Add itionally, the tangential force at the time of direct beating is large, and the dire ction is opposite with down beating. With directly beating, deformation force loading fast and uninstall slow. Correspondingly, with down beating, deformat ion force loading slow and uninstall fast.

  6. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  8. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  9. On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension.

    PubMed

    Wereszczynski, Jeff; Andricioaei, Ioan

    2006-10-31

    A precise understanding of the flexibility of double stranded nucleic acids and the nature of their deformed conformations induced by external forces is important for a wide range of biological processes including transcriptional regulation, supercoil and catenane removal, and site-specific recombination. We present, at atomic resolution, a simulation of the dynamics involved in the transitions from B-DNA and A-RNA to Pauling (P) forms and to denatured states driven by application of external torque and tension. We then calculate the free energy profile along a B- to P-transition coordinate and from it, compute a reversible pathway, i.e., an isotherm of tension and torque pairs required to maintain P-DNA in equilibrium. The reversible isotherm maps correctly onto a phase diagram derived from single molecule experiments, and yields values of elongation, twist, and twist-stretch coupling in agreement with measured values. We also show that configurational entropy compensates significantly for the large electrostatic energy increase due to closer-packed P backbones. A similar set of simulations applied to RNA are used to predict a novel structure, P-RNA, with its associated free energy, equilibrium tension, torque and structural parameters, and to assign the location, on the phase-diagram, of a putative force-torque-dependent RNA "triple point."

  10. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.

    PubMed

    Lashgari, Iman; Picano, Francesco; Breugem, Wim-Paul; Brandt, Luca

    2014-12-19

    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous forces). Unlike single-phase flows, where a clear distinction exists between the laminar and the turbulent states, three different regimes can be identified in the presence of a particulate phase, with smooth transitions between them. At low volume fractions, the flow becomes turbulent when increasing the Reynolds number, transitioning from the laminar regime dominated by viscous forces to the turbulent regime characterized by enhanced momentum transport by turbulent eddies. At larger volume fractions, we identify a new regime characterized by an even larger increase of the wall friction. The wall friction increases with the Reynolds number (inertial effects) while the turbulent transport is weakly affected, as in a state of intense inertial shear thickening. This state may prevent the transition to a fully turbulent regime at arbitrary high speed of the flow.

  11. Single-drop reactive extraction/extractive reaction with forced convective diffusion and interphase mass transfer

    NASA Technical Reports Server (NTRS)

    Kleinman, Leonid S.; Red, X. B., Jr.

    1995-01-01

    An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.

  12. Microstructural and mechanical properties of Al2O3/ZrO2 nanomultilayer thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il

    2018-02-01

    Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.

  13. Direct measurements of intermolecular forces by chemical force microscopy

    NASA Astrophysics Data System (ADS)

    Vezenov, Dmitri Vitalievich

    1999-12-01

    Detailed description of intermolecular forces is key to understanding a wide range of phenomena from molecular recognition to materials failure. The unique features of atomic force microscopy (AFM) to make point contact force measurements with ultra high sensitivity and to generate spatial maps of surface topography and forces have been extended to include measurements between well-defined organic molecular groups. Chemical modification of AFM probes with self-assembled monolayers (SAMs) was used to make them sensitive to specific molecular interactions. This novel chemical force microscopy (CFM) technique was used to probe forces between different molecular groups in a range of environments (vacuum, organic liquids and aqueous solutions); measure surface energetics on a nanometer scale; determine pK values of the surface acid and base groups; measure forces to stretch and unbind a short synthetic DNA duplex and map the spatial distribution of specific functional groups and their ionization state. Studies of adhesion forces demonstrated the important contribution of hydrogen bonding to interactions between simple organic functionalities. The chemical identity of the tip and substrate surfaces as well as the medium had a dramatic effect on adhesion between model monolayers. A direct correlation between surface free energy and adhesion forces was established. The adhesion between epoxy polymer and model mixed SAMs varied with the amount of hydrogen bonding component in the monolayers. A consistent interpretation of CFM measurements in polar solvents was provided by contact mechanics models and intermolecular force components theory. Forces between tips and surfaces functionalized with SAMs terminating in acid or base groups depended on their ionization state. A novel method of force titration was introduced for highly local characterization of the pK's of surface functional groups. The pH-dependent changes in friction forces were exploited to map spatially the changes in ionization state on SAM surfaces. The phase contrast in tapping mode AFM between chemically distinct monolayer regions and corresponding adhesion forces were found to be directly correlated. Thus, both friction and intermittent contact CFM images could be interpreted in terms of the strength of intermolecular interactions. CFM was also used to probe biomolecular interactions. Separation forces between complementary oligonucleotide strands were significantly larger than the forces measured between noncomplementary strands and were consistent with the unbinding of a single DNA duplex. CFM data provided a direct measure of the forces required to elastically deform, structurally-transform and separate well-defined, synthetic duplexes into single strand oligonucleotides.

  14. Coexistence of two electronic phases in LaTiO3+δ (0.01⩽δ⩽0.12) and their evolution with δ

    NASA Astrophysics Data System (ADS)

    Zhou, H. D.; Goodenough, J. B.

    2005-04-01

    Although LaTiO3+δ(0.01⩽δ⩽0.12) is single-phase to powder x-ray diffraction, its properties reveal that a hole-poor strongly correlated electronic phase coexists with a hole-rich itinerant-electron phase. With δ⩽0.03 , the hole-rich phase exists as a minority phase of isolated, mobile itinerant-electron clusters embedded in the hole-poor phase. With δ⩾0.08 , isolated hole-poor clusters are embedded in an itinerant-electron matrix. As δ>0.08 increases, the hole-poor clusters become smaller and more isolated until they are reduced to superparamagnetic strong-correlation fluctuations by δ=0.12 . This behavior is consistent with prediction from the virial theorem of a first-order phase change at the crossover from localized (or strongly correlated) to itinerant electronic behavior, a smaller equilibrium (Ti-O) bond length being in the itinerant-electron phase. Accordingly, the variation of volume with oxidation state does not obey Végard’s law; the itinerant-electron minority phase exerts a compressive force on the hole-poor matrix, and the hole-poor minority phase exerts a tensile stress on the hole-rich matrix.

  15. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  16. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nm pp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  17. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    NASA Astrophysics Data System (ADS)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  18. Local modulation of double optomechanically induced transparency and amplification.

    PubMed

    Yang, Q; Hou, B P; Lai, D G

    2017-05-01

    We consider the probe absorption properties in a mechanically coupled optomechanical system in which the two coupled nanomechanical oscillators are driven by the time-dependent forces, respectively. It is found that the mechanical interaction splits the transparency window for a usual single-mode optomechanical system into two parts and then leads to appearance of the double optomechanically induced transparency. The distance between the two transparency positions (the frequency for the maximal transparency) is determined by the mechanical interaction amplitude. This can be explained by using optomechanical dressed-mode picture which is analogue to the interacting dark resonances in coherent atoms. When the mechanical resonators are driven by the external forces, the transparencies in the double-transparency spectrum can be increased into amplifications or be suppressed by tuning the amplitude of the forces. Additionally, it is shown that the double transparencies or the amplifications oscillate with the initial phases of the forces with a period of 2π. These investigations will be useful for more flexible controllability of multi-channel optical communication based on the optomechanical systems.

  19. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  20. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle.

    PubMed

    Lan, Bo; Deng, Linhong; Donovan, Graham M; Chin, Leslie Y M; Syyong, Harley T; Wang, Lu; Zhang, Jenny; Pascoe, Christopher D; Norris, Brandon A; Liu, Jeffrey C-Y; Swyngedouw, Nicholas E; Banaem, Saleha M; Paré, Peter D; Seow, Chun Y

    2015-01-01

    Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation. Copyright © 2015 the American Physiological Society.

  1. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle

    PubMed Central

    Lan, Bo; Deng, Linhong; Donovan, Graham M.; Chin, Leslie Y. M.; Syyong, Harley T.; Wang, Lu; Zhang, Jenny; Pascoe, Christopher D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Swyngedouw, Nicholas E.; Banaem, Saleha M.; Paré, Peter D.

    2014-01-01

    Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation. PMID:25305246

  2. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, Daniel R.

    1999-01-01

    A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.

  3. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, D.R.

    1999-08-17

    A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.

  4. A new method of testing pile using dynamic P-S-curve made by amplitude of wave train

    NASA Astrophysics Data System (ADS)

    Hu, Yi-Li; Xu, Jun; Duan, Yong-Kong; Xu, Zhao-Yong; Yang, Run-Hai; Zhao, Jin-Ming

    2004-11-01

    A new method of detecting the vertical bearing capacity for single-pile with high strain is discussed in this paper. A heavy hammer or a small type of rocket is used to strike the pile top and the detectors are used to record vibration graphs. An expression of higher degree of strain (deformation force) is introduced. It is testified theoretically that the displacement, velocity and acceleration cannot be obtained by simple integral acceleration and differential velocity when long displacement and high strain exist, namely when the pile phase generates a whole slip relative to the soil body. That is to say that there are non-linear relations between them. It is educed accordingly that the force P and displacement S are calculated from the amplitude of wave train and (dynamic) P-S curve is drew so as to determine the yield points. Further, a method of determining the vertical bearing capacity for single-pile is discussed. A static load test is utilized to check the result of dynamic test and determine the correlative constants of dynamic-static P( Q)- S curve.

  5. Force-induced desorption of 3-star polymers: a self-avoiding walk model

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.; Whittington, S. G.

    2018-05-01

    We consider a simple cubic lattice self-avoiding walk model of 3-star polymers adsorbed at a surface and then desorbed by pulling with an externally applied force. We determine rigorously the free energy of the model in terms of properties of a self-avoiding walk, and show that the phase diagram includes four phases, namely a ballistic phase where the extension normal to the surface is linear in the length, an adsorbed phase and a mixed phase, in addition to the free phase where the model is neither adsorbed nor ballistic. In the adsorbed phase all three branches or arms of the star are adsorbed at the surface. In the ballistic phase two arms of the star are pulled into a ballistic phase, while the remaining arm is in a free phase. In the mixed phase two arms in the star are adsorbed while the third arm is ballistic. The phase boundaries separating the ballistic and mixed phases, and the adsorbed and mixed phases, are both first order phase transitions. The presence of the mixed phase is interesting because it does not occur for pulled, adsorbed self-avoiding walks. In an atomic force microscopy experiment it would appear as an additional phase transition as a function of force.

  6. Study on forced convective heat transfer of non-newtonian nanofluids

    NASA Astrophysics Data System (ADS)

    He, Yurong; Men, Yubin; Liu, Xing; Lu, Huilin; Chen, Haisheng; Ding, Yulong

    2009-03-01

    This paper is concerned with the forced convective heat transfer of dilute liquid suspensions of nanoparticles (nanofluids) flowing through a straight pipe under laminar conditions. Stable nanofluids are formulated by using the high shear mixing and ultrasonication methods. They are then characterised for their size, surface charge, thermal and rheological properties and tested for their convective heat transfer behaviour. Mathematical modelling is performed to simulate the convective heat transfer of nanofluids using a single phase flow model and considering nanofluids as both Newtonian and non-Newtonian fluid. Both experiments and mathematical modelling show that nanofluids can substantially enhance the convective heat transfer. Analyses of the results suggest that the non-Newtonian character of nanofluids influences the overall enhancement, especially for nanofluids with an obvious non-Newtonian character.

  7. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  8. Real-Time Monitoring Of Regional Tissue Elasticity During FUS Focused Ultrasound Therapy Using Harmonic Motion Imaging

    NASA Astrophysics Data System (ADS)

    Maleke, Caroline; Pernot, Mathieu; Konofagou, Elisa

    2006-05-01

    The feasibility of the Harmonic Motion Imaging (HMI) technique for simultaneous monitoring and generation of focused ultrasound therapy using two separate focused ultrasound transducer elements has previously been shown. In this study, a new HMI technique is described that images tissue displacement induced by a harmonic radiation force induced using a single focused ultrasound element. First, wave propagation simulation models were used to compare the use of a single Amplitude-Modulated (AM) focused beam versus two overlapping focused beams as previously implemented for HMI. Simulation results indicated that, unlike in the two-beam configuration, the AM beam produced a consistent, stable focus for the applied harmonic radiation force. The AM beam thus offered the unique advantage of sustaining the application of the spatially-invariant radiation force. Experiments were then performed on gelatin gel phantoms and tissue in vitro bovine liver. The radiation force was generated by a 4.68 MHz focused transducer using a low-frequency Amplitude-Modulated (AM) RF-signal. RF data were acquired at 7.5 MHz with a PRF of 6.5 kHz and displacements were estimated using a 1D cross-correlation algorithm on successive RF signals. Furthermore, taking advantage of the real-time capability of our method, the change in the elastic properties was monitored during focused ultrasound (FUS) ablation of tissue in vitro bovine liver. Based on the harmonic displacements, their temperature-dependence, and the calculated acoustic radiation force, the change in the relative, regional stiffness could be monitored during heating and ablation, both using the displacement amplitude and the resulting phase shift change of the displacement relative to the radiation force temporal profile. In conclusion, the feasibility of using an AM radiation force for HMI for simultaneous monitoring and treatment during ultrasound therapy was demonstrated in phantoms and tissues in vitro. Further study of this method will include, ex vivo and in vivo, stiffness and temperature.

  9. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  10. Sequence of phase transitions in (NH4)3SiF7.

    PubMed

    Mel'nikova, S V; Molokeev, M S; Laptash, N M; Pogoreltsev, E I; Misyul, S V; Flerov, I N

    2017-02-21

    Single crystals of silicon double salt (NH 4 ) 3 SiF 7 = (NH 4 ) 2 SiF 6 ·NH 4 F = (NH 4 ) 3 [SiF 6 ]F were grown and studied by the methods of polarization optics, X-ray diffraction and calorimetry. A sequence of symmetry transformations with the temperature change was established: P4/mbm (Z = 2) (G 1 ) ↔ Pbam (Z = 4) (G 2 ) ↔ P2 1 /c (Z = 4) (G 3 ) ↔ P1[combining macron] (Z = 4) (G 4 ) ↔ P2 1 /c (Z = 8) (G 5 ). Crystal structures of different phases were determined. The experimental data were also interpreted by a group-theoretical analysis of the complete condensate of order parameters taking into account critical and noncritical atomic displacements. Strengthening of the N-HF hydrogen bonds can be a driving force of the observed phase transitions.

  11. Performance drifts in two-finger cyclical force production tasks performed by one and two actors.

    PubMed

    Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L

    2018-03-01

    We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.

  12. Chaotic dynamics and thermodynamics of periodic systems with long-range forces

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj

    Gravitational and electromagnetic interactions form the backbone of our theoretical understanding of the universe. While, in general, such interactions are analytically inexpressible for three-dimensional infinite systems, one-dimensional modeling allows one to treat the long-range forces exactly. Not only are one-dimensional systems of profound intrinsic interest, physicists often rely on one-dimensional models as a starting point in the analysis of their more complicated higher-dimensional counterparts. In the analysis of large systems considered in cosmology and plasma physics, periodic boundary conditions are a natural choice and have been utilized in the study of one dimensional Coulombic and gravitational systems. Such studies often employ numerical simulations to validate the theoretical predictions, and in cases where theoretical relations have not been mathematically formulated, numerical simulations serve as a powerful method in characterizing the system's physical properties. In this dissertation, analytic techniques are formulated to express the exact phase-space dynamics of spatially-periodic one-dimensional Coulombic and gravitational systems. Closed-form versions of the Hamiltonian and the electric field are derived for single-component and two-component Coulombic systems, placing the two on the same footing as the gravitational counterpart. Furthermore, it is demonstrated that a three-body variant of the spatially-periodic Coulombic or gravitational system may be reduced isomorphically to a periodic system of a single particle in a two-dimensional rhombic potential. The analytic results are utilized for developing and implementing efficient computational tools to study the dynamical and the thermodynamic properties of the systems without resorting to numerical approximations. Event-driven algorithms are devised to obtain Lyapunov spectra, radial distribution function, pressure, caloric curve, and Poincare surface of section through an N-body molecular-dynamics approach. The simulation results for the three-body systems show that the motion exhibits chaotic, quasiperiodic, and periodic behaviors in segmented regions of the phase space. The results for the large versions of the single-component and two-component Coulombic systems show no clear-cut indication of a phase transition. However, as predicted by the theoretical treatment, the simulated temperature dependencies of energy, pressure as well as Lyapunov exponent for the gravitational system indicate a phase transition and the critical temperature obtained in simulation agrees well with that from the theory.

  13. The effect of support flexibility and damping on the dynamic response of a single mass flexible rotor in elastic bearings

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Gunter, E. J.

    1972-01-01

    The dynamic unabalance response and transient motion of the single mass Jeffcott rotor in elastic bearings mounted on damped, flexible supports are discussed. A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied. Plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer and the performance curves were plotted by an automatic plotter unit. Curves are presented on the optimization of the support housing characteristics of attenuate the rotor synchronous unbalance response.

  14. A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior.

    PubMed

    Martin, Adam D; Wojciechowski, Jonathan P; Bhadbhade, Mohan M; Thordarson, Pall

    2016-03-08

    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators.

  15. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  16. Parametres pour l'instabilite fluidelastique: Derivees de stabilite et amortissement diphasique

    NASA Astrophysics Data System (ADS)

    Charreton, Constant

    Heat exchangers and steam generators are crucial components in nuclear power plants. Water heated by nuclear fission is flowing through thousands of tubes inside a steam generator. Heat is transmitted to a second water network, external to the tubes. Steam is generated from the water of the secondary to power the turbines that produce electrical power. In this process, two-phase cross flow across the tubes causes several excitation phenomena. Vibration induced on the tubes can compromise the structural integrity of the steam generator, and can lead to power plant shutdowns. Better understanding of parameters at stake would lead to improved power plant safety and reliability. Fluidelastic instability is without doubt one of the most destructive vibration phenomena. It causes the steam generator tubes to collide against one another. This can lead to premature wear on the tubes, cracks due to fatigue and eventually, leaks leading to radioactive water contamination. Therefore, predicting conditions leading to fluidelastic instability would allow to control the damage on the tubes. In this thesis, we aim at identifying the key parameters to predict fluidelastic instability. To do so, a theoretical approach is based on the quasi-steady model. It is shown that the equation used to predict fluidelastic instability comprises two parameters that are hard to characterize. There is, on one hand, the derivative of the lift coefficient on a cylinder, and damping on the other hand. The main objective of this project is to measure these parameters experimentally. Knowing that the sign of the lift coefficient derivative is a sufficient indicator of fluidelastic instability, this derivative was measured. The experiments were carried out on the center tube of an array. The flow is single-phase and values of Reynolds number are low to moderate, thus filling a gap in the literature. Indeed, the lift coefficient derivative is known for high values of the Reynolds number only. Meanwhile, numerical methods are developed. They are based on the direct resolution of Navier-Stokes equations with the finite-element method, and on potential flow theory. Results for the lift coefficient derivative are compared to the measurements. Furthermore, the influence of geometric parameters of the array are investigated. The trend in the results show that the derivative of the lift coefficient becomes Reynolds independent for high values. From the literature and the measurements, a relationship is proposed for the lift coefficient derivative with respect to the Reynolds number. Values are injected in the quasi-steady model to predict the critical velocity for the onset of instability of a single flexible tube. Stability maps for various Reynolds numbers are proposed, using typical values for the tube damping. However, the maps do not compare well with critical velocities found in the literature for high values of the Reynolds number. Stability tests would be necessary to confirm the validity of the maps for low Reynolds, as fluidelastic has never been investigated in this range of Reynolds number. Yet, for high values of the Reynolds number, it seems like the quasi-steady model fails to predict the behavior of the experiments. An accurate value for the total damping of a tube is required to locate instability results on a map. However, in steam generators subjected to two-phase flow, damping on a tube is much more important than for single-phase flow. Yet, its origin is unknown. Therefore, we measured two-phase damping for internal flow using a specific test section. Indeed, a few studies on two-phase flow suggest that the damping mechanism is the same for a tube in cross-flow and for a tube subjected to internal flow. The present study focuses on the physics underlying the two-phase damping mechanism. The test bench consists of a sliding rigid tube subjected to upward internal two-phase flow. It essentially is a mass-spring system subjected to a transverse sinusoidal force. The damping is extracted from the frequency response function of the tube. Meanwhile, gas phase motion is characterized through video processing of the oscillating tube. The relative amplitude of the gas phase is related to two-phase flow damping values via a model of the forces acting on the bubbles. Varying excitation parameters such as frequency and excitation force confirms that two-phase damping is a viscous (velocity dependent) dissipation mechanism. Its direct relation with flow pattern transitions was confirmed. Furthermore, the combination of the videos and the analytical model suggests that the power dissipated by the drag force on the bubbles is significant in the two-phase damping mechanism. However, the model over-predicts the amplitude of the gas phase. This suggests that pseudo-turbulence generated by the motion of the tube is to be considered. The results of this study form an experimental database that can be used as input for fluidelastic instability models. Particularly, two-phase flow experiments will eventually help validating numerical methods, regarding the damping as well as the behavior of the gas phase. This work contributes to modeling and understanding two-phase flow induced vibration.

  17. Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2018-04-01

    The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5-6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.

  18. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  19. A parallel direct-forcing fictitious domain method for simulating microswimmers

    NASA Astrophysics Data System (ADS)

    Gao, Tong; Lin, Zhaowu

    2017-11-01

    We present a 3D parallel direct-forcing fictitious domain method for simulating swimming micro-organisms at small Reynolds numbers. We treat the motile micro-swimmers as spherical rigid particles using the ``Squirmer'' model. The particle dynamics are solved on the moving Larangian meshes that overlay upon a fixed Eulerian mesh for solving the fluid motion, and the momentum exchange between the two phases is resolved by distributing pseudo body-forces over the particle interior regions which constrain the background fictitious fluids to follow the particle movement. While the solid and fluid subproblems are solved separately, no inner-iterations are required to enforce numerical convergence. We demonstrate the accuracy and robustness of the method by comparing our results with the existing analytical and numerical studies for various cases of single particle dynamics and particle-particle interactions. We also perform a series of numerical explorations to obtain statistical and rheological measurements to characterize the dynamics and structures of Squirmer suspensions. NSF DMS 1619960.

  20. Negative Coulomb damping, limit cycles, and self-oscillation of the vocal folds

    NASA Astrophysics Data System (ADS)

    Fulcher, Lewis P.; Scherer, Ronald C.; Melnykov, Artem; Gateva, Vesela; Limes, Mark E.

    2006-05-01

    An effective one-mass model of phonation is developed. It borrows the salient features of the classic two-mass model of human speech developed by Ishizaka, Matsudaira, and Flanagan. Their model is based on the idea that the oscillating vocal folds maintain their motion by deriving energy from the flow of air through the glottis. We argue that the essence of the action of the aerodynamic forces on the vocal folds is captured by negative Coulomb damping, which acts on the oscillator to energize it. A viscous force is added to include the effects of tissue damping. The solutions to this single oscillator model show that when it is excited by negative Coulomb damping, it will reach a limit cycle. Displacements, phase portraits, and energy histories are presented for two underdamped linear oscillators. A nonlinear force is added so that the variations of the fundamental frequency and the open quotient with lung pressure are comparable to the behavior of the two-mass model.

  1. Magnetic force microscopy with frequency-modulated capacitive tip-sample distance control

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Schwenk, J.; Mandru, A. O.; Penedo, M.; Baćani, M.; Marioni, M. A.; Hug, H. J.

    2018-01-01

    In a step towards routinely achieving 10 nm spatial resolution with magnetic force microscopy, we have developed a robust method for active tip-sample distance control based on frequency modulation of the cantilever oscillation. It allows us to keep a well-defined tip-sample distance of the order of 10 nm within better than +/- 0.4 nm precision throughout the measurement even in the presence of energy dissipative processes, and is adequate for single-passage non-contact operation in vacuum. The cantilever is excited mechanically in a phase-locked loop to oscillate at constant amplitude on its first flexural resonance mode. This frequency is modulated by an electrostatic force gradient generated by tip-sample bias oscillating from a few hundred Hz up to a few kHz. The sum of the side bands’ amplitudes is a proxy for the tip-sample distance and can be used for tip-sample distance control. This method can also be extended to other scanning probe microscopy techniques.

  2. Digital holographic microscopy long-term and real-time monitoring of cell division and changes under simulated zero gravity.

    PubMed

    Pan, Feng; Liu, Shuo; Wang, Zhe; Shang, Peng; Xiao, Wen

    2012-05-07

    The long-term and real-time monitoring the cell division and changes of osteoblasts under simulated zero gravity condition were succeed by combing a digital holographic microscopy (DHM) with a superconducting magnet (SM). The SM could generate different magnetic force fields in a cylindrical cavity, where the gravitational force of biological samples could be canceled at a special gravity position by a high magnetic force. Therefore the specimens were levitated and in a simulated zero gravity environment. The DHM was modified to fit with SM by using single mode optical fibers and a vertically-configured jig designed to hold specimens and integrate optical device in the magnet's bore. The results presented the first-phase images of living cells undergoing dynamic divisions and changes under simulated zero gravity environment for a period of 10 hours. The experiments demonstrated that the SM-compatible DHM setup could provide a highly efficient and versatile method for research on the effects of microgravity on biological samples.

  3. Free-energy based pair-additive potentials for bulk Ni-Al systems: Application to study Ni-Al reactive alloying

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Rice, Betsy M.

    2012-09-01

    We present new numerical pair-additive Al, Ni, and Al-Ni potentials by force-matching (FM) ionic force and virial data from single (bulk liquid) phase ab initio molecular dynamics (MD) simulations using the Born-Oppenheimer method. The potentials are represented by piece-wise functions (splines) and, therefore, are not constrained to a particular choice of analytical functional form. The FM method with virial constraint naturally yields a potential which maps out the ionic free-energy surface of the reference ensemble. To further improve the free energetics of the FM ensemble, the FM procedure is modified to bias the potentials to reproduce the experimental melting temperatures of the reference (FCC-Al, FCC-Ni, B2-NiAl) phases, the only macroscopic data included in the fitting set. The performance of the resultant potentials in simulating bulk metallic phases is then evaluated. The new model is applied to perform MD simulations of self-propagating exothermic reaction in Ni-Al bilayers at P = 0-5 GPa initiated at T = 1300 K. Consistent with experimental observations, the new model describes realistically a sequence of peritectic phase transformations throughout the reaction and at a realistic rate. The reaction proceeds through interlayer diffusion of Al and Ni atoms at the interface with formation of B2-NiAl in the Al melt. Such material responses have, in the past, been proven to be difficult to observe with then-existing potentials.

  4. Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys.

    PubMed

    Nagahara, Ryu; Takai, Yohei; Haramura, Miki; Mizutani, Mirai; Matsuo, Akifumi; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2018-02-24

    We aimed to elucidate age-related differences in spatiotemporal and ground reaction force variables during sprinting in boys over a broad range of chronological ages. Ground reaction force signals during 50-m sprinting were recorded in 99 boys aged 6.5-15.4 years. Step-to-step spatiotemporal variables and mean forces were then calculated. There was a slower rate of development in sprinting performance in the age span from 8.8 to 12.1 years compared with younger and older boys. During that age span, mean propulsive force was almost constant, and step frequency for older boys was lower regardless of sprinting phase. During the ages younger than 8.8 years and older than 12.1 years, sprint performance rapidly increased with increasing mean propulsive forces during the middle acceleration and maximal speed phases and during the initial acceleration phase. There was a stage of temporal slower development of sprinting ability from age 8.8 to 12.1 years, being characterized by unchanged propulsive force and decreased step frequency. Moreover, increasing propulsive forces during the middle acceleration and maximal speed phases and during the initial acceleration phase are probably responsible for the rapid development of sprinting ability before and after the period of temporal slower development of sprinting ability.

  5. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  6. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  8. Optical properties of silicon nanocrystals synthesized in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pell, Lindsay; Korgel, Brian A.

    2002-11-01

    We developed a supercritical solution phase synthesis of silicon nanocrystals. High temperature and pressure (500°C, >140 bar) conditions allow a wet chemical approach to this challenging synthesis. Diphenylsilane was used as a silicon precursor and long chain thiols and alcohols were used to sterically stabilize the luminescent nanocrystals. Moderate size separation was achieved via size exclusion chromatography using crosslinked styrene divinylbenzene beads. Size separated fractions of silicon nanocrystals exhibit quantum efficiencies of 12% while polydisperse samples have quantum efficiencies of 5%. Nanocrystal size distributions have been determined with transmission electron microscopy and further characterized with atomic force microscopy (AFM). These silicon nanocrystals have size tunable photoluminescence as indicated by their ensemble spectroscopy and further verified through AFM and single nanocrystal photoluminescence spectroscopy. Fluorescence intermittency (characteristic of single CdSe nanocrystals) is present in our isolated silicon nanocrystals and is one of the criteria used to distinguish single crystals from clusters of particles.

  9. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  10. Age-related differences in postural adjustments in connection with different tasks involving weight transfer while standing.

    PubMed

    Jonsson, Erika; Henriksson, Marketta; Hirschfeld, Helga

    2007-10-01

    Weight transfer designed to change the area of the supportive base during the performance of three different motor tasks (one-leg stance, tandem stance and gait initiation) was examined both in healthy, physically active elderly people and younger adults. The former two tasks are balance tests used clinically. Our hypothesis was that the elderly subjects would demonstrate age-related changes in their postural adjustments that could be detected by analysis of the ground reaction forces. While 24 healthy elderly adults (65-77 years of age) and 26 younger adults (24-40 years of age) performed these three tasks, the ground reaction forces were recorded from two force plates. Prior to the onset of all three tasks, the elderly placed significantly more weight on the leg that was to provide support (the stance leg), than did the younger individuals. The analyses revealed two distinct phases of weight transfer, i.e., an initial thrust and a subsequent unloading phase. The elderly individuals exhibited a significantly longer unloading phase, as well as a higher frequency of peaks of vertical and lateral forces during this phase. Moreover, the maximal force rate during this phase was achieved at an earlier time point by the elderly. However, both groups generated forces of similar magnitudes and force rates. In conclusion, our findings indicate the presence of age-related differences in the temporal phasing of the ground reaction forces in all three of these tasks involving weight transfer, whereas the magnitude and rates of change of these forces are independent of age.

  11. The formation process and responsive impacts of single oil droplet in submerged process.

    PubMed

    Li, Haoshuai; Meng, Long; Shen, Tiantian; Zhang, Jianrui; Bao, Mutai; Sun, Peiyan

    2017-11-15

    Simulated column was applied to research forming progress of single oil droplet in submerged process, floating progress, and study effects of environment factors and dispersants on the concentration of oil hydrocarbon in water as well as changing rules of oil droplet sizes. As expected, particular formation mechanism of single oil droplet was presented. When necking down length L is 0.5 time of oil droplet diameter (d) after expansion phase, necking down becomes long and thin; when L=2d, necking down begins to break. In floating progress, the shape changes oval and its motion trail becomes an auger-type. Fluctuation occurs at horizontal direction. Dispersants decrease oil droplet size by its dispersion effect, and cut down effect of Van Der Waals force among oil droplets. More broadly, these findings provide rare empirical evidence expounding formation mechanism of single oil droplet to increasing ability of oil spill response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Differences in grip force control between young and late middle-aged adults.

    PubMed

    Zheng, Lianrong; Li, Kunyang; Wang, Qian; Chen, Wenhui; Song, Rong; Liu, Guanzheng

    2017-09-01

    Grip force control is a crucial function for human to guarantee the quality of life. To examine the effects of age on grip force control, 10 young adults and 11 late middle-aged adults participated in visually guided tracking tasks using different target force levels (25, 50, and 75% of the subject's maximal grip force). Multiple measures were used to evaluate the tracking performance during force rising phase and force maintenance phase. The measurements include the rise time, fuzzy entropy, mean force percentage, coefficient of variation, and target deviation ratio. The results show that the maximal grip force was significantly lower in the late middle-aged adults than in the young adults. The time of rising phase was systematically longer among late middle-aged adults. The fuzzy entropy is a useful indicator for quantitating the force variability of the grip force signal at higher force levels. These results suggest that the late middle-aged adults applied a compensatory strategy that allow allows for sufficient time to reach the required grip force and reduce the impact of the early and subtle degenerative changes in hand motor function.

  13. On the transition between two-phase and single-phase interface dynamics in multicomponent fluids at supercritical pressures

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.; Oefelein, Joseph C.

    2013-09-01

    A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for liquid injection is developed that quantifies the conditions under which classical sprays transition to dense-fluid jets. It is shown that the chamber pressure required to support diffusion-dominated mixing dynamics depends on the composition and temperature of the injected liquid and ambient gas. To illustrate the method and analysis, we use conditions typical of diesel engine injection. We also present a companion set of high-speed images to provide experimental validation of the presented theory. The basic theory is quite general and applies to a wide range of modern propulsion and power systems such as liquid rockets, gas turbines, and reciprocating engines. Interestingly, the regime diagram associated with diesel engine injection suggests that classical spray phenomena at typical injection conditions do not occur.

  14. Kinetic and kinematic differences between squats performed with and without elastic bands.

    PubMed

    Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M

    2010-01-01

    The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.

  15. The three-dimensional model for helical columns on type-J synchronous counter-current chromatography.

    PubMed

    Guan, Y H; van den Heuvel, Remco

    2011-08-05

    Unlike the existing 2-D pseudo-ring model for helical columns undergoing synchronous type-J planetary motion of counter-current chromatograph (CCC), the 3-D "helix" model developed in this work shows that there is a second normal force (i.e. the binormal force) applied virtually in the axial direction of the helical column. This force alternates in the two opposite directions and intensifies phase mixing with increasing the helix angle. On the contrary, the 2-D spiral column operated on the same CCC device lacks this third-dimensional mixing force. The (principal) normal force quantified by this "helix" model has been the same as that by the pseudo-ring model. With β>0.25, this normal centrifugal force has been one-directional and fluctuates cyclically. Different to the spiral column, this "helix" model shows that the centrifugal force (i.e. the hydrostatic force) does not contribute to stationary phase retention in the helical column. Between the popular helical columns and the emerging spiral columns for type-J synchronous CCC, this work has thus illustrated that the former is associated with better phase mixing yet poor retention for the stationary phase whereas the latter has potential for better retention for the stationary phase yet poor phase mixing. The methodology developed in this work may be regarded as a new platform for designing optimised CCC columns for analytical and engineering applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Complex Effects of 24:1 Sphingolipids in Membranes Containing Dioleoylphosphatidylcholine and Cholesterol.

    PubMed

    García-Arribas, Aritz B; González-Ramírez, Emilio J; Sot, Jesús; Areso, Itziar; Alonso, Alicia; Goñi, Félix M

    2017-06-06

    The effects of C24:1 sphingolipids have been tested in phospholipid bilayers containing cholesterol. Confocal microscopy, differential scanning calorimetry, and atomic force microscopy imaging and force curves have been used. More precisely, the effects of C24:1 ceramide (nervonoyl ceramide, nCer) were evaluated and compared to those of C16:0 ceramide (palmitoyl ceramide, pCer) in bilayers composed basically of dioleoylphosphatidylcholine, sphingomyelin (either C24:1, nSM or C16:0, pSM) and cholesterol. Combination of equimolecular amounts of C24:1 and C16:0 sphingolipids were also studied under the same conditions. Results show that both pCer and nCer are capable of forming segregated gel domains. Force spectroscopy data point to nCer having a lower stiffening effect than pCer, while the presence of nSM reduces the stiffness. DSC reveals T m reduction by nSM in every case. Furthermore, pSM seems to better accommodate both ceramides in a single phase of intermediate properties, while nSM partial accommodation of ceramides generates different gel phases with higher stiffnesses caused by interceramide cooperation. If both pSM and nSM are present, a clear preference of both ceramides toward pSM is observed. These findings show the sharp increase in complexity when membranes exhibit different sphingolipids of varying N-acyl chains, which should be a common issue in an actual cell membrane environment.

  17. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation.

    PubMed

    Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A

    2013-07-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.

  18. Levitation and guidance force relaxations of the single-seeded and multi-seeded YBCO superconductors

    NASA Astrophysics Data System (ADS)

    Abdioglu, M.; Ozturk, K.; Kabaer, M.; Ekici, M.

    2018-01-01

    The stable levitation and guidance forces at higher force levels are important parameters for technological applicability of high temperature superconductors (HTSs) in Maglev and Flywheel energy storage systems. In this study, we have investigated the levitation and guidance force relaxation of both the single-seeded and multi-seeded YBCOs for different (HTS)-permanent magnetic guideway (PMG) arrangements in different cooling heights (CH). The measured saturated force values of Halbach PMG arrangements are bigger than the maximum force values of other PMGs. It is determined that the normalized magnetic levitation force (MLF) and normalized guidance force (GF) relaxation rate values decrease while the relaxation rates increase with increasing magnetic pole number and the effective external magnetic field area for both the single-seeded and multi-seeded YBCO. Also it can be said that the force stability at the higher force value of Halbach PMG arrangement indicates that the relaxation quality of Halbach PMG is better than that of the others. Additionally, it can be said that both the MLF and GF relaxation qualities of the multi-seeded YBCOs are better than that of the single-seeded ones. This magnetic force and relaxation results of the single-seeded and multi-seeded YBCOs are useful to optimize the loading capacity and lateral reliability of HTS Maglev and similar magnetic bearing systems.

  19. Covalent bond force profile and cleavage in a single polymer chain

    NASA Astrophysics Data System (ADS)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  20. Explosive force production during isometric squats correlates with athletic performance in rugby union players.

    PubMed

    Tillin, Neale Anthony; Pain, Matthew Thomas Gerard; Folland, Jonathan

    2013-01-01

    This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = -0.63, P = 0.005; and 20 m, r = -0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 < r < 0.61; 0.006 < P < 0.035). When participants were separated for 5-m sprint time (< or ≥ 1s), the faster group had greater normalised explosive force in the first 150 ms of explosive-isometric squats (33-67%; 0.001 < P < 0.017). The results suggest that explosive force production during isometric squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.

  1. Phase synchronization in the forced Lorenz system

    NASA Astrophysics Data System (ADS)

    Park, Eun-Hyoung; Zaks, Michael A.; Kurths, Jürgen

    1999-12-01

    We demonstrate that the dynamics of phase synchronization in a chaotic system under weak periodic forcing depends crucially on the distribution of intrinsic characteristic times of this system. Under the external periodic action, the frequency of every unstable periodic orbit is locked to the frequency of the force. In systems which in the autonomous case displays nearly isochronous chaotic rotations, the locking ratio is the same for all periodic orbits; since a typical chaotic orbit wanders between the periodic ones, its phase follows the phase of the force. For the Lorenz attractor with its unbounded times of return onto a Poincaré surface, such state of perfect phase synchronization is inaccessible. Analysis with the help of unstable periodic orbits shows that this state is replaced by another one, which we call ``imperfect phase synchronization,'' and in which we observe alternation of temporal segments, corresponding to different rational values of frequency lockings.

  2. Magnetic and structural properties of CoFe 2O 4 thin films synthesized via a sol-gel process

    NASA Astrophysics Data System (ADS)

    dos S. Duque, J. G.; Macêdo, M. A.; Moreno, N. O.; Lopez, J. L.; Pfanes, H.-D.

    2001-05-01

    Using a sol-gel process having the coconut water as a precursor of organic chain, we synthesized thin films of cobalt ferrite. The films were characterized by using a SQUID magnetometer, an X-ray diffractometer, an X-ray spectrophotometer, Mössbauer spectroscopy and atomic force microscope. Co ferrite films annealed at 500°C for 2 h show grain sizes between 10 and 20 nm, grown as single-phase spinel structure and exhibit high coercivity and a moderate saturation magnetization (above 30 kOe).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, Adam J.; Scherrer, Joseph R.; Reiserer, Ronald S., E-mail: ron.reiserer@vanderbilt.edu

    We present a simple apparatus for improved surface modification of polydimethylsiloxane (PDMS) microfluidic devices. A single treatment chamber for plasma activation and chemical/physical vapor deposition steps minimizes the time-dependent degradation of surface activation that is inherent in multi-chamber techniques. Contamination and deposition irregularities are also minimized by conducting plasma activation and treatment phases in the same vacuum environment. An inductively coupled plasma driver allows for interchangeable treatment chambers. Atomic force microscopy confirms that silane deposition on PDMS gives much better surface quality than standard deposition methods, which yield a higher local roughness and pronounced irregularities in the surface.

  4. Atomic configurations at InAs partial dislocation cores associated with Z-shape faulted dipoles.

    PubMed

    Li, Luying; Gan, Zhaofeng; McCartney, Martha R; Liang, Hanshuang; Yu, Hongbin; Gao, Yihua; Wang, Jianbo; Smith, David J

    2013-11-15

    The atomic arrangements of two types of InAs dislocation cores associated by a Z-shape faulted dipole are observed directly by aberration-corrected high-angle annular-dark-field imaging. Single unpaired columns of different atoms in a matrix of dumbbells are clearly resolved, with observable variations of bonding lengths due to excess Coulomb force from bare ions at the dislocation core. The corresponding geometric phase analysis provides confirmation that the dislocation cores serve as origins of strain field inversion while stacking faults maintain the existing strain status.

  5. Organic ion association in aqueous phase and ab initio-based force fields: The case of carboxylate/ammonium salts

    NASA Astrophysics Data System (ADS)

    Houriez, Céline; Vallet, Valérie; Réal, Florent; Meot-Ner Mautner, Michael; Masella, Michel

    2017-10-01

    We performed molecular dynamics simulations of carboxylate/methylated ammonium ion pairs solvated in bulk water and of carboxylate/methylated ammonium salt solutions at ambient conditions using an ab initio-based polarizable force field whose parameters are assigned to reproduce only high end quantum computations, at the Møller-Plesset second-order perturbation theory/complete basis set limit level, regarding single ions and ion pairs as isolated and micro-hydrated in gas phase. Our results agree with the available experimental results regarding carboxylate/ammonium salt solutions. For instance, our force field approach predicts the percentage of acetate associated with ammonium ions in CH3 COO-/CH3 NH3+ solutions at the 0.2-0.8M concentration scale to range from 14% to 35%, in line with the estimates computed from the experimental ion association constant in liquid water. Moreover our simulations predict the number of water molecules released from the ion first hydration shell to the bulk upon ion association to be about 2.0 ± 0.6 molecules for acetate/protonated amine ion pairs, 3.1 ± 1.5 molecules for the HCOO-/NH4+ pair and 3.3 ± 1.2 molecules for the CH3COO-/(CH3)4N+ pair. For protonated amine-based ion pairs, these values are in line with experiment for alkali/halide pairs solvated in bulk water. All these results demonstrate the promising feature of ab initio-based force fields, i.e., their capacity in accurately modeling chemical systems that cannot be readily investigated using available experimental techniques.

  6. The role of the “Casimir force analogue” at the microscopic processes of crystallization and melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvildeev, V.N., E-mail: chuvildeev@gmail.com; Semenycheva, A.V., E-mail: avsemenycheva@gmail.com

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, “the Casimir force analogue”, to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. “The Casimir force analogue” helps to estimate latent melting heat and to gain an insight into a solid–liquid transition problem.

  7. The role of the "Casimir force analogue" at the microscopic processes of crystallization and melting

    NASA Astrophysics Data System (ADS)

    Chuvildeev, V. N.; Semenycheva, A. V.

    2016-10-01

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, "the Casimir force analogue", to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. "The Casimir force analogue" helps to estimate latent melting heat and to gain an insight into a solid-liquid transition problem.

  8. Calculation of a fluctuating entropic force by phase space sampling.

    PubMed

    Waters, James T; Kim, Harold D

    2015-07-01

    A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chains. Our work provides insights into the mechanistic origin of entropic forces, and an efficient computational tool for unbiased sampling of the phase space of a constrained system.

  9. Do the peak and mean force methods of assessing vertical jump force asymmetry agree?

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul; Suchomel, Timothy J

    2018-05-21

    The aim of this study was to assess agreement between peak and mean force methods of quantifying force asymmetry during the countermovement jump (CMJ). Forty-five men performed four CMJ with each foot on one of two force plates recording at 1,000 Hz. Peak and mean were obtained from both sides during the braking and propulsion phases. The dominant side was obtained for the braking and propulsion phase as the side with the largest peak or mean force and agreement was assessed using percentage agreement and the kappa coefficient. Braking phase peak and mean force methods demonstrated a percentage agreement of 84% and a kappa value of 0.67 (95% confidence limits: 0.45-0.90), indicating substantial agreement. Propulsion phase peak and mean force methods demonstrated a percentage agreement of 87% and a kappa value of 0.72 (95% confidence limits: 0.51-0.93), indicating substantial agreement. While agreement was substantial, side-to-side differences were not reflected equally when peak and mean force methods of assessing CMJ asymmetry were used. These methods should not be used interchangeably, but rather a combined approach should be used where practitioners consider both peak and mean force to obtain the fullest picture of athlete asymmetry.

  10. Decomposition of superimposed ground reaction forces into left and right force profiles

    NASA Technical Reports Server (NTRS)

    Davis, B. L.; Cavanagh, P. R.

    1993-01-01

    The process of collecting ground reaction force data by mounting a forceplate beneath a treadmill belt has the advantage that numerous walking trials can be analyzed without the problem of subjects 'targeting' their footsteps. However, a potential problem is that the measured forces represent a summation of bilateral force profiles during the double support phase of walking. To address this issue, an algorithm is described for decomposing superimposed ground reaction force data into individual left and right profiles. It is based on an examination of the side-to-side oscillations of the measured center of pressure (CoP). Whenever the measured CoP exceeds a certain threshold, it is assumed that the person is being supported by a single limb, and the measured GRF data reflect the forces under that limb. Conversely, when the measured CoP indicates that both feet are on the treadmill, it is assumed that the location of the individual CoP under each foot is given by wL2 and wR2. These quantities reflect the greatest excursion of the measured CoP towards the left and right sides of the forceplate, respectively. With this assumption, individual GRF profiles can be calculated by means of solving two simultaneous equations--one describing the equilibrium of forces in the vertical direction, and one describing the equilibrium of moments about an antero-posterior axis of the forceplate. The algorithm describing this procedure is simple enough to be implemented on a spreadsheet and yields estimates for average force, impulse, peak force and stance time that are typically within 3% of the true values.

  11. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less

  12. Comparison of driven and simulated "free" stall flutter in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Culler, Ethan; Farnsworth, John; Fagley, Casey; Seidel, Jurgen

    2016-11-01

    Stall flutter and dynamic stall have received a significant amount of attention over the years. To experimentally study this problem, the body undergoing stall flutter is typically driven at a characteristic, single frequency sinusoid with a prescribed pitching amplitude and mean angle of attack offset. This approach allows for testing with repeatable kinematics, however it effectively decouples the structural motion from the aerodynamic forcing. Recent results suggest that this driven approach could misrepresent the forcing observed in a "free" stall flutter scenario. Specifically, a dynamically pitched rigid NACA 0018 wing section was tested in the wind tunnel under two modes of operation: (1) Cyber-Physical where "free" stall flutter was physically simulated through a custom motor-control system modeling a torsional spring and (2) Direct Motor-Driven Dynamic Pitch at a single frequency sinusoid representative of the cyber-physical motion. The time-resolved pitch angle and moment were directly measured and compared for each case. It was found that small deviations in the pitch angle trajectory between these two operational cases generate significantly different aerodynamic pitching moments on the wing section, with the pitching moments nearly 180o out of phase in some cases. This work is supported by the Air Force Office of Scientific Research through the Flow Interactions and Control Program and by the National Defense Science and Engineering Graduate Fellowship Program.

  13. Effect of Coriolis force on counter-current chromatographic separation by centrifugal partition chromatography.

    PubMed

    Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro

    2004-02-06

    The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.

  14. External kinetics of the kettlebell snatch in amateur lifters

    PubMed Central

    Wilson, Cameron J.; Lorenzen, Christian

    2017-01-01

    Background Kettlebell lifting has gained increased popularity as both a form of resistance training and as a sport, despite the paucity of literature validating its use as a training tool. Kettlebell sport requires participants to complete the kettlebell snatch continuously over prolonged periods of time. Kettlebell sport and weightlifting involve similar exercises, however, their traditional uses suggest they are better suited to training different fitness qualities. This study examined the three-dimensional ground reaction force (GRF) and force applied to the kettlebell over a 6 min kettlebell snatch set in 12 kettlebell-trained males. Methods During this set, VICON was used to record the kettlebell trajectory with nine infrared cameras while the GRF of each leg was recorded with a separate AMTI force plate. Over the course of the set, an average of 13.9 ± 3.3 repetitions per minute were performed with a 24 kg kettlebell. Significance was evaluated with a two-way ANOVA and paired t-tests, whilst Cohen’s F (ESF) and Cohen’s D (ESD) were used to determine the magnitude. Results The applied force at the point of maximum acceleration was 814 ± 75 N and 885 ± 86 N for the downwards and upwards phases, respectively. The absolute peak resultant bilateral GRF was 1,746 ± 217 N and 1,768 ± 242 N for the downwards and upwards phases, respectively. Bilateral GRF of the first and last 14 repetitions was found to be similar, however there was a significant difference in the peak applied force (F (1.11) = 7.42, p = 0.02, ESF = 0.45). Unilateral GRF was found have a significant difference for the absolute anterior–posterior (F (1.11) = 885.15, p < 0.0001, ESF = 7) and medio-lateral force vectors (F (1.11) = 5.31, p = 0.042, ESF = 0.67). Discussion Over the course of a single repetition there were significant differences in the GRF and applied force at multiple points of the kettlebells trajectory. The kettlebell snatch loads each leg differently throughout a repetition and performing the kettlebell snatch for 6 min will result in a reduction in peak applied force. PMID:28367368

  15. External kinetics of the kettlebell snatch in amateur lifters.

    PubMed

    Ross, James A; Keogh, Justin W L; Wilson, Cameron J; Lorenzen, Christian

    2017-01-01

    Kettlebell lifting has gained increased popularity as both a form of resistance training and as a sport, despite the paucity of literature validating its use as a training tool. Kettlebell sport requires participants to complete the kettlebell snatch continuously over prolonged periods of time. Kettlebell sport and weightlifting involve similar exercises, however, their traditional uses suggest they are better suited to training different fitness qualities. This study examined the three-dimensional ground reaction force (GRF) and force applied to the kettlebell over a 6 min kettlebell snatch set in 12 kettlebell-trained males. During this set, VICON was used to record the kettlebell trajectory with nine infrared cameras while the GRF of each leg was recorded with a separate AMTI force plate. Over the course of the set, an average of 13.9 ± 3.3 repetitions per minute were performed with a 24 kg kettlebell. Significance was evaluated with a two-way ANOVA and paired t -tests, whilst Cohen's F (ESF) and Cohen's D (ESD) were used to determine the magnitude. The applied force at the point of maximum acceleration was 814 ± 75 N and 885 ± 86 N for the downwards and upwards phases, respectively. The absolute peak resultant bilateral GRF was 1,746 ± 217 N and 1,768 ± 242 N for the downwards and upwards phases, respectively. Bilateral GRF of the first and last 14 repetitions was found to be similar, however there was a significant difference in the peak applied force ( F (1.11) = 7.42, p = 0.02, ESF = 0.45). Unilateral GRF was found have a significant difference for the absolute anterior-posterior ( F (1.11) = 885.15, p < 0.0001, ESF = 7) and medio-lateral force vectors ( F (1.11) = 5.31, p = 0.042, ESF = 0.67). Over the course of a single repetition there were significant differences in the GRF and applied force at multiple points of the kettlebells trajectory. The kettlebell snatch loads each leg differently throughout a repetition and performing the kettlebell snatch for 6 min will result in a reduction in peak applied force.

  16. Forces in yeast flocculation

    NASA Astrophysics Data System (ADS)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.

    2015-01-01

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  17. Oriented Y-type hexagonal ferrite thin films prepared by chemical solution deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buršík, J., E-mail: bursik@iic.cas.cz; Kužel, R.; Knížek, K.

    2013-07-15

    Thin films of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} (Y) hexaferrite were prepared through the chemical solution deposition method on SrTiO{sub 3}(1 1 1) (ST) single crystal substrates using epitaxial SrFe{sub 12}O{sub 19} (M) hexaferrite thin layer as a seed template layer. The process of crystallization was mainly investigated by means of X-ray diffraction and atomic force microscopy. A detailed inspection revealed that growth of seed layer starts through the break-up of initially continuous film into isolated grains with expressive shape anisotropy and hexagonal habit. The vital parameters of the seed layer, i.e. thickness, substrate coverage, crystallization conditions and temperature rampmore » were optimized with the aim to obtain epitaxially crystallized Y phase. X-ray diffraction Pole figure measurements and Φ scans reveal perfect parallel in-plane alignment of SrTiO{sub 3} substrate and both hexaferrite phases. - Graphical abstract: XRD pole figure and AFM patterns of Ba{sub 2}Zn{sub 2}Fe{sub 12}O{sub 22} thin film epitaxially grown on SrTiO{sub 3}(1 1 1) single crystal using seeding layer templating. - Highlights: • Single phase Y-type hexagonal ferrite thin films were prepared by CSD method. • Seed M layer breaks into isolated single crystal islands and serves as a template. • Large seed grains grow by consuming the grains within the bulk of recoated film. • We explained the observed orientation relation of epitaxial domains. • Epitaxial growth on SrTiO{sub 3}(1 1 1) with relation (0 0 1){sub M,Y}//(1 1 1){sub ST}+[1 0 0]{sub M,Y}//[2 −1 −1]{sub ST}.« less

  18. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing's sarcoma.

    PubMed

    Dutton, P; Love, S B; Billingham, L; Hassan, A B

    2018-05-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.

  19. Ferroelectric domain structure of anisotropically strained NaNbO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, J.; Braun, D.; Schmidbauer, M.; Duk, A.; Wördenweber, R.

    2014-05-01

    NaNbO3 thin films have been grown under anisotropic biaxial strain on several oxide substrates by liquid-delivery spin metalorganic chemical vapor deposition. Compressive lattice strain of different magnitude, induced by the deposition of NaNbO3 films with varying film thickness on NdGaO3 single crystalline substrates, leads to modifications of film orientation and phase symmetry, which are similar to the phase transitions in Pb-containing oxides near the morphotropic phase boundary. Piezoresponse force microscopy measurements exhibit large out-of-plane polarization components, but no distinctive domain structure, while C-V measurements indicate relaxor properties in these films. When tensile strain is provoked by the epitaxial growth on DyScO3, TbScO3, and GdScO3 single crystalline substrates, NaNbO3 films behave rather like a normal ferroelectric. The application of these rare-earth scandate substrates yields well-ordered ferroelectric stripe domains of the type a1/a2 with coherent domain walls aligned along the [001] substrate direction as long as the films are fully strained. With increasing plastic lattice relaxation, initially, a 2D domain pattern with still exclusively in-plane electric polarization, and finally, domains with in-plane and out-of-plane polar components evolve.

  20. Containerless solidification of BiFeO3 oxide under microgravity

    NASA Astrophysics Data System (ADS)

    Yu, Jianding; Arai, Yasutomo; Koshikawa, Naokiyo; Ishikawa, Takehito; Yoda, Shinichi

    1999-07-01

    Containerless solidification of BiFeO3 oxide has been carried out under microgravity with Electrostatic Levitation Furnace (ELF) aboard on the sounding rocket (TR-IA). It is a first containerless experiment using ELF under microgravity for studying the solidification of oxide insulator material. Spherical BiFeO3 sample with diameter of 5mm was heated by two lasers in oxygen and nitrogen mixing atmosphere, and the sample position by electrostatic force under pinpoint model and free drift model. In order to compare the solidification behavior in microgravity with on ground, solidification experiments of BiFeO3 in crucible and drop tube were carried out. In crucible experiment, it was very difficult to get single BiFeO3 phase, because segregation of Fe2O3 occured very fast and easily. In drop tube experiment, fine homogeneous BiFeO3 microstructure was obtained in a droplet about 300 μm. It implies that containerless processing can promote the phase selection in solidification. In microgravity experiment, because the heating temperature was lower than that of estimated, the sample was heated into Fe2O3+liquid phase region. Fe2O3 single crystal grew on the surface of the spherical sample, whose sample was clearly different from that observed in ground experiments.

  1. Eigenmode resonance in a two-layer stratification

    NASA Astrophysics Data System (ADS)

    Kanda, Isao; Linden, P. F.

    2002-06-01

    In this paper, we study the velocity field at the density interface of a two-layer stratification system when the flow is forced at the mid-depth of the lower layer by the source sink forcing method. It is known that, in a sufficiently strong linear stratification, the source sink forcing in certain configurations produces a single-vortex pattern which corresponds to the lowest eigenmode of the Helmholtz equation (Kanda & Linden 2001). Two types of forcing configuration are used for the two-layer experiments: one that leads to a steady single-vortex pattern in a linear stratification, and one that results in an unsteady irregular state. Strong single-vortex patterns appear intermittently for the former configurations despite the absence of stratification at the forcing height. When the single-vortex pattern occurs at the density interface, a similar flow field extends down to the forcing height. The behaviour is explained as the coupling of the resonant eigenmode at the interface with the horizontal component of the forcing jets. The results show that stratification can organise a flow, even though it is forced by an apparently random three-dimensional forcing.

  2. Multiplexed single-molecule force spectroscopy using a centrifuge.

    PubMed

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-03-17

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  3. Multiplexed single-molecule force spectroscopy using a centrifuge

    PubMed Central

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.

    2016-01-01

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516

  4. Investigation into flow boiling heat transfer in a minichannel with enhanced heating surface

    NASA Astrophysics Data System (ADS)

    Piasecka, Magdalena

    2012-04-01

    The paper presents results of flow boiling in a minichannel of 1.0 mm depth. The heating element for the working fluid (FC-72) that flows along the minichannel is a single-sided enhanced alloy foil made from Haynes-230. Microrecesses were formed on the selected area of the heating foil by laser technology. The observations of the flow structure were carried out through a piece of glass. Simultaneously, owing to the liquid crystal layer placed on the opposite side of the enhanced foil surface, it was possible to measure temperature distribution on the heating wall through another piece of glass. The experimental research has been focused on the transition from single phase forced convection to nucleate boiling, i.e. the zone of boiling incipience and further development of boiling. The objective of the paper is determining of the void fraction for some cross-sections of selected images for increasing heat fluxes supplied to the heating surface. The flow structure photos were processed in Corel graphics software and binarized. The analysis of phase volumes was developed in Techystem Globe software.

  5. Free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2010-10-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data already confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) very low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predict a clear deviation from BS. In this study, ρf(H) is confirmed to be consistent with predictions of KZ, as will be discussed.

  6. Coupling of conservative and dissipative forces in frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Jarvis, Suzanne P.

    2006-11-01

    Frequency modulation atomic force microscopy (FM-AFM) utilizes the principle of self-excitation to ensure the cantilever probe vibrates at its resonant frequency, regardless of the tip-sample interaction. Practically, this is achieved by fixing the phase difference between tip deflection and driving force at precisely 90° . This, in turn, decouples the frequency shift and excitation amplitude signals, enabling quantitative interpretation in terms of conservative and dissipative tip-sample interaction forces. In this article, we theoretically investigate the effect of phase detuning in the self-excitation mechanism on the coupling between conservative and dissipative forces in FM-AFM. We find that this coupling depends only on the relative difference in the drive and resonant frequencies far from the surface, and is thus very weakly dependent on the actual phase error particularly for high quality factors. This establishes that FM-AFM is highly robust with respect to phase detuning, and enables quantitative interpretation of the measured frequency shift and excitation amplitude, even while operating away from the resonant frequency with the use of appropriate replacements in the existing formalism. We also examine the calibration of phase shifts in FM-AFM measurements and demonstrate that the commonly used approach of minimizing the excitation amplitude can lead to significant phase detuning, particularly in liquid environments.

  7. The nanoscale phase distinguishing of PCL-PB-PCL blended in epoxy resin by tapping mode atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Huiqin; Sun, Limin; Shen, Guangxia; Liang, Qi

    2012-02-01

    In this work, we investigated the bulk phase distinguishing of the poly(ɛ-caprolactone)-polybutadiene-poly(ɛ-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio ( r sp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When r sp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at r sp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. r sp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. r sp plot showed that with large tapping force (lower r sp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.

  8. Design and analysis of new fault-tolerant permanent magnet motors for four-wheel-driving electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang

    2012-04-01

    In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.

  9. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  10. X-ray and neutron diffraction anomalies preceding martensitic phase transformation in AuCuZn2 alloys

    NASA Astrophysics Data System (ADS)

    Nagasawa, A.; Makita, T.; Nakanishi, N.; Iizumi, M.; Morii, Y.

    1988-04-01

    The present paper gives the results obtained by the X-ray and neutron diffraction studies on the single crystals of the beta-1 AuCuZn2 alloys. As precursor phenomena, the dispersion relation of the [110] TA1 phonon exhibits significant dip near 2/3 [110] q max position and anomalous peaks appear around 1/3 and 2/3 [110] q max positions. Characteristics of the interplanar force constants, obtained by the analysis of the dispersion relation, and the positions of the anomalous peaks predict the martensite structures to be formed in the beta phase alloys. In the present case, both the 6R and 18R martensites will be formed by cooling and/or under the stress field.

  11. Force-Time Characteristics and Running Velocity of Male Sprinters During the Acceleration Phase of Sprinting.

    ERIC Educational Resources Information Center

    Mero, Antti

    1988-01-01

    Investigation of the force-time characteristics of eight male sprinters during the acceleration phase of the sprint start suggested that the braking and propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start. (Author/CB)

  12. Localization and force analysis at the single virus particle level using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was usedmore » as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.« less

  13. Maximal force and tremor changes across the menstrual cycle.

    PubMed

    Tenan, Matthew S; Hackney, Anthony C; Griffin, Lisa

    2016-01-01

    Sex hormones have profound effects on the nervous system in vitro and in vivo. The present study examines the effect of the menstrual cycle on maximal isometric force (MVC) and tremor during an endurance task. Nine eumenorrheic females participated in five study visits across their menstrual cycle. In each menstrual phase, an MVC and an endurance task to failure were performed. Tremor across the endurance task was quantified as the coefficient of variation in force and was assessed in absolute time and relative percent time to task failure. MVC decreases 23% from ovulation to the mid luteal phase of the menstrual cycle. In absolute time, the mid luteal phase has the highest initial tremor, though the early follicular phase has substantially higher tremor than other phases after 150 s of task performance. In relative time, the mid luteal phase has the highest level of tremor throughout the endurance task. Both MVC and tremor during an endurance task are modified by the menstrual cycle. Performance of tasks and sports which require high force and steadiness to exhaustion may be decreased in the mid luteal phase compared to other menstrual phases.

  14. Aerodynamic forces and flows of the full and partial clap-fling motions in insects

    PubMed Central

    Sun, Mao

    2017-01-01

    Most of the previous studies on Weis-Fogh clap-fling mechanism have focused on the vortex structures and velocity fields. Detailed pressure distribution results are provided for the first time in this study to reveal the differences between the full and the partial clap-fling motions. The two motions are studied by numerically solving the Navier–Stokes equations in moving overset grids. The Reynolds number is set to 20, relevant to the tiny flying insects. The following has been shown: (1) During the clap phase, the wings clap together and create a high pressure region in the closing gap between wings, greatly increasing the positive pressure on the lower surface of wing, while pressure on the upper surface is almost unchanged by the interaction; during the fling phase, the wings fling apart and create a low pressure region in the opening gap between wings, greatly increasing the suction pressure on the upper surface of wing, while pressure on the lower surface is almost unchanged by the interaction; (2) The interference effect between wings is most severe at the end of clap phase and the start of the fling phase: two sharp force peaks (8–9 times larger than that of the one-winged case) are generated. But the total force peaks are manifested mostly as drag and barely as lift of the wing, owing to the vertical orientation of the wing section; (3) The wing–wing interaction effect in the partial clap-fling case is much weaker than that in the full clap-fling case, avoiding the generation of huge drag. Compared with a single wing flapping with the same motion, mean lift in the partial case is enhanced by 12% without suffering any efficiency degradation, indicating that partial clap-fling is a more practical choice for tiny insects to employ. PMID:28289562

  15. Numerical Simulation of Natural Convection of a Nanofluid in an Inclined Heated Enclosure Using Two-Phase Lattice Boltzmann Method: Accurate Effects of Thermophoresis and Brownian Forces.

    PubMed

    Ahmed, Mahmoud; Eslamian, Morteza

    2015-12-01

    Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.

  16. Atomic force microscopy stiffness tomography on living Arabidopsis thaliana cells reveals the mechanical properties of surface and deep cell-wall layers during growth.

    PubMed

    Radotić, Ksenija; Roduit, Charles; Simonović, Jasna; Hornitschek, Patricia; Fankhauser, Christian; Mutavdžić, Dragosav; Steinbach, Gabor; Dietler, Giovanni; Kasas, Sandor

    2012-08-08

    Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Viscoelastic effects on residual oil distribution in flows through pillared microchannels.

    PubMed

    De, S; Krishnan, P; van der Schaaf, J; Kuipers, J A M; Peters, E A J F; Padding, J T

    2018-01-15

    Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible displacement through heterogonous porous media is usually governed by competing viscous and capillary forces, expressed through a Capillary number Ca, and viscosity ratio of the displacing and displaced fluid. However, when viscoelastic displacement fluids are used, elastic forces in the displacement fluid also become significant. It is hypothesized that elastic instabilities are responsible for enhanced oil recovery through an elastic microsweep mechanism. In this work, we use a simplified geometry in the form of a pillared microchannel. We analyze the trapped residual oil size distribution after displacement by a Newtonian fluid, a nearly inelastic shear thinning fluid, and viscoelastic polymers and surfactant solutions. We find that viscoelastic polymers and surfactant solutions can displace more oil compared to Newtonian fluids and nearly inelastic shear thinning polymers at similar Ca numbers. Beyond a critical Ca number, the size of residual oil blobs decreases significantly for viscoelastic fluids. This critical Ca number directly corresponds to flow rates where elastic instabilities occur in single phase flow, suggesting a close link between enhancement of oil recovery and appearance of elastic instabilities. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  19. Glenohumeral contact force during flat and topspin tennis forehand drives.

    PubMed

    Blache, Yoann; Creveaux, Thomas; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle

    2017-03-01

    The primary role of the shoulder joint in tennis forehand drive is at the expense of the loadings undergone by this joint. Nevertheless, few studies investigated glenohumeral (GH) contact forces during forehand drives. The aim of this study was to investigate GH compressive and shearing forces during the flat and topspin forehand drives in advanced tennis players. 3D kinematics of flat and topspin forehand drives of 11 advanced tennis players were recorded. The Delft Shoulder and Elbow musculoskeletal model was implemented to assess the magnitude and orientation of GH contact forces during the forehand drives. The results showed no differences in magnitude and orientation of GH contact forces between the flat and topspin forehand drives. The estimated maximal GH contact force during the forward swing phase was 3573 ± 1383 N, which was on average 1.25 times greater than during the follow-through phase, and 5.8 times greater than during the backswing phase. Regardless the phase of the forehand drive, GH contact forces pointed towards the anterior-superior part of the glenoid therefore standing for shearing forces. Knowledge of GH contact forces during real sport tasks performed at high velocity may improve the understanding of various sport-specific adaptations and causative factors for shoulder problems.

  20. Employee Involvement White Collar Work Force (Phase 1)

    DTIC Science & Technology

    1991-07-01

    TITLE AND SUBTITLE Employee Involvement White Collar Work Force (Phase 1) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...N COMMITTEE August 1991 NSRP 0337 AL EFFECTS TRANSFER Employee Involvement White Collar Work Force (Phase 1) UNITED STATES NAVY David Taylor Research...report. AS used In the above, “Persons acting on behalf of the United States Navy” includes any employee , contractor, or subcontractor to the

  1. Inheritance of Cell-Cycle Duration in the Presence of Periodic Forcing

    NASA Astrophysics Data System (ADS)

    Mosheiff, Noga; Martins, Bruno M. C.; Pearl-Mizrahi, Sivan; Grünberger, Alexander; Helfrich, Stefan; Mihalcescu, Irina; Kohlheyer, Dietrich; Locke, James C. W.; Glass, Leon; Balaban, Nathalie Q.

    2018-04-01

    Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several different organisms, including those with known coupling to a circadian clock and those without known coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features that can be compared with the experimental data. By fitting the model to the data, we extract the important parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian clock reduces variability. Our results show that simple correlations can identify systems under periodic forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular processes of growth.

  2. Directional constraint of endpoint force emerges from hindlimb anatomy.

    PubMed

    Bunderson, Nathan E; McKay, J Lucas; Ting, Lena H; Burkholder, Thomas J

    2010-06-15

    Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb.

  3. Comparison of the initial orthodontic force systems produced by a new lingual bracket system and a straight-wire appliance.

    PubMed

    Fuck, Lars-Michael; Wiechmann, Dirk; Drescher, Dieter

    2005-09-01

    Over the last few years, lingual appliances have become an established orthodontic treatment technique. Many studies have concentrated on various esthetic aspects, on laboratory and clinical procedures, and on patient comfort and compliance. The orthodontic force systems of these appliances, however, have not yet been investigated. The aim of this study was thus to determine the forces and moments produced by a new lingual bracket system during the leveling phase of orthodontic treatment and to compare those with the corresponding force system of a labial straight-wire appliance. The intra-oral situation of ten patients undergoing orthodontic treatment was replicated in measurement casts fitted with lingual and labial brackets. Special care was taken to precisely reproduce each patient's interbracket geometry. We measured each tooth's force systems as generated by a leveling arch inserted into the lingual and labial brackets. The resulting force systems of both appliances were found to be quite similar with regard to the magnitude of most force and moment components. Only the first molars were subjected to considerably greater single forces with the lingual appliance. Tipping moments were found to be significantly smaller with the lingual technique, whereas the rotational moments were significantly smaller with the labial appliance. All in all we noted significant differences between the two techniques only in certain areas which upon closer examination were distributed over only a few tooth types. The initial force systems produced by the new lingual bracket system proved to be comparable with those delivered by a conventional straight-wire appliance. The actual levels of forces and moments, however, were found in certain cases to be too heavy with both techniques. We therefore recommend the development of leveling wires producing considerably lighter forces and moments.

  4. Directional constraint of endpoint force emerges from hindlimb anatomy

    PubMed Central

    Bunderson, Nathan E.; McKay, J. Lucas; Ting, Lena H.; Burkholder, Thomas J.

    2010-01-01

    Postural control requires the coordination of force production at the limb endpoints to apply an appropriate force to the body. Subjected to horizontal plane perturbations, quadruped limbs stereotypically produce force constrained along a line that passes near the center of mass. This phenomenon, referred to as the force constraint strategy, may reflect mechanical constraints on the limb or body, a specific neural control strategy or an interaction among neural controls and mechanical constraints. We used a neuromuscular model of the cat hindlimb to test the hypothesis that the anatomical constraints restrict the mechanical action of individual muscles during stance and constrain the response to perturbations to a line independent of perturbation direction. In a linearized neuromuscular model of the cat hindlimb, muscle lengthening directions were highly conserved across 10,000 different muscle activation patterns, each of which produced an identical, stance-like endpoint force. These lengthening directions were closely aligned with the sagittal plane and reveal an anatomical structure for directionally constrained force responses. Each of the 10,000 activation patterns was predicted to produce stable stance based on Lyapunov stability analysis. In forward simulations of the nonlinear, seven degree of freedom model under the action of 200 random muscle activation patterns, displacement of the endpoint from its equilibrium position produced restoring forces, which were also biased toward the sagittal plane. The single exception was an activation pattern based on minimum muscle stress optimization, which produced destabilizing force responses in some perturbation directions. The sagittal force constraint increased during simulations as the system shifted from an inertial response during the acceleration phase to a viscoelastic response as peak velocity was obtained. These results qualitatively match similar experimental observations and suggest that the force constraint phenomenon may result from the anatomical arrangement of the limb. PMID:20511528

  5. Biomechanical properties of wheat grains: the implications on milling.

    PubMed

    Hourston, James E; Ignatz, Michael; Reith, Martin; Leubner-Metzger, Gerhard; Steinbrecher, Tina

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different 'hardness'. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. © 2017 The Authors.

  6. Biomechanical properties of wheat grains: the implications on milling

    PubMed Central

    Reith, Martin

    2017-01-01

    Millennia of continuous innovation have driven ever increasing efficiency in the milling process. Mechanically characterizing wheat grains and discerning the structure and function of the wheat bran layers can contribute to continuing innovation. We present novel shear force and puncture force testing regimes to characterize different wheat grain cultivars. The forces endured by wheat grains during the milling process can be quantified, enabling us to measure the impact of commonly applied grain pretreatments, such as microwave heating, extended tempering, enzyme and hormone treatments on grains of different ‘hardness’. Using these methods, we demonstrate the importance of short tempering phases prior to milling and identify ways in which our methods can detect differences in the maximum force, energy and breaking behaviours of hard and soft grain types. We also demonstrate for the first time, endosperm weakening in wheat, through hormone stratification on single bran layers. The modern milling process is highly refined, meaning that small, cultivar specific, adjustments can result in large increases in downstream profits. We believe that methods such as these, which enable rapid testing of milling pretreatments and material properties can help to drive an innovation process that has been core to our industrial efforts since prehistory. PMID:28100826

  7. A Correlation for Forced Convective Boiling Heat Transfer of Refrigerants in a Microfin Tube

    NASA Astrophysics Data System (ADS)

    Momoki, Satoru; Yu, Jian; Koyama, Shigeru; Fujii, Tetsu; Honda, Hiroshi

    The experimental study is reported on the forced convective boiling of pure refrigerants HCFC22, HFC134a and HCFC123 flowing in a horizontal microfin tube. The local heat transfer coefficient defined based on the actual inside surface area is measured in the ranges of mass velocity of 200 to 400 kg/m2s, heat flux of 5 to 64 kW/m2 and reduced pressure of 0.07 to 0.24. Using the Chen-type model, a new correlation for microfin tubes is proposed considering the enhancement effect of microfins on both the convective heat transfer and the nucleate boiling components. In the convective heat transfer component, the correlation to predict the heat transfer coefficient of liquid-only flow is determined from preliminary experiments on single-phase flow in microfin tubes, and the two-phase flow enhancement factor is determined from the present experimental data. For the nucleate boiling component, the correlation of Takamatsu et al. for smooth tube is modified. The prediction of the present correlation agrees well with present experimental data, and is available for several microfin tubes which were tested by other researchers.

  8. A model of optimal voluntary muscular control.

    PubMed

    FitzHugh, R

    1977-07-19

    In the absence of detailed knowledge of how the CNS controls a muscle through its motor fibers, a reasonable hypothesis is that of optimal control. This hypothesis is studied using a simplified mathematical model of a single muscle, based on A.V. Hill's equations, with series elastic element omitted, and with the motor signal represented by a single input variable. Two cost functions were used. The first was total energy expended by the muscle (work plus heat). If the load is a constant force, with no inertia, Hill's optimal velocity of shortening results. If the load includes a mass, analysis by optimal control theory shows that the motor signal to the muscle consists of three phases: (1) maximal stimulation to accelerate the mass to the optimal velocity as quickly as possible, (2) an intermediate level of stimulation to hold the velocity at its optimal value, once reached, and (3) zero stimulation, to permit the mass to slow down, as quickly as possible, to zero velocity at the specified distance shortened. If the latter distance is too small, or the mass too large, the optimal velocity is not reached, and phase (2) is absent. For lengthening, there is no optimal velocity; there are only two phases, zero stimulation followed by maximal stimulation. The second cost function was total time. The optimal control for shortening consists of only phases (1) and (3) above, and is identical to the minimal energy control whenever phase (2) is absent from the latter. Generalization of this model to include viscous loads and a series elastic element are discussed.

  9. Effect of Rubidium Incorporation on the Structural, Electrical, and Photovoltaic Properties of Methylammonium Lead Iodide-Based Perovskite Solar Cells.

    PubMed

    Park, Ik Jae; Seo, Seongrok; Park, Min Ah; Lee, Sangwook; Kim, Dong Hoe; Zhu, Kai; Shin, Hyunjung; Kim, Jin Young

    2017-12-06

    We report the electrical properties of rubidium-incorporated methylammonium lead iodide ((Rb x MA 1-x )PbI 3 ) films and the photovoltaic performance of (Rb x MA 1-x )PbI 3 film-based p-i-n-type perovskite solar cells (PSCs). The incorporation of a small amount of Rb + (x = 0.05) increases both the open circuit voltage (V oc ) and the short circuit photocurrent density (J sc ) of the PSCs, leading to an improved power conversion efficiency (PCE). However, a high fraction of Rb + incorporation (x = 0.1 and 0.2) decreases the J sc and thus the PCE, which is attributed to the phase segregation of the single tetragonal perovskite phase to a MA-rich tetragonal perovskite phase and a RbPbI 3 orthorhombic phase at high Rb fractions. Conductive atomic force microscopic and admittance spectroscopic analyses reveal that the single-phase (Rb 0.05 MA 0.95 )PbI 3 film has a high electrical conductivity because of a reduced deep-level trap density. We also found that Rb substitution enhances the diode characteristics of the PSC, as evidenced by the reduced reverse saturation current (J 0 ). The optimized (Rb x MA 1-x )PbI 3 PSCs exhibited a PCE of 18.8% with negligible hysteresis in the photocurrent-voltage curve. The results from this work enhance the understanding of the effect of Rb incorporation into organic-inorganic hybrid halide perovskites and enable the exploration of Rb-incorporated mixed perovskites for various applications, such as solar cells, photodetectors, and light-emitting diodes.

  10. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation.

    PubMed

    Luu, Phan; Tucker, Don M; Makeig, Scott

    2004-08-01

    The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.

  11. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  12. Transparent Flexible Electronics By Directed Integration of Inorganic Micro and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Cole, Jesse J.

    This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials. Our approaches involved local adjustment of electrostatics at the surfaces to control material flux. Templating of surface electrostatics was implemented differently for three broad concepts resulting in control over nanomaterial synthesis, deposition, and printing. These three general concepts are: (A) Tailored ZnO nanowire synthesis and integration out of the liquid phase; (B) Arc discharge synthesis and continuous nanocluster deposition from the gas phase; (C) Contact electrification and xerographic printing of nanoparticles from the gas phase. Concept (A): We report a method to fabricate and transfer crystalline ZnO with control over location, orientation, size, and shape. The process uses an oxygen plasma treatment in combination with a photoresist pattern on Magnesium-doped GaN substrates to define narrow nucleation regions and attachment points with 100 nanometer scale dimensions. Lateral epitaxial overgrowth follows nucleation to produce single crystalline ZnO which were fabricated into LEDs and photovoltaic cells. Concept (B): We report a gas phase nanoparticle deposition system which shares characteristics with liquid phase electrodeposition. Clusters of charged nanoparticles selectively deposit onto electrically grounded surfaces. Similar to electroplating, the continued deposition of Au nanoparticles onto underlying resistive traces increased overall line conductivity. Alternatively, semiconducting ZnO and Ge nanomaterial sequentially deposited between interdigitated electrodes and served as addressable sensor active areas. Concept (C): We report patterned transfer of charge between conformal material interfaces through a concept referred to as nanocontact electrification. Nanocontacts of different size and shape are formed between surface functionalized polydimethylsiloxane (PDMS) stamps and other dielectric materials (PMMA, SiO 2). Forced delamination and cleavage of the interface yields a well defined charge pattern with a minimal feature size of 100 nm. The process produces charged surfaces and associated fields that exceed the breakdown strength of air leading to strong long range adhesive forces and force distance curves which are recorded over macroscopic distances. The process is applied to fabricate charge patterned surfaces for nanoxerography demonstrating 200 nm resolution nanoparticle prints and applied to thin film electronics where the patterned charges are used to shift the threshold voltages of underlying transistors by over 500 mV.

  13. Force measurements by micromanipulation of a single actin filament by glass needles

    NASA Astrophysics Data System (ADS)

    Kishino, Akiyoshi; Yanagida, Toshio

    1988-07-01

    Single actin filaments (~7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1-5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin-phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.

  14. A Comparison of Mechanical Parameters Between the Counter Movement Jump and Drop Jump in Biathletes

    PubMed Central

    Król, Henryk; Mynarski, Władysław

    2012-01-01

    The main objective of the study was to determine to what degree higher muscular activity, achieved by increased load in the extension phase (eccentric muscle action) of the vertical jump, affects the efficiency of the vertical jump. Sixteen elite biathletes participated in this investigation. The biathletes performed tests that consisted of five, single “maximal” vertical jumps (counter movement jump – CMJ) and five, single vertical jumps, in which the task was to touch a bar placed over the jumping biathletes (specific task counter movement jump – SCMJ). Then, they performed five, single drop jumps from an elevation of 0.4m (DJ). Ground reaction forces were registered using the KISTLER 9182C force platform. MVJ software was used for signal processing (Król, 1999) and enabling calculations for kinematic and kinetic parameters of the subject’s jump movements (on-line system). The results indicate that only height of the jump (h) and mean power (Pmean) during the takeoff are statistically significant. Both h and Pmean are higher in the DJ. The results of this study may indicate that elite biathletes are well adapted to eccentric work of the lower limbs, thus reaching greater values of power during the drop jump. These neuromuscular adaptive changes may allow for a more dynamic and efficient running technique. PMID:23487157

  15. Effects of ascending and descending climbers on space elevator cable dynamics

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yoji; Otsuka, Kiyotoshi; Yamagiwa, Yoshiki; Doi, Hinata

    2018-04-01

    Based on a mass-point model, the cable dynamics of a space elevator during a climber's travel motion are examined. The cable response during a single operation of one ascending or descending climber is analyzed first, and then, based on the results, the cable dynamics for simultaneous operation of an ascending and a descending climber are evaluated. For the single operation, bending is significant when the climber is traveling near the Earth's surface. The cable also inclines with periodic oscillation as a result of a Coriolis force corresponding to the climber velocity. However, simultaneous operation of ascending and descending climbers can suppress the inclination of the cable by almost a factor of ten. In simultaneous operation, compared to single operation, a descending climber has a smaller amplitude of libration angle and less cable bending, while an ascending climber has a smaller amplitude when the climber is traveling at a higher altitude with climber velocities of 200 km/h and 400 km/h. The phase of the oscillation of the overall cable is found to be close to that of the descending climber. Cable bending is suppressed for any examined climber velocity, but the dependency of this suppression of displacement on climber velocity is not found. In summary, simultaneous operation can surely suppress the inclination of the cable via the cancellation of Coriolis forces by the two climbers.

  16. Associations Among Quadriceps Strength and Rate of Torque Development 6 Weeks Post Anterior Cruciate Ligament Reconstruction and Future Hop and Vertical Jump Performance: A Prospective Cohort Study.

    PubMed

    Pua, Yong-Hao; Mentiplay, Benjamin F; Clark, Ross A; Ho, Jia-Ying

    2017-11-01

    Study Design Prospective cohort. Background Quadriceps strength is associated with hop distance and jump height in persons who have undergone anterior cruciate ligament (ACL) reconstruction. However, it is unknown whether the ability to rapidly generate quadriceps torque in the early phase of recovery is associated with future hopping and jumping performance in this population. Objective To evaluate the prospective associations among quadriceps strength and rate of torque development (RTD) and single-leg hop for distance, vertical jump height, vertical ground reaction force (vGRF), and vertical force loading rate during a landing task in persons who have undergone ACL reconstruction. Methods Seventy patients with unilateral ACL reconstruction participated. At 6 weeks post ACL reconstruction, isometric quadriceps strength and RTD were measured using a dynamometer. At 6 months following ACL reconstruction, patients performed the single-leg hop for distance test. Patients also performed the single-leg vertical jump test on a force plate that measured maximum jump height, vGRF, and average loading rate during landing. Results Both quadriceps strength and RTD at 6 weeks post ACL reconstruction were associated with all hopping and jumping measures at 6 months post ACL reconstruction (P≤.04). Single-leg hop distance was associated more closely with quadriceps strength than with quadriceps RTD (P = .05), and vertical jump height and vGRF measures were associated more closely with quadriceps RTD than with quadriceps strength (P = .05 and P<.01, respectively). Both quadriceps measures were associated with loading rate. Conclusion Quadriceps strength and RTD are complementary but distinct predictors of future hopping and jumping performance in persons who have undergone ACL reconstruction. These findings may contribute to improved rehabilitation of patients who are at risk for poor jumping/hopping performance and abnormal knee loading. J Orthop Sports Phys Ther 2017;47(11):845-852. Epub 13 Oct 2017. doi:10.2519/jospt.2017.7133.

  17. Colloidal Particles at Fluid Interfaces and the Interface of Colloidal Fluids

    NASA Astrophysics Data System (ADS)

    McGorty, Ryan

    Holographic microscopy is a unifying theme in the different projects discussed in this thesis. The technique allows one to observe microscopic objects, like colloids and droplets, in a three-dimensional (3D) volume. Unlike scanning 3D optical techniques, holography captures a sample's 3D information in a single image: the hologram. Therefore, one can capture 3D information at video frame rates. The price for such speed is paid in computation time. The 3D information must be extracted from the image by methods such as reconstruction or fitting the hologram to scattering calculations. Using holography, we observe a single colloidal particle approach, penetrate and then slowly equilibrate at an oil--water interface. Because the particle moves along the optical axis (z-axis) and perpendicular to the interface holography is used to determine its position. We are able to locate the particle's z-position to within a few nanometers with a time resolution below a millisecond. We find that the capillary force pulling the particle into the interface is not balanced by a hydrodynamic force. Rather, a larger-than-viscous dissipation associated with the three-phase contact-line slipping over the particle's surface results in equilibration on time scales orders of magnitude longer than the minute time scales over which our setup allows us to examine. A separate project discussed here also examines colloidal particles and fluid-fluid interfaces. But the fluids involved are composed of colloids. With a colloid and polymer water-based mixture we study the phase separation of the colloid-rich (or liquid) and colloid-poor (or gas) region. In comparison to the oil--water interface in the previously mentioned project, the interface between the colloidal liquid and gas phases has a surface tension nearly six orders of magnitude smaller. So interfacial fluctuations are observable under microscopy. We also use holographic microscopy to study this system but not to track particles with great time and spatial resolution. Rather, holography allows us to observe nucleation of the liquid phase occurring throughout our sample volume.

  18. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance

    PubMed Central

    2012-01-01

    Background Humans are capable of fast adaptation to new unknown dynamics that affect their movements. Such motor learning is also believed to be an important part of motor rehabilitation. Bimanual training can improve post-stroke rehabilitation outcome and is associated with interlimb coordination between both limbs. Some studies indicate partial transfer of skills among limbs of healthy individuals. Another aspect of bimanual training is the (a)symmetry of bimanual movements and how these affect motor learning and possibly post-stroke rehabilitation. Methods A novel bimanual 2-DOF robotic system was used for both bimanual and unimanual reaching movements. 35 young healthy adults participated in the study. They were divided into 5 test groups that performed movements under different conditions (bimanual or unimanual movements and symmetric or asymmetric bimanual arm loads). The subjects performed a simple tracking exercise with the bimanual system. The exercise was developed to stimulate motor learning by applying a velocity-dependent disturbance torque to the handlebar. Each subject performed 255 trials divided into three phases: baseline without disturbance torque, training phase with disturbance torque and evaluation phase with disturbance torque. Results Performance was assessed with the maximal values of rotation errors of the handlebar. After exposure to disturbance torque, the errors decreased for both unimanual and bimanual training. Errors in unimanual evaluation following the bimanual training phase were not significantly different from errors in unimanual evaluation following unimanual training. There was no difference in performance following symmetric or asymmetric training. Changing the arm force symmetry during bimanual movements from asymmetric to symmetric had little influence on performance. Conclusions Subjects could adapt to an unknown disturbance torque that was changing the dynamics of the movements. The learning effect was present during both unimanual and bimanual training. Transfer of learned skills from bimanual training to unimanual movements was also observed, as bimanual training also improved single limb performance with the dominant arm. Changes of force symmetry did not have an effect on motor learning. As motor learning is believed to be an important mechanism of rehabilitation, our findings could be tested for future post-stroke rehabilitation systems. PMID:22805223

  19. Retrieving both phase and amplitude information of Green's functions by ambient seismic wave field cross-correlation: A case study with a limestone mine induced seismic event

    NASA Astrophysics Data System (ADS)

    Kwak, S.; Song, S. G.; Kim, G.; Shin, J. S.

    2015-12-01

    Recently many seismologists have paid attention to ambient seismic field, which is no more referred as noise and called as Earth's hum, but as useful signal to understand subsurface seismic velocity structure. It has also been demonstrated that empirical Green's functions can be constructed by retrieving both phase and amplitude information from ambient seismic field (Prieto and Beroza 2008). The constructed empirical Green's functions can be used to predict strong ground motions after focal depth and double-couple mechanism corrections (Denolle et al. 2013). They do not require detailed subsurface velocity model and intensive computation for ground motion simulation. In this study, we investigate the capability of predicting long period surface waves by the ambient seismic wave field with a seismic event of Mw 4.0, which occurred with a limestone mine collapse in South Korea on January 31, 2015. This limestone-mine event provides an excellent opportunity to test the efficiency of the ambient seismic wave field in retrieving both phase and amplitude information of Green's functions due to the single force mechanism of the collapse event. In other words, both focal depth and double-couple mechanism corrections are not required for this event. A broadband seismic station, which is about 5.4 km away from the mine event, is selected as a source station. Then surface waves retrieved from the ambient seismic wave field cross-correlation are compared with those generated by the event. Our preliminary results show some potential of the ambient seismic wave field in retrieving both phase and amplitude of Green's functions from a single force impulse source at the Earth's surface. More comprehensive analysis by increasing the time length of stacking may improve the results in further studies. We also aim to investigate the efficiency of retrieving the full empirical Green's functions with the 2007 Mw 4.6 Odaesan earthquake, which is one of the strongest earthquakes occurred in South Korea in the last decade.

  20. Granular resistive force theory explains the neuromechanical phase lag during sand-swimming

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Sharpe, Sarah; Goldman, Daniel

    2012-11-01

    Undulatory locomotion is a common gait used by a diversity of animals in a range of environments. This mode of locomotion is characterized by the propagation of a traveling wave of body bending, which propels the animal in the opposite direction of the wave. Previous studies of undulatory locomotion in fluids, on land, and even within sand revealed that the wave of muscle activation progresses faster than the traveling wave of curvature. This leads to an increasing phase lag between activation and curvature at more posterior segments, known as the neuromechanical phase lag. In this study, we compare biological measurements of phase lag during the sand-swimming of the sandfish lizard to predictions of a simple model of undulatory swimming that consists of prescribed kinematics and granular resistive forces. The neuromechanical phase lag measured using electromyography (EMG) quantitatively matches the predicted phase lag between the local body curvature and torque exerted by granular resistive forces. Two effects are responsible for the phase lag in this system: the yaw motion of the body and different integration length over a traveling force pattern for different positions along the body.

  1. Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data

    NASA Astrophysics Data System (ADS)

    Moretti, L.; Allstadt, K.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Bouchut, F.

    2015-04-01

    We focus on the 6 August 2010 Mount Meager landslide that occurred in Southwest British Columbia, Canada. This 48.5 Mm3 rockslide that rapidly changed into a debris flow was recorded by over 25 broadband seismic stations. We showed that the waveform inversion of the seismic signal making it possible to calculate the time history of the force applied by the landslide to the ground is very robust and stable, even when using only data from a single station. By comparing this force with the force calculated through numerical modeling of the landslide, we are able to support the interpretation of seismic data made using a simple block model. However, our study gives different values of the friction coefficients involved and more details about the volumes and orientation of the subevents and the flow trajectory and velocity. Our sensitivity analysis shows that the characteristics of the released mass and the friction coefficients all contribute to the amplitude and the phase of the force. Despite this complexity, our study makes it possible to discriminate the best values of all these parameters. Our results suggest that comparing simulated and inverted forces helps to identify appropriate rheological laws for natural flows. We also show that except for the initial collapse, peaks in the low-frequency force related to bends and runup over topography changes are associated with high-frequency generation, possibly due to an increased agitation of the granular material involved.

  2. Probing the Pathways and Interactions Controlling Crystallization by Particle Attachment

    NASA Astrophysics Data System (ADS)

    De Yoreo, J. J.; Li, D.; Chun, J.; Schenter, G.; Mundy, C.; Rosso, K. M.

    2016-12-01

    Crystallization by particle attachment appears to be a widespread mechanism of mineralization. Yet many long-standing questions surrounding nucleation and assembly of precursor particles remain unanswered, due in part to a lack of tools to probe mineralization dynamics with adequate spatial and temporal resolution. Here we report results of liquid phase TEM studies of nucleation and particle assembly in a number of mineral systems. We interpret the results within a framework that considers the impact of both the complexity of free energy landscapes and kinetic factors associated with high supersaturation or slow dynamics. In the calcium carbonate system, the need for high supersturations to overcome the high barrier to nucleation of calcite leads to simultaneous occurrence of multiple pathways, including direct formation of all the common ploymorphs, as well as two-step pathways through which initial precursors, particularly ACC, undergo a direct transformation to a more stable phase. Introduction of highly charged polymers that bind calcium inhibits nucleation, but directs the pathway to a metastable amorphous phase that no longer transforms to more stable polymorphs. Experiments in the iron oxide and oxyhydroxide systems show that, when high supersaturations lead to nucleation of many nanoprticles, further growth occurs through a combination of particle aggregation events and Ostwald ripening. In some cases, aggregation occurs only through oriented attachment on lattice matched faces, leading to single crystals with complex topologies and internal twin boundaries, while in others aggregation results initially in poor co-alignment, but over time the particles undergo atomic rearrangements to achieve a single crystal structure. AFM-based measurements of forces between phyllosilicate surfaces reveal the importance of long-range dispersion interactions in driving alignment, as well as the impact of electrolyte concentration and temperature on the competition of those attractive forces with repulsive electrostatic interactions. Taken together, the results help to define an emerging framework for understanding crystallization by particle attachment.

  3. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone

    NASA Astrophysics Data System (ADS)

    Bergin, Shane D.; Nicolosi, Valeria; Giordani, Silvia; de Gromard, Antoine; Carpenter, Leslie; Blau, Werner J.; Coleman, Jonathan N.

    2007-11-01

    Large-scale debundling of single-walled nanotubes has been demonstrated by dilution of nanotube dispersions in the solvent γ-butyrolactone. This liquid, sometimes referred to as 'liquid ecstasy', is well known for its narcotic properties. At high concentrations the dispersions form an anisotropic, liquid crystalline phase which can be removed by mild centrifugation. At lower concentrations an isotropic phase is observed with a biphasic region at intermediate concentrations. By measuring the absorbance before and after centrifugation, as a function of concentration, the relative anisotropic and isotropic nanotube concentrations can be monitored. The upper limit of the pure isotropic phase was CNT~0.004 mg ml-1, suggesting that this can be considered the nanotube dispersion limit in γ-butyrolactone. After centrifugation, the dispersions are stable against sedimentation and further aggregation for a period of 8 weeks at least. Atomic-force-microscopy studies on films deposited from the isotropic phase reveal that the bundle diameter distribution decreases dramatically as concentration is decreased. Detailed data analysis suggests the presence of an equilibrium bundle number density. A population of individual nanotubes is always observed which increases with decreasing concentration until almost 40% of all dispersed objects are individual nanotubes at a concentration of 6 × 10-4 mg ml-1. The number density of individual nanotubes peaks at a concentration of ~6 × 10-3 mg ml-1 where almost 10% of the nanotubes by mass are individualized.

  4. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    PubMed

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  5. Ground-state magnetic phase diagram of bow-tie graphene nanoflakes in external magnetic field

    NASA Astrophysics Data System (ADS)

    Szałowski, Karol

    2013-12-01

    The magnetic phase diagram of a ground state is studied theoretically for graphene nanoflakes of bow-tie shape and various sizes in external in-plane magnetic field. The tight-binding Hamiltonian supplemented with Hubbard term is used to model the electronic structure of the systems in question. The existence of the antiferromagnetic phase with magnetic moments localized at the sides of the bow-tie is found for low field and a field-induced spin-flip transition to ferromagnetic state is predicted to occur in charge-undoped structures. For small nanoflake doped with a single charge carrier, the low-field phase is ferrimagnetic and a metamagnetic transition to ferromagnetic ordering can be forced by the field. The critical field is found to decrease with increasing size of the nanoflake. The influence of diagonal and off-diagonal disorder on the mentioned magnetic properties is studied. The effect of off-diagonal disorder is found to be more important than that of diagonal disorder, leading to significantly widened distribution of critical fields for disordered population of nanoflakes.

  6. Relationships between ground reaction force parameters during a sit-to-stand movement and physical activity and falling risk of the elderly and a comparison of the movement characteristics between the young and the elderly.

    PubMed

    Yamada, Takayoshi; Demura, Shin-ichi

    2009-01-01

    This study aimed to examine the relationships between ground reaction force during a sit-to-stand (STS) movement and physical activity and falling risk of the elderly and the difference of the movement characteristics between the young and the elderly. Sixty elderly females who can achieve a STS movement by themselves and 30 healthy young females were measured for ground reaction force during STS movement from a chair, adjusted for lower leg length height. The elderly's physical activity and falling risk were also assessed. Physical activity and falling risk significantly correlated with parameters on force exertion during hip lift-off and knee-hip joint extension phases (|r|=0.26-0.41). Significant differences were found in ground reaction force parameters of all phases between the young and the elderly and STS movement of the elderly was suggested to result in poor force exertion and slowing down. The above tendency was noticeable in the hip lift-off and knee-hip joint extension phases. In conclusion, force exertion in hip lift-off and knee-hip joint extension phases of STS movement is related to physical activity and falling risk in the elderly. These phases may be useful to evaluate the elderly's physical activity and falling risk.

  7. Separation of Single-Walled Carbon Nanotubes with DEP-FFF

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Peng, Haiqing; Alvarez, Noe; Mendes, Manuel; Pasquali, Matteo

    2011-01-01

    A process using a modified dielectrophoresis device separates single-walled carbon nanotubes (SWNTs) according to their polarizability in electric fields. This depends on the size and dielectric constant of individual nanotubes and easily separates metallic from semiconducting nanotubes. Separation by length has also been demonstrated. Partial separation (enrichment) according to bandgap (which is linked to polarizability) has also been shown and can be improved to full separation of individual types of semiconducting SWNTs with better control over operational parameters and the length of SWNT starting material. This process and device can be scaled affordably to generate useful amounts of semiconducting SWNTs for electronic device development and production. In this study, a flow injection dielectrophoresis technique was used with a modified dielectrophoresis device. The length, width, and height of the modified chamber were 28, 2.5, and 0.025 cm, respectively. On the bottom of the chamber, there are two arrays of 50-m-wide, 2-m-thick gold electrodes, which are connected to an AC voltage generator and are alternately arranged so that every electrode is adjacent to two electrodes of the opposite polar. There is an additional plate electrode on the top of the chamber that is negatively biased. During the experiment, a syringe pump constantly pumps in the mobile phase, 1-percent sodium dodecylbenzene sulfonate (SDBS) solution, into the chamber. The frequency and voltage are set to 1 MHz and 10 V peak-to-peak, respectively. About 150 micro-L of SWNTs in 1- percent SDBS decanted solution are injected to the mobile phase through a septum near the entrance of the chamber. The flow rate of the mobile phase is set to 0.02 cu cm/min. The injected SWNTs sample flows through the chamber before it is lead into a fluorescence flow-through cell and collected for further analysis. The flow-through cell has three windows, thus allowing the fluorometer to collect fluorescence spectrum and visible absorption spectrums simultaneously. Dielectrophoresis field-flow fractionation (DEP-FFF) generally depends on interaction of a sedimentation force and DEP force for particle separation, and SWNTs are neutrally buoyant in water. In this innovation, the third electrode was added to create a sedimentation force based on DC electrophoresis. This makes this particular device applicable to separations on any neutrally buoyant particles in solution and a more general process for a broad range of nanomaterials sorting and separations.

  8. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    PubMed

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  9. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained inmore » force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratto, T V; Rudd, R E; Langry, K C

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, theymore » do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.« less

  11. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  12. Origin of phase shift in atomic force microscopic investigation of the surface morphology of NR/NBR blend film.

    PubMed

    Thanawan, S; Radabutra, S; Thamasirianunt, P; Amornsakchai, T; Suchiva, K

    2009-01-01

    Atomic force microscopy (AFM) was used to study the morphology and surface properties of NR/NBR blend. Blends at 1/3, 1/1 and 3/1 weight ratios were prepared in benzene and formed film by casting. AFM phase images of these blends in tapping mode displayed islands in the sea morphology or matrix-dispersed structures. For blend 1/3, NR formed dispersed phase while in blends 1/1 and 3/1 phase inversion was observed. NR showed higher phase shift angle in AFM phase imaging for all blends. This circumstance was governed by adhesion energy hysteresis between the device tip and the rubber surface rather than surface stiffness of the materials, as proved by force distance measurements in the AFM contact mode.

  13. The collision forces and lower-extremity inter-joint coordination during running.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Wang, I-Lin; Siao, Sheng-Wun; Chen, Szu-Ting

    2018-06-01

    The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.

  14. Cadmium Alternatives for High-Strength Steel JTP. Phase 2

    DTIC Science & Technology

    2007-01-24

    Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 U.S. AIR FORCE Project Overview Objective Assess DoD- selected cadmium alternatives in...focused) – Phase III (fatigue testing focused) • Down- selection of candidates for further testing after each phase of testing is complete (Phases I...Laboratories – Mr. John Marshall U.S. AIR FORCE Phase I Overview and Selection Process – Traditional plating (primary coatings): • Sputtered Aluminum

  15. Development of a prototype two-phase thermal bus system for Space Station

    NASA Technical Reports Server (NTRS)

    Myron, D. L.; Parish, R. C.

    1987-01-01

    This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.

  16. The Voronoi Implicit Interface Method for computing multiphase physics

    PubMed Central

    Saye, Robert I.; Sethian, James A.

    2011-01-01

    We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces. PMID:22106269

  17. The Voronoi Implicit Interface Method for computing multiphase physics.

    PubMed

    Saye, Robert I; Sethian, James A

    2011-12-06

    We introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarily high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. We test the method's accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann's law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.

  18. The Voronoi Implicit Interface Method for computing multiphase physics

    DOE PAGES

    Saye, Robert I.; Sethian, James A.

    2011-11-21

    In this paper, we introduce a numerical framework, the Voronoi Implicit Interface Method for tracking multiple interacting and evolving regions (phases) whose motion is determined by complex physics (fluids, mechanics, elasticity, etc.), intricate jump conditions, internal constraints, and boundary conditions. The method works in two and three dimensions, handles tens of thousands of interfaces and separate phases, and easily and automatically handles multiple junctions, triple points, and quadruple points in two dimensions, as well as triple lines, etc., in higher dimensions. Topological changes occur naturally, with no surgery required. The method is first-order accurate at junction points/lines, and of arbitrarilymore » high-order accuracy away from such degeneracies. The method uses a single function to describe all phases simultaneously, represented on a fixed Eulerian mesh. Finally, we test the method’s accuracy through convergence tests, and demonstrate its applications to geometric flows, accurate prediction of von Neumann’s law for multiphase curvature flow, and robustness under complex fluid flow with surface tension and large shearing forces.« less

  19. MMIC Phased Array Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.

    1996-01-01

    Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.

  20. Effect of ultrasound radiation force on the choroid.

    PubMed

    Silverman, Ronald H; Urs, Raksha; Lloyd, Harriet O

    2013-01-10

    While visualization of the retina and choroid has made great progress, functional imaging techniques have been lacking. Our aim was to utilize acoustic radiation force impulse (ARFI) response to probe functional properties of these tissues. A single element 18-MHz ultrasound transducer was focused upon the retina of the rabbit eye. The procedure was performed with the eye proptosed and with the eye seated normally in the orbit. The transducer was excited to emit ARFI over a 10-ms period with a 25% duty cycle. Phase resolved pulse/echo data were acquired before, during, and following ARFI. In the proptosed eye, ARFI exposure produced tissue displacements ranging from 0 to 10 μm, and an immediate increase in choroidal echo amplitude to over 6 dB, decaying to baseline after about 1 second. In the normally seated eye, ultrasound phase shifts consistent with flow were observed in the choroid, but enhanced backscatter following ARFI rarely occurred. ARFI-induced displacements of about 10 μm were observed at the choroidal margins. Larger displacements occurred within the choroid and in orbital tissues. We hypothesize that elevated intraocular pressure occurring during proptosis induced choroidal ischemia and that acoustic radiation force produced a transient local decompression and reperfusion. With the eye normally seated, choroidal flow was observed and little alteration in backscatter resulted from exposure. Clinical application of this technique may provide new insights into diseases characterized by altered choroidal hemodynamics, including maculopathies, diabetic retinopathy, and glaucoma.

  1. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator.

    PubMed

    Raabe, D; Harrison, A; Ireland, A; Alemzadeh, K; Sandy, J; Dogramadzi, S; Melhuish, C; Burgess, S

    2012-03-01

    This paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements. In many cases, their lack of sufficient DOF enables them only to replicate the sliding motion of a single occlusal contact point by neglecting rotational movements and the motion along one Cartesian axis. The motion and forces of more than one occlusal contact points cannot accurately be replicated by these instruments. Furthermore, the majority of wear simulators are unable to control simultaneously the main wear-affecting parameters, considering abrasive mechanical wear, which are the occlusal sliding motion and bite forces in the constraint contact phase of the human chewing cycle. It has been shown that such discrepancies between the true in vivo and the simulated in vitro condition influence the outcome and the quality of wear studies. This can be improved by implementing biological features of the human masticatory system such as tooth compliance realized through the passive action of the periodontal ligament and active bite force control realized though the central nervous system using feedback from periodontal preceptors. The simulator described in this paper can be used for single- and multi-occlusal contact testing due to its kinematics and ability to exactly replicate human translational and rotational mandibular movements with up to 6 DOF without neglecting movements along or around the three Cartesian axes. Recorded human mandibular motion and occlusal force data are the reference inputs of the simulator. Experimental studies of wear using this simulator demonstrate that integrating the biological feature of combined force/position hybrid control in dental material testing improves the linearity and reduces the variability of results. In addition, it has been shown that present biaxially operated dental wear simulators are likely to provide misleading results in comparative in vitro/in vivo one-contact studies due to neglecting the occlusal sliding motion in one plane which could introduce an error of up to 49% since occlusal sliding motion D and volumetric wear loss V(loss) are proportional.

  2. Breakdown of autoresonance due to separatrix crossing in dissipative systems: From Josephson junctions to the three-wave problem.

    PubMed

    Chacón, Ricardo

    2008-12-01

    Optimal energy amplification via autoresonance in dissipative systems subjected to separatrix crossings is discussed through the universal model of a damped driven pendulum. Analytical expressions of the autoresonance responses and forces as well as the associated adiabatic invariants for the phase space regions separated by the underlying separatrix are derived from the energy-based theory of autoresonance. Additionally, applications to a single Josephson junction, topological solitons in Frenkel-Kontorova chains, as well as to the three-wave problem in dissipative media are discussed in detail from the autoresonance analysis.

  3. Gravity dependent processes and intracellular motion

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1991-01-01

    Most organelles large enough to sediment or to undergo isothermal settling within eukaryotic cells are held in position by one or more components of the cytoskeleton. The interior of eukaryotic cells is considered to be very crowded, and the evaluation of natural-convective processes is very difficult. In a most simple view, the cell may be considered as consisting of four immiscible phases among which solutes are exchanged causing steep concentration gradients and thermodynamic conditions far from equilibrium. Extracellular gravity-related forces may include natural convection due to solute gradients external to single cells or the work performed by swimming, ciliated, or elongating cells.

  4. Generalization of low pressure, gas-liquid, metastable sound speed to high pressures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1981-01-01

    A theory is developed for isentropic metastable sound propagation in high pressure gas-liquid mixtures. Without simplification, it also correctly predicts the minimum speed for low pressure air-water measurements where other authors are forced to postulate isothermal propagation. This is accomplished by a mixture heat capacity ratio which automatically adjusts from its single phase values to approximately the isothermal value of unity needed for the minimum speed. Computations are made for the pure components parahydrogen and nitrogen, with emphasis on the latter. With simplifying assumptions, the theory reduces to a well known approximate formula limited to low pressure.

  5. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  6. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  7. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge.

    PubMed

    Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.

  8. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers

    PubMed Central

    Meng, He; Andresen, Kurt; van Noort, John

    2015-01-01

    Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays. PMID:25779043

  9. Phase transition at N = 92 in 158Dy

    NASA Astrophysics Data System (ADS)

    Gupta, J. B.

    2016-09-01

    Beyond the shape phase transition from the spherical vibrator to the deformed rotor regime at N = 90, the interplay of β- and γ-degrees of freedom becomes important, which affects the relative positions of the Kπ = 0+β- and Kπ = 2+γ-bands. In the microscopic approach of the dynamic pairing plus quadrupole model, a correlation of the strength of the quadrupole force and the formation of the β- and γ-bands in 158Dy is described. The role of the potential energy surface is illustrated. The E2 transition rates in the lower three K-bands and the multi-phonon bands with Kπ = 0+, 2+ and 4+ are well reproduced. The absolute B(E2, 2i+ = 0 2+) (i = 2, 3) serves as a good measure of the quadrupole strength. The role of the single particle Nilsson orbits is also described.

  10. Anomalous critical slowdown at a first order phase transition in single polymer chains.

    PubMed

    Zhang, Shuangshuang; Qi, Shuanhu; Klushin, Leonid I; Skvortsov, Alexander M; Yan, Dadong; Schmid, Friederike

    2017-08-14

    Using Brownian dynamics, we study the dynamical behavior of a polymer grafted onto an adhesive surface close to the mechanically induced adsorption-stretching transition. Even though the transition is first order (in the infinite chain length limit, the stretching degree of the chain jumps discontinuously), the characteristic relaxation time is found to grow according to a power law as the transition point is approached. We present a dynamic effective interface model which reproduces these observations and provides an excellent quantitative description of the simulation data. The generic nature of the theoretical model suggests that the unconventional mixing of features that are characteristic for first-order transitions (a jump in an order parameter) and features that are characteristic of critical points (an anomalous slowdown) may be a common phenomenon in force-driven phase transitions of macromolecules.

  11. Intelligent Robotic Systems Study (IRSS), phase 4

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Under the Intelligent Robotics Systems Study (IRSS), a generalized robotic control architecture was developed for use with the ProtoFlight Manipulator Arm (PFMA). Based upon the NASREM system design concept, the controller built for the PFMA provides localized position based force control, teleoperation, and advanced path recording and playback capabilities. The PFMA has six computer controllable degrees of freedom (DOF) plus a 7th manually indexable DOF, making the manipulator a pseudo 7 DOF mechanism. Joints on the PFMA are driven via 7 pulse width modulated amplifiers. Digital control of the PFMA is implemented using a variety of single board computers. There were two major activities under the IRSS phase 4 study: (1) enhancement of the PFMA control system software functionality; and (2) evaluation of operating modes via a teleoperation performance study. These activities are described and results are given.

  12. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  13. Discrete element weld model, phase 2

    NASA Technical Reports Server (NTRS)

    Prakash, C.; Samonds, M.; Singhal, A. K.

    1987-01-01

    A numerical method was developed for analyzing the tungsten inert gas (TIG) welding process. The phenomena being modeled include melting under the arc and the flow in the melt under the action of buoyancy, surface tension, and electromagnetic forces. The latter entails the calculation of the electric potential and the computation of electric current and magnetic field therefrom. Melting may occur at a single temperature or over a temperature range, and the electrical and thermal conductivities can be a function of temperature. Results of sample calculations are presented and discussed at length. A major research contribution has been the development of numerical methodology for the calculation of phase change problems in a fixed grid framework. The model has been implemented on CHAM's general purpose computer code PHOENICS. The inputs to the computer model include: geometric parameters, material properties, and weld process parameters.

  14. Pressure Fluctuation Characteristics of Narrow Gauge Train Running Through Tunnel

    NASA Astrophysics Data System (ADS)

    Suzuki, Masahiro; Sakuma, Yutaka

    Pressure fluctuations on the sides of narrow (1067 mm) gauge trains running in tunnels are measured for the first time to investigate the aerodynamic force acting on the trains. The present measurements are compared with earlier measurements obtained with the Shinkansen trains. The results are as follows: (1) The aerodynamic force, which stems from pressure fluctuations on the sides of cars, puts the energy into the vibration of the car body running through a tunnel. (2) While the pressure fluctuations appear only on one of the two sides of the trains running in double-track tunnels, the fluctuations in opposite phase on both sides in single-track tunnels. (3) The on-track test data of the narrow gauge trains show the same tendency as those of the Shinkansen trains, although it is suggested that the pressure fluctuations develop faster along the narrow gauge trains than the Shinkansen trains.

  15. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramírez-Salgado, J.; Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx; Castro-Domínguez, B.

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite wasmore » detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.« less

  16. Evaluation and validation of musculoskeletal force feasible set indices: Application to manual wheelchair propulsion.

    PubMed

    Hernandez, Vincent; Gorce, Philippe; Rezzoug, Nasser

    2018-02-08

    The aim of this work was to assess handrim wheelchair propulsion effectiveness, related to the applied forces on the handrim, through the force feasible set. For a given posture of the upper-limb, it represents the set of isometric forces that can be applied on the handrim in any direction. The force feasible set was predicted from a musculoskeletal model of the upper-limb and trunk (10 degrees of freedom and 56 muscles). The aim of the first part of the study was to compare the force feasible set prediction and the force currently applied on the handrim. The second part proposes the creation of a new index called "Musculoskeletal Postural Performance Index" (MPPI) derived from the force feasible set and its comparison with the Mechanical Efficiency Force (MEF). These comparisons were conducted at 60, 80, 100, 120 and 140% of the Freely Chosen Frequency at submaximal and maximal conditions on 5 different phases of the push phase. The values of the MPPI were significantly correlated with those of the MEF. During the course of the push phase, the orientation of the force feasible set main axis approached that of the measured force and the force effectiveness evaluated through the MPPI increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry

    PubMed Central

    Sedlak, Steffen M.; Bauer, Magnus S.; Kluger, Carleen; Schendel, Leonard C.; Milles, Lukas F.; Pippig, Diana A.

    2017-01-01

    The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin’s tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10−6 s-1 range. PMID:29206886

  18. Monodisperse measurement of the biotin-streptavidin interaction strength in a well-defined pulling geometry.

    PubMed

    Sedlak, Steffen M; Bauer, Magnus S; Kluger, Carleen; Schendel, Leonard C; Milles, Lukas F; Pippig, Diana A; Gaub, Hermann E

    2017-01-01

    The widely used interaction of the homotetramer streptavidin with the small molecule biotin has been intensively studied by force spectroscopy and has become a model system for receptor ligand interaction. However, streptavidin's tetravalency results in diverse force propagation pathways through the different binding interfaces. This multiplicity gives rise to polydisperse force spectroscopy data. Here, we present an engineered monovalent streptavidin tetramer with a single cysteine in its functional subunit that allows for site-specific immobilization of the molecule, orthogonal to biotin binding. Functionality of streptavidin and its binding properties for biotin remain unaffected. We thus created a stable and reliable molecular anchor with a unique high-affinity binding site for biotinylated molecules or nanoparticles, which we expect to be useful for many single-molecule applications. To characterize the mechanical properties of the bond between biotin and our monovalent streptavidin, we performed force spectroscopy experiments using an atomic force microscope. We were able to conduct measurements at the single-molecule level with 1:1-stoichiometry and a well-defined geometry, in which force exclusively propagates through a single subunit of the streptavidin tetramer. For different force loading rates, we obtained narrow force distributions of the bond rupture forces ranging from 200 pN at 1,500 pN/s to 230 pN at 110,000 pN/s. The data are in very good agreement with the standard Bell-Evans model with a single potential barrier at Δx0 = 0.38 nm and a zero-force off-rate koff,0 in the 10-6 s-1 range.

  19. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production.

    PubMed

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves

    2008-04-01

    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  20. Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frei M.; Hybertsen M.; Aradhya S.V.

    We use a modified conducting atomic force microscope to simultaneously probe the conductance of a single-molecule junction and the force required to rupture the junction formed by alkanes terminated with four different chemical link groups which vary in binding strength and mechanism to the gold electrodes. Molecular junctions with amine, methylsulfide, and diphenylphosphine terminated molecules show clear conductance signatures and rupture at a force that is significantly smaller than the measured 1.4 nN force required to rupture the single-atomic gold contact. In contrast, measurements with a thiol terminated alkane which can bind covalently to the gold electrode show conductance andmore » force features unlike those of the other molecules studied. Specifically, the strong Au-S bond can cause structural rearrangements in the electrodes, which are accompanied by substantial conductance changes. Despite the strong Au-S bond and the evidence for disruption of the Au structure, the experiments show that on average these junctions also rupture at a smaller force than that measured for pristine single-atom gold contacts.« less

  1. Analysis of acid-base interactions at Al2O3 (11-20) interfaces by means of single molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Mosebach, Bastian; Ozkaya, Berkem; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido

    2017-10-01

    Single molecule force spectroscopy (SMFS) was employed to investigate the interaction forces between aliphatic amino, hydroxyl and ether groups and aluminum oxide single crystal surfaces in an aqueous electrolyte at pH = 6. The force studies were based on the variation of the terminal group of polyethylene glycol which was bound via a Ssbnd Au bond to the gold coated AFM tip. X-ray Photoelectron Spectroscopy (XPS) was performed to characterize the surface chemistry of the substrate. Force distance curves were measured between the PEG-NH2, sbnd OH and sbnd OCH3 functionalized atomic force microscope (AFM) tip and the non-polar single crystalline Al2O3(11-20) surface. The experimental results exhibit non-equilibrium desorption events which hint at acid-base interactions of the electron donating hydroxyl and amino groups with Al-ions in the surface of the oxide. The observed desorption forces for the sbnd NH2, sbnd OH/Al2O3(11-20) were in the range of 100-200 pN.

  2. Origins of phase contrast in the atomic force microscope in liquids

    PubMed Central

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L.; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-01-01

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage ϕ29 virions in buffer solutions using the phase-contrast images. PMID:19666560

  3. Origins of phase contrast in the atomic force microscope in liquids.

    PubMed

    Melcher, John; Carrasco, Carolina; Xu, Xin; Carrascosa, José L; Gómez-Herrero, Julio; José de Pablo, Pedro; Raman, Arvind

    2009-08-18

    We study the physical origins of phase contrast in dynamic atomic force microscopy (dAFM) in liquids where low-stiffness microcantilever probes are often used for nanoscale imaging of soft biological samples with gentle forces. Under these conditions, we show that the phase contrast derives primarily from a unique energy flow channel that opens up in liquids due to the momentary excitation of higher eigenmodes. Contrary to the common assumption, phase-contrast images in liquids using soft microcantilevers are often maps of short-range conservative interactions, such as local elastic response, rather than tip-sample dissipation. The theory is used to demonstrate variations in local elasticity of purple membrane and bacteriophage 29 virions in buffer solutions using the phase-contrast images.

  4. Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1996-01-01

    A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.

  5. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  6. Experiences of forced sex among female patrons of alcohol-serving venues in a South African township.

    PubMed

    Watt, Melissa H; Sikkema, Kathleen J; Abler, Laurie; Velloza, Jennifer; Eaton, Lisa A; Kalichman, Seth C; Skinner, Donald; Pieterse, Desiree

    2015-05-01

    South Africa has among the highest rates of forced sex worldwide, and alcohol use has consistently been associated with risk of forced sex in South Africa. However, methodological challenges affect the accuracy of forced sex measurements. This study explored the assessment of forced sex among South African women attending alcohol-serving venues and identified factors associated with reporting recent forced sex. Women (n = 785) were recruited from 12 alcohol-serving venues in a peri-urban township in Cape Town. Brief self-administered surveys included questions about lifetime and recent experiences of forced sex. Surveys included a single question about forced sex and detailed questions about sex by physical force, threats, verbal persuasion, trickery, and spiked drinks. We first compared the single question about forced sex to a composite variable of forced sex as unwanted sex by physical force, threats, or spiked drinks. We then examined potential predictors of recent forced sex (demographics, drinking behavior, relationship to the venue, abuse experiences). The single question about forced sex had low sensitivity (0.38); more than half of the respondents who reported on the detailed questions that they had experienced forced sex by physical force, threats, or spiked drinks reported on the single question item that they had not experienced forced sex. Using our composite variable, 18.6% of women reported lifetime and 10.8% reported recent experiences of forced sex. In our adjusted logistic regression model, recent forced sex using the composite variable was significantly associated with hazardous drinking (OR = 1.92), living farther from the venue (OR = 1.81), recent intimate partner violence (OR = 2.53), and a history of childhood sexual abuse (OR = 4.35). The findings support the need for additional work to refine the assessment of forced sex. Efforts to prevent forced sex should target alcohol-serving venues, where norms and behaviors may present particular risks for women who frequent these settings. © The Author(s) 2014.

  7. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  8. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  9. Artifact-free dynamic atomic force microscopy reveals monotonic dissipation for a simple confined liquid

    NASA Astrophysics Data System (ADS)

    Kaggwa, G. B.; Kilpatrick, J. I.; Sader, J. E.; Jarvis, S. P.

    2008-07-01

    We present definitive interaction measurements of a simple confined liquid (octamethylcyclotetrasiloxane) using artifact-free frequency modulation atomic force microscopy. We use existing theory to decouple the conservative and dissipative components of the interaction, for a known phase offset from resonance (90° phase shift), that has been deliberately introduced into the experiment. Further we show the qualitative influence on the conservative and dissipative components of the interaction of a phase error deliberately introduced into the measurement, highlighting that artifacts, such as oscillatory dissipation, can be readily observed when the phase error is not compensated for in the force analysis.

  10. Force Induced Globule-to-Coil Transition of Single Polymer Chains.

    NASA Astrophysics Data System (ADS)

    Gunari, Nikhil; Walker, Gilbert

    2008-03-01

    Force induced structural transitions of individual homopolymer chains have been studied in different solvent conditions using single molecule force spectroscopy. Single molecule mechanics in the ``fly-fishing'' mode showed a first-order like transition for polystyrene (PS) in water exhibiting a characteristic three regime force extension curve. In contrast, poly methylmethacrylate (PMMA) showed a characteristic saw-tooth pattern reminiscent of multidomain disassembly behavior similar to that seen in modular protein mechanics. The plateau force for PS and the saw-tooth pattern for PMMA disappear when measured in aqueous guanidine hydrochloride solution and in other non-solvents showing that the characteristic deformational behavior observed for the two polymers in water may be due to hydrophobic interactions .

  11. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    NASA Astrophysics Data System (ADS)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  12. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    NASA Technical Reports Server (NTRS)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  13. Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Clark, Noel A.

    2000-01-01

    Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profile and have been used to show that the interlayer interactions in anti-ferroelectric tilted smectics do not extend significantly beyond nearest neighbors. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments wherein the intermolecular coupling is effectively reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the position of the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, several potentially interesting microgravity free film experiments have been identified.

  14. Simple horizontal magnetic tweezers for micromanipulation of single DNA molecules and DNA–protein complexes

    PubMed Central

    McAndrew, Christopher P.; Tyson, Christopher; Zischkau, Joseph; Mehl, Patrick; Tuma, Pamela L.; Pegg, Ian L.; Sarkar, Abhijit

    2016-01-01

    We report the development of a simple-to-implement magnetic force transducer that can apply a wide range of piconewton (pN) scale forces on single DNA molecules and DNA–protein complexes in the horizontal plane. The resulting low-noise force-extension data enable very high-resolution detection of changes in the DNA tether’s extension: ~0.05 pN in force and <10 nm change in extension. We have also verified that we can manipulate DNA in near equilibrium conditions through the wide range of forces by ramping the force from low to high and back again, and observing minimal hysteresis in the molecule’s force response. Using a calibration technique based on Stokes’ drag law, we have confirmed our force measurements from DNA force-extension experiments obtained using the fluctuation-dissipation theorem applied to transverse fluctuations of the magnetic microsphere. We present data on the force-distance characteristics of a DNA molecule complexed with histones. The results illustrate how the tweezers can be used to study DNA binding proteins at the single molecule level. PMID:26757808

  15. Surface Stresses and a Force Balance at a Contact Line.

    PubMed

    Liang, Heyi; Cao, Zhen; Wang, Zilu; Dobrynin, Andrey V

    2018-06-26

    Results of the coarse-grained molecular dynamics simulations are used to show that the force balance analysis at the triple-phase contact line formed at an elastic substrate has to include a quartet of forces: three surface tensions (surface free energies) and an elastic force per unit length. In the case of the contact line formed by a droplet on an elastic substrate an elastic force is due to substrate deformation generated by formation of the wetting ridge. The magnitude of this force f el is proportional to the product of the ridge height h and substrate shear modulus G. Similar elastic line force should be included in the force analysis at the triple-phase contact line of a solid particle in contact with an elastic substrate. For this contact problem elastic force obtained from contact angles and surface tensions is a sum of the elastic forces acting from the side of a solid particle and an elastic substrate. By considering only three line forces acting at the triple-phase contact line, one implicitly accounts the bulk stress contribution as a part of the resultant surface stresses. This "contamination" of the surface properties by a bulk contribution could lead to unphysically large values of the surface stresses in soft materials.

  16. Direct Force Measurements of Receptor-Ligand Interactions on Living Cells

    NASA Astrophysics Data System (ADS)

    Eibl, Robert H.

    The characterization of cell adhesion between two living cells at the level of single receptor-ligand bonds is an experimental challenge. This chapter describes how the extremely sensitive method of atomic force microscopy (AFM) based force spectroscopy can be applied to living cells in order to probe for cell-to-cell or cell-to-substrate interactions mediated by single pairs of adhesion receptors. In addition, it is outlined how single-molecule AFM force spectroscopy can be used to detect physiologic changes of an adhesion receptor in a living cell. This force spectroscopy allows us to detect in living cells rapidly changing, chemokine SDF-1 triggered activation states of single VLA-4 receptors. This recently developed AFM application will allow for the detailed investigation of the integrin-chemokine crosstalk of integrin activation mechanisms and on how other adhesion receptors are modulated in health and disease. As adhesion molecules, living cells and even bacteria can be studied by single-molecule AFM force spectroscopy, this method is set to become a powerful tool that can not only be used in biophysics, but in cell biology as well as in immunology and cancer research.

  17. Analysis of phase II methodologies for single-arm clinical trials with multiple endpoints in rare cancers: An example in Ewing’s sarcoma

    PubMed Central

    Dutton, P; Love, SB; Billingham, L; Hassan, AB

    2016-01-01

    Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency. PMID:27587590

  18. Single- and two-phase flow characterization using optical fiber bragg gratings.

    PubMed

    Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M

    2015-03-17

    Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.

  19. Optimization of multi-color laser waveform for high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  20. Measurement of Maximum Isometric Force Generated by Permeabilized Skeletal Muscle Fibers.

    PubMed

    Roche, Stuart M; Gumucio, Jonathan P; Brooks, Susan V; Mendias, Christopher L; Claflin, Dennis R

    2015-06-16

    Analysis of the contractile properties of chemically skinned, or permeabilized, skeletal muscle fibers offers a powerful means by which to assess muscle function at the level of the single muscle cell. Single muscle fiber studies are useful in both basic science and clinical studies. For basic studies, single muscle fiber contractility measurements allow investigation of fundamental mechanisms of force production, and analysis of muscle function in the context of genetic manipulations. Clinically, single muscle fiber studies provide useful insight into the impact of injury and disease on muscle function, and may be used to guide the understanding of muscular pathologies. In this video article we outline the steps required to prepare and isolate an individual skeletal muscle fiber segment, attach it to force-measuring apparatus, activate it to produce maximum isometric force, and estimate its cross-sectional area for the purpose of normalizing the force produced.

  1. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  2. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  3. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  4. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  5. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  6. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  7. 30 CFR 77.806 - Connection of single-phase loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...

  8. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.

    PubMed

    Rassier, Dilson E; Herzog, Walter; Wakeling, Jennifer; Syme, Douglas A

    2003-09-01

    Stretch-induced force enhancement has been observed in a variety of muscle preparations and on structural levels ranging from single fibers to in vivo human muscles. It is a well-accepted property of skeletal muscle. However, the mechanism causing force enhancement has not been elucidated, although the sarcomere-length non-uniformity theory has received wide support. The purpose of this paper was to re-investigate stretch-induced force enhancement in frog single fibers by testing specific hypotheses arising from the sarcomere-length non-uniformity theory. Single fibers dissected from frog tibialis anterior (TA) and lumbricals (n=12 and 22, respectively) were mounted in an experimental chamber with physiological Ringer's solution (pH=7.5) between a force transducer and a servomotor length controller. The tetantic force-length relationship was determined. Isometric reference forces were determined at optimum length (corresponding to the maximal, active, isometric force), and at the initial and final lengths of the stretch experiments. Stretch experiments were performed on the descending limb of the force-length relationship after maximal tetanic force was reached. Stretches of 2.5-10% (TA) and 5-15% lumbricals of fiber length were performed at 0.1-1.5 fiber lengths/s. The stretch-induced, steady-state, active isometric force was always equal or greater than the purely isometric force at the muscle length from which the stretch was initiated. Moreover, for stretches of 5% fiber length or greater, and initiated near the optimum length of the fiber, the stretch-enhanced active force always exceeded the maximal active isometric force at optimum length. Finally, we observed a stretch-induced enhancement of passive force. We conclude from these results that the sarcomere length non-uniformity theory alone cannot explain the observed force enhancement, and that part of the force enhancement is associated with a passive force that is substantially greater after active compared to passive muscle stretch.

  9. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    PubMed Central

    Troester, Jordan C.; Jasmin, Jason G.; Duffield, Rob

    2018-01-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test – re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union. Key points Single-leg balance demonstrated acceptable inter-trial and inter-test reliability. Single-leg landing demonstrated good inter-trial and inter-test reliability for measures of relative peak landing force and relative impulse, but not time to stabilization. Of the variables investigated, sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing respectively, and should considered for monitoring changes in postural control. PMID:29769817

  10. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability.

    PubMed

    Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon

    2012-12-01

    The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.

  11. High-temperature solution growth and characterization of (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 piezo-/ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Paterson, Alisa R.; Zhao, Jinyan; Liu, Zenghui; Wu, Xiaoqing; Ren, Wei; Ye, Zuo-Guang

    2018-03-01

    Complex perovskite PbTiO3-Bi(Me‧Me″)O3 solid solutions represent new materials systems that possess a higher Curie temperature (TC) than the relaxor-PbTiO3 solid solutions, and are useful for potential applications. To this end, novel ferroelectric single crystals of the (1-x)PbTiO3-xBi(Zn2/3Nb1/3)O3 (PT-BZN) solid solution were successfully grown by the high-temperature solution growth (HTSG) method. Powder X-ray diffraction shows that the symmetry of the grown crystals is tetragonal. The dielectric permittivity and optical domain structures were characterized by dielectric measurements and polarized light microscopy, respectively, as a function of temperature, revealing a first-order ferroelectric-paraelectric phase transition at a TC of 436 ± 2 °C. Based on the TC, the average composition of the crystal platelet was estimated to be 0.58PT-0.42BZN. Piezoresponse force microscopy measurements of the phase and amplitude as a function of voltage reveal the complex polar domain structure and demonstrate the ferroelectric switching behaviour of these materials. These results suggest that the PT-BZN single crystals indeed form a new family of high TC piezo-/ferroelectric materials which are potentially useful for the fabrication of electromechanical transducers for high-temperature applications.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solares, Santiago D.

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less

  13. Vortex-induced vibration of two parallel risers: Experimental test and numerical simulation

    NASA Astrophysics Data System (ADS)

    Huang, Weiping; Zhou, Yang; Chen, Haiming

    2016-04-01

    The vortex-induced vibration of two identical rigidly mounted risers in a parallel arrangement was studied using Ansys- CFX and model tests. The vortex shedding and force were recorded to determine the effect of spacing on the two-degree-of-freedom oscillation of the risers. CFX was used to study the single riser and two parallel risers in 2-8 D spacing considering the coupling effect. Because of the limited width of water channel, only three different riser spacings, 2 D, 3 D, and 4 D, were tested to validate the characteristics of the two parallel risers by comparing to the numerical simulation. The results indicate that the lift force changes significantly with the increase in spacing, and in the case of 3 D spacing, the lift force of the two parallel risers reaches the maximum. The vortex shedding of the risers in 3 D spacing shows that a variable velocity field with the same frequency as the vortex shedding is generated in the overlapped area, thus equalizing the period of drag force to that of lift force. It can be concluded that the interaction between the two parallel risers is significant when the risers are brought to a small distance between them because the trajectory of riser changes from oval to curve 8 as the spacing is increased. The phase difference of lift force between the two risers is also different as the spacing changes.

  14. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    DOE PAGES

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less

  15. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.

    PubMed

    Solares, Santiago D

    2015-01-01

    This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  16. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  17. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  18. Aerosol Processing in Mixed-Phase Clouds in ECHAM5-HAM: Comparison of Single-Column Model Simulations to Observations

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Lohmann, U.; Stier, P.; Verheggen, B.; Weingartner, E.; Herich, H.

    2007-12-01

    The global aerosol-climate model ECHAM5-HAM (Stier et al., 2005) has been extended by an explicit treatment of cloud-borne particles. Two additional modes for in-droplet and in-crystal particles are introduced, which are coupled to the number of cloud droplet and ice crystal concentrations simulated by the ECHAM5 double-moment cloud microphysics scheme (Lohmann et al., 2007). Transfer, production and removal of cloud-borne aerosol number and mass by cloud droplet activation, collision scavenging, aqueous-phase sulfate production, freezing, melting, evaporation, sublimation and precipitation formation are taken into account. The model performance is demonstrated and validated with observations of the evolution of total and interstitial aerosol concentrations and size distributions during three different mixed-phase cloud events at the alpine high-altitude research station Jungfraujoch (Switzerland) (Verheggen et al, 2007). Although the single-column simulations can not be compared one-to-one with the observations, the governing processes in the evolution of the cloud and aerosol parameters are captured qualitatively well. High scavenged fractions are found during the presence of liquid water, while the release of particles during the Bergeron-Findeisen process results in low scavenged fractions after cloud glaciation. The observed coexistence of liquid and ice, which might be related to cloud heterogeneity at subgrid scales, can only be simulated in the model when forcing non-equilibrium conditions. References: U. Lohmann et al., Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys. 7, 3425-3446 (2007) P. Stier et al., The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys. 5, 1125-1156 (2005) B. Verheggen et al., Aerosol partitioning between the interstitial and the condensed phase in mixed-phase clouds, Accepted for publication in J. Geophys. Res. (2007)

  19. Stability, diffusion and interactions of nonlinear excitations in a many body system

    NASA Astrophysics Data System (ADS)

    Coste, Christophe; Jean, Michel Saint; Dessup, Tommy

    2017-04-01

    When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.

  20. Unsteady, Transonic Flow Around Delta Wings Undergoing Coupled and Natural Modes Response: A Multidisciplinary Problem

    NASA Technical Reports Server (NTRS)

    Menzies, Margaret Anne

    1996-01-01

    The unsteady, three-dimensional Navier-Stokes equations coupled with the Euler equations of rigid-body dynamics are sequentially solved to simulate and analyze the aerodynamic response of a high angle of attack delta wing undergoing oscillatory motion. The governing equations of fluid flow and dynamics of the multidisciplinary problem are solved using a time-accurate solution of the laminar, unsteady, compressible, full Navier- Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. The primary model under consideration consists of a 65 deg swept, sharp-edged, cropped delta wing of zero thickness at 20 deg angle of attack. In a freestream of Mach 0.85 and Reynolds number of 3.23 x 10(exp 6), the flow over the upper surface of the wing develops a complex shock system which interacts with the leading-edge primary vortices producing vortex breakdown. The effect of the oscillatory motion of the wing on the vortex breakdown and overall aerodynamic response is detailed to provide insight to the complicated physics associated with unsteady flows and the phenomenon of wing rock. Forced sinusoidal single and coupled mode rolling and pitching motion is presented for the wing in a transonic freestream. The Reynolds number, frequency of oscillation, and the phase angle are varied. Comparison between the single and coupled mode forced rolling and pitching oscillation cases illustrate the effects of coupling the motion. This investigation shows that even when coupled, forced rolling oscillation at a reduced frequency of 2(pi) eliminates the vortex breakdown which results in an increase in lift. The coupling effect for in phase forced oscillations show that the lift coefficient of the pitching-alone case and the rolling-moment coefficient of the rolling-alone case dominate the resulting response. However, with a phase lead in the pitching motion, the coupled motion results in a non-periodic response of the rolling moment. The second class of problems involve releasing the wing in roll to respond to the flowfield. Two models of sharp-edged delta wings, the previous 65 deg swept model and an 80 deg swept, sharp-edged delta wing, are used to observe the aerodynamic response of a wing free to roll in a transonic and subsonic freestream, respectively. These cases demonstrate damped oscillations, self-sustained limit cycle oscillations, and divergent rolling oscillations. Ultimately, an active control model using a mass injection system was applied on the surface of the wing to suppress the self-sustained limit cycle oscillation known as wing rock. Comparisons with experimental investigations complete this study, validating the analysis and illustrating the complex details afforded by computational investigations.

  1. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    PubMed Central

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed. PMID:28117741

  2. Automated analysis of Physarum network structure and dynamics

    NASA Astrophysics Data System (ADS)

    Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-06-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.

  3. Comparison of free flux flow in two single crystals of V3Si with slightly different pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, Ozarfar; Gapud, Albert A.; Moraes, Sunhee; Thompson, James R.; Christen, David K.; Reyes, Arneil P.

    2011-03-01

    Results of recent measurements on two very clean, single-crystal samples of the A15 superconductor V3 Si are presented. Magnetization and transport data confirm the ``clean'' quality of both samples, as manifested by: (i) high residual resistivity ratio, (ii) low critical current densities, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted in the slightly ``dirtier'' sample, which also has higher critical current density Jc (H). High-current Lorentz forces are applied on mixed-state vortices in order to induce the highly ordered free flux flow (FFF) phase, using the same methods as in previous work. A traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf (H), presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes core size into account, and predicts a deviation from BS. In this study, ρf (H) is confirmed to be consistent with predictions of KZ, as will be discussed. Funded by Research Corporation and the National Science Foundation.

  4. Investigation of optimal method for inducing harmonic motion in tissue using a linear ultrasound phased array--a simulation study.

    PubMed

    Heikkilä, Janne; Hynynen, Kullervo

    2006-04-01

    Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.

  5. Free flux flow in two single crystals of V3Si with differing pinning strengths

    NASA Astrophysics Data System (ADS)

    Gafarov, O.; Gapud, A. A.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.

    2011-10-01

    Results of measurements on two very clean, single-crystal samples of the A15 superconductor V3Si are presented. Magnetization and transport data have confirmed the ``clean'' quality of both samples, as manifested by: (i) high residual electrical resistivity ratio, (ii) very low critical current densities Jc, and (iii) a ``peak'' effect in the field dependence of critical current. The (H,T) phase line for this peak effect is shifted down for the slightly ``dirtier'' sample, which consequently also has higher critical current density Jc(H). Large Lorentz forces are applied on mixed-state vortices via large currents, in order to induce the highly ordered free flux flow (FFF) phase, using experimental methods developed previously. The traditional model by Bardeen and Stephen (BS) predicts a simple field dependence of flux flow resistivity ρf(H) ˜ H/Hc2, presuming a field-independent flux core size. A model by Kogan and Zelezhina (KZ) takes into account the effects of magnetic field on core size, and predict a clear deviation from the linear BS dependence. In this study, ρf(H) is confirmed to be consistent with predictions of KZ.

  6. Third Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In May 1994, the Task Force on the Shuttle-Mir Rendezvous and Docking Missions was established by the NASA Advisory Council. Its purpose is to review Phase 1 (Shuttle-Mir) planning, training, operations, rendezvous and docking, and management and to provide interim reports containing specific recommendations to the Advisory Council. Phase 1 represents the building block to create the experience and technical expertise for an International Space Station. The Phase 1 program brings together the United States and Russia in a major cooperative and contractual program that takes advantage of both countries' capabilities. The content of the Phase 1 program consists of the following elements as defined by the Phase 1 Program Management Plan, dated October 6, 1994: Shuttle-Mir rendezvous and docking missions; astronaut long duration presence on Mir Requirements for Mir support of Phase 1 when astronauts are not on board; outfitting Spektr and Priroda modules with NASA science, research, and risk mitigation equipment Related ground support requirements of NASA and the Russian Space Agency (RSA) to support Phase 1 Integrated NASA and RSA launch schedules and manifests The first meeting of the Task Force was held at the Johnson Space Center (JSC) on May 24 and 25, 1994 with a preliminary report submitted to the NASA Advisory Council on June 6, 1994. The second meeting of the Task Force was held at JSC on July 12 and 13, 1994 and a detailed report containing a series of specific recommendations was submitted on July 29, 1994. This report reflects the results of the third Task Force meeting which was held at JSC on 11 and 12 October, 1994. The briefings presented at that meeting reviewed NASA's response to the Task Force recommendations made to date and provided background data and current status on several critical areas which the Task Force had not addressed in its previous reports.

  7. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    PubMed

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  9. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit.

  10. Force interaction and 3D pole movement in double poling.

    PubMed

    Stöggl, T; Holmberg, H-C

    2011-12-01

    The aim of this study was to analyze double poling using combined kinetic and 3D kinematic analysis at high skiing speeds as regards pole force components, pole angles and pole behavior during the poling and swing phase. The hypothesis was that a horizontal pole force is more predictive for maximal skiing speed (V(max)) than the resultant pole force. Sixteen elite skiers performed a double-poling V(max) test while treadmill roller skiing. Pole forces and 3D kinematics of pole movement at a speed of 30 km/h were analyzed and related to V(max). The duration of the "preparation phase" showed the strongest relationship with V(max) (r=0.87, P<0.001). Faster skiers generated longer cycle lengths with longer swing and poling times, had less inclined pole angles at pole plant and a later peak pole force. Horizontal pole forces were not more highly related to V(max) compared with the resultant pole force. Impact force was not related to V(max). At high skiing speeds, skiers should aim to combine high pole forces with appropriate timing of pole forces and appropriate pole and body positions during the swing and poling phase. The emphasis in training should be on the development of specific strength capacities for pole force production and the utilization of these capacities in double-poling training sessions. © 2011 John Wiley & Sons A/S.

  11. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Force-activatable biosensor enables single platelet force mapping directly by fluorescence imaging.

    PubMed

    Wang, Yongliang; LeVine, Dana N; Gannon, Margaret; Zhao, Yuanchang; Sarkar, Anwesha; Hoch, Bailey; Wang, Xuefeng

    2018-02-15

    Integrin-transmitted cellular forces are critical for platelet adhesion, activation, aggregation and contraction during hemostasis and thrombosis. Measuring and mapping single platelet forces are desired in both research and clinical applications. Conventional force-to-strain based cell traction force microscopies have low resolution which is not ideal for cellular force mapping in small platelets. To enable platelet force mapping with submicron resolution, we developed a force-activatable biosensor named integrative tension sensor (ITS) which directly converts molecular tensions to fluorescent signals, therefore enabling cellular force mapping directly by fluorescence imaging. With ITS, we mapped cellular forces in single platelets at 0.4µm resolution. We found that platelet force distribution has strong polarization which is sensitive to treatment with the anti-platelet drug tirofiban, suggesting that the ITS force map can report anti-platelet drug efficacy. The ITS also calibrated integrin molecular tensions in platelets and revealed two distinct tension levels: 12-54 piconewton (nominal values) tensions generated during platelet adhesion and tensions above 54 piconewton generated during platelet contraction. Overall, the ITS is a powerful biosensor for the study of platelet mechanobiology, and holds great potential in antithrombotic drug development and assessing platelet activity in health and disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.

    PubMed

    Worthington, Peter; King, Mark; Ranson, Craig

    2013-01-01

    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.

  14. Comparison of the Force-, Velocity- and Power-Time Curves Between the Concentric-Only and Eccentric-Concentric Bench Press Exercises.

    PubMed

    Pérez-Castilla, Alejandro; Comfort, Paul; McMahon, John J; Pestaña-Melero, Francisco Luis; García-Ramos, Amador

    2018-01-17

    The aim of this study was to compare the temporal and mechanical variables between the concentric-only and eccentric-concentric bench press (BP) variants. Twenty-one men (age: 22.0±4.2 years, body mass: 73.4±7.7 kg, height: 177.2±8.0 cm; one-repetition maximum [1RM]: 1.12±0.12 kg⋅kg) were evaluated during the concentric-only and eccentric-concentric BP variants using 80% 1RM. Temporal (concentric phase duration, propulsive phase duration, and time to reach the maximum values of force, velocity, and power) and mechanical variables (force, velocity, and power), determined using a linear velocity transducer, were compared between both BP variants. All temporal variables were significantly lower during the eccentric-concentric BP compared to the concentric-only BP (P < 0.05; effect size [ES] range: 0.80-2.52). Maximum force as well as the mean values of velocity and power were significantly higher for the eccentric-concentric BP compared to the concentric-only BP (all P < 0.001; ES range: 2.87-3.58). However, trivial to small differences between both BP variants were observed for mean force (ES: 0.00-0.36) as well as for maximum velocity (ES: 0.40) and power (ES: 0.41). The stretch-shortening cycle (i.e., eccentric-concentric BP) mainly enhanced force production at the early portion of the concentric phase, but this potentiation effect gradually reduced over the latter part of the movement. Finally, force was higher for the concentric-only BP during 49% of the concentric phase duration. These results suggest that both BP variants should be included during resistance training programs in order to optimize force output at different points of the concentric phase.

  15. A successful backward step correlates with hip flexion moment of supporting limb in elderly people.

    PubMed

    Takeuchi, Yahiko

    2018-01-01

    The objective of this study was to determine the positional relationship between the center of mass (COM) and the center of pressure (COP) at the time of step landing, and to examine their relationship with the joint moments exerted by the supporting limb, with regard to factors of the successful backward step response. The study population comprised 8 community-dwelling elderly people that were observed to take successive multi steps after the landing of a backward stepping. Using a motion capture system and force plate, we measured the COM, COP and COM-COP deviation distance on landing during backward stepping. In addition, we measured the moment of the supporting limb joint during backward stepping. The multi-step data were compared with data from instances when only one step was taken (single-step). Variables that differed significantly between the single- and multi-step data were used as objective variables and the joint moments of the supporting limb were used as explanatory variables in single regression analyses. The COM-COP deviation in the anteroposterior was significantly larger in the single-step. A regression analysis with COM-COP deviation as the objective variable obtained a significant regression equation in the hip flexion moment (R2 = 0.74). The hip flexion moment of supporting limb was shown to be a significant explanatory variable in both the PS and SS phases for the relationship with COM-COP distance. This study found that to create an appropriate backward step response after an external disturbance (i.e. the ability to stop after 1 step), posterior braking of the COM by a hip flexion moment are important during the single-limbed standing phase.

  16. Altered control strategy between leading and trailing leg increases knee adduction moment in the elderly while descending stairs.

    PubMed

    Karamanidis, Kiros; Arampatzis, Adamantios

    2011-02-24

    The aim of the study was to examine the external knee adduction moments in a group of older and younger adults while descending stairs and thus the possibility of an increased risk of knee osteoarthritis due to altered knee joint loading in the elderly. Twenty-seven older and 16 younger adults descended a purpose-built staircase. A motion capture system and a force plate were used to determine the subjects' 3D kinematics and ground reaction forces (GRF) during locomotion. Calculation of the leg kinematics and kinetics was done by means of a rigid, three-segment, 3D leg model. In the initial portion of the support phase, older adults showed a more medio-posterior GRF vector relative to the ankle joint, leading to lower ankle joint moments (P<0.05). At the knee, the older adults demonstrated a more medio-posterior directed GRF vector, increasing in knee flexion and adduction in the second part of the single support phase (P<0.05). Further, GRF magnitude was lower in the initial and higher in the mid-portions of the support phase for the elderly (P<0.05). The results show that older adults descend stairs by using the trailing leg before the initiation of the double support phase more compared to the younger ones. The consequence of this altered control strategy while stepping down is a more medially directed GRF vector increasing the magnitude of external knee adduction moment in the elderly. The observed changes between leading and trailing leg in the elderly may cause a redistribution of the mechanical load at the tibiofemoral joint, affecting the initiation and progression of knee osteoarthritis in the elderly. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Finite element analysis of plantar fascia during walking: a quasi-static simulation.

    PubMed

    Chen, Yen-Nien; Chang, Chih-Wei; Li, Chun-Ting; Chang, Chih-Han; Lin, Cheng-Feng

    2015-01-01

    The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis. © The Author(s) 2014.

  18. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects

    PubMed Central

    Vieira, Marcus Fraga; Sacco, Isabel de Camargo Neves; Nora, Fernanda Grazielle da Silva Azevedo; Rosenbaum, Dieter; Lobo da Costa, Paula Hentschel

    2015-01-01

    Gait initiation is the task commonly used to investigate the anticipatory postural adjustments necessary to begin a new gait cycle from the standing position. In this study, we analyzed whether and how foot-floor interface characteristics influence the gait initiation process. For this purpose, 25 undergraduate students were evaluated while performing a gait initiation task in three experimental conditions: barefoot on a hard surface (barefoot condition), barefoot on a soft surface (foam condition), and shod on a hard surface (shod condition). Two force plates were used to acquire ground reaction forces and moments for each foot separately. A statistical parametric mapping (SPM) analysis was performed in COP time series. We compared the anterior-posterior (AP) and medial-lateral (ML) resultant center of pressure (COP) paths and average velocities, the force peaks under the right and left foot, and the COP integral x force impulse for three different phases: the anticipatory postural adjustment (APA) phase (Phase 1), the swing-foot unloading phase (Phase 2), and the support-foot unloading phase (Phase 3). In Phase 1, significantly smaller ML COP paths and velocities were found for the shod condition compared to the barefoot and foam conditions. Significantly smaller ML COP paths were also found in Phase 2 for the shod condition compared to the barefoot and foam conditions. In Phase 3, increased AP COP velocities were found for the shod condition compared to the barefoot and foam conditions. SPM analysis revealed significant differences for vector COP time series in the shod condition compared to the barefoot and foam conditions. The foam condition limited the impulse-generating capacity of COP shift and produced smaller ML force peaks, resulting in limitations to body-weight transfer from the swing to the support foot. The results suggest that footwear and a soft surface affect COP and impose certain features of gait initiation, especially in the ML direction of Phase 1. PMID:26270323

  19. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    NASA Technical Reports Server (NTRS)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  20. Thermo-mechanical evaluation of carbon-carbon primary structure for SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Croop, Harold C.; Lowndes, Holland B.; Hahn, Steven E.; Barthel, Chris A.

    1998-01-01

    An advanced development program to demonstrate carbon-carbon composite structure for use as primary load carrying structure has entered the experimental validation phase. The component being evaluated is a wing torque box section for a single-stage-to-orbit (SSTO) vehicle. The validation or demonstration component features an advanced carbon-carbon design incorporating 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) oxidation protection coating, and ceramic matrix composite fasteners. The validation component represents the culmination of a four phase design and fabrication development effort. Extensive developmental testing was performed to verify material properties and integrity of basic design features before committing to fabrication of the full scale box. The wing box component is now being set up for testing in the Air Force Research Laboratory Structural Test Facility at Wright-Patterson Air Force Base, Ohio. One of the important developmental tests performed in support of the design and planned testing of the full scale box was the fabrication and test of a skin/spar trial subcomponent. The trial subcomponent incorporated critical features of the full scale wing box design. This paper discusses the results of the trial subcomponent test which served as a pathfinder for the upcoming full scale box test.

  1. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    NASA Astrophysics Data System (ADS)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  2. Technology transfer of military space microprocessor developments

    NASA Astrophysics Data System (ADS)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  3. Resurgence of target responding does not exceed increases in inactive responding in a forced-choice alternative reinforcement procedure in humans

    PubMed Central

    Sweeney, Mary M.; Shahan, Timothy A.

    2016-01-01

    Resurgence following removal of alternative reinforcement has been studied in non-human animals, children with developmental disabilities, and typically functioning adults. Adult human laboratory studies have included responses without a controlled history of reinforcement, included only two response options, or involved extensive training. Arbitrary responses allow for control over history of reinforcement. Including an inactive response never associated with reinforcement allows the conclusion that resurgence exceeds extinction-induced variability. Although procedures with extensive training produce reliable resurgence, a brief procedure with the same experimental control would allow more efficient examination of resurgence in adult humans. We tested the acceptability of a brief, single-session, three-alternative forced-choice procedure as a model of resurgence in undergraduates. Selecting a shape was the target response (reinforced in Phase I), selecting another shape was the alternative response (reinforced in Phase II), and selecting a third shape was never reinforced. Despite manipulating number of trials and probability of reinforcement, resurgence of the target response did not consistently exceed increases in the inactive response. Our findings reiterate the importance of an inactive control response and call for reexamination of resurgence studies using only two response options. We discuss potential approaches to generate an acceptable, brief human laboratory resurgence procedure. PMID:26724752

  4. A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control.

    PubMed

    Johnson, Keith C; Clemmens, Emilie; Mahmoud, Hani; Kirkpatrick, Robin; Vizcarra, Juan C; Thomas, Wendy E

    2017-01-01

    In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli ( E. coli ) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.

  5. Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory

    NASA Astrophysics Data System (ADS)

    Gazuz, I.; Fuchs, M.

    2013-03-01

    A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation for N bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external force Fex. It is immersed in a dense homogeneous bath of (different) particles also performing Brownian motion. Fluid and glass states are considered; solvent flow effects are neglected. Based on a formally exact generalized Green-Kubo relation, mode coupling approximations are performed and an integration through transients approach applied. A microscopic theory for the nonlinear velocity-force relations of the probe particle in a dense fluid and for the (de-) localized probe in a glass is obtained. It extends the mode coupling theory of the glass transition to strongly forced tracer motion and describes active microrheology experiments. A force threshold is identified which needs to be overcome to pull the probe particle free in a glass. For the model of hard sphere particles, the microscopic equations for the threshold force and the probability density of the localized probe are solved numerically. Neglecting the spatial structure of the theory, a schematic model is derived which contains two types of bifurcation, the glass transition and the force-induced delocalization, and which allows for analytical and numerical solutions. We discuss its phase diagram, forcing effects on the time-dependent correlation functions, and the friction increment. The model was successfully applied to simulations and experiments on colloidal hard sphere systems [Gazuz , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.248302 102, 248302 (2009)], while we provide detailed information on its derivation and general properties.

  6. Strain-sensitive upconversion for imaging biological forces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lay, Alice; Wisser, Michael; Lin, Yu; Narayan, Tarun; Krieg, Michael; Atre, Ashwin; Goodman, Miriam; Dionne, Jennifer A.

    2016-09-01

    Nearly all diseases can be traced back to abnormal mechanotransduction, but few sensors can reliably measure biologically-relevant forces in vivo. Here, we investigate sub-25nm lanthanide-doped upconverting nanoparticles as novel optical force probes, which provide several biocompatible features: sharp emission peaks with near infrared illumination, a high signal-to-noise ratio, and photostability. To increase force sensitivity, we include d-metal doping in the nanoparticles; the d-metal siphons energy from the lanthanide ions with an efficiency that varies with pressure. We synthesize cubic-phase NaYF4: Er3+,Yb3+ nanoparticles doped with 0-5% Mn2+ and compress them in a hydrostatic environment using a diamond anvil cell. When illuminated at 980nm, the nanoparticles show sharp emission peaks centered at wavelengths of 522nm, 545nm, and 660nm. In 20nN increments, up to 700nN, the ratio of the red-to-green peaks in 0% Mn-doped nanoparticles increases by nearly 30%, resulting in a perceived color change from orange to red. In contrast, the 1% Mn-doped samples exhibit little color change but a large 40% decrease in upconversion intensity. In both cases, the red-to-green ratio varies linearly with strain and the optical properties are recoverable upon release. We further use atomic force microscopy to characterize optical responses at lower, pico-Newton to nano-Newton forces. To demonstrate in vivo imaging capabilities, we incubate C. elegans with nanoparticles dispersed in buffer solution (5mg/mL concentration) and image forces involved in digestion using confocal microscopy. Our nanoparticles provide a platform for the first, non-genetically-encoded in vivo force sensors, and we describe routes to increase their sensitivity to the single-pN range.

  7. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.

  8. Hybrid upwind discretization of nonlinear two-phase flow with gravity

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Efendiev, Y.; Tchelepi, H. A.

    2015-08-01

    Multiphase flow in porous media is described by coupled nonlinear mass conservation laws. For immiscible Darcy flow of multiple fluid phases, whereby capillary effects are negligible, the transport equations in the presence of viscous and buoyancy forces are highly nonlinear and hyperbolic. Numerical simulation of multiphase flow processes in heterogeneous formations requires the development of discretization and solution schemes that are able to handle the complex nonlinear dynamics, especially of the saturation evolution, in a reliable and computationally efficient manner. In reservoir simulation practice, single-point upwinding of the flux across an interface between two control volumes (cells) is performed for each fluid phase, whereby the upstream direction is based on the gradient of the phase-potential (pressure plus gravity head). This upwinding scheme, which we refer to as Phase-Potential Upwinding (PPU), is combined with implicit (backward-Euler) time discretization to obtain a Fully Implicit Method (FIM). Even though FIM suffers from numerical dispersion effects, it is widely used in practice. This is because of its unconditional stability and because it yields conservative, monotone numerical solutions. However, FIM is not unconditionally convergent. The convergence difficulties are particularly pronounced when the different immiscible fluid phases switch between co-current and counter-current states as a function of time, or (Newton) iteration. Whether the multiphase flow across an interface (between two control-volumes) is co-current, or counter-current, depends on the local balance between the viscous and buoyancy forces, and how the balance evolves in time. The sensitivity of PPU to small changes in the (local) pressure distribution exacerbates the problem. The common strategy to deal with these difficulties is to cut the timestep and try again. Here, we propose a Hybrid-Upwinding (HU) scheme for the phase fluxes, then HU is combined with implicit time discretization to yield a fully implicit method. In the HU scheme, the phase flux is divided into two parts based on the driving force. The viscous-driven and buoyancy-driven phase fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total-velocity. The buoyancy-driven flux across an interface is always counter-current and is upwinded such that the heavier fluid goes downward and the lighter fluid goes upward. We analyze the properties of the Implicit Hybrid Upwinding (IHU) scheme. It is shown that IHU is locally conservative and produces monotone, physically-consistent numerical solutions. The IHU solutions show numerical diffusion levels that are slightly higher than those for standard FIM (i.e., implicit PPU). The primary advantage of the IHU scheme is that the numerical overall-flux of a fluid phase remains continuous and differentiable as the flow regime changes between co-current and counter-current conditions. This is in contrast to the standard phase-potential upwinding scheme, in which the overall fractional-flow (flux) function is non-differentiable across the boundary between co-current and counter-current flows.

  9. BDNF Polymorphism Predicts General Intelligence after Penetrating Traumatic Brain Injury

    PubMed Central

    Rostami, Elham; Krueger, Frank; Zoubak, Serguei; Dal Monte, Olga; Raymont, Vanessa; Pardini, Matteo; Hodgkinson, Colin A.; Goldman, David; Risling, Mårten; Grafman, Jordan

    2011-01-01

    Neuronal plasticity is a fundamental factor in cognitive outcome following traumatic brain injury. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays an important role in this process. While there are many ways to measure cognitive outcome, general cognitive intelligence is a strong predictor of everyday decision-making, occupational attainment, social mobility and job performance. Thus it is an excellent measure of cognitive outcome following traumatic brain injury (TBI). Although the importance of the single-nucleotide polymorphisms polymorphism on cognitive function has been previously addressed, its role in recovery of general intelligence following TBI is unknown. We genotyped male Caucasian Vietnam combat veterans with focal penetrating TBI (pTBI) (n = 109) and non-head injured controls (n = 38) for 7 BDNF single-nucleotide polymorphisms. Subjects were administrated the Armed Forces Qualification Test (AFQT) at three different time periods: pre-injury on induction into the military, Phase II (10–15 years post-injury, and Phase III (30–35 years post-injury). Two single-nucleotide polymorphisms, rs7124442 and rs1519480, were significantly associated with post-injury recovery of general cognitive intelligence with the most pronounced effect at the Phase II time point, indicating lesion-induced plasticity. The genotypes accounted for 5% of the variance of the AFQT scores, independently of other significant predictors such as pre-injury intelligence and percentage of brain volume loss. These data indicate that genetic variations in BDNF play a significant role in lesion-induced recovery following pTBI. Identifying the underlying mechanism of this brain-derived neurotrophic factor effect could provide insight into an important aspect of post-traumatic cognitive recovery. PMID:22087305

  10. Ceramic surfaces, interfaces and solid-state reactions

    NASA Astrophysics Data System (ADS)

    Heffelfinger, Jason Roy

    Faceting, the decomposition of a surface into two or more surfaces of different orientation, is studied as a function of annealing time for ceramic surfaces. Single-crystals of Alsb2Osb3\\ (alpha-Alsb2Osb3 or corundum structure) are carefully prepared and characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The mechanisms by which the originally smooth vicinal surface transforms into either a hill-and-valley or a terrace-and-step structure have been characterized. The progression of faceting is found to have a series of stages: surface smoothing, nucleation and growth of individual facets, formation of facet domains, coalescence of individual and facet domains and facet coarsening. These stages provide a model for the mechanisms of how other ceramic surfaces may facet into hill-and-valley and terrace-and-step surface microstructures. The well characterized Alsb2Osb3 surfaces provide excellent substrates by which to study the effect of surface structure on thin-film growth. Pulsed-laser deposition was used to grow thin films of yttria stabilized zirconia (YSZ) and Ysb2Osb3 onto annealed Alsb2Osb3 substrates. The substrate surface structure, such as surface steps and terraces, was found to have several effects on thin-film growth. Thin-films grown onto single-crystal substrates serve as a model geometry for studying thin-film solid-state reactions. Here, the reaction sequence and orientation relationship between thin films of Ysb2Osb3 and an Alsb2Osb3 substrate were characterized for different reaction temperatures. In a system were multiple reaction phases can form, the yttria aluminum monoclinic phase (YAM) was found to form prior to formation of other phases in this system. In a second system, a titanium alloy was reacted with single crystal Alsb2Osb3 in order to study phase formation in an intermetallic system. Both Tisb3Al and TiAl were found to form as reaction products and their orientation relationships with the Alsb2Osb3 are discussed.

  11. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue.

    PubMed

    Troester, Jordan C; Jasmin, Jason G; Duffield, Rob

    2018-06-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test - re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union.

  12. Bipedal locomotion in granular media

    NASA Astrophysics Data System (ADS)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  13. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    NASA Astrophysics Data System (ADS)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  14. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments is based upon a novel approach that relies on the global momentum conservation of the closed fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. A numerical example illustrates the method's application to prediction of bulk fluid behavior during a spacecraft ullage settling maneuver.

  15. Lattice Boltzmann Method for Spacecraft Propellant Slosh Simulation

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Powers, Joseph F.; Yang, Hong Q.

    2015-01-01

    A scalable computational approach to the simulation of propellant tank sloshing dynamics in microgravity is presented. In this work, we use the lattice Boltzmann equation (LBE) to approximate the behavior of two-phase, single-component isothermal flows at very low Bond numbers. Through the use of a non-ideal gas equation of state and a modified multiple relaxation time (MRT) collision operator, the proposed method can simulate thermodynamically consistent phase transitions at temperatures and density ratios consistent with typical spacecraft cryogenic propellants, for example, liquid oxygen. Determination of the tank forces and moments relies upon the global momentum conservation of the fluid domain, and a parametric wall wetting model allows tuning of the free surface contact angle. Development of the interface is implicit and no interface tracking approach is required. Numerical examples illustrate the method's application to predicting bulk fluid motion including lateral propellant slosh in low-g conditions.

  16. Microfluidic Controlled Conformal Coating of Particles

    NASA Astrophysics Data System (ADS)

    Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard

    2011-11-01

    Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.

  17. A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging.

    PubMed

    Teng, Ying; Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong

    2016-09-01

    Gravity drainage characteristics are important to improve our understanding of gas-liquid or liquid-liquid two-phase flow in porous media. Stable or unstable displacement fronts that controlled by the capillary force, viscous force, gravitational force, etc., are relevant features of immiscible two-phase flow. In this paper, three dimensionless parameters, namely, the gravity number, the capillary number and the Bond number, were used to describe the effect of the above mentioned forces on two-phase drainage features, including the displacement front and final displacing-phase saturation. A series of experiments on the downward displacement of a viscous fluid by a less viscous fluid in a vertical vessel that is filled with quartz beads are performed by using magnetic resonance imaging (MRI). The experimental results indicate that the wetting properties at both high and low capillary numbers exert remarkable control on the fluid displacement. When the contact angle is lower than 90°, i.e., the displaced phase is the wetting phase, the average velocity Vf of the interface of the two phases (displacement front velocity) is observably lower than when the displaced phase is the non-wetting phase (contact angle higher than 90°). The results show that a fingering phenomenon occurs when the gravity number G is less than the critical gravity number G'=Δμ/μg. Moreover, the higher Bond number results in higher final displacing-phase saturation, whereas the capillary number has an opposite effect. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Statolith action by the numbers: Physics and feasbility

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Yoder, Thomas; Staehelin, L. Andrew

    2016-07-01

    All modern (and ancient) studies make it clear that statolith motion is required for gravisensing, and some evidence indicates a role for statolith-microfilament interaction. In this study two components of statolith action are considered quantitatively: (1) the movement of statoliths through the columella cell cytoplasm and (2) forces at the site of action of the statolith. (1) Statoliths move through the cytoplasm in the presence of viscous and elastic forces that may be considered separately. The viscous component may be characterized as a solution with a viscosity of approximately 40 centiPoise. Statoliths are deflected from perfectly vertical trajectories by various obstacles, including actin filaments, and their velocities are influenced by interactions between statoliths. Channeling flow is commonly observed, but this cannot be due to the breaking of actin filaments by the force of the sedimenting statolith, as about 600 pN force is required to break a filament, and the force due to gravity on the amyloplast is about 0.07 pN. Under least viscous conditions the randomly-directed Brownian diffusion velocity of the amyloplast is about 10% the sedimentation velocity. (2) Intimate association of statoliths with the cortical ER region requiring gravitational force is postulated. Thin-section micrographs clearly show an interface between the cortex and the central cytoplasm of the columella cell in vascular plant species that have been studied. Whether or not an exchange of chemical components is required, experiments, including observations in low gravity, have demonstrated that the statolith is shallowly embedded in this cortical region to the extent that deformation occurs consistent with Newton's third law. Relieving the gravitational force results in instantaneous motion of the amyloplast away from the cortex. The following inquiry was made concerning the physics at the interface between the statolith and the material of the cortical ER region. How much force does the statolith exert on the interface between the ER cortex and inner cytoplasm? What is the origin of the elastic force that opposes the penetration of the statolith and that causes it to rebound when the gravitational force is relieved? Candidates considered included actin filaments, endoplasmic membrane, an immiscible-phase interface, and a miscible-phase interface. Forces estimated to produce a 300nm indentation in such interfaces were 100, 30, 0.3, and <1 pN, respectively. The gravitational force on a single statolith is typically 0.1 pN or less. These numbers suggest that the statolith is interacting with an aqueous-aqueous interface with low interfacial tension (<1 μN/m). Further quantitative testing of these notions should be performed on forthcoming low-gravity sub-orbital crewed flights on which dynamic microscopy can be performed during several seconds of increased g-loading followed by some ten minutes of reduced gravity.

  19. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    PubMed

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. 30 CFR 75.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Alternating Current Circuits § 75.905 Connection of single-phase loads. [Statutory Provisions] Single-phase... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection of single-phase loads. 75.905 Section 75.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...

  1. 30 CFR 75.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Alternating Current Circuits § 75.905 Connection of single-phase loads. [Statutory Provisions] Single-phase... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection of single-phase loads. 75.905 Section 75.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...

  2. Standard spacecraft economic analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Harris, E. D.; Large, J. P.

    1976-01-01

    A study of the comparative program costs associated with use of various standardized spacecraft for Air Force space test program missions to be flown on the space shuttle during the 1980-1990 time period is reviewed. The first phase of the study considered a variety of procurement mixes composed of existing or programmed NASA standard spacecraft designs and a Air Force standard spacecraft design. The results were briefed to a joint NASA/Air Force audience on July 11, 1976. The second phase considered additional procurement options using an upgraded version of an existing NASA design. The results of both phases are summarized.

  3. Directional Forces by Momentumless Excitation and Order-to-Order Transition in Peierls-Distorted Solids: The Case of GeTe

    NASA Astrophysics Data System (ADS)

    Chen, Nian-Ke; Li, Xian-Bin; Bang, Junhyeok; Wang, Xue-Peng; Han, Dong; West, Damien; Zhang, Shangbai; Sun, Hong-Bo

    2018-05-01

    Time-dependent density-functional theory molecular dynamics reveals an unexpected effect of optical excitation in the experimentally observed rhombohedral-to-cubic transition of GeTe. The excitation induces coherent forces along [001], which may be attributed to the unique energy landscape of Peierls-distorted solids. The forces drive the A1 g optical phonon mode in which Ge and Te move out of phase. Upon damping of the A1 g mode, phase transition takes place, which involves no atomic diffusion, defect formation, or the nucleation and growth of the cubic phase.

  4. Interpreting lateral dynamic weight shifts using a simple inverted pendulum model.

    PubMed

    Kennedy, Michael W; Bretl, Timothy; Schmiedeler, James P

    2014-01-01

    Seventy-five young, healthy adults completed a lateral weight-shifting activity in which each shifted his/her center of pressure (CoP) to visually displayed target locations with the aid of visual CoP feedback. Each subject's CoP data were modeled using a single-link inverted pendulum system with a spring-damper at the joint. This extends the simple inverted pendulum model of static balance in the sagittal plane to lateral weight-shifting balance. The model controlled pendulum angle using PD control and a ramp setpoint trajectory, and weight-shifting was characterized by both shift speed and a non-minimum phase (NMP) behavior metric. This NMP behavior metric examines the force magnitude at shift initiation and provides weight-shifting balance performance information that parallels the examination of peak ground reaction forces in gait analysis. Control parameters were optimized on a subject-by-subject basis to match balance metrics for modeled results to metric values calculated from experimental data. Overall, the model matches experimental data well (average percent error of 0.35% for shifting speed and 0.05% for NMP behavior). These results suggest that the single-link inverted pendulum model can be used effectively to capture lateral weight-shifting balance, as it has been shown to model static balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Resolving DNA-ligand intercalation in the entropic stretching regime

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali A.

    Single molecule studies of DNA intercalation are typically conducted by applying stretching forces to obtain force-dependent DNA elongation measurements. The zero-force properties of DNA intercalation are determined by equilibrium and kinetic force-analysis. However, the applied stretching forces that are above the entropic regime (>5 pN) prevent DNA-DNA contact which may eliminate competitive DNA-ligand interactions. In particular, it is noted that cationic mono-intercalators investigated by single molecule force spectroscopy are mostly found to intercalate DNA with single rate, while bulk studies reported additional slower rates. Here, a proposed framework quantifies DNA intercalation by cationic ligands in competition with relatively rapid kinetic DNA-ligand aggregation. At a constant applied force in the entropic stretching regime, the analysis illustrates that DNA intercalation would be measurably optimized only within a narrow range of low ligand concentrations. As DNA intercalators are considered for potential DNA-targeted therapeutics, this analysis provides insights in tuning ligand concertation to maximize therapeutics efficiency.

  6. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  7. Single phase computed tomography is equivalent to dual phase method for localizing hyperfunctioning parathyroid glands in patients with primary hyperparathyroidism: a retrospective review

    PubMed Central

    Morón, Fanny; Delumpa, Alfred; Guffey, Danielle; Dunaway, David

    2017-01-01

    Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial) versus single phase (arterial) CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695). These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient. PMID:28828238

  8. Chaotic behavior in Casimir oscillators: A case study for phase-change materials.

    PubMed

    Tajik, Fatemeh; Sedighi, Mehdi; Khorrami, Mohammad; Masoudi, Amir Ali; Palasantzas, George

    2017-10-01

    Casimir forces between material surfaces at close proximity of less than 200 nm can lead to increased chaotic behavior of actuating devices depending on the strength of the Casimir interaction. We investigate these phenomena for phase-change materials in torsional oscillators, where the amorphous to crystalline phase transitions lead to transitions between high and low Casimir force and torque states, respectively, without material compositions. For a conservative system bifurcation curve and Poincare maps analysis show the absence of chaotic behavior but with the crystalline phase (high force-torque state) favoring more unstable behavior and stiction. However, for a nonconservative system chaotic behavior can take place introducing significant risk for stiction, which is again more pronounced for the crystalline phase. The latter illustrates the more general scenario that stronger Casimir forces and torques increase the possibility for chaotic behavior. The latter is making it impossible to predict whether stiction or stable actuation will occur on a long-term basis, and it is setting limitations in the design of micronano devices operating at short-range nanoscale separations.

  9. Muscle Activity in Single- vs. Double-Leg Squats.

    PubMed

    DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

  10. Muscle Activity in Single- vs. Double-Leg Squats

    PubMed Central

    DeFOREST, BRADLEY A.; CANTRELL, GREGORY S.; SCHILLING, BRIAN K.

    2014-01-01

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired. PMID:27182408

  11. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).

  12. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light

    NASA Astrophysics Data System (ADS)

    Friese, M. E. J.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Dearden, E. W.

    1996-12-01

    A single-beam gradient trap could potentially be used to hold a stylus for scanning force microscopy. With a view to development of this technique, we modeled the optical trap as a harmonic oscillator and therefore characterized it by its force constant. We measured force constants and resonant frequencies for 1 4- m-diameter polystyrene spheres in a single-beam gradient trap using measurements of backscattered light. Force constants were determined with both Gaussian and doughnut laser modes, with powers of 3 and 1 mW, respectively. Typical values for spring constants were measured to be between 10 6 and 4 10 6 N m. The resonant frequencies of trapped particles were measured to be between 1 and 10 kHz, and the rms amplitudes of oscillations were estimated to be around 40 nm. Our results confirm that the use of the doughnut mode for single-beam trapping is more efficient in the axial direction.

  13. Single ricin detection by atomic force microscopy chemomechanical mapping

    NASA Astrophysics Data System (ADS)

    Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian

    2009-07-01

    The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.

  14. Ant groups optimally amplify the effect of transiently informed individuals

    NASA Astrophysics Data System (ADS)

    Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    2015-07-01

    To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge.

  15. Effect of randomness on multi-frequency aeroelastic responses resolved by Unsteady Adaptive Stochastic Finite Elements

    NASA Astrophysics Data System (ADS)

    Witteveen, Jeroen A. S.; Bijl, Hester

    2009-10-01

    The Unsteady Adaptive Stochastic Finite Elements (UASFE) method resolves the effect of randomness in numerical simulations of single-mode aeroelastic responses with a constant accuracy in time for a constant number of samples. In this paper, the UASFE framework is extended to multi-frequency responses and continuous structures by employing a wavelet decomposition pre-processing step to decompose the sampled multi-frequency signals into single-frequency components. The effect of the randomness on the multi-frequency response is then obtained by summing the results of the UASFE interpolation at constant phase for the different frequency components. Results for multi-frequency responses and continuous structures show a three orders of magnitude reduction of computational costs compared to crude Monte Carlo simulations in a harmonically forced oscillator, a flutter panel problem, and the three-dimensional transonic AGARD 445.6 wing aeroelastic benchmark subject to random fields and random parameters with various probability distributions.

  16. Ant groups optimally amplify the effect of transiently informed individuals

    PubMed Central

    Gelblum, Aviram; Pinkoviezky, Itai; Fonio, Ehud; Ghosh, Abhijit; Gov, Nir; Feinerman, Ofer

    2015-01-01

    To cooperatively transport a large load, it is important that carriers conform in their efforts and align their forces. A downside of behavioural conformism is that it may decrease the group's responsiveness to external information. Combining experiment and theory, we show how ants optimize collective transport. On the single-ant scale, optimization stems from decision rules that balance individuality and compliance. Macroscopically, these rules poise the system at the transition between random walk and ballistic motion where the collective response to the steering of a single informed ant is maximized. We relate this peak in response to the divergence of susceptibility at a phase transition. Our theoretical models predict that the ant-load system can be transitioned through the critical point of this mesoscopic system by varying its size; we present experiments supporting these predictions. Our findings show that efficient group-level processes can arise from transient amplification of individual-based knowledge. PMID:26218613

  17. Theoretical modeling of a gas clearance phase regulation mechanism for a pneumatically-driven split-Stirling-cycle cryocooler

    NASA Astrophysics Data System (ADS)

    Zhang, Cun-quan; Zhong, Cheng

    2015-03-01

    The concept of a new type of pneumatically-driven split-Stirling-cycle cryocooler with clearance-phase-adjustor is proposed. In this implementation, the gap between the phase-adjusting part and the cylinder of the spring chamber is used, instead of dry friction acting on the pneumatically-driven rod to control motion damping of the displacer and to adjust the phase difference between the compression piston and displacer. It has the advantages of easy damping adjustment, low cost, and simplified manufacturing and assembly. A theoretical model has been established to simulate its dynamic performance. The linear compressor is modeled under adiabatic conditions, and the displacement of the compression piston is experimentally rectified. The working characteristics of the compressor motor and the principal losses of cooling, including regenerator inefficiency loss, solid conduction loss, shuttle loss, pump loss and radiation loss, are taken into account. The displacer motion was modeled as a single-degree-of-freedom (SDOF) forced system. A set of governing equations can be solved numerically to simulate the cooler's performance. The simulation is useful for understanding the physical processes occurring in the cooler and for predicting the cooler's performance.

  18. Localized to itinerant transition of f electrons in ordered Ce films on W(110)

    NASA Astrophysics Data System (ADS)

    Chen, Q. Y.; Feng, W.; Xie, D. H.; Lai, X. C.; Zhu, X. G.; Huang, L.

    2018-04-01

    A key issue to understand the driving force and underlying physics in the isostructural γ -α transition in Cerium is the character of the 4 f states, whether it is localized or itinerant. Here the surface topography and electronic structure of the well-ordered Ce metal films on a W(110) substrate were investigated by using scanning tunneling microscopy, angle-resolved photoemission spectroscopy and density functional theory, and single-site dynamical mean-field theory calculations. Three nearly flat f bands can be observed, and a weakly dispersive quasiparticle band near the Fermi level has been directly observed at low temperature, indicating the hybridization between f electrons and conduction electrons in the low-temperature α phase. The hybridization strength becomes weaker upon increasing temperature, and the f electrons become almost fully localized at 300 K in the high-temperature γ phase. The observed localized-to-itinerant transition of the f electrons with decreasing temperature gives direct experimental proof for the changes of the 4 f character in the isostructural γ -α phase transition. Our results suggest that the character of the f electrons plays a crucial role during the γ -α phase transition.

  19. Development of damage suppression system using embedded SMA foil sensor and actuator

    NASA Astrophysics Data System (ADS)

    Ogisu, Toshimichi; Nomura, Masato; Ando, Norio; Takaki, Junji; Song, Dong Y.; Takeda, Nobuo

    2000-06-01

    The recent studies suggest possible applications of shape memory alloy (SMA) for a smart health monitoring and suppression of damage growth. The authors have been conducting research and development studies on applications of embedded SMA foil sensors and actuators in CFRP laminates. The goal of this research is suppression of damage growth in CFRP laminates. At first, the authors proposed a concept of damage suppression in CFRP laminates. Then, the development studies are conducted in three phases. The first phase is the improvement of interlaminar shear strength between SMA and CFRP laminates. Some surface treatments were investigated for the improvement of bonding property by peel resistance test and single lap shear strength test. The second phase is the investigation of fabrication technique for producing a CFRP panel with embedded SMA foils. Fixture jigs were devised to introduce tensile loads during the fabrication process. The third phase is the strength demonstration of CFRP laminates with embedded SMA foils. Some strength test were conducted to obtain the design data for aircraft structures. It is confirmed that the shrinking force of pre-strained SMA influences to the strength and the crack density of CFRP panel.

  20. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles.

    PubMed

    Yoon, Sungjun; Kim, Jeong Ah; Lee, Seung Hwan; Kim, Minsoo; Park, Tai Hyun

    2013-04-21

    The importance of creating a three-dimensional (3-D) multicellular spheroid has recently been gaining attention due to the limitations of monolayer cell culture to precisely mimic in vivo structure and cellular interactions. Due to this emerging interest, researchers have utilized new tools, such as microfluidic devices, that allow high-throughput and precise size control to produce multicellular spheroids. We have developed a droplet-based microfluidic system that can encapsulate both cells and magnetic nanoparticles within alginate beads to mimic the function of a multicellular tumor spheroid. Cells were entrapped within the alginate beads along with magnetic nanoparticles, and the beads of a relatively uniform size (diameters of 85% of the beads were 170-190 μm) were formed in the oil phase. These beads were passed through parallel streamlines of oil and culture medium, where the beads were magnetically transferred into the medium phase from the oil phase using an external magnetic force. This microfluidic chip eliminates additional steps for collecting the spheroids from the oil phase and transferring them to culture medium. Ultimately, the overall spheroid formation process can be achieved on a single microchip.

Top