Compact time- and space-integrating SAR processor: performance analysis
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.; Christensen, Marc P.
1995-06-01
Progress made during the previous 12 months toward the fabrication and test of a flight demonstration prototype of the acousto-optic time- and space-integrating real-time SAR image formation processor is reported. Compact, rugged, and low-power analog optical signal processing techniques are used for the most computationally taxing portions of the SAR imaging problem to overcome the size and power consumption limitations of electronic approaches. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported for this year include tests of a laboratory version of the RAPID SAR concept on phase history data generated from real SAR high-resolution imagery; a description of the new compact 2D acousto-optic scanner that has a 2D space bandwidth product approaching 106 sports, specified and procured for NEOS Technologies during the last year; and a design and layout of the optical module portion of the flight-worthy prototype.
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
A Comparative Study of Acousto-Optic Time-Integrating Correlators for Adaptive Jamming Cancellation
1997-10-01
This final report presents a comparative study of the space-integrating and time-integrating configurations of an acousto - optic correlator...systematically evaluate all existing acousto - optic correlator architectures and to determine which would be most suitable for adaptive jamming
AFRRI (Armed Forces Radiobiology Research Institute) Reports, July, August, September 1988
1988-11-01
samples. Asymmetry of phonon Using this approximation in equation (3) we can scattering rates in oriented DNA have been observed perform the space...integration and obtain the result. using Raman spectroscopy: ’" ’’ however, these low- frequency modes should not be very effective in Ifll(K) activating...Paretzke 1981) that is slowing down in a homogeneous material of unit density. This approximation, which is based on inelastic scattering of protons and
Pressure dependence of band-gap and phase transitions in bulk CuX (X = Cl, Br, I)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azhikodan, Dilna; Nautiyal, Tashi; Sharma, S.
2016-05-06
Usually a phase transition, in theoretical studies, is explored or verified by studying the total energy as a function of the volume considering various plausible phases. The intersection point, if any, of the free energy vs. volume curves for the different phases is then the indicator of the phase transition(s). The question is, can the theoretical study of a single phase alone indicate a phase transition? i.e. can we look beyond the phase under consideration through such a study? Using density-functional theory, we report a novel approach to suggest phase transition(s) through theoretical study of a single phase. Copper halidesmore » have been engaged for this study. These are direct band-gap semiconductors, with zinc blende structure at ambient conditions, and are reported to exhibit many phase transitions. We show that the study of volume dependence of energy band-gap in a single phase facilitates looking beyond the phase under consideration. This, when translated to pressures, reflects the phase transition pressures for CuX (X = Cl, Br, I) with an encouraging accuracy. This work thus offers a simple, yet reliable, approach based on electronic structure calculations to investigate new semiconducting materials for phase changes under pressure.« less
Compact time- and space-integrating SAR processor: design and development status
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.
1994-06-01
Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.
NASA Astrophysics Data System (ADS)
Zounia, M.; Shamirzaie, M.; Ashouri, A.
2017-09-01
In this paper quantum teleportation of an unknown quantum state via noisy maximally bipartite (Bell) and maximally tripartite (Greenberger-Horne-Zeilinger (GHZ)) entangled states are investigated. We suppose that one of the observers who would receive the sent state accelerates uniformly with respect to the sender. The interactions of the quantum system with its environment during the teleportation process impose noises. These (unital and nonunital) noises are: phase damping, phase flip, amplitude damping and bit flip. In expressing the modes of the Dirac field used as qubits, in the accelerating frame, the so-called single mode approximation is not imposed. We calculate the fidelities of teleportation, and discuss their behaviors using suitable plots. The effects of noise, acceleration and going beyond the single mode approximation are discussed. Although the Bell states bring higher fidelities than GHZ states, the global behaviors of the two quantum systems with respect to some noise types, and therefore their fidelities, are different.
Single Sublattice Endotaxial Phase Separation Driven by Charge Frustration in a Complex Oxide
2013-01-01
Complex transition-metal oxides are important functional materials in areas such as energy and information storage. The cubic ABO3 perovskite is an archetypal example of this class, formed by the occupation of small octahedral B-sites within an AO3 network defined by larger A cations. We show that introduction of chemically mismatched octahedral cations into a cubic perovskite oxide parent phase modifies structure and composition beyond the unit cell length scale on the B sublattice alone. This affords an endotaxial nanocomposite of two cubic perovskite phases with distinct properties. These locally B-site cation-ordered and -disordered phases share a single AO3 network and have enhanced stability against the formation of a competing hexagonal structure over the single-phase parent. Synergic integration of the distinct properties of these phases by the coherent interfaces of the composite produces solid oxide fuel cell cathode performance superior to that expected from the component phases in isolation. PMID:23750709
Batshon, Hussam G; Djordjevic, Ivan; Xu, Lei; Wang, Ting
2010-06-21
In this paper, we present a modified coded hybrid subcarrier/ amplitude/phase/polarization (H-SAPP) modulation scheme as a technique capable of achieving beyond 400 Gb/s single-channel transmission over optical channels. The modified H-SAPP scheme profits from the available resources in addition to geometry to increase the bandwidth efficiency of the transmission system, and so increases the aggregate rate of the system. In this report we present the modified H-SAPP scheme and focus on an example that allows 11 bits/Symbol that can achieve 440 Gb/s transmission using components of 50 Giga Symbol/s (GS/s).
Acousto-optic time- and space-integrating spotlight-mode SAR processor
NASA Astrophysics Data System (ADS)
Haney, Michael W.; Levy, James J.; Michael, Robert R., Jr.
1993-09-01
The technical approach and recent experimental results for the acousto-optic time- and space- integrating real-time SAR image formation processor program are reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results include a demonstration of the processor's ability to perform high-resolution spotlight-mode SAR imaging by simultaneously compensating for range migration and range/azimuth coupling in the analog optical domain, thereby avoiding a highly power-consuming digital interpolation or reformatting operation usually required in all-electronic approaches.
Liao, Chen-Ting; Sandhu, Arvinder; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B
2015-04-10
We investigate the absorption line shapes of laser-dressed atoms beyond the single-atom response, by using extreme ultraviolet (XUV) attosecond pulse trains to probe an optically thick helium target under the influence of a strong infrared (IR) field. We study the interplay between the IR-induced phase shift of the microscopic time-dependent dipole moment and the resonant-propagation-induced reshaping of the macroscopic XUV pulse. Our experimental and theoretical results show that as the optical depth increases, this interplay leads initially to a broadening of the IR-modified line shape, and subsequently, to the appearance of new, narrow features in the absorption line.
Hultberg, Josabeth; Rudebeck, Carl Edvard
2017-09-01
The aim of the study was to describe and explore patient agency through resistance in decision-making about cardiovascular preventive drugs in primary care. Six general practitioners from the southeast of Sweden audiorecorded 80 consultations. From these, 28 consultations with proposals from GPs for cardiovascular preventive drug treatments were chosen for theme-oriented discourse analysis. The study shows how patients participate in decision-making about cardiovascular preventive drug treatments through resistance in response to treatment proposals. Passive modes of resistance were withheld responses and minimal unmarked acknowledgements. Active modes were to ask questions, contest the address of an inclusive we, present an identity as a non-drugtaker, disclose non-adherence to drug treatments, and to present counterproposals. The active forms were also found in anticipation to treatment proposals from the GPs. Patients and GPs sometimes displayed mutual renouncement of responsibility for decision-making. The decision-making process appeared to expand both beyond a particular phase in the consultations and beyond the single consultation. The recognition of active and passive resistance from patients as one way of exerting agency may prove valuable when working for patient participation in clinical practice, education and research about patient-doctor communication about cardiovascular preventive medication. We propose particular attentiveness to patient agency through anticipatory resistance, patients' disclosures of non-adherence and presentations of themselves as non-drugtakers. The expansion of the decision-making process beyond single encounters points to the importance of continuity of care. KEY POINTS Guidelines recommend shared decision-making about cardiovascular preventive treatment. We need an understanding of how this is accomplished in actual consultations.This paper describes how patient agency in decision-making is displayed through different forms of resistance to treatment proposals. •The decision-making process expands beyond particular phases in consultations and beyond single encounters, implying the importance of continuity of care. •Attentiveness to patient participation through resistance in treatment negotiations is warranted in clinical practice, research and education about prescribing communication.
Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert
2017-02-28
A static deuterium nuclear magnetic resonance ( 2 HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d 2 In the absence of an electric field, the 2 H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.
Rost, Christina M.; Sachet, Edward; Borman, Trent; Moballegh, Ali; Dickey, Elizabeth C.; Hou, Dong; Jones, Jacob L.; Curtarolo, Stefano; Maria, Jon-Paul
2015-01-01
Configurational disorder can be compositionally engineered into mixed oxide by populating a single sublattice with many distinct cations. The formulations promote novel and entropy-stabilized forms of crystalline matter where metal cations are incorporated in new ways. Here, through rigorous experiments, a simple thermodynamic model, and a five-component oxide formulation, we demonstrate beyond reasonable doubt that entropy predominates the thermodynamic landscape, and drives a reversible solid-state transformation between a multiphase and single-phase state. In the latter, cation distributions are proven to be random and homogeneous. The findings validate the hypothesis that deliberate configurational disorder provides an orthogonal strategy to imagine and discover new phases of crystalline matter and untapped opportunities for property engineering. PMID:26415623
Hultberg, Josabeth; Rudebeck, Carl Edvard
2017-01-01
Objective The aim of the study was to describe and explore patient agency through resistance in decision-making about cardiovascular preventive drugs in primary care. Design Six general practitioners from the southeast of Sweden audiorecorded 80 consultations. From these, 28 consultations with proposals from GPs for cardiovascular preventive drug treatments were chosen for theme-oriented discourse analysis. Results The study shows how patients participate in decision-making about cardiovascular preventive drug treatments through resistance in response to treatment proposals. Passive modes of resistance were withheld responses and minimal unmarked acknowledgements. Active modes were to ask questions, contest the address of an inclusive we, present an identity as a non-drugtaker, disclose non-adherence to drug treatments, and to present counterproposals. The active forms were also found in anticipation to treatment proposals from the GPs. Patients and GPs sometimes displayed mutual renouncement of responsibility for decision-making. The decision-making process appeared to expand both beyond a particular phase in the consultations and beyond the single consultation. Conclusions The recognition of active and passive resistance from patients as one way of exerting agency may prove valuable when working for patient participation in clinical practice, education and research about patient–doctor communication about cardiovascular preventive medication. We propose particular attentiveness to patient agency through anticipatory resistance, patients’ disclosures of non-adherence and presentations of themselves as non-drugtakers. The expansion of the decision-making process beyond single encounters points to the importance of continuity of care. KEY POINTS Guidelines recommend shared decision-making about cardiovascular preventive treatment. We need an understanding of how this is accomplished in actual consultations.This paper describes how patient agency in decision-making is displayed through different forms of resistance to treatment proposals. •The decision-making process expands beyond particular phases in consultations and beyond single encounters, implying the importance of continuity of care. •Attentiveness to patient participation through resistance in treatment negotiations is warranted in clinical practice, research and education about prescribing communication. PMID:28277056
Influence of electron doping on the ground state of (Sr 1-xLa x) 2IrO 4
Chen, Xiang; Hogan, Tom; Walkup, D.; ...
2015-08-17
The evolution of the electronic properties of electron-doped (Sr 1-xLa x) 2IrO 4 is experimentally explored as the doping limit of La is approached. As electrons are introduced, the electronic ground state transitions from a spin-orbit Mott phase into an electronically phase separated state, where long-range magnetic order vanishes beyond x = 0:02 and charge transport remains percolative up to the limit of La substitution (x =0:06). In particular, the electronic ground state remains inhomogeneous even beyond the collapse of the parent state's long-range antiferromagnetic order, while persistent short-range magnetism survives up to the highest La-substitution levels. Furthermore, as electronsmore » are doped into Sr 2IrO 4, we observe the appearance of a low temperature magnetic glass-like state intermediate to the complete suppression of antiferromagnetic order. Universalities and di erences in the electron-doped phase diagrams of single layer and bilayer Ruddlesden-Popper strontium iridates are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less
Donatelli, Jeffrey J.; Sethian, James A.; Zwart, Peter H.
2017-06-26
Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithmmore » to reconstruct structural information from singleparticle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.« less
NASA Astrophysics Data System (ADS)
Jacques, Alain
2016-12-01
The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.
Beyond the Quantum Hall Effect: New Phases of 2D Electrons at High Magnetic Field
NASA Astrophysics Data System (ADS)
Eisenstein, James
2007-03-01
In this talk I will discuss recent experiments on high mobility single and double layer 2D electron systems in which collective phases lying outside the usual quantum Hall effect paradigm have been detected and studied. For example, in single layer 2D systems near half-filling of highly excited Landau levels new states characterized by a massive anisotropy in the electrical resistivity of the sample are observed at very low temperature. The anisotropy has been widely interpreted as the signature of a new class of correlated electron phases which incorporate a stripe-like charge density modulation. Orientational ordering of small striped domains at low temperatures accounts for the resistive anisotropy and is reminiscent of the isotropic-to-nematic phase transition in classical liquid crystals. Double layer 2D electron systems possess collective phases not present in single layer systems. In particular, when the total number of electrons in the bilayer equals the degeneracy of a single Landau level, an unusual phase appears at small layer separation. This phase possesses a novel broken symmetry, spontaneous interlayer phase coherence, which has a number of dramatic experimental signatures. The interlayer tunneling conductance develops a strong and very sharp resonance around zero bias resembling the dc Josephson effect. At the same time, both the longitudinal and Hall resistances of the sample vanish at low temperatures when currents are driven in opposite directions through the two layers. These, and other observations are broadly consistent with theories in which the broken symmetry phase can equivalently be described as a pseudospin ferromagnet or an (imperfect) excitonic superfluid. This work reflects a collaboration with M.P. Lilly, K.B. Cooper, I.B. Spielman, M. Kellogg, L.A. Tracy, L.N. Pfeiffer, and K.W. West.
Dense Carbon Monoxide to 160 GPa: Stepwise Polymerization to Two-Dimensional Layered Solid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Young-Jay; Kim, Minseob; Lim, Jinhyuk
Carbon monoxide (CO) is the first molecular system found to transform into a nonmolecular “polymeric” solid above 5.5 GPa, yet been studied beyond 10 GPa. Here, we show a series of pressure-induced phase transformations in CO to 160 GPa: from a molecular solid to a highly colored, low-density polymeric phase I to translucent, high-density phase II to transparent, layered phase III. The properties of these phases are consistent with those expected from recently predicted 1D P2 1/m, 3D I2 12 12 1, and 2D Cmcm structures, respectively. Thus, the present results advocate a stepwise polymerization of CO triple bonds tomore » ultimately a 2D singly bonded layer structure with an enhanced ionic character.« less
Rosetta Phase II: Measuring and Interpreting Cultural Differences in Cognition
2008-07-31
approaches are used to capture culture. First, anthropology and psychiatry adopt research methods that focus on specific groups or individuals...Classical anthropology provides information about behaviors, customs, social roles, and social rules based on extended and intense observation of single...This training goes beyond rules and procedures so that military personnel can see events through the eyes of adversaries or host nationals. They must
Chiral liquid phase of simple quantum magnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhentao; Feiguin, Adrian E.; Zhu, Wei
2017-11-07
We study a T=0 quantum phase transition between a quantum paramagnetic state and a magnetically ordered state for a spin S=1 XXZ Heisenberg antiferromagnet on a two-dimensional triangular lattice. The transition is induced by an easy-plane single-ion anisotropy D. At the mean-field level, the system undergoes a direct transition at a critical D=D c between a paramagnetic state at D>D c and an ordered state with broken U(1) symmetry at Dc. We show that beyond mean field the phase diagram is very different and includes an intermediate, partially ordered chiral liquid phase. Specifically, we find that inside the paramagnetic phasemore » the Ising (J z) component of the Heisenberg exchange binds magnons into a two-particle bound state with zero total momentum and spin. This bound state condenses at D>D c, before single-particle excitations become unstable, and gives rise to a chiral liquid phase, which spontaneously breaks spatial inversion symmetry, but leaves the spin-rotational U(1) and time-reversal symmetries intact. This chiral liquid phase is characterized by a finite vector chirality without long-range dipolar magnetic order. In our analytical treatment, the chiral phase appears for arbitrarily small J z because the magnon-magnon attraction becomes singular near the single-magnon condensation transition. This phase exists in a finite range of D and transforms into the magnetically ordered state at some Dc. In conclusion, we corroborate our analytic treatment with numerical density matrix renormalization group calculations.« less
Hemphill, Ashton S; Shen, Yuecheng; Liu, Yan; Wang, Lihong V
2017-11-27
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ∼1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
NASA Astrophysics Data System (ADS)
Hemphill, Ashton S.; Shen, Yuecheng; Liu, Yan; Wang, Lihong V.
2017-11-01
In biological applications, optical focusing is limited by the diffusion of light, which prevents focusing at depths greater than ˜1 mm in soft tissue. Wavefront shaping extends the depth by compensating for phase distortions induced by scattering and thus allows for focusing light through biological tissue beyond the optical diffusion limit by using constructive interference. However, due to physiological motion, light scattering in tissue is deterministic only within a brief speckle correlation time. In in vivo tissue, this speckle correlation time is on the order of milliseconds, and so the wavefront must be optimized within this brief period. The speed of digital wavefront shaping has typically been limited by the relatively long time required to measure and display the optimal phase pattern. This limitation stems from the low speeds of cameras, data transfer and processing, and spatial light modulators. While binary-phase modulation requiring only two images for the phase measurement has recently been reported, most techniques require at least three frames for the full-phase measurement. Here, we present a full-phase digital optical phase conjugation method based on off-axis holography for single-shot optical focusing through scattering media. By using off-axis holography in conjunction with graphics processing unit based processing, we take advantage of the single-shot full-phase measurement while using parallel computation to quickly reconstruct the phase map. With this system, we can focus light through scattering media with a system latency of approximately 9 ms, on the order of the in vivo speckle correlation time.
Geometric curvature and phase of the Rabi model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Lijun; Huai, Sainan; Guo, Liping
2015-11-15
We study the geometric curvature and phase of the Rabi model. Under the rotating-wave approximation (RWA), we apply the gauge independent Berry curvature over a surface integral to calculate the Berry phase of the eigenstates for both single and two-qubit systems, which is found to be identical with the system of spin-1/2 particle in a magnetic field. We extend the idea to define a vacuum-induced geometric curvature when the system starts from an initial state with pure vacuum bosonic field. The induced geometric phase is related to the average photon number in a period which is possible to measure inmore » the qubit–cavity system. We also calculate the geometric phase beyond the RWA and find an anomalous sudden change, which implies the breakdown of the adiabatic theorem and the Berry phases in an adiabatic cyclic evolution are ill-defined near the anti-crossing point in the spectrum.« less
NASA Astrophysics Data System (ADS)
Maji, Bikas C.; Krishnan, Madangopal; Sujata, M.; Gouthama; Ray, Ranjit K.
2013-01-01
The effect of Co addition has been studied in Fe-30Mn-6Si- xCo ( x = 0 to 9 wt pct) shape memory alloys in terms of their microstructure, martensitic transformation and shape recovery. Microstructural investigations reveal that in Fe-Mn-Si-Co alloys, the microstructure remains single-phase austenite (γ) up to 5 pct Co and beyond that becomes two-phase comprising γ and off-stoichiometric (Fe,Co)5Mn3Si2 intermetallic π-phases. The forward γ-ɛ martensite transformation start temperature ( M S) decreases with the addition of Co up to 5 pct, and alloys containing more than 5 pct Co, show slightly higher M S possibly on account of two-phase microstructure. Unlike M S, the ɛ-γ reverse transformation start temperature ( A S) has been found to remain almost unaltered by Co addition. In general, addition of Co to Fe-Mn-Si alloys deteriorates shape recovery due to decreasing resistance to plastic yielding concomitant with the formation of stress induced ɛ martensite. However, there is an improvement in shape recovery beyond 5 pct Co addition, possibly due to the strengthening effect arising from the presence of (Fe,Co)5Mn3Si2 precipitates within the two-phase microstructure and due to higher amount of stress induced ɛ martensite.
Beyond Atomic Sizes and Hume-Rothery Rules: Understanding and Predicting High-Entropy Alloys
Troparevsky, M. Claudia; Morris, James R.; Daene, Markus; ...
2015-09-03
High-entropy alloys constitute a new class of materials that provide an excellent combination of strength, ductility, thermal stability, and oxidation resistance. Although they have attracted extensive attention due to their potential applications, little is known about why these compounds are stable or how to predict which combination of elements will form a single phase. Here, we present a review of the latest research done on these alloys focusing on the theoretical models devised during the last decade. We discuss semiempirical methods based on the Hume-Rothery rules and stability criteria based on enthalpies of mixing and size mismatch. To provide insightsmore » into the electronic and magnetic properties of high-entropy alloys, we show the results of first-principles calculations of the electronic structure of the disordered solid-solution phase based on both Korringa Kohn Rostoker coherent potential approximation and large supercell models of example face-centered cubic and body-centered cubic systems. Furthermore, we discuss in detail a model based on enthalpy considerations that can predict which elemental combinations are most likely to form a single-phase high-entropy alloy. The enthalpies are evaluated via first-principles high-throughput density functional theory calculations of the energies of formation of binary compounds, and therefore it requires no experimental or empirically derived input. Finally, the model correctly accounts for the specific combinations of metallic elements that are known to form single-phase alloys while rejecting similar combinations that have been tried and shown not to be single phase.« less
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
High harmonic generation in rare gas solids
NASA Astrophysics Data System (ADS)
Reis, David
2015-05-01
There has recently been renewed interest in the interaction of strong optical fields with large band-gap solids. The response is known to involve the attosecond dynamics of the electrons and includes the generation of non-perturbative high-order harmonics. However, the detailed mechanism remain a matter of intense debate. Here we report on high harmonic generation in rare gas solids as compared to a dilute gas. The measured spectrum in the solid exhibits a secondary plateau and a subsequent high-energy cut-off that extends well beyond the gas phase, while the ellipticity dependence is simlar to the gas phase and suggests importance of coherent single-site recombination.
Pham, Quang Duc; Hayasaki, Yoshio
2015-01-01
We demonstrate an optical frequency comb profilometer with a single-pixel camera to measure the position and profile of an object's surface that exceeds far beyond light wavelength without 2π phase ambiguity. The present configuration of the single-pixel camera can perform the profilometry with an axial resolution of 3.4 μm at 1 GHz operation corresponding to a wavelength of 30 cm. Therefore, the axial dynamic range was increased to 0.87×105. It was found from the experiments and computer simulations that the improvement was derived from higher modulation contrast of digital micromirror devices. The frame rate was also increased to 20 Hz.
Microstructural Damage During High-Strain Torsion Experiments on Calcite-Anhydrite Aggregates
NASA Astrophysics Data System (ADS)
Cross, A. J.; Skemer, P. A.
2016-12-01
Ductile shear zones play a critical role in localising deformation in the Earth's crust and mantle. Severe grain size reduction - a ubiquitous feature of natural mylonites - is commonly thought to cause strain weakening via a transition to grain size sensitive deformation mechanisms. Although grain size reduction is modulated by grain growth in single-phase aggregates, grain boundary pinning in well-mixed poly-phase composites can inhibit grain growth, leading to microstructural `damage' which is likely a critical element of strain localization in the lithosphere. While dynamic recrystallization has been widely explored in rock mechanics and materials science, the mechanisms behind phase-mixing remain poorly understood. In this contribution we present results from high-strain, deformation experiments on calcite-anhydrite composites. Experiments were conducted in torsion at T = 500-700°C and P 1.5 GPa, using the new Large Volume Torsion (LVT) solid-medium apparatus, to shear strains of 0.5-30. As shear strain increases, progressive thinning and necking of initially large (≤ 1 mm) calcite domains is observed, resulting in an increase in the proportion of interphase boundaries. Grain-size is negatively correlated with the fraction of interphase boundaries, such that calcite grains in well-mixed regions are significantly smaller than those in single-phase domains. Crucially, progressive deformation leads to a reduction in grain-size beyond the lower limit established by the grain size piezometer for mono-phase calcite, implying microstructural damage. These data therefore demonstrate continued microstructural evolution in two-phase composites that is not possible in single-phase aggregates. These observations mark a new `geometric' mechanism for phase mixing, complementing previous models for phase mixing involving chemical reactions, material diffusion, and/or grain boundary sliding.
Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias
2011-04-15
The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.
O’Sullivan, Ciara C.; Moon, Dominic H.; Kohn, Elise C.; Lee, Jung-Min
2014-01-01
Poly(ADP-ribose) polymerase inhibitors (PARPi) have shown clinical activity in patients with germline BRCA1/2 mutation (gBRCAm)-associated breast and ovarian cancers. Accumulating evidence suggests that PARPi may have a wider application in the treatment of cancers defective in DNA damage repair pathways, such as prostate, lung, endometrial, and pancreatic cancers. Several PARPi are currently in phase I/II clinical investigation, as single-agents and/or combination therapy in these solid tumors. Understanding more about the molecular abnormalities involved in BRCA-like phenotype in solid tumors beyond breast and ovarian cancers, exploring novel therapeutic trial strategies and drug combinations, and defining potential predictive biomarkers are critical to expanding the scope of PARPi therapy. This will improve clinical outcome in advanced solid tumors. Here, we briefly review the preclinical data and clinical development of PARPi, and discuss its future development in solid tumors beyond gBRCAm-associated breast and ovarian cancers. PMID:24616882
Envelope and phase distribution of a resonance transmission through a complex environment
NASA Astrophysics Data System (ADS)
Savin, Dmitry V.
2018-06-01
A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in an established signal induced by a complex environment. Applying random matrix theory to the problem, we derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.
Chmela, Jiří; Greisch, Jean-François; Harding, Michael E; Klopper, Wim; Kappes, Manfred M; Schooss, Detlef
2018-03-08
The gas-phase laser-induced photoluminescence of cationic mononuclear gadolinium and lutetium complexes involving two 9-oxophenalen-1-one ligands is reported. Performing measurements at a temperature of 83 K enables us to resolve vibronic transitions. Via comparison to Franck-Condon computations, the main vibrational contributions to the ligand-centered phosphorescence are determined to involve rocking, wagging, and stretching of the 9-oxophenalen-1-one-lanthanoid coordination in the low-energy range, intraligand bending, and stretching in the medium- to high-energy range, rocking of the carbonyl and methine groups, and C-H stretching beyond. Whereas Franck-Condon calculations based on density-functional harmonic frequency computations reproduce the main features of the vibrationally resolved emission spectra, the absolute transition energies as determined by density functional theory are off by several thousand wavenumbers. This discrepancy is found to remain at higher computational levels. The relative energy of the Gd(III) and Lu(III) emission bands is only reproduced at the coupled-cluster singles and doubles level and beyond.
High-Field Superconductivity on Iron Chalcogenide FeSe
NASA Astrophysics Data System (ADS)
Shi, Anlu; Kitagawa, Shunsaku; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas
2018-06-01
We have performed ac-susceptibility and 77Se-NMR measurements on single-crystal FeSe in the field range from 12.5 to 14.75 T below 1.6 K in order to investigate the superconducting properties of the B phase. Our results show that although superconductivity persists beyond the A-B transition line (H*), the broadening of the 77Se-NMR linewidth arising from the superconducting diamagnetic effect decreases at around H*, suggesting that superconducting character is changed at H*.
Beyond single-stream with the Schrödinger method
NASA Astrophysics Data System (ADS)
Uhlemann, Cora; Kopp, Michael
2016-10-01
We investigate large scale structure formation of collisionless dark matter in the phase space description based on the Vlasov-Poisson equation. We present the Schrödinger method, originally proposed by \\cite{WK93} as numerical technique based on the Schrödinger Poisson equation, as an analytical tool which is superior to the common standard pressureless fluid model. Whereas the dust model fails and develops singularities at shell crossing the Schrödinger method encompasses multi-streaming and even virialization.
Solid-state harmonics beyond the atomic limit.
Ndabashimiye, Georges; Ghimire, Shambhu; Wu, Mengxi; Browne, Dana A; Schafer, Kenneth J; Gaarde, Mette B; Reis, David A
2016-06-23
Strong-field laser excitation of solids can produce extremely nonlinear electronic and optical behaviour. As recently demonstrated, this includes the generation of high harmonics extending into the vacuum-ultraviolet and extreme-ultraviolet regions of the electromagnetic spectrum. High harmonic generation is shown to occur fundamentally differently in solids and in dilute atomic gases. How the microscopic mechanisms in the solid and the gas differ remains a topic of intense debate. Here we report a direct comparison of high harmonic generation in the solid and gas phases of argon and krypton. Owing to the weak van der Waals interaction, rare (noble)-gas solids are a near-ideal medium in which to study the role of high density and periodicity in the generation process. We find that the high harmonic generation spectra from the rare-gas solids exhibit multiple plateaus extending well beyond the atomic limit of the corresponding gas-phase harmonics measured under similar conditions. The appearance of multiple plateaus indicates strong interband couplings involving multiple single-particle bands. We also compare the dependence of the solid and gas harmonic yield on laser ellipticity and find that they are similar, suggesting the importance of electron-hole recollision in these solids. This implies that gas-phase methods such as polarization gating for attosecond pulse generation and orbital tomography could be realized in solids.
NASA Astrophysics Data System (ADS)
Song, Changyong
2017-05-01
Interest in high-resolution structure investigation has been zealous, especially with the advent of X-ray free electron lasers (XFELs). The intense and ultra-short X-ray laser pulses ( 10 GW) pave new routes to explore structures and dynamics of single macromolecules, functional nanomaterials and complex electronic materials. In the last several years, we have developed XFEL single-shot diffraction imaging by probing ultrafast phase changes directly. Pump-probe single-shot imaging was realized by synchronizing femtosecond (<10 fs in FWHM) X-ray laser (probe) with femtosecond (50 fs) IR laser (pump) at better than 1 ps resolution. Nanoparticles under intense fs-laser pulses were investigated with fs XFEL pulses to provide insight into the irreversible particle damage processes with nanoscale resolution. Research effort, introduced, aims to extend the current spatio-temporal resolution beyond the present limit. We expect this single-shot dynamic imaging to open new science opportunity with XFELs.
Beyond the bulk: disclosing the life of single microbial cells
Rosenthal, Katrin; Oehling, Verena
2017-01-01
Abstract Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples. PMID:29029257
NASA Astrophysics Data System (ADS)
Descloux, A.; Grußmayer, K. S.; Bostan, E.; Lukes, T.; Bouwens, A.; Sharipov, A.; Geissbuehler, S.; Mahul-Mellier, A.-L.; Lashuel, H. A.; Leutenegger, M.; Lasser, T.
2018-03-01
Super-resolution fluorescence microscopy provides unprecedented insight into cellular and subcellular structures. However, going `beyond the diffraction barrier' comes at a price, since most far-field super-resolution imaging techniques trade temporal for spatial super-resolution. We propose the combination of a novel label-free white light quantitative phase imaging with fluorescence to provide high-speed imaging and spatial super-resolution. The non-iterative phase retrieval relies on the acquisition of single images at each z-location and thus enables straightforward 3D phase imaging using a classical microscope. We realized multi-plane imaging using a customized prism for the simultaneous acquisition of eight planes. This allowed us to not only image live cells in 3D at up to 200 Hz, but also to integrate fluorescence super-resolution optical fluctuation imaging within the same optical instrument. The 4D microscope platform unifies the sensitivity and high temporal resolution of phase imaging with the specificity and high spatial resolution of fluorescence microscopy.
Direct Laser Writing of δ- to α-Phase Transformation in Formamidinium Lead Iodide
2017-01-01
Organolead halide perovskites are increasingly considered for applications well beyond photovoltaics, for example, as the active regions within photonic devices. Herein, we report the direct laser writing (DLW: 458 nm cw-laser) of the formamidinium lead iodide (FAPbI3) yellow δ-phase into its high-temperature luminescent black α-phase, a remarkably easy and scalable approach that takes advantage of the material’s susceptibility to transition under ambient conditions. Through the DLW of α-FAPbI3 tracks on δ-FAPbI3 single-crystal surfaces, the controlled and rapid microfabrication of highly luminescent structures exhibiting long-term phase stability is detailed, offering an avenue toward the prototyping of complex perovskite-based optical devices. The dynamics and kinetics of laser-induced δ- to α-phase transformations are investigated in situ by Raman microprobe analysis, as a function of irradiation power, time, temperature, and atmospheric conditions, revealing an interesting connection between oxygen intercalation at the surface and the δ- to α-phase transformation dynamics, an insight that will find application within the wider context of FAPbI3 thermal phase relations. PMID:28763617
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Electrical, Thermal, and Magnetic Properties of Single Crystal CaMn2O4 Marokite
NASA Astrophysics Data System (ADS)
White, B. D.; Neumeier, J. J.; Souza, J. A.; Chiorescu, C.; Cohn, J. L.
2008-03-01
CaMn2O4 was first described [1] in 1963 as a natural mineral called Marokite. Since its discovery, it has been studied as a minor structural impurity phase in CMR- related CaMnO3 and for its structural similarities to high-pressure phases of spinel-oxide compounds. However, little attention has previously been paid to physical properties beyond its temperature-dependent magnetization. We will present a detailed physical properties study of CaMn2O4 single crystals grown by the optical floating zone method. [2] These measurements, several of which display anisotropy as a result of an orthorhombic crystal structure, include electrical transport, thermal transport, thermal expansion, heat capacity, and magnetization. [1] C. Gaudefroy, G. Jouravsky, F. Permingeat, Bull. Soc. Franc. Min'er. Crist. 86 (1963) 359. [2] B. D. White, C. A. M. dos Santos, J. A. Souza, K. J. McClellan, J. J. Neumeier submitted to J. Cryst. Growth.
Accurate phase measurements for thick spherical objects using optical quadrature microscopy
NASA Astrophysics Data System (ADS)
Warger, William C., II; DiMarzio, Charles A.
2009-02-01
In vitro fertilization (IVF) procedures have resulted in the birth of over three million babies since 1978. Yet the live birth rate in the United States was only 34% in 2005, with 32% of the successful pregnancies resulting in multiple births. These multiple pregnancies were directly attributed to the transfer of multiple embryos to increase the probability that a single, healthy embryo was included. Current viability markers used for IVF, such as the cell number, symmetry, size, and fragmentation, are analyzed qualitatively with differential interference contrast (DIC) microscopy. However, this method is not ideal for quantitative measures beyond the 8-cell stage of development because the cells overlap and obstruct the view within and below the cluster of cells. We have developed the phase-subtraction cell-counting method that uses the combination of DIC and optical quadrature microscopy (OQM) to count the number of cells accurately in live mouse embryos beyond the 8-cell stage. We have also created a preliminary analysis to measure the cell symmetry, size, and fragmentation quantitatively by analyzing the relative dry mass from the OQM image in conjunction with the phase-subtraction count. In this paper, we will discuss the characterization of OQM with respect to measuring the phase accurately for spherical samples that are much larger than the depth of field. Once fully characterized and verified with human embryos, this methodology could provide the means for a more accurate method to score embryo viability.
Toward the theory of fermionic condensation
NASA Astrophysics Data System (ADS)
Khodel, V. A.
2017-04-01
The diagrammatic technique elaborated by Belyaev for the theory of a Fermi liquid has been implemented to analyze the behavior of Fermi systems beyond the topological phase transition point, where the fermionic condensate appears. It has been shown that the inclusion of the interaction between the condensate and above-condensate particles leads to the emergence of a gap in the single-particle excitation spectrum of these particles even in the absence of Cooper pairing. Hence, the emergence of this gap in homogeneous electron systems of silicon field-effect structures leads to a metal-insulator phase transition rather than to superconductivity. It has been shown that the same interaction explains the nature of the Fermi arc structure in twodimensional electron systems of cuprates.
NASA Astrophysics Data System (ADS)
Reul, A.; Lauhoff, C.; Krooß, P.; Gutmann, M. J.; Kadletz, P. M.; Chumlyakov, Y. I.; Niendorf, T.; Schmahl, W. W.
2018-02-01
Recent studies demonstrated excellent pseudoelastic behavior and cyclic stability under compressive loads in [001]-oriented Co-Ni-Ga high-temperature shape memory alloys (HT-SMAs). A narrow stress hysteresis was related to suppression of detwinning at RT and low defect formation during phase transformation due to the absence of a favorable slip system. Eventually, this behavior makes Co-Ni-Ga HT-SMAs promising candidates for several industrial applications. However, deformation behavior of Co-Ni-Ga has only been studied in the range of theoretical transformation strain in depth so far. Thus, the current study focuses not only on the activity of elementary deformation mechanisms in the pseudoelastic regime up to maximum theoretical transformation strains but far beyond. It is shown that the martensite phase is able to withstand about 5% elastic strain, which significantly increases the overall deformation capability of this alloy system. In situ neutron diffraction experiments were carried out using a newly installed testing setup on Co-Ni-Ga single crystals in order to reveal the nature of the stress-strain response seen in the deformation curves up to 10% macroscopic strain.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
Rate-independent dissipation in phase-field modelling of displacive transformations
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2018-05-01
In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.
What Polar Bears Can Teach Us about Mission Creep
2015-04-16
or Phase 0 operations. Mission Creep, the expansion of a project or mission beyond its original goals, is often an outcome of such steady state...state or Phase 0 operations. Mission Creep, the expansion of a project or mission beyond its original goals, is often an outcome of such steady state...de Tocqueville Mission Creep is the expansion of an operation or mission beyond its original goals, often after initial success. It occurs when
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less
Analytical treatment of self-phase-modulation beyond the slowly varying envelope approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syrchin, M.S.; Zheltikov, A.M.; International Laser Center, M.V. Lomonosov Moscow State University, 119899 Moscow
Analytical treatment of the self-phase-modulation of an ultrashort light pulse is extended beyond the slowly varying envelope approximation. The resulting wave equation is modified to include corrections to self-phase-modulation due to higher-order spatial and temporal derivatives. Analytical solutions are found in the limiting regimes of high nonlinearities and very short pulses. Our results reveal features that can significantly impact both pulse shape and the evolution of the phase.
Conversion of Phase Information into a Spike-Count Code by Bursting Neurons
Samengo, Inés; Montemurro, Marcelo A.
2010-01-01
Single neurons in the cerebral cortex are immersed in a fluctuating electric field, the local field potential (LFP), which mainly originates from synchronous synaptic input into the local neural neighborhood. As shown by recent studies in visual and auditory cortices, the angular phase of the LFP at the time of spike generation adds significant extra information about the external world, beyond the one contained in the firing rate alone. However, no biologically plausible mechanism has yet been suggested that allows downstream neurons to infer the phase of the LFP at the soma of their pre-synaptic afferents. Therefore, so far there is no evidence that the nervous system can process phase information. Here we study a model of a bursting pyramidal neuron, driven by a time-dependent stimulus. We show that the number of spikes per burst varies systematically with the phase of the fluctuating input at the time of burst onset. The mapping between input phase and number of spikes per burst is a robust response feature for a broad range of stimulus statistics. Our results suggest that cortical bursting neurons could play a crucial role in translating LFP phase information into an easily decodable spike count code. PMID:20300632
NASA Astrophysics Data System (ADS)
Mistakidis, S. I.; Katsimiga, G. C.; Kevrekidis, P. G.; Schmelcher, P.
2018-04-01
We explore the quench dynamics of a binary Bose–Einstein condensate crossing the miscibility–immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each species, involving shorter wavenumbers and longer spatial scales in the many-body (MB) approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark–antidark solitary waves are spontaneously generated and subsequently found to decay in the MB scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, the growth rate of the variance of a sample of single-shots probes the degree of entanglement inherent in the system.
Single rotating stars and the formation of bipolar planetary nebula
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-Segura, G.; Villaver, E.; Langer, N.
2014-03-10
We have computed new stellar evolution models that include the effects of rotation and magnetic torques under different hypotheses. The goal is to test whether a single star can sustain the rotational velocities needed in the envelope for magnetohydrodynamical(MHD) simulations to shape bipolar planetary nebulae (PNe) when high mass-loss rates take place. Stellar evolution models with main sequence masses of 2.5 and 5 M {sub ☉} and initial rotational velocities of 250 km s{sup –1} have been followed through the PNe formation phase. We find that stellar cores have to be spun down using magnetic torques in order to reproducemore » the rotation rates observed for white dwarfs. During the asymptotic giant branch phase and beyond, the magnetic braking of the core has a practically null effect on increasing the rotational velocity of the envelope since the stellar angular momentum is efficiently removed by the wind. We have also tested the best possible case scenarios in rather non-physical contexts to give enough angular momentum to the envelope. We find that we cannot get the envelope of a single star to rotate at the speeds needed for MHD simulations to form bipolar PNe. We conclude that single stellar rotators are unlikely to be the progenitors of bipolar PNe under the current MHD model paradigm.« less
Nanomedicine photoluminescence crystal-inspired brain sensing approach
NASA Astrophysics Data System (ADS)
Fang, Yan; Wang, Fangzhen; Wu, Rong
2018-02-01
Precision sensing needs to overcome a gap of a single atomic step height standard. In response to the cutting-edge challenge, a heterosingle molecular nanomedicine crystal was developed wherein a nanomedicine crystal height less than 1 nm was designed and selfassembled on a substrate of either a highly ordered and freshly separated graphite or a N-doped silicon with hydrogen bonding by a home-made hybrid system of interacting single bioelectron donor-acceptor and a single biophoton donor-acceptor according to orthogonal mathematical optimization scheme, and an atomic spatial resolution conducting atomic force microscopy (C-AFM) with MHz signal processing by a special transformation of an atomic force microscopy (AFM) and a scanning tunneling microscopy (STM) were employed, wherein a z axis direction UV-VIS laser interferometer and a feedback circuit were used to achieve the minimized uncertainty of a micro-regional structure height and its corresponding local differential conductance quantization (spin state) process was repeatedly measured with a highly time resolution, as well as a pulsed UV-VIS laser micro-photoluminescence (PL) spectrum with a single photon resolution was set up by traceable quantum sensing and metrology relied up a quantum electrical triangle principle. The coupling of a single bioelectron conducting, a single biophoton photoluminescence, a frequency domain temporal spin phase in nanomedicine crystal-inspired sensing methods and sensor technologies were revealed by a combination of C-AFM and PL measurement data-based mathematic analyses1-3, as depicted in Figure 1 and repeated in nanomedicine crystals with a single atomic height. It is concluded that height-current-phase uncertainty correlation pave a way to develop a brain imaging and a single atomic height standard, quantum sensing, national security, worldwide impact1-3 technology and beyond.
Tensor network states in time-bin quantum optics
NASA Astrophysics Data System (ADS)
Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl
2018-06-01
The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.
Correlated Electrons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Odintsov, Arkadi A.; Yoshioka, Hideo
Single-wall carbon nanotubes are almost ideal systems for the investigation of exotic many-body effects due to non-Fermi liquid behavior of interacting electrons in one dimension. Recent theoretical and experimental results are reviewed with a focus on electron correlations. Starting from a microscopic lattice model we derive an effective phase Hamiltonian for conducting single-wall nanotubes with arbitrary chirality. The parameters of the Hamiltonian show very weak dependence on the chiral angle, which makes the low-energy physics of conducting nanotubes universal. The temperature-dependent resistivity and frequency-dependent optical conductivity of nanotubes with impurities are evaluated within the Luttinger-like model. Localization effects are studied. In particular, we found that intra-valley and inter-valley electron scattering can not coexist at low energies. Low-energy properties of clean nanotubes are studied beyond the Luttinger liquid approximation. The strongest Mott-like electron instability occurs at half filling. In the Mott insulating phase electrons at different atomic sublattices form characteristic bound states. The energy gaps occur in all modes of elementary excitations and estimate at 0.01-0.1 eV. We finally discuss observability of the Mott insulating phase in transport experiments. The accent is made on the charge transfer from external electrodes which results in a deviation of the electron density from half-filling.
NASA Astrophysics Data System (ADS)
Mi, Bin-Zhou; Feng, Cui-Ju; Luo, Jian-Guo; Hu, De-Zhi
2018-01-01
In recent years, some theoretical interests have been focused on the binary alloy nanotubes and nanowires with mixed spins. Compared with ferrimagnetic nanowires, few studies have been done on ferrimagnetic nanotubes. In this paper, the magnetic properties of a mixed spin-(2, 3/2) Heisenberg single-walled nanotube superlattice are calculated by use of the double-time Green's function method within the random phase approximation and the Anderson and Callen's decoupling. Magnetic compensation and critical properties are obtained for a wide range of parameters in the Hamiltonian, and magnetic phase diagrams are plotted in the related planes. For Heisenberg single-walled nanotube superlattice model with Néel-type magnetic structure, anisotropy must be taken into account, and the easy-axis single-ion anisotropy is considered in this paper. The next nearest neighbor exchange interactions Jbb and/or single-ion anisotropy strength Db of the smaller spin sublattice were necessary in order to obtain a compensation point. The influence of the wall diameter number of the tubes, m, an important parameter of the system, on the compensation behavior is considered. Calculation shows that as Jbb and Db are fixed, only when m is beyond a certain minimum value, mmin, can compensation temperature Tcom appears, where the next nearest neighbor exchange interactions Jaa and single-ion anisotropy strength Da of the larger spin sublattice are absent. The compensation temperature and critical temperature increase with m rising, which indicates that the longitudinal correlation effect is enhanced and the fluctuation effect is weakened with the increase of m.
NASA Astrophysics Data System (ADS)
Harsij, Zeynab; Mirza, Behrouz
2014-12-01
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.
Potentials and challenges of integration for complex metal oxides in CMOS devices and beyond
NASA Astrophysics Data System (ADS)
Kim, Y.; Pham, C.; Chang, J. P.
2015-02-01
This review focuses on recent accomplishments on complex metal oxide based multifunctional materials and the potential they hold in advancing integrated circuits. It begins with metal oxide based high-κ materials to highlight the success of their integration since 45 nm complementary metal-oxide-semiconductor (CMOS) devices. By simultaneously offering a higher dielectric constant for improved capacitance as well as providing a thicker physical layer to prevent the quantum mechanical tunnelling of electrons, high-κ materials have enabled the continued down-scaling of CMOS based devices. The most recent technology driver has been the demand to lower device power consumption, which requires the design and synthesis of novel materials, such as complex metal oxides that exhibit remarkable tunability in their ferromagnetic, ferroelectric and multiferroic properties. These properties make them suitable for a wide variety of applications such as magnetoelectric random access memory, radio frequency band pass filters, antennae and magnetic sensors. Single-phase multiferroics, while rare, offer unique functionalities which have motivated much scientific and technological research to ascertain the origins of their multiferroicity and their applicability to potential devices. However, due to the weak magnetoelectric coupling for single-phase multiferroics, engineered multiferroic composites based on magnetostrictive ferromagnets interfacing piezoelectrics or ferroelectrics have shown enhanced multiferroic behaviour from effective strain coupling at the interface. In addition, nanostructuring of the ferroic phases has demonstrated further improvement in the coupling effect. Therefore, single-phase and engineered composite multiferroics consisting of complex metal oxides are reviewed in terms of magnetoelectric coupling effects and voltage controlled ferromagnetic properties, followed by a review on the integration challenges that need to be overcome to realize the materials’ full potential.
Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.
2009-02-01
Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.
Phase transition at N = 92 in 158Dy
NASA Astrophysics Data System (ADS)
Gupta, J. B.
2016-09-01
Beyond the shape phase transition from the spherical vibrator to the deformed rotor regime at N = 90, the interplay of β- and γ-degrees of freedom becomes important, which affects the relative positions of the Kπ = 0+β- and Kπ = 2+γ-bands. In the microscopic approach of the dynamic pairing plus quadrupole model, a correlation of the strength of the quadrupole force and the formation of the β- and γ-bands in 158Dy is described. The role of the potential energy surface is illustrated. The E2 transition rates in the lower three K-bands and the multi-phonon bands with Kπ = 0+, 2+ and 4+ are well reproduced. The absolute B(E2, 2i+ = 0 2+) (i = 2, 3) serves as a good measure of the quadrupole strength. The role of the single particle Nilsson orbits is also described.
Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi
2017-07-06
We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gurin, Péter; Varga, Szabolcs
2015-06-14
We extend the transfer matrix method of one-dimensional hard core fluids placed between confining walls for that case where the particles can pass each other and at most two layers can form. We derive an eigenvalue equation for a quasi-one-dimensional system of hard squares confined between two parallel walls, where the pore width is between σ and 3σ (σ is the side length of the square). The exact equation of state and the nearest neighbor distribution functions show three different structures: a fluid phase with one layer, a fluid phase with two layers, and a solid-like structure where the fluidmore » layers are strongly correlated. The structural transition between differently ordered fluids develops continuously with increasing density, i.e., no thermodynamic phase transition occurs. The high density structure of the system consists of clusters with two layers which are broken with particles staying in the middle of the pore.« less
High frequency, spontaneous motA mutations in Campylobacter jejuni strain 81-176.
Mohawk, Krystle L; Poly, Frédéric; Sahl, Jason W; Rasko, David A; Guerry, Patricia
2014-01-01
Campylobacter jejuni is an important cause of bacterial diarrhea worldwide. The pathogenesis of C. jejuni is poorly understood and complicated by phase variation of multiple surface structures including lipooligosaccharide, capsule, and flagellum. When C. jejuni strain 81-176 was plated on blood agar for single colonies, the presence of translucent, non-motile colonial variants was noted among the majority of opaque, motile colonies. High-throughput genomic sequencing of two flagellated translucent and two opaque variants as well as the parent strain revealed multiple genetic changes compared to the published genome. However, the only mutated open reading frame common between the two translucent variants and absent from the opaque variants and the parent was motA, encoding a flagellar motor protein. A total of 18 spontaneous motA mutations were found that mapped to four distinct sites in the gene, with only one class of mutation present in a phase variable region. This study exemplifies the mutative/adaptive properties of C. jejuni and demonstrates additional variability in C. jejuni beyond phase variation.
Improving interferometers by quantum light: toward testing quantum gravity on an optical bench
NASA Astrophysics Data System (ADS)
Ruo-Berchera, Ivano; Degiovanni, Ivo P.; Olivares, Stefano; Traina, Paolo; Samantaray, Nigam; Genovese, M.
2016-09-01
We analyze in detail a system of two interferometers aimed at the detection of extremely faint phase fluctuations. The idea behind is that a correlated phase-signal like the one predicted by some phenomenological theory of Quantum Gravity (QG) could emerge by correlating the output ports of the interferometers, even when in the single interferometer it confounds with the background. We demonstrated that injecting quantum light in the free ports of the interferometers can reduce the photon noise of the system beyond the shot-noise, enhancing the resolution in the phase-correlation estimation. Our results confirm the benefit of using squeezed beams together with strong coherent beams in interferometry, even in this correlated case. On the other hand, our results concerning the possible use of photon number entanglement in twin beam state pave the way to interesting and probably unexplored areas of application of bipartite entanglement and, in particular, the possibility of reaching surprising uncertainty reduction exploiting new interferometric configurations, as in the case of the system described here.
Single-snapshot DOA estimation by using Compressed Sensing
NASA Astrophysics Data System (ADS)
Fortunati, Stefano; Grasso, Raffaele; Gini, Fulvio; Greco, Maria S.; LePage, Kevin
2014-12-01
This paper deals with the problem of estimating the directions of arrival (DOA) of multiple source signals from a single observation vector of an array data. In particular, four estimation algorithms based on the theory of compressed sensing (CS), i.e., the classical ℓ 1 minimization (or Least Absolute Shrinkage and Selection Operator, LASSO), the fast smooth ℓ 0 minimization, and the Sparse Iterative Covariance-Based Estimator, SPICE and the Iterative Adaptive Approach for Amplitude and Phase Estimation, IAA-APES algorithms, are analyzed, and their statistical properties are investigated and compared with the classical Fourier beamformer (FB) in different simulated scenarios. We show that unlike the classical FB, a CS-based beamformer (CSB) has some desirable properties typical of the adaptive algorithms (e.g., Capon and MUSIC) even in the single snapshot case. Particular attention is devoted to the super-resolution property. Theoretical arguments and simulation analysis provide evidence that a CS-based beamformer can achieve resolution beyond the classical Rayleigh limit. Finally, the theoretical findings are validated by processing a real sonar dataset.
Luu, Phan; Tucker, Don M; Makeig, Scott
2004-08-01
The error-related negativity (ERN) is an event-related potential (ERP) peak occurring between 50 and 100 ms after the commission of a speeded motor response that the subject immediately realizes to be in error. The ERN is believed to index brain processes that monitor action outcomes. Our previous analyses of ERP and EEG data suggested that the ERN is dominated by partial phase-locking of intermittent theta-band EEG activity. In this paper, this possibility is further evaluated. The possibility that the ERN is produced by phase-locking of theta-band EEG activity was examined by analyzing the single-trial EEG traces from a forced-choice speeded response paradigm before and after applying theta-band (4-7 Hz) filtering and by comparing the averaged and single-trial phase-locked (ERP) and non-phase-locked (other) EEG data. Electrical source analyses were used to estimate the brain sources involved in the generation of the ERN. Beginning just before incorrect button presses in a speeded choice response paradigm, midfrontal theta-band activity increased in amplitude and became partially and transiently phase-locked to the subject's motor response, accounting for 57% of ERN peak amplitude. The portion of the theta-EEG activity increase remaining after subtracting the response-locked ERP from each trial was larger and longer lasting after error responses than after correct responses, extending on average 400 ms beyond the ERN peak. Multiple equivalent-dipole source analysis suggested 3 possible equivalent dipole sources of the theta-bandpassed ERN, while the scalp distribution of non-phase-locked theta amplitude suggested the presence of additional frontal theta-EEG sources. These results appear consistent with a body of research that demonstrates a relationship between limbic theta activity and action regulation, including error monitoring and learning.
Bashir, Mustafa R; Merkle, Elmar M; Smith, Alastair D; Boll, Daniel T
2012-02-01
To assess whether in vivo dual-ratio Dixon discrimination can improve detection of diffuse liver disease, specifically steatosis, iron deposition and combined disease over traditional single-ratio in/opposed phase analysis. Seventy-one patients with biopsy-proven (17.7 ± 17.0 days) hepatic steatosis (n = 16), iron deposition (n = 11), combined deposition (n = 3) and neither disease (n = 41) underwent MR examinations. Dual-echo in/opposed-phase MR with Dixon water/fat reconstructions were acquired. Analysis consisted of: (a) single-ratio hepatic region-of-interest (ROI)-based assessment of in/opposed ratios; (b) dual-ratio hepatic ROI assessment of in/opposed and fat/water ratios; (c) computer-aided dual-ratio assessment evaluating all hepatic voxels. Disease-specific thresholds were determined; statistical analyses assessed disease-dependent voxel ratios, based on single-ratio (a) and dual-ratio (b and c) techniques. Single-ratio discrimination succeeded in identifying iron deposition (I/O(Ironthreshold)<0.88) and steatosis (I/O(Fatthreshold>1.15)) from normal parenchyma, sensitivity 70.0%; it failed to detect combined disease. Dual-ratio discrimination succeeded in identifying abnormal hepatic parenchyma (F/W(Normalthreshold)>0.05), sensitivity 96.7%; logarithmic functions for iron deposition (I/O(Irondiscriminator)
Phase stabilities at a glance: Stability diagrams of nickel dipnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachhuber, F.; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland; Rothballer, J.
2013-12-07
In the course of the recent advances in chemical structure prediction, a straightforward type of diagram to evaluate phase stabilities is presented based on an expedient example. Crystal structures and energetic stabilities of dipnictides NiPn{sub 2} (Pn = N, P, As, Sb, Bi) are systematically investigated by first principles calculations within the framework of density functional theory using the generalized gradient approximation to treat exchange and correlation. These dipnictides show remarkable polymorphism that is not yet understood systematically and offers room for the discovery of new phases. Relationships between the concerned structures including the marcasite, the pyrite, the arsenopyrite/CoSb{sub 2},more » and the NiAs{sub 2} types are highlighted by means of common structural fragments. Electronic stabilities of experimentally known and related AB{sub 2} structure types are presented graphically in so-called stability diagrams. Additionally, competing binary phases are taken into consideration in the diagrams to evaluate the stabilities of the title compounds with respect to decomposition. The main purpose of the stability diagrams is the introduction of an image that enables the estimation of phase stabilities at a single glance. Beyond that, some of the energetically favored structure types can be identified as potential new phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Hawoong; Kim, Jongjin; Fang, Xinyue
Thin films of iron oxides including magnetite (Fe3O4) and hematite (α-Fe2O3) have many important applications. Both forms of oxide can occur naturally during film growth by iron deposition under various oxidation environment; an important issue is to understand and control the process resulting in a single-phase film. We have performed in-situ real-time studies using x-ray diffraction of such film growth on sapphire (001) under pure ozone by monitoring the (00L) rod. Stable magnetite growth can be maintained at growth temperatures below 600° C up to a certain critical film thickness, beyond which the growth becomes hematite. The results demonstrate themore » importance of interfacial interaction in stabilizing the magnetite phase.« less
Wang, Ziyun; Wang, Hai-Feng; Hu, P
2015-10-01
The current theory of catalyst activity in heterogeneous catalysis is mainly obtained from the study of catalysts with mono-phases, while most catalysts in real systems consist of multi-phases, the understanding of which is far short of chemists' expectation. Density functional theory (DFT) and micro-kinetics simulations are used to investigate the activities of six mono-phase and nine bi-phase catalysts, using CO hydrogenation that is arguably the most typical reaction in heterogeneous catalysis. Excellent activities that are beyond the activity peak of traditional mono-phase volcano curves are found on some bi-phase surfaces. By analyzing these results, a new framework to understand the unexpected activities of bi-phase surfaces is proposed. Based on the framework, several principles for the design of multi-phase catalysts are suggested. The theoretical framework extends the traditional catalysis theory to understand more complex systems.
Crystal oscillators using negative voltage gain, single pole response amplifiers
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1989-01-01
A simple and inexpensive crystal oscillator is provided which employs negative voltage gain, single pole response amplifiers. The amplifiers may include such configurations as gate inverters, operational amplifiers and conventional bipolar transistor amplifiers, all of which operate at a frequency which is on the roll-off portion of their gain versus frequency curve. Several amplifier feedback circuit variations are employed to set desired bias levels and to allow the oscillator to operate at the crystal's fundamental frequency or at an overtone of the fundamental frequency. The oscillator is made less expensive than comparable oscillators by employing relatively low frequency amplifiers and operating them at roll-off, at frequencies beyond which they are customarily used. Simplicity is provided because operation at roll-off eliminates components ordinarily required in similar circuits to provide sufficient phase-shift in the feedback circuitry for oscillation to occur.
Enhancing quantum sensing sensitivity by a quantum memory
Zaiser, Sebastian; Rendler, Torsten; Jakobi, Ingmar; Wolf, Thomas; Lee, Sang-Yun; Wagner, Samuel; Bergholm, Ville; Schulte-Herbrüggen, Thomas; Neumann, Philipp; Wrachtrup, Jörg
2016-01-01
In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single 13C nuclear spins. PMID:27506596
Hassani, S. A.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid, S.; van der Meer, M. A.; Tiesinga, P.; Womelsdorf, T.
2017-01-01
Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves specific attention and learning mechanisms beyond working memory, and whether the drug effects can be formalized computationally to allow single subject predictions. We tested and confirmed these suggestions in a case study with a healthy nonhuman primate performing a feature-based reversal learning task evaluating performance using Bayesian and Reinforcement learning models. In an initial dose-testing phase we found a Guanfacine dose that increased performance accuracy, decreased distractibility and improved learning. In a second experimental phase using only that dose we examined the faster feature-based reversal learning with Guanfacine with single-subject computational modeling. Parameter estimation suggested that improved learning is not accounted for by varying a single reinforcement learning mechanism, but by changing the set of parameter values to higher learning rates and stronger suppression of non-chosen over chosen feature information. These findings provide an important starting point for developing nonhuman primate models to discern the synaptic mechanisms of attention and learning functions within the context of a computational neuropsychiatry framework. PMID:28091572
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Unconventional slowing down of electronic recovery in photoexcited charge-ordered La 1/3Sr 2/3FeO 3
Zhu, Yi; Hoffman, Jason; Rowland, Clare E.; ...
2018-05-04
Ordered electronic phases are intimately related to emerging phenomena such as high Tc superconductivity and colossal magnetoresistance. The coupling of electronic charge with other degrees of freedom such as lattice and spin are of central interest in correlated systems. Their correlations have been intensively studied from femtosecond to picosecond time scales, while the dynamics of ordered electronic phases beyond nanoseconds are usually assumed to follow a trivia thermally driven recovery. Here, we report an unusual slowing down of electronic phases across a first-order phase transition, far beyond thermal relaxation time. Following optical excitation, the recovery time of both transient opticalmore » reflectivity and x-ray diffraction intensity from a charge-ordered superstructure in a La 1/3Sr 2/3FeO 3 thin film increases by orders of magnitude longer than the independently measured lattice cooling time when the sample temperature approaches the phase transition temperature. The combined experimental and theoretical investigations show that the slowing down of electronic recovery corresponds to the pseudo-critical dynamics that originates from magnetic interactions close to a weakly first-order phase transition. As a result, this extraordinary long electronic recovery time exemplifies an interplay of ordered electronic phases with magnetism beyond thermal processes in correlated systems.« less
Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko
2014-01-01
Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface. PMID:25254114
Sugimoto, Iwao; Maeda, Shunsaku; Suda, Yoriko; Makihara, Kenji; Takahashi, Kazuhiko
2014-01-01
Thin layers of pyroglutamic acid (Pygl) have been deposited by thermal evaporation of the molten L-glutamic acid (L-Glu) through intramolecular lactamization. This deposition was carried out with the versatile handmade low-vacuum coater, which was simply composed of a soldering iron placed in a vacuum degassing resin chamber evacuated by an oil-free diaphragm pump. Molecular structural analyses have revealed that thin solid film evaporated from the molten L-Glu is mainly composed of L-Pygl due to intramolecular lactamization. The major component of the L-Pygl was in β-phase and the minor component was in γ-phase, which would have been generated from partial racemization to DL-Pygl. Electron microscopy revealed that the L-Glu-evaporated film generally consisted of the 20 nm particulates of Pygl, which contained a periodic pattern spacing of 0.2 nm intervals indicating the formation of the single-molecular interval of the crystallized molecular networks. The DL-Pygl-evaporated film was composed of the original DL-Pygl preserving its crystal structures. This methodology is promising for depositing a wide range of the evaporable organic materials beyond amino acids. The quartz crystal resonator coated with the L-Glu-evaporated film exhibited the pressure-sensing capability based on the adsorption-desorption of the surrounding gas at the film surface.
ERIC Educational Resources Information Center
Hart, Laura C.
2015-01-01
Overall, the research on the effectiveness of single-gender education is inconclusive. However, research also indicates that some benefits beyond academic achievement may be possible. These findings may be significant for middle school girls, who often struggle with social interactions related to adolescence that create barriers in successfully…
Stewart, P J; Dulberg, C; Arnill, A C; Elmslie, T; Hall, P F
1990-01-01
We carried out a chart review study to determine the rate of diagnosis of dystocia (abnormal progress) and the use of cesarean section to treat dystocia among 3887 primiparous women who gave birth to a single baby in the vertex presentation at four hospitals in Ottawa-Carleton in 1984. Of the 3740 women who had some labour 1127 (30.1%) were given a diagnosis of dystocia. Cesarean section for dystocia was done during all phases of labour (41% of procedures in the latent phase, 38% in the active phase and 21% in the second stage). The cesarean section rate varied among the hospitals from 11.8% to 19.6%. A total of 75% of the cesarean sections were for dystocia, disproportion or failed induction. The findings suggest that cesarean section is being done for disproportion without a trial of labour beyond the latent phase and for dystocia in the absence of fetal distress. If these practices were modified the cesarean section rate could be reduced from 16% to about 8%, the rate found in some other centres and that observed in Canada in the early 1970s. PMID:2302643
NASA Astrophysics Data System (ADS)
Bhattacharya, Jishnu
We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.
Ultrafast photo-induced hidden phases in strained manganite thin films
NASA Astrophysics Data System (ADS)
Zhang, Jingdi; McLeod, A. S.; Zhang, Gu-Feng; Stoica, Vladimir; Jin, Feng; Gu, Mingqiang; Gopalan, Venkatraman; Freeland, John W.; Wu, Wenbin; Rondinelli, James; Wen, Haidan; Basov, D. N.; Averitt, R. D.
Correlated transition metal oxides (TMOs) are particularly sensitive to external control because of energy degeneracy in a complex energy landscape that promote a plethora of metastable states. However, it remains a grand challenge to actively control and fully explore the rich landscape of TMOs. Dynamic control with pulsed photons can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. In the past, we have demonstrated that mode-selective single-laser-pulse excitation of a strained manganite thin film La2/3Ca1/3MnO3 initiates a persistent phase transition from an emergent antiferromagnetic insulating ground state to a ferromagnetic metallic metastable state. Beyond the photo-induced insulator to metal transition, we recently discovered a new peculiar photo-induced hidden phase, identified by an experimental approach that combines ultrafast pump-probe spectroscopy, THz spectroscopy, X-ray diffraction, cryogenic near-field spectroscopy and SHG probe. This work is funded by the DOE, Office of Science, Office of Basic Energy Science under Award Numbers DE-SC0012375 and DE-SC0012592.
One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
Davis, Rick; Li, Yu-Chin; Gervasio, Michelle; Luu, Jason; Kim, Yeon Seok
2015-03-25
In this manuscript, natural materials were combined into a single "pot" to produce flexible, highly fire resistant, and bioinspired coatings on flexible polyurethane foam (PUF). In one step, PUF was coated with a fire protective layer constructed of a polysaccharide binder (starch or agar), a boron fire retardant (boric acid or derivative), and a dirt char former (montmorillonite clay). Nearly all coatings produced a 63% reduction in a critical flammability value, the peak heat release rate (PHRR). One formulation produced a 75% reduction in PHRR. This technology was validated in full-scale furniture fire tests, where a 75% reduction in PHRR was measured. At these PHRR values, this technology could reduce the fire threat of furniture from significant fire damage in and beyond the room of fire origin to being contained to the burning furniture. This flammability reduction was caused by three mechanisms-the gas-phase and condensed-phase processes of the boron fire retardant and the condensed-phase process of the clay. We describe the one-pot coating process and the impact of the coating composition on flammability.
Microstructure and degradation behavior of forged Fe-Mn-Si alloys
NASA Astrophysics Data System (ADS)
Xu, Zhigang; Hodgson, Michael A.; Cao, Peng
2015-03-01
This work presents a comparative study of a series of Fe-Mn-Si alloys proposed as degradable biomaterials for medical applications. Five Fe-28wt.%Mn-xSi (where x = 0 to 8 wt.%) alloys were fabricated by an arc-melting method. All the as-cast alloys were subsequently subjected to homogenization treatment and hot forging. The microstructure and phase constituents were investigated. It is found that the grain size of the as-forged alloys ranged approximately from 30 to 50 μm. The as-forged Fe-Mn-Si alloys containing Si from 2 to 6 wt.% was comprised of duplex martensitic ɛ and austenitic γ phases; however, the Si-free and 8 wt.% Si alloys only consisted of a single γ phase. After 30 days of static immersion test in a simulated body fluid (SBF) medium, it is found that pitting and general corrosion occur on the sample surfaces. Potentiodynamic analysis reveals that the degradation rate of the Fe-Mn-Si alloys increased gradually with Si content up to 6 wt.%, beyond which the degradation slows down.
Simulations of isoprene: Ozone reactions for a general circulation/chemical transport model
NASA Technical Reports Server (NTRS)
Makar, P. A.; Mcconnell, J. C.
1994-01-01
A parameterized reaction mechanism has been created to examine the interactions between isoprene and other tropospheric gas-phase chemicals. Tests of the parameterization have shown that its results match those of a more complex reaction set to a high degree of accuracy. Comparisons between test runs have shown that the presence of isoprene at the start of a six day interval can enhance later ozone concentrations by as much as twenty-nine percent. The test cases used no input fluxes beyond the initial time, implying that a single input of a biogenic hydrocarbon to an airmass can alter its ozone chemistry over a time scale on the order of a week.
40 CFR 80.45 - Complex emissions model.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) VOCW% = Percentage change in winter VOC emissions from baseline levels (8) Phase II total VOC emissions... its domain Phase I = The years 1995-1999 Phase II = Year 2000 and beyond (b) Weightings and baselines... appropriate pollutant and Phase: Table 1—Normal and Higher Emitter Weightings for Exhaust Emissions Phase I...
Searching for dark matter with single phase liquid argon
NASA Astrophysics Data System (ADS)
Caldwell, Thomas S., Jr.
The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.
Unprecedented Al supersaturation in single-phase rock salt structure VAlN films by Al+ subplantation
NASA Astrophysics Data System (ADS)
Greczynski, G.; Mráz, S.; Hans, M.; Primetzhofer, D.; Lu, J.; Hultman, L.; Schneider, J. M.
2017-05-01
Modern applications of refractory ceramic thin films, predominantly as wear-protective coatings on cutting tools and on components utilized in automotive engines, require a combination of excellent mechanical properties, thermal stability, and oxidation resistance. Conventional design approaches for transition metal nitride coatings with improved thermal and chemical stability are based on alloying with Al. It is well known that the solubility of Al in NaCl-structure transition metal nitrides is limited. Hence, the great challenge is to increase the Al concentration substantially while avoiding precipitation of the thermodynamically favored wurtzite-AlN phase, which is detrimental to mechanical properties. Here, we use VAlN as a model system to illustrate a new concept for the synthesis of metastable single-phase NaCl-structure thin films with the Al content far beyond solubility limits obtained with conventional plasma processes. This supersaturation is achieved by separating the film-forming species in time and energy domains through synchronization of the 70-μs-long pulsed substrate bias with intense periodic fluxes of energetic Al+ metal ions during reactive hybrid high power impulse magnetron sputtering of the Al target and direct current magnetron sputtering of the V target in the Ar/N2 gas mixture. Hereby, Al is subplanted into the cubic VN grains formed by the continuous flux of low-energy V neutrals. We show that Al subplantation enables an unprecedented 42% increase in metastable Al solubility limit in V1-xAlxN, from x = 0.52 obtained with the conventional method to 0.75. The elastic modulus is 325 ± 5 GPa, in excellent agreement with density functional theory calculations, and approximately 50% higher than for corresponding films grown by dc magnetron sputtering. The extension of the presented strategy to other Al-ion-assisted vapor deposition methods or materials systems is straightforward, which opens up the way for producing supersaturated single-phase functional ceramic alloy thin films combining excellent mechanical properties with high oxidation resistance.
Joshi, Tirtha Raj; Hakel, Peter; Hsu, Scott C.; ...
2017-03-22
In this article, we report the first direct experimental evidence of interspecies ion separation in direct-drive inertial confinement fusion experiments performed at the OMEGA laser facility via spectrally, temporally, and spatially resolved imaging x-ray-spectroscopy data [S. C. Hsu et al., Europhys. Lett. 115, 65001 (2016)]. These experiments were designed based on the expectation that interspecies ion thermo-diffusion would be the strongest for species with a large mass and charge difference. The targets were spherical plastic shells filled with D2 and a trace amount of Ar (0.1% or 1% by atom). Ar K-shell spectral features were observed primarily between the timemore » of first-shock convergence and slightly before the neutron bang time, using a time- and space-integrated spectrometer, a streaked crystal spectrometer, and two gated multi-monochromatic x-ray imagers fielded along quasi-orthogonal lines of sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal the deviation from the initial 1% Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted using radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. Lastly, the experimentally inferred Ar-atom fraction profiles agree reasonably with calculated profiles associated with the incoming and rebounding first shock.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkhitaryan, V. V.; Dobrovitski, V. V.
2015-08-24
The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less
Bright high-repetition-rate source of narrowband extreme-ultraviolet harmonics beyond 22 eV
Wang, He; Xu, Yiming; Ulonska, Stefan; Robinson, Joseph S.; Ranitovic, Predrag; Kaindl, Robert A.
2015-01-01
Novel table-top sources of extreme-ultraviolet light based on high-harmonic generation yield unique insight into the fundamental properties of molecules, nanomaterials or correlated solids, and enable advanced applications in imaging or metrology. Extending high-harmonic generation to high repetition rates portends great experimental benefits, yet efficient extreme-ultraviolet conversion of correspondingly weak driving pulses is challenging. Here, we demonstrate a highly-efficient source of femtosecond extreme-ultraviolet pulses at 50-kHz repetition rate, utilizing the ultraviolet second-harmonic focused tightly into Kr gas. In this cascaded scheme, a photon flux beyond ≈3 × 1013 s−1 is generated at 22.3 eV, with 5 × 10−5 conversion efficiency that surpasses similar harmonics directly driven by the fundamental by two orders-of-magnitude. The enhancement arises from both wavelength scaling of the atomic dipole and improved spatio-temporal phase matching, confirmed by simulations. Spectral isolation of a single 72-meV-wide harmonic renders this bright, 50-kHz extreme-ultraviolet source a powerful tool for ultrafast photoemission, nanoscale imaging and other applications. PMID:26067922
Thermalization dynamics of two correlated bosonic quantum wires after a split
NASA Astrophysics Data System (ADS)
Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian
2018-04-01
Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.
Self-Nulling Beam Combiner Using No External Phase Inverter
NASA Technical Reports Server (NTRS)
Bloemhof, Eric E.
2010-01-01
A self-nulling beam combiner is proposed that completely eliminates the phase inversion subsystem from the nulling interferometer, and instead uses the intrinsic phase shifts in the beam splitters. Simplifying the flight instrument in this way will be a valuable enhancement of mission reliability. The tighter tolerances on R = T (R being reflection and T being transmission coefficients) required by the self-nulling configuration actually impose no new constraints on the architecture, as two adaptive nullers must be situated between beam splitters to correct small errors in the coatings. The new feature is exploiting the natural phase shifts in beam combiners to achieve the 180 phase inversion necessary for nulling. The advantage over prior art is that an entire subsystem, the field-flipping optics, can be eliminated. For ultimate simplicity in the flight instrument, one might fabricate coatings to very high tolerances and dispense with the adaptive nullers altogether, with all their moving parts, along with the field flipper subsystem. A single adaptive nuller upstream of the beam combiner may be required to correct beam train errors (systematic noise), but in some circumstances phase chopping reduces these errors substantially, and there may be ways to further reduce the chop residuals. Though such coatings are beyond the current state of the art, the mechanical simplicity and robustness of a flight system without field flipper or adaptive nullers would perhaps justify considerable effort on coating fabrication.
Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework
Antonopoulos, Georgios C.; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2015-01-01
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available. PMID:26599984
Tile-Based Two-Dimensional Phase Unwrapping for Digital Holography Using a Modular Framework.
Antonopoulos, Georgios C; Steltner, Benjamin; Heisterkamp, Alexander; Ripken, Tammo; Meyer, Heiko
2015-01-01
A variety of physical and biomedical imaging techniques, such as digital holography, interferometric synthetic aperture radar (InSAR), or magnetic resonance imaging (MRI) enable measurement of the phase of a physical quantity additionally to its amplitude. However, the phase can commonly only be measured modulo 2π, as a so called wrapped phase map. Phase unwrapping is the process of obtaining the underlying physical phase map from the wrapped phase. Tile-based phase unwrapping algorithms operate by first tessellating the phase map, then unwrapping individual tiles, and finally merging them to a continuous phase map. They can be implemented computationally efficiently and are robust to noise. However, they are prone to failure in the presence of phase residues or erroneous unwraps of single tiles. We tried to overcome these shortcomings by creating novel tile unwrapping and merging algorithms as well as creating a framework that allows to combine them in modular fashion. To increase the robustness of the tile unwrapping step, we implemented a model-based algorithm that makes efficient use of linear algebra to unwrap individual tiles. Furthermore, we adapted an established pixel-based unwrapping algorithm to create a quality guided tile merger. These original algorithms as well as previously existing ones were implemented in a modular phase unwrapping C++ framework. By examining different combinations of unwrapping and merging algorithms we compared our method to existing approaches. We could show that the appropriate choice of unwrapping and merging algorithms can significantly improve the unwrapped result in the presence of phase residues and noise. Beyond that, our modular framework allows for efficient design and test of new tile-based phase unwrapping algorithms. The software developed in this study is freely available.
Design of a nanopatterned long focal-length planar focusing collector for concentrated solar power
NASA Astrophysics Data System (ADS)
Ding, Qing; Choubal, Aakash; Toussaint, Kimani C.
2017-02-01
Concentrated solar power (CSP) facilities heavily utilize parabolic troughs to collect and concentrate sunlight onto receivers that deliver solar thermal energy to heat engines for generating electricity. However, parabolic troughs are bulky and heavy and result in a large capital investment for CSP plants, thereby making it difficult for CSP technology to be competitive with photovoltaics. We present the design of a planar focusing collector (PFC) with focal length beyond the micron scale. The PFC design is based on the use of a nanostructured silver surface for linearly polarized singlewavelength light. The designed PFC consists of metallic nanogrooves on a dielectric substrate. The geometric properties, namely the width and depth, of a single-unit nanogroove allows for full control of the optical phase at desired spatial coordinates along the nanogroove short-axis for a single wavelength. Moreover, we show numerically that such phase control can be used to construct a phase front that mimics that of a cylindrical lens. In addition, we determine the concentration ratio by comparing the width of our PFC design to the cross-sectional width of its focal spot. We also determine the conversion efficiency at long focal lengths by evaluating the ratio of the collected optical power to the incoming optical power. Finally, we examine the focusing behavior across multiple wavelengths and angles of incidence. Our work shows how nano-optics and plasmonics could contribute to this important area of CSP technology.
Quantum state engineering of light with continuous-wave optical parametric oscillators.
Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien
2014-05-30
Engineering non-classical states of the electromagnetic field is a central quest for quantum optics(1,2). Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems(3). We focus here on the use of a continuous-wave optical parametric oscillator(3,4). This system is based on a non-linear χ(2) crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states(5). Generating directly such states is a difficult task and would require strong χ(3) non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode.
Combined vemurafenib and fotemustine in patients with BRAF V600 melanoma progressing on vemurafenib.
Queirolo, Paola; Spagnolo, Francesco; Picasso, Virginia; Spano, Laura; Tanda, Enrica; Fontana, Valeria; Giorello, Laura; Merlo, Domenico Franco; Simeone, Ester; Grimaldi, Antonio Maria; Curvietto, Marcello; Del Vecchio, Michele; Bruzzi, Paolo; Ascierto, Paolo Antonio
2018-02-23
BRAF inhibitor vemurafenib achieves high response rate and an improvement in survival in patients with BRAF-mutated metastatic melanoma. However, median progression-free survival is only 6.9 months in the phase 3 study. Retrospective analyses suggest that treatment with BRAF inhibitors beyond initial progression might be associated with improved overall survival. We aimed to prospectively investigate the activity of prolonged treatment with vemurafenib and the addition of fotemustine in patients with systemic progression on prior single-agent BRAF inhibitor. In this two-centres, single-arm Phase 2 trial, we enrolled patients with systemic progressive disease during single-agent vemurafenib treatment. Participants received vemurafenib 960 mg twice daily or dose administered at time of disease progression with vemurafenib previous treatment and fotemustine 100 mg/m2 intravenously every three weeks. The primary endpoint was PFS. Thirty-one patients were enrolled in the study; 16 patients had brain metastases at baseline. Median PFS was 3.9 months and 19 patients (61.3%) achieved disease control (1 CR, 4 PR, 14 SD). For patients achieving disease control, median duration of treatment was 6 months. Median OS was 5.8 months from enrolment and 15.4 months from start of previous vemurafenib. Five patients (16.1%) had a G3-4 AE, the most common being thrombocytopenia, which occurred in 3 patients.This trial is registered with ClinicalTrials.gov number NCT01983124. The combination of vemurafenib plus fotemustine has clinical activity and an acceptable safety profile in BRAF-refractory patients.
Lölsberg, Jonas; Linkhorst, John; Cinar, Arne; Jans, Alexander; Kuehne, Alexander J C; Wessling, Matthias
2018-05-01
Microfluidics is an established multidisciplinary research domain with widespread applications in the fields of medicine, biotechnology and engineering. Conventional production methods of microfluidic chips have been limited to planar structures, preventing the exploitation of truly three-dimensional architectures for applications such as multi-phase droplet preparation or wet-phase fibre spinning. Here the challenge of nanofabrication inside a microfluidic chip is tackled for the showcase of a spider-inspired spinneret. Multiphoton lithography, an additive manufacturing method, was used to produce free-form microfluidic masters, subsequently replicated by soft lithography. Into the resulting microfluidic device, a three-dimensional spider-inspired spinneret was directly fabricated in-chip via multiphoton lithography. Applying this unprecedented fabrication strategy, the to date smallest printed spinneret nozzle is produced. This spinneret resides tightly sealed, connecting it to the macroscopic world. Its functionality is demonstrated by wet-spinning of single-digit micron fibres through a polyacrylonitrile coagulation process induced by a water sheath layer. The methodology developed here demonstrates fabrication strategies to interface complex architectures into classical microfluidic platforms. Using multiphoton lithography for in-chip fabrication adopts a high spatial resolution technology for improving geometry and thus flow control inside microfluidic chips. The showcased fabrication methodology is generic and will be applicable to multiple challenges in fluid control and beyond.
Leonhardt, Bethany L; Kukla, Marina; Belanger, Elizabeth; Chaudoin-Patzoldt, Kelly A; Buck, Kelly D; Minor, Kyle S; Vohs, Jenifer L; Hamm, Jay A; Lysaker, Paul H
2018-03-01
Emerging integrative metacognitive therapies for schizophrenia seek to promote subjective aspects of recovery. Beyond symptom remission, they are concerned with shared meaning-making and intersubjective processes. It is unclear, however, how such therapies should understand and respond to psychotic content that threatens meaning-making in therapeutic contexts. Accordingly, we sought to understand what factors precede and potentially trigger psychotic content within psychotherapy and what aids in resolution and return to meaning-making. Forty-eight transcripts from a single psychotherapy case were analyzed with thematic analysis. Passages of delusional or disorganized content were identified and themes present prior to the emergence and resolution of such material were identified and coded. Themes that preceded the emergence of psychotic content varied across early, middle, and late phases of therapy. Material related to the patient's experience of inadequacy and potential vulnerability, therapist setting boundaries within the therapeutic relationship and making challenges appeared to trigger psychotic content, especially early in treatment. Psychotic content may emerge in session following identifiable antecedents which change over phases of therapy. Attending to psychotic content by assuming a non-hierarchical stance and not dismissing psychotic content may aid in maintaining intersubjectivity and support patient's movements toward recovery in integrative metacognitive therapies.
Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris
2013-11-04
In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.
Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight
NASA Astrophysics Data System (ADS)
Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.
2005-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.
Damping of quasiparticles in a Bose-Einstein condensate coupled to an optical cavity
NASA Astrophysics Data System (ADS)
Kónya, G.; Szirmai, G.; Domokos, P.
2014-07-01
We present a general theory for calculating the damping rate of elementary density-wave excitations in a Bose-Einstein condensate strongly coupled to a single radiation field mode of an optical cavity. Thereby we give a detailed derivation of the huge resonant enhancement in the Beliaev damping of a density-wave mode, predicted recently by Kónya et al. [Phys. Rev. A 89, 051601(R) (2014), 10.1103/PhysRevA.89.051601]. The given density-wave mode constitutes the polaritonlike soft mode of the self-organization phase transition. The resonant enhancement takes place, in both the normal and the ordered phases, outside the critical region. We show that the large damping rate is accompanied by a significant frequency shift of this polariton mode. Going beyond the Born-Markov approximation and determining the poles of the retarded Green's function of the polariton, we reveal a strong coupling between the polariton and a collective mode in the phonon bath formed by the other density-wave modes.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
NASA Astrophysics Data System (ADS)
Yang, Li-Kai; Cai, Han; Peng, Tao; Wang, Da-Wei
2018-06-01
The Hong‑Ou‑Mandel (HOM) effect was long believed to be a two-photon interference phenomenon. It describes the fact that two indistinguishable photons mixed at a beam splitter will bunch together to one of the two output modes. Considering the two single-photon emitters such as trapped ions, we explore a hidden scenario of the HOM effect, where entanglement can be generated between the two ions when a single photon is detected by one of the detectors. A second photon emitted by the entangled photon sources will be subsequently detected by the same detector. However, we can also control the fate of the second photon by manipulating the entangled state. Instead of two-photon interference, the phase of the entangled state is responsible for the photon’s path in our proposal. Toward a feasible experimental realization, we conduct a quantum jump simulation on the system to show its robustness against experimental errors.
A super-resolution ultrasound method for brain vascular mapping
O'Reilly, Meaghan A.; Hynynen, Kullervo
2013-01-01
Purpose: High-resolution vascular imaging has not been achieved in the brain due to limitations of current clinical imaging modalities. The authors present a method for transcranial ultrasound imaging of single micrometer-size bubbles within a tube phantom. Methods: Emissions from single bubbles within a tube phantom were mapped through an ex vivo human skull using a sparse hemispherical receiver array and a passive beamforming algorithm. Noninvasive phase and amplitude correction techniques were applied to compensate for the aberrating effects of the skull bone. The positions of the individual bubbles were estimated beyond the diffraction limit of ultrasound to produce a super-resolution image of the tube phantom, which was compared with microcomputed tomography (micro-CT). Results: The resulting super-resolution ultrasound image is comparable to results obtained via the micro-CT for small tissue specimen imaging. Conclusions: This method provides superior resolution to deep-tissue contrast ultrasound and has the potential to be extended to provide complete vascular network imaging in the brain. PMID:24320408
Nanometre-thick single-crystalline nanosheets grown at the water-air interface
NASA Astrophysics Data System (ADS)
Wang, Fei; Seo, Jung-Hun; Luo, Guangfu; Starr, Matthew B.; Li, Zhaodong; Geng, Dalong; Yin, Xin; Wang, Shaoyang; Fraser, Douglas G.; Morgan, Dane; Ma, Zhenqiang; Wang, Xudong
2016-01-01
To date, the preparation of free-standing 2D nanomaterials has been largely limited to the exfoliation of van der Waals solids. The lack of a robust mechanism for the bottom-up synthesis of 2D nanomaterials from non-layered materials has become an obstacle to further explore the physical properties and advanced applications of 2D nanomaterials. Here we demonstrate that surfactant monolayers can serve as soft templates guiding the nucleation and growth of 2D nanomaterials in large area beyond the limitation of van der Waals solids. One- to 2-nm-thick, single-crystalline free-standing ZnO nanosheets with sizes up to tens of micrometres are synthesized at the water-air interface. In this process, the packing density of surfactant monolayers adapts to the sub-phase metal ions and guides the epitaxial growth of nanosheets. It is thus named adaptive ionic layer epitaxy (AILE). The electronic properties of ZnO nanosheets and AILE of other materials are also investigated.
NASA Astrophysics Data System (ADS)
Pott, J.-U.; Woillez, J.; Ragland, S.; Wizinowich, P. L.; Eisner, J. A.; Monnier, J. D.; Akeson, R. L.; Ghez, A. M.; Graham, J. R.; Hillenbrand, L. A.; Millan-Gabet, R.; Appleby, E.; Berkey, B.; Colavita, M. M.; Cooper, A.; Felizardo, C.; Herstein, J.; Hrynevych, M.; Medeiros, D.; Morrison, D.; Panteleeva, T.; Smith, B.; Summers, K.; Tsubota, K.; Tyau, C.; Wetherell, E.
2010-07-01
Recently, the Keck interferometer was upgraded to do self-phase-referencing (SPR) assisted K-band spectroscopy at R ~ 2000. This means, combining a spectral resolution of 150 km/s with an angular resolution of 2.7 mas, while maintaining high sensitiviy. This SPR mode operates two fringe trackers in parallel, and explores several infrastructural requirements for off-axis phase-referencing, as currently being implemented as the KI-ASTRA project. The technology of self-phasereferencing opens the way to reach very high spectral resolution in near-infrared interferometry. We present the scientific capabilities of the KI-SPR mode in detail, at the example of observations of the Be-star 48 Lib. Several spectral lines of the cirumstellar disk are resolved. We describe the first detection of Pfund-lines in an interferometric spectrum of a Be star, in addition to Br γ. The differential phase signal can be used to (i) distinguish circum-stellar line emission from the star, (ii) to directly measure line asymmetries tracing an asymetric gas density distribution, (iii) to reach a differential, astrometric precision beyond single-telescope limits sufficient for studying the radial disk structure. Our data support the existence of a radius-dependent disk density perturbation, typically used to explain slow variations of Be-disk hydrogen line profiles.
NASA Technical Reports Server (NTRS)
Goudge, T. A.; Fassett, C. I.
2017-01-01
Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..
Kootstra, Gerrit Jan; Rossi, Eleonora
2017-01-01
In their target article, Branigan & Pickering (B&P) briefly discuss bilingual language representation, focusing primarily on cross-language priming between single-language sentences. We follow up on this discussion by showing how structural priming drives real-life phenomena of bilingual language use beyond the priming of unilingual sentences and by arguing that B&P's account should be extended with a representation for language membership.
Three-dimensional envelope instability in periodic focusing channels
NASA Astrophysics Data System (ADS)
Qiang, Ji
2018-03-01
The space-charge driven envelope instability can be of great danger in high intensity accelerators and was studied using a two-dimensional (2D) envelope model and three-dimensional (3D) macroparticle simulations before. In this paper, we study the instability for a bunched beam using a three-dimensional envelope model in a periodic solenoid and radio-frequency (rf) focusing channel and a periodic quadrupole and rf focusing channel. This study shows that when the transverse zero current phase advance is below 90 ° , the beam envelope can still become unstable if the longitudinal zero current phase advance is beyond 90 ° . For the transverse zero current phase advance beyond 90 ° , the instability stopband width becomes larger with the increase of the longitudinal focusing strength and even shows different structure from the 2D case when the longitudinal zero current phase advance is beyond 90 ° . Breaking the symmetry of two longitudinal focusing rf cavities and the symmetry between the horizontal focusing and the vertical focusing in the transverse plane in the periodic quadrupole and rf channel makes the instability stopband broader. This suggests that a more symmetric accelerator lattice design might help reduce the range of the envelope instability in parameter space.
Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol.
Reymond, Helena; Amado-Blanco, Victor; Lauper, Andreas; Rudolf von Rohr, Philipp
2017-03-22
Condensation promotes CO 2 hydrogenation to CH 3 OH beyond equilibrium through in situ product separation. Although primordial for catalyst and reactor design, triggering conditions as well as the impact on sub-equilibrium reaction behaviour remain unclear. Herein we used an in-house designed micro-view-cell to gain chemical and physical insights into reaction and phase behaviour under high-pressure conditions over a commercial Cu/ZnO/Al 2 O 3 catalyst. Raman microscopy and video monitoring, combined with online gas chromatography analysis, allowed the complete characterisation of the reaction bulk up to 450 bar (1 bar=0.1 MPa) and 350 °C. Dew points of typical effluent streams related to a parametric study suggest that the improving reaction performance and reverting selectivities observed from 230 °C strongly correlate with (i) a regime transition from kinetic to thermodynamic, and (ii) a phase transition from a single supercritical to a biphasic reaction mixture. Our results advance a rationale behind transitioning CH 3 OH selectivities for an improved understanding of CO 2 hydrogenation under high pressure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reproducibility of CT Perfusion Parameters in Liver Tumors and Normal Liver
Ng, Chaan S.; Chandler, Adam G.; Wei, Wei; Herron, Delise H.; Anderson, Ella F.; Kurzrock, Razelle; Charnsangavej, Chusilp
2011-01-01
Purpose: To assess the reproducibility of computed tomographic (CT) perfusion measurements in liver tumors and normal liver and effects of motion and data acquisition time on parameters. Materials and Methods: Institutional review board approval and written informed consent were obtained for this prospective study. The study complied with HIPAA regulations. Two CT perfusion scans were obtained 2–7 days apart in seven patients with liver tumors with two scanning phases (phase 1: 30-second breath-hold cine; phase 2: six intermittent free-breathing cines) spanning 135 seconds. Blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability–surface area product (PS) for tumors and normal liver were calculated from phase 1 with and without rigid registration and, for combined phases 1 and 2, with manually and rigid-registered phase 2 images, by using deconvolution modeling. Variability was assessed with within-patient coefficients of variation (CVs) and Bland-Altman analyses. Results: For tumors, BF, BV, MTT, and PS values and reproducibility varied by analytical method, the former by up to 11%, 23%, 21%, and 138%, respectively. Median PS values doubled with the addition of phase 2 data to phase 1 data. The best overall reproducibility was obtained with rigidly registered phase 1 and phase 2 images, with within-patient CVs for BF, BV, MTT, and PS of 11.2%, 14.4%, 5.5% and 12.1%, respectively. Normal liver evaluations were similar, except with marginally lower variability. Conclusion: Absolute values and reproducibility of CT perfusion parameters were markedly influenced by motion and data acquisition time. PS, in particular, probably requires data acquisition beyond a single breath hold, for which motion-correction techniques are likely necessary. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110331/-/DC1 PMID:21788525
NASA Astrophysics Data System (ADS)
Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.
2018-04-01
The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.
Correlated Fluctuations in Strongly Coupled Binary Networks Beyond Equilibrium
NASA Astrophysics Data System (ADS)
Dahmen, David; Bos, Hannah; Helias, Moritz
2016-07-01
Randomly coupled Ising spins constitute the classical model of collective phenomena in disordered systems, with applications covering glassy magnetism and frustration, combinatorial optimization, protein folding, stock market dynamics, and social dynamics. The phase diagram of these systems is obtained in the thermodynamic limit by averaging over the quenched randomness of the couplings. However, many applications require the statistics of activity for a single realization of the possibly asymmetric couplings in finite-sized networks. Examples include reconstruction of couplings from the observed dynamics, representation of probability distributions for sampling-based inference, and learning in the central nervous system based on the dynamic and correlation-dependent modification of synaptic connections. The systematic cumulant expansion for kinetic binary (Ising) threshold units with strong, random, and asymmetric couplings presented here goes beyond mean-field theory and is applicable outside thermodynamic equilibrium; a system of approximate nonlinear equations predicts average activities and pairwise covariances in quantitative agreement with full simulations down to hundreds of units. The linearized theory yields an expansion of the correlation and response functions in collective eigenmodes, leads to an efficient algorithm solving the inverse problem, and shows that correlations are invariant under scaling of the interaction strengths.
Beyond native block copolymer morphologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerk, Gregory S.; Yager, Kevin G.
Block copolymers self-assemble into a range of canonical morphologies. Here, we review a broad range of techniques for inducing these materials to form structures beyond the ‘native’ morphologies seen in the bulk equilibrium phase diagram. Methods that exploit intrinsic encoding (molecular design) and external enforcement (directed assembly) are compared.
Beyond native block copolymer morphologies
Doerk, Gregory S.; Yager, Kevin G.
2017-09-20
Block copolymers self-assemble into a range of canonical morphologies. Here, we review a broad range of techniques for inducing these materials to form structures beyond the ‘native’ morphologies seen in the bulk equilibrium phase diagram. Methods that exploit intrinsic encoding (molecular design) and external enforcement (directed assembly) are compared.
"Phronesis" and Moral Education: Treading beyond the Truisms
ERIC Educational Resources Information Center
Kristjánsson, Kristján
2014-01-01
Whereas most latter-day Aristotelian approaches to moral education highlight the early habituation phase of moral development, they rarely have much to say, beyond truisms from the "Nicomachean ethics," about the ultimate Aristotelian goal of cultivating fully fledged "phronesis." The aim of this article is to repair the dearth…
Future optical communication networks beyond 160 Gbit/s based on OTDM
NASA Astrophysics Data System (ADS)
Prati, Giancarlo; Bogoni, Antonella; Poti, Luca
2005-01-01
The virtually unlimited bandwidth of optical fibers has caused a great increase in data transmission speed over the past decade and, hence, stimulated high-demand multimedia services such as distance learning, video-conferencing and peer to peer applications. For this reason data traffic is exceeding telephony traffic, and this trend is driving the convergence of telecommunications and computer communications. In this scenario Internet Protocol (IP) is becoming the dominant protocol for any traffic, shifting the attention of the network designers from a circuit switching approach to a packet switching approach. A role of paramount importance in packet switching networks is played by the router that must implement the functionalities to set up and maintain the inter-nodal communications. The main functionalities a router must implement are routing, forwarding, switching, synchronization, contention resolution, and buffering. Nowadays, opto-electronic conversion is still required at each network node to process the incoming signal before routing that to the right output port. However, when the single channel bit rate increases beyond electronic speed limit, Optical Time Division Multiplexing (OTDM) becomes a forced choice, and all-optical processing must be performed to extract the information from the incoming packet. In this paper enabling techniques for ultra-fast all-optical network will be addressed. First a 160 Gbit/s complete transmission system will be considered. As enabling technique, an overview for all-optical logics will be discussed and experimental results will be presented using a particular reconfigurable NOLM based on Self-Phase-Modulation (SPM) or Cross-Phase-Modulation (XPM). Finally, a rough experiment on label extraction, all-optical switching and packet forwarding is shown.
Necchi, A; Joseph, R W; Loriot, Y; Hoffman-Censits, J; Perez-Gracia, J L; Petrylak, D P; Derleth, C L; Tayama, D; Zhu, Q; Ding, B; Kaiser, C; Rosenberg, J E
2017-12-01
Conventional criteria for tumor progression may not fully reflect the clinical benefit of immunotherapy or appropriately guide treatment decisions. The phase II IMvigor210 study demonstrated the efficacy and safety of atezolizumab, a programmed death-ligand 1-directed antibody, in patients with platinum-treated locally advanced or metastatic urothelial carcinoma. Patients could continue atezolizumab beyond Response Evaluation Criteria In Solid Tumors (RECIST) v1.1 progression at the investigator's discretion: this analysis assessed post-progression outcomes in these patients. Patients were treated with atezolizumab 1200 mg i.v. every 3 weeks until loss of clinical benefit. Efficacy and safety outcomes in patients who experienced RECIST v1.1 progression and did, or did not, continue atezolizumab were analyzed descriptively. In total, 220 patients who experienced progression from the overall cohort (n = 310) were analyzed: 137 continued atezolizumab for ≥ 1 dose after progression, 19 received other systemic therapy, and 64 received no further systemic therapy. Compared with those who discontinued, patients continuing atezolizumab beyond progression were more likely to have had a baseline Eastern Cooperative Oncology Group performance status of 0 (43.1% versus 31.3%), less likely to have had baseline liver metastases (27.0% versus 41.0%), and more likely to have had an initial response to atezolizumab (responses in 11.7% versus 1.2%). Five patients (3.6%) continuing atezolizumab after progression had subsequent responses compared with baseline measurements. Median post-progression overall survival was 8.6 months in patients continuing atezolizumab, 6.8 months in those receiving another treatment, and 1.2 months in those receiving no further treatment. Atezolizumab exposure-adjusted adverse event frequencies were generally similar before and following progression. In this single-arm study, patients who continued atezolizumab beyond RECIST v1.1 progression derived prolonged clinical benefit without additional safety signals. Identification of patients most likely to benefit from atezolizumab beyond progression remains an important challenge in the management of metastatic urothelial carcinoma. NCT02108652. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Synthesis and characterization of single-phase Mn-doped ZnO
NASA Astrophysics Data System (ADS)
Chattopadhyay, S.; Dutta, S.; Banerjee, A.; Jana, D.; Bandyopadhyay, S.; Chattopadhyay, S.; Sarkar, A.
2009-05-01
Different samples of Zn 1-xMn xO series have been prepared using conventional solid-state sintering method. We identified up to what extent doping will enable us to synthesize single-phase polycrystalline Mn-doped ZnO sample, which is one of the prerequisites for dilute magnetic semiconductor, and we have analyzed its some other physical aspects. In synthesizing the samples, proportion of Mn varies from 1 to 5 at%. However, the milling time varied (6, 12, 24, 48 and 96 h) only for 2 at% Mn-doped samples while for other samples (1, 3, 4 and 5 at% Mn doped) the milling time has been fixed to 96 h. Room-temperature X-ray diffraction (XRD) data reveal that all of the prepared samples up to 3 at% of Mn doping exhibit wurtzite-type structure, and no segregation of Mn and/or its oxides has been found. The 4 at% Mn-doped samples show a weak peak of ZnMn 2O 4 apart from the other usual peaks of ZnO and the intensity of this impurity peak has been further increased for 5 at% of Mn doping. So beyond 3 at% doping, single-phase behavior is destroyed. Band gap for all the 2 at% Mn-doped samples has been estimated to be between 3.21 and 3.19 eV and the reason for this low band gap values has been explained through the grain boundary trapping model. The room-temperature resistivity measurement shows an increase of resistivity up to 48 h of milling and with further milling it saturates. The defect state of these samples has been investigated using the positron annihilation lifetime (PAL) spectroscopy technique. Here all the relevant lifetime parameters of positron i.e. free annihilation ( τ1) at defect site ( τ2) and average ( τav) increases with milling time.
Large scale spontaneous synchronization of cell cycles in amoebae
NASA Astrophysics Data System (ADS)
Segota, Igor; Boulet, Laurent; Franck, Carl
2014-03-01
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. We show that substrate-growtn cell populations spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state and provide opportunities for synchronization theories beyond classic Kuramoto models.
Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation
NASA Astrophysics Data System (ADS)
He, Juan; Ding, Zhi-Yong; Ye, Liu
2018-05-01
In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.
Composite fermion theory for bosonic quantum Hall states on lattices.
Möller, G; Cooper, N R
2009-09-04
We study the ground states of the Bose-Hubbard model in a uniform magnetic field, motivated by the physics of cold atomic gases on lattices at high vortex density. Mapping the bosons to composite fermions (CF) leads to the prediction of quantum Hall fluids that have no counterpart in the continuum. We construct trial states for these phases and test numerically the predictions of the CF model. We establish the existence of strongly correlated phases beyond those in the continuum limit and provide evidence for a wider scope of the composite fermion approach beyond its application to the lowest Landau level.
Coherent backscattering of light by complex random media of spherical scatterers: numerical solution
NASA Astrophysics Data System (ADS)
Muinonen, Karri
2004-07-01
Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.
Single-layer dual germanene phases on Ag(111)
NASA Astrophysics Data System (ADS)
Lin, Chung-Huang; Huang, Angus; Pai, Woei Wu; Chen, Wei-Chuan; Chen, Ting-Yu; Chang, Tay-Rong; Yukawa, Ryu; Cheng, Cheng-Maw; Mou, Chung-Yu; Matsuda, Iwao; Chiang, T.-C.; Jeng, H.-T.; Tang, S.-J.
2018-02-01
Two-dimensional (2D) honeycomb lattices beyond graphene promise new physical properties such as quantum spin Hall effect. While there have been claims of growth of such lattices (silicene, germanene, stanene), their existence needs further support and their preparation and characterization remain a difficult challenge. Our findings suggest that two distinct phases associated with germanene, the analog of graphene made of germanium (Ge) instead of carbon, can be grown on Ag(111) as observed by scanning tunneling microscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy. One such germanene exhibits an atom-resolved alternatively buckled full honeycomb lattice, which is tensile strained and partially commensurate with the substrate to form a striped phase (SP). The other, a quasifreestanding phase (QP), is also consistent with a honeycomb lattice with a lattice constant incommensurate with the substrate but very close to the theoretical value for freestanding germanene. The SP, with a lower atomic density, can be driven into the QP and coexist with the QP by additional Ge deposition. Band mapping and first-principles calculations with proposed SP and QP models reveal an interface state exists only in the SP but the characteristic σ band of freestanding germanene emerges only in the QP—this leads to an important conclusion that adlayer-substrate commensurability plays a key role to affect the electronic structure of germanene. The evolution of the dual germanene phases manifests the competitive formation of Ge-Ge covalent and Ge-Ag interfacial bonds.
NASA Astrophysics Data System (ADS)
Souza, D. M.; Costa, I. A.; Nóbrega, R. A.
2017-10-01
This document presents a detailed study of the performance of a set of digital filters whose implementations are based on the best linear unbiased estimator theory interpreted as a constrained optimization problem that could be relaxed depending on the input signal characteristics. This approach has been employed by a number of recent particle physics experiments for measuring the energy of particle events interacting with their detectors. The considered filters have been designed to measure the peak amplitude of signals produced by their detectors based on the digitized version of such signals. This study provides a clear understanding of the characteristics of those filters in the context of particle physics and, additionally, it proposes a phase related constraint based on the second derivative of the Taylor expansion in order to make the estimator less sensitive to phase variation (phase between the analog signal shaping and its sampled version), which is stronger in asynchronous experiments. The asynchronous detector developed by the ν-Angra Collaboration is used as the basis for this work. Nevertheless, the proposed analysis goes beyond, considering a wide range of conditions related to signal parameters such as pedestal, phase, sampling rate, amplitude resolution, noise and pile-up; therefore crossing the bounds of the ν-Angra Experiment to make it interesting and useful for different asynchronous and even synchronous experiments.
20-mN Variable Specific Impulse (Isp) Colloid Thruster
NASA Technical Reports Server (NTRS)
Demmons, Nathaniel
2015-01-01
Busek Company, Inc., has designed and manufactured an electrospray emitter capable of generating 20 mN in a compact package (7x7x1.7 in). The thruster consists of nine porous-surface emitters operating in parallel from a common propellant supply. Each emitter is capable of supporting over 70,000 electrospray emission sites with the plume from each emitter being accelerated through a single aperture, eliminating the need for individual emission site alignment to an extraction grid. The total number of emission sites during operation is expected to approach 700,000. This Phase II project optimized and characterized the thruster fabricated during the Phase I effort. Additional porous emitters also were fabricated for full-scale testing. Propellant is supplied to the thruster via existing feed-system and microvalve technology previously developed by Busek, under the NASA Space Technology 7's Disturbance Reduction System (ST7-DRS) mission and via follow-on electric propulsion programs. This project investigated methods for extending thruster life beyond the previously demonstrated 450 hours. The life-extending capabilities will be demonstrated on a subscale version of the thruster.
Learning with Multiple Representations: Extending Multimedia Learning beyond the Lab
ERIC Educational Resources Information Center
Eilam, Billie; Poyas, Yael
2008-01-01
The present study extended multimedia learning principles beyond the lab to an ecologically valid setting (homework). Eighteen information cards were used to perform three homework tasks. The control group students learned from single representation (SR) cards that presented all information as printed text. The multiple representation (MR) group…
36 CFR 28.12 - Development standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... unless it complies with the following: (a) A single-family home is the only type of development permitted... accessory structures on the property and any extension of the upper floors beyond the developed area on the... and accessory structures on the property and any extension of the upper floors beyond the developed...
Growth and phase transformations of Ir on Ge(111)
NASA Astrophysics Data System (ADS)
Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.
2017-12-01
The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2012 CFR
2012-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2014 CFR
2014-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2013 CFR
2013-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...
Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept
NASA Technical Reports Server (NTRS)
Cole, John; Campbell, Jonathan; Robertson, Anthony
1995-01-01
During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.
Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond
NASA Astrophysics Data System (ADS)
Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.
2014-09-01
We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.
30 CFR 77.806 - Connection of single-phase loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINES Surface High-Voltage Distribution § 77.806 Connection of single-phase loads. Single-phase loads, such as transformer primaries, shall be connected phase to phase in resistance grounded systems. ...
A theoretical extension of the soil freezing curve paradigm
NASA Astrophysics Data System (ADS)
Amiri, Erfan A.; Craig, James R.; Kurylyk, Barret L.
2018-01-01
Numerical models of permafrost evolution in porous media typically rely upon a smooth continuous relation between pore ice saturation and sub-freezing temperature, rather than the abrupt phase change that occurs in pure media. Soil scientists have known for decades that this function, known as the soil freezing curve (SFC), is related to the soil water characteristic curve (SWCC) for unfrozen soils due to the analogous capillary and sorptive effects experienced during both soil freezing and drying. Herein we demonstrate that other factors beyond the SFC-SWCC relationship can influence the potential range over which pore water phase change occurs. In particular, we provide a theoretical extension for the functional form of the SFC based upon the presence of spatial heterogeneity in both soil thermal conductivity and the freezing point depression of water. We infer the functional form of the SFC from many abrupt-interface 1-D numerical simulations of heterogeneous systems with prescribed statistical distributions of water and soil properties. The proposed SFC paradigm extension has the appealing features that it (1) is determinable from measurable soil and water properties, (2) collapses into an abrupt phase transition for homogeneous media, (3) describes a wide range of heterogeneity within a single functional expression, and (4) replicates the observed hysteretic behavior of freeze-thaw cycles in soils.
Biasing and the search for primordial non-Gaussianity beyond the local type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gleyzes, Jérôme; De Putter, Roland; Doré, Olivier
Primordial non-Gaussianity encodes valuable information about the physics of inflation, including the spectrum of particles and interactions. Significant improvements in our understanding of non-Gaussanity beyond Planck require information from large-scale structure. The most promising approach to utilize this information comes from the scale-dependent bias of halos. For local non-Gaussanity, the improvements available are well studied but the potential for non-Gaussianity beyond the local type, including equilateral and quasi-single field inflation, is much less well understood. In this paper, we forecast the capabilities of large-scale structure surveys to detect general non-Gaussianity through galaxy/halo power spectra. We study how non-Gaussanity can bemore » distinguished from a general biasing model and where the information is encoded. For quasi-single field inflation, significant improvements over Planck are possible in some regions of parameter space. We also show that the multi-tracer technique can significantly improve the sensitivity for all non-Gaussianity types, providing up to an order of magnitude improvement for equilateral non-Gaussianity over the single-tracer measurement.« less
NASA Technical Reports Server (NTRS)
2003-01-01
The Microgravity Science Division identifies four priority ratings for microgravity research and technology issues: 1) Critical; 2) Severely Limiting; 3) Enhancements; 4) Communication. Reduced gravity instabilities are critical, while severely limiting issues include phase separation, phase change, and flow through components. Enhancements are listed for passive phase separation and phase change. This viewgraph presentation also classifies microgravity issues as spaceflight, ground-based, or other for the time periods 2003-2008, 2009-2015, and beyond.
Short, Scott S; Bucher, Brian T; Barnhart, Douglas C; Van Der Watt, Nadia; Zobell, Sarah; Allen, Ashley; Rollins, Michael D
2018-02-12
We sought to examine the short-term outcomes following single-stage repair of rectoperineal and rectovestibular fistulae in infants and identify risk factors for wound complication. Patients with a rectoperineal or rectovestibular fistula treated with a single-stage repair beyond the neonatal period (>30days of age) at a pediatric colorectal center (2011-2016) were reviewed. 36 patients with a rectoperineal and 7 patients with a rectovestibular fistula were repaired using the Posterior Sagittal Anorectoplasty (PSARP) approach. Median follow-up was 31months. The median age and weight at the time of repair were 166days and 6.5kg. Four patients (11%) suffered a wound complication (3 rectoperineal, 1 rectovestibular). Two required a diverting colostomy to allow wound healing. Two patients suffered skin separation managed with local wound care. All 4 patients experienced satisfactory wound healing without anoplasty stricture. Two different patients developed a stricture of the neo-anus. Age and weight at time of repair, gender, and presence of a genitourinary anomaly were not associated with wound complications. Delayed single-stage repair of rectoperineal and rectovestibular fistulae can be performed safely in infants beyond the newborn period. With attentive treatment, satisfactory healing can be anticipated if a wound complication is encountered. Retrospective Comparative Study, Level III. Copyright © 2018. Published by Elsevier Inc.
Cundy, Thomas P; Gattas, Nicholas E; White, Alan D; Najmaldin, Azad S
2015-08-01
The cumulative summation (CUSUM) method for learning curve analysis remains under-utilized in the surgical literature in general, and is described in only a small number of publications within the field of pediatric surgery. This study introduces the CUSUM analysis technique and applies it to evaluate the learning curve for pediatric robot-assisted laparoscopic pyeloplasty (RP). Clinical data were prospectively recorded for consecutive pediatric RP cases performed by a single-surgeon. CUSUM charts and tests were generated for set-up time, docking time, console time, operating time, total operating room time, and postoperative complications. Conversions and avoidable operating room delay were separately evaluated with respect to case experience. Comparisons between case experience and time-based outcomes were assessed using the Student's t-test and ANOVA for bi-phasic and multi-phasic learning curves respectively. Comparison between case experience and complication frequency was assessed using the Kruskal-Wallis test. A total of 90 RP cases were evaluated. The learning curve transitioned beyond the learning phase at cases 10, 15, 42, 57, and 58 for set-up time, docking time, console time, operating time, and total operating room time respectively. All comparisons of mean operating times between the learning phase and subsequent phases were statistically significant (P=<0.001-0.01). No significant difference was observed between case experience and frequency of post-operative complications (P=0.125), although the CUSUM chart demonstrated a directional change in slope for the last 12 cases in which there were high proportions of re-do cases and patients <6 months of age. The CUSUM method has a valuable role for learning curve evaluation and outcome quality monitoring. In applying this statistical technique to the largest reported single surgeon series of pediatric RP, we demonstrate numerous distinctly shaped learning curves and well-defined learning phase transition points. Copyright © 2015 Elsevier Inc. All rights reserved.
Multiple exposure routes of a pesticide exacerbate effects on a grazing mayfly.
Pristed, Mathias Joachim Skov; Bundschuh, Mirco; Rasmussen, Jes Jessen
2016-09-01
Hydrophobic pesticides such as pyrethroid insecticides tend to occur in their soluble form mainly as transient pulses in streams. In addition, they are regularly detected in significant quantities adsorbed to stream sediments and other organic in-stream structures. Consequently, stream biota is likely subjected to pesticide exposure via multiple routes. In this study we aimed at investigating the influence of exposure routes for the pyrethroid insecticide lambda-cyhalothrin on the grazing mayfly Heptagenia sulphurea. Therefore, H. sulphurea was exposed to lambda-cyhalothrin via single- (water or biofilm) or biphasic exposure (water and biofilm) at environmentally realistic concentrations (0, 0.1, 1μgL(-1)) and exposure duration (2h) in a full factorial design (n=5). Mortality, moulting frequency, and biofilm accrual (proxy for feeding rate) were recorded subsequent to a 7 d post exposure period. Mortality significantly increased and moulting frequency significantly decreased with increasing concentrations of lambda-cyhalothrin in the water phase whereas exposure via biofilm prompted no significant effects on these endpoints (α=0.05). Effect predictions systematically underestimated and overestimated effects for mortality and moulting frequency, respectively. Similarly, mayfly feeding rate was significantly reduced by water phase exposure whereas pre-exposed biofilm did not significantly affect this variable. However, we found a significant but non-systematic interaction between water phase and biofilm exposure on mayfly feeding rate. Our results show that exposure to the same pesticide via multiple exposure routes may increase the magnitude of effects beyond the level predicted from single phase exposures which has clear implications for the aquatic risk assessment of hydrophobic pesticides. However, our results additionally reveal that interactions between pesticide exposure routes may vary between selected dependent variables. We emphasize that unravelling the underlying mechanisms causing these discrepancies in interactive effects between exposure routes is a major aspect that should receive further attention in future research. Copyright © 2016 Elsevier B.V. All rights reserved.
Corresponding-states laws for protein solutions.
Katsonis, Panagiotis; Brandon, Simon; Vekilov, Peter G
2006-09-07
The solvent around protein molecules in solutions is structured and this structuring introduces a repulsion in the intermolecular interaction potential at intermediate separations. We use Monte Carlo simulations with isotropic, pair-additive systems interacting with such potentials. We test if the liquid-liquid and liquid-solid phase lines in model protein solutions can be predicted from universal curves and a pair of experimentally determined parameters, as done for atomic and colloid materials using several laws of corresponding states. As predictors, we test three properties at the critical point for liquid-liquid separation: temperature, as in the original van der Waals law, the second virial coefficient, and a modified second virial coefficient, all paired with the critical volume fraction. We find that the van der Waals law is best obeyed and appears more general than its original formulation: A single universal curve describes all tested nonconformal isotropic pair-additive systems. Published experimental data for the liquid-liquid equilibrium for several proteins at various conditions follow a single van der Waals curve. For the solid-liquid equilibrium, we find that no single system property serves as its predictor. We go beyond corresponding-states correlations and put forth semiempirical laws, which allow prediction of the critical temperature and volume fraction solely based on the range of attraction of the intermolecular interaction potential.
CFD-based optimization in plastics extrusion
NASA Astrophysics Data System (ADS)
Eusterholz, Sebastian; Elgeti, Stefanie
2018-05-01
This paper presents novel ideas in numerical design of mixing elements in single-screw extruders. The actual design process is reformulated as a shape optimization problem, given some functional, but possibly inefficient initial design. Thereby automatic optimization can be incorporated and the design process is advanced, beyond the simulation-supported, but still experience-based approach. This paper proposes concepts to extend a method which has been developed and validated for die design to the design of mixing-elements. For simplicity, it focuses on single-phase flows only. The developed method conducts forward-simulations to predict the quasi-steady melt behavior in the relevant part of the extruder. The result of each simulation is used in a black-box optimization procedure based on an efficient low-order parameterization of the geometry. To minimize user interaction, an objective function is formulated that quantifies the products' quality based on the forward simulation. This paper covers two aspects: (1) It reviews the set-up of the optimization framework as discussed in [1], and (2) it details the necessary extensions for the optimization of mixing elements in single-screw extruders. It concludes with a presentation of first advances in the unsteady flow simulation of a metering and mixing section with the SSMUM [2] using the Carreau material model.
NASA Astrophysics Data System (ADS)
Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P.
2013-04-01
We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.
NASA Astrophysics Data System (ADS)
Zhao, Yifan; Du, Jing; Zhang, Jinrun; Shen, Li; Wang, Jian
2018-04-01
Mid-infrared (2-20 μm) light has been attracting great attention in many areas of science and technology. Beyond the extended wavelength range from visible and near-infrared to mid-infrared, shaping spatial structures may add opportunities to grooming applications of mid-infrared photonics. Here, we design and fabricate a reflection-enhanced plasmonic metasurface and demonstrate efficient generation of structured light with the phase helix and intensity helix at 2 μm. This work includes two distinct aspects. First, structured light (phase helix, intensity helix) generation at 2 μm, which is far beyond the ability of conventional spatial light modulators, is enabled by the metasurface with sub-wavelength engineered structures. Second, the self-referenced intensity helix against environmental noise is generated without using a spatially separated light. The demonstrations may open up advanced perspectives to structured light applications at 2 μm, such as phase helix for communications and non-communications (imaging, sensing) and intensity helix for enhanced microscopy and advanced metrology.
Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P
2013-04-12
We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.
ERIC Educational Resources Information Center
Jin, Hua; Lin, Dan; Zhang, Dake; Wen, Hongbo; Zhu, Huohong; He, Xianyou; Mo, Lei
2010-01-01
This study investigated the contributions of single-word identification and compound word categorization to Chinese students' reading achievement among 31 students with reading difficulties and 20 students without reading difficulties. The results suggested that, deficiency in single characters identification is not the primarily reason for…
Beyond Family-Friendly: The Construct and Measurement of Singles-Friendly Work Culture
ERIC Educational Resources Information Center
Casper, Wendy J.; Weltman, David; Kwesiga, Eileen
2007-01-01
Although research has examined work-family issues and organizational support for employees' family responsibilities, few studies have explored the work-life issues of single employees without children. The current study examines single employees' perceptions of how their organizations support their work-life balance in comparison to employees with…
30 CFR 75.905 - Connection of single-phase loads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alternating Current Circuits § 75.905 Connection of single-phase loads. [Statutory Provisions] Single-phase... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection of single-phase loads. 75.905 Section 75.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
30 CFR 75.905 - Connection of single-phase loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alternating Current Circuits § 75.905 Connection of single-phase loads. [Statutory Provisions] Single-phase... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection of single-phase loads. 75.905 Section 75.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
Double acting stirling engine phase control
Berchowitz, David M.
1983-01-01
A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.
Morón, Fanny; Delumpa, Alfred; Guffey, Danielle; Dunaway, David
2017-01-01
Objective This study aims to compare the sensitivity of dual phase (non-contrast and arterial) versus single phase (arterial) CT for detection of hyper-functioning parathyroid glands in patients with primary hyperparathyroidism. Methods The CT scans of thirty-two patients who have biochemical evidence of primary hyperparathyroidism, pathologically proven parathyroid adenomas, and pre-operative multiphase parathyroid imaging were evaluated retrospectively in order to compare the adequacy of single phase vs. dual phase CT scans for the detection of parathyroid adenomas. Results The parathyroid adenomas were localized in 83% of cases on single arterial phase CT and 80% of cases on dual phase CT. The specificity for localization of parathyroid tumor was 96% for single phase CT and 97% for dual phase CT. The results were not significantly different (p = 0.695). These results are similar to those found in the literature for multiphase CT of 55–94%. Conclusions Our study supports the use of a single arterial phase CT for the detection of hyperfunctioning parathyroid adenomas. Advances in knowledge: a single arterial phase CT has similar sensitivity for localizing parathyroid adenomas as dual phase CT and significantly reduces radiation dose to the patient. PMID:28828238
Single Motherhood, Alcohol Dependence, and Smoking During Pregnancy: A Propensity Score Analysis.
Waldron, Mary; Bucholz, Kathleen K; Lian, Min; Lessov-Schlaggar, Christina N; Miller, Ruth Huang; Lynskey, Michael T; Knopik, Valerie S; Madden, Pamela A F; Heath, Andrew C
2017-09-01
Few studies linking single motherhood and maternal smoking during pregnancy consider correlated risk from problem substance use beyond history of smoking and concurrent use of alcohol. In the present study, we used propensity score methods to examine whether the risk of smoking during pregnancy associated with single motherhood is the result of potential confounders, including alcohol dependence. Data were drawn from mothers participating in a birth cohort study of their female like-sex twin offspring (n = 257 African ancestry; n = 1,711 European or other ancestry). We conducted standard logistic regression models predicting smoking during pregnancy from single motherhood at twins' birth, followed by propensity score analyses comparing single-mother and two-parent families stratified by predicted probability of single motherhood. In standard models, single motherhood predicted increased risk of smoking during pregnancy in European ancestry but not African ancestry families. In propensity score analyses, rates of smoking during pregnancy were elevated in single-mother relative to two-parent European ancestry families across much of the spectrum a priori risk of single motherhood. Among African ancestry families, within-strata comparisons of smoking during pregnancy by single-mother status were nonsignificant. These findings highlight single motherhood as a unique risk factor for smoking during pregnancy in European ancestry mothers, over and above alcohol dependence. Additional research is needed to identify risks, beyond single motherhood, associated with smoking during pregnancy in African ancestry mothers.
Beyond the resolution limit: subpixel resolution in animals and now in silicon
NASA Astrophysics Data System (ADS)
Wilcox, M. J.
2007-09-01
Automatic acquisition of aerial threats at thousands of kilometers distance requires high sensitivity to small differences in contrast and high optical quality for subpixel resolution, since targets occupy much less surface area than a single pixel. Targets travel at high speed and break up in the re-entry phase. Target/decoy discrimination at the earliest possible time is imperative. Real time performance requires a multifaceted approach with hyperspectral imaging and analog processing allowing feature extraction in real time. Hyperacuity Systems has developed a prototype chip capable of nonlinear increase in resolution or subpixel resolution far beyond either pixel size or spacing. Performance increase is due to a biomimetic implementation of animal retinas. Photosensitivity is not homogeneous across the sensor surface, allowing pixel parsing. It is remarkably simple to provide this profile to detectors and we showed at least three ways to do so. Individual photoreceptors have a Gaussian sensitivity profile and this nonlinear profile can be exploited to extract high-resolution. Adaptive, analog circuitry provides contrast enhancement, dynamic range setting with offset and gain control. Pixels are processed in parallel within modular elements called cartridges like photo-receptor inputs in fly eyes. These modular elements are connected by a novel function for a cell matrix known as L4. The system is exquisitely sensitive to small target motion and operates with a robust signal under degraded viewing conditions, allowing detection of targets smaller than a single pixel or at greater distance. Therefore, not only is instantaneous feature extraction possible but also subpixel resolution. Analog circuitry increases processing speed with more accurate motion specification for target tracking and identification.
A multi-scale method of mapping urban influence
Timothy G. Wade; James D. Wickham; Nicola Zacarelli; Kurt H. Riitters
2009-01-01
Urban development can impact environmental quality and ecosystem services well beyond urban extent. Many methods to map urban areas have been developed and used in the past, but most have simply tried to map existing extent of urban development, and all have been single-scale techniques. The method presented here uses a clustering approach to look beyond the extant...
The Role of Negative Affect on Headache-Related Disability Following Traumatic Physical Injury.
Pacella, Maria L; Hruska, Bryce; George, Richard L; Delahanty, Douglas L
2018-03-01
Acute postinjury negative affect (NA) may contribute to headache pain following physical injury. Early psychiatric-headache comorbidity conveys increased vulnerability to chronic headache-related disability and impairment. Yet, it is unknown whether NA is involved in the transition to chronic headache related-disability after injury. This prospective observational study examined the role of acute postinjury NA on subacute and chronic headache-related disability above and beyond nonpsychiatric factors. Eighty adult survivors of single-incident traumatic physical injury were assessed for negative affect (NA): a composite of depression and anxiety symptoms, and symptoms of posttraumatic stress disorder (PTSS) during the acute 2-week postinjury phase. NA was examined as the primary predictor of subacute (6-week) and chronic (3-month) headache-related disability; secondary analyses examined whether the individual NA components differentially impacted the outcomes. Hierarchical linear regression confirmed NA as a unique predictor of subacute (Cohen's f 2 = 0.130; P = .005) and chronic headache related-disability (Cohen's f 2 = 0.160; P = .004) beyond demographic and injury-related factors (sex, prior headaches, and closed head injury). Upon further analysis, PTSS uniquely predicted greater subacute (Cohen's f 2 = 0.105; P = .012) and chronic headache-related disability (Cohen's f 2 = 0.103; P = .022) above and beyond demographic and injury-related factors, depression, and anxiety. Avoidance was a robust predictor of subacute headache impairment (explaining 15% of the variance) and hyperarousal was a robust predictor of chronic headache impairment (10% of the variance). Although NA consistently predicted headache-related disability, PTSS alone was a unique predictor above and beyond nonpsychiatric factors, depression, and anxiety. These results are suggestive that early treatment of acute postinjury PTSS may correlate with reductions in disability and negative physical health sequelae associated with PTSS and chronic headache. © 2017 American Headache Society.
Phase Formation and Superconductivity of Fe-TUBE Encapsulated and Vacuum-Annealed MgB2
NASA Astrophysics Data System (ADS)
Singh, K. P.; Awana, V. P. S.; Shahabuddin, Md.; Husain, M.; Saxena, R. B.; Nigam, Rashmi; Ansari, M. A.; Gupta, Anurag; Narayan, Himanshu; Halder, S. K.; Kishan, H.
We report optimization of the synthesis parameters viz. heating temperature (TH), and hold time (thold) for vacuum-annealed (10-5 Torr) and LN2 (liquid nitrogen) quenched MgB2 compound. These are single-phase compounds crystallizing in the hexagonal structure (space group P6/mmm) at room temperature. Our XRD results indicated that for phase-pure MgB2, the TH for 10-5 Torr annealed and LN2-quenched samples is 750°C. The right stoichiometry i.e., MgB2 of the compound corresponding to 10-5 Torr and TH of 750°C is found for the hold time (thold) of 2.30 hours. With varying thold from 1-4 hours at fixed TH (750°C) and vacuum (10-5 Torr), the c-lattice parameter decreases first and later increases with thold (hours) before a near saturation, while the a-lattice parameter first increases and later decreases beyond a thold of 2.30 hours. The c/a ratio versus thold plot showed an inverted bell-shaped curve, touching the lowest value of 1.141, which is the reported value for perfect stoichiometry of MgB2. The optimized stoichimetric MgB2 compound exhibited superconductivity at 39.2 K with a transition width of 0.6 K. In conclusion, the synthesis parameters for phase pure stoichimetric vacuum-annealed MgB2 compound are optimized and are compared with widely-reported Ta tube encapsulated samples.
Davis, Timothy M E; Hunt, Kerry; McAullay, Daniel; Chubb, Stephen A P; Sillars, Brett A; Bruce, David G; Davis, Wendy A
2012-10-01
To determine whether disparities in the nature and management of type 2 diabetes persist between Aboriginal and the majority Anglo-Celt patients in an urban Australian community. Baseline data from the observational Fremantle Diabetes Study collected from 1993 to 1996 (phase I) and from 2008 to 2011 (phase II) were analyzed. Patients characterized as Aboriginal or Anglo-Celt by self-report and supporting data underwent comprehensive assessment, including questionnaires, examination, and biochemical testing in a single laboratory. Generalized linear modeling with age/sex adjustment was used to examine differences in changes in variables in the two groups between phases I and II. The indigenous participants were younger at entry and at diabetes diagnosis than the Anglo-Celt participants in both phases. They were also less likely to be educated beyond primary level and were more likely to be smokers. HbA(1c) decreased in both groups over time (Aboriginal median 9.6% [interquartile range 7.8-10.7%] to 8.4% [6.6-10.6%] vs. Anglo-Celt median 7.1% [6.2-8.4%] to 6.7% [6.2-7.5%]), but the gap persisted (P = 0.65 for difference between phases I and II by ethnic group). Aboriginal patients were more likely to have microvascular disease in both phases. The prevalence of peripheral arterial disease (ankle-brachial index ≤0.90 or lower-extremity amputation) increased in Aboriginal but decreased in Anglo-Celt participants (15.8-29.7 vs. 30.7-21.5%; P = 0.055). Diabetes management has improved for Aboriginal and Anglo-Celt Australian patients, but disparities in cardiovascular risk factors and complications persist.
Davis, Timothy M.E.; Hunt, Kerry; McAullay, Daniel; Chubb, Stephen A.P.; Sillars, Brett A.; Bruce, David G.; Davis, Wendy A.
2012-01-01
OBJECTIVE To determine whether disparities in the nature and management of type 2 diabetes persist between Aboriginal and the majority Anglo-Celt patients in an urban Australian community. RESEARCH DESIGN AND METHODS Baseline data from the observational Fremantle Diabetes Study collected from 1993 to 1996 (phase I) and from 2008 to 2011 (phase II) were analyzed. Patients characterized as Aboriginal or Anglo-Celt by self-report and supporting data underwent comprehensive assessment, including questionnaires, examination, and biochemical testing in a single laboratory. Generalized linear modeling with age/sex adjustment was used to examine differences in changes in variables in the two groups between phases I and II. RESULTS The indigenous participants were younger at entry and at diabetes diagnosis than the Anglo-Celt participants in both phases. They were also less likely to be educated beyond primary level and were more likely to be smokers. HbA1c decreased in both groups over time (Aboriginal median 9.6% [interquartile range 7.8–10.7%] to 8.4% [6.6–10.6%] vs. Anglo-Celt median 7.1% [6.2–8.4%] to 6.7% [6.2–7.5%]), but the gap persisted (P = 0.65 for difference between phases I and II by ethnic group). Aboriginal patients were more likely to have microvascular disease in both phases. The prevalence of peripheral arterial disease (ankle-brachial index ≤0.90 or lower-extremity amputation) increased in Aboriginal but decreased in Anglo-Celt participants (15.8–29.7 vs. 30.7–21.5%; P = 0.055). CONCLUSIONS Diabetes management has improved for Aboriginal and Anglo-Celt Australian patients, but disparities in cardiovascular risk factors and complications persist. PMID:22815295
Development of New Laser-Protective Dyes. Phase 1.
1990-10-30
technology to stabilize cyanine and squarylium dyes . This accomplishment will justify continued research on the synthesis and process development of...beyond. This is the subject of a proposed Phase II program. RESULTS AND DISCUSSION THERMAL STABILITY: In Phase I, dyes of the cyanine and squarylium ...Test in Appendix 1). Table 1 shows that the squarylium dyes are inherently more thermally stable than the cyanines. This observation supports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shieh, Sean R.; Dorfman, Susannah M.; Kubo, Atsushi
The formation and properties of the post-perovskite (CaIrO{sub 3}-type) phase were studied in Fe-rich compositions along the pyrope-almandine ((Mg,Fe){sub 3}Al{sub 2}Si{sub 3}O{sub 12}) join. Natural and synthetic garnet starting materials with almandine fractions from 38 to 90 mol% were studied using synchrotron X-ray diffraction in the laser-heated diamond anvil cell. Single-phase post-perovskite could be successfully synthesized from garnet compositions at pressures above 148 GPa and temperatures higher than 1600 K. In some cases, evidence for a minor amount of Al{sub 2}O{sub 3} post-perovskite was observed for Alm38 and Alm54 compositions in the perovskite + post-perovskite two-phase region. Pressure-volume data formore » the post-perovskite phases collected during decompression show that incorporation of Fe leads to a systematic increase of unit cell volume broadly similar to the variation observed in the (Mg,Fe)SiO{sub 3} system. The presence of Al{sub 2}O{sub 3} increases the stability of perovskite relative to post-perovskite, requiring higher pressures (> 148 GPa) for synthesis of pure post-perovskites. Our data together with those of Tateno et al. (2005) also suggest that in the Al-rich system the presence of Fe has no strong effect on the pressure required to synthesize the pure post-perovskite phase, but the two-phase perovskite and post-perovskite region may be broad and its width dependent on Fe content. Our results suggest that any regions highly enriched in Al{sub 2}O{sub 3} may consist of either the perovskite phase or a mixture of perovskite and post-perovskite phases throughout the entire thickness of the D* region. The observed synthesis pressures (> 148 GPa) for a pure post-perovskite phase are beyond that at the Earth's core-mantle boundary ({approx} 135 GPa).« less
Single phase inverter for a three phase power generation and distribution system
NASA Technical Reports Server (NTRS)
Lindena, S. J.
1976-01-01
A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.
All-Optical Quasi-Phase Matching for Laser Electron Acceleration
2016-06-01
T E C H N IC A L R E P O R T DTRA-TR-16-65 All-Optical Quasi -Phase Matching for Laser Electron Acceleration Distribution Statement A...outcomes of the project “All-Optical Quasi - Phase Matching for Laser Electron Acceleration”, a project awarded to the Pennsylvania State University by the...can be used to simultaneously extend the accel- eration distance beyond several Rayleigh ranges and to achieve quasi -phase matching between the laser
Discrete and continuous joint coupling relationships in uninjured recreational runners.
Dierks, Tracy A; Davis, Irene
2007-06-01
Abnormal joint coupling is thought to be related to overuse injuries in runners. However, researchers do not yet know what constitutes normal joint coupling during running, which makes abnormal coupling difficult to define. Lower extremity kinematics were collected from 40 recreational runners during stance. Joint coupling methods were applied and, for each method, means and both within- and between-subject variability were calculated. The 95% confidence interval was used to compare differences across coupling relationships and periods of stance. Timing between rearfoot eversion, tibial internal rotation, and knee flexion were relatively synchronous while relationships involving knee internal rotation were more asynchronous. The excursion ratios showed that every 2 degrees of rearfoot eversion was coupled with 1 degrees of both tibial internal rotation and knee internal rotation. Vector coding results showed that just beyond maximum loading, all joint coupling relationships resulted in relatively equal amounts of motion, while the within-subject variability was similar throughout stance. The continuous relative phase results showed that the most out-of-phase coupling occurred in the periods around heel-strike and toe-off while the most in-phase coupling occurred in the period just beyond maximum loading of the leg. The continuous relative phase within-subject variability was greatest at the periods around heel-strike and toe-off and smallest just beyond maximum loading. With a better understanding of joint coupling in uninjured runners, these data will help to serve as a reference for future studies investigating the relationship between running injuries and abnormal joint coupling.
Forecasting production in Liquid Rich Shale plays
NASA Astrophysics Data System (ADS)
Nikfarman, Hanieh
Production from Liquid Rich Shale (LRS) reservoirs is taking center stage in the exploration and production of unconventional reservoirs. Production from the low and ultra-low permeability LRS plays is possible only through multi-fractured horizontal wells (MFHW's). There is no existing workflow that is applicable to forecasting multi-phase production from MFHW's in LRS plays. This project presents a practical and rigorous workflow for forecasting multiphase production from MFHW's in LRS reservoirs. There has been much effort in developing workflows and methodology for forecasting in tight/shale plays in recent years. The existing workflows, however, are applicable only to single phase flow, and are primarily used in shale gas plays. These methodologies do not apply to the multi-phase flow that is inevitable in LRS plays. To account for complexities of multiphase flow in MFHW's the only available technique is dynamic modeling in compositional numerical simulators. These are time consuming and not practical when it comes to forecasting production and estimating reserves for a large number of producers. A workflow was developed, and validated by compositional numerical simulation. The workflow honors physics of flow, and is sufficiently accurate while practical so that an analyst can readily apply it to forecast production and estimate reserves in a large number of producers in a short period of time. To simplify the complex multiphase flow in MFHW, the workflow divides production periods into an initial period where large production and pressure declines are expected, and the subsequent period where production decline may converge into a common trend for a number of producers across an area of interest in the field. Initial period assumes the production is dominated by single-phase flow of oil and uses the tri-linear flow model of Erdal Ozkan to estimate the production history. Commercial software readily available can simulate flow and forecast production in this period. In the subsequent Period, dimensionless rate and dimensionless time functions are introduced that help identify transition from initial period into subsequent period. The production trends in terms of the dimensionless parameters converge for a range of rock permeability and stimulation intensity. This helps forecast production beyond transition to the end of life of well. This workflow is applicable to single fluid system.
Device for limiting single phase ground fault of mining machines
NASA Astrophysics Data System (ADS)
Fediuk, R. S.; Stoyushko, N. Yu; Yevdokimova, Yu G.; Smoliakov, A. K.; Batarshin, V. O.; Timokhin, R. A.
2017-10-01
The paper shows the reasons and consequences of the single-phase ground fault. With all the variety of devices for limiting the current single-phase ground fault, it was found that the most effective are Peterson coils having different switching circuits. Measuring of the capacity of the network is of great importance in this case, a number of options capacitance measurement are presented. A closer look is taken at the device for limiting the current of single-phase short circuit, developed in the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The calculation of single-phase short-circuit currents in the electrical network, without compensation and with compensation of capacitive current is carried out. Simulation of a single-phase circuit in a network with the proposed device is conducted.
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal (Inventor); Solayappan, Narayanan (Inventor)
1994-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83 K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
Coordinated single-phase control scheme for voltage unbalance reduction in low voltage network.
Pullaguram, Deepak; Mishra, Sukumar; Senroy, Nilanjan
2017-08-13
Low voltage (LV) distribution systems are typically unbalanced in nature due to unbalanced loading and unsymmetrical line configuration. This situation is further aggravated by single-phase power injections. A coordinated control scheme is proposed for single-phase sources, to reduce voltage unbalance. A consensus-based coordination is achieved using a multi-agent system, where each agent estimates the averaged global voltage and current magnitudes of individual phases in the LV network. These estimated values are used to modify the reference power of individual single-phase sources, to ensure system-wide balanced voltages and proper power sharing among sources connected to the same phase. Further, the high X / R ratio of the filter, used in the inverter of the single-phase source, enables control of reactive power, to minimize voltage unbalance locally. The proposed scheme is validated by simulating a LV distribution network with multiple single-phase sources subjected to various perturbations.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
First observation of the Cabibbo suppressed decay B meson going to D meson kaon
NASA Astrophysics Data System (ADS)
Soffer, Abner
1998-10-01
Within the standard model of particles and interactions, CP-violation is due to a single imaginary parameter in the Cabibbo-Kobayashi-Maskawa matrix. Decays of the type B/to DK provide a way to measure the phase γ associated with this parameter, under conditions in which contributions from non-standard model physics are very small. Comparing these measurements with ones which are possibly sensitive to new physics may thus point the way to physics beyond the standard model. We demonstrate that measuring CP-conserving phases in D decays may help enhance the sensitivity of the γ measurement in B/to DK, pending an assumption which we show how to test. Using 3.3×106/ B/bar B pairs collected with the CLEO II detector at the Cornell Electron Storage Ring, we make the first observation of the Cabibbo suppressed decay B+/to /bar D0K+ and find the ratio of branching fractions [/cal B](B+/to /bar D0K+)/[/cal B](B+/to /bar D0π+)=0.055/pm0.014/pm0.005. We also present a review of the cosmological motivation and particle physics aspects of CP-violation measurements, intended for the non-physicist.
Predicting low-temperature free energy landscapes with flat-histogram Monte Carlo methods
NASA Astrophysics Data System (ADS)
Mahynski, Nathan A.; Blanco, Marco A.; Errington, Jeffrey R.; Shen, Vincent K.
2017-02-01
We present a method for predicting the free energy landscape of fluids at low temperatures from flat-histogram grand canonical Monte Carlo simulations performed at higher ones. We illustrate our approach for both pure and multicomponent systems using two different sampling methods as a demonstration. This allows us to predict the thermodynamic behavior of systems which undergo both first order and continuous phase transitions upon cooling using simulations performed only at higher temperatures. After surveying a variety of different systems, we identify a range of temperature differences over which the extrapolation of high temperature simulations tends to quantitatively predict the thermodynamic properties of fluids at lower ones. Beyond this range, extrapolation still provides a reasonably well-informed estimate of the free energy landscape; this prediction then requires less computational effort to refine with an additional simulation at the desired temperature than reconstruction of the surface without any initial estimate. In either case, this method significantly increases the computational efficiency of these flat-histogram methods when investigating thermodynamic properties of fluids over a wide range of temperatures. For example, we demonstrate how a binary fluid phase diagram may be quantitatively predicted for many temperatures using only information obtained from a single supercritical state.
Laser Sources for Generation of Ultrasound
NASA Technical Reports Server (NTRS)
Wagner, James W.
1996-01-01
Two laser systems have been built and used to demonstrate enhancements beyond current technology used for laser-based generation and detection of ultrasound. The first system consisted of ten Nd:YAG laser cavities coupled electronically and optically to permit sequential bursts of up to ten laser pulses directed either at a single point or configured into a phased array of sources. Significant enhancements in overall signal-to-noise ratio for laser ultrasound incorporating this new source system was demonstrated, using it first as a source of narrowband ultrasound and secondly as a phased array source producing large enhanced signal displacements. A second laser system was implemented using ultra fast optical pulses from a Ti:Sapphire laser to study a new method for making laser generated ultrasonic measurements of thin films with thicknesses on the order of hundreds of angstroms. Work by prior investigators showed that such measurements could be made based upon fluctuations in the reflectivity of thin films when they are stressed by an arriving elastic pulse. Research performed using equipment purchased under this program showed that a pulsed interferometric system could be used as well as a piezoreflective detection system to measure pulse arrivals even in thin films with very low piezoreflective coefficients.
Training a molecular automaton to play a game
NASA Astrophysics Data System (ADS)
Pei, Renjun; Matamoros, Elizabeth; Liu, Manhong; Stefanovic, Darko; Stojanovic, Milan N.
2010-11-01
Research at the interface between chemistry and cybernetics has led to reports of `programmable molecules', but what does it mean to say `we programmed a set of solution-phase molecules to do X'? A survey of recently implemented solution-phase circuitry indicates that this statement could be replaced with `we pre-mixed a set of molecules to do X and functional subsets of X'. These hard-wired mixtures are then exposed to a set of molecular inputs, which can be interpreted as being keyed to human moves in a game, or as assertions of logical propositions. In nucleic acids-based systems, stemming from DNA computation, these inputs can be seen as generic oligonucleotides. Here, we report using reconfigurable nucleic acid catalyst-based units to build a multipurpose reprogrammable molecular automaton that goes beyond single-purpose `hard-wired' molecular automata. The automaton covers all possible responses to two consecutive sets of four inputs (such as four first and four second moves for a generic set of trivial two-player two-move games). This is a model system for more general molecular field programmable gate array (FPGA)-like devices that can be programmed by example, which means that the operator need not have any knowledge of molecular computing methods.
Training a molecular automaton to play a game.
Pei, Renjun; Matamoros, Elizabeth; Liu, Manhong; Stefanovic, Darko; Stojanovic, Milan N
2010-11-01
Research at the interface between chemistry and cybernetics has led to reports of 'programmable molecules', but what does it mean to say 'we programmed a set of solution-phase molecules to do X'? A survey of recently implemented solution-phase circuitry indicates that this statement could be replaced with 'we pre-mixed a set of molecules to do X and functional subsets of X'. These hard-wired mixtures are then exposed to a set of molecular inputs, which can be interpreted as being keyed to human moves in a game, or as assertions of logical propositions. In nucleic acids-based systems, stemming from DNA computation, these inputs can be seen as generic oligonucleotides. Here, we report using reconfigurable nucleic acid catalyst-based units to build a multipurpose reprogrammable molecular automaton that goes beyond single-purpose 'hard-wired' molecular automata. The automaton covers all possible responses to two consecutive sets of four inputs (such as four first and four second moves for a generic set of trivial two-player two-move games). This is a model system for more general molecular field programmable gate array (FPGA)-like devices that can be programmed by example, which means that the operator need not have any knowledge of molecular computing methods.
Measurement Of Multiphase Flow Water Fraction And Water-cut
NASA Astrophysics Data System (ADS)
Xie, Cheng-gang
2007-06-01
This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.
Sensing spontaneous collapse and decoherence with interfering Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Schrinski, Björn; Hornberger, Klaus; Nimmrichter, Stefan
2017-12-01
We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. We find that interference fringes of phase-coherently split condensates are most strongly affected by decoherence, whereas the quantum signatures of independent interfering condensates are more immune against macrorealistic collapse. A many-body enhanced decoherence effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the interferogram.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment. PMID:28067332
The distributed production system of the SuperB project: description and results
NASA Astrophysics Data System (ADS)
Brown, D.; Corvo, M.; Di Simone, A.; Fella, A.; Luppi, E.; Paoloni, E.; Stroili, R.; Tomassetti, L.
2011-12-01
The SuperB experiment needs large samples of MonteCarlo simulated events in order to finalize the detector design and to estimate the data analysis performances. The requirements are beyond the capabilities of a single computing farm, so a distributed production model capable of exploiting the existing HEP worldwide distributed computing infrastructure is needed. In this paper we describe the set of tools that have been developed to manage the production of the required simulated events. The production of events follows three main phases: distribution of input data files to the remote site Storage Elements (SE); job submission, via SuperB GANGA interface, to all available remote sites; output files transfer to CNAF repository. The job workflow includes procedures for consistency checking, monitoring, data handling and bookkeeping. A replication mechanism allows storing the job output on the local site SE. Results from 2010 official productions are reported.
Liu, Fangyang; Zeng, Fangqin; Song, Ning; Jiang, Liangxing; Han, Zili; Su, Zhenghua; Yan, Chang; Wen, Xiaoming; Hao, Xiaojing; Liu, Yexiang
2015-07-08
A facile sol-gel and selenization process has been demonstrated to fabricate high-quality single-phase earth abundant kesterite Cu2ZnSn(S,Se)4 (CZTSSe) photovoltaic absorbers. The structure and band gap of the fabricated CZTSSe can be readily tuned by varying the [S]/([S] + [Se]) ratios via selenization condition control. The effects of [S]/([S] + [Se]) ratio on device performance have been presented. The best device shows 8.25% total area efficiency without antireflection coating. Low fill factor is the main limitation for the current device efficiency compared to record efficiency device due to high series resistance and interface recombination. By improving film uniformity, eliminating voids, and reducing the Mo(S,Se)2 interfacial layer, a further boost of the device efficiency is expected, enabling the proposed process for fabricating one of the most promising candidates for kesterite solar cells.
Time-resolved microscopy of fs-laser-induced heat flows in glasses
NASA Astrophysics Data System (ADS)
Bonse, Jörn; Seuthe, Thomas; Grehn, Moritz; Eberstein, Markus; Rosenfeld, Arkadi; Mermillod-Blondin, Alexandre
2018-01-01
Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient d n/d T. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser-matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.
A generalized complexity measure based on Rényi entropy
NASA Astrophysics Data System (ADS)
Sánchez-Moreno, Pablo; Angulo, Juan Carlos; Dehesa, Jesus S.
2014-08-01
The intrinsic statistical complexities of finite many-particle systems (i.e., those defined in terms of the single-particle density) quantify the degree of structure or patterns, far beyond the entropy measures. They are intuitively constructed to be minima at the opposite extremes of perfect order and maximal randomness. Starting from the pioneering LMC measure, which satisfies these requirements, some extensions of LMC-Rényi type have been published in the literature. The latter measures were shown to describe a variety of physical aspects of the internal disorder in atomic and molecular systems (e.g., quantum phase transitions, atomic shell filling) which are not grasped by their mother LMC quantity. However, they are not minimal for maximal randomness in general. In this communication, we propose a generalized LMC-Rényi complexity which overcomes this problem. Some applications which illustrate this fact are given.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter
NASA Astrophysics Data System (ADS)
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-01
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Violation of Ohm's law in a Weyl metal.
Shin, Dongwoo; Lee, Yongwoo; Sasaki, M; Jeong, Yoon Hee; Weickert, Franziska; Betts, Jon B; Kim, Heon-Jung; Kim, Ki-Seok; Kim, Jeehoon
2017-11-01
Ohm's law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm's law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm's law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I-V characteristics in Bi 0.96 Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity, which completely describes our experimental results. As a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.
NASA Technical Reports Server (NTRS)
Silcox, Richard J. (Inventor); Fuller, Chris R. (Inventor); Gibbs, Gary P. (Inventor)
1992-01-01
Arrays of actuators are affixed to structural elements to impede the transmission of vibrational energy. A single pair is used to provide control of bending and extensional waves and two pairs are used to control torsional motion. The arrays are applied to a wide variety of structural elements such as a beam structure that is part of a larger framework that may or may not support a rigid or non-rigid skin. Electrical excitation is applied to the actuators that generate forces on the structure. These electrical inputs may be adjusted in their amplitude and phase by a controller in communication with appropriate vibrational wave sensors to impede the flow of vibrational power in all of the above mentioned wave forms beyond the actuator location. Additional sensor elements can be used to monitor the performance and adjust the electrical inputs to maximize the attenuation of vibrational energy.
Beyond pairwise strategy updating in the prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Perc, Matjaž; Liu, Yongkui; Chen, Xiaojie; Wang, Long
2012-10-01
In spatial games players typically alter their strategy by imitating the most successful or one randomly selected neighbor. Since a single neighbor is taken as reference, the information stemming from other neighbors is neglected, which begets the consideration of alternative, possibly more realistic approaches. Here we show that strategy changes inspired not only by the performance of individual neighbors but rather by entire neighborhoods introduce a qualitatively different evolutionary dynamics that is able to support the stable existence of very small cooperative clusters. This leads to phase diagrams that differ significantly from those obtained by means of pairwise strategy updating. In particular, the survivability of cooperators is possible even by high temptations to defect and over a much wider uncertainty range. We support the simulation results by means of pair approximations and analysis of spatial patterns, which jointly highlight the importance of local information for the resolution of social dilemmas.
Photonic crystal nanocavity assisted rejection ratio tunable notch microwave photonic filter.
Long, Yun; Xia, Jinsong; Zhang, Yong; Dong, Jianji; Wang, Jian
2017-01-09
Driven by the increasing demand on handing microwave signals with compact device, low power consumption, high efficiency and high reliability, it is highly desired to generate, distribute, and process microwave signals using photonic integrated circuits. Silicon photonics offers a promising platform facilitating ultracompact microwave photonic signal processing assisted by silicon nanophotonic devices. In this paper, we propose, theoretically analyze and experimentally demonstrate a simple scheme to realize ultracompact rejection ratio tunable notch microwave photonic filter (MPF) based on a silicon photonic crystal (PhC) nanocavity with fixed extinction ratio. Using a conventional modulation scheme with only a single phase modulator (PM), the rejection ratio of the presented MPF can be tuned from about 10 dB to beyond 60 dB. Moreover, the central frequency tunable operation in the high rejection ratio region is also demonstrated in the experiment.
Viscoelastic effects on residual oil distribution in flows through pillared microchannels.
De, S; Krishnan, P; van der Schaaf, J; Kuipers, J A M; Peters, E A J F; Padding, J T
2018-01-15
Multiphase flow through porous media is important in a number of industrial, natural and biological processes. One application is enhanced oil recovery (EOR), where a resident oil phase is displaced by a Newtonian or polymeric fluid. In EOR, the two-phase immiscible displacement through heterogonous porous media is usually governed by competing viscous and capillary forces, expressed through a Capillary number Ca, and viscosity ratio of the displacing and displaced fluid. However, when viscoelastic displacement fluids are used, elastic forces in the displacement fluid also become significant. It is hypothesized that elastic instabilities are responsible for enhanced oil recovery through an elastic microsweep mechanism. In this work, we use a simplified geometry in the form of a pillared microchannel. We analyze the trapped residual oil size distribution after displacement by a Newtonian fluid, a nearly inelastic shear thinning fluid, and viscoelastic polymers and surfactant solutions. We find that viscoelastic polymers and surfactant solutions can displace more oil compared to Newtonian fluids and nearly inelastic shear thinning polymers at similar Ca numbers. Beyond a critical Ca number, the size of residual oil blobs decreases significantly for viscoelastic fluids. This critical Ca number directly corresponds to flow rates where elastic instabilities occur in single phase flow, suggesting a close link between enhancement of oil recovery and appearance of elastic instabilities. Copyright © 2017 Elsevier Inc. All rights reserved.
Biological Information Processing in Single Microtubules
2014-03-05
single Microtubule Google Mountain view campus, workshop on quantum biology 22 October 2010 3. Paul Davies Beyond Center at Arizona State University...Phoenix) Phoenix, workshop on quantum biology and cancer research, Experimental studies on single microtubule, 25-27 October 2010, Tempe, Arizona...State University, USA 4. Quantum aspects of microtubule: Direct experimental evidence for the existence of quantum states in microtubule, Towards a
Beyond Passivity: Constructions of Femininities in a Single-Sex South African School
ERIC Educational Resources Information Center
Bhana, Deevia; Pillay, Nalini
2011-01-01
In the context of the calamitous effects of gender violence on the experience of schooling for South African girls, single-sex schools have been advanced as a strategy to protect girls from violence. In this paper, the experiences of a selected group of girls in a single-sex school in Durban, South Africa are illustrated to provide a counter…
Designing and Developing Lesson Plans for K-12 Classrooms
ERIC Educational Resources Information Center
Shores, Melanie L.; Smith, Tommy G.
2011-01-01
The overarching goal of this four-phase, in-service project--Girls Engaged in Mathematics and Science--was to change attitudes, behavior, pedagogy, and curriculum for girls through the provision of a vibrant, engaging, digital portal program with media that extends learning beyond the traditional classroom. Described here, Phases I and II were…
ERIC Educational Resources Information Center
O'Donnell, Mary E.; Musial, Beata A.; Bretz, Stacey Lowery; Danielson, Neil D.; Ca, Diep
2009-01-01
Liquid chromatography (LC) experiments for the undergraduate analytical laboratory course often illustrate the application of reversed-phase LC to solve a separation problem, but rarely compare LC retention mechanisms. In addition, a high-performance liquid chromatography instrument may be beyond what some small colleges can purchase. Solid-phase…
Beyond Sex: The Influence of Gender Perceptions on Hiring Decisions.
ERIC Educational Resources Information Center
Horn, Jennifer L.; Gaeddert, William P.
Recently, the concept of gender has been introduced as a possible influence on hiring bias. To examine the relationship between gender perception and bias in hiring, a two-part study was conducted. In the initial phase, 99 college students developed descriptions of applicants that reflected gender characteristics. In the second phase, 63 college…
Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun
2018-01-01
In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.
ERIC Educational Resources Information Center
McKenney, Yekaterina
2016-01-01
Teachers of world literature have the opportunity to help students explore the more complex reality behind the stereotypes that they often see in the media. If we don't encourage students to challenge one-dimensional "single stories" that characterize an entire people--whether Muslims, Russians, Mexicans, African Americans, Chinese,…
ERIC Educational Resources Information Center
What Works Clearinghouse, 2014
2014-01-01
The 2013 study, "Looking Beyond Enrollment: The Causal Effect of Need-Based Grants on College Access, Persistence, and Graduation," examined whether eligibility for the Florida Student Access Grant (FSAG), a need-based grant for low-income students in Florida, affects college enrollment, credit accumulation, persistence over time in…
Lau, David Pang Cheng; Zhang, Edward Zhiyong; Wong, Seng Mun; Lee, Gwyneth; Chan, Yiong Huak
2010-08-01
1) Determine the correlation between voice handicap index and quantitative videostroboscopy for patients undergoing injection laryngoplasty for unilateral vocal paralysis; 2) assess which videostroboscopy measurements correlate best with voice handicap index in patients demonstrating progressive improvement beyond six months following injection laryngoplasty. Case series with chart review. Patients undergoing outpatient injection laryngoplasty with hyaluronic acid between 2005 and 2007. Twenty-eight patients were assessed preoperatively and postoperatively using voice handicap index and videostroboscopy. Various videostroboscopy measurements were quantified: glottic open area (ratio of open to total glottic area during closed phase of phonation), glottic closed phase (frame ratio of closed phase to total glottic cycle), supraglottic compression (percent encroachment of supraglottis onto best-fit ellipse around glottis), wave amplitude (difference in glottic open area between open and closed phases), and wave duration (number of frames per glottic cycle). Correlation coefficients were calculated using Spearman's r. One hundred seventeen separate recordings were analyzed. Correlation coefficients between voice handicap index (normalized to preoperative values) and glottic closed phase showed moderate-strong correlation (r = -0.733, P < 0.001), while glottic open area and wave duration showed weak-moderate correlation (r = 0.465, P < 0.001 and r = -0.404, P < 0.001 respectively). Other parameters showed poor correlation. A subset of 25 recordings from eight patients with progressive voice handicap index improvement beyond six months showed highest correlation with supraglottic compression (r = 0.504, P < 0.05). Voice handicap index correlates best with glottic closed phase, suggesting duration of vocal fold closure during the glottic cycle best represents patients' subjective outcome post-procedure. Progressive improvement in voice handicap index beyond six months may relate to gradual reduction in compensatory supraglottic compression, with moderate correlation. Copyright (c) 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Htoonb, Han; He, Xiaowei; Hartmann, Nicolai; Ma, Xuedan; Doorn, Stephen; CenterIntegrated Nanotechnologies, Los Alamos National Laboratory Team
Recent demonstration that oxygen dopant states covalently attached to the single-walled carbon nanotubes (SWCNTs) are capable of emitting single photons at room-T (RT) opens the possibility of building room-T electrically-driven single photon sources for quantum communication applications. The RT single photon generation was not observed only at wavelength beyond 1.3 μ m. Here in this work we demonstrate RT single photon generation at 1. 5 μ m from diazonium dopant states of (10,3) nanotubes.
Cheaper Synthesis Of Multipole-Brushless-dc-Motor Current
NASA Technical Reports Server (NTRS)
Alhorn, Dean C.; Howard, David E.
1994-01-01
Circuit converts output of single two-phase shaft-angle resolver to that of multi-speed three-phase shaft-angle resolver. Converter circuit applicable to generation of multispeed, multiphase shaft-angle-resolver signals from single two-phase shaft-angle resolver. Combination of converter circuit and single two-phase shaft-angle resolver offer advantages in cost, weight, size, and complexity. Design readily adaptable to two-phase motor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW; Sokhan, Vlad P.
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker inmore » the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a Quantum Drude Oscillator. • We present the first general implementation of Quantum Drude Oscillators in the molecular dynamics package QDO-MD. • We highlight the successful construction of a new, transferable molecular model of water: QDO-water. - Graphical abstract:.« less
NASA Astrophysics Data System (ADS)
Bera, Ganesh; Reddy, V. R.; Rambabu, P.; Mal, P.; Das, Pradip; Mohapatra, N.; Padmaja, G.; Turpu, G. R.
2017-09-01
Phase diagram of FeVO4-CrVO4 solid solutions pertinent with structural and magnetic phases is presented with unambiguous experimental evidences. Solid solutions Fe1-xCrxVO4 (0 ≤ x ≤ 1.0) were synthesized through the standard solid state route and studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectra of X-rays, Raman spectroscopy, d.c. magnetization, and 57Fe Mössbauer spectroscopic studies. FeVO4 and CrVO4 were found to be in triclinic (P-1 space group) and orthorhombic structures (Cmcm space group), respectively. Cr incorporation into the FeVO4 lattice leads to the emergence of a new monoclinic phase dissimilar to the both end members of the solid solutions. In Fe1-xCrxVO4 up to x = 0.10, no discernible changes in the triclinic structure were found. A new structural monoclinic phase (C2/m space group) emerges within the triclinic phase at x = 0.125, and with the increase in Cr content, it gets stabilized with clear single phase signatures in the range of x = 0.175-0.25 as evidenced by the Rietveld analysis of the structures. Beyond x = 0.33, orthorhombic phase similar to CrVO4 (Cmcm space group) emerges and coexists with a monoclinic structure up to x = 0.85, which finally tends to stabilize in the range of x = 0.90-1.00. The Raman spectroscopic studies also confirm the structural transition. FeVO4 Raman spectra show the modes related to three nonequivalent V ions in the triclinic structure, where up to 42 Raman modes are observed in the present study. With the stabilization of structures having higher symmetry, the number of Raman modes decreases and the modes related to symmetry inequivalent sites collate into singular modes from the doublet structure. A systematic crossover from two magnetic transitions in FeVO4, at 21.5 K and 15.4 K to single magnetic transition in CrVO4, at 71 K (antiferromagnetic transition), is observed in magnetization studies. The intermediate solid solution with x = 0.15 shows two magnetic transitions, whereas in the compound with x = 0.33 one of the magnetic transitions disappears. 57Fe Mössbauer spectroscopic studies show a finger print evidence for disappearance of non-equivalent sites of Fe as the structure changes from Triclinic-Monoclinic-Orthorhombic phases with the increasing Cr content in Fe1-xCrxVO4. Comprehensive studies related to the structural changes in Fe1-xCrxVO4 solid solutions lead us to detailed phase diagrams which shall be characteristic for room temperature structural and temperature dependent magnetic transitions in these solid solutions, respectively.
Transformation: A Selected Bibliography
2007-04-30
and Workplace in the United States. Santa Monica: RAND, 2004. 258pp. (HD8072.5 .K16 2004) Lamb, Christopher J., et al . Transforming Defense... et al . Beyond Goldwater-Nichols: BG-N: Defense Reform for a Strategic Era, Phase 1 Report. Washington, D.C.: Center for Strategic and International...Studies, 2004. 88pp. (UA23.3 .M87 2004) Murdock, Clark A., et al . Beyond Goldwater-Nichols: U.S. Government and Defense Reform for a New Strategic
Confinement of gene drive systems to local populations: A comparative analysis
Marshall, John M.; Hay, Bruce A.
2011-01-01
Mosquito-borne diseases such as malaria and dengue fever pose a major health problem through much of the world. One approach to disease prevention involves the use of selfish genetic elements to drive disease-refractory genes into wild mosquito populations. Recently engineered synthetic drive systems have provided encouragement for this strategy; but at the same time have been greeted with caution over the concern that transgenes may spread into countries and communities without their consent. Consequently, there is also interest in gene drive systems that, while strong enough to bring about local population replacement, are unable to establish themselves beyond a partially-isolated release site, at least during the testing phase. Here, we develop simple deterministic and stochastic models to compare the confinement properties of a variety of gene drive systems. Our results highlight several systems with desirable features for confinement – a high migration rate required to become established in neighboring populations, and low-frequency persistence in neighboring populations for moderate migration rates. Single-allele underdominance and single-locus engineered underdominance have the strongest confinement properties, but are difficult to engineer and require a high introduction frequency, respectively. Toxin-antidote systems such as Semele, Merea and two-locus engineered underdominance show promising confinement properties and require lower introduction frequencies. Killer-rescue is self-limiting in time, but is able to disperse to significant levels in neighboring populations. We discuss the significance of these results in the context of a phased release of transgenic mosquitoes, and the need for characterization of local ecology prior to a release. PMID:22094363
Revealing nonclassicality beyond Gaussian states via a single marginal distribution
Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul
2017-01-01
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement. PMID:28077456
Revealing nonclassicality beyond Gaussian states via a single marginal distribution.
Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul
2017-01-31
A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential-a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.
Spiers, Jereme G; Chen, Hsiao-Jou Cortina; Steyn, Frederik J; Lavidis, Nickolas A; Woodruff, Trent M; Lee, John D
2017-01-01
In the laboratory setting, typical endocrine and targeted behavioral tests are limited in their ability to provide a direct assessment of stress in animals housed in undisturbed conditions. We hypothesized that an automated phenotyping system would allow the detection of subtle stress-related behavioral changes well beyond the time-frames examined using conventional methods. In this study, we have utilized the TSE PhenoMaster system to continuously record basal behaviors and physiological parameters including activity, body weight, food intake and oxygen consumption in undisturbed and stressed C57Bl/6J male mice (n = 12/group), with a pharmacological intervention using the conventional anxiolytic, diazepam (5 mg kg -1 i.p.; n = 8/group). We observed significant 20-30% reductions in locomotor activity in the dark phase, with subtle reductions in light phase activity for up to 96 h following a single 2 h episode of restraint stress. A single administration of diazepam reduced plasma corticosterone concentrations by 30-35% during stress exposure when compared to mice treated with vehicle. This treatment did not result in significantly different locomotor activity compared to vehicle within the first 48 h following restraint stress. However, diazepam treatment facilitated restoration of locomotor activity at 72 and 96 h after restraint stress exposure in comparison to vehicle-treated mice. Hence, the use of an automated phenotyping system allows a real time assessment of basal behaviors and empirical metabolism following exposure to restraint stress and demonstrates major and subtle changes in activity persist for several days after stress exposure.
Photometric Study Of 28978 Ixion At Small Phase Angle
NASA Astrophysics Data System (ADS)
Rousselot, Philippe; Petit, J.
2010-10-01
Discovered in 2001, the Kuiper Belt Object 28978 Ixion belongs to the dynamical class of Plutinos. Because of its brightness (R magnitude about 19.5) it has been extensively studied, its diameter and albedo being estimated by Spitzer to be about 570 km and 15% (Stansberry et al., 2008). Absorption feature of cristalline water ice has been detected (Merlin et al., 2010) and negative linear polarisation has been measured (Boehnhardt et al., 2004). So far no lightcurve nor phase curve at very small phase angle has been published, the only information being that the lightcurve amplitude was inferior to 0.15 magnitude (Ortiz et al., 2003). We present new photometric observations obtained with the 3.5-m telescope NTT at the European Southern Observatory with broad band filters (B, V, R and I). These observations permit to derive a rotation period of 15.9+/-0.5 hr (if a single-peaked lightcurve is assumed) with a peak to peak amplitude of 0.06+/-0.03 magnitude. The phase curve does not reveal any bright opposition surge even for very small phase angle (α=0.02 deg). When our data are combined with the one of Boehnhardt et al. (up to α=1.34 deg) a linear fit provides a slope of 0.201+/-0.014 mag/deg. References : Boehnhardt H., Bagnulo S., Muinonen K. et al., 2004, A&A 415, L21-L25 Merlin F., Barucci M.A., de Bergh C. et al., 2010, Icarus 208, 945-954 Ortiz J.L., Gutiérrez P.J., Casanova V., Sota A., 2003, A&A 407, 1149-1155 Stansberry J., Grundy W., Brown M. et al., 2008, The Solar System Beyond Neptune, Univ. of Arizona Press, pp161-179
Paudel, Amrit; Nies, Erik; Van den Mooter, Guy
2012-11-05
In this work, we investigated the relationship between various intermolecular hydrogen-bonding (H-bonding) interactions and the miscibility of the model hydrophobic drug naproxen with the hydrophilic polymer polyvinylpyrrolidone (PVP) across an entire composition range of solid dispersions prepared by quasi-equilibrium film casting and nonequilibrium melt quench cooling. The binary phase behavior in solid dispersions exhibited substantial processing method dependence. The solid state solubility of crystalline naproxen in PVP to form amorphous solid dispersions was 35% and 70% w/w naproxen in solution-cast films and quench-cooled films, respectively. However, the presence of a single mixed phase glass transition indicated the amorphous miscibility to be 20% w/w naproxen for the films, beyond which amorphous-amorphous and/or crystalline phase separations were apparent. This was further supported by the solution state interactions data such as PVP globular size distribution and solution infrared spectral profiles. The borderline melt composition showed cooling rate dependence of amorphization. The glass transition and melting point depression profiles of the system were treated with the analytical expressions based on Flory-Huggins mixing theory to interpolate the equilibrium solid solubility. FTIR analysis and subsequent spectral deconvolution revealed composition and miscibility dependent variations in the strength of drug-polymer intermolecular H-bonding. Two types of H-bonded populations were evidenced from 25% w/w and 35% w/w naproxen in solution-cast films and quench-cooled films, respectively, with the higher fraction of strongly H-bonded population in the drug rich domains of phase separated amorphous film compositions and highly drug loaded amorphous quench-cooled dispersions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in
2015-03-15
The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical andmore » near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.« less
Single cell genomic quantification by non-fluorescence nonlinear microscopy
NASA Astrophysics Data System (ADS)
Kota, Divya; Liu, Jing
2017-02-01
Human epidermal growth receptor 2 (Her2) is a gene which plays a major role in breast cancer development. The quantification of Her2 expression in single cells is limited by several drawbacks in existing fluorescence-based single molecule techniques, such as low signal-to-noise ratio (SNR), strong autofluorescence and background signals from biological components. For rigorous genomic quantification, a robust method of orthogonal detection is highly desirable and we demonstrated it by two non-fluorescent imaging techniques -transient absorption microscopy (TAM) and second harmonic generation (SHG). In TAM, gold nanoparticles (AuNPs) are chosen as an orthogonal probes for detection of single molecules which gives background-free quantifications of single mRNA transcript. In SHG, emission from barium titanium oxide (BTO) nanoprobes was demonstrated which allows stable signal beyond the autofluorescence window. Her2 mRNA was specifically labeled with nanoprobes which are conjugated with antibodies or oligonucleotides and quantified at single copy sensitivity in the cancer cells and tissues. Furthermore, a non-fluorescent super-resolution concept, named as second harmonic super-resolution microscopy (SHaSM), was proposed to quantify individual Her2 transcripts in cancer cells beyond the diffraction limit. These non-fluorescent imaging modalities will provide new dimensions in biomarker quantification at single molecule sensitivity in turbid biological samples, offering a strong cross-platform strategy for clinical monitoring at single cell resolution.
Survivors of Child Sexual Abuse and Dissociative Coping: Relearning in a Group Context.
ERIC Educational Resources Information Center
Shaffer, Janice; Brown, Lynn L.; McWhirter, J. Jeffries
1998-01-01
A four-phase group plan is presented to help survivors of childhood sexual abuse move beyond dissociative coping to more effective coping strategies. Advantages of this approach are discussed. Dissociation and the effects of dissociation are discussed. Considerations for forming a survivors group, and the four-phase format are presented in detail.…
Tailored Assembly of 2D Heterostructures beyond Graphene
2017-05-11
liquid crystal and catalyst application. Another important approach we have explored during this project is the solution phase assembly of two...graphene oxide, and its potential functionalities in liquid crystal and catalyst application. Another important approach we have explored during...exfoliation, liquid phase exfoliation, and chemical vapor deposition, and opened up new opportunities to graphene based platform for novel
X-Ray Radiography Measurements of Shear Coaxial Rocket Injectors
2013-02-01
turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been stud- ied for over sixty years [1]. In all applications...fluids as either single or multiple phases. Most of the fundamental coaxial jet research has been done using a single phase (either gas-gas or liquid ... liquid mixing). A brief review of single-phase coaxial jet research can be found in Schumaker and Driscoll [5]. Single-phase cases also include work
Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Yang; Ye, Qinghao; Shen, Wenzhong, E-mail: wzshen@sjtu.edu.cn
2016-05-28
The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The keymore » lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.« less
Phase retrieval without unwrapping by single-shot dual-wavelength digital holography
NASA Astrophysics Data System (ADS)
Min, Junwei; Yao, Baoli; Zhou, Meiling; Guo, Rongli; Lei, Ming; Yang, Yanlong; Dan, Dan; Yan, Shaohui; Peng, Tong
2014-12-01
A phase retrieval method by using single-shot dual-wavelength digital holography is proposed. Each single wavelength hologram is extracted from the color CCD recorded hologram at one exposure, and the unwrapped phase image of object can be reconstructed directly. Different from the traditional multiple wavelength phase unwrapping techniques, any single complex wave-fronts at different wavelengths have no need to be calculated any more. Thus, the phase retrieval is computationally fast and straightforward, and the limitations on the total optical path difference are significantly relaxed. The practicability of the proposed method is demonstrated by both simulated and experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganesh, Rangaraj; Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr; Sousbie, Philippe
Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatilemore » solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.« less
Reconciling phase diffusion and Hartree-Fock approximation in condensate systems
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; de Pasquale, Ferdinando
2012-01-01
Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.
Advanced Exploration Systems Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2013-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
AES Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam J.
2012-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, J.-H.; Egami, T.; McQueeny, R. J.
We measured the phonon dispersions of YBa{sub 2}Cu{sub 3}O{sub 6.15} and YBa{sub 2}Cu{sub 3}O{sub 6.95} by time-of-flight inelastic neutron scattering. The in-plane bond-stretching modes in the metallic phase showed a distinct a-b plane anisotropy beyond what is expected for structural origin. Such anisotropy in the longitudinal optical modes, which is absent in the TO, suggests strong in-plane anisotropy in the underlying electronic structure. Apical oxygen bond-stretching modes showed a large frequency change between the insulating and the metallic phases. This large softening also is beyond structural origin, and suggests the effect of local electronic environment.
NASA Astrophysics Data System (ADS)
Joshi, Tirtha Raj
2016-10-01
Interspecies ion separation has been proposed as a yield-degradation mechanism in inertial-confinement-fusion (ICF) experiments. We present direct experimental evidence of interspecies ion separation in direct-drive ICF experiments performed at the OMEGA laser facility. These experiments were designed based on the fact that interspecies ion thermo-diffusion would be strongest for species with large mass and charge difference. The targets were spherical plastic shells filled with D2 and Ar (1% by atom). Ar K-shell spectral features were observed primarily between the time of first-shock convergence and slightly before neutron bang time, using a time- and space-integrated spectrometer, streaked crystal spectrometer, and two gated multi-monochromatic X-ray imagers fielded along quasi-orthogonal lines-of-sight. Detailed spectroscopic analyses of spatially resolved Ar K-shell lines reveal deviation from the initial 1%-Ar gas fill and show both Ar-concentration enhancement and depletion at different times and radial positions of the implosion. The experimental results are interpreted with radiation-hydrodynamic simulations that include recently implemented, first-principles models of interspecies ion diffusion. The experimentally inferred Ar-atom-fraction profiles agree gently with calculated profiles associated with the incoming and rebounding first shock. This work was done in collaboration with P. Hakel, S. C. Hsu, E. L. Vold, M. J. Schmitt, N. M. Hoffman, R. M. Rauenzahn, G. Kagan, X.-Z. Tang, Y. Kim, and H. W. Herrmann of LANL, and R. C. Mancini of UNR. LA-UR-16-24804. Supported by the LANL ICF and ASC Programs under US-DoE contract no. DE-AC52-06NA25396.
NASA Astrophysics Data System (ADS)
Bid, Aveek; Guha, Ayan; Raychaudhuri, A. K.
2003-05-01
We have studied low-frequency resistance fluctuations (noise) in a single crystal of the rare-earth perovskite manganite Pr0.63Ca0.37MnO3, which shows a charge-ordering transition at a temperature TCO≈245 K. The measurements were made across the charge-ordering transition covering the temperature range 200 K
EPOXI Uplink Array Experiment of June 27, 2008
NASA Astrophysics Data System (ADS)
Vilnrotter, V.; Tsao, P. C.; Lee, D. K.; Cornish, T. P.; Paal, L.; Jamnejad, V.
2008-08-01
Uplink array technology is currently being developed for NASA's Deep Space Network (DSN) to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper Belt, and beyond. The DSN uplink arrays employ N microwave antennas transmitting at 7.2 GHz (X-band) to produce signals that add coherently at the spacecraft, hence providing a power gain of N^2 over a single antenna. This gain can be traded off directly for an N^2 higher data rate at a given distance such as Mars, providing, for example, high-definition video broadcast from Earth to a future human mission, or it can provide a given data rate for commands and software uploads at a distance N times greater than would be possible with a single antenna. The uplink arraying concept has been recently demonstrated using the three operational 34-m antennas of the Apollo Complex at the Goldstone Deep Space Communications Complex in California, which transmitted arrayed signals to the EPOXI spacecraft (an acronym formed from EPOCh and DIXI: Extrasolar Planetary Observation and Characterization and Deep Impact Extended Investigation). Both two-element and three-element uplink arrays were configured, and the theoretical array gains of 6 dB and 9.5 dB, respectively, were demonstrated experimentally. This required initial phasing of the array elements, the generation of accurate frequency predicts to maintain phase from each antenna despite relative velocity components due to Earth rotation and spacecraft trajectory, and monitoring of the ground-system phase for possible drifts caused by thermal effects over the 16-km fiber-optic signal distribution network. This article provides a description of the equipment and techniques used to demonstrate the uplink arraying concept in a relevant operational environment. Data collected from the EPOXI spacecraft are also analyzed to verify array calibration, array gain, and system stability over the entire five-hour duration of this experiment.
Phase formation and UV luminescence of Gd3+ doped perovskite-type YScO3
NASA Astrophysics Data System (ADS)
Shimizu, Yuhei; Ueda, Kazushige
2016-10-01
Synthesis of pure and Gd3+doped perovskite-type YScO3 was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd3+ doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phase at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO3 formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO3. Because Gd3+ ions were also dissolved into the single C-type phase in Gd3+ doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase.
Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth
NASA Astrophysics Data System (ADS)
Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji
2009-01-01
Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.
1986-05-01
more specific top level goals supporting this single broad objective are to produce technology that will: 1. enable the operation of military systems...the boundary between semantics and pragmatics. These are problems that arise in single sentences, even though one may have to look beyond the single ...instances of metonymy seem to require only type knowledge. (4) At the most abstract level, interpretation requires the constructive proof of a single
Tunable phase transition in single-layer TiSe2 via electric field
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhuang, Houlong L.
2018-06-01
Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.
NASA Astrophysics Data System (ADS)
Mitzi, David Brian
1990-01-01
A directional solidification method for growing large single crystals in the Bi_2Sr _2CaCu_2O _{8+delta} system is reported. Ion substitutions, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Ion doping results in little change of the superconducting transition for substitution levels below 20-25% (as a result of simultaneous oxygen intercalation), while beyond this level, the Meissner signal broadens and the low temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals, provides evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90K (as made) to 77K (oxygen pressure annealed) while the Hall concentrations increase from n = 3.1(3) times 10 ^{21} cm^{ -3} (0.34 holes/Cu site) to 4.6(3) times 10^{21} cm^{-3} (0.50 holes/Cu site). Further suppression of T_{c} to 72K is possible by annealing in oxygen pressures up to 100atm. No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen doped Bi_2Sr _2CaCu_2O _{8+delta} is a suitable system for pursuing doping studies. The decrease in T _{c} with concentration for 0.34 <=q n <=q 0.50 indicates that a high carrier concentration regime exists where T_{c} decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. The physical properties of these Bi _2Sr_2CaCu _2O_{8+delta} crystals, in this high carrier concentration regime, will be discussed.
NASA Astrophysics Data System (ADS)
Moores, John E.; Ha, Taesung; Lemmon, Mark T.; Gunnlaugsson, Haraldur Páll
2015-10-01
The telltale mirror, a smooth inclined surface raised over 1 m above the deck of the Phoenix Mars Lander, was observed by the Surface Stereo Imager (SSI) several times per sol during the Phoenix Mars Lander mission. These observations were combined with a radiative transfer model to determine the thickness of dust on the wind telltale mirror as a function of time. 239 telltale sequences were analyzed and dustiness was determined on a diurnal and seasonal basis. The thickness of accumulated dust did not follow any particular diurnal or seasonal trend. The dust thickness on the mirror over the mission was 0.82±0.39 μm, which suggests a similar thickness to the modal scattering particle diameter. This suggests that inclining a surface beyond the angle of repose and polishing it to remove surface imperfections is an effective way to mitigate the accumulation of dust to less than a micron over a wide range of meteorological conditions and could be beneficial for surfaces which can tolerate some dust but not thick accumulations, such as solar panels. However, such a surface will not remain completely dust free through this action alone and mechanical or electrical clearing must be employed to remove adhered dust if a pristine surface is required. The single-scattering phase function of the dust on the mirror was consistent with the single-scattering phase function of martian aerosol dust at 450 nm, suggesting that this result is inconsistent with models of the atmosphere which require vertically or horizontally separated components or broad size distributions to explain the scattering behavior of these aerosols in the blue. The single-scattering behavior of the dust on the mirror is also consistent with Hapke modeling of spherical particles. The presence of a monolayer of particles would tend to support the spherical conclusion: such particles would be most strongly adhered electrostatically.
Beyond 100 Tesla: Scientific experiments using single-turn coils
NASA Astrophysics Data System (ADS)
Portugall, Oliver; Solane, Pierre Yves; Plochocka, Paulina; Maude, Duncan K.; Nicholas, Robin J.
2013-01-01
Current opportunities and recent examples for research in magnetic fields well above 100 T using single-turn coils are discussed. After a general introduction into basic principles and technical constraints associated with the generation of Megagauss fields we discuss data obtained at the LNCMI Toulouse, where such fields are routinely used for scientific applications.
Quantum displacement receiver for M-ary phase-shift-keyed coherent states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izumi, Shuro; Takeoka, Masahiro; Fujiwara, Mikio
2014-12-04
We propose quantum receivers for 3- and 4-ary phase-shift-keyed (PSK) coherent state signals to overcome the standard quantum limit (SQL). Our receiver, consisting of a displacement operation and on-off detectors with or without feedforward, provides an error probability performance beyond the SQL. We show feedforward operations can tolerate the requirement for the detector specifications.
ERIC Educational Resources Information Center
Employment and Training Administration (DOL), Washington, DC. Office of Work-Based Learning.
In preparing Phase I of the Strategic Plan, the Federal Committee on Apprenticeship noted that efforts beyond education and technical assistance may be needed to develop apprenticeship fully in the United States. Specifically, the committee would examine and make recommendations with respect to such issues as incentives for participation,…
NASA Astrophysics Data System (ADS)
Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.
2018-03-01
The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.
NASA Astrophysics Data System (ADS)
Scott, Spencer M.; Yao, Tiankai; Lu, Fengyuan; Xin, Guoqing; Zhu, Weiguang; Lian, Jie
2017-03-01
High-energy ball milling was used to synthesize Th1-xLaxO2-0.5x (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO2 powders. Dense La-doped ThO2 pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO2 pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C.
Shen, Fei; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zhu, Baoning; Zou, Dexun; Liu, Yanping; Ma, Jingwei; Yu, Liang; Li, Xiujin
2013-09-01
The co-digestion of fruit & vegetable waste (FVW) and food waste (FW) was performed at various organic loading ratios (OLRs) in single-phase and two-phase system, respectively. The results showed that the ethanol-type fermentation dominated in both digestion processes when OLR was at low levels (<2.0 g(VS) L(-1) d(-1)). The propionic acid was rapidly accumulated as OLR was increased to higher levels (>2.0 g(VS) L(-1) d(-1)), which could cause unstable anaerobic digestion. Single-phase digestion was better than two-phase digestion in term of 4.1% increase in CH4 production at lower OLRs (<2.0 g(VS) L(-1) d(-1)). However, at higher level of OLR (≥2.0 g(VS) L(-1) d(-1)), two-phase digestion achieved higher CH4 production of 0.351-0.455 L(g VS)(-1) d(-1), which were 7.0-15.8% more than that of single-phase. Additionally, two-phase digestion presented more stable operation, and higher OLR treatment capacity. Furthermore, comparison of these two systems with bioenergy recovery revealed that two-phase system overall presented higher bioenergy yield than single-phase. Copyright © 2013 Elsevier Ltd. All rights reserved.
Linear phase encoding for holographic data storage with a single phase-only spatial light modulator.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-04-01
A linear phase encoding is presented for realizing a compact and simple holographic data storage system with a single spatial light modulator (SLM). This encoding method makes it possible to modulate a complex amplitude distribution with a single phase-only SLM in a holographic storage system. In addition, an undesired light due to the imperfection of an SLM can be removed by spatial frequency filtering with a Nyquist aperture. The linear phase encoding is introduced to coaxial holographic data storage. The generation of a signal beam using linear phase encoding is experimentally verified in an interferometer. In a coaxial holographic data storage system, single data recording, shift selectivity, and shift multiplexed recording are experimentally demonstrated.
Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal
2015-08-24
In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitatingmore » simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.« less
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Connection of single-phase loads. 77.905 Section 77.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
30 CFR 77.905 - Connection of single-phase loads.
Code of Federal Regulations, 2010 CFR
2010-07-01
... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Connection of single-phase loads. 77.905 Section 77.905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...
Deterministic quantum controlled-PHASE gates based on non-Markovian environments
NASA Astrophysics Data System (ADS)
Zhang, Rui; Chen, Tian; Wang, Xiang-Bin
2017-12-01
We study the realization of the quantum controlled-PHASE gate in an atom-cavity system beyond the Markovian approximation. The general description of the dynamics for the atom-cavity system without any approximation is presented. When the spectral density of the reservoir has the Lorentz form, by making use of the memory backflow from the reservoir, we can always construct the deterministic quantum controlled-PHASE gate between a photon and an atom, no matter the atom-cavity coupling strength is weak or strong. While, the phase shift in the output pulse hinders the implementation of quantum controlled-PHASE gates in the sub-Ohmic, Ohmic or super-Ohmic reservoirs.
Space Launch System Mission Flexibility Assessment
NASA Technical Reports Server (NTRS)
Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan
2012-01-01
The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.
Postselected weak measurement beyond the weak value
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geszti, Tamas
2010-04-15
Closed expressions are derived for the quantum measurement statistics of pre- and postselected Gaussian particle beams. The weakness of the preselection step is shown to compete with the nonorthogonality of postselection in a transparent way. The approach is shown to be useful in analyzing postselection-based signal amplification, allowing measurements to be extended far beyond the range of validity of the well-known Aharonov-Albert-Vaidman limit. Additionally, the present treatment connects postselected weak measurement to the topic of phase-contrast microscopy.
Phases and approximations of baryonic popcorn in a low-dimensional analogue of holographic QCD
NASA Astrophysics Data System (ADS)
Elliot-Ripley, Matthew
2015-07-01
The Sakai-Sugimoto model is the most pre-eminent model of holographic QCD, in which baryons correspond to topological solitons in a five-dimensional bulk spacetime. Recently it has been shown that a single soliton in this model can be well approximated by a flat-space self-dual Yang-Mills instanton with a small size, although studies of multi-solitons and solitons at finite density are currently beyond numerical computations. A lower-dimensional analogue of the model has also been studied in which the Sakai-Sugimoto soliton is replaced by a baby Skyrmion in three spacetime dimensions with a warped metric. The lower dimensionality of this model means that full numerical field calculations are possible, and static multi-solitons and solitons at finite density were both investigated, in particular the baryonic popcorn phase transitions at high densities. Here we present and investigate an alternative lower-dimensional analogue of the Sakai-Sugimoto model in which the Sakai-Sugimoto soliton is replaced by an O(3)-sigma model instanton in a warped three-dimensional spacetime stabilized by a massive vector meson. A more detailed range of baryonic popcorn phase transitions are found, and the low-dimensional model is used as a testing ground to check the validity of common approximations made in the full five-dimensional model, namely approximating fields using their flat-space equations of motion, and performing a leading order expansion in the metric.
Heart Rate Variability of Athletes Across Concussion Recovery Milestones: A Preliminary Study.
Senthinathan, Arrani; Mainwaring, Lynda M; Hutchison, Michael
2017-05-01
To assess heart rate variability (HRV) in athletes with concussion across three phases of recovery. A prospective matched control group design included the collection of HRV and symptoms measured by the Rivermead Post-Concussion Questionnaire. These measures were taken at 3 phases of recovery [(1) symptomatic; (2). asymptomatic; and (3) one-week after return-to-play (RTP)]. The same protocol was completed by noninjured athletes. Interuniversity sports teams at a single institution. 11 athletes, across 7 sports, diagnosed with concussion, and 11 matched-athlete controls volunteered for the study. Physician diagnosed concussion and a sitting to standing protocol for HRV monitoring. The frequency, time, and nonlinear domains of HRV were assessed along with the absolute difference between sitting and standing for each. A 2 x 3 (group x phase) repeated-measures analysis of variance revealed significant interactions for sitting High Frequency (HF) norm, sitting Low Frequency (LF) norm, the difference between sitting and standing HF norm, and difference between sitting and standing LF norm. Acutely, athletes with concussion displayed increased LF norm and decreased HF norm while sitting and a decreased change in their HF and LF norm measures between sitting and standing. A significant group effect for sample entropy when standing was detected, with the concussed group displaying decreased values compared with the matched controls. Athletes with concussion displayed autonomic dysfunction in some measures of HRV that persisted beyond RTP and were related to a previous history of concussion.
Enhanced von Weizsäcker Wang-Govind-Carter kinetic energy density functional for semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Ilgyou; Carter, Emily A., E-mail: eac@princeton.edu
2014-05-14
We propose a new form of orbital-free (OF) kinetic energy density functional (KEDF) for semiconductors that is based on the Wang-Govind-Carter (WGC99) nonlocal KEDF. We enhance within the latter the semi-local von Weizsäcker KEDF term, which is exact for a single orbital. The enhancement factor we introduce is related to the extent to which the electron density is localized. The accuracy of the new KEDF is benchmarked against Kohn-Sham density functional theory (KSDFT) by comparing predicted energy differences between phases, equilibrium volumes, and bulk moduli for various semiconductors, along with metal-insulator phase transition pressures. We also compare point defect andmore » (100) surface energies in silicon for a broad test of its applicability. This new KEDF accurately reproduces the exact non-interacting kinetic energy of KSDFT with only one additional adjustable parameter beyond the three parameters in the WGC99 KEDF; it exhibits good transferability between semiconducting to metallic silicon phases and between various III-V semiconductors without parameter adjustment. Overall, this KEDF is more accurate than previously proposed OF KEDFs (e.g., the Huang-Carter (HC) KEDF) for semiconductors, while the computational efficiency remains at the level of the WGC99 KEDF (several hundred times faster than the HC KEDF). This accurate, fast, and transferable new KEDF holds considerable promise for large-scale OFDFT simulations of metallic through semiconducting materials.« less
Herrera-Guzmán, Ixchel; Gudayol-Ferré, Esteve; Herrera-Abarca, Jorge E; Herrera-Guzmán, Daniel; Montelongo-Pedraza, Pedro; Padrós Blázquez, Ferran; Peró-Cebollero, Maribel; Guàrdia-Olmos, Joan
2010-06-01
Cognitive disturbances in Major Depressive Disorder (MDD) could persist beyond the symptomatic phase of the illness. However, the works addressing this topic did not usually account for the possible impact of medication on the cognitive functions of depressed patients. The present study aims to investigate whether MDD patients in remission treated with selective serotonin reuptake inhibitors (SSRI) or dual serotonergic-noradrenergic reuptake inhibitors (SNRI) show cognitive deficits, to study whether the same patients suffer neuropsychological disturbances when they are unmedicated and in recovery phase, and if the previous pharmacological treatment used to achieve the remission of MDD clinical symptoms had any effect in the profile of these patients' cognitive performance in the recovery phase. Thirty-six subjects with MDD treated with escitalopram and 37 depressed patients with duloxetine were compared both in remission phase and 24 weeks later, when they were unmedicated and in recovery phase. They were also compared, in both moments, to 37 healthy subjects. The control subjects showed a broader better cognitive performance than MDD patients in both measurement moments, but several cognitive functions improved over time. Also, the patients treated with SNRI performed better in memory tests than the SNRI-treated patients in remission phase, and in recovery phase. Our sample size is somewhat small, and we followed our patients only for 6months after treatment. Cognitive functions improve over time in patients with MDD beyond the remission phase, and the antidepressant treatment class used in acute depressive phase could influence his/her memory improvement. Copyright 2009 Elsevier B.V. All rights reserved.
Convergence behavior of the random phase approximation renormalized correlation energy
NASA Astrophysics Data System (ADS)
Bates, Jefferson E.; Sensenig, Jonathon; Ruzsinszky, Adrienn
2017-05-01
Based on the random phase approximation (RPA), RPA renormalization [J. E. Bates and F. Furche, J. Chem. Phys. 139, 171103 (2013), 10.1063/1.4827254] is a robust many-body perturbation theory that works for molecules and materials because it does not diverge as the Kohn-Sham gap approaches zero. Additionally, RPA renormalization enables the simultaneous calculation of RPA and beyond-RPA correlation energies since the total correlation energy is the sum of a series of independent contributions. The first-order approximation (RPAr1) yields the dominant beyond-RPA contribution to the correlation energy for a given exchange-correlation kernel, but systematically underestimates the total beyond-RPA correction. For both the homogeneous electron gas model and real systems, we demonstrate numerically that RPA renormalization beyond first order converges monotonically to the infinite-order beyond-RPA correlation energy for several model exchange-correlation kernels and that the rate of convergence is principally determined by the choice of the kernel and spin polarization of the ground state. The monotonic convergence is rationalized from an analysis of the RPA renormalized correlation energy corrections, assuming the exchange-correlation kernel and response functions satisfy some reasonable conditions. For spin-unpolarized atoms, molecules, and bulk solids, we find that RPA renormalization is typically converged to 1 meV error or less by fourth order regardless of the band gap or dimensionality. Most spin-polarized systems converge at a slightly slower rate, with errors on the order of 10 meV at fourth order and typically requiring up to sixth order to reach 1 meV error or less. Slowest to converge, however, open-shell atoms present the most challenging case and require many higher orders to converge.
Phase II Study of Everolimus Beyond Progression
2017-09-29
Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Recurrent Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer
NASA Technical Reports Server (NTRS)
O'Handley, D.; Swan, P.; Sadeh, W.
1992-01-01
U.S. space policy is discussed in terms of present and planned activities in the solar system and beyond to develop a concept for expanding space travel. The history of space exploration is briefly reviewed with references to the Mariner II, Apollo, and Discoverer programs. Attention is given to the issues related to return trips to the moon, sprint vs repetitive missions to Mars, and the implications of propulsion needs. The concept of terraforming other bodies within the solar system so that they can support human activity is identified as the next major phase of exploration. The following phase is considered to be the use of robotic or manned missions that extend beyond the solar system. Reference is given to a proposed Thousand Astronomical Units mission as a precursor to exploratory expansion into the universe, and current robotic mission activities are mentioned.
Electric dipole moments with and beyond flavor invariants
NASA Astrophysics Data System (ADS)
Smith, Christopher; Touati, Selim
2017-11-01
In this paper, the flavor structure of quark and lepton electric dipole moments in the SM and beyond is investigated using tools inspired from Minimal Flavor Violation. While Jarlskog-like flavor invariants are adequate for estimating CP-violation from closed fermion loops, non-invariant structures arise from rainbow-like processes. Our goal is to systematically construct these latter flavor structures in the quark and lepton sectors, assuming different mechanisms for generating neutrino masses. Numerically, they are found typically much larger, and not necessarily correlated with, Jarlskog-like invariants. Finally, the formalism is adapted to deal with a third class of flavor structures, sensitive to the flavored U (1) phases, and used to study the impact of the strong CP-violating interaction and the interplay between the neutrino Majorana phases and possible baryon and/or lepton number violating interactions.
Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R
2015-08-10
Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.
Coupled flow and deformations in granular systems beyond the pendular regime
NASA Astrophysics Data System (ADS)
Yuan, Chao; Chareyre, Bruno; Darve, Felix
2017-06-01
A pore-scale numerical model is proposed for simulating the quasi-static primary drainage and the hydro-mechanical couplings in multiphase granular systems. The solid skeleton is idealized to a dense random packing of polydisperse spheres by DEM. The fluids (nonwetting and wetting phases) space is decomposed to a network of tetrahedral pores based on the Regular Triangulation method. The local drainage rules and invasion logic are defined. The fluid forces acting on solid grains are formulated. The model can simulate the hydraulic evolution from a fully saturated state to a low level of saturation but beyond the pendular regime. The features of wetting phase entrapments and capillary fingering can also be reproduced. Finally, a primary drainage test is performed on a 40,000 spheres of sample. The water retention curve is obtained. The solid skeleton first shrinks then swells.
Quackenbush, Nicholas F; Paik, Hanjong; Woicik, Joseph C; Arena, Dario A; Schlom, Darrell G; Piper, Louis F J
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
Jayakumar, O D; Achary, S N; Sudakar, C; Naik, R; Salunke, H G; Rao, Rekha; Peng, X; Ahuja, R; Tyagi, A K
2010-08-01
We present the structural and magnetic properties of Zn(0.95-x)Co(0.05)Al(x)O (x = 0.0 to 0.1) nanoparticles, synthesized by a novel sol-gel route followed by pyrolysis. Powder X-ray diffraction data confirms the formation of a single phase wurtzite type ZnO structure for all the compositions. The Zn(0.95)Co(0.05)O nanoparticles show diamagnetic behavior at room temperature. However, when Al is co-doped with Co with x = 0.0 to 0.10 in Zn(0.95-x)Co(0.05)Al(x)O, a systematic increase in ferromagnetic moment is observed up to x = 0.07 at 300 K. Above x = 0.07 (e.g. for x = 0.10) a drastic decrease in ferromagnetic nature is observed which is concomitant with the segregation of poorly crystalline Al rich ZnO phase as evidenced from TEM studies. Theoretical studies using density functional calculations on Zn(0.95-x)Co(0.05)Al(x)O suggest that the partial occupancy of S2 states leads to an increased double exchange interaction favoring the ferromagnetic ground states. Such ferromagnetic interactions are favorable beyond a threshold limit. At a high level doping of Al, the exchange splitting is reduced, which suppresses the ferromagnetic ordering.
NASA Astrophysics Data System (ADS)
Komarova, Natalia L.; Barnes, Eleanor; Klenerman, Paul; Wodarz, Dominik
2003-02-01
Drug therapies against persistent human infections such as hepatitis C virus, hepatitis B virus, and HIV fail to consistently eradicate the infection from the host. Hence, recent emphasis has shifted to the study of antiviral therapy aimed at boosting specific immune responses. It was argued that structured therapy interruptions were required to achieve this, because such regimes have shown promising results in early HIV infection. Using mathematical models, we show that, contrary to this notion, a single phase of drug therapy can result in the establishment of sustained immunity. We present a simple relationship between timing of therapy and efficacy of the drugs required for success. In the presence of strong viral suppression, we show that therapy should be stopped relatively early, and that a longer duration of treatment leads to failure. On the other hand, in the presence of weaker viral suppression, stopping treatment too early is detrimental, and therapy has to be continued beyond a time threshold. We discuss our modeling results primarily in the context of HCV therapy during chronic infection. Although the therapy regimes explored here also have implications for HIV, virus-mediated destruction of specific immune cells renders success unlikely during the chronic phase of the infection.
Where Does Water Go During Hydraulic Fracturing?
O'Malley, D; Karra, S; Currier, R P; Makedonska, N; Hyman, J D; Viswanathan, H S
2016-07-01
During hydraulic fracturing millions of gallons of water are typically injected at high pressure into deep shale formations. This water can be housed in fractures, within the shale matrix, and can potentially migrate beyond the shale formation via fractures and/or faults raising environmental concerns. We describe a generic framework for producing estimates of the volume available in fractures and undamaged shale matrix where water injected into a representative shale site could reside during hydraulic fracturing, and apply it to a representative site that incorporates available field data. The amount of water that can be stored in the fractures is estimated by calculating the volume of all the fractures associated with a discrete fracture network (DFN) based on real data and using probability theory to estimate the volume of smaller fractures that are below the lower cutoff for the fracture radius in the DFN. The amount of water stored in the matrix is estimated utilizing two distinct methods-one using a two-phase model at the pore-scale and the other using a single-phase model at the continuum scale. Based on these calculations, it appears that most of the water resides in the matrix with a lesser amount in the fractures. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Mott metal-insulator transition in the doped Hubbard-Holstein model
NASA Astrophysics Data System (ADS)
Kurdestany, Jamshid Moradi; Satpathy, S.
2017-08-01
Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.
Beyond Fractals and 1/f Noise: Multifractal Analysis of Complex Physiological Time Series
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.; Amaral, Luis A. N.; Ashkenazy, Yosef; Stanley, H. Eugene; Goldberger, Ary L.; Hausdorff, Jeffrey M.; Yoneyama, Mitsuru; Arai, Kuniharu
2001-03-01
We investigate time series with 1/f-like spectra generated by two physiologic control systems --- the human heartbeat and human gait. We show that physiological fluctuations exhibit unexpected ``hidden'' structures often described by scaling laws. In particular, our studies indicate that when analyzed on different time scales the heartbeat fluctuations exhibit cascades of branching patterns with self-similar (fractal) properties, characterized by long-range power-law anticorrelations. We find that these scaling features change during sleep and wake phases, and with pathological perturbations. Further, by means of a new wavelet-based technique, we find evidence of multifractality in the healthy human heartbeat even under resting conditions, and show that the multifractal character and nonlinear properties of the healthy heart are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure. In contrast to the heartbeat, we find that the interstride interval time series of healthy human gait, a voluntary process under neural regulation, is described by a single fractal dimension (such as classical 1/f noise) indicating monofractal behavior. Thus our approach can help distinguish physiological and physical signals with comparable frequency spectra and two-point correlations, and guide modeling of their control mechanisms.
Lott, Susan Nitzberg; Carney, Aimee Syms; Glezer, Laurie S; Friedman, Rhonda B
2010-11-01
BACKGROUND: Letter-by-letter readers identify each letter of the word they are reading serially in left to right order before recognizing the word. When their letter naming is also impaired, letter-by-letter reading is inaccurate and can render even single word reading very poor. Tactile and/or kinesthetic strategies have been reported to improve reading in these patients, but only under certain conditions or for a limited set of stimuli. AIMS: The primary aim of the current study was to determine whether a tactile/kinesthetic treatment could significantly improve reading specifically under normal reading conditions, i.e. reading untrained words presented in free vision and read without overt use of the strategy. METHODS #ENTITYSTARTX00026; PROCEDURES: Three chronic letter-by-letter readers participated in a tactile/kinesthetic treatment aimed at first improving letter naming accuracy (phase 1) and then letter-by-letter reading speed (phase 2). In a multiple case series design, accuracy and speed of reading untrained words without overt use of the trained tactile/kinesthetic strategy was assessed before phase 1, after phase 1 and again after phase 2. OUTCOMES #ENTITYSTARTX00026; RESULTS: All three patients significantly improved both their speed and accuracy reading untrained words without overt use of the trained tactile/kinesthetic strategy. All three patients required the additional practice in phase 2 to achieve significant improvement. Treatment did not target sentence level reading, yet two of the three patients became so adept that they could read entire sentences. CONCLUSIONS: This study replicates previous findings on the efficacy of tactile/kinesthetic treatment for letter-by-letter readers with poor letter naming. It further demonstrates that this treatment can alter cognitive processing such that words never specifically trained can be read in free vision without overtly using the trained strategy. The data suggest that an important element in achieving this level of generalization is continuing training beyond the point of initial mastery (i.e. accurate letter naming).
Lott, Susan Nitzberg; Carney, Aimee Syms; Glezer, Laurie S.; Friedman, Rhonda B.
2010-01-01
Background Letter-by-letter readers identify each letter of the word they are reading serially in left to right order before recognizing the word. When their letter naming is also impaired, letter-by-letter reading is inaccurate and can render even single word reading very poor. Tactile and/or kinesthetic strategies have been reported to improve reading in these patients, but only under certain conditions or for a limited set of stimuli. Aims The primary aim of the current study was to determine whether a tactile/kinesthetic treatment could significantly improve reading specifically under normal reading conditions, i.e. reading untrained words presented in free vision and read without overt use of the strategy. Methods & Procedures Three chronic letter-by-letter readers participated in a tactile/kinesthetic treatment aimed at first improving letter naming accuracy (phase 1) and then letter-by-letter reading speed (phase 2). In a multiple case series design, accuracy and speed of reading untrained words without overt use of the trained tactile/kinesthetic strategy was assessed before phase 1, after phase 1 and again after phase 2. Outcomes & Results All three patients significantly improved both their speed and accuracy reading untrained words without overt use of the trained tactile/kinesthetic strategy. All three patients required the additional practice in phase 2 to achieve significant improvement. Treatment did not target sentence level reading, yet two of the three patients became so adept that they could read entire sentences. Conclusions This study replicates previous findings on the efficacy of tactile/kinesthetic treatment for letter-by-letter readers with poor letter naming. It further demonstrates that this treatment can alter cognitive processing such that words never specifically trained can be read in free vision without overtly using the trained strategy. The data suggest that an important element in achieving this level of generalization is continuing training beyond the point of initial mastery (i.e. accurate letter naming). PMID:21170161
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sreepathi, Sarat; Sripathi, Vamsi; Mills, Richard T
2013-01-01
Inefficient parallel I/O is known to be a major bottleneck among scientific applications employed on supercomputers as the number of processor cores grows into the thousands. Our prior experience indicated that parallel I/O libraries such as HDF5 that rely on MPI-IO do not scale well beyond 10K processor cores, especially on parallel file systems (like Lustre) with single point of resource contention. Our previous optimization efforts for a massively parallel multi-phase and multi-component subsurface simulator (PFLOTRAN) led to a two-phase I/O approach at the application level where a set of designated processes participate in the I/O process by splitting themore » I/O operation into a communication phase and a disk I/O phase. The designated I/O processes are created by splitting the MPI global communicator into multiple sub-communicators. The root process in each sub-communicator is responsible for performing the I/O operations for the entire group and then distributing the data to rest of the group. This approach resulted in over 25X speedup in HDF I/O read performance and 3X speedup in write performance for PFLOTRAN at over 100K processor cores on the ORNL Jaguar supercomputer. This research describes the design and development of a general purpose parallel I/O library, SCORPIO (SCalable block-ORiented Parallel I/O) that incorporates our optimized two-phase I/O approach. The library provides a simplified higher level abstraction to the user, sitting atop existing parallel I/O libraries (such as HDF5) and implements optimized I/O access patterns that can scale on larger number of processors. Performance results with standard benchmark problems and PFLOTRAN indicate that our library is able to maintain the same speedups as before with the added flexibility of being applicable to a wider range of I/O intensive applications.« less
Phase-front measurements of an injection-locked AlGaAs laser-diode array
NASA Technical Reports Server (NTRS)
Cornwell, Donald M., Jr.; Rall, Jonathan A. R.; Abshire, James B.
1989-01-01
The phase-front quality of the primary spatial lobe emitted from an injection-locked gain-guided AlGaAs laser-diode array is measured by using an equal-path, phase-shifting Mach-Zehnder interferometer. Root-mean-square phase errors of 0.037 + or - 0.003 wave are measured for the single spatial lobe, which contained 240-mW cw output power in a single longitudinal mode. This phase-front quality corresponds to a Strehl ratio of S = 0.947, which results in a 0.23-dB power loss from the single lobe's ideal diffraction-limited power. These values are comparable with those measured for single-stripe index-guided AlGaAs lasers.
Simultaneous fluorescence and quantitative phase microscopy with single-pixel detectors
NASA Astrophysics Data System (ADS)
Liu, Yang; Suo, Jinli; Zhang, Yuanlong; Dai, Qionghai
2018-02-01
Multimodal microscopy offers high flexibilities for biomedical observation and diagnosis. Conventional multimodal approaches either use multiple cameras or a single camera spatially multiplexing different modes. The former needs expertise demanding alignment and the latter suffers from limited spatial resolution. Here, we report an alignment-free full-resolution simultaneous fluorescence and quantitative phase imaging approach using single-pixel detectors. By combining reference-free interferometry with single-pixel detection, we encode the phase and fluorescence of the sample in two detection arms at the same time. Then we employ structured illumination and the correlated measurements between the sample and the illuminations for reconstruction. The recovered fluorescence and phase images are inherently aligned thanks to single-pixel detection. To validate the proposed method, we built a proof-of-concept setup for first imaging the phase of etched glass with the depth of a few hundred nanometers and then imaging the fluorescence and phase of the quantum dot drop. This method holds great potential for multispectral fluorescence microscopy with additional single-pixel detectors or a spectrometer. Besides, this cost-efficient multimodal system might find broad applications in biomedical science and neuroscience.
Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation
NASA Astrophysics Data System (ADS)
Li, Junze; Wang, Jun; Zhang, Yingjun; Wang, Haizhen; Lin, Gaoming; Xiong, Xuan; Zhou, Weihang; Luo, Hongmei; Li, Dehui
2018-04-01
The two-dimensional (2D) Ruddlesden-Popper type perovskites have attracted intensive interest for their great environmental stability and various potential optoelectronic applications. Fundamental understanding of the photophysical and electronic properties of the 2D perovskites with pure single phase is essential for improving the performance of the optoelectronic devices and designing devices with new architectures. Investigating the optical and electronic properties of these materials with pure single phase is required to obtain pure single phase 2D perovskites. Here, we report on an alternative approach to fabricate (C4H9NH3)2(CH3NH3) n-1Pb n I3n+1 microplates with pure single n-number perovskite phase for n > 2 by mechanical exfoliation. Micro-photoluminescence and absorption spectroscopy studies reveal that the as-synthesized 2D perovskite plates for n > 2 are comprised by dominant n-number phase and small inclusions of hybrid perovskite phases with different n values, which is supported by excitation power dependent photoluminescence. By mechanical exfoliation method, 2D perovskite microplates with the thickness of around 20 nm are obtained, which surprisingly have single n-number perovskite phase for n = 2-5. In addition, we have demonstrated that the exfoliated 2D perovskite microplates can be integrated with other 2D layered materials such as boron nitride, and are able to be transferred to prefabricated electrodes for photodetections. Our studies not only provide a strategy to prepare 2D perovskites with a single n-number perovskite phase allowing us to extract the basic optical and electronic parameters of pure phase perovskites, but also demonstrate the possibility to integrate the 2D perovskites with other 2D layered materials to extend the device’s functionalities.
Using a Theory of Action to Develop Performance Indicators to Measure Progress toward a SIMR
ERIC Educational Resources Information Center
Schiller, Ellen; Hayes, Susan; Nagle, Katherine
2015-01-01
This white paper offers an approach for using a theory of action as an outline to develop the SSIP [State Systemic Improvement Plan] Phase II evaluation questions and plan that will guide the SSIP work in Phase III and beyond. Key areas of focus include generating evaluation questions at each level of outcomes, identifying essential steps and…
Evolving science of marine reserves: New developments and emerging research frontiers
Gaines, Steven D.; Lester, Sarah E.; Grorud-Colvert, Kirsten; Costello, Christopher; Pollnac, Richard
2010-01-01
The field of marine reserve science has matured greatly over the last decade, moving beyond studies of single reserves and beyond perspectives from single disciplines. This Special Feature exemplifies recent advances in marine reserve research, showing insights gained from synthetic studies of reserve networks, long-term changes within reserves, integration of social and ecological science research, and balance between reserve design for conservation as well as fishery and other commercial objectives. This rich body of research helps to inform conservation planning for marine ecosystems but also poses new challenges for further study, including how to best design integrated fisheries management and conservation systems, how to effectively evaluate the performance of entire reserve networks, and how to examine the complex coupling between ecological and socioeconomic responses to reserve networks. PMID:20978212
Enabling Large Superalloy Parts Using Compact Coprecipitation of γ' and γ''
NASA Astrophysics Data System (ADS)
Detor, Andrew J.; DiDomizio, Richard; Sharghi-Moshtaghin, Reza; Zhou, Ning; Shi, Rongpei; Wang, Yunzhi; McAllister, Donald P.; Mills, Michael J.
2018-03-01
Next-generation gas turbines will require disk materials capable of operating at 923 K (650 °C) and above to achieve efficiencies well beyond today's 62 pct benchmark. This temperature requirement marks a critical turning point in materials selection. Current turbine disk alloys, such as 706 and 718, are limited by the stability of their major strengthening phase, γ'', which coarsens rapidly beyond 923 K (650 °C) resulting in significant degradation in properties. More capable γ' strengthened superalloys, such as those used in jet engine disks, are also limited due to the sheer size of gas turbine hardware; the γ' phase overages during the slow cooling rates inherent in processing thick-section parts. In the present work, we address this fundamental gap in available superalloy materials. Through careful control of Al, Ti, and Nb levels, we show that fine (<100 nm) γ' and compact γ'/γ'' coprecipitate structures can be formed even under extremely slow cooling rates from high temperature. The presence of Ti is shown to have a dominant effect on phase formation, dictating whether γ', γ'/γ'' coprecipitates, or other less desirable acicular phases form on cooling. Sensitivity to cooling rate and aging heat treatment is also explored. A custom phase field model along with commercial precipitation kinetics software is used to better understand the phase evolution and stability of compact coprecipitates. The alloying strategies discussed here enable a new class of superalloys suitable for applications requiring large parts operating at high temperature.
Zhang, Tong; Zhang, Rong; Zhang, Liang; Zhang, Zhihe; Hou, Rong; Wang, Hairui; Loeffler, I Kati; Watson, David G; Kennedy, Malcolm W
2015-01-01
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1-6 (Phase 1), days 7-20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth.
NASA Astrophysics Data System (ADS)
Utegulov, B. B.; Utegulov, A. B.; Meiramova, S.
2018-02-01
The paper proposes the development of a self-learning machine for creating models of microprocessor-based single-phase ground fault protection devices in networks with an isolated neutral voltage higher than 1000 V. Development of a self-learning machine for creating models of microprocessor-based single-phase earth fault protection devices in networks with an isolated neutral voltage higher than 1000 V. allows to effectively implement mathematical models of automatic change of protection settings. Single-phase earth fault protection devices.
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).
Phillips, Zachary F; Chen, Michael; Waller, Laura
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.
Sinc or Sine? The Band Excitation Method and Energy Dissipation Measurements by SPM
NASA Astrophysics Data System (ADS)
Jesse, Stephen; Kalinin, Sergei
2007-03-01
Quantitative energy dissipation measurements in force-based SPM is the key to understanding fundamental mechanisms of energy transformations on the nanoscale, molecular, and atomic levels. To date, these measurements are invariably based on either phase and amplitude detection in constant frequency mode, or as amplitude detection in frequency-tracking mode. The analysis in both cases implicitly assumes that amplitude is inversely proportional to the Q-factor and is not applicable when the driving force is position dependent, as is the case for virtually all SPM measurements. All current SPM methods sample only a single frequency in the Fourier domain of the system. Thus, only two out of three parameters (amplitude, resonance, and Q) can be determined independently. Here, we developed and implemented a new approach for SPM detection based on the excitation and detection of a signal having a finite amplitude over a selected region in the Fourier domain and allows simultaneous determination of all three parameters. This band excitation method allows acquisition of the local spectral response at a 10ms/pixel rate, compatible with fast imaging, and is illustrated for electromechanical and mechanical imaging and force-distance spectroscopy. The BE method thus represents a new paradigm in SPM, beyond traditional single-frequency excitation.
NASA Astrophysics Data System (ADS)
Marinella, M.
In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.
Structure, Hydrodynamics, and Phase Transition of Freely Suspended Liquid Crystals
NASA Technical Reports Server (NTRS)
Clark, Noel A.
2000-01-01
Smectic liquid crystals are phases of rod shaped molecules organized into one dimensionally (1D) periodic arrays of layers, each layer being between one and two molecular lengths thick. In the least ordered smectic phases, the smectics A and C, each layer is a two dimensional (2D) liquid. Additionally there are a variety of more ordered smectic phases having hexatic short range translational order or 2D crystalline quasi long range translational order within the layers. The inherent fluid-layer structure and low vapor pressure of smectic liquid crystals enable the long term stabilization of freely suspended, single component, layered fluid films as thin as 30A, a single molecular layer. The layering forces the films to be an integral number of smectic layers thick, quantizing their thickness in layer units and forcing a film of a particular number of layers to be physically homogeneous with respect to its layer structure over its entire area. Optical reflectivity enables the precise determination of the number of layers. These ultrathin freely suspended liquid crystal films are structures of fundamental interest in condensed matter and fluid physics. They are the thinnest known stable condensed phase fluid structures and have the largest surface-to-volume ratio of any stable fluid preparation, making them ideal for the study of the effects of reduced dimensionality on phase behavior and on fluctuation and interface phenomena. Their low vapor pressure and quantized thickness enable the effective use of microgravity to extend the study of basic capillary phenomena to ultrathin fluid films. Freely suspended films have been a wellspring of new liquid crystal physics. They have been used to provide unique experimental conditions for the study of condensed phase transitions in two dimensions. They are the only system in which the hexatic has been unambiguously identified as a phase of matter, and the only physical system in which fluctuations of a 2D XY system and Kosterlitz Thouless phase transition has been observed and 2D XY quasi long range order verified. Smectic films have enabled the precise determination of smectic layer electron density and positional fluctuation profile and have been used to show that the interlayer interactions in anti-ferroelectric tilted smectics do not extend significantly beyond nearest neighbors. The interactions which are operative in liquid crystals are generally weak in comparison to those in crystalline phases, leading to the facile manipulation of the order in liquid crystals by external agents such as applied fields and surfaces. Effects arising from weak ordering are significantly enhanced in ultrathin free films and filaments wherein the intermolecular coupling is effectively reduced by loss of neighbors. Over the past four years this research, which we now detail, has produced a host of exciting new discoveries and unexpected results, maintaining the position of the study of freely suspended liquid crystal structures as one of most exciting and fruitful areas of complex fluid physics. In addition, several potentially interesting microgravity free film experiments have been identified.
Synchrotron radiation topography studies of the phase transition in LaGaO 3 crystals
NASA Astrophysics Data System (ADS)
Yao, G.-D.; Dudley, M.; Wang, Y.; Liu, X.; Liebermann, R. C.
1991-05-01
An investigation of the orthorhombic to rhombohedral phase transformation occurring at 145°C in lanthanum gallate has been conducted using white beam synchrotron X-ray topography (WBSXRT). The existence of the first order transition was confirmed by differential thermal analysis and X-ray diffractometer powder analysis. Subsequent to this, synchrotron white beam Laue patterns were recorded in situ as a function of temperature, during the transition. Before the transition point was reached, (112) orth type reflection twinning was found to be dominant although a small amount of (110) orth type twinning was also observed in the same crystal. Beyond the transition point, not only did the structural change become evident but also reflection twinning on the (110) rhom planes was observed. The scale of this twinning became finer as the temperature was increased beyond the transition temperature. The twinning observed in both the low and high temperature phases gives rise to deformation of the (011) rhom surface plane which creates problems for the potential use of this material as a substrate for growing high Tc superconducting epitaxial layers.
van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J
2017-05-22
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Product quality management based on CNC machine fault prognostics and diagnosis
NASA Astrophysics Data System (ADS)
Kozlov, A. M.; Al-jonid, Kh M.; Kozlov, A. A.; Antar, Sh D.
2018-03-01
This paper presents a new fault classification model and an integrated approach to fault diagnosis which involves the combination of ideas of Neuro-fuzzy Networks (NF), Dynamic Bayesian Networks (DBN) and Particle Filtering (PF) algorithm on a single platform. In the new model, faults are categorized in two aspects, namely first and second degree faults. First degree faults are instantaneous in nature, and second degree faults are evolutional and appear as a developing phenomenon which starts from the initial stage, goes through the development stage and finally ends at the mature stage. These categories of faults have a lifetime which is inversely proportional to a machine tool's life according to the modified version of Taylor’s equation. For fault diagnosis, this framework consists of two phases: the first one is focusing on fault prognosis, which is done online, and the second one is concerned with fault diagnosis which depends on both off-line and on-line modules. In the first phase, a neuro-fuzzy predictor is used to take a decision on whether to embark Conditional Based Maintenance (CBM) or fault diagnosis based on the severity of a fault. The second phase only comes into action when an evolving fault goes beyond a critical threshold limit called a CBM limit for a command to be issued for fault diagnosis. During this phase, DBN and PF techniques are used as an intelligent fault diagnosis system to determine the severity, time and location of the fault. The feasibility of this approach was tested in a simulation environment using the CNC machine as a case study and the results were studied and analyzed.
Macromolecular ab initio phasing enforcing secondary and tertiary structure.
Millán, Claudia; Sammito, Massimo; Usón, Isabel
2015-01-01
Ab initio phasing of macromolecular structures, from the native intensities alone with no experimental phase information or previous particular structural knowledge, has been the object of a long quest, limited by two main barriers: structure size and resolution of the data. Current approaches to extend the scope of ab initio phasing include use of the Patterson function, density modification and data extrapolation. The authors' approach relies on the combination of locating model fragments such as polyalanine α-helices with the program PHASER and density modification with the program SHELXE. Given the difficulties in discriminating correct small substructures, many putative groups of fragments have to be tested in parallel; thus calculations are performed in a grid or supercomputer. The method has been named after the Italian painter Arcimboldo, who used to compose portraits out of fruit and vegetables. With ARCIMBOLDO, most collections of fragments remain a 'still-life', but some are correct enough for density modification and main-chain tracing to reveal the protein's true portrait. Beyond α-helices, other fragments can be exploited in an analogous way: libraries of helices with modelled side chains, β-strands, predictable fragments such as DNA-binding folds or fragments selected from distant homologues up to libraries of small local folds that are used to enforce nonspecific tertiary structure; thus restoring the ab initio nature of the method. Using these methods, a number of unknown macromolecules with a few thousand atoms and resolutions around 2 Å have been solved. In the 2014 release, use of the program has been simplified. The software mediates the use of massive computing to automate the grid access required in difficult cases but may also run on a single multicore workstation (http://chango.ibmb.csic.es/ARCIMBOLDO_LITE) to solve straightforward cases.
Combrisson, Etienne; Perrone-Bertolotti, Marcela; Soto, Juan Lp; Alamian, Golnoush; Kahane, Philippe; Lachaux, Jean-Philippe; Guillot, Aymeric; Jerbi, Karim
2017-02-15
Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase, amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive. Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at movement execution, and during the delay period where motor intention is present but execution is withheld. In particular, we used a machine-learning framework to identify the key contributions of various neuronal responses. We found a high degree of overlap between brain network patterns observed during planning and those present during execution. Prominent amplitude increases in the delta (2-4Hz) and high gamma (60-200Hz) bands were observed during both planning and execution. In contrast, motor alpha (8-13Hz) and beta (13-30Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly, single-trial classification revealed that low-frequency phase information, rather than spectral power change, was the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker decoding, PAC features led to statistically significant classification of motor states, particularly in anterior cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions. Copyright © 2016 Elsevier Inc. All rights reserved.
Improved battery charger for electric vehicles
NASA Technical Reports Server (NTRS)
Rippel, W. E.
1981-01-01
Polyphase version of single-phase "boost chopper" significantly reduces ripple and electromagnetic interference (EMI). Drive circuit of n-phase boost chopper incorporates n-phase duty-cycle generator; inductor, transistor, and diode compose chopper which can run on single-phase or three-phase alternating current or on direct current. Device retains compactness and power factors approaching unity, while improving efficiency.
Active thermal control systems for lunar and Martian exploration
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John
1990-01-01
Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.
Violation of Ohm’s law in a Weyl metal [A hallmark of the Weyl metal state: Breakdown of Ohm's law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwoo; Lee, Yongwoo; Sasaki, M.
Ohm’s law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm’s law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm’s law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I–V characteristics in Bi 0.96Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity,more » which completely describes our experimental results. Furthermore, as a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.« less
Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D
2014-12-15
An interpolation method is described for range measurements of high precision altimetry with repeating intensity modulated continuous wave (IM-CW) lidar waveforms using binary phase shift keying (BPSK), where the range profile is determined by means of a cross-correlation between the digital form of the transmitted signal and the digitized return signal collected by the lidar receiver. This method uses reordering of the array elements in the frequency domain to convert a repeating synthetic pulse signal to single highly interpolated pulse. This is then enhanced further using Richardson-Lucy deconvolution to greatly enhance the resolution of the pulse. We show the sampling resolution and pulse width can be enhanced by about two orders of magnitude using the signal processing algorithms presented, thus breaking the fundamental resolution limit for BPSK modulation of a particular bandwidth and bit rate. We demonstrate the usefulness of this technique for determining cloud and tree canopy thicknesses far beyond this fundamental limit in a lidar not designed for this purpose.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
Quantum many-body dynamics of dark solitons in optical lattices
NASA Astrophysics Data System (ADS)
Mishmash, R. V.; Danshita, I.; Clark, Charles W.; Carr, L. D.
2009-11-01
We present a fully quantum many-body treatment of dark solitons formed by ultracold bosonic atoms in one-dimensional optical lattices. Using time-evolving block decimation to simulate the single-band Bose-Hubbard Hamiltonian, we consider the quantum dynamics of density and phase engineered dark solitons as well as the quantum evolution of mean-field dark solitons injected into the quantum model. The former approach directly models how one may create quantum entangled dark solitons in experiment. While we have already presented results regarding the latter approach elsewhere [R. V. Mishmash and L. D. Carr, Phys. Rev. Lett. 103, 140403 (2009)], we expand upon those results in this work. In both cases, quantum fluctuations cause the dark soliton to fill in and may induce an inelasticity in soliton-soliton collisions. Comparisons are made to the Bogoliubov theory which predicts depletion into an anomalous mode that fills in the soliton. Our many-body treatment allows us to go beyond the Bogoliubov approximation and calculate explicitly the dynamics of the system’s natural orbitals.
NASA Astrophysics Data System (ADS)
Arakawa, Yuki; Tsuji, Hideto
2017-06-01
In order to reveal the effect of fluorine substitutions on the refractive index properties for calamitic nematic materials, we carried out a comparative study with respect to non-fluorinated and two types of laterally fluorinated 1,4-bis[4-(hexyloxy)phenyl]ethynylbenzene molecules. Phase transition behaviours were investigated by differential scanning calorimetry and polarised optical microscopy. Additionally, extraordinary and ordinary refractive index and birefringence were evaluated from each single component system. All the analogues exhibited high birefringence values beyond 0.3 at 550 nm, of which an analogue with a fluorine substitution at the central benzene ring showed the highest Δn-value of 0.43. With respect to an analogue with the highest level of fluorination, Δn as well as ne and no values were declined due to decreased order parameter and diluted molecular density. Not only the mesomorphic behaviours but also optical properties strongly relied on the manner of fluorine substitution including the number and position.
2D Heisenberg Triangular Antiferromagnet in Ba3CoSb2O9
NASA Astrophysics Data System (ADS)
Biffin, Alun; Demmel, Franz; Walker, Helen; Hayward, Michael; Coldea, Radu
We present inelastic neutron scattering (INS) experiments on the triangular antiferromagnet (TAF) Ba3CoSb2O9. High energy INS measurements allowed the crystal field levels of Co2+ ions to be resolved, and subsequently the terms relevant to its single ion Hamiltonian to be derived with the conclusion that the ions have a Jeff = 1 / 2 doublet as their groundstate with relatively weak local trigonal distortion of CoO6 octahedra. The result is a system which is a rare realisation of the canonical spin 1/2 Heisenberg TAF. Following this, low energy, high-resolution INS experiments have been performed which reveal the spin wave excitations emanating from the 120° ordered phase below TN = 3 . 8 K. However, as will be seen, linear spin wave calculations are not sufficient to describe all the features of the data, and these anomalies hint at quantum dynamics beyond linear spin wave theory within this realisation of the canonical S=1/2 TAF system.
Multiple seismic reflectors in Earth’s lowermost mantle
Shang, Xuefeng; Shim, Sang-Heon; de Hoop, Maarten; van der Hilst, Robert
2014-01-01
The modern view of Earth’s lowermost mantle considers a D″ region of enhanced (seismologically inferred) heterogeneity bounded by the core–mantle boundary and an interface some 150–300 km above it, with the latter often attributed to the postperovskite phase transition (in MgSiO3). Seismic exploration of Earth’s deep interior suggests, however, that this view needs modification. So-called ScS and SKKS waves, which probe the lowermost mantle from above and below, respectively, reveal multiple reflectors beneath Central America and East Asia, two areas known for subduction of oceanic plates deep into Earth’s mantle. This observation is inconsistent with expectations from a thermal response of a single isochemical postperovskite transition, but some of the newly observed structures can be explained with postperovskite transitions in differentiated slab materials. Our results imply that the lowermost mantle is more complex than hitherto thought and that interfaces and compositional heterogeneity occur beyond the D″ region sensu stricto. PMID:24550266
Violation of Ohm’s law in a Weyl metal [A hallmark of the Weyl metal state: Breakdown of Ohm's law
Shin, Dongwoo; Lee, Yongwoo; Sasaki, M.; ...
2017-08-14
Ohm’s law is a fundamental paradigm in the electrical transport of metals. Any transport signatures violating Ohm’s law would give an indisputable fingerprint for a novel metallic state. Here, we uncover the breakdown of Ohm’s law owing to a topological structure of the chiral anomaly in the Weyl metal phase. We observe nonlinear I–V characteristics in Bi 0.96Sb 0.04 single crystals in the diffusive limit, which occurs only for a magnetic-field-aligned electric field (E∥B). The Boltzmann transport theory with the charge pumping effect reveals the topological-in-origin nonlinear conductivity, and it leads to a universal scaling function of the longitudinal magnetoconductivity,more » which completely describes our experimental results. Furthermore, as a hallmark of Weyl metals, the nonlinear conductivity provides a venue for nonlinear electronics, optical applications, and the development of a topological Fermi-liquid theory beyond the Landau Fermi-liquid theory.« less
NASA Astrophysics Data System (ADS)
Bhattacharjee, Subham; Maiti, Bappa; Bhattacharya, Santanu
2016-05-01
The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed.The remarkable ability of a charge-transfer (CT) complex prepared from a pyrene-based donor (Py-D) and a naphthalenediimide-based acceptor (NDI-A) led to the formation of a deep-violet in color, transparent hydrogel at room temperature (RT-gel). Simultaneously, the RT-gel was diluted beyond its critical gelator concentration (CGC) to obtain a transparent sol. Very interestingly, the resultant sol, on heating above 70 °C, transformed into a heat-set gel instantaneously with a hitherto unknown CGC value. Detailed studies revealed the smaller globular aggregates of the RT-gels fuse to form giant globules upon heating, which, in turn, resulted in heat-set gelation through further aggregation. The thermoresponsive property of Py-D alone and 1 : 1 Py-D : NDI-A CT complex was investigated in detail which revealed the hydrophobic collapse of the oxyethylene chains of the CT complex upon heating was mainly responsible for heat-set gelation. Thixotropy, injectability, as well as stimuli responsiveness of the RT-gels were also addressed. In contrast, heat-set gel did not show thixotropic behavior. The X-ray diffraction (XRD) patterns of the xerogel depicted lamellar packing of the CT stacks in the gel phase. Single crystal XRD studies further evidenced the 1 : 1 mixed CT stack formation in the lamellae and also ruled out orthogonal hydrogen bonding possibilities among the hydrazide unit in the CT gel although such interaction was observed in a single crystal of NDI-A alone. In addition, a Ag+-ion triggered metallogelation of NDI-A and nematic liquid-crystalline property of Py-D were also observed. Electronic supplementary information (ESI) available: General experimental section, synthesis and characterization, single crystal X-ray data including CIF files and additional experimental results. See DOI: 10.1039/c6nr01128d
Hall, R. J.; Nogales, E.; Glaeser, R. M.
2011-01-01
The use of a Zernike-type phase plate in biological cryo-electron microscopy allows the imaging, without using defocus, of what are predominantly phase objects. It is thought that such phase-plate implementations might result in higher quality images, free from the problems of CTF correction that occur when images must be recorded at extremely high values of defocus. In single-particle cryo-electron microscopy it is hoped that these improvements in image quality will facilitate work on structures that have proved difficult to study, either because of their relatively small size or because the structures are not completely homogeneous. There is still a need, however, to quantify how much improvement can be gained by using a phase plate for single-particle cryo-electron microscopy. We present a method for quantitatively modelling the images recorded with 200 keV electrons, for single particles embedded in vitreous ice. We then investigate what difference the use of a phase-plate device could have on the processing of single-particle data. We confirm that using a phase plate results in single-particle datasets in which smaller molecules can be detected, particles can be more accurately aligned and problems of heterogeneity can be more easily addressed. PMID:21463690
Multi-phase SPH modelling of violent hydrodynamics on GPUs
NASA Astrophysics Data System (ADS)
Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.
2015-11-01
This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.
Canary: an atomic pipeline for clinical amplicon assays.
Doig, Kenneth D; Ellul, Jason; Fellowes, Andrew; Thompson, Ella R; Ryland, Georgina; Blombery, Piers; Papenfuss, Anthony T; Fox, Stephen B
2017-12-15
High throughput sequencing requires bioinformatics pipelines to process large volumes of data into meaningful variants that can be translated into a clinical report. These pipelines often suffer from a number of shortcomings: they lack robustness and have many components written in multiple languages, each with a variety of resource requirements. Pipeline components must be linked together with a workflow system to achieve the processing of FASTQ files through to a VCF file of variants. Crafting these pipelines requires considerable bioinformatics and IT skills beyond the reach of many clinical laboratories. Here we present Canary, a single program that can be run on a laptop, which takes FASTQ files from amplicon assays through to an annotated VCF file ready for clinical analysis. Canary can be installed and run with a single command using Docker containerization or run as a single JAR file on a wide range of platforms. Although it is a single utility, Canary performs all the functions present in more complex and unwieldy pipelines. All variants identified by Canary are 3' shifted and represented in their most parsimonious form to provide a consistent nomenclature, irrespective of sequencing variation. Further, proximate in-phase variants are represented as a single HGVS 'delins' variant. This allows for correct nomenclature and consequences to be ascribed to complex multi-nucleotide polymorphisms (MNPs), which are otherwise difficult to represent and interpret. Variants can also be annotated with hundreds of attributes sourced from MyVariant.info to give up to date details on pathogenicity, population statistics and in-silico predictors. Canary has been used at the Peter MacCallum Cancer Centre in Melbourne for the last 2 years for the processing of clinical sequencing data. By encapsulating clinical features in a single, easily installed executable, Canary makes sequencing more accessible to all pathology laboratories. Canary is available for download as source or a Docker image at https://github.com/PapenfussLab/Canary under a GPL-3.0 License.
Wiener-matrix image restoration beyond the sampling passband
NASA Technical Reports Server (NTRS)
Rahman, Zia-Ur; Alter-Gartenberg, Rachel; Fales, Carl L.; Huck, Friedrich O.
1991-01-01
A finer-than-sampling-lattice resolution image can be obtained using multiresponse image gathering and Wiener-matrix restoration. The multiresponse image gathering weighs the within-passband and aliased signal components differently, allowing the Wiener-matrix restoration filter to unscramble these signal components and restore spatial frequencies beyond the sampling passband of the photodetector array. A multiresponse images can be reassembled into a single minimum mean square error image with a resolution that is sq rt A times finer than the photodetector-array sampling lattice.
ERIC Educational Resources Information Center
Hensley, Kendra
2011-01-01
Total quality management based governance models tend to focus on incremental improvements within the boundaries of a single organization. This may limit the benefits of information technology because they are not complex enough to address business or performance problems that extend beyond the boundaries of a single organization. The research…
Forest Plots in Excel: Moving beyond a Clump of Trees to a Forest of Visual Information
ERIC Educational Resources Information Center
Derzon, James H.; Alford, Aaron A.
2013-01-01
Forest plots provide an effective means of presenting a wealth of information in a single graphic. Whether used to illustrate multiple results in a single study or the cumulative knowledge of an entire field, forest plots have become an accepted and generally understood way of presenting many estimates simultaneously. This article explores…
Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)
2017-01-01
We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023
Avanesov, Maxim; Weinrich, Julius M; Kraus, Thomas; Derlin, Thorsten; Adam, Gerhard; Yamamura, Jin; Karul, Murat
2016-11-01
The purpose of the retrospective study was to evaluate the additional value of dual-phase multidetector computed tomography (MDCT) protocols over a single-phase protocol on initial MDCT in patients with acute pancreatitis using three CT-based pancreatitis severity scores with regard to radiation dose. In this retrospective, IRB approved study MDCT was performed in 102 consecutive patients (73 males; 55years, IQR48-64) with acute pancreatitis. Inclusion criteria were CT findings of interstitial edematous pancreatitis (IP) or necrotizing pancreatitis (NP) and a contrast-enhanced dual-phase (arterial phase and portal-venous phase) abdominal CT performed at ≥72h after onset of symptoms. The severity of pancreatic and extrapancreatic changes was independently assessed by 2 observers using 3 validated CT-based scoring systems (CTSI, mCTSI, EPIC). All scores were applied to arterial phase and portal venous phase scans and compared to score results of portal venous phase scans, assessed ≥14days after initial evaluation. For effective dose estimation, volume CT dose index (CTDIvol) and dose length product (DLP) were recorded in all examinations. In neither of the CT severity scores a significant difference was observed after application of a dual-phase protocol compared with a single-phase protocol (IP: CTSI: 2.7 vs. 2.5, p=0.25; mCTSI: 4.0 vs. 4.0, p=0.10; EPIC: 2.0 vs. 2.0, p=0.41; NP: CTSI: 8.0 vs. 7.0, p=0.64; mCTSI: 8.0 vs. 8.0, p=0.10; EPIC: 3.0 vs. 3.0, p=0.06). The application of a single-phase CT protocol was associated with a median effective dose reduction of 36% (mean dose reduction 31%) compared to a dual-phase CT scan. An initial dual-phase abdominal CT after ≥72h after onset of symptoms of acute pancreatitis was not superior to a single-phase protocol for evaluation of the severity of pancreatic and extrapancreatic changes. However, the effective radiation dose may be reduced by 36% using a single-phase protocol. Copyright © 2016. Published by Elsevier Ireland Ltd.
Multiple fuel supply system for an internal combustion engine
Crothers, William T.
1977-01-01
A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.
Demonstrating the Value of Education Through Exploration as a Theory of Digital Design
NASA Astrophysics Data System (ADS)
Anbar, A. D.; Mead, C.; Bratton, D., III; Horodyskyj, L.; Hayes, J.; Schonstein, D.; Watt, S.; Watt, K.; Ben-Naim, D.; Leon, A.
2017-12-01
We present results from two online college courses - HabWorlds and BioBeyond - that teach introductory science using astrobiology as motivation, according to a new theory of digital learning design that we call "education through exploration" (ETX). ETX design, building on the research-based practices of active learning and guided inquiry, aims to engage and encourage curiosity and to promote higher order thinking skills, in addition to content mastery. Students solve problems and actively discover relationships, supported by an intelligent tutoring system which provides immediate feedback and scaffolds scientific thinking and methods. Here we report the first comparative evidence of the effectiveness of ETX designs. A historical comparative study of HabWorlds was conducted at a community college where two instructors used it to replace an existing introductory astronomy course. Data from five Habitable Worlds and three BAU sections (300 students) show that course grades shifted significantly towards A and B (p = .009). A similar study at a second community college found comparable results for BioBeyond. Here, a single instructor taught introductory biology with and without BioBeyond, totalling five and two sections, respectively (>200 students). Grades on exams using a consistent question pool showed a significant increase in A's and B's when BioBeyond was used (p < .001). In addition to these single-site studies, multi-site data for BioBeyond show improved student outcomes over business as usual (BAU) equivalents. We compared student grades in introductory biology courses using BioBeyond, either as a complete course replacement or as a course supplement in a hybrid or flipped-classroom model, and BAU courses at each institution. A regression analysis controlled for potentially confounding variables, such as cumulative GPA, part-time/full-time status, gender, or race/ethnicity. BioBeyond was associated with a statistically significant positive predictive effect on grades at three of the four schools. The effect at these three schools ranged from +0.26 to +0.46 grade units (0-4.3 scale). Evidence of positive outcomes from two separate courses across multiple colleges and universities is a promising first step. The value of ETX design in promoting higher order thinking is a focus of ongoing study.
Quantitative phase retrieval with arbitrary pupil and illumination
Claus, Rene A.; Naulleau, Patrick P.; Neureuther, Andrew R.; ...
2015-10-02
We present a general algorithm for combining measurements taken under various illumination and imaging conditions to quantitatively extract the amplitude and phase of an object wave. The algorithm uses the weak object transfer function, which incorporates arbitrary pupil functions and partially coherent illumination. The approach is extended beyond the weak object regime using an iterative algorithm. Finally, we demonstrate the method on measurements of Extreme Ultraviolet Lithography (EUV) multilayer mask defects taken in an EUV zone plate microscope with both a standard zone plate lens and a zone plate implementing Zernike phase contrast.
Demodulation techniques for the amplitude modulated laser imager
NASA Astrophysics Data System (ADS)
Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P.; Katsev, Iosif L.; Prikhach, Alexander S.
2007-10-01
A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.
Phase correlation of laser waves with arbitrary frequency spacing.
Huss, A F; Lammegger, R; Neureiter, C; Korsunsky, E A; Windholz, L
2004-11-26
The theoretically predicted correlation of laser phase fluctuations in Lambda-type interaction schemes is experimentally demonstrated. We show that the mechanism of correlation in a Lambda scheme is restricted to high-frequency noise components, whereas in a double-Lambda scheme, due to the laser phase locking in a closed-loop interaction, it extends to all noise frequencies. In this case the correlation is weakly sensitive to coherence losses. Thus the double-Lambda scheme can be used to correlate electromagnetic fields with carrier frequency differences beyond the GHz regime.
Gravitational waves from a first-order electroweak phase transition: a brief review
NASA Astrophysics Data System (ADS)
Weir, David J.
2018-01-01
We review the production of gravitational waves by an electroweak first-order phase transition. The resulting signal is a good candidate for detection at next-generation gravitational wave detectors, such as LISA. Detection of such a source of gravitational waves could yield information about physics beyond the Standard Model that is complementary to that accessible to current and near-future collider experiments. We summarize efforts to simulate and model the phase transition and the resulting production of gravitational waves. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Subtraction method in the Second Random Phase Approximation
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo
2018-02-01
We discuss the subtraction method applied to the Second Random Phase Approximation (SRPA). This method has been proposed to overcome double counting and stability issues appearing in beyond mean-field calculations. We show that the subtraction procedure leads to a considerable reduction of the SRPA downwards shift with respect to the random phase approximation (RPA) spectra and to results that are weakly cutoff dependent. Applications to the isoscalar monopole and quadrupole response in 16O and to the low-lying dipole response in 48Ca are shown and discussed.
Coil planet centrifugation as a means for small particle separation
NASA Technical Reports Server (NTRS)
Herrmann, F. T.
1983-01-01
The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.
2004-06-10
Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Name of Candidate: CPT Michael J. Nack...and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry Beyond brief excerpts is with the permission of the copyright owner, and...Pesticides in Environmental Waters with Solid Phase Microextraction and Analysis using Field-Portable Gas Chromatography-Mass Spectrometry
Beyond the Alphabet Soup: Molecular Properties of Aerosol Components Influence Optics. (Invited)
NASA Astrophysics Data System (ADS)
Thompson, J. E.
2013-12-01
Components within atmospheric aerosols exhibit almost every imaginable model of chemical bonding and physical diversity. The materials run the spectrum from crystalline to amorphous, covalent to ionic, and have varying viscosities, phase, and hygroscopicity. This seminar will focus on the molecular properties of materials that influence the optical behavior of aerosols. Special focus will be placed on the polarizability of materials, hygroscopic growth, and particle phase.
Single-arm phase II trial design under parametric cure models.
Wu, Jianrong
2015-01-01
The current practice of designing single-arm phase II survival trials is limited under the exponential model. Trial design under the exponential model may not be appropriate when a portion of patients are cured. There is no literature available for designing single-arm phase II trials under the parametric cure model. In this paper, a test statistic is proposed, and a sample size formula is derived for designing single-arm phase II trials under a class of parametric cure models. Extensive simulations showed that the proposed test and sample size formula perform very well under different scenarios. Copyright © 2015 John Wiley & Sons, Ltd.
Interference between light and heavy neutrinos for 0 νββ decay in the left–right symmetric model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Fahim; Neacsu, Andrei; Horoi, Mihai
Neutrinoless double-beta decay is proposed as an important low energy phenomenon that could test beyond the Standard Model physics. There are several potentially competing beyond the Standard Model mechanisms that can induce the process. It thus becomes important to disentangle the different processes. In the present study we consider the interference effect between the light left-handed and heavy right-handed Majorana neutrino exchange mechanisms. The decay rate, and consequently, the phase-space factors for the interference term are derived, based on the left–right symmetric model. The numerical values for the interference phase-space factors for several nuclides are calculated, taking into consideration themore » relativistic Coulomb distortion of the electron wave function and finite-size of the nucleus. As a result, the variation of the interference effect with the Q-value of the process is studied.« less
Interference between light and heavy neutrinos for 0 νββ decay in the left–right symmetric model
Ahmed, Fahim; Neacsu, Andrei; Horoi, Mihai
2017-03-31
Neutrinoless double-beta decay is proposed as an important low energy phenomenon that could test beyond the Standard Model physics. There are several potentially competing beyond the Standard Model mechanisms that can induce the process. It thus becomes important to disentangle the different processes. In the present study we consider the interference effect between the light left-handed and heavy right-handed Majorana neutrino exchange mechanisms. The decay rate, and consequently, the phase-space factors for the interference term are derived, based on the left–right symmetric model. The numerical values for the interference phase-space factors for several nuclides are calculated, taking into consideration themore » relativistic Coulomb distortion of the electron wave function and finite-size of the nucleus. As a result, the variation of the interference effect with the Q-value of the process is studied.« less
BEC-BCS crossover and the liquid-gas phase transition in hot and dense nuclear matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Meng; Urban, Michael; Schuck, Peter
2010-08-15
The effect of nucleon-nucleon correlations in symmetric nuclear matter at finite temperature is studied beyond BCS theory. Starting from a Hartree-Fock description of nuclear matter with the Gogny effective interaction, we add correlations corresponding to the formation of preformed pairs and scattering states above the superfluid critical temperature within the in-medium T-matrix approach, which is analogous to the Nozieres-Schmitt-Rink theory. We calculate the critical temperature for a BEC superfluid of deuterons, of a BCS superfluid of nucleons, and in the crossover between these limits. The effect of the correlations on thermodynamic properties (equation of state, energy, entropy) and the liquid-gasmore » phase transition is discussed. Our results show that nucleon-nucleon correlations beyond BCS play an important role for the properties of nuclear matter, especially in the low-density region.« less
Decoding the genome beyond sequencing: the new phase of genomic research.
Heng, Henry H Q; Liu, Guo; Stevens, Joshua B; Bremer, Steven W; Ye, Karen J; Abdallah, Batoul Y; Horne, Steven D; Ye, Christine J
2011-10-01
While our understanding of gene-based biology has greatly improved, it is clear that the function of the genome and most diseases cannot be fully explained by genes and other regulatory elements. Genes and the genome represent distinct levels of genetic organization with their own coding systems; Genes code parts like protein and RNA, but the genome codes the structure of genetic networks, which are defined by the whole set of genes, chromosomes and their topological interactions within a cell. Accordingly, the genetic code of DNA offers limited understanding of genome functions. In this perspective, we introduce the genome theory which calls for the departure of gene-centric genomic research. To make this transition for the next phase of genomic research, it is essential to acknowledge the importance of new genome-based biological concepts and to establish new technology platforms to decode the genome beyond sequencing. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
1980-05-21
service spillway was analyzed as a sharp - crested weir with:.a discharge coefficient (c) of 3.1. The auxiliary spillway channel was analyzed as a broad ...upstream portion of this channel is a concrete structure which forms a 27.4 foot long rectangular weir . There is a 5 foot vertical drop beyond the crest ...I on 1.5 Crest Width (ft) 12 g. Service Spillway Type: Concrete channel-rectangular weir . Five foot vertical drop beyond crest . Masonry and laid up
Spatially-partitioned many-body vortices
NASA Astrophysics Data System (ADS)
Klaiman, S.; Alon, O. E.
2016-02-01
A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.
Correction of motion measurement errors beyond the range resolution of a synthetic aperture radar
Doerry, Armin W [Albuquerque, NM; Heard, Freddie E [Albuquerque, NM; Cordaro, J Thomas [Albuquerque, NM
2008-06-24
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
2018-01-01
The h-index is frequently used to measure the performance of single scientists in Korea (and beyond). No single indicator alone, however, is able to provide a stable and complete assessment of performance. The Stata command bibrep.ado is introduced which automatically produces bibliometric reports for single researchers (senior researchers working in the natural or life sciences). The user of the command receives a comprehensive bibliometric report which can be used in research evaluation instead of the h-index. PMID:29713257
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
Phase transitions in restricted Boltzmann machines with generic priors
NASA Astrophysics Data System (ADS)
Barra, Adriano; Genovese, Giuseppe; Sollich, Peter; Tantari, Daniele
2017-10-01
We study generalized restricted Boltzmann machines with generic priors for units and weights, interpolating between Boolean and Gaussian variables. We present a complete analysis of the replica symmetric phase diagram of these systems, which can be regarded as generalized Hopfield models. We underline the role of the retrieval phase for both inference and learning processes and we show that retrieval is robust for a large class of weight and unit priors, beyond the standard Hopfield scenario. Furthermore, we show how the paramagnetic phase boundary is directly related to the optimal size of the training set necessary for good generalization in a teacher-student scenario of unsupervised learning.
Williams, James L; Christensen, Carol J; Cagle, Henry H; Homan, Chriss E
2001-01-01
Objectives This study examined condom acquisition by persons in a hospital setting when single versus assorted brand name condoms were provided. Methods Condom receptacles were placed in exam rooms of two clinics. During Phase 1, a single brand name was provided; for Phase 2, assorted brand names were added. Number of condoms taken was recorded for each phase. Results For one clinic there was nearly a two-fold increase in number of condoms taken (Phase 1 to Phase 2); for the second clinic there was negligible difference in number of condoms taken. Conclusions The provision of assorted brand name condoms, over a single brand name, can serve to increase condom acquisition. Locations of condoms and target population characteristics are related factors. PMID:11446904
Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure
NASA Technical Reports Server (NTRS)
Pandey, Raghvendra K. (Inventor); Raina, Kanwal K. (Inventor); Solayappan, Narayanan (Inventor)
1995-01-01
A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Donghai; Deng, Yongkai; Chu, Saisai
2016-07-11
Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-orientedmore » optimization of single-nanoparticle two-photon microscopy for its future applications.« less
Beyond Single Species Interpretation.
ERIC Educational Resources Information Center
Richie, Deborah
1995-01-01
Species diversity, learning about wildlife in its natural habitats and conservation goals are integral to Watchable Wildlife programs. Examines the role of wildlife observation in spreading the message of biodiversity importance. Twenty-three references cited. (LZ)
Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound
NASA Astrophysics Data System (ADS)
Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo
2017-03-01
We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.
Ilev, Ilko; Waynant, Ronald; Gannot, Israel; Gandjbakhche, Amir
2007-09-01
A novel fiber-optic confocal approach for ultrahigh depth-resolution (
Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter
2016-09-01
ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then
The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks
2011-01-01
The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308
Controlled chain polymerisation and chemical soldering for single-molecule electronics.
Okawa, Yuji; Akai-Kasaya, Megumi; Kuwahara, Yuji; Mandal, Swapan K; Aono, Masakazu
2012-05-21
Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.
Quantum phase gate based on electromagnetically induced transparency in optical cavities
NASA Astrophysics Data System (ADS)
Borges, Halyne S.; Villas-Bôas, Celso J.
2016-11-01
We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.
Höhne, Marlene; Jahanbekam, Amirhossein; Bauckhage, Christian; Axmacher, Nikolai; Fell, Juergen
2016-10-01
Mediotemporal EEG characteristics are closely related to long-term memory formation. It has been reported that rhinal and hippocampal EEG measures reflecting the stability of phases across trials are better suited to distinguish subsequently remembered from forgotten trials than event-related potentials or amplitude-based measures. Theoretical models suggest that the phase of EEG oscillations reflects neural excitability and influences cellular plasticity. However, while previous studies have shown that the stability of phase values across trials is indeed a relevant predictor of subsequent memory performance, the effect of absolute single-trial phase values has been little explored. Here, we reanalyzed intracranial EEG recordings from the mediotemporal lobe of 27 epilepsy patients performing a continuous word recognition paradigm. Two-class classification using a support vector machine was performed to predict subsequently remembered vs. forgotten trials based on individually selected frequencies and time points. We demonstrate that it is possible to successfully predict single-trial memory formation in the majority of patients (23 out of 27) based on only three single-trial phase values given by a rhinal phase, a hippocampal phase, and a rhinal-hippocampal phase difference. Overall classification accuracy across all subjects was 69.2% choosing frequencies from the range between 0.5 and 50Hz and time points from the interval between -0.5s and 2s. For 19 patients, above chance prediction of subsequent memory was possible even when choosing only time points from the prestimulus interval (overall accuracy: 65.2%). Furthermore, prediction accuracies based on single-trial phase surpassed those based on single-trial power. Our results confirm the functional relevance of mediotemporal EEG phase for long-term memory operations and suggest that phase information may be utilized for memory enhancement applications based on deep brain stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Tong; Zhang, Rong; Zhang, Liang; Zhang, Zhihe; Hou, Rong; Wang, Hairui; Loeffler, I. Kati; Watson, David G.; Kennedy, Malcolm W.
2015-01-01
Ursids (bears) in general, and giant pandas in particular, are highly altricial at birth. The components of bear milks and their changes with time may be uniquely adapted to nourish relatively immature neonates, protect them from pathogens, and support the maturation of neonatal digestive physiology. Serial milk samples collected from three giant pandas in early lactation were subjected to untargeted metabolite profiling and multivariate analysis. Changes in milk metabolites with time after birth were analysed by Principal Component Analysis, Hierarchical Cluster Analysis and further supported by Orthogonal Partial Least Square-Discriminant Analysis, revealing three phases of milk maturation: days 1–6 (Phase 1), days 7–20 (Phase 2), and beyond day 20 (Phase 3). While the compositions of Phase 1 milks were essentially indistinguishable among individuals, divergences emerged during the second week of lactation. OPLS regression analysis positioned against the growth rate of one cub tentatively inferred a correlation with changes in the abundance of a trisaccharide, isoglobotriose, previously observed to be a major oligosaccharide in ursid milks. Three artificial milk formulae used to feed giant panda cubs were also analysed, and were found to differ markedly in component content from natural panda milk. These findings have implications for the dependence of the ontogeny of all species of bears, and potentially other members of the Carnivora and beyond, on the complexity and sequential changes in maternal provision of micrometabolites in the immediate period after birth. PMID:26630345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Compere, A.L.; Griffith, W.L.; Googin, J.M.
Microemulsions fuels containing fully and partially coconut, palm, and soy fatty acids; varying amounts of C/sub 1/ to C/sub 4/ alcohols; varying amounts of water; and four fuel bases were evaluated between 0 and 60/sup 0/C for stability as a single phase system. In general, ability to form a stable single phase system rose with increasing alcohol chain length, decreasing water, and increasing dispersed phase content. It was possible to form 0 to 60/sup 0/C stable single phase systems in all four fuels tested using 30 to 50% v/v dispersed phase containing 1-butanol and either palm or soy fatty acids.more » 11 refs., 3 tabs.« less
Multiline phase conjugation at 4 microm in germanium.
Depatie, D; Haueisen, D
1980-06-01
Phase conjugation by degenerate four-wave mixing in the 4-microm region in germanium has been observed for both single-line and multiline radiation. By using single-line output of a DF laser at 3.8 microm, X3 has been measured to be 4 X 10(-1) esu. Phase conjugation of multiline laser output has been achieved with an efficiency of 0.03%, a level that is consistent with the susceptibility found for single-line phase conjugation and the assumption of independent conjugation of each line of the multiline output.
Statistical mechanics of the cluster Ising model
NASA Astrophysics Data System (ADS)
Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko
2011-08-01
We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.
Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2
NASA Astrophysics Data System (ADS)
Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman
2018-04-01
We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.
DoD-VA Health Care: A Case Study in Interagency Reform
2008-03-10
Panel, and Ad-hoc Commission member testimony, experts and critics are now calling for legislation- much like the military transforming Goldwater...sweeping interagency reform (IAR).2 The timing for such legislation is critical as the Beyond Goldwater-Nichols (BG-N) Phase II Report aptly highlights...medicine is providing an additional incentive for the DoD and VA to collaborate. The BG-N Phase II Report acknowledges the importance of critical
Gettings, S D; Lordo, R A; Hintze, K L; Bagley, D M; Casterton, P L; Chudkowski, M; Curren, R D; Demetrulias, J L; Dipasquale, L C; Earl, L K; Feder, P I; Galli, C L; Glaza, S M; Gordon, V C; Janus, J; Kurtz, P J; Marenus, K D; Moral, J; Pape, W J; Renskers, K J; Rheins, L A; Roddy, M T; Rozen, M G; Tedeschi, J P; Zyracki, J
1996-01-01
The CTFA Evaluation of Alternatives Program is an evaluation of the relationship between data from the Draize primary eye irritation test and comparable data from a selection of promising in vitro eye irritation tests. In Phase III, data from the Draize test and 41 in vitro endpoints on 25 representative surfactant-based personal care formulations were compared. As in Phase I and Phase II, regression modelling of the relationship between maximum average Draize score (MAS) and in vitro endpoint was the primary approach adopted for evaluating in vitro assay performance. The degree of confidence in prediction of MAS for a given in vitro endpoint is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curve. Prediction intervals reflect not only the error attributed to the model but also the material-specific components of variation in both the Draize and the in vitro assays. Among the in vitro assays selected for regression modeling in Phase III, the relationship between MAS and in vitro score was relatively well defined. The prediction bounds on MAS were most narrow for materials at the lower or upper end of the effective irritation range (MAS = 0-45), where variability in MAS was smallest. This, the confidence with which the MAS of surfactant-based formulations is predicted is greatest when MAS approaches zero or when MAS approaches 45 (no comment is made on prediction of MAS > 45 since extrapolation beyond the range of observed data is not possible). No single in vitro endpoint was found to exhibit relative superiority with regard to prediction of MAS. Variability associated with Draize test outcome (e.g. in MAS values) must be considered in any future comparisons of in vivo and in vitro test results if the purpose is to predict in vivo response using in vitro data.
Meng, Long; Cai, Feiyan; Zhang, Zidong; Niu, Lili; Jin, Qiaofeng; Yan, Fei; Wu, Junru; Wang, Zhanhui; Zheng, Hairong
2011-01-01
A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications. PMID:22662056
Developing Biomarkers in Mood Disorders Research Through the Use of Rapid-Acting Antidepressants
Niciu, Mark J.; Mathews, Daniel C.; Nugent, Allison C.; Ionescu, Dawn F.; Furey, Maura L.; Richards, Erica M.; Machado-Vieira, Rodrigo; Zarate, Carlos A.
2014-01-01
An impediment to progress in mood disorders research is the lack of analytically valid and qualified diagnostic and treatment biomarkers. Consistent with the National Institute of Mental Health (NIMH)’s Research Domain Criteria (RDoC) initiative, the lack of diagnostic biomarkers has precluded us from moving away from a purely subjective (symptom-based) towards a more objective diagnostic system. In addition, treatment response biomarkers in mood disorders would facilitate drug development and move beyond trial-and-error towards more personalized treatments. As such, biomarkers identified early in the pathophysiological process are proximal biomarkers (target engagement), while those occurring later in the disease process are distal (disease pathway components). One strategy to achieve this goal in biomarker development is to increase efforts at the initial phases of biomarker development (i.e., exploration and validation) at single sites with the capability of integrating multimodal approaches across a biological systems level. Subsequently, resultant putative biomarkers could then undergo characterization and surrogacy as these latter phases require multisite collaborative efforts. We have used multimodal approaches – genetics, proteomics/metabolomics, peripheral measures, multimodal neuroimaging, neuropsychopharmacological challenge paradigms and clinical predictors – to explore potential predictor and mediator/moderator biomarkers of the rapid-acting antidepressants ketamine and scopolamine. These exploratory biomarkers may then be used for a priori stratification in larger multisite controlled studies during the validation and characterization phases with the ultimate goal of surrogacy. In sum, the combination of target engagement and well-qualified disease-related measures are crucial to improve our pathophysiological understanding, personalize treatment selection and expand our armamentarium of novel therapeutics. PMID:24353110
Developing biomarkers in mood disorders research through the use of rapid-acting antidepressants.
Niciu, Mark J; Mathews, Daniel C; Nugent, Allison C; Ionescu, Dawn F; Furey, Maura L; Richards, Erica M; Machado-Vieira, Rodrigo; Zarate, Carlos A
2014-04-01
An impediment to progress in mood disorders research is the lack of analytically valid and qualified diagnostic and treatment biomarkers. Consistent with the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC) initiative, the lack of diagnostic biomarkers has precluded us from moving away from a purely subjective (symptom-based) toward a more objective diagnostic system. In addition, treatment response biomarkers in mood disorders would facilitate drug development and move beyond trial-and-error toward more personalized treatments. As such, biomarkers identified early in the pathophysiological process are proximal biomarkers (target engagement), while those occurring later in the disease process are distal (disease pathway components). One strategy to achieve this goal in biomarker development is to increase efforts at the initial phases of biomarker development (i.e. exploration and validation) at single sites with the capability of integrating multimodal approaches across a biological systems level. Subsequently, resultant putative biomarkers could then undergo characterization and surrogacy as these latter phases require multisite collaborative efforts. We have used multimodal approaches - genetics, proteomics/metabolomics, peripheral measures, multimodal neuroimaging, neuropsychopharmacological challenge paradigms and clinical predictors - to explore potential predictor and mediator/moderator biomarkers of the rapid-acting antidepressants ketamine and scopolamine. These exploratory biomarkers may then be used for a priori stratification in larger multisite controlled studies during the validation and characterization phases with the ultimate goal of surrogacy. In sum, the combination of target engagement and well-qualified disease-related measures are crucial to improve our pathophysiological understanding, personalize treatment selection, and expand our armamentarium of novel therapeutics. © 2013 Wiley Periodicals, Inc.
Investigation of Celestial Solid Analogs
NASA Technical Reports Server (NTRS)
Sievers, A. J.
2003-01-01
Our far infrared studies of both hydrophobic and hydrophilic aerogel grains have demonstrated that the mm and sub-mm wave absorption produced by the fundamental two level systems (TLS) mechanism represents a more significant contribution for these open grain structures than for bulk amorphous silicate grains. We found that the region with the anomalous temperature dependence of the spectral index due to the TLS excitations can extend in a fluffy material up to 80 per cm, which is well beyond its typical upper limit for bulk glasses. Currently there is no theoretical explanation for this surprising result. The effects of reduced dimensionality on the optical properties of carbonaceous grains have been studied with a systematic investigation of carbon aerogels. This spectroscopic approach has permitted a more reliable determination of the single grain mass normalized absorption coefficient based on the experimentally determined characteristics of the fluffy material rather than on first principles calculations involving the bulk properties of the substance. Our finding is that the electrical connectivity of the material is the main factor affecting its far infrared absorption coefficient. Another one of the main constituents of the interstellar dust, amorphous ice, has been investigated in the mm-wave region both in the high (HDA) and low (LDA) density amorphous phases and as a function of impurities. We found that doping either phase with ionic (LiCl) or molecular (methanol) impurities decreases the difference in the mm-wave absorption coefficient between the HDA and LDA ice phases so that the HDA spectrum can be used as an analog for impure ice absorption in the far infrared spectral region.
NASA Astrophysics Data System (ADS)
Heck, Martijn J. R.
2017-01-01
Technologies for efficient generation and fast scanning of narrow free-space laser beams find major applications in three-dimensional (3D) imaging and mapping, like Lidar for remote sensing and navigation, and secure free-space optical communications. The ultimate goal for such a system is to reduce its size, weight, and power consumption, so that it can be mounted on, e.g. drones and autonomous cars. Moreover, beam scanning should ideally be done at video frame rates, something that is beyond the capabilities of current opto-mechanical systems. Photonic integrated circuit (PIC) technology holds the promise of achieving low-cost, compact, robust and energy-efficient complex optical systems. PICs integrate, for example, lasers, modulators, detectors, and filters on a single piece of semiconductor, typically silicon or indium phosphide, much like electronic integrated circuits. This technology is maturing fast, driven by high-bandwidth communications applications, and mature fabrication facilities. State-of-the-art commercial PICs integrate hundreds of elements, and the integration of thousands of elements has been shown in the laboratory. Over the last few years, there has been a considerable research effort to integrate beam steering systems on a PIC, and various beam steering demonstrators based on optical phased arrays have been realized. Arrays of up to thousands of coherent emitters, including their phase and amplitude control, have been integrated, and various applications have been explored. In this review paper, I will present an overview of the state of the art of this technology and its opportunities, illustrated by recent breakthroughs.
Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors
NASA Technical Reports Server (NTRS)
Cooley, Michael E.
2014-01-01
Communication link and target ranges for satellite communications (SATCOM) and space-based sensors (e.g. radars) vary from approximately 1000 km (for LEO satellites) to 35,800 km (for GEO satellites). At these long ranges, large antenna gains are required and legacy payloads have usually employed large reflectors with single beams that are either fixed or mechanically steered. For many applications, there are inherent limitations that are associated with the use of these legacy antennas/payloads. Hybrid antenna designs using Phased Array Fed Reflectors (PAFRs) provide a compromise between reflectors and Direct Radiating phased Arrays (DRAs). PAFRs provide many of the performance benefits of DRAs while utilizing much smaller, lower cost (feed) arrays. The primary limitation associated with hybrid PAFR architectures is electronic scan range; approximately +/-5 to +/- 10 degrees is typical, but this range depends on many factors. For LEO applications, the earth FOV is approximately +/-55 degrees which is well beyond the range of electronic scanning for PAFRs. However, for some LEO missions, limited scanning is sufficient or the CONOPS and space vehicle designs can be developed to incorporate a combination mechanical slewing and electronic scanning. In this paper, we review, compare and contrast various PAFR architectures with a focus on their general applicability to space missions. We compare the RF performance of various PAFR architectures and describe key hardware design and implementation trades. Space-based PAFR designs are highly multi-disciplinary and we briefly address key hardware engineering design areas. Finally, we briefly describe two PAFR antenna architectures that have been developed at Northrop Grumman.
Challenges of International Programs in Commercial Wireless Power Trasmission
NASA Technical Reports Server (NTRS)
Dickinson, Richard M.
1993-01-01
The proposition is offered that only by forming international alliances will econmically viable commercial wireless poer transmission (WPT) result. Radio emissions from commercial WPT will likely extend beyond the borders of a single nation.
Common world model for unmanned systems: Phase 2
NASA Astrophysics Data System (ADS)
Dean, Robert M. S.; Oh, Jean; Vinokurov, Jerry
2014-06-01
The Robotics Collaborative Technology Alliance (RCTA) seeks to provide adaptive robot capabilities which move beyond traditional metric algorithms to include cognitive capabilities. Key to this effort is the Common World Model, which moves beyond the state-of-the-art by representing the world using semantic and symbolic as well as metric information. It joins these layers of information to define objects in the world. These objects may be reasoned upon jointly using traditional geometric, symbolic cognitive algorithms and new computational nodes formed by the combination of these disciplines to address Symbol Grounding and Uncertainty. The Common World Model must understand how these objects relate to each other. It includes the concept of Self-Information about the robot. By encoding current capability, component status, task execution state, and their histories we track information which enables the robot to reason and adapt its performance using Meta-Cognition and Machine Learning principles. The world model also includes models of how entities in the environment behave which enable prediction of future world states. To manage complexity, we have adopted a phased implementation approach. Phase 1, published in these proceedings in 2013 [1], presented the approach for linking metric with symbolic information and interfaces for traditional planners and cognitive reasoning. Here we discuss the design of "Phase 2" of this world model, which extends the Phase 1 design API, data structures, and reviews the use of the Common World Model as part of a semantic navigation use case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath
2015-11-30
X-ray diffraction is used to determine the hydration dependence of a ternary mixture lipid multilayer structure which has phase separated into liquid-ordered (Lo) and liquid-disordered (Ld) phases. An anomaly is observed in the swelling behavior of the Ld phase at a relative humidity (RH) close to 100%, which is different from the anomalous swelling happens close to the main lipid gel-fluid transition. The lamellar repeat distance of the Ld phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries,more » which produces surprisingly long range effect.« less
Single-Molecule Optical Spectroscopy and Imaging: From Early Steps to Recent Advances
NASA Astrophysics Data System (ADS)
Moerner, William E.
The initial steps toward optical detection and spectroscopy of single molecules arose out of the study of spectral hole-burning in inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989. In the early 1990s, many fascinating physical effects were observed for individual molecules such as spectral diffusion, optical switching, vibrational spectra, and magnetic resonance of a single molecular spin. Since the mid-1990s when experiments moved to room temperature, a wide variety of biophysical effects may be explored, and a number of physical phenomena from the low temperature studies have analogs at high temperature. Recent advances worldwide cover a huge range, from in vitro studies of enzymes, proteins, and oligonucleotides, to observations in real time of a single protein performing a specific function inside a living cell. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation of individual fluorophores leads naturally to localization beyond the optical diffraction limit. Combining this with active optical control of the number of emitting molecules leads to superresolution imaging, a new frontier for optical microscopy beyond the optical diffraction limit and for chemical design of photoswitchable fluorescent labels. Finally, to study one molecule in aqueous solution without surface perturbations, a new electrokinetic trap is described (the ABEL trap) which can trap single small biomolecules without the need for large dielectric beads.
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
Phase diagram of URu 2–xFe xSi 2 in high magnetic fields
Ran, Sheng; Jeon, Inho; Pouse, Naveen; ...
2017-08-28
Here, electrical transport measurements were performed on URu 2-xFe xSi 2 single-crystal specimens in high magnetic fields up to 45 T (DC fields) and 60 T (pulsed fields). We observed a systematic evolution of the critical fields for both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) phases and established the 3D phase diagram of T–H–x. In the HO phase, H/H 0 scales with T/T 0 and collapses onto a single curve. However, in the LMAFM phase, this single scaling relation is not satisfied. Within a certain range of x values, the HO phase reenters after the LMAFM phase is suppressedmore » by the magnetic field, similar to the behavior observed for URu 2Si 2 within a certain range of pressures.« less
Phase diagram of URu 2–xFe xSi 2 in high magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ran, Sheng; Jeon, Inho; Pouse, Naveen
Here, electrical transport measurements were performed on URu 2-xFe xSi 2 single-crystal specimens in high magnetic fields up to 45 T (DC fields) and 60 T (pulsed fields). We observed a systematic evolution of the critical fields for both the hidden-order (HO) and large-moment antiferromagnetic (LMAFM) phases and established the 3D phase diagram of T–H–x. In the HO phase, H/H 0 scales with T/T 0 and collapses onto a single curve. However, in the LMAFM phase, this single scaling relation is not satisfied. Within a certain range of x values, the HO phase reenters after the LMAFM phase is suppressedmore » by the magnetic field, similar to the behavior observed for URu 2Si 2 within a certain range of pressures.« less
Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals
NASA Astrophysics Data System (ADS)
Martínez-González, Jose A.; Li, Xiao; Sadati, Monirosadat; Zhou, Ye; Zhang, Rui; Nealey, Paul F.; de Pablo, Juan J.
2017-06-01
Chiral nematic liquid crystals are known to form blue phases--liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation over large regions. These results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.
Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy
NASA Astrophysics Data System (ADS)
Ren, Jie; Wang, Yimin; You, Wen-Long
2018-04-01
We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 X X Z chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated, such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence, the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical points of quantum phase transitions. Results drawn from these quantum information observables agree well with each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy Δ and the rhombic single-ion anisotropy E .
2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance.
Beltran, M A; Paganin, D M; Uesugi, K; Kitchen, M J
2010-03-29
A method of tomographic phase retrieval is developed for multi-material objects whose components each has a distinct complex refractive index. The phase-retrieval algorithm, based on the Transport-of-Intensity equation, utilizes propagation-based X-ray phase contrast images acquired at a single defocus distance for each tomographic projection. The method requires a priori knowledge of the complex refractive index for each material present in the sample, together with the total projected thickness of the object at each orientation. The requirement of only a single defocus distance per projection simplifies the experimental setup and imposes no additional dose compared to conventional tomography. The algorithm was implemented using phase contrast data acquired at the SPring-8 Synchrotron facility in Japan. The three-dimensional (3D) complex refractive index distribution of a multi-material test object was quantitatively reconstructed using a single X-ray phase-contrast image per projection. The technique is robust in the presence of noise, compared to conventional absorption based tomography.
NASA Astrophysics Data System (ADS)
Zheng, Limei; Jing, Yujia; Lu, Xiaoyan; Wang, Ruixue; Liu, Gang; Lü, Weiming; Zhang, Rui; Cao, Wenwu
2016-03-01
The phase-transition sequence of 0.67 Pb (M g1 /3N b2 /3)- 0.37 PbTi O3 (PMN-0.37PT) single crystals driven by the electric (E ) field and temperature is comprehensively studied. Based on the strain-E field loop, polarization-E field loop, and the evolution of domain configurations, the E field along the [011] C induced phase transitions have been confirmed to be as follows: tetragonal (T ) → monoclinic (MC)→ single domain orthorhombic (O ) phase. As the E field decreases, the induced O phase cannot be maintained and transformed to the MC phase, then to the coexistence state of MC and T phases. In addition, the complete sets of dielectric, piezoelectric, and elastic constants for the [011] C-poled domain-engineered PMN-0.37PT single crystal were measured at room temperature, which show high longitudinal dielectric, piezoelectric, and electromechanical properties (ɛ33T=10 661 ,d33=1052 pC /N , and k33= 0.766 ). Our results revealed that the MC phase plays an important role in the high electromechanical properties of this domain-engineered single crystal. The temperature dependence of the domain configuration revealed that the volume fraction of the MC phase decreases with temperature accompanied by the reduction of ɛ33T,d31, and k31 due to the substantially smaller intrinsic properties of the T phase.
Quantum phase transitions driven by rhombic-type single-ion anisotropy in the S =1 Haldane chain
NASA Astrophysics Data System (ADS)
Tzeng, Yu-Chin; Onishi, Hiroaki; Okubo, Tsuyoshi; Kao, Ying-Jer
2017-08-01
The spin-1 Haldane chain is an example of the symmetry-protected-topological (SPT) phase in one dimension. Experimental realization of the spin chain materials usually involves both the uniaxial-type, D (Sz)2 , and the rhombic-type, E [(Sx)2-(Sy)2] , single-ion anisotropies. Here, we provide a precise ground-state phase diagram for a spin-1 Haldane chain with these single-ion anisotropies. Using quantum numbers, we find that the Z2 symmetry breaking phase can be characterized by double degeneracy in the entanglement spectrum. Topological quantum phase transitions take place on particular paths in the phase diagram, from the Haldane phase to the large-Ex, large-Ey, or large-D phases. The topological critical points are determined by the level spectroscopy method with a newly developed parity technique in the density matrix renormalization group [Phys. Rev. B 86, 024403 (2012), 10.1103/PhysRevB.86.024403], and the Haldane-large-D critical point is obtained with an unprecedented precision, (D/J ) c=0.9684713 (1 ) . Close to this critical point, a small rhombic single-ion anisotropy |E |/J ≪1 can destroy the Haldane phase and bring the system into a y -Néel phase. We propose that the compound [Ni (HF2) (3-Clpy ) 4] BF4 is a candidate system to search for the y -Néel phase.
SPRR WATER SETTLING RESERVOIR. VIEW LOOKING NORTHEAST. INTERSTATE HIGHWAY 8 ...
SPRR WATER SETTLING RESERVOIR. VIEW LOOKING NORTHEAST. INTERSTATE HIGHWAY 8 BRIDGE CROSSES THE COLORADO RIVER BEYOND THE RESERVOIR. THE OCEAN-TO-OCEAN HIGHWAY BRIDGE AND THE 1924 SPRR BRIDGE ARE AT THE RIGHT EDGE OF THE IMAGE ABOVE THE INTERSTATE BRIDGE. FORT YUMA IS SEEN BEYOND THE INTERSTATE ON INDIAN HILL IN CALIFORNIA. THE SINGLE AUTO IS PARKED ON THE SITE OF THE SPRR HOTEL. - Southern Pacific Railroad Water Settling Reservoir, Yuma Crossing, south bank of Colorado River at foot of Madison Avenue, Yuma, Yuma County, AZ
Quantum group spin nets: Refinement limit and relation to spin foams
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Martin-Benito, Mercedes; Steinhaus, Sebastian
2014-07-01
So far spin foam models are hardly understood beyond a few of their basic building blocks. To make progress on this question, we define analogue spin foam models, so-called "spin nets," for quantum groups SU(2)k and examine their effective continuum dynamics via tensor network renormalization. In the refinement limit of this coarse-graining procedure, we find a vast nontrivial fixed-point structure beyond the degenerate and the BF phase. In comparison to previous work, we use fixed-point intertwiners, inspired by Reisenberger's construction principle [M. P. Reisenberger, J. Math. Phys. (N.Y.) 40, 2046 (1999)] and the recent work [B. Dittrich and W. Kaminski, arXiv:1311.1798], as the initial parametrization. In this new parametrization fine-tuning is not required in order to flow to these new fixed points. Encouragingly, each fixed point has an associated extended phase, which allows for the study of phase transitions in the future. Finally we also present an interpretation of spin nets in terms of melonic spin foams. The coarse-graining flow of spin nets can thus be interpreted as describing the effective coupling between two spin foam vertices or space time atoms.
Evaluating Innovations in Home Care for Performance Accountability.
Collister, Barbara; Gutscher, Abram; Ambrogiano, Jana
2016-01-01
Concerns about rising costs and the sustainability of our healthcare system have led to a drive for innovative solutions and accountability for performance. Integrated Home Care, Calgary Zone, Alberta Health Services went beyond traditional accountability measures to use evaluation methodology to measure the progress of complex innovations to its organization structure and service delivery model. This paper focuses on the first two phases of a three-phase evaluation. The results of the first two phases generated learning about innovation adoption and sustainability, and performance accountability at the program-level of a large publicly funded healthcare organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DiNapoli, N.; Fitzpatrick, M.; Strother, C.
1977-11-01
Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidential Task Force on Motor Vehicle Goals beyond 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad
With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. Here, we review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams andmore » beyond.« less
NASA Astrophysics Data System (ADS)
Mehta, Dalip Singh; Sharma, Anuradha; Dubey, Vishesh; Singh, Veena; Ahmad, Azeem
2016-03-01
We present a single-shot white light interference microscopy for the quantitative phase imaging (QPI) of biological cells and tissues. A common path white light interference microscope is developed and colorful white light interferogram is recorded by three-chip color CCD camera. The recorded white light interferogram is decomposed into the red, green and blue color wavelength component interferograms and processed it to find out the RI for different color wavelengths. The decomposed interferograms are analyzed using local model fitting (LMF)" algorithm developed for reconstructing the phase map from single interferogram. LMF is slightly off-axis interferometric QPI method which is a single-shot method that employs only a single image, so it is fast and accurate. The present method is very useful for dynamic process where path-length changes at millisecond level. From the single interferogram a wavelength-dependent quantitative phase imaging of human red blood cells (RBCs) are reconstructed and refractive index is determined. The LMF algorithm is simple to implement and is efficient in computation. The results are compared with the conventional phase shifting interferometry and Hilbert transform techniques.
Highly integrated optical heterodyne phase-locked loop with phase/frequency detection.
Lu, Mingzhi; Park, Hyunchul; Bloch, Eli; Sivananthan, Abirami; Bhardwaj, Ashish; Griffith, Zach; Johansson, Leif A; Rodwell, Mark J; Coldren, Larry A
2012-04-23
A highly-integrated optical phase-locked loop with a phase/frequency detector and a single-sideband mixer (SSBM) has been proposed and demonstrated for the first time. A photonic integrated circuit (PIC) has been designed, fabricated and tested, together with an electronic IC (EIC). The PIC integrates a widely-tunable sampled-grating distributed-Bragg-reflector laser, an optical 90 degree hybrid and four high-speed photodetectors on the InGaAsP/InP platform. The EIC adds a single-sideband mixer, and a digital phase/frequency detector, to provide single-sideband heterodyne locking from -9 GHz to 7.5 GHz. The loop bandwith is 400 MHz. © 2012 Optical Society of America
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
Investigating the effect of V2O5 addition on sodium barium borosilicate glasses
NASA Astrophysics Data System (ADS)
Halder, Rumu; Sengupta, Pranesh; Sudarsan, V.; Kaushik, C. P.; Dey, G. K.
2016-05-01
V2O5 doped sodium barium borosilicate glasses were characterized by photoluminescence spectroscopy and electron probe microanalyzer (EPMA). The glass remains homogeneous for lower concentration of V2O5 but a phase separation is observed when V2O5 doping is increased beyond 5 mol%. Detailed microanalysis reveals that the phase separated glass consists of a phase containing V, Ba and Si and a separate Si rich phase within the glass matrix. The luminescence study demonstrated that at low concentration the vanadium mainly interacts with the structural units of B/Si while at higher concentrations, V-O-V/ V-O- Na+/Ba2+ linkages are formed.
ERIC Educational Resources Information Center
Bailey, Anne Lowery
1986-01-01
Profiles of 50 college faculty singled out for honors by their college presidents are presented. These faculty members are identified as responsible leaders and citizens who contribute to the quality of campus life beyond the lecture halls and labs. (MLW)
Theoretical limits on the stability of single-phase kesterite-Cu{sub 2}ZnSnS{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Pranab; Huda, Muhammad N., E-mail: huda@uta.edu; Al-Jassim, Mowafak M.
2015-01-21
The single-phase stability of Cu{sub 2}ZnSnS{sub 4} (CZTS), after an intrinsic defect was incorporated in it, has been examined here for the first time based on ab initio calculations. The stability analysis of such a non-stoichiometric-defect incorporated CZTS shows that the single-phase formation is unlikely at thermodynamic equilibrium conditions. In addition, the effective growth condition of CZTS is determined and quantified for all the elements (Cu-poor, Zn-rich, Sn-poor, and S-rich) to extract maximum photovoltaic efficiency from CZTS. These conditions promote (i) spontaneous formation of Cu vacancy (V{sub Cu}), which might benefit p-type conduction, and (ii) the co-existence of ZnS whilemore » suppressing other harmful defects and secondary phases. Further, the results presented here explain the unavailability of single-phase CZTS to date.« less
Criteria for predicting the formation of single-phase high-entropy alloys
Troparevsky, M Claudia; Morris, James R..; Kent, Paul R.; ...
2015-03-15
High entropy alloys constitute a new class of materials whose very existence poses fundamental questions. Originally thought to be stabilized by the large entropy of mixing, these alloys have attracted attention due to their potential applications, yet no model capable of robustly predicting which combinations of elements will form a single-phase currently exists. Here we propose a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, is able to confirm all known high-entropy alloys while rejecting similar alloys that are known to form multiple phases. Despite the increasing entropy, our model predicts thatmore » the number of potential single-phase multicomponent alloys decreases with an increasing number of components: out of more than two million possible 7-component alloys considered, fewer than twenty single-phase alloys are likely.« less
Crucibleless crystal growth and Radioluminescence study of calcium tungstate single crystal fiber
NASA Astrophysics Data System (ADS)
Silva, M. S.; Jesus, L. M.; Barbosa, L. B.; Ardila, D. R.; Andreeta, J. P.; Silva, R. S.
2014-11-01
In this article, single phase and high optical quality scheelite calcium tungstate single crystal fibers were grown by using the crucibleless laser heated pedestal growth technique. The as-synthesized calcium tungstate powders used for shaping seed and feed rods were investigated by X-ray diffraction technique. As-grown crystals were studied by Raman spectroscopy and Radioluminescence measurements. The results indicate that in both two cases, calcined powder and single crystal fiber, only the expected scheelite CaWO4 phase was observed. It was verified large homogeneity in the crystal composition, without the presence of secondary phases. The Radioluminescence spectra of the as-grown single crystal fibers are in agreement with that present in Literature for bulk single crystals, presented a single emission band centered at 420 nm when irradiated with β-rays.
A study of electron and thermal transport in layered titanium disulphide single crystals
NASA Astrophysics Data System (ADS)
Suri, Dhavala; Siva, Vantari; Joshi, Shalikram; Senapati, Kartik; Sahoo, P. K.; Varma, Shikha; Patel, R. S.
2017-12-01
We present a detailed study of thermal and electrical transport behavior of single crystal titanium disulphide flakes, which belong to the two dimensional, transition metal dichalcogenide class of materials. In-plane Seebeck effect measurements revealed a typical metal-like linear temperature dependence in the range of 85-285 K. Electrical transport measurements with in-plane current geometry exhibited a nearly T 2 dependence of resistivity in the range of 42-300 K. However, transport measurements along the out-of-plane current geometry showed a transition in temperature dependence of resistivity from T 2 to T 5 beyond 200 K. Interestingly, Au ion-irradiated TiS2 samples showed a similar T 5 dependence of resistivity beyond 200 K, even in the current-in-plane geometry. Micro-Raman measurements were performed to study the phonon modes in both pristine and ion-irradiated TiS2 crystals.
Klinge, L; Straub, V; Neudorf, U; Voit, T
2005-02-01
Infantile Pompe disease (IPD) is a fatal, autosomal recessive muscle-wasting disorder. Due to a deficiency of the lysosomal enzyme acid alpha-glucosidase patients develop a generalized myopathy, diaphragmatic weakness, and cardiomyopathy leading to death usually within the first year of life. So far there is no therapy available. We report on the safety and efficacy of transgenically derived recombinant human precursor acid alpha-glucosidase (rhGAA) in a 10-month follow-up study in two children with IPD who previously completed a 48-week course of enzyme replacement therapy (ERT) with the same medication at the same dose in a phase II clinical trial. Under this therapy cardiac status and muscle strength had improved, leading to survival beyond the age of one year. These results, together with data from two other phase II clinical trials encouraged further evaluation of the long-term safety and efficacy of enzyme replacement therapy in patients with infantile-onset Pompe disease. During the 10-month follow-up period, ERT was well-tolerated and neither patient experienced a single infusion-associated reaction. The initial improvements in cardiac size and function, as measured by left ventricular mass index and the fractional shortening, were maintained in both patients, and a continued improvement of motor function, as measured by the Alberta infant motor scale, was observed.
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.; Arena, Dario A.; Schlom, Darrell G.; Piper, Louis F. J.
2015-01-01
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions. PMID:28793516
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.
2015-08-21
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe amore » low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. Generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.« less
Incremental Support Vector Machine Framework for Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Awad, Mariette; Jiang, Xianhua; Motai, Yuichi
2006-12-01
Motivated by the emerging requirements of surveillance networks, we present in this paper an incremental multiclassification support vector machine (SVM) technique as a new framework for action classification based on real-time multivideo collected by homogeneous sites. The technique is based on an adaptation of least square SVM (LS-SVM) formulation but extends beyond the static image-based learning of current SVM methodologies. In applying the technique, an initial supervised offline learning phase is followed by a visual behavior data acquisition and an online learning phase during which the cluster head performs an ensemble of model aggregations based on the sensor nodes inputs. The cluster head then selectively switches on designated sensor nodes for future incremental learning. Combining sensor data offers an improvement over single camera sensing especially when the latter has an occluded view of the target object. The optimization involved alleviates the burdens of power consumption and communication bandwidth requirements. The resulting misclassification error rate, the iterative error reduction rate of the proposed incremental learning, and the decision fusion technique prove its validity when applied to visual sensor networks. Furthermore, the enabled online learning allows an adaptive domain knowledge insertion and offers the advantage of reducing both the model training time and the information storage requirements of the overall system which makes it even more attractive for distributed sensor networks communication.
Injection locking of optomechanical oscillators via acoustic waves
NASA Astrophysics Data System (ADS)
Huang, Ke; Hossein-Zadeh, Mani
2018-04-01
Injection locking is a powerful technique for synchronization of oscillator networks and controlling the phase and frequency of individual oscillators using similar or other types of oscillators. Here, we present the first demonstration of injection locking of a radiation-pressure driven optomechanical oscillator (OMO) via acoustic waves. As opposed to previously reported techniques (based on pump modulation or direct application of a modulated electrostatic force), injection locking of OMO via acoustic waves does not require optical power modulation or physical contact with the OMO and it can easily be implemented on various platforms. Using this approach we have locked the phase and frequency of two distinct modes of a microtoroidal silica OMO to a piezoelectric transducer (PZT). We have characterized the behavior of the injection locked OMO with three acoustic excitation configurations and showed that even without proper acoustic impedance matching the OMO can be locked to the PZT and tuned over 17 kHz with only -30 dBm of RF power fed to the PZT. The high efficiency, simplicity and scalability of the proposed approach paves the road toward a new class of photonic systems that rely on synchronization of several OMOs to a single or multiple RF oscillators with applications in optical communication, metrology and sensing. Beyond its practical applications, injection locking via acoustic waves can be used in fundamental studies in quantum optomechanics where thermal and optical isolation of the OMO are critical.
Lorentzian symmetry predicts universality beyond scaling laws
NASA Astrophysics Data System (ADS)
Watson, Stephen J.
2017-06-01
We present a covariant theory for the ageing characteristics of phase-ordering systems that possess dynamical symmetries beyond mere scalings. A chiral spin dynamics which conserves the spin-up (+) and spin-down (-) fractions, μ+ and μ- , serves as the emblematic paradigm of our theory. Beyond a parabolic spatio-temporal scaling, we discover a hidden Lorentzian dynamical symmetry therein, and thereby prove that the characteristic length L of spin domains grows in time t according to L = \\fracβ{\\sqrt{1 - σ^2}}t\\frac{1{2}} , where σ:= μ+ - μ- (the invariant spin-excess) and β is a universal constant. Furthermore, the normalised length distributions of the spin-up and the spin-down domains each provably adopt a coincident universal (σ-independent) time-invariant form, and this supra-universal probability distribution is empirically verified to assume a form reminiscent of the Wigner surmise.
Single-shot three-dimensional reconstruction based on structured light line pattern
NASA Astrophysics Data System (ADS)
Wang, ZhenZhou; Yang, YongMing
2018-07-01
Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.
Goyal, Amit; Shin, Junsoo
2014-04-01
A nanocomposite article that includes a single-crystal or single-crystal-like substrate and heteroepitaxial, phase-separated layer supported by a surface of the substrate and a method of making the same are described. The heteroepitaxial layer can include a continuous, non-magnetic, crystalline, matrix phase, and an ordered, magnetic magnetic phase disposed within the matrix phase. The ordered magnetic phase can include a plurality of self-assembled crystalline nanostructures of a magnetic material. The phase-separated layer and the single crystal substrate can be separated by a buffer layer. An electronic storage device that includes a read-write head and a nanocomposite article with a data storage density of 0.75 Tb/in.sup.2 is also described.
Phase-sensitive flow cytometer
Steinkamp, John A.
1993-01-01
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts.
Repp, Bruno H
2003-04-01
Four experiments showed that both single and periodic distractor tones affected the timing of finger taps produced in synchrony with an isochronous auditory target sequence. Single distractors had only small effects, but periodic distractors occurring at various fixed or changing phase relationships exerted strong phase attraction. The attraction was asymmetric, being stronger when distractors preceded target tones than when they lagged behind. A large pitch difference between target and distractor tones (20 vs. 3 semitones) did not reduce phase attraction substantially, although in the case of continuously changing phase relationships it did prevent complete capture of the taps by the distractors. The results support the hypothesis that phase attraction is an automatic process that is sensitive primarily to event onsets.
NASA Astrophysics Data System (ADS)
Beier, Franz; Proske, Fritz; Hupel, Christian; Kuhn, Stefan; Hein, Sigrun; Sattler, Bettina; Nold, Johannes; Haarlammert, Nicoletta; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas
2017-03-01
Fiber amplifiers are representing one of the most promising solid state laser concepts, due to the compact setup size, a simple thermal management and furthermore excellent beam quality. In this contribution, we report on the latest results from a low-NA, large mode area single mode fiber with a single mode output power beyond 4 kW without any indication of mode instabilities or nonlinear effects and high slope efficiency. Furthermore, we quantify the influence of the bending diameter of our manufactured low NA fiber on the average core loss by an OFDR measurement and determine the optimal bending diameter in comparison to a second fiber with a slightly changed NA. The fibers used in the experiments were fabricated by MCVD technology combined with the solution doping technique. The investigation indicates the limitation of the step index fiber design and its influence on the use in high power fiber amplifiers. We demonstrate, that even a slightly change in the core NA crucially influences the minimum bending diameter of the fiber and has to be taken into account in applications. The measured output power represents to the best of our knowledge the highest single mode output power of an amplifier fiber ever reported on.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-07-20
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-08-17
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
NASA Astrophysics Data System (ADS)
Viswanathan, Balakrishnan; Gea-Banacloche, Julio
2017-04-01
We analyze a recent scheme proposed by Xia et al. to induce a conditional phase shift between two single-photon pulses by having them propagate at different speeds through a nonlinear medium with a nonlocal response. We have obtained an analytical solution for the case they considered, which supports their claim that a π phase shift with unit fidelity is possible in principle. We discuss the conditions that have to be met and the challenges and opportunities that this might present to the realization of a single-photon conditional phase gate.
NASA Astrophysics Data System (ADS)
Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod
2010-04-01
For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.
Growth of a decagonal Al 70Ni 15Co 15 single quasicrystal by the Czochralski method
NASA Astrophysics Data System (ADS)
Jeong, H. T.; Kim, S. H.; Kim, W. T.; Kim, D. H.; Inkson, B. J.
2000-07-01
Single decagonal quasicrystals of Al 70Ni 15Co 15 were grown by the Czochralski method at Ar atmosphere. The grown crystals were of single decagonal phase without any secondary phases due to the peritectic reaction and contained a large single quasicrystal of cm order size. The high quality and single quasicrystallinity of them were examined by the Laue transmission photography, single crystal X-ray diffraction, and high-resolution electron microscopy investigations.
2016-03-31
Corporation, Linthicum, Maryland *Corresponding author: Pavel.Borodulin@ngc.com Abstract: A chip -scale, highly-reconfigurable transmitter and...the technology has been used in a chip -scale, reconfigurable receiver demonstration and ongoing efforts to increase the level of performance and...circuit (RF-FPGA). It consists of a heterogeneous assembly of a SiGe BiCMOS chip with multiple 3D-integrated, low-loss, phase-change switch chiplets
Beyond Guzman? The Future of the Shining Path in Peru
1992-12-01
order with. 4’ This relieves the stresses of everyday life, such as racism , sexism , poverty, and joblessness, because the Fourth Sword has given them...revolutionary phases are modeled on Mao’s three-phased theory of protracted revolutionary warfare." The Shining Path’s revolutionary ideology...in part from the collective-goods theory , and is similar in approach to Parsons’ four types of social control. See Talcott Parsons, "Reflections on
Phase 2 fuel efficiency standards for medium- and heavy-duty engines and vehicles : draft EIS.
DOT National Transportation Integrated Search
2015-06-01
This Draft Environmental Impact Statement (Draft EIS) analyzes the environmental impacts of fuel : efficiency standards and reasonable alternative standards for model years 2018 and beyond for medium- : and heavy- duty engines and vehicles that NHTSA...
X-ray crystallographic data for minerals
Robie, Richard A.; Bethke, Philip M.; Toulmin, M.S.; Edwards, Jerry L.
1963-01-01
X-ray crystallographic data are of particular importance to the mineralogist. Beyond the considerations of structural chemistry they provide. one of the most accurate methods for phase and/or compositional determination and for obtaining _the molar volumes and densities of minerals {Robie and Bethke, 1962).
Growth and properties of oxygen- and ion-doped Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Mitzi, D. B.; Lombardo, L. W.; Kapitulnik, A.; Laderman, S. S.; Jacowitz, R. D.
1990-04-01
A directional solidification method for growing large single crystals in the Bi2Sr2CaCu2O8+δ system is reported. Ion doping, with replacement of La for Sr and Y for Ca, as well as oxygen doping in these crystals has been explored. Doped and undoped crystals have been characterized using microprobe analysis, x-ray diffraction, thermogravimetric analysis, and magnetic and Hall measurements. Ion doping results in little change of the superconducting transition for substitution levels below 20-25%, while beyond this level the Meissner signal broadens and the low-temperature Meissner signal decreases. Microprobe analysis and x-ray diffraction performed on these more highly substituted single crystals provide evidence for inhomogeneity and phase segregation into regions of distinct composition. Annealing unsubstituted crystals in increasing partial pressures of oxygen reversibly depresses the superconducting transition temperature from 90 (as made) to 77 K (oxygen pressure annealed), while the carrier concentrations, as determined from Hall effect measurements, increase from n=3.1(3)×1021 cm-3 (0.34 holes per Cu site) to 4.6(3)×1021 cm-3 (0.50 holes per Cu site). No degradation of the Meissner transition or other indications of inhomogeneity or phase segregation with doping are noted, suggesting that oxygen-doped Bi2Sr2CaCu2O8+δ is a suitable system for pursuing doping studies. The decrease in Tc with concentration for 0.34<=n<=0.50 indicates that a high-carrier-concentration regime exists in which Tc decreases with n and suggests that this decrease does not arise from material inhomogeneity or other materials problems. An examination of the variation of Tc with the density of states and lattice constants for all of the doped and undoped superconducting samples considered here indicates that changes in Tc with doping are primarily affected by changes in the density of states (or carrier concentration) rather than by structural variation induced by the doping.
Rolan, Paul E; O'Neill, Gilmore; Versage, Eve; Rana, Jitesh; Tang, Yongqiang; Galluppi, Gerald; Aycardi, Ernesto
2015-01-01
To evaluate the safety, tolerability, and pharmacokinetics of single doses of BG00010 (neublastin, artemin, enovin) in subjects with unilateral sciatica. This was a single-center, blinded, placebo-controlled, randomized Phase 1 sequential-cohort, dose-escalation study (ClinicalTrials.gov identifier NCT00961766; funded by Biogen Idec). Adults with unilateral sciatica were enrolled at The Royal Adelaide Hospital, Australia. Four subjects were assigned to each of eleven cohorts (intravenous BG00010 0.3, 1, 3, 10, 25, 50, 100, 200, 400, or 800 μg/kg, or subcutaneous BG00010 50 μg/kg) and were randomized 3:1 to receive a single dose of BG00010 or placebo. The primary safety and tolerability assessments were: adverse events; clinical laboratory parameters and vital signs; pain as measured by a Likert rating scale; intra-epidermal nerve fiber density; and longitudinal assessment of quantitative sensory test parameters. Blood, serum, and plasma samples were collected for pharmacokinetic and pharmacodynamic assessments. Subjects were blinded to treatment assignment throughout the study. The investigator was blinded to treatment assignment until the Data Safety Review Committee review of unblinded data, which occurred after day 28. Beyond the planned enrollment of 44 subjects, four additional subjects were enrolled into to the intravenous BG00010 200 μg/kg cohort after one original subject experienced mild generalized pruritus. Therefore, a total of 48 subjects were enrolled between August 2009 and December 2011; all were included in the safety analyses. BG00010 was generally well tolerated: in primary analyses, the most common treatment-emergent adverse events were changes in temperature perception, pruritus, rash, or headache; no trends were observed in clinical laboratory parameters, vital signs, intra-epidermal nerve fiber density, or quantitative sensory testing. BG00010 was not associated with any clear, dose-dependent trends in Likert pain scores. BG00010 was rapidly distributed, with a prolonged terminal elimination phase. These data support the development of BG00010 for the treatment of neuropathic pain. ClinicalTrials.gov NCT00961766.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamba, S.; Goian, V.; Savinov, M.
2010-05-15
We prepared multiferroic Y-type hexaferrite Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}Fe{sub 12}O{sub 22} ceramics and compared their magnetic and dielectric properties with single crystal. Magnetic susceptibility and microwave resonance measurement revealed magnetic phase transition at T{sub C}=312 K, similar as in single crystal. Ferroelectric (FE) phase can be induced by external magnetic field in all investigated samples and the phase diagram in ceramics qualitatively resembles that of the single crystal. The range of magnetic fields, where the FE phase is induced, broadens after annealing of single crystal. Ceramics quenched after sintering exhibit several orders of magnitude lower conductivity than the single crystal.more » Heavily damped magnetic resonance was discovered in terahertz spectra at 10 K and its frequency softens below 5 GHz near T{sub C}. Number and symmetry of observed infrared (IR) and Raman active phonons correspond to paraelectric phase with D{sub 3d}{sup 5} hexagonal structure. No evidence for a structural phase transition was found in the IR and Raman spectra on cooling (in zero magnetic field) or in the room-temperature IR spectra with external static magnetic field up to 0.3 T.« less
A possible four-phase coexistence in a single-component system
NASA Astrophysics Data System (ADS)
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-08-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger-Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids.
A possible four-phase coexistence in a single-component system
Akahane, Kenji; Russo, John; Tanaka, Hajime
2016-01-01
For different phases to coexist in equilibrium at constant temperature T and pressure P, the condition of equal chemical potential μ must be satisfied. This condition dictates that, for a single-component system, the maximum number of phases that can coexist is three. Historically this is known as the Gibbs phase rule, and is one of the oldest and venerable rules of thermodynamics. Here we make use of the fact that, by varying model parameters, the Gibbs phase rule can be generalized so that four phases can coexist even in single-component systems. To systematically search for the quadruple point, we use a monoatomic system interacting with a Stillinger–Weber potential with variable tetrahedrality. Our study indicates that the quadruple point provides flexibility in controlling multiple equilibrium phases and may be realized in systems with tunable interactions, which are nowadays feasible in several soft matter systems such as patchy colloids. PMID:27558452
Modelling Assisted Design and Synthesis of Highly Porous Materials for Chemical Adsorbents
2010-10-01
two phases of crystal, a monoclinic phase within the solution, and after removal from solution a trigonal phase is obtained. The single crystal...days. Single crystal X-ray data showed there existed a monoclinic phase within the solution that, upon removal from solution, rapidly converted to a... monoclinic to trigonal upon desolvation, as the new peak which has emerged matches the simulated PXRD of the trigonal phase. Also, as the sample is
Economic and microbiologic evaluation of single-dose vial extension for hazardous drugs.
Rowe, Erinn C; Savage, Scott W; Rutala, William A; Weber, David J; Gergen-Teague, Maria; Eckel, Stephen F
2012-07-01
The update of US Pharmacopeia Chapter <797> in 2008 included guidelines stating that single-dose vials (SDVs) opened and maintained in an International Organization for Standardization Class 5 environment can be used for up to 6 hours after initial puncture. A study was conducted to evaluate the cost of discarding vials after 6 hours and to further test sterility of vials beyond this time point, subsequently defined as the beyond-use date (BUD). Financial determination of SDV waste included 2 months of retrospective review of all doses prescribed. Additionally, actual waste log data were collected. Active and control vials (prepared using sterilized trypticase soy broth) were recovered, instead of discarded, at the defined 6-hour BUD. The institution-specific waste of 19 selected SDV medications discarded at 6 hours was calculated at $766,000 annually, and tracking waste logs for these same medications was recorded at $770,000 annually. Microbiologic testing of vial extension beyond 6 hours showed that 11 (1.86%) of 592 samples had one colony-forming unit on one of two plates. Positive plates were negative at subsequent time points, and all positives were single isolates most likely introduced during the plating process. The cost of discarding vials at 6 hours was significant for hazardous medications in a large academic medical center. On the basis of microbiologic data, vial BUD extension demonstrated a contamination frequency of 1.86%, which likely represented exogenous contamination; vial BUD extension for the tested drugs showed no growth at subsequent time points and could provide an annual cost savings of more than $600,000.
24 CFR 3280.806 - Receptacle outlets.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., 125-volt, either single or duplex. (b) All 120 volt single phase, 15 and 20 ampere receptacle outlets... Receptacle outlets. (b) All 125-volt, single-phase, 15- and 20-ampere receptacle outlets installed outdoors... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Receptacle outlets. 3280.806...
NASA Astrophysics Data System (ADS)
Cao, Dennis
Contemporary supramolecular chemistry---chemistry beyond the molecule---seeks to leverage noncovalent bonding interactions to generate emergent properties and complexity. These aims extend beyond the solution phase and into the solid state, where crystalline organic materials have attracted much attention for their ability to imitate the physical properties of inorganic crystals. This Thesis outlines my efforts to understand the properties of the solid-state materials that are self-assembled with noncovalent bonding motifs which I have helped to realize. In the first five Chapters, I chronicle the development of the lock-arm supramolecular ordering (LASO) paradigm, which is a general molecular design strategy for amplifying the crystallization of charge transfer complexes that revolves around the synergistic action of hydrogen bonding and charge transfer interactions. In an effort to expand upon the LASO paradigm, I identify a two-point halogen-bonding motif which appears to operate orthogonally from the hydrogen bonding and charge transfer interactions. Since some of these single crystalline materials are ferroelectric at room temperature, I discuss the implications of these experimental observations and reconcile them with the centrosymmetric space groups assigned after X-ray crystallographic refinements. I conclude in the final two Chapters by recording my endeavors to control the assembly of metal-organic frameworks (MOFs) with noncovalent bonding interactions between [2]catenane-bearing struts. First of all, I describe the formation of syndiotactic pi-stacked 2D MOF layers before highlighting a two-component MOF that assembles with a magic number ratio of components that is independent of the molar proportions present in the crystallization medium.
NASA Astrophysics Data System (ADS)
Meroz, Yasmine
2015-06-01
In the 1980s the world witnessed the advent of single-molecule experiments. The first atomic resolution characterization of a surface was reported by scanning tunneling microscope (STM) in 1982 [1], followed by atomic force microscope (AFM) in 1986 [2]. The first optical detection and spectroscopy of a single molecule in a solid took place in 1989 [3,4], in a time where essentially all chemical experiments were made on bulk, i.e. averaging over millions of copies of the same molecule.
Determination of skeleton and sign map for phase obtaining from a single ESPI image
NASA Astrophysics Data System (ADS)
Yang, Xia; Yu, Qifeng; Fu, Sihua
2009-06-01
A robust method of determining the sign map and skeletons for ESPI images is introduced in this paper. ESPI images have high speckle noise which makes it difficult to obtain the fringe information, especially from a single image. To overcome the effects of high speckle noise, local directional computing windows are designed according to the fringe directions. Then by calculating the gradients from the filtered image in directional windows, sign map and good skeletons can be determined robustly. Based on the sign map, single image phase-extracting methods such as quadrature transform can be improved. And based on skeletons, fringe phases can be obtained directly by normalization methods. Experiments show that this new method is robust and effective for extracting phase from a single ESPI fringe image.
Gas-Liquid Flows and Phase Separation
NASA Technical Reports Server (NTRS)
McQuillen, John
2004-01-01
Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukami, Tadashi; Imamura, Michinori; Kaburaki, Yuichi
1995-12-31
A new single-phase capacitor self-excited induction generator with self-regulating feature is presented. The new generator consists of a squirrel cage three-phase induction machine and three capacitors connected in series and parallel with a single phase load. The voltage regulation of this generator is very small due to the effect of the three capacitors. Moreover, since a Y-connected stator winding is employed, the waveform of the output voltage becomes sinusoidal. In this paper the system configuration and the operating principle of the new generator are explained, and the basic characteristics are also investigated by means of a simple analysis and experimentsmore » with a laboratory machine.« less
NASA Astrophysics Data System (ADS)
Mendenhall, Jonathan D.
Surfactants are chemically-heterogeneous molecules possessing hydrophilic (head) and hydrophobic (tail) moieties. This dual nature of surfactants leads to interesting phase behavior in aqueous solution as a function of surfactant concentration, including: (i) formation of surfactant monolayers at surfaces and interfaces, and (ii) self-assembly into finite aggregates (micelles) in the bulk solution beyond the critical micelle concentration (cmc). This concentration-dependent phase behavior induces changes in solution properties. For example, the surface activity of surfactants can decrease the surface tension, and self-assembly in bulk solution can lead to changes in viscosity, equivalent conductivity, solubilization capacity, and other bulk properties. These effects make surfactants quite attractive and unique for use in product formulations, where they are utilized as detergents, dispersants, emulsifiers, solubilizers, surface and interfacial tension modifiers, and in other contexts. The specific chemical structure of the surfactant head and tail is essential in determining the overall performance properties of a surfactant in aqueous media. The surfactant tail drives the self-assembly process through the hydrophobic effect, while the surfactant head imparts a certain extent of solubility to the surfactant in aqueous solution through preferential interactions with the hydrogen-bonding network of water. The interplay between these two effects gives rise to the particular phase diagram of a surfactant, including the specific cmc at which micelles begin to form. In addition to serving as a quantitative indicator of micelle formation, the cmc represents a limit to surface monolayer formation, and hence to surface and interfacial tension reduction, because surfactant adsorption at interfaces remains approximately constant beyond the cmc. In addition, the cmc represents the onset of changes in bulk solution properties. This Thesis is concerned with the prediction of cmc's and other micellization properties for a variety of linear and branched surfactant chemical architectures which are commonly encountered in practice. Single-component surfactant solutions are investigated, in order to clarify the specific contributions of the surfactant head and tail to the free energy of micellization, a quantity which determines the cmc and all other aspects of micellization. First, a molecular-thermodynamic (MT) theory is presented which makes use of bulk-phase thermodynamics and a phenomenological thought process to describe the energetics related to the formation of a micelle from its constituent surfactant monomers. Second, a combined computer-simulation/molecular-thermodynamic (CSMT) framework is discussed which provides a more detailed quantification of the hydrophobic effect using molecular dynamics simulations. A novel computational strategy to identify surfactant head and tail using an iterative dividing surface approach, along with simulated micelle results, is proposed. Force-field development for novel surfactant structures is also discussed. Third, a statistical-thermodynamic, single-chain, mean-field theory for linear and branched tail packing is formulated, which enables quantification of the specific energetic penalties related to confinement and constraint of surfactant tails within micelles. Finally, these theoretical and simulations-based strategies are used to predict the micellization behavior of 55 linear surfactants and 28 branched surfactants. Critical micelle concentration and optimal micelle properties are reported and compared with experiment, demonstrating good agreement across a range of surfactant head and tail types. In particular, the CSMT framework is found to provide improved agreement with experimental cmc's for the branched surfactants considered. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Shuttle unified navigation filter, revision 1
NASA Technical Reports Server (NTRS)
Muller, E. S., Jr.
1973-01-01
Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).
NASA Astrophysics Data System (ADS)
Liu, R. M.; Zhuo, W. Z.; Chen, J.; Qin, M. H.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.
2017-07-01
We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.
Phase-sensitive flow cytometer
Steinkamp, J.A.
1993-12-14
A phase-sensitive flow cytometer (FCM) provides additional FCM capability to use the fluorescence lifetime of one or more fluorochromes bound to single cells to provide additional information regarding the cells. The resulting fluorescence emission can be resolved into individual fluorescence signals if two fluorochromes are present or can be converted directly to a decay lifetime from a single fluorochrome. The excitation light for the fluorochromes is modulated to produce an amplitude modulated fluorescence pulse as the fluorochrome is excited in the FCM. The modulation signal also forms a reference signal that is phase-shifted a selected amount for subsequent mixing with the output modulated fluorescence intensity signal in phase-sensitive detection circuitry. The output from the phase-sensitive circuitry is then an individual resolved fluorochrome signal or a single fluorochrome decay lifetime, depending on the applied phase shifts. 15 figures.
Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.
2013-01-01
The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.
Control of the spin geometric phase in semiconductor quantum rings.
Nagasawa, Fumiya; Frustaglia, Diego; Saarikoski, Henri; Richter, Klaus; Nitta, Junsaku
2013-01-01
Since the formulation of the geometric phase by Berry, its relevance has been demonstrated in a large variety of physical systems. However, a geometric phase of the most fundamental spin-1/2 system, the electron spin, has not been observed directly and controlled independently from dynamical phases. Here we report experimental evidence on the manipulation of an electron spin through a purely geometric effect in an InGaAs-based quantum ring with Rashba spin-orbit coupling. By applying an in-plane magnetic field, a phase shift of the Aharonov-Casher interference pattern towards the small spin-orbit-coupling regions is observed. A perturbation theory for a one-dimensional Rashba ring under small in-plane fields reveals that the phase shift originates exclusively from the modulation of a pure geometric-phase component of the electron spin beyond the adiabatic limit, independently from dynamical phases. The phase shift is well reproduced by implementing two independent approaches, that is, perturbation theory and non-perturbative transport simulations.
48 CFR 208.7003-2 - Assignments under coordinated acquisition.
Code of Federal Regulations, 2010 CFR
2010-10-01
... actual production, but beyond prototype). Generally, this exception applies only when research and... continuous redesign or modification during the production and/or operational use phases, which require... design. For use of this exception, it must be clearly impractical, both technically and contractually, to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del
We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in themore » GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.« less
Tuning magnetic spirals beyond room temperature with chemical disorder
NASA Astrophysics Data System (ADS)
Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
2016-12-01
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.
Tuning magnetic spirals beyond room temperature with chemical disorder
Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
2016-01-01
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127
NASA Astrophysics Data System (ADS)
Torre, Emanuele G. Dalla; Diehl, Sebastian; Lukin, Mikhail D.; Sachdev, Subir; Strack, Philipp
2013-02-01
We investigate nonequilibrium phase transitions for driven atomic ensembles interacting with a cavity mode and coupled to a Markovian dissipative bath. In the thermodynamic limit and at low frequencies, we show that the distribution function of the photonic mode is thermal, with an effective temperature set by the atom-photon interaction strength. This behavior characterizes the static and dynamic critical exponents of the associated superradiance transition. Motivated by these considerations, we develop a general Keldysh path-integral approach that allows us to study physically relevant nonlinearities beyond the idealized Dicke model. Using standard diagrammatic techniques, we take into account the leading-order corrections due to the finite number N of atoms. For finite N, the photon mode behaves as a damped classical nonlinear oscillator at finite temperature. For the atoms, we propose a Dicke action that can be solved for any N and correctly captures the atoms’ depolarization due to dissipative dephasing.
Heterogeneity in magnetic complex oxides
NASA Astrophysics Data System (ADS)
Arenholz, Elke
Heterogeneity of quantum materials on the nanoscale can result from the spontaneous formation of regions with distinct atomic, electronic and/or magnetic order, and indicates coexistence of competing quantum phases. In complex oxides, the subtle interplay of lattice, charge, orbital, and spin degrees of freedom gives rise to especially rich phase diagrams. For example, coexisting conducting and insulating phases can occur near metal-insulator transitions, colossal magnetoresistance can emerge where ferromagnetic and antiferromagnetic domains compete, and charge-ordered and superconducting regions are present simultaneously in materials exhibiting high-temperature superconductivity. Additionally, externally applied fields (electric, magnetic, or strain) or other external excitations (light or heat) can tip the energy balance towards one phase, or support heterogeneity and phase coexistence and provide the means to perturb and tailor quantum heterogeneity at the nanoscale. Engineering nanomaterials, with structural, electronic and magnetic characteristics beyond what is found in bulk materials, is possible today through the technique of thin film epitaxy, effectively a method of `spray painting' atoms on single crystalline substrates to create precisely customized layered structures with atomic arrangements defined by the underlying substrate. Charge transfer and spin polarization across interfaces as well as imprinting nanoscale heterogeneity between adjacent layers lead to intriguing and important new phenomena testing our understanding of basic physics and creating new functionalities. Moreover, the abrupt change of orientation of an order parameter between nanoscale domains can lead to unique phases that are localized at domain walls, including conducting domain walls in insulating ferroelectrics, and ferromagnetic domain walls in antiferromagnets. Here we present our recent results on tailoring the electronic anisotropy of multiferroic heterostructures by imprinting the BiFeO3 domain pattern in an adjacent La0.7Sr0.3MnO3 layer, understanding the metal-insulator transition in strained VO2 thin films and identifying a three-dimensional quasi-long-range electronic supermodulation in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Siddiqui, M R S; Shanmuganandan, A P; Rasheed, S; Tekkis, P; Brown, G; Abulafi, A M
2017-11-01
This article focuses on the audit and assessment of clinical practice before and after introduction of MRI reporting guidelines. Standardised proforma based reporting may improve quality of MRI reports. Uptake of the use may be facilitated by endorsement from regional and national cancer organisations. This audit was divided into 2 phases. MRI reports issued between April 2014 and June 2014 were included in the first part of our audit. Phase II included MRI reports issued between April 2015 and June 2015. 14 out of 15 hospitals that report MRI scans in the LCA responded to our audit proposal. The completion rate of key MRI metrics/metrics was better in proforma compared to prose reports both before (98% vs 73%; p < 0.05) and after introduction of the guidelines (98% vs 71%; p < 0.05). There was an approximate doubling of proforma reporting after the introduction of guidelines and workshop interventions (39% vs 65%; p < 0.05). Evaluation of locally advanced cancers (tumours extending to or beyond the circumferential resection margin) for beyond TME surgery was reported in 3% of prose reports vs. 42% in proformas. Incorporation of standardised reporting in official guidelines improved the uptake of proforma based reporting. Proforma based reporting captured more MRI reportable items compared to prose summaries, before and after the implementation of guidelines. MRI reporting of advanced cancers for beyond TME surgery falls short of acceptable standards but is more detailed in proforma based reports. Further work to improve completion especially in beyond TME reporting is required. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.
Can a double stranded DNA be unzipped by pulling a single strand?: phases of adsorbed DNA.
Kapri, Rajeev
2009-04-14
We study the unzipping of a double stranded DNA (dsDNA) by applying an external force on a single strand while leaving the other strand free. We find that the dsDNA can be unzipped to two single strands if the external force exceeds a critical value. We obtain the phase diagram, which is found to be different from the phase diagram of unzipping by pulling both the strands in opposite directions. In the presence of an attractive surface near DNA, the phase diagram gets modified drastically and shows richer surprises including a critical end point and a triple point.
NASA Technical Reports Server (NTRS)
Weimer, D.; Howes, W. L.
1984-01-01
Barium titanate single crystals are discussed in the context of: the procedure for polarizing a crystal; a test for phase conjugation; transients in the production of phase conjugation; real time readout by a separate laser of a hologram induced within the crystal, including conjugation response times to on-off switching of each beam; and a demonstration of a Twyman-Green interferometer utilizing phase conjugation.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Astrophysics Data System (ADS)
Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Technical Reports Server (NTRS)
Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.
1992-01-01
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Technical Reports Server (NTRS)
Papell, S. Stephen; Nyland, Ted W.; Saiyed, Naseem H.
1992-01-01
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomas devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1 - X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Liquid hydrogen mass flow through a multiple orifice Joule-Thomson device
NASA Astrophysics Data System (ADS)
Papell, S. S.; Nyland, Ted W.; Saiyed, Naseem H.
1992-07-01
Liquid hydrogen mass flow rate, pressure drop, and temperature drop data were obtained for a number of multiple orifice Joule-Thomson devices known as visco jets. The present investigation continues a study to develop an equation for predicting two phase flow of cryogens through these devices. The test apparatus design allowed isenthalpic expansion of the cryogen through the visco jets. The data covered a range of inlet and outlet operating conditions. The mass flow rate range single phase or two phase was 0.015 to 0.98 lbm/hr. The manufacturer's equation was found to overpredict the single phase hydrogen data by 10 percent and the two phase data by as much as 27 percent. Two modifications of the equation resulted in a data correlation that predicts both the single and two phase flow across the visco jet. The first modification was of a theoretical nature, and the second strictly empirical. The former reduced the spread in the two phase data. It was a multiplication factor of 1-X applied to the manufacturer's equation. The parameter X is the flow quality downstream of the visco jet based on isenthalpic expansion across the device. The latter modification was a 10 percent correction term that correlated 90 percent of the single and two phase data to within +/- 10 percent scatter band.
Growth and characterization of single phase Cu{sub 2}O by thermal oxidation of thin copper films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, Sumita; Sarma, J. V. N.; Gangopadhyay, Subhashis, E-mail: subhagan@yahoo.com
2016-04-13
We report a simple and efficient technique to form high quality single phase cuprous oxide films on glass substrate using thermal evaporation of thin copper films followed by controlled thermal oxidation in air ambient. Crystallographic analysis and oxide phase determination, as well as grain size distribution have been studied using X-ray diffraction (XRD) method, while scanning electron microscopy (SEM) has been utilized to investigate the surface morphology of the as grown oxide films. The formation of various copper oxide phases is found to be highly sensitive to the oxidation temperature and a crystalline, single phase cuprous oxide film can bemore » achieved for oxidation temperatures between 250°C to 320°C. Cu{sub 2}O film surface appeared in a faceted morphology in SEM imaging and a direct band gap of about 2.1 eV has been observed in UV-visible spectroscopy. X-ray photoelectron spectroscopy (XPS) confirmed a single oxide phase formation. Finally, a growth mechanism of the oxide film has also been discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ruixue; Xu, Han; Yang, Bin
The crystalline phases and domain configuration in the morphotropic phase boundary composition Pb(Mg1/3Nb2/3)O3-0.34PbTiO3 (PMN-0.34PT) single crystal have been investigated by synchrotronbased X-ray 3D Reciprocal Space Mapping (3D-RSM) and Piezoresponse Force Microscopy. The coexistence of tetragonal (T) and monoclinic MC phases in this PMN-0.34PT single crystal is confirmed. The affiliation of each diffraction spot in the 3D-RSM was identified with the assistance of qualitative simulation. Most importantly, the twinning structure between different domains in such a mixed phase PMN-PT crystal is firmly clarified, and the spatial distribution of different twin domains is demonstrated. In addition, the lattice parameters of T andmore » MC phases in PMN-0.34PT single crystal as well as the tilting angles of crystal lattices caused by the interfacial lattice mismatch are determined.« less
Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y
2013-11-01
The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa
2017-01-01
In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Plastic behavior of two-phase intermetallic compounds based on L1{sub 2}-type (Al,Cr){sub 3}Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.Y.; Wee, D.M.; Oh, M.H.
Plastic behavior of two-phase intermetallic compounds based on L1{sub 2}-type (Al,Cr){sub 3}Ti was investigated using compression test at R.T. and 77K. L1{sub 2} single phase alloys and two-phase alloys consisting of mainly L1{sub 2} phase and a few or 20% (mole percent) second phases were selected from Al-Ti-Cr phase diagram. In general, compared with L1{sub 2} single phase, two-phase alloys consisting of 20% second phase showed relatively high yield strength and poor ductility. Among the alloys, however, Al-21Ti-23Cr alloy consisting of 20% Cr{sub 2}Al phase showed available ductility as well as high yield strength. Plastic behavior of L1{sub 2} singlemore » phase alloys and two-phase alloys consisting of a few Cr{sub 2}Al was also investigated. Homogenization of arc melted ingots substantially reduced the amount of second phases but introduced extensive pore. When Cr content increased in L1{sub 2} single phase alloys after the homogenization, the volume fraction of pores in the alloys decreased, and no residual porosity was observed in two-phase alloys consisting of a few% Cr{sub 2}Al phase. Environmental effect on the ductility of the alloys was investigated using compression test at different strain rates (1.2 {times} 10{sup {minus}4}/s and 1.2 {times} 10{sup {minus}2}/s). Environmental embrittlement was least significant in Al-25Ti-10Cr alloy consisting of L1{sub 2} single phase among the alloys tested in this study. However, based on the combined estimation of the pore formation, environmental embrittlement and ingot cast structure, it could be supposed that Al-21Ti-23Cr alloy consisting of 20% Cr{sub 2}Al as a second phase is expected to show the best tensile elongation behavior among the materials tested.« less
de Savigny, Don; Webster, Jayne; Agyepong, Irene Akua; Mwita, Alex; Bart-Plange, Constance; Baffoe-Wilmot, Aba; Koenker, Hannah; Kramer, Karen; Brown, Nick; Lengeler, Christian
2012-10-01
There are striking similarities in health system and other contexts between Tanzania and Ghana that are relevant to the scaling up of continuous delivery of insecticide treated nets (ITNs) for malaria prevention. However, specific contextual factors of relevance to ITN delivery have led implementation down very different pathways in the two countries. Both countries have made major efforts and investments to address this intervention through integrating consumer discount vouchers into the health system. Discount vouchers require arrangements among the public, private and non-governmental sectors and constitute a complex intervention in both health systems and business systems. In Tanzania, vouchers have moved beyond the planning agenda, had policies and programmes formulated, been sustained in implementation at national scale for many years and have become as of 2012 the main and only publicly supported continuous delivery system for ITNs. In Ghana national-scale implementation of vouchers never progressed beyond consideration on the agenda and piloting towards formulation of policy; and the approach was replaced by mass distribution campaigns with less dependency on or integration with the health system. By 2011, Ghana entered a phase with no publicly supported continuous delivery system for ITNs. To understand the different outcomes, we compared the voucher programme timelines, phases, processes and contexts in both countries in reference to the main health system building blocks (governance, human resources, financing, informatics, technologies and service delivery). Contextual factors which provided an enabling environment for the voucher scheme in Tanzania did not do so in Ghana. The voucher scheme was never seen as an appropriate national strategy, other delivery systems were not complementary and the private sector was under-developed. The extensive time devoted to engagement and consensus building among all stakeholders in Tanzania was an important and clearly enabling difference, as was public sector support of the private sector. This contributed to the alignment of partner action behind a single co-ordinated strategy at service delivery level which in turn gave confidence to the business sector and avoided the 'interference' of competing delivery systems that occurred in Ghana. Principles of systems thinking for intervention design correctly emphasize the importance of enabling contexts and stakeholder management.
Rousseau, Caroline; Ronot, Maxime; Vilgrain, Valérie; Zins, Marc
2016-05-01
To evaluate the qualitative and quantitative benefit of multiple arterial phase acquisitions for the depiction of hypervascularity in FNH explored MR imaging using an extracellular contrast agent. Between 2007 and 2014, all patients who underwent MR imaging for the exploration of FNH were included. The protocol included a single or a triple arterial phase ("single" and "triple" group, respectively). Arterial phases were visually divided into four types: (1) angiographic, (2) early, (3) late, and (4) portal. Signal intensity on arterial phase images was visually recorded as intense, moderate, or low for each lesion. Lesion-to-liver contrast (LLC) and relative lesion enhancement (RE) were calculated and compared between the two groups using the Mann-Whitney test. Thirty-five women were included (mean 45-year old, range 20-66), with 50 FNH (mean size 30 mm). Single and triple groups included 20 patients (30 FNH) and 15 patients (20 FNH), respectively. Signal intensity was intense in all lesions in the triple group and in 22/30 (73%) in the single group (p = 0.041). Intense signals were more frequently found in the early arterial phase (p < 0.001). RE was not significantly different (1.78 ± 0.84 vs. 1.98 ± 1.81 p = 0.430, in the single and triple groups, respectively) but LLC was significantly higher in the triple group (0.32 ± 0.10 vs. 0.22 ± 0.10, p = 0.005). LLC was significantly higher in the first two arterial phases in the triple group (p < 0.001). Acquisition of three arterial phases improves the visualization of hypervascularity of FNH, as lesions show high visual signal intensity and contrast. Optimal visualization is obtained in the early arterial phase.
Bilingual Babel: Cuneiform Texts in Two or More Languages from Ancient Mesopotamia and Beyond.
ERIC Educational Resources Information Center
Cooper, Jerrold
1993-01-01
Discusses bilingualism in written cuneiform texts from ancient Babylonia and Sumeria. Describes the development of formats and techniques that enabled two or more languages on a single document to coexist harmoniously and productively. (SR)
Bent dark soliton dynamics in two spatial dimensions beyond the mean field approximation
NASA Astrophysics Data System (ADS)
Mistakidis, Simeon; Katsimiga, Garyfallia; Koutentakis, Georgios; Kevrekidis, Panagiotis; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team
2017-04-01
The dynamics of a bented dark soliton embedded in two spatial dimensions beyond the mean-field approximation is explored. We examine the case of a single bented dark soliton comparing the mean-field approximation to a correlated approach that involves multiple orbitals. Fragmentation is generally present and significantly affects the dynamics, especially in the case of stronger interparticle interactions and in that of lower atom numbers. It is shown that the presence of fragmentation allows for the appearance of solitonic and vortex structures in the higher-orbital dynamics. In particular, a variety of excitations including dark solitons in multiple orbitals and vortex-antidark complexes is observed to arise spontaneously within the beyond mean-field dynamics. Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 ``Light induced dynamics and control of correlated quantum systems''.
Direct detection of the optical field beyond single polarization mode.
Che, Di; Sun, Chuanbowen; Shieh, William
2018-02-05
Direct detection is traditionally regarded as a detection method that recovers only the optical intensity. Compared with coherent detection, it owns a natural advantage-the simplicity-but lacks a crucial capability of field recovery that enables not only the multi-dimensional modulation, but also the digital compensation of the fiber impairments linear with the optical field. Full-field detection is crucial to increase the capacity-distance product of optical transmission systems. A variety of methods have been investigated to directly detect the optical field of the single polarization mode, which normally sends a carrier traveling with the signal for self-coherent detection. The crux, however, is that any optical transmission medium supports at least two propagating modes (e.g. single mode fiber supports two polarization modes), and until now there is no direct detection that can recover the complete set of optical fields beyond one polarization, due to the well-known carrier fading issue after mode demultiplexing induced by the random mode coupling. To avoid the fading, direct detection receivers should recover the signal in an intensity space isomorphic to the optical field without loss of any degrees of freedom, and a bridge should be built between the field and its isomorphic space for the multi-mode field recovery. Based on this thinking, we propose, for the first time, the direct detection of dual polarization modes by a novel receiver concept, the Stokes-space field receiver (SSFR) and its extension, the generalized SSFR for multiple spatial modes. The idea is verified by a dual-polarization field recovery of a polarization-multiplexed complex signal over an 80-km single mode fiber transmission. SSFR can be applied to a much wider range of fields beyond optical communications such as coherent sensing and imaging, where simple field recovery without an extra local laser is desired for enhanced system performance.
Research safety vehicle, Phase II. Volume I. Executive summary. Final report jul 75-dec 76
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struble, D.
1976-12-01
Volume I summarizes the results of the Minicars Research Safety Vehicle Phase II program, as detailed in Volumes II and III. Phase I identified trends leading to the desired national social goals of the mid-1980's in vehicle crashworthiness, crash avoidance, damageability, pedestrian safety, fuel economy, emissions and cost, and characterized an RSV to satisfy them. In Phase II an RSV prototype was designed, developed and tested to demonstrate the feasibility of meeting these goals simultaneously. Although further refinement is necessary to assure operational validity, in all categories the results meet or exceed the most advanced performance specified by The Presidentialmore » Task Force on Motor Vehicle Goals beyond 1980.« less
Challenges and perspective of drug repurposing strategies in early phase clinical trials.
Kato, Shumei; Moulder, Stacy L; Ueno, Naoto T; Wheler, Jennifer J; Meric-Bernstam, Funda; Kurzrock, Razelle; Janku, Filip
2015-01-01
Despite significant investments in the development of new agents only 5% of cancer drugs entering Phase I clinical trials are ultimately approved for routine clinical cancer care. Drug repurposing strategies using novel combinations of previously tested anticancer agents could reduce the cost and improve treatment outcomes. At MD Anderson Cancer Center, early phase clinical trials with drug repurposing strategies demonstrated promising outcomes in patients with both rare and common treatment refractory advanced cancers. Despite clinical efficacy advancing drug repurposing strategies in the clinical trial trajectory beyond early phase studies has been challenging mainly due to lack of funding and interest from the pharmaceutical industry. In this review, we delineate our experience and challenges with drug repurposing strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprini, Chiara, E-mail: chiara.caprini@cea.fr; Hindmarsh, Mark; Huber, Stephan
We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many well-motivated scenarios beyond the Standard Model of particle physics predicting strong first-ordermore » cosmological phase transitions in the early Universe.« less
Direct single-shot phase retrieval from the diffraction pattern of separated objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshem, Ben; Xu, Rui; Dallal, Yehonatan
The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less
Direct single-shot phase retrieval from the diffraction pattern of separated objects
Leshem, Ben; Xu, Rui; Dallal, Yehonatan; ...
2016-02-22
The non-crystallographic phase problem arises in numerous scientific and technological fields. An important application is coherent diffractive imaging. Recent advances in X-ray free-electron lasers allow capturing of the diffraction pattern from a single nanoparticle before it disintegrates, in so-called ‘diffraction before destruction’ experiments. Presently, the phase is reconstructed by iterative algorithms, imposing a non-convex computational challenge, or by Fourier holography, requiring a well-characterized reference field. Here we present a convex scheme for single-shot phase retrieval for two (or more) sufficiently separated objects, demonstrated in two dimensions. In our approach, the objects serve as unknown references to one another, reducing themore » phase problem to a solvable set of linear equations. We establish our method numerically and experimentally in the optical domain and demonstrate a proof-of-principle single-shot coherent diffractive imaging using X-ray free-electron lasers pulses. Lastly, our scheme alleviates several limitations of current methods, offering a new pathway towards direct reconstruction of complex objects.« less
The dream of a one-stop-shop: Meta-analysis on myocardial perfusion CT.
Pelgrim, Gert Jan; Dorrius, Monique; Xie, Xueqian; den Dekker, Martijn A M; Schoepf, U Joseph; Henzler, Thomas; Oudkerk, Matthijs; Vliegenthart, Rozemarijn
2015-12-01
To determine the diagnostic performance of computed tomography (CT) perfusion techniques for the detection of functionally relevant coronary artery disease (CAD) in comparison to reference standards, including invasive coronary angiography (ICA), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI). PubMed, Web of Knowledge and Embase were searched from January 1, 1998 until July 1, 2014. The search yielded 9475 articles. After duplicate removal, 6041 were screened on title and abstract. The resulting 276 articles were independently analyzed in full-text by two reviewers, and included if the inclusion criteria were met. The articles reporting diagnostic parameters including true positive, true negative, false positive and false negative were subsequently evaluated for the meta-analysis. Results were pooled according to CT perfusion technique, namely snapshot techniques: single-phase rest, single-phase stress, single-phase dual-energy stress and combined coronary CT angiography [rest] and single-phase stress, as well the dynamic technique: dynamic stress CT perfusion. Twenty-two articles were included in the meta-analysis (1507 subjects). Pooled per-patient sensitivity and specificity of single-phase rest CT compared to rest SPECT were 89% (95% confidence interval [CI], 82-94%) and 88% (95% CI, 78-94%), respectively. Vessel-based sensitivity and specificity of single-phase stress CT compared to ICA-based >70% stenosis were 82% (95% CI, 64-92%) and 78% (95% CI, 61-89%). Segment-based sensitivity and specificity of single-phase dual-energy stress CT in comparison to stress MRI were 75% (95% CI, 60-85%) and 95% (95% CI, 80-99%). Segment-based sensitivity and specificity of dynamic stress CT perfusion compared to stress SPECT were 77% (95% CI, 67-85) and 89% (95% CI, 78-95%). For combined coronary CT angiography and single-phase stress CT, vessel-based sensitivity and specificity in comparison to ICA-based >50% stenosis were 84% (95% CI, 67-93%) and 93% (95% CI, 89-96%). This meta-analysis shows considerable variation in techniques and reference standards for CT of myocardial blood supply. While CT seems sensitive and specific for evaluation of hemodynamically relevant CAD, studies so far are limited in size. Standardization of myocardial perfusion CT technique is essential. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Field-circuit analysis and measurements of a single-phase self-excited induction generator
NASA Astrophysics Data System (ADS)
Makowski, Krzysztof; Leicht, Aleksander
2017-12-01
The paper deals with a single-phase induction machine operating as a stand-alone self-excited single-phase induction generator for generation of electrical energy from renewable energy sources. By changing number of turns and size of wires in the auxiliary stator winding, an improvement of performance characteristics of the generator were obtained as regards no-load and load voltage of the stator windings as well as stator winding currents of the generator. Field-circuit simulation models of the generator were developed using Flux2D software package for the generator with shunt capacitor in the main stator winding. The obtained results have been validated experimentally at the laboratory setup using the single-phase capacitor induction motor of 1.1 kW rated power and 230 V voltage as a base model of the generator.
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing.
Kuzum, Duygu; Jeyasingh, Rakesh G D; Lee, Byoungil; Wong, H-S Philip
2012-05-09
Brain-inspired computing is an emerging field, which aims to extend the capabilities of information technology beyond digital logic. A compact nanoscale device, emulating biological synapses, is needed as the building block for brain-like computational systems. Here, we report a new nanoscale electronic synapse based on technologically mature phase change materials employed in optical data storage and nonvolatile memory applications. We utilize continuous resistance transitions in phase change materials to mimic the analog nature of biological synapses, enabling the implementation of a synaptic learning rule. We demonstrate different forms of spike-timing-dependent plasticity using the same nanoscale synapse with picojoule level energy consumption.
Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe5
NASA Astrophysics Data System (ADS)
Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; Griffin, Sinéad M.; Neaton, Jeffrey B.; Potter, Andrew C.; Analytis, James G.
2018-01-01
We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe5, a system that is thought to be near a topological phase transition. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semimetal. However, on increasing temperature across a corresponding transport anomaly, all signatures of this Dirac-like nature are completely suppressed, providing the first thermodynamic evidence of a possible topological phase transition in this compound. ZrTe5 may thus provide a rare, experimentally accessible example in which such phase transitions can be studied directly.
Czochralski growth of LaPd2Al2 single crystals
NASA Astrophysics Data System (ADS)
Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.
2017-10-01
The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.
NASA Astrophysics Data System (ADS)
Alex Brown, B.
The properties of the oxygen isotopes provide diverse examples of progress made in experiments and theory. This chain of isotopes has been studied from beyond the proton drip line in 12O to beyond the neutron drip line in 25,26O. This short survey starts with the microscopic G matrix approach for 18O of Kuo and Brown in the 1960's and shows how theory has evolved. The nuclear structure around the doubly-magic nucleus 24O is particularly simple in terms of the nuclear shell model. The nuclear structure around the doubly-magic nucleus 16O exhibits the coexistence of single-particle and collective structure.
Effect of manganese doping on PIN-PMN-PT single crystals for high power applications
NASA Astrophysics Data System (ADS)
Sahul, Raffi
Single crystals based on relaxor-lead titanate (relaxor-PT) solid solutions have advanced the world of piezoelectric materials for the past two decades with their giant piezoelectric properties achieved by domain engineered configurations. When single crystals of lead magnesium niobate-lead titanate (PMN-PT) solid solution in the rhombohedral phase were poled along [001]c direction with "4R" domain configuration, they exhibited high piezoelectric charge coefficient (d33 >2000 pC/N) and high electromechanical coupling (k33 >0.9) which led to their widespread use in advanced medical imaging systems and underwater acoustic devices. However, PMN-PT crystals suffer from low phase transition temperature (Trt ˜85-95 °C) and lower coercive field (depolarizing electric field, Ec ˜2-3 kV/cm). Lead indium niobate - lead magnesium niobate - lead titanate (PIN-PMN-PT) ternary single crystals formed by adding indium as another constituent exhibit higher coercive field (E c ˜5kV/cm) and higher Curie temperature (Tc >210 °C) than the binary PMN-PT crystals (Ec ˜2.5 kV/cm and Tc <140 °C). When these ternary PIN-PMN-PT crystals are doped with manganese (Mn:PIN-PMN-PT), they behave like hard piezoelectric materials demonstrating an internal bias field (Ei ˜0.8-1.6 kV/cm), leading to low elastic losses and high mechanical Q-factor (Qm >600) compared to the undoped binary crystals (Qm of PMN-PT <150). Although the spontaneous polarization directions for these rhombohedral crystals are in the c directions, the giant piezoelectric effect (d33 >2000 pC/N for PMN-PT) occurs in the [001]c poled crystals, which is attributed to the polarization rotation mechanisms. Hence, domain engineering configurations induced by poling these crystals in orientations other than their polarization axis are critical for achieving large piezoelectric effects. Based on the phase diagram of these solid solutions, with the increase in PT content beyond the rhombohedral phase region, orthorhombic/monoclinic and tetragonal phases are formed. In the orthorhombic and tetragonal phases, the spontaneous polarization directions are in the [011]c and [001] c directions respectively. Similar to the "4R" domain configuration achieved in [001]c poled rhombohedral crystals, other domain configurations can be achieved by poling the single crystals in different orientations, leading to multitude of properties that are useful for various specified applications. The unique properties and configurations arise from the large anisotropy of the single crystalline materials and various polarization rotation mechanisms that are associated with these multi-domain configurations. This dissertation is focused on the properties of manganese doped PIN-PMN-PT ternary single crystals in the rhombohedral phase. By poling them in either [001]c, [011]c, or [111]c, 4R, 2R or 1R domain configuration can be achieved respectively. Longitudinal vibration mode, d 33, or k33 is the most useful mode from 4R configuration. The "2R" domain state is obtained by poling the rhombohedral phase crystal along [011]c crystallographic direction. Investigation of "2R" Mn:PIN-PMN-PT single crystals and their properties lead to unique resonance modes (d32, "2R d15", and d36') that are very useful and relevant to practical applications. Considering the large anisotropy and various symmetries exhibited by these crystals, full set of dielectric, piezoelectric, and elastic properties are extremely critical to understand different modes and their overall behavior in devices. Inconsistencies in full set of properties may be caused by complex methods involved in performing characterization measurements and also inhomogeneity among samples used for the measurements. Due to the large number of coefficients that need to be determined for full property material data, a methodology combining resonance and ultrasound methods is the most widely used technique for consistent measurement of full set properties for these materials. Full property measurements (elastic, dielectric, and piezoelectric) for the "2R" Mn:PIN-PMN-PT single crystal poled into orthorhombic mm2 macroscopic symmetry ([011]c poled crystals) and for "4R" configuration ([001]c poled crystals) were conducted and the data was analyzed based on their macroscopic crystallographic symmetry. Full property data was measured for the 1R configuration of the Mn:PIN-PMN-PT single crystal to understand the monodomain properties and the orientation dependence of dielectric, elastic, and piezoelectric properties. Domain averaging and matrix transformation was performed with the monodomain data to calculate 4R data and compare with that of experimental 4R data. Orientation dependence of the properties is also presented to understand the crystallographic directions that are best suited for the various applications. The high sensitivity of PMN-PT and the high Qm of Mn:PIN-PMN-PT provide designers with soft and hard piezoelectric material choices in the relaxor-PT single crystals family. While much work has been done on PMN-PT crystals, research efforts on the Mn:PIN-PMN-PT crystals are limited. Investigation of the Qm for Mn-doped crystals under high power drive conditions is essential for the practical application of these crystals for devices. High power characteristics of the Mn:PIN-PMN-PT single crystals were measured with emphasis on specific modes (transverse mode, d32, and face shear mode, d36') based on a constant vibration velocity method using a high power characterization system (HiPoCs), and the degradation of Qm as a function of vibration velocity was studied in order to understand the self heating behavior and device limitations. Practical devices that are useful for various applications were designed and performance of these prototype devices was quantitatively evaluated. This thesis work provides a concrete advancement in the understanding of doped ternary relaxor-PT ferroelectric single crystals and the influence of their domain engineered configurations on their properties. The emphasis is on vibration modes related to piezoelectric vibrators with the multi-domain single crystals having macroscopic mm2 symmetry. In the last chapter, limitations and future perspectives are also discussed.
Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond
Tan, Liang Z.; Zheng, Fan; Young, Steve M.; ...
2016-08-26
Here, the bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorlymore » understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.« less
Magneto-transport properties of proposed triply degenerate topological semimetal Pd3Bi2S2
NASA Astrophysics Data System (ADS)
Roy, Shubhankar; Pariari, Arnab; Singha, Ratnadwip; Satpati, Biswarup; Mandal, Prabhat
2018-04-01
We report transport properties of single-crystalline Pd3Bi2S2, which has been predicted to host an unconventional electronic phase of matter beyond three-dimensional Dirac and Weyl semimetals. Similar to several topological systems, the resistivity shows field-induced metal to semiconductor-like crossover at low temperature. Large, anisotropic, and non-saturating magnetoresistance has been observed in the transverse experimental configuration. At 2 K and 9 T, the MR value reaches as high as ˜1.1 × 103%. Hall resistivity reveals the presence of two types of charge carriers and has been analyzed using the two-band model. In spite of the large density (>1021 cm-3), the mobility of charge carriers is found to be quite high (˜ 0.75 × 104 cm2 V-1 s-1 for the hole and ˜ 0.3 × 104 cm2 V-1 s-1 for the electron). The observed magneto-electrical properties indicate that Pd3Bi2S2 may be a new member of the topological semimetal family, which can have a significant impact in technological applications.
Theoretical Research at the High Energy Frontier: Cosmology, Neutrinos, and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Lawrence M; Vachaspati, Tanmay; Parikh, Maulik
The DOE theory group grew from 2009-2012 from a single investigator, Lawrence Krauss, the PI on the grant, to include 3 faculty (with the addition of Maulik Parikh and Tanmay Vachaspati), and a postdoc covered by the grant, as well as partial support for a graduate student. The group has explored issues ranging from gravity and quantum field theory to topological defects, energy conditions in general relativity, primordial magnetic fields, neutrino astrophysics, quantum phases, gravitational waves from the early universe, dark matter detection schemes, signatures for dark matter at the LHC, and indirect astrophysical signatures for dark matter. In addition,more » we have run active international workshops each year, as well as a regular visitor program. As well, the PI's outreach activities, including popular books and articles, and columns for newspapers and magazines, as well as television and radio appearances have helped raise the profile of high energy physics internationally. The postdocs supported by the grant, James Dent and Roman Buniy have moved on successfully to a faculty positions in Louisiana and California.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Leigang; Boullay, Philippe; Lu, Ping
2017-02-01
Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less
Tunable-Range, Photon-Mediated Atomic Interactions in Multimode Cavity QED
NASA Astrophysics Data System (ADS)
Vaidya, Varun D.; Guo, Yudan; Kroeze, Ronen M.; Ballantine, Kyle E.; Kollár, Alicia J.; Keeling, Jonathan; Lev, Benjamin L.
2018-01-01
Optical cavity QED provides a platform with which to explore quantum many-body physics in driven-dissipative systems. Single-mode cavities provide strong, infinite-range photon-mediated interactions among intracavity atoms. However, these global all-to-all couplings are limiting from the perspective of exploring quantum many-body physics beyond the mean-field approximation. The present work demonstrates that local couplings can be created using multimode cavity QED. This is established through measurements of the threshold of a superradiant, self-organization phase transition versus atomic position. Specifically, we experimentally show that the interference of near-degenerate cavity modes leads to both a strong and tunable-range interaction between Bose-Einstein condensates (BECs) trapped within the cavity. We exploit the symmetry of a confocal cavity to measure the interaction between real BECs and their virtual images without unwanted contributions arising from the merger of real BECs. Atom-atom coupling may be tuned from short range to long range. This capability paves the way toward future explorations of exotic, strongly correlated systems such as quantum liquid crystals and driven-dissipative spin glasses.
Trajectory Guidance for Mars Robotic Precursors: Aerocapture, Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Zumwalt, Carlie; Garcia-Llama, Eduardo; Powell, Richard; Shidner, Jeremy
2011-01-01
Future crewed missions to Mars require improvements in landed mass capability beyond that which is possible using state-of-the-art Mars Entry, Descent, and Landing (EDL) systems. Current systems are capable of an estimated maximum landed mass of 1-1.5 metric tons (MT), while human Mars studies require 20-40 MT. A set of technologies were investigated by the EDL Systems Analysis (SA) project to assess the performance of candidate EDL architectures. A single architecture was selected for the design of a robotic precursor mission, entitled Exploration Feed Forward (EFF), whose objective is to demonstrate these technologies. In particular, inflatable aerodynamic decelerators (IADs) and supersonic retro-propulsion (SRP) have been shown to have the greatest mass benefit and extensibility to future exploration missions. In order to evaluate these technologies and develop the mission, candidate guidance algorithms have been coded into the simulation for the purposes of studying system performance. These guidance algorithms include aerocapture, entry, and powered descent. The performance of the algorithms for each of these phases in the presence of dispersions has been assessed using a Monte Carlo technique.
Theoretical constraints in the design of multivariable control systems
NASA Technical Reports Server (NTRS)
Rynaski, E. G.; Mook, D. Joseph; Depena, Juan
1991-01-01
The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.
Effect of black clay soil moisture on the electrochemical behavior of API X70 pipeline steel
NASA Astrophysics Data System (ADS)
Hendi, R.; Saifi, H.; Belmokre, K.; Ouadah, M.; Smili, B.; Talhi, B.
2018-03-01
The effect of moisture content variation (20–100 wt.%) on the electrochemical behavior of API X70 pipeline steel buried in the soil of Skikda (East of Algeria) was studied using electrochemical techniques, scanning electron microscopy (SEM), X ray diffraction analysis (XRD) and weight loss measurement. The electrochemical measurements showed that the corrosion current Icorr is directly proportional to the moisture content up to 50 wt.%, beyond this content, this value becomes almost constant. The result were confirmed by electrochemical impedance spectroscopy; the capacitance of the double layer formed on the surface is the highest at 50 wt.%. A single time constant was detected by plotting the Bode diagrams. The steel surface degradation has been appreciated using the scanning electron microscopy observations. A few pitting corrosion at 20 wt.% moisture, followed by more degradation at 50 wt.% have been revealed. However, when the moisture amount exceeded 50 wt.%, the surface became entirely covered by a corrosion product. XRD analysis revealed the dominance of FeOOH and Fe3O4 phases on steel surface for a moisture content of 50 wt.%.
Test driving ToxCast: endocrine profiling for1858 chemicals included in phase II
Introduction: Identifying chemicals to test for potential endocrine disruption beyond those already implicated in the peer-reviewed literature is a challenge. This review is intended to help by summarizing findings from the Environmental Protection Agency’s (EPA) ToxCast™ high th...
Phase-Enhanced 3D Snapshot ISAR Imaging and Interferometric SAR
2009-12-28
generalized technique requires the precession angle 9p be relatively small [see liq. (28)|. However, the noncoherent snapshot image equations remain...valid beyond this precession limit, and the unique sampling grid developed is still very useful for 3D imaging of the noncoherent snapshot equation
Reach-to-grasp movement as a minimization process.
Yang, Fang; Feldman, Anatol G
2010-02-01
It is known that hand transport and grasping are functionally different but spatially coordinated components of reach-to-grasp (RTG) movements. As an extension of this notion, we suggested that body segments involved in RTG movements are controlled as a coherent ensemble by a global minimization process associated with the necessity for the hand to reach the motor goal. Different RTG components emerge following this process without pre-programming. Specifically, the minimization process may result from the tendency of neuromuscular elements to diminish the spatial gap between the actual arm-hand configuration and its virtual (referent) configuration specified by the brain. The referent configuration is specified depending on the object shape, localization, and orientation. Since the minimization process is gradual, it can be interrupted and resumed following mechanical perturbations, at any phase during RTG movements, including hand closure. To test this prediction of the minimization hypothesis, we asked subjects to reach and grasp a cube placed within the reach of the arm. Vision was prevented during movement until the hand returned to its initial position. As predicted, by arresting wrist motion at different points of hand transport in randomly selected trials, it was possible to halt changes in hand aperture at any phase, not only during hand opening but also during hand closure. Aperture changes resumed soon after the wrist was released. Another test of the minimization hypothesis was made in RTG movements to an object placed beyond the reach of the arm. It has previously been shown (Rossi et al. in J Physiol 538:659-671, 2002) that in such movements, the trunk motion begins to contribute to hand transport only after a critical phase when the shifts in the referent arm configuration have finished (at about the time when hand velocity is maximal). The minimization rule suggests that when the virtual contribution of the arm to hand transport is completed, guidance of hand aperture switches from the arm to the trunk control system. As a consequence, hand aperture changes can be halted by trunk arrests but only if they are prolonged beyond a critical phase. As predicted, hand transport and hand aperture in RTG movements beyond the reach of the arm were halted by trunk arrests only if they were prolonged beyond the time of peak hand velocity. Hand motion and aperture changes resumed only when the trunk was released. While supporting the minimization hypothesis, our findings imply that not only spatial but also temporal characteristics of each component, including the shortest, hand closure component of RTG movements, are controlled in a flexible, task-specific way.
Phase reconstruction using compressive two-step parallel phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith
2018-04-01
The linear relationship between the sample complex object wave and its approximated complex Fresnel field obtained using single shot parallel phase-shifting digital holograms (PPSDH) is used in compressive sensing framework and an accurate phase reconstruction is demonstrated. It is shown that the accuracy of phase reconstruction of this method is better than that of compressive sensing adapted single exposure inline holography (SEOL) method. It is derived that the measurement model of PPSDH method retains both the real and imaginary parts of the Fresnel field but with an approximation noise and the measurement model of SEOL retains only the real part exactly equal to the real part of the complex Fresnel field and its imaginary part is completely not available. Numerical simulation is performed for CS adapted PPSDH and CS adapted SEOL and it is demonstrated that the phase reconstruction is accurate for CS adapted PPSDH and can be used for single shot digital holographic reconstruction.
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
Directed Self-Assembly of Liquid Crystalline Blue-Phases into Ideal Single-Crystals
Martinez-Gonzalez, Jose A.; Li, Xiao; Sadati, Monirosadat; ...
2017-06-16
Chiral nematic liquid crystals are known to form blue phases—liquid states of matter that exhibit ordered cubic arrangements of topological defects. Blue-phase specimens, however, are generally polycrystalline, consisting of randomly oriented domains that limit their performance in applications. A strategy that relies on nano-patterned substrates is presented here for preparation of stable, macroscopic single-crystal blue-phase materials. Different template designs are conceived to exert control over different planes of the blue-phase lattice orientation with respect to the underlying substrate. Experiments are then used to demonstrate that it is indeed possible to create stable single-crystal blue-phase domains with the desired orientation overmore » large regions. Lastly, these results provide a potential avenue to fully exploit the electro-optical properties of blue phases, which have been hindered by the existence of grain boundaries.« less
Quantum coherence behaviors of fermionic system in non-inertial frame
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Situ, Haozhen
2018-04-01
In this paper, we analyze the quantum coherence behaviors of a single qubit in the relativistic regime beyond the single-mode approximation. Firstly, we investigate the freezing condition of quantum coherence in fermionic system. We also study the quantum coherence tradeoff between particle and antiparticle sector. It is found that there exists quantum coherence transfer between particle and antiparticle sector, but the coherence lost in particle sector is not entirely compensated by the coherence generation of antiparticle sector. Besides, we emphatically discuss the cohering power and decohering power of Unruh channel with respect to the computational basis. It is shown that cohering power is vanishing and decohering power is dependent of the choice of Unruh mode and acceleration. Finally, we compare the behaviors of quantum coherence with geometric quantum discord and entanglement in relativistic setup. Our results show that this quantifiers in two region converge at infinite acceleration limit, which implies that this measures become independent of Unruh modes beyond the single-mode approximations. It is also demonstrated that the robustness of quantum coherence and geometric quantum discord are better than entanglement under the influence of acceleration, since entanglement undergoes sudden death.
On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2018-03-01
The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.
Ding, Yi; Peng, Kai; Yu, Miao; Lu, Lei; Zhao, Kun
2017-08-01
The performance of the two selected spatial frequency phase unwrapping methods is limited by a phase error bound beyond which errors will occur in the fringe order leading to a significant error in the recovered absolute phase map. In this paper, we propose a method to detect and correct the wrong fringe orders. Two constraints are introduced during the fringe order determination of two selected spatial frequency phase unwrapping methods. A strategy to detect and correct the wrong fringe orders is also described. Compared with the existing methods, we do not need to estimate the threshold associated with absolute phase values to determine the fringe order error, thus making it more reliable and avoiding the procedure of search in detecting and correcting successive fringe order errors. The effectiveness of the proposed method is validated by the experimental results.
Vectoring of parallel synthetic jets
NASA Astrophysics Data System (ADS)
Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume
2015-11-01
A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).
Brächer, T.; Heussner, F.; Pirro, P.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Serga, A. A.; Hillebrands, B.
2016-01-01
Magnonic spin currents in the form of spin waves and their quanta, magnons, are a promising candidate for a new generation of wave-based logic devices beyond CMOS, where information is encoded in the phase of travelling spin-wave packets. The direct readout of this phase on a chip is of vital importance to couple magnonic circuits to conventional CMOS electronics. Here, we present the conversion of the spin-wave phase into a spin-wave intensity by local non-adiabatic parallel pumping in a microstructure. This conversion takes place within the spin-wave system itself and the resulting spin-wave intensity can be conveniently transformed into a DC voltage. We also demonstrate how the phase-to-intensity conversion can be used to extract the majority information from an all-magnonic majority gate. This conversion method promises a convenient readout of the magnon phase in future magnon-based devices. PMID:27905539
Phase formation and UV luminescence of Gd{sup 3+} doped perovskite-type YScO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Yuhei; Ueda, Kazushige, E-mail: kueda@che.kyutech.ac.jp
Synthesis of pure and Gd{sup 3+}doped perovskite-type YScO{sub 3} was attempted by a polymerized complex (PC) method and solid state reaction (SSR) method. Crystalline phases and UV luminescence of samples were examined with varying heating temperatures. The perovskite-type single phase was not simply formed in the SSR method, as reported in some literatures, and two cubic C-type phases of starting oxide materials remained forming slightly mixed solid solutions. UV luminescence of Gd{sup 3+} doped samples increased with an increase in heating temperatures and volume of the perovskite-type phase. In contrast, a non-crystalline precursor was crystallized to a single C-type phasemore » at 800 °C in the PC method forming a completely mixed solid solution. Then, the phase of perovskite-type YScO{sub 3} formed at 1200 °C and its single phase was obtained at 1400 °C. It was revealed that high homogeneousness of cations was essential to generate the single perovskite-phase of YScO{sub 3}. Because Gd{sup 3+} ions were also dissolved into the single C-type phase in Gd{sup 3+} doped samples, intense UV luminescence was observed above 800 °C in both C-type phase and perovskite-type phase. - Graphical abstract: A pure perovskite-type YScO{sub 3} phase was successfully synthesized by a polymerized complex (PC) method. The perovskite-type YScO{sub 3} was generated through a solid solution of C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} with drastic change of morphology. The PC method enabled a preparation of the single phase of the perovskite-type YScO{sub 3} at lower temperature and in shorter heating time. Gd{sup 3+} doped perovskite-type YScO{sub 3} was found to show a strong sharp UV emission at 314 nm. - Highlights: • Pure YScO{sub 3} phase was successfully synthesized by polymerized complex (PC) method. • Pure perovskite-type YScO{sub 3} phase was generated from pure C-type (Y{sub 0.5}Sc{sub 0.5}){sub 2}O{sub 3} one. • YScO{sub 3} was obtained at lower temperature and in shorter heating time by PC method. • Perovskite-type YScO{sub 3}:Gd{sup 3+} was found to show strong sharp UV emission at 314 nm.« less
Phase space explorations in time dependent density functional theory
NASA Astrophysics Data System (ADS)
Rajam, Aruna K.
Time dependent density functional theory (TDDFT) is one of the useful tools for the study of the dynamic behavior of correlated electronic systems under the influence of external potentials. The success of this formally exact theory practically relies on approximations for the exchange-correlation potential which is a complicated functional of the co-ordinate density, non-local in space and time. Adiabatic approximations (such as ALDA), which are local in time, are most commonly used in the increasing applications of the field. Going beyond ALDA, has been proved difficult leading to mathematical inconsistencies. We explore the regions where the theory faces challenges, and try to answer some of them via the insights from two electron model systems. In this thesis work we propose a phase-space extension of the TDDFT. We want to answer the challenges the theory is facing currently by exploring the one-body phase-space. We give a general introduction to this theory and its mathematical background in the first chapter. In second chapter, we carryout a detailed study of instantaneous phase-space densities and argue that the functionals of distributions can be a better alternative to the nonlocality issue of the exchange-correlation potentials. For this we study in detail the interacting and the non-interacting phase-space distributions for Hookes atom model. The applicability of ALDA-based TDDFT for the dynamics in strongfields can become severely problematic due to the failure of single-Slater determinant picture.. In the third chapter, we analyze how the phase-space distributions can shine some light into this problem. We do a comparative study of Kohn-Sham and interacting phase-space and momentum distributions for single ionization and double ionization systems. Using a simple model of two-electron systems, we have showed that the momentum distribution computed directly from the exact KS system contains spurious oscillations: a non-classical description of the essentially classical two-electron dynamics. In Time dependent density matrix functional theory (TDDMFT), the evolution scheme of the 1RDM (first order reduced density matrix) contains second-order reduced density matrix (2RDM), which has to be expressed in terms of 1RDMs. Any non-correlated approximations (Hartree-Fock) for 2RDM would fail to capture the natural occupations of the system. In our fourth chapter, we show that by applying the quasi-classical and semi-classical approximations one can capture the natural occupations of the excited systems. We study a time-dependent Moshinsky atom model for this. The fifth chapter contains a comparative work on the existing non-local exchange-correlation kernels that are based on current density response frame work and the co-moving frame work. We show that the two approaches though coinciding with each other in linear response regime, actually turn out to be different in non-linear regime.
NASA Technical Reports Server (NTRS)
Beers, B. L.; Pine, V. W.; Hwang, H. C.; Bloomberg, H. W.; Lin, D. L.; Schmidt, M. J.; Strickland, D. J.
1979-01-01
The model consists of four phases: single electron dynamics, single electron avalanche, negative streamer development, and tree formation. Numerical algorithms and computer code implementations are presented for the first three phases. An approach to developing a code description of fourth phase is discussed. Numerical results are presented for a crude material model of Teflon.
Phase demodulation from a single fringe pattern based on a correlation technique.
Robin, Eric; Valle, Valéry
2004-08-01
We present a method for determining the demodulated phase from a single fringe pattern. This method, based on a correlation technique, searches in a zone of interest for the degree of similarity between a real fringe pattern and a mathematical model. This method, named modulated phase correlation, is tested with different examples.
Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu
2013-01-01
Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449
NASA Astrophysics Data System (ADS)
Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.
2016-12-01
One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, C.R.; Kleeberger, S.R.; Spannhake, E.W.
1989-01-01
The influence of exposure of the airways to ozone on acute allergic responsiveness has been investigated in several species. Little is known, however, about the effect of this environmental pollutant on the late asthmatic response (LAR) in animals in which it is exhibited. The purpose of this study was to evaluate this effect in the canine peripheral airways and to assess the potential role of mast cells in modulating the effect. A series of experiments on seven mongrel dogs demonstrated that the numbers of mast cells at the base of the epithelial region of small subsegmental airways exposed to 1more » ppm ozone for 5 min were significantly (p less than .01) increased 3 h following exposure compared to air exposed or nonexposed control airways. In a second series of experiments performed on eight additional mongrel dogs with inherent sensitivity to Ascaris suum antigen, antigen aerosol was administered to the sublobar segment 3 h following ozone preexposure when mast cell numbers were presumed to be increased. These experiments were performed to determine whether ozone preexposure could enhance the late-phase response to antigen by virtue of acutely increasing the number of mast cells available to bind the antigen. Four of the eight dogs tested displayed a late-phase response to antigen following air-sham preexposure. In these four dogs, simultaneous ozone preexposure of a contralateral lobe completely blocked the late-phase response to antigen. These results indicate that the consequences of a single exposure to ozone persist beyond its effects on acute antigen-induced bronchoconstriction and extend to the complex processes involved with the late response. This attenuating effect of ozone is seen under conditions where mast-cell numbers in the airways are increased above baseline levels.« less
A model for a transition from a quasicrystalline to a microcrystalline state
NASA Astrophysics Data System (ADS)
Coddens, G.; Launois, P.
1991-07-01
We propose a monoatomic model for a quasicrystal transition as observed recently in systems with icosahedral [3] and decagonal [5] symmetry. It is developed here for the case of decagonal symmetry and is inspired by the experimental results on the system Al-Cu-Co-Si [5,6]. The model goes beyond the purely geometrical description by an important physical aspect: the transition mediates through a single atomic jump distance such that only one unique double-well potential has to be invoked to describe it; in conformity with the symmetry there are 10 jump vectors. In the framework of the model, the microcrystalline state is energetically more favourable than a monocrystalline approximant phase. Nous proposons un modèle mono-atomique pour une transition quasicristal-microcristal du type de celles observées récemment dans des systèmes à symétrie icosaédrique [3] et décagonale [5]. Il est développé ici pour la symétrie décagonale et est inspiré par des résultats expérimentaux concernant l'alliage Al-Cu-Co-Si [5,6]. Le modèle va au-delà d'une description purement géometrique par un aspect physique important : la transition se fait via une seule distance de saut inter-atomique de telle sorte q'un seul double-puits de potentiel doit être pris en compte ; conformément à la symétrie, il y a 10 directions de saut. Dans le cadre du modèle, la phase microcristalline est énergétiquement favorisée par rapport à une phase approximante monocristalline.
Single-Molecule and Superresolution Imaging in Live Bacteria Cells
Biteen, Julie S.; Moerner, W.E.
2010-01-01
Single-molecule imaging enables biophysical measurements devoid of ensemble averaging, gives enhanced spatial resolution beyond the diffraction limit, and permits superresolution reconstructions. Here, single-molecule and superresolution imaging are applied to the study of proteins in live Caulobacter crescentus cells to illustrate the power of these methods in bacterial imaging. Based on these techniques, the diffusion coefficient and dynamics of the histidine protein kinase PleC, the localization behavior of the polar protein PopZ, and the treadmilling behavior and protein superstructure of the structural protein MreB are investigated with sub-40-nm spatial resolution, all in live cells. PMID:20300204
NASA Astrophysics Data System (ADS)
Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.
2017-08-01
The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.
Delta Vision, Delta Voices: The Mississippi Delta Beyond 2000
DOT National Transportation Integrated Search
2000-05-10
This Report has taken its guidance from a single overriding goal: To recognize the enormous natural, capital, and cultural resources of the Delta, and to enable all of the Delta's citizens to participate as full and successful partners in America's s...
Multi-Watt Average Power Nanosecond Microchip Laser and Power Scalability Estimates
NASA Technical Reports Server (NTRS)
Konoplev, Oleg A.; Vasilyev, Alexey A.; Seas, Antonios A.; Yu, Anthony W.; Li, Steven X.; Shaw, George B.; Stephen, Mark A.; Krainak, Michael A.
2011-01-01
We demonstrated up to 2 W average power, CW-pumped, passively- Q-switched, 1.5 ns monolithic MCL with single-longitudinal mode-operation. We discuss laser design issues to bring the average power to 5-1 OW and beyond.
Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading
NASA Astrophysics Data System (ADS)
Xie, Hongxian; Yu, Jiayun; Yu, Tao; Yin, Fuxing
2018-06-01
Molecular dynamics simulation was used to verify a speculation of the existence of a certain face-centred cubic (FCC) to body-centred cubic (BCC) phase transformation pathway. Four FCC metals, Ni, Cu, Au and Ag, were stretched along the [1 0 0] direction at various strain rates and temperatures. Under high strain rate and low temperature, and beyond the elastic limit, the bifurcation of the FCC phase occurred with sudden contraction along one lateral direction and expansion along the other lateral direction. When the lattice constant along the expansion direction converged with that of the stretched direction, the FCC phase transformed into an unstressed BCC phase. By reducing the strain rate or increasing the temperature, dislocation or 'momentum-induced melting' mechanisms began to control the plastic deformation of the FCC metals, respectively.
Single particle analysis based on Zernike phase contrast transmission electron microscopy.
Danev, Radostin; Nagayama, Kuniaki
2008-02-01
We present the first application of Zernike phase-contrast transmission electron microscopy to single-particle 3D reconstruction of a protein, using GroEL chaperonin as the test specimen. We evaluated the performance of the technique by comparing 3D models derived from Zernike phase contrast imaging, with models from conventional underfocus phase contrast imaging. The same resolution, about 12A, was achieved by both imaging methods. The reconstruction based on Zernike phase contrast data required about 30% fewer particles. The advantages and prospects of each technique are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hines, Dean C.; Mutchler, Max; Hammer, Derek
2014-01-10
We present polarization images of Comet ISON (C/2012 S1) taken with the Hubble Space Telescope (HST) on UTC 2013 May 8 (r {sub h} = 3.81 AU, Δ = 4.34 AU), when the phase angle was α ≈ 12.°16. This phase angle is approximately centered in the negative polarization branch for cometary dust. The region beyond 1000 km (∼0.32 arcsec ≈ 6 pixels) from the nucleus shows a negative polarization amplitude of p% ∼ –1.6%. Within 1000 km of the nucleus, the polarization position angle rotates to be approximately perpendicular to the scattering plane, with an amplitude p% ∼ +2.5%. Such positive polarization has been observedmore » previously as a characteristic feature of cometary jets, and we show that Comet ISON does indeed harbor a jet-like feature. These HST observations of Comet ISON represent the first visible light, imaging polarimetry with subarcsecond spatial resolution of a Nearly Isotropic Comet beyond 3.8 AU from the Sun at a small phase angle. The observations provide an early glimpse of the properties of the cometary dust preserved in this Oort-Cloud comet.« less
Zustin, J; Friedrich, R E
2010-01-01
Hypercementosis presents as painless, single or multiple non-neoplastic cementum formation beyond the physiological limits of the tooth. It often occurs in the apical area of the involved tooth following infection, chemical or mechanical trauma. We report on radiographic and histopathological findings in a single case of late intraosseous hypercementosis and odontogenic epithelial hyperplasia associated with a minute apical tooth root remnant years after its extraction, mimicking a tumour.
Photonic quantum information: science and technology.
Takeuchi, Shigeki
2016-01-01
Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.
Optical force stamping lithography
Nedev, Spas; Urban, Alexander S.; Lutich, Andrey A.; Feldmann, Jochen
2013-01-01
Here we introduce a new paradigm of far-field optical lithography, optical force stamping lithography. The approach employs optical forces exerted by a spatially modulated light field on colloidal nanoparticles to rapidly stamp large arbitrary patterns comprised of single nanoparticles onto a substrate with a single-nanoparticle positioning accuracy well beyond the diffraction limit. Because the process is all-optical, the stamping pattern can be changed almost instantly and there is no constraint on the type of nanoparticle or substrates used. PMID:21992538
A scalable method for identifying frequent subtrees in sets of large phylogenetic trees.
Ramu, Avinash; Kahveci, Tamer; Burleigh, J Gordon
2012-10-03
We consider the problem of finding the maximum frequent agreement subtrees (MFASTs) in a collection of phylogenetic trees. Existing methods for this problem often do not scale beyond datasets with around 100 taxa. Our goal is to address this problem for datasets with over a thousand taxa and hundreds of trees. We develop a heuristic solution that aims to find MFASTs in sets of many, large phylogenetic trees. Our method works in multiple phases. In the first phase, it identifies small candidate subtrees from the set of input trees which serve as the seeds of larger subtrees. In the second phase, it combines these small seeds to build larger candidate MFASTs. In the final phase, it performs a post-processing step that ensures that we find a frequent agreement subtree that is not contained in a larger frequent agreement subtree. We demonstrate that this heuristic can easily handle data sets with 1000 taxa, greatly extending the estimation of MFASTs beyond current methods. Although this heuristic does not guarantee to find all MFASTs or the largest MFAST, it found the MFAST in all of our synthetic datasets where we could verify the correctness of the result. It also performed well on large empirical data sets. Its performance is robust to the number and size of the input trees. Overall, this method provides a simple and fast way to identify strongly supported subtrees within large phylogenetic hypotheses.
A scalable method for identifying frequent subtrees in sets of large phylogenetic trees
2012-01-01
Background We consider the problem of finding the maximum frequent agreement subtrees (MFASTs) in a collection of phylogenetic trees. Existing methods for this problem often do not scale beyond datasets with around 100 taxa. Our goal is to address this problem for datasets with over a thousand taxa and hundreds of trees. Results We develop a heuristic solution that aims to find MFASTs in sets of many, large phylogenetic trees. Our method works in multiple phases. In the first phase, it identifies small candidate subtrees from the set of input trees which serve as the seeds of larger subtrees. In the second phase, it combines these small seeds to build larger candidate MFASTs. In the final phase, it performs a post-processing step that ensures that we find a frequent agreement subtree that is not contained in a larger frequent agreement subtree. We demonstrate that this heuristic can easily handle data sets with 1000 taxa, greatly extending the estimation of MFASTs beyond current methods. Conclusions Although this heuristic does not guarantee to find all MFASTs or the largest MFAST, it found the MFAST in all of our synthetic datasets where we could verify the correctness of the result. It also performed well on large empirical data sets. Its performance is robust to the number and size of the input trees. Overall, this method provides a simple and fast way to identify strongly supported subtrees within large phylogenetic hypotheses. PMID:23033843
Behavior of sheets from Ti-alloys by rolling and heat treatment
NASA Astrophysics Data System (ADS)
Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Gritskevich, M.; Stolbov, S.; Zaripova, M.
2017-10-01
Sheets from single- and two-phase Ti-alloys (VT1-0, Ti-22Nb-9%Zr and VT-16) were rolled at the room temperature up to various deformation degrees and annealed at temperatures 500-900 °C. The regularities of texture formation in both phases were established. In the technically pure Ti (VT1-0) with the single α-Ti phase the final stable texture component is (0001)±30-40°ND-TD<101 ¯0>. In the two-phase alloy the reorientation of basal axes of α-Ti occurs by the same trajectories as in the single phase alloy. However, in the case of two-phase alloy texture development in α-Ti stops at the intermediate stage, when this texture consists of components with rolling planes (0001)±15-20°ND-RD and (0001)±30-40°ND-TD. The stability of the first components can be provided both by the mutually balanced operation of pyramidal and basal slip systems, activity of which remains at the high deformation degree of two-phase alloy, and by the dynamic α↔β phase transformations, taking place in the distorted structures of α- and β-phases in the course of its cold rolling. At recrystallization of technically pure Ti the basal component disappears in its texture. At the same time, prismatic axes turn by angles 20÷30° depending on the heating rate of the rolled sheet and annealing temperature. At recrystallization of the two-phase Ti-alloy prismatic axes of its α-grains doesn't turn relative to their positions in the rolling texture, as it occurs in the single-phase alloy. This fact indicates to some alternative mode of arising new recrystallized grains in two-phase alloys.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; Peng, Haowei; Deml, Ann M.; Matthews, Bethany E.; Schelhas, Laura T.; Toney, Michael F.; Gordon, Roy G.; Tumas, William; Perkins, John D.; Ginley, David S.; Gorman, Brian P.; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-01-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region. PMID:28630928
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.
Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan
2017-06-01
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, Aaron M.; Siol, Sebastian; Ndione, Paul F.; ...
2017-06-07
Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the criticalmore » composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Furthermore, thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.« less
NASA Astrophysics Data System (ADS)
Saxena, Hemant; Singh, Alka; Rai, J. N.
2018-07-01
This article discusses the design and control of a single-phase grid-connected photovoltaic (PV) system. A 5-kW PV system is designed and integrated at the DC link of an H-bridge voltage source converter (VSC). The control of the VSC and switching logic is modelled using a generalised integrator (GI). The use of GI or its variants such as second-order GI have recently evolved for synchronisation and are being used as phase locked loop (PLL) circuits for grid integration. Design of PLL circuits and the use of transformations such as Park's and Clarke's are much easier in three-phase systems. But obtaining in-phase and quadrature components becomes an important and challenging issue in single-phase systems. This article addresses this issue and discusses an altogether different application of GI for the design of compensator based on the extraction of in-phase and quadrature components. GI is frequently used as a PLL; however, in this article, it is not used for synchronisation purposes. A new controller has been designed for a single-phase grid-connected PV system working as a single-phase active compensator. Extensive simulation results are shown for the working of integrated PV system under different atmospheric and operating conditions during daytime as well as night conditions. Experimental results showing the proposed control approach are presented and discussed for the hardware set-up developed in the laboratory.
Economic and Microbiologic Evaluation of Single-Dose Vial Extension for Hazardous Drugs
Rowe, Erinn C.; Savage, Scott W.; Rutala, William A.; Weber, David J.; Gergen-Teague, Maria; Eckel, Stephen F.
2012-01-01
Purpose: The update of US Pharmacopeia Chapter <797> in 2008 included guidelines stating that single-dose vials (SDVs) opened and maintained in an International Organization for Standardization Class 5 environment can be used for up to 6 hours after initial puncture. A study was conducted to evaluate the cost of discarding vials after 6 hours and to further test sterility of vials beyond this time point, subsequently defined as the beyond-use date (BUD). Methods: Financial determination of SDV waste included 2 months of retrospective review of all doses prescribed. Additionally, actual waste log data were collected. Active and control vials (prepared using sterilized trypticase soy broth) were recovered, instead of discarded, at the defined 6-hour BUD. Results: The institution-specific waste of 19 selected SDV medications discarded at 6 hours was calculated at $766,000 annually, and tracking waste logs for these same medications was recorded at $770,000 annually. Microbiologic testing of vial extension beyond 6 hours showed that 11 (1.86%) of 592 samples had one colony-forming unit on one of two plates. Positive plates were negative at subsequent time points, and all positives were single isolates most likely introduced during the plating process. Conclusion: The cost of discarding vials at 6 hours was significant for hazardous medications in a large academic medical center. On the basis of microbiologic data, vial BUD extension demonstrated a contamination frequency of 1.86%, which likely represented exogenous contamination; vial BUD extension for the tested drugs showed no growth at subsequent time points and could provide an annual cost savings of more than $600,000. PMID:23180998
Person-Job-Match (PJM) Beyond the More is Better Paradigm
2008-10-01
6 Attracting the RIGHT Applicants...The SDI+ -- A Strategic Solution Attracting the RIGHT Applicants The SDI+ vision is a multi-phase strategic solution. The proposed SDI...much impact in AFSCs with physically demanding training, the impact on academics for in-service personnel may be significant. Consider a scenario
ERIC Educational Resources Information Center
Scales, Roya Q.; Wolsey, Thomas DeVere; Lenski, Susan; Smetana, Linda; Yoder, Karen K.; Dobler, Elizabeth; Grisham, Dana L.; Young, Janet R.
2018-01-01
This three phase longitudinal multiple-case study, framed by positioning theory, investigated how four novice teachers learned to use professional judgment in their literacy instruction. Data sources from coursework, student teaching, and novice teaching were included. Interviews, observations, researchers' observational notes, and school and…
Sea Ventures Development Phase, October 1, 1975 - September 30, 1978.
ERIC Educational Resources Information Center
Sea Ventures, Highlands, NJ.
A detailed profile of the largest fresh-air education program in the country for disadvantaged youth -- Sea Ventures -- is provided in this document. Created entirely through the effort of volunteers, Sea Ventures provides learning opportunities that go beyond occupying youngsters. This multi-racial/lingual juvenile delinquency prevention program…
43 CFR 11.73 - Quantification phase-resource recoverability analysis.
Code of Federal Regulations, 2010 CFR
2010-10-01
... equivalent resources efforts are undertaken beyond response actions performed or anticipated shall be estimated. This time period shall be used as the “No Action-Natural Recovery” period for purposes of § 11.82... requirements of biological species involved, including their reaction or tolerance to the oil or hazardous...
Beyond Belief: Zhou Zuoren's Rationalist Writings and the Chinese Enlightenment
ERIC Educational Resources Information Center
Li, Tonglu
2009-01-01
This dissertation is situated in the current scholarly reflection on the problems of Chinese modernity, especially its "initial phase," the Chinese Enlightenment (1910s-1920s). It examines the thought of the highly controversial thinker and writer Zhou Zuoren (1885-1967), whose work had been profoundly influential during the…
ERIC Educational Resources Information Center
Robbins, Christopher
2010-01-01
While many digitization projects are currently underway, to help preserve Indigenous traditions, few explore the full potential of the development of digital media and networked technology through Indigenous cultures. This paper outlines the three phases necessary for a robust digital preservation, promotion and growth project: 1) Straightforward…
Duke Ellington: The Man and His Music.
ERIC Educational Resources Information Center
George, Luvenia A.
1999-01-01
Provides a chronology of Edward Kennedy "Duke" Ellington's career divided into four periods (Sound and Style, Creative Explosion, Beyond Jazz, and The Last Decade). Offers a synopsis of his musical development, listing compositions written during each phase. Includes a list of resources and a sample lesson for "Koko" by Duke Ellington. (CMK)
Observation and Control of Hamiltonian Chaos in Wave-particle Interaction
NASA Astrophysics Data System (ADS)
Doveil, F.; Elskens, Y.; Ruzzon, A.
2010-11-01
Wave-particle interactions are central in plasma physics. The paradigm beam-plasma system can be advantageously replaced by a traveling wave tube (TWT) to allow their study in a much less noisy environment. This led to detailed analysis of the self-consistent interaction between unstable waves and an either cold or warm electron beam. More recently a test cold beam has been used to observe its interaction with externally excited wave(s). This allowed observing the main features of Hamiltonian chaos and testing a new method to efficiently channel chaotic transport in phase space. To simulate accurately and efficiently the particle dynamics in the TWT and other 1D particle-wave systems, a new symplectic, symmetric, second order numerical algorithm is developed, using particle position as the independent variable, with a fixed spatial step. This contribution reviews : presentation of the TWT and its connection to plasma physics, resonant interaction of a charged particle in electrostatic waves, observation of particle trapping and transition to chaos, test of control of chaos, and description of the simulation algorithm. The velocity distribution function of the electron beam is recorded with a trochoidal energy analyzer at the output of the TWT. An arbitrary waveform generator is used to launch a prescribed spectrum of waves along the 4m long helix of the TWT. The nonlinear synchronization of particles by a single wave, responsible for Landau damping, is observed. We explore the resonant velocity domain associated with a single wave as well as the transition to large scale chaos when the resonant domains of two waves and their secondary resonances overlap. This transition exhibits a devil's staircase behavior when increasing the excitation level in agreement with numerical simulation. A new strategy for control of chaos by building barriers of transport in phase space as well as its robustness is successfully tested. The underlying concepts extend far beyond the field of electron devices and plasma physics.
Liu, Yushan; Ge, Baoming; Abu-Rub, Haitham; ...
2016-06-14
In this study, the active power filter (APF) that consists of a half-bridge leg and an ac capacitor is integrated in the single-phase quasi-Z-source inverter (qZSI) in this paper to avoid the second harmonic power flowing into the dc side. The capacitor of APF buffers the second harmonic power of the load, and the ac capacitor allows highly pulsating ac voltage, so that the capacitances of both dc and ac sides can be small. A model predictive direct power control (DPC) is further proposed to achieve the purpose of this newtopology through predicting the capacitor voltage of APF at eachmore » sampling period and ensuring the APF power to track the second harmonic power of single-phase qZSI. Simulation and experimental results verify the model predictive DPC for the APF-integrated single-phase qZSI.« less