Sample records for single photon tip

  1. Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip.

    PubMed

    Takata, Hiroki; Naiki, Hiroyuki; Wang, Li; Fujiwara, Hideki; Sasaki, Keiji; Tamai, Naoto; Masuo, Sadahiro

    2016-09-14

    The enhancement of multiphoton emission from a single colloidal nanocrystal quantum dot (NQD) interacting with a plasmonic nanostructure was investigated using a silver-coated atomic force microscopy tip (AgTip) as the plasmonic nanostructure. Using the AgTip, which exhibited a well-defined localized surface plasmon (LSP) resonance band, we controlled the spectral overlap and the distance between the single NQD and the AgTip. The emission behavior of the single NQD when approaching the AgTip at the nanometer scale was measured using off-resonance (405 nm) and resonance (465 nm) excitation of the LSP. We directly observed the conversion of the single-photon emission from a single NQD to multiphoton emission with reduction of the emission lifetime at both excitation wavelengths as the NQD-AgTip distance decreased, whereas a decrease and increase in the emission intensity were observed at 405 and 465 nm excitation, respectively. By combining theoretical analysis and the numerical simulation of the AgTip, we deduced that the enhancement of the multiphoton emission was caused by the quenching of the single-exciton state due to the energy transfer from the NQD to the AgTip and that the emission intensity was increased by enhancement of the excitation rate due to the electric field of the LSP on the AgTip. These results provide evidence that the photon statistics and the photon flux from the single NQD can be manipulated by the plasmonic nanostructure through control of the spectral overlap and the distance.

  2. Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation.

    PubMed

    Ren, Fang; Takashima, Hideaki; Tanaka, Yoshito; Fujiwara, Hideki; Sasaki, Keiji

    2013-11-18

    A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

  3. Efficient coupling of starlight into single mode photonics using Adaptive Injection (AI)

    NASA Astrophysics Data System (ADS)

    Norris, Barnaby; Cvetojevic, Nick; Gross, Simon; Arriola, Alexander; Tuthill, Peter; Lawrence, Jon; Richards, Samuel; Goodwin, Michael; Zheng, Jessica

    2016-08-01

    Using single-mode fibres in astronomy enables revolutionary techniques including single-mode interferometry and spectroscopy. However, injection of seeing-limited starlight into single mode photonics is extremely difficult. One solution is Adaptive Injection (AI). The telescope pupil is segmented into a number of smaller subapertures each with size r0, such that seeing can be approximated as a single tip / tilt / piston term for each subaperture, and then injected into a separate fibre via a facet of a segmented MEMS deformable mirror. The injection problem is then reduced to a set of individual tip tilt loops, resulting in high overall coupling efficiency.

  4. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection.

    PubMed

    Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Terai, Hirotaka

    2014-04-07

    We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector (SSPD) array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics within the small range of 7.19-7.23 K of superconducting transition temperature and 15.8-17.8 μA of superconducting switching current. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency (SDE) in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

  5. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    NASA Astrophysics Data System (ADS)

    Tamma, Venkata Ananth; Huang, Fei; Nowak, Derek; Kumar Wickramasinghe, H.

    2016-06-01

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol and l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.

  6. Stimulated Raman spectroscopy and nanoscopy of molecules using near field photon induced forces without resonant electronic enhancement gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamma, Venkata Ananth; Huang, Fei; Kumar Wickramasinghe, H., E-mail: hkwick@uci.edu

    We report on stimulated Raman spectroscopy and nanoscopy of molecules, excited without resonant electronic enhancement gain, and recorded using near field photon induced forces. Photon-induced interaction forces between the sharp metal coated silicon tip of an Atomic Force Microscope (AFM) and a sample resulting from stimulated Raman excitation were detected. We controlled the tip to sample spacing using the higher order flexural eigenmodes of the AFM cantilever, enabling the tip to come very close to the sample. As a result, the detection sensitivity was increased compared with previous work on Raman force microscopy. Raman vibrational spectra of azobenzene thiol andmore » l-phenylalanine were measured and found to agree well with published results. Near-field force detection eliminates the need for far-field optical spectrometer detection. Recorded images show spatial resolution far below the optical diffraction limit. Further optimization and use of ultrafast pulsed lasers could push the detection sensitivity towards the single molecule limit.« less

  7. Low photon-count tip-tilt sensor

    NASA Astrophysics Data System (ADS)

    Saathof, Rudolf; Schitter, Georg

    2016-07-01

    Due to the low photon-count of dark areas of the universe, signal strength of tip-tilt sensor is low, limiting sky-coverage of reliable tip-tilt measurements. This paper presents the low photon-count tip-tilt (LPC-TT) sensor, which potentially achieves improved signal strength. Its optical design spatially samples and integrates the scene. This increases the probability that several individual sources coincide on a detector segment. Laboratory experiments show feasibility of spatial sampling and integration and the ability to measure tilt angles. By simulation an improvement of the SNR of 10 dB compared to conventional tip-tilt sensors is shown.

  8. Quasi-linearly polarized hybrid modes in tapered and metal-coated tips with circular apertures: understanding the functionality of aperture tips

    NASA Astrophysics Data System (ADS)

    Tugchin, B. N.; Janunts, N.; Steinert, M.; Dietrich, K.; Kley, E. B.; Tünnermann, A.; Pertsch, T.

    2017-06-01

    In this study, we investigate analytically and experimentally the roles of quasi-linearly polarized (LP), hybrid, plasmonic and photonic modes in optical detection and excitation with aperture tips in scanning near-field optical microscopy. Aperture tips are tapered and metal-coated optical fibers where small circular apertures are made at the apex. In aperture tips, there exist plasmonic modes that are bound at the interface of the metal cladding to the inner dielectric fiber and photonic modes that are guided in the area of the increased index in the dielectric fiber core. The fundamental photonic mode, although excited by the free-space Gaussian beam, experiences cutoff and turns into an evanescent mode. The photonic mode also becomes lossier than the plasmonic mode toward the tip aperture, and its power decay due to absorption and reflection is expected to be at least 10-9. In contrast, the fundamental plasmonic mode has no cutoff and thus reaches all the way to the tip aperture. Due to the non-adiabaticity of both modes’ propagations through the taper below a core radius of 600 nm, there occurs coupling between the modes. The transmission efficiency of the plasmonic mode, including the coupling efficiency and the propagation loss, is expected to be about 10-6 that is at least 3 orders of magnitude larger than that of the photonic mode. Toward the tip aperture, the longitudinal field of the photonic mode becomes stronger than the transverse ones while the transverse fields always dominate for the plasmonic mode. Experimentally, we obtain polarization resolved images of the near-field at the tip aperture and compare with the x- and y-components of the fundamental quasi-LP plasmonic and photonic modes. The results show that not only the pattern but also the intensity ratios of the x- and y-components of the aperture near-field match with that of the fundamental plasmonic mode. Consequently, we conclude that only the plasmonic mode reaches the tip aperture and thus governs the near-field interaction outside the tip aperture. Our conclusion remains valid for all aperture tips regardless of the cladding metal type that mainly influences the total transmission efficiency of the aperture tip.

  9. The tip/tilt tracking sensor based on multi-anode photo-multiplier tube

    NASA Astrophysics Data System (ADS)

    Ma, Xiao-yu; Rao, Chang-hui; Tian, Yu; Wei, Kai

    2013-09-01

    Based on the demands of high sensitivity, precision and frame rate of tip/tilt tracking sensors in acquisition, tracking and pointing (ATP) systems for satellite-ground optical communications, this paper proposes to employ the multiple-anode photo-multiplier tubes (MAPMTs) in tip/tilt tracking sensors. Meanwhile, an array-type photon-counting system was designed to meet the requirements of the tip/tilt tracking sensors. The experiment results show that the tip/tilt tracking sensors based on MAPMTs can achieve photon sensitivity and high frame rate as well as low noise.

  10. Connecting the dots: a correlation between ionizing radiation and cloud mass-loss rate traced by optical integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McLeod, A. F.; Gritschneder, M.; Dale, J. E.; Ginsburg, A.; Klaassen, P. D.; Mottram, J. C.; Preibisch, T.; Ramsay, S.; Reiter, M.; Testi, L.

    2016-11-01

    We present an analysis of the effect of feedback from O- and B-type stars with data from the integral field spectrograph Multi Unit Spectroscopic Explorer (MUSE) mounted on the Very Large Telescope of pillar-like structures in the Carina Nebular Complex, one of the most massive star-forming regions in the Galaxy. For the observed pillars, we compute gas electron densities and temperatures maps, produce integrated line and velocity maps of the ionized gas, study the ionization fronts at the pillar tips, analyse the properties of the single regions, and detect two ionized jets originating from two distinct pillar tips. For each pillar tip, we determine the incident ionizing photon flux Q0, pil originating from the nearby massive O- and B-type stars and compute the mass-loss rate dot{M} of the pillar tips due to photoevaporation caused by the incident ionizing radiation. We combine the results of the Carina data set with archival MUSE data of a pillar in NGC 3603 and with previously published MUSE data of the Pillars of Creation in M16, and with a total of 10 analysed pillars, find tight correlations between the ionizing photon flux and the electron density, the electron density and the distance from the ionizing sources, and the ionizing photon flux and the mass-loss rate. The combined MUSE data sets of pillars in regions with different physical conditions and stellar content therefore yield an empirical quantification of the feedback effects of ionizing radiation. In agreement with models, we find that dot{M}∝ Q_0,pil^{1/2}.

  11. Spectra and elliptic flow of thermal photons from full-overlap U+U collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Dasgupta, Pingal; Chatterjee, Rupa; Srivastava, Dinesh K.

    2017-06-01

    We calculate pT spectra and elliptic flow for tip-tip and body-body configurations of full-overlap uranium-uranium (U+U ) collisions by using a hydrodynamic model with smooth initial density distribution and compare the results with those obtained from Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Production of thermal photons is seen to be significantly larger for tip-tip collisions compared with body-body collisions of uranium nuclei in the region pT>1 GeV. The difference in the results for the two configurations of U+U collisions depends on the initial energy deposition which is yet to be constrained precisely from hadronic measurements. The thermal photon spectrum from body-body collisions is found to be close to the spectrum from most-central Au+Au collisions at RHIC. The elliptic-flow parameter calculated for body-body collisions is found to be large and comparable to the v2(pT) for mid-central collisions of Au nuclei. On the other hand, as expected, v2(pT) is close to zero for tip-tip collisions. The qualitative nature of the photon spectra and elliptic flow for the two different orientations of uranium nuclei is found to be independent of the initial parameters of the model calculation. We show that the photon results from fully overlapping U+U collisions are complementary to the results from Au+Au collisions at RHIC.

  12. Near-field hyperspectral quantum probing of multimodal plasmonic resonators

    NASA Astrophysics Data System (ADS)

    Cuche, A.; Berthel, M.; Kumar, U.; Colas des Francs, G.; Huant, S.; Dujardin, E.; Girard, C.; Drezet, A.

    2017-03-01

    Quantum systems, excited by an external source of photons, display a photodynamics that is ruled by a subtle balance between radiative or nonradiative energy channels when interacting with metallic nanostructures. We apply and generalize this concept to achieve a quantum probing of multimodal plasmonic resonators by collecting and filtering the broad emission spectra generated by a nanodiamond (ND) hosting a small set of nitrogen-vacancy (NV) color centers attached at the apex of an optical tip. Spatially and spectrally resolved information on the photonic local density of states (ph-LDOS) can be recorded with this technique in the immediate vicinity of plasmonic resonators, paving the way for a complete near-field optical characterization of any kind of nanoresonators in the single photon regime.

  13. Excitation of surface plasmons in Al-coated SNOM tips

    NASA Astrophysics Data System (ADS)

    Palm, Viktor; Rähn, Mihkel; Jäme, Joonas; Hizhnyakov, Vladimir

    2012-10-01

    The mesoscopic effect of spectral modulation occurring due to the interference of two photonic fiber modes filtered out by a metal-coated SNOM tip is used to observe the surface plasmon polariton (SPP) excitation in SNOM tips. In a spectrum of the broadband light transmitted by a SNOM tip a region of highly regular spectral modulation can be found, indicating the spectral interval in which only two photonic modes (apparently HE11 and TM01) are transmitted with significant and comparable amplitudes. The modulation period yields the value of optical path difference (OPD) for this pair of modes. Due to the multimode fiber's inherent modal dispersion, this OPD value depends linearly on the fiber tail length l. An additional contribution to OPD can be generated in a metal-coated SNOM tip due to a mode-dependent photon-plasmon coupling strength resulting in generation of SPPs with different propagation velocities. For an Al-coated 200 nm SNOM tip spectra of transmitted light have been registered for ten different l values. An extrapolation of the linear OPD (l) dependence to l=0 yields a significant residual OPD value, indicating according to our theoretical considerations a mode-selective SPP excitation in the metal-coated tip. The modal dispersion is shown to switch its sign in the SNOM tip. First results of analogous experiments with an Al-coated 150 nm SNOM tip confirm our conclusions.

  14. Isolating and moving single atoms using silicon nanocrystals

    DOEpatents

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  15. New design of a cryostat-mounted scanning near-field optical microscope for single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Woehl, Jörg C.; Viellerobe, Bertrand; Göhde, Wolfgang; Orrit, Michel

    1999-02-01

    Due to the weakness of the fluorescence signal from a single fluorophore, a scanning near-field optical microscope for single molecule spectroscopy requires a very efficient setup for the collection and detection of emitted photons. We have developed a home-built microscope for operation in a l-He cryostat which uses a solid parabolic mirror in order to optimize the fluorescence collection efficiency. This microscope works with Al-coated, tapered optical fibers in illumination mode. The tip-sample separation is probed by an optical shear-force detection. First results demonstrate the capability of the microscope to image single molecules and achieve a topographical resolution of a few nanometers vertically and better than 50 nm laterally.

  16. Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals

    DOE PAGES

    Alikin, Denis O.; Ievlev, Anton; Turigin, Anton P.; ...

    2015-05-05

    Currently ferroelectric materials with designed domain structures are considered as a perspective material for new generation of photonic, data storage and data processing devices. Application of external electric field is the most convenient way of the domain structure formation. Lots of papers are devoted to investigation of the domain kinetics on polar surface of crystals while the forward growth remains one of the most mysterious stages due to lack of experimental methods allowing to study it. Here we performed tip-induced polarization reversal on X- and Y-non-polar cuts in single-crystal of congruent lithium niobate allows us to study the forward growthmore » with high spatial resolution. The revealed difference in the shape and length of domains induced on X- and Y-cuts is beyond previously developed theoretical approaches used for the theoretical consideration of the domains growth at non-polar ferroelectric surfaces. Lastly, to explain experimental results we used kinetic approach with anisotropy of screening efficiency along different crystallographic directions.« less

  17. Photon theory hypothesis about photon tunneling microscope's subwavelength resolution

    NASA Astrophysics Data System (ADS)

    Zhu, Yanbin; Ma, Junfu

    1995-09-01

    The foundation for the invention of the photon scanning tunneling microscope (PSTM) are the near field scanning optical microscope, the optical fiber technique, the total internal reflection, high sensitive opto-electronic detecting technique and computer technique etc. Recent research results show the subwavelength resolution of 1 - 3 nm is obtained. How to explain the PSTM has got such high subwavelength resolution? What value is the PSTM's limiting of subwavelength resolution? For resolving these problems this paper presented a photon theory hypothesis about PSTM that is based on the following two basic laws: (1) Photon is not only a carrier bringing energy and optical information, but also is a particle occupied fixed space size. (2) When a photon happened reflection, refraction, scattering, etc., only changed its energy and optical information carried, its particle size doesn't change. g (DOT) pphoton equals constant. Using these two basic laws to PSTM, the `evanescent field' is practically a weak photon distribution field and the detecting fiber tip diameter is practically a `gate' which size controlled the photon numbers into fiber tip. Passing through some calculation and inference, the following three conclusions can be given: (1) Under the PSTM's detection system sensitivity is high enough, the diameter D of detecting fiber tip and the near field detecting distance Z are the two most important factors to decide the subwavelength resolution of PSTM. (2) The limiting of PSTM's resolution will be given upon the conditions of D equals pphoton and Z equals pphoton, where pphoton is one photon size. (2) The final resolution limit R of PSTM will be lim R equals pphoton, D yields pphoton, Z yields pphoton.

  18. Excitation of propagating surface plasmons with a scanning tunnelling microscope.

    PubMed

    Wang, T; Boer-Duchemin, E; Zhang, Y; Comtet, G; Dujardin, G

    2011-04-29

    Inelastic electron tunnelling excitation of propagating surface plasmon polaritons (SPPs) on a thin gold film is demonstrated. This is done by combining a scanning tunnelling microscope (STM) with an inverted optical microscope. Analysis of the leakage radiation in both the image and Fourier planes unambiguously shows that the majority (up to 99.5%) of the detected photons originate from propagating SPPs with propagation lengths of the order of 10  µm. The remaining photon emission is localized under the STM tip and is attributed to a tip-gold film coupled plasmon resonance as evidenced by the bimodal spectral distribution and enhanced emission intensity observed using a silver STM tip for excitation.

  19. Photonic jet subwavelength etching using a shaped optical fiber tip.

    PubMed

    Zelgowski, Julien; Abdurrochman, Andri; Mermet, Frederic; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2016-05-01

    We demonstrate that photonic jets (PJs) can be obtained in the vicinity of a shaped optical fiber and that they can be used to achieve subwavelength etchings. Only 10% of the power of a 30 W, 100 ns, near-infrared (1064 nm) Nd:YAG laser, commonly used for industrial laser processing, has been required. Etchings on a silicon wafer with a lateral feature size close to half-laser wavelength have been achieved using a shaped-tip optical fiber. This breakthrough has been carried out in ambient air by using a multimode 100/140 μm silica fiber with a shaped tip that generates a concentrated beam at their vicinity, a phenomenon referred to as a PJ, obtained for the first time without using microspheres. PJ achieved with a fiber tip, easier to manipulate, opens far-reaching benefits for all PJ applications. The roles of parameters such as laser fluence, tip shape, and mode excitation are discussed. A good correlation has been observed between the computed PJ intensity distribution and the etched marks' sizes.

  20. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.

    PubMed

    Ghosh, Siddharth; Ananthasuresh, G K

    2016-01-04

    We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.

  1. Electron-pair-production cross section in the tip region of the positron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, K.K.; Sharma, D.K.

    1984-11-01

    The radial integrals for electron-pair production in a point Coulomb potential have been expressed by Sud, Sharma, and Sud in terms of the matrix generalization of the GAMMA function. Two new partial differential equations in photon energy satisfied by the matrix GAMMA function are obtained. We have obtained, on integrating the partial differential equations, accurate radial integrals as a function of photon energy for the pair production by intermediate-energy photons. The cross section in the tip region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for /sup 92/U. The new technique results in extensive savingmore » in computer time as the basic radial integrals in terms of the hypergeometric function F/sub 2/ are computed at one photon energy for each pair of partial waves. The results of our calculations are compared with plane-wave Born-approximation results and with the calculations of Dugne and of Deck, Moroi, and Alling.« less

  2. Using Carbon Nanotubes for Nanometer-Scale Energy Transfer Microscopy

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica; Shafran, Eyal; Mangum, Ben; Mu, Chun; Gerton, Jordan

    2009-10-01

    We investigate optical energy transfer between fluorophores and carbon nanotubes (CNTs). CNTs are grown on Si-oxide wafers by chemical vapor deposition (CVD), lifted off substrates by atomic force microscope (AFM) tips via Van der Waals forces, then shortened by electrical pulses. The tip-attached CNTs are scanned over fluorescent CdSe-ZnS quantum dots (QDs) with sub-nm precision while recording the fluorescence rate. A novel photon counting technique enables us to produce 3D maps of the QD-CNT coupling, revealing nanoscale lateral and vertical features. All CNTs tested (>50) strongly quenched the QD fluorescence, apparently independent of chirality. In some data, a delay in the recovery of QD fluorescence following CNT-QD contact was observed, suggesting possible charge transfer in this system. In the future, we will perform time-resolved studies to quantify the rate of energy and charge transfer processes and study the possible differences in fluorescence quenching and nanotube-QD energy transfer when comparing single-walled (SW) versus multi-walled (MW) CNTs, attempting to grow substrates consisting primarily of SW or MWCNTs and characterizing the structure of tip-attached CNTs using optical spectroscopy.

  3. Effect of photon-initiated photoacoustic streaming, passive ultrasonic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study.

    PubMed

    Akcay, Merve; Arslan, Hakan; Mese, Merve; Durmus, Nazlı; Capar, Ismail Davut

    2017-09-01

    The aim of this in vitro study was to evaluate the efficacy of different irrigation techniques including laser-activated irrigation using an erbium:yttrium-aluminum-garnet (Er:YAG) laser with a novel tip design (photon-induced photoacoustic streaming (PIPS)), Er:YAG laser with Preciso tip, sonic activation, and passive ultrasonic activation on the final irrigation solution penetration into dentinal tubules by using a laser scanning confocal microscope. In this study, 65 extracted single-rooted human mandibular premolars were instrumented up to size 40 and randomly divided into 5 groups (n = 13) based on the activation technique of the final irrigation solution as follows: conventional irrigation (control group), sonic activation, passive ultrasonic activation, Er:YAG-PIPS tip activation, and Er:YAG-Preciso tip activation. In each group, 5 mL of 5% NaOCl labeled with fluorescent dye was used during the activation as the final irrigation solution. Specimens were sectioned at 2.5 and 8 mm from the apex and then examined under a confocal microscope to calculate the dentinal tubule penetration area. Data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post hoc tests (P = 0.05). Both Er:YAG laser (Preciso/PIPS) activations exhibited a significantly higher penetration area than the other groups (P < 0.05). Additionally, passive ultrasonic activation had significantly higher penetration than the sonic activation group and the control group. Statistically significant differences were also found between each root canal third (coronal > middle > apical) (P < 0.001). The results from the present study support the use of Er:YAG laser activation (Preciso/PIPS) to improve the effectiveness of the final irrigation procedure by increasing the irrigant penetration area into the dentinal tubules. The activation of the irrigant and the creation of the streaming with the Er:YAG laser have a positive effect on the irrigant penetration.

  4. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    PubMed

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  5. Fiber Fabry-Perot tip sensor based on multimode photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wu, Di; Huang, Yu; Fu, Jian-Yu; Wang, Guo-Yin

    2015-03-01

    We propose a novel Fabry-Perot interferometer (FPI) sensor for simultaneous measurement of refractive index (RI) and temperature based on Fresnel reflection and the thermo-optic effect of silica. The sensor head consists of a short section of multimode photonic crystal fiber (MPCF) and a conventional single mode fiber (SMF), where two thin films are formed by collapsing the air holes of MPCF with a commercialized fusion splicer. Experimental results show that such a device has a linear RI sensitivity of ~21.52 dB/RIU (RI unit) and a linear optical path difference (OPD) temperature sensitivity of ~25 nm/°C. In addition, a high RI resolution of about ~1.7×10-5 is obtained by using the Fourier transformation to decompose the spectral response in different spatial frequencies. Low-cost, easy fabrication and high resolution make it appropriate for practical applications.

  6. Fabrication of silver tips for scanning tunneling microscope induced luminescence.

    PubMed

    Zhang, C; Gao, B; Chen, L G; Meng, Q S; Yang, H; Zhang, R; Tao, X; Gao, H Y; Liao, Y; Dong, Z C

    2011-08-01

    We describe a reliable fabrication procedure of silver tips for scanning tunneling microscope (STM) induced luminescence experiments. The tip was first etched electrochemically to yield a sharp cone shape using selected electrolyte solutions and then sputter cleaned in ultrahigh vacuum to remove surface oxidation. The tip status, in particular the tip induced plasmon mode and its emission intensity, can be further tuned through field emission and voltage pulse. The quality of silver tips thus fabricated not only offers atomically resolved STM imaging, but more importantly, also allows us to perform challenging "color" photon mapping with emission spectra taken at each pixel simultaneously during the STM scan under relatively small tunnel currents and relatively short exposure time.

  7. Photonic jet etching: Justifying the shape of optical fiber tip

    NASA Astrophysics Data System (ADS)

    Abdurrochman, Andri; Zelgowski, Julien; Lecler, Sylvain; Mermet, Frédéric; Tumbelaka, Bernard; Fontaine, Joël

    2016-02-01

    Photonic jet (PJ) is a low diverging and highly concentrated beam in the shadow side of dielectric particle (cylinder or sphere). The concentration can be more than 200 times higher than the incidence wave. It is a non-resonance phenomenon in the near-field can propagate in a few wavelengths. Many potential applications have been proposed, including PJ etching. Hence, a guided-beam is considered increasing the PJ mobility control. While the others used a combination of classical optical fibers and spheres, we are concerned on a classical optical fiber with spherical tip to generate the PJ. This PJ driven waveguide has been realized using Gaussian mode beam inside the core. It has different variable parameters compared to classical PJ, which will be discussed in correlation with the etching demonstrations. The parameters dependency between the tip and PJ properties are complex; and theoretical aspect of this interaction will be exposed to justify the shape of our tip and optical fiber used in our demonstrations. Methods to achieve such a needed optical fiber tip will also be described. Finally the ability to generate PJ out of the shaped optical fiber will be experimentally demonstrated and the potential applications for material processing will be exposed.

  8. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    NASA Astrophysics Data System (ADS)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  9. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    PubMed

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  10. Lab-on-fiber technology: a new vision for chemical and biological sensing.

    PubMed

    Ricciardi, Armando; Crescitelli, Alessio; Vaiano, Patrizio; Quero, Giuseppe; Consales, Marco; Pisco, Marco; Esposito, Emanuela; Cusano, Andrea

    2015-12-21

    The integration of microfluidics and photonic biosensors has allowed achievement of several laboratory functions in a single chip, leading to the development of photonic lab-on-a-chip technology. Although a lot of progress has been made to implement such sensors in small and easy-to-use systems, many applications such as point-of-care diagnostics and in vivo biosensing still require a sensor probe able to perform measurements at precise locations that are often hard to reach. The intrinsic property of optical fibers to conduct light to a remote location makes them an ideal platform to meet this demand. The motivation to combine the good performance of photonic biosensors on chips with the unique advantages of optical fibers has thus led to the development of the so-called lab-on-fiber technology. This emerging technology envisages the integration of functionalized materials on micro- and nano-scales (i.e. the labs) with optical fibers to realize miniaturized and advanced all-in-fiber probes, especially useful for (but not limited to) label-free chemical and biological applications. This review presents a broad overview of lab-on-fiber biosensors, with particular reference to lab-on-tip platforms, where the labs are integrated on the optical fiber facet. Light-matter interaction on the fiber tip is achieved through the integration of thin layers of nanoparticles or nanostructures supporting resonant modes, both plasmonic and photonic, highly sensitive to local modifications of the surrounding environment. According to the physical principle that is exploited, different configurations - such as localized plasmon resonance probes, surface enhanced Raman scattering probes and photonic probes - are classified, while various applications are presented in context throughout. For each device, the surface chemistry and the related functionalization protocols are reviewed. Moreover, the implementation strategies and fabrication processes, either based on bottom-up or top-down approaches, are discussed. In conclusion we highlight some of the further development opportunities, including lab-in-a-needle technology, which could have a direct and disruptive impact in localized cancer treatment applications.

  11. Etching of semiconductors and metals by the photonic jet with shaped optical fiber tips

    NASA Astrophysics Data System (ADS)

    Pierron, Robin; Lecler, Sylvain; Zelgowski, Julien; Pfeiffer, Pierre; Mermet, Frédéric; Fontaine, Joël

    2017-10-01

    The etching of semiconductors and metals by a photonic jet (PJ) generated with a shaped optical fiber tip is studied. Etched marks with a diameter of 1 μm have been realized on silicon, stainless steel and titanium with a 35 kHz pulsed laser, emitting 100 ns pulses at 1064 nm. The selection criteria of the fiber and its tip are discussed. We show that a 100/140 silica fiber is a good compromise which takes into account the injection, the working distance and the energy coupled in the higher-order modes. The energy balance is performed on the basis of the known ablation threshold of the material. Finally, the dependence between the etching depth and the number of pulses is studied. Saturation is observed probably due to a redeposition of the etched material, showing that a higher pulse energy is required for deeper etchings.

  12. Photonic jet: key role of injection for etchings with a shaped optical fiber tip.

    PubMed

    Pierron, Robin; Zelgowski, Julien; Pfeiffer, Pierre; Fontaine, Joël; Lecler, Sylvain

    2017-07-15

    We demonstrate the key role of the laser injection into a multimode fiber to obtain a photonic jet (PJ). PJ, a high concentrated propagating beam with a full width at half-maximum smaller than the diffraction limit, is here generated with a shaped optical fiber tip using a pulsed laser source (1064 nm, 100 ns, 35 kHz). Three optical injection systems of light are compared. For similar etched marks on silicon with diameters around 1 μm, we show that the required ablation energy is minimum when the injected light beam is close to the fundamental mode diameter of the fiber. Thus, we confirm experimentally that to obtain a PJ out of an optical fiber, light injection plays a role as important as that of the tip shape and, therefore, the role of the fundamental mode in the process.

  13. Fano Description of Single-Hydrocarbon Fluorescence Excited by a Scanning Tunneling Microscope.

    PubMed

    Kröger, Jörg; Doppagne, Benjamin; Scheurer, Fabrice; Schull, Guillaume

    2018-06-13

    The detection of fluorescence with submolecular resolution enables the exploration of spatially varying photon yields and vibronic properties at the single-molecule level. By placing individual polycyclic aromatic hydrocarbon molecules into the plasmon cavity formed by the tip of a scanning tunneling microscope and a NaCl-covered Ag(111) surface, molecular light emission spectra are obtained that unravel vibrational progression. In addition, light spectra unveil a signature of the molecule even when the tunneling current is injected well separated from the molecular emitter. This signature exhibits a distance-dependent Fano profile that reflects the subtle interplay between inelastic tunneling electrons, the molecular exciton and localized plasmons in at-distance as well as on-molecule fluorescence. The presented findings open the path to luminescence of a different class of molecules than investigated before and contribute to the understanding of single-molecule luminescence at surfaces in a unified picture.

  14. Analysis of a photon assisted field emission device

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Lau, Y. Y.; McGregor, D. S.

    2000-07-01

    A field emitter array held at the threshold of emission by a dc gate potential from which current pulses are triggered by the application of a laser pulse on the backside of the semiconductor may produce electron bunches ("density modulation") at gigahertz frequencies. We develop an analytical model of such optically controlled emission from a silicon tip using a modified Wentzel-Kramers-Brillouin and Airy function approach to solving Schrödinger's equation. Band bending and an approximation to the exchange-correlation effects on the image charge potential are included for an array of hyperbolic emitters with a distribution in tip radii and work function. For a simple relationship between the incident photon flux and the resultant electron density at the emission site, an estimation of the tunneling current is made. An example of the operation and design of such a photon-assisted field emission device is given.

  15. Tip-Enhanced Nano-Spectroscopy, Imaging, and Control: From Single Molecules to van der Waals Materials

    NASA Astrophysics Data System (ADS)

    Park, Kyoung-Duck

    Photon-induced phenomena in molecules and other materials play a significant role in device applications as well as understanding their physical properties. While a range of device applications using organic and inorganic molecules and soft and hard materials have led striking developments in modern technologies, using bulk systems has reached the limit in their functions, performance, and regarding application range. Recently, low-dimensional systems have emerged as appealing resources for the advanced technologies based on their significantly improved functions and properties. Hence, understanding light-matter interactions at their natural length scale is of fundamental significance, in addition to the next generation device applications. This thesis demonstrates a range of new functions and behaviors of low-dimensional materials revealed and controlled by the advanced tip-enhanced near-field spectroscopy and imaging techniques exceeding the current instrumental limits. To understand the behaviors of zero-dimensional (0D) molecular systems in interacting environments, we explore new regimes in tip-enhanced Raman spectroscopy (TERS) and scanning near-field optical microscopy (SNOM), revealing the fundamental nature of single-molecule dynamics and nanoscale spatial heterogeneity of biomolecules on the cell membranes. To gain insight into intramolecular properties and dynamic processes of single molecules, we use TERS at cryogenic temperatures. From temperature-dependent line narrowing and splitting, we investigate and quantify ultrafast vibrational dephasing, intramolecular coupling, and conformational heterogeneity. Through correlation analysis of fluctuations of individual modes, we observe rotational motion and spectral fluctuations of single-molecule. We extend single-molecule spectroscopy study into in situ nano-biomolecular imaging of cancer cells by developing in-liquid SNOM. We use a new mechanical resonance control, achieving a high-Q force sensing of the near-field probe. We reveal nanoscale correlations between surface biomolecules and intracellular organelle structures through near-field imaging of the spatial distribution of EGFRs on the membrane of A431 cancer cells. In addition, to understand modified spontaneous emission properties of single quantum dots coupled strongly with localized plasmon, we perform tip-enhanced photoluminescence (TEPL) spectroscopy of the single CdSe/ZnS quantum dots on gold film. We probe and control nanoscale processes in van der Waals two-dimensional (2D) materials. To understand lattice and electronic structure as well as elastic and phonon scattering properties of grain boundaries (GBs) in large-area graphene, we perform TERS imaging. Through correlated analysis of multispectral TERS images with corresponding topography and near-field scattering image, we reveal bilayer structure of GBs in the form of twisted stacking. In addition, we determine the misorientation angles of the bilayer GBs from a detailed quantitative investigation of the Raman modes. In addition, we present a new hybrid nano-optomechanical tip-enhanced spectroscopy and imaging approach combining TERS, TEPL, and atomic force local strain manipulation to probe the heterogeneous PL responses at nanoscale defects and control the local bandgap in transition metal dichalcogenide (TMD) monolayer. We further extend this approach to probe and control the radiative emission of dark excitons and localized excitons. Based on nano-tip enhanced spectroscopy with 600,000-fold PL enhancement induced by the plasmonic Purcell effect and few-fs radiative dynamics of the optical antenna tip, we can directly probe and actively modulate the dark exciton and localized exciton emissions in time ( ms) and space (<15 nm) at room temperature. Lastly, to extend the range of tip-enhanced microscopy applications to nano-crystallography and nonlinear optics, we present a generalizable approach controlling the excitation polarizability for both in-plane and out-of-plane vector fields by breaking the axial symmetry of a conventional Au tip. This vector field control with the tip enables probing of nonlinear optical second harmonic generation (SHG) responses from a range of ferroic materials as well as van der Waals 2D materials. Specifically, we demonstrate SHG nano-crystallography results for MoS2 monolayer film, ferroelectric YMnO3, BaTiO3-BiFeO3 multiferroics, and PbTiO3/SrTiO 3 superlattices.

  16. High-performance semiconductor quantum-dot single-photon sources

    NASA Astrophysics Data System (ADS)

    Senellart, Pascale; Solomon, Glenn; White, Andrew

    2017-11-01

    Single photons are a fundamental element of most quantum optical technologies. The ideal single-photon source is an on-demand, deterministic, single-photon source delivering light pulses in a well-defined polarization and spatiotemporal mode, and containing exactly one photon. In addition, for many applications, there is a quantum advantage if the single photons are indistinguishable in all their degrees of freedom. Single-photon sources based on parametric down-conversion are currently used, and while excellent in many ways, scaling to large quantum optical systems remains challenging. In 2000, semiconductor quantum dots were shown to emit single photons, opening a path towards integrated single-photon sources. Here, we review the progress achieved in the past few years, and discuss remaining challenges. The latest quantum dot-based single-photon sources are edging closer to the ideal single-photon source, and have opened new possibilities for quantum technologies.

  17. Tip-enhanced fluorescence with radially polarized illumination for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA

    NASA Astrophysics Data System (ADS)

    Wei, Shih-Chung; Chuang, Tsung-Liang; Wang, Da-Shin; Lu, Hui-Hsin; Gu, Frank X.; Sung, Kung-Bin; Lin, Chii-Wann

    2015-02-01

    A tip nanobiosensor for monitoring DNA replication was presented. The effects of excitation power and polarization on tip-enhanced fluorescence (TEF) were assessed with the tip immersed in fluorescein isothiocyanate solution first. The photon count rose on average fivefold with radially polarized illumination at 50 mW. We then used polymerase-functionalized tips for monitoring loop-mediated isothermal amplification on Hepatitis C virus cDNA. The amplicon-SYBR Green I complex was detected and compared to real-time loop-mediated isothermal amplification. The signals of the reaction using 4 and 0.004 ng/μl templates were detected 10 and 30 min earlier, respectively. The results showed the potential of TEF in developing a nanobiosensor for real-time DNA amplification.

  18. Single photon source with individualized single photon certifications

    NASA Astrophysics Data System (ADS)

    Migdall, Alan L.; Branning, David A.; Castelletto, Stefania; Ware, M.

    2002-12-01

    As currently implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand. The scheme uses a heralded photon source based on parametric downconversion, but by effectively breaking the trigger detector area into multiple regions, we are able to extract more information about a heralded photon than is possible with a conventional arrangement. This scheme allows photons to be produced along with a quantitative 'certification' that they are single photons. Some of the single-photon certifications can be significantly better than what is possible with conventional downconversion sources, as well as being better than faint laser sources. With such a source of more tightly certified single photons, it should be possible to improve the maximum secure bit rate possible over a quantum cryptographic link. We present an analysis of the relative merits of this method over the conventional arrangement.

  19. Hairlike Percutaneous Photochemical Sensors

    NASA Technical Reports Server (NTRS)

    George, Thomas; Loeb, Gerald

    2004-01-01

    Instrumentation systems based on hairlike fiber-optic photochemical sensors have been proposed as minimally invasive means of detecting biochemicals associated with cancer and other diseases. The fiber-optic sensors could be mass-produced as inexpensive, disposable components. The sensory tip of a fiber-optic sensor would be injected through the patient's skin into subcutaneous tissue. A biosensing material on the sensory tip would bind or otherwise react with the biochemical(s) of interest [the analyte(s)] to produce a change in optical properties that would be measured by use of an external photonic analyzer. After use, a fiber-optic sensor could be simply removed by plucking it out with tweezers. A fiber-optic sensor according to the proposal would be of the approximate size and shape of a human hair, and its sensory tip would resemble a follicle. Once inserted into a patient's subcutaneous tissue, the sensor would even more closely resemble a hair growing from a follicle (see Figure 1). The biosensing material on the sensory tip could consist of a chemical and/or cells cultured and modified for the purpose. The biosensing material would be contained within a membrane that would cover the tip. If the membrane were not permeable by an analyte, then it would be necessary to create pores in the membrane that would be large enough to allow analyte molecules to diffuse to the biosensing material, but not so large as to allow cells (if present as part of the biosensing material) to diffuse out. The end of the fiber-optic sensor opposite the sensory tip would be inserted in a fiberoptic socket in the photonic analyzer.

  20. Efficacy of air/water syringe tip sterilization.

    PubMed

    Inger, M; Bennani, V; Farella, M; Bennani, F; Cannon, R D

    2014-03-01

    Dental procedures involve contact between instruments and the patient's tissues, blood or saliva. This study evaluated the efficacy of the standardized sterilization of non-disposable air/water syringe tips and corrosion and contaminant build-up in these tips. The bacterial contamination of single-use and multiple-use non-disposable air/water syringe tips after routine use and sterilization was compared to that of single-use disposable tips by microbial culturing on PCA and blood agar plates. The effect of flushing the syringe tips prior to sterilization was also measured. The amount of corrosion in single-use and multiple-use non-disposable syringes was measured by SEM and EDS analyses. Non-disposable syringe tips had significantly (p < 0.05) greater bacterial contamination than single-use disposable tips. There were no statistically different levels of contamination between flushed and non-flushed non-disposable syringes or between single-use and multiple-use non-disposable syringes. SEM and EDS analyses showed greater evidence of corrosion and contaminant build-up in multiple-use syringes compared to single-use non-disposable syringes. Sterilization of non-disposable air/water syringes is not completely effective and rinsing, or the number of uses, does not affect the effectiveness of sterilization. There may be a lower risk of cross-infection from the use of disposable air/water syringe tips, instead of non-disposable ones. © 2014 Australian Dental Association.

  1. Electrically driven polarized single-photon emission from an InGaN quantum dot in a GaN nanowire.

    PubMed

    Deshpande, Saniya; Heo, Junseok; Das, Ayan; Bhattacharya, Pallab

    2013-01-01

    In a classical light source, such as a laser, the photon number follows a Poissonian distribution. For quantum information processing and metrology applications, a non-classical emitter of single photons is required. A single quantum dot is an ideal source of single photons and such single-photon sources in the visible spectral range have been demonstrated with III-nitride and II-VI-based single quantum dots. It has been suggested that short-wavelength blue single-photon emitters would be useful for free-space quantum cryptography, with the availability of high-speed single-photon detectors in this spectral region. Here we demonstrate blue single-photon emission with electrical injection from an In0.25Ga0.75N quantum dot in a single nanowire. The emitted single photons are linearly polarized along the c axis of the nanowire with a degree of linear polarization of ~70%.

  2. The phototransduction machinery in the rod outer segment has a strong efficacy gradient

    PubMed Central

    Mazzolini, Monica; Facchetti, Giuseppe; Andolfi, Laura; Proietti Zaccaria, Remo; Tuccio, Salvatore; Treu, Johannes; Altafini, Claudio; Di Fabrizio, Enzo M.; Lazzarino, Marco; Rapp, Gert; Torre, Vincent

    2015-01-01

    Rod photoreceptors consist of an outer segment (OS) and an inner segment. Inside the OS a biochemical machinery transforms the rhodopsin photoisomerization into electrical signal. This machinery has been treated as and is thought to be homogenous with marginal inhomogeneities. To verify this assumption, we developed a methodology based on special tapered optical fibers (TOFs) to deliver highly localized light stimulations. By using these TOFs, specific regions of the rod OS could be stimulated with spots of light highly confined in space. As the TOF is moved from the OS base toward its tip, the amplitude of saturating and single photon responses decreases, demonstrating that the efficacy of the transduction machinery is not uniform and is 5–10 times higher at the base than at the tip. This gradient of efficacy of the transduction machinery is attributed to a progressive depletion of the phosphodiesterase along the rod OS. Moreover we demonstrate that, using restricted spots of light, the duration of the photoresponse along the OS does not increase linearly with the light intensity as with diffuse light. PMID:25941368

  3. Heralded noiseless amplification for single-photon entangled state with polarization feature

    NASA Astrophysics Data System (ADS)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  4. An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities.

    PubMed

    Chew, Xiongyeu; Zhou, Guangya; Yu, Hongbin; Chau, Fook Siong; Deng, Jie; Loke, Yee Chong; Tang, Xiaosong

    2010-10-11

    Control of photonic crystal resonances in conjunction with large spectral shifting is critical in achieving reconfigurable photonic crystal devices. We propose a simple approach to achieve nano-mechanical control of photonic crystal resonances within a compact integrated on-chip approach. Three different tip designs utilizing an in-plane nano-mechanical tuning approach are shown to achieve reversible and low-loss resonance control on a one-dimensional photonic crystal nanocavity. The proposed nano-mechanical approach driven by a sub-micron micro-electromechanical system integrated on low loss suspended feeding nanowire waveguide, achieved relatively large resonance spectral shifts of up to 18 nm at a driving voltage of 25 V. Such designs may potentially be used as tunable optical filters or switches.

  5. Detection and laser ranging of orbital objects using optical methods

    NASA Astrophysics Data System (ADS)

    Wagner, P.; Hampf, D.; Sproll, F.; Hasenohr, T.; Humbert, L.; Rodmann, J.; Riede, W.

    2016-09-01

    Laser ranging to satellites (SLR) in earth orbit is an established technology used for geodesy, fundamental science and precise orbit determination. A combined active and passive optical measurement system using a single telescope mount is presented which performs precise ranging measurements of retro reflector equipped objects in low earth orbit (LEO). The German Aerospace Center (DLR) runs an observatory in Stuttgart where a system has been assembled completely from commercial off-the-shelf (COTS) components. The visible light directed to the tracking camera is used to perform angular measurements of objects under investigation. This is done astrometrically by comparing the apparent target position with cataloged star positions. First successful satellite laser ranging was demonstrated recently using an optical fiber directing laser pulses onto the astronomical mount. The transmitter operates at a wavelength of 1064 nm with a repetition rate of 3 kHz and pulse energy of 25 μJ. A motorized tip/tilt mount allows beam steering of the collimated beam with μrad accuracy. The returning photons reflected from the object in space are captured with the tracking telescope. A special low aberration beam splitter unit was designed to separate the infrared from visible light. This allows passive optical closed loop tracking and operation of a single photon detector for time of flight measurements at a single telescope simultaneously. The presented innovative design yields to a compact and cost effective but very precise ranging system which allows orbit determination.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Göring, Gerald; Dietrich, Philipp-Immanuel; Blaicher, Matthias

    3D direct laser writing based on two-photon polymerization is considered as a tool to fabricate tailored probes for atomic force microscopy. Tips with radii of 25 nm and arbitrary shape are attached to conventionally shaped micro-machined cantilevers. Long-term scanning measurements reveal low wear rates and demonstrate the reliability of such tips. Furthermore, we show that the resonance spectrum of the probe can be tuned for multi-frequency applications by adding rebar structures to the cantilever.

  7. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    ERIC Educational Resources Information Center

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  8. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  9. Time-resolved scattering of a single photon by a single atom

    PubMed Central

    Leong, Victor; Seidler, Mathias Alexander; Steiner, Matthias; Cerè, Alessandro; Kurtsiefer, Christian

    2016-01-01

    Scattering of light by matter has been studied extensively in the past. Yet, the most fundamental process, the scattering of a single photon by a single atom, is largely unexplored. One prominent prediction of quantum optics is the deterministic absorption of a travelling photon by a single atom, provided the photon waveform matches spatially and temporally the time-reversed version of a spontaneously emitted photon. Here we experimentally address this prediction and investigate the influence of the photon's temporal profile on the scattering dynamics using a single trapped atom and heralded single photons. In a time-resolved measurement of atomic excitation we find a 56(11)% increase of the peak excitation by photons with an exponentially rising profile compared with a decaying one. However, the overall scattering probability remains unchanged within the experimental uncertainties. Our results demonstrate that envelope tailoring of single photons enables precise control of the photon–atom interaction. PMID:27897173

  10. Deterministic and storable single-photon source based on a quantum memory.

    PubMed

    Chen, Shuai; Chen, Yu-Ao; Strassel, Thorsten; Yuan, Zhen-Sheng; Zhao, Bo; Schmiedmayer, Jörg; Pan, Jian-Wei

    2006-10-27

    A single-photon source is realized with a cold atomic ensemble (87Rb atoms). A single excitation, written in an atomic quantum memory by Raman scattering of a laser pulse, is retrieved deterministically as a single photon at a predetermined time. It is shown that the production rate of single photons can be enhanced considerably by a feedback circuit while the single-photon quality is conserved. Such a single-photon source is well suited for future large-scale realization of quantum communication and linear optical quantum computation.

  11. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna

    DOE PAGES

    Caselli, Niccolò; La China, Federico; Bao, Wei; ...

    2015-06-05

    Tailoring the electromagnetic field at the nanoscale has led to artificial materials exhibiting fascinating optical properties unavailable in naturally occurring substances. Besides having fundamental implications for classical and quantum optics, nanoscale metamaterials provide a platform for developing disruptive novel technologies, in which a combination of both the electric and magnetic radiation field components at optical frequencies is relevant to engineer the light-matter interaction. Thus, an experimental investigation of the spatial distribution of the photonic states at the nanoscale for both field components is of crucial importance. Here we experimentally demonstrate a concomitant deep-subwavelength near-field imaging of the electric and magneticmore » intensities of the optical modes localized in a photonic crystal nanocavity. We take advantage of the “campanile tip”, a plasmonic near-field probe that efficiently combines broadband field enhancement with strong far-field to near-field coupling. In conclusion, by exploiting the electric and magnetic polarizability components of the campanile tip along with the perturbation imaging method, we are able to map in a single measurement both the electric and magnetic localized near-field distributions.« less

  12. Generation of Single Photons and Entangled Photon Pairs from a Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Pelton, M.; Santori, C.; Solomon, G. S.

    2002-10-01

    Current quantum cryptography systems are limited by the Poissonian photon statistics of a standard light source: a security loophole is opened up by the possibility of multiple-photon pulses. By replacing the source with a single-photon emitter, transmission rates of secure information can be improved. A single photon source is also essential to implement a linear optics quantum computer. We have investigated the use of single self-assembled InAs/GaAs quantum dots as such single-photon sources, and have seen a hundred-fold reduction in the multi-photon probability as compared to Poissonian pulses. An extension of our experiment should also allow for the generation of triggered, polarizationentangled photon pairs.

  13. Photonic jet μ-etching: from static to dynamic process

    NASA Astrophysics Data System (ADS)

    Abdurrochman, A.; Lecler, S.; Zelgowski, J.; Mermet, F.; Fontaine, J.; Tumbelaka, B. Y.

    2017-05-01

    Photonic jet etching is a direct-laser etching method applying photonic jet phenomenon to concentrate the laser beam onto the proceeded material. We call photonic jet the phenomenon of the localized sub-wavelength propagative beam generated at the shadow-side surfaces of micro-scale dielectric cylinders or spheres, when they are illuminated by an electromagnetic plane-wave or laser beam. This concentration has made possible the laser to yield sub-μ etching marks, despite the laser was a near-infrared with nano-second pulses sources. We will present these achievements from the beginning when some spherical glasses were used for static etching to dynamic etching using an optical fiber with a semi-elliptical tip.

  14. Towards force spectroscopy of single tip-link bonds

    NASA Astrophysics Data System (ADS)

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.; Corey, David P.

    2015-12-01

    Inner-ear mechanotransduction relies on tip links, fine protein filaments made of cadherin-23 and protocadherin-15 that convey tension to mechanosensitive channels at the tips of hair-cell stereocilia. The tip-link cadherins are thought to form a heterotetrameric complex, with two cadherin-23 molecules forming the upper part of the filament and two protocadherin-15 molecules forming the lower end. The interaction between cadherin-23 and protocadherin-15 is mediated by their N-terminal tips. Missense mutations that modify the interaction interface impair binding and lead to deafness. Molecular dynamics simulations predict that the tip-link bond is mechanically strong enough to withstand forces in hair cells, but its experimentally determined strength is unknown. We have developed molecular tools to facilitate single-molecule force spectroscopy on the tip link bond. Self-assembling DNA nanoswitches are functionalized with the interacting tips of cadherin-23 and protocadherin-15 using the enzyme sortase under conditions that preserve protein function. These tip link nanoswitches are designed to provide a signature force-extension profile. This molecular signature should allow us to identify single-molecule rupture events in pulling experiments.

  15. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  16. Deterministic and robust generation of single photons from a single quantum dot with 99.5% indistinguishability using adiabatic rapid passage.

    PubMed

    Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2014-11-12

    Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.

  17. Concept for polychromatic laser guide stars: one-photon excitation of the 4P3/2 level of a sodium atom.

    PubMed

    Pique, Jean-Paul; Moldovan, Ioana Cristina; Fesquet, Vincent

    2006-11-01

    One challenge for polychromatic laser guide stars is to create a sufficiently intense source in the UV. The flux required for the measurement of differential tip-tilt is the main issue that we address. We describe a model that has been validated using on-sky data. We present a method that excites the 4P3/2 sodium level using a one-photon excitation at 330 nm. It is more efficient than the two-photon excitation previously suggested since its power slope flux is 3 x 10(4) photons/s/m2/W instead of 1.3 x 10(3) photons/s/m2/W. This method is very promising both in terms of flux and system simplicity.

  18. Single Nanowire Probe for Single Cell Endoscopy and Sensing

    NASA Astrophysics Data System (ADS)

    Yan, Ruoxue

    The ability to manipulate light in subwavelength photonic and plasmonic structures has shown great potentials in revolutionizing how information is generated, transformed and processed. Chemically synthesized nanowires, in particular, offers a unique toolbox not only for highly compact and integrated photonic modules and devices, including coherent and incoherent light sources, waveguides, photodetectors and photovoltaics, but also for new types of nanoscopic bio-probes for spot cargo delivery and in-situ single cell endoscopy and sensing. Such nanowire probes would enable us to carry out intracellular imaging and probing with high spatial resolution, monitor in-vivo biological processes within single living cells and greatly improve our fundamental understanding of cell functions, intracellular physiological processes, and cellular signal pathways. My work is aimed at developing a material and instrumental platform for such single nanowire probe. Successful optical integration of Ag nanowire plasmonic waveguides, which offers deep subwavelength mode confinement, and conventional photonic waveguides was demonstrated on a single nanowire level. The highest plasmonic-photonic coupling efficiency coupling was found at small coupling angles and low input frequencies. The frequency dependent propagation loss was observed in Ag nanowire and was confirmed by quantitative measurement and in agreement with theoretical expectations. Rational integration of dielectric and Ag nanowire waveguide components into hybrid optical-plasmonic routing devices has been demonstrated. This capability is essential for incorporating sub-100nm Ag nanowire waveguides into optical fiber based nanoprobes for single cell endoscopy. The nanoprobe system based on single nanowire waveguides was demonstrated by optically coupling semiconductor or metal nanowire with an optical fiber with tapered tip. This nanoprobe design requires minimal instrumentation which makes it cost efficient and readily adaptable to average bio-lab environment. These probes are mechanically robust and flexible and can withstand repeated bending and deformation without significant deterioration in optical performance, which offers an ideal instrumental platform for out subsequent effort of using these nanoprobes in chemical sensing as well as single cell endoscopy and spot delivery. Parameters affecting the coupling efficiency and output power of the nanoprobe were studied and chemical etched of single mode fiber with small cone angle was established to be optimized for highly effective optical nanoprobes. The versatility of the nanoprobe design was first tested by transforming the nanowire probe into a pH sensor with near-field photopolymerization of a copolymer containing pH sensitive dye on the tip of the nanowire. The pH-sensitive nanoprobe was able to report the pH difference in micro-droplets containing buffer solution with the excitation of light waveguided on the nanoprobe with internal calibration, fast response time and good photostability and reversibility. Such nanoprobe sensors are ideal for high definition spatial and temporal sensing of concentration profile, especially for the kinetic processes in single cell studies for which chemical probes of minute sizes and fast response are desired. The nanoprobe was then applied into spot cargo delivery and in-situ single cell endoscopy. It was demonstrated that nanowire-based optical probe can deliver payloads into the cell with a high spatiotemporal precision, guide and confine visible light into intracellular compartments selectively and detect optical signals from the subcellular regions with high spatial resolution. The nanoprobe was proven to be biocompatible and non-invasive. The effective optical coupling between the fiber optics and the nanowire enables highly localized excitation and detection, limiting the probe volume to the close proximity of the nanowire. None the less, this versatile technique does not rely on any expensive or bulky instrumentation, and relies only on micromanipulator and optical microscope that are readily available in most biological labs. The different functions can be further integrated to make the whole nanoprobe system more compact and even portable. In addition, my research also includes the first demonstration of the synthesis of the longitudinal heterostructured SiO2/Al2O 3 nanotubes and the nanofluidic diode device based on the discontinuity of their internal surface charge. Comprehensive characterization shows that the nanotubes has heterostructured inner tube walls, as well as a discontinuity of surface charge. The ionic transport through these nanotube heterojunctions exhibits clear current rectification, a signature of ionic diode behavior. The development of such nanofluidic devices would enable the modulation of ionic and molecular transport at a more sophisticated level, and lead to large-scale integrated nanofluidic networks and logic circuits.

  19. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  20. Single-photon emitting diode in silicon carbide.

    PubMed

    Lohrmann, A; Iwamoto, N; Bodrog, Z; Castelletto, S; Ohshima, T; Karle, T J; Gali, A; Prawer, S; McCallum, J C; Johnson, B C

    2015-07-23

    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide an ideal material to build such devices. Here, we demonstrate the fabrication of bright single-photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >300 kHz) and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single-photon source is proposed. These results provide a foundation for the large scale integration of single-photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.

  1. Single photon sources with single semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  2. Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyoon; Cho, Young-Wook; Chough, Young-Tak; Kim, Yoon-Ho

    2018-04-01

    We report an experimental demonstration of the nonclassical stationary light pulse (SLP) in a cold atomic ensemble. A single collective atomic excitation is created and heralded by detecting a Stokes photon in the spontaneous Raman scattering process. The heralded single atomic excitation is converted into a single stationary optical excitation or the single-photon SLP, whose effective group velocity is zero, effectively forming a trapped single-photon pulse within the cold atomic ensemble. The single-photon SLP is then released from the atomic ensemble as an anti-Stokes photon after a specified trapping time. The second-order correlation measurement between the Stokes and anti-Stokes photons reveals the nonclassical nature of the single-photon SLP. Our work paves the way toward quantum nonlinear optics without a cavity.

  3. Single-Atom Single-Photon Quantum Interface

    NASA Astrophysics Data System (ADS)

    Moehring, David; Bochmann, Joerg; Muecke, Martin; Specht, Holger; Weber, Bernhard; Wilk, Tatjana; Rempe, Gerhard

    2008-05-01

    By combining atom trapping techniques and cavity cooling schemes we are able to trap a single neutral atom inside a high-finesse cavity for several tens of seconds. We show that our coupled atom-cavity system can be used to generate single photons in a controlled way. With our long trapping times and high single-photon production efficiency, the non-classical properties of the emitted light can be shown in the photon correlations of a single atom. In a similar atom-cavity setup, we investigate the interface between atoms and photons by entangling a single atom with a single photon emitted into the cavity and by further mapping the quantum state of the atom onto a second single photon. These schemes are intrinsically deterministic and establish the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers. This work was supported by the Deutsche Forschungsgemeinschaft, and the European Union SCALA and CONQUEST programs. D. L. M. acknowledges support from the Alexander von Humboldt Foundation.

  4. Long-Distance Single Photon Transmission from a Trapped Ion via Quantum Frequency Conversion

    NASA Astrophysics Data System (ADS)

    Walker, Thomas; Miyanishi, Koichiro; Ikuta, Rikizo; Takahashi, Hiroki; Vartabi Kashanian, Samir; Tsujimoto, Yoshiaki; Hayasaka, Kazuhiro; Yamamoto, Takashi; Imoto, Nobuyuki; Keller, Matthias

    2018-05-01

    Trapped atomic ions are ideal single photon emitters with long-lived internal states which can be entangled with emitted photons. Coupling the ion to an optical cavity enables the efficient emission of single photons into a single spatial mode and grants control over their temporal shape. These features are key for quantum information processing and quantum communication. However, the photons emitted by these systems are unsuitable for long-distance transmission due to their wavelengths. Here we report the transmission of single photons from a single 40Ca+ ion coupled to an optical cavity over a 10 km optical fiber via frequency conversion from 866 nm to the telecom C band at 1530 nm. We observe nonclassical photon statistics of the direct cavity emission, the converted photons, and the 10 km transmitted photons, as well as the preservation of the photons' temporal shape throughout. This telecommunication-ready system can be a key component for long-distance quantum communication as well as future cloud quantum computation.

  5. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    PubMed

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  6. Active temporal multiplexing of indistinguishable heralded single photons

    PubMed Central

    Xiong, C.; Zhang, X.; Liu, Z.; Collins, M. J.; Mahendra, A.; Helt, L. G.; Steel, M. J.; Choi, D. -Y.; Chae, C. J.; Leong, P. H. W.; Eggleton, B. J.

    2016-01-01

    It is a fundamental challenge in quantum optics to deterministically generate indistinguishable single photons through non-deterministic nonlinear optical processes, due to the intrinsic coupling of single- and multi-photon-generation probabilities in these processes. Actively multiplexing photons generated in many temporal modes can decouple these probabilities, but key issues are to minimize resource requirements to allow scalability, and to ensure indistinguishability of the generated photons. Here we demonstrate the multiplexing of photons from four temporal modes solely using fibre-integrated optics and off-the-shelf electronic components. We show a 100% enhancement to the single-photon output probability without introducing additional multi-photon noise. Photon indistinguishability is confirmed by a fourfold Hong–Ou–Mandel quantum interference with a 91±16% visibility after subtracting multi-photon noise due to high pump power. Our demonstration paves the way for scalable multiplexing of many non-deterministic photon sources to a single near-deterministic source, which will be of benefit to future quantum photonic technologies. PMID:26996317

  7. Single-photon three-qubit quantum logic using spatial light modulators.

    PubMed

    Kagalwala, Kumel H; Di Giuseppe, Giovanni; Abouraddy, Ayman F; Saleh, Bahaa E A

    2017-09-29

    The information-carrying capacity of a single photon can be vastly expanded by exploiting its multiple degrees of freedom: spatial, temporal, and polarization. Although multiple qubits can be encoded per photon, to date only two-qubit single-photon quantum operations have been realized. Here, we report an experimental demonstration of three-qubit single-photon, linear, deterministic quantum gates that exploit photon polarization and the two-dimensional spatial-parity-symmetry of the transverse single-photon field. These gates are implemented using a polarization-sensitive spatial light modulator that provides a robust, non-interferometric, versatile platform for implementing controlled unitary gates. Polarization here represents the control qubit for either separable or entangling unitary operations on the two spatial-parity target qubits. Such gates help generate maximally entangled three-qubit Greenberger-Horne-Zeilinger and W states, which is confirmed by tomographical reconstruction of single-photon density matrices. This strategy provides access to a wide range of three-qubit states and operations for use in few-qubit quantum information processing protocols.Photons are essential for quantum information processing, but to date only two-qubit single-photon operations have been realized. Here the authors demonstrate experimentally a three-qubit single-photon linear deterministic quantum gate by exploiting polarization along with spatial-parity symmetry.

  8. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    NASA Astrophysics Data System (ADS)

    Heilman, A. L.; Gordon, M. J.

    2016-06-01

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used to plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower "effective" pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.

  9. Tip-enhanced near-field optical microscope with side-on and ATR-mode sample excitation for super-resolution Raman imaging of surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilman, A. L.; Gordon, M. J.

    A tip-enhanced near-field optical microscope with side-on and attenuated total reflectance (ATR) excitation and collection is described and used to demonstrate sub-diffraction-limited (super-resolution) optical and chemical characterization of surfaces. ATR illumination is combined with an Au optical antenna tip to show that (i) the tip can quantitatively transduce the optical near-field (evanescent waves) above the surface by scattering photons into the far-field, (ii) the ATR geometry enables excitation and characterization of surface plasmon polaritons (SPPs), whose associated optical fields are shown to enhance Raman scattering from a thin layer of copper phthalocyanine (CuPc), and (iii) SPPs can be used tomore » plasmonically excite the tip for super-resolution chemical imaging of patterned CuPc via tip-enhanced Raman spectroscopy (TERS). ATR-illumination TERS is also quantitatively compared with the more conventional side-on illumination scheme. In both cases, spatial resolution was better than 40 nm and tip on/tip off Raman enhancement factors were >6500. Furthermore, ATR illumination was shown to provide similar Raman signal levels at lower “effective” pump powers due to additional optical energy delivered by SPPs to the active region in the tip-surface gap.« less

  10. Single-Photon-Triggered Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zheng, Li-Li; Zhu, Gui-Lei; Wu, Ying

    2018-06-01

    We propose a hybrid quantum model combining cavity QED and optomechanics, which allows the occurrence of an equilibrium superradiant quantum phase transition (QPT) triggered by a single photon. This single-photon-triggered QPT exists in the cases of both ignoring and including the so-called A2 term; i.e., it is immune to the no-go theorem. It originally comes from the photon-dependent quantum criticality featured by the proposed hybrid quantum model. Moreover, a reversed superradiant QPT is induced by the competition between the introduced A2 term and the optomechanical interaction. This work offers an approach to manipulate QPT with a single photon, which should inspire the exploration of single-photon quantum-criticality physics and the engineering of new single-photon quantum devices.

  11. Generation, storage, and retrieval of nonclassical states of light using atomic ensembles

    NASA Astrophysics Data System (ADS)

    Eisaman, Matthew D.

    This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.

  12. Attachment of Single Multiwall WS2 Nanotubes and Single WO3-x Nanowhiskers to a Probe

    NASA Astrophysics Data System (ADS)

    Ashiri, I.; Gartsman, K.; Cohen, S. R.; Tenne, R.

    2003-10-01

    WS2 nanotubes were the first inorganic fullerene-like (IF) structures to be synthesized. Although the physical properties of IF were not fully studied it seems that the WS2 nanotubes can be suitable for applications in the nanoscale range. An approach toward nanofabrication is simulated in this study. High resolution scanning electron microscope equipped with micromanipulator was used to attach single multiwall WS2 nanotubes and single WO3-x nanowhiskers to a probe, which is an atomic force microscope (AFM) silicon tip in the present case. The imaging capabilities of this nanotube or nanowhisker tip were tested in the AFM. The WO3-x nanowhisker tip was found to be stable, but it has a low lateral resolution (100nm). The WS2 nanotube tips were found to be stable only when its length was smaller than 1 μm. The fabrication technique of WS2 nanotube tip and WO3-x nanowhisker tip was found to be controllable and reliable and it can probably be used to various applications as well as for preparation of single nanotubes samples for measurements, like mechanical or optical probes.

  13. Plasmonic nanofocusing of light in an integrated silicon photonics platform.

    PubMed

    Desiatov, Boris; Goykhman, Ilya; Levy, Uriel

    2011-07-04

    The capability to focus electromagnetic energy at the nanoscale plays an important role in nanoscinece and nanotechnology. It allows enhancing light matter interactions at the nanoscale with applications related to nonlinear optics, light emission and light detection. It may also be used for enhancing resolution in microscopy, lithography and optical storage systems. Hereby we propose and experimentally demonstrate the nanoscale focusing of surface plasmons by constructing an integrated plasmonic/photonic on chip nanofocusing device in silicon platform. The device was tested directly by measuring the optical intensity along it using a near-field microscope. We found an order of magnitude enhancement of the intensity at the tip's apex. The spot size is estimated to be 50 nm. The demonstrated device may be used as a building block for "lab on a chip" systems and for enhancing light matter interactions at the apex of the tip.

  14. Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE.

    PubMed

    Skibitzki, Oliver; Prieto, Ivan; Kozak, Roksolana; Capellini, Giovanni; Zaumseil, Peter; Arroyo Rojas Dasilva, Yadira; Rossell, Marta D; Erni, Rolf; von Känel, Hans; Schroeder, Thomas

    2017-03-01

    We present the nanoheteroepitaxial growth of gallium arsenide (GaAs) on nano-patterned silicon (Si) (001) substrates fabricated using a CMOS technology compatible process. The selective growth of GaAs nano-crystals (NCs) was achieved at 570 °C by MOVPE. A detailed structure and defect characterization study of the grown nano-heterostructures was performed using scanning transmission electron microscopy, x-ray diffraction, micro-Raman, and micro-photoluminescence (μ-PL) spectroscopy. The results show single-crystalline, nearly relaxed GaAs NCs on top of slightly, by the SiO 2 -mask compressively strained Si nano-tips (NTs). Given the limited contact area, GaAs/Si nanostructures benefit from limited intermixing in contrast to planar GaAs films on Si. Even though a few growth defects (e.g. stacking faults, micro/nano-twins, etc) especially located at the GaAs/Si interface region were detected, the nanoheterostructures show intensive light emission, as investigated by μ-PL spectroscopy. Achieving well-ordered high quality GaAs NCs on Si NTs may provide opportunities for superior electronic, photonic, or photovoltaic device performances integrated on the silicon technology platform.

  15. Single-photon-level quantum image memory based on cold atomic ensembles

    PubMed Central

    Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2013-01-01

    A quantum memory is a key component for quantum networks, which will enable the distribution of quantum information. Its successful development requires storage of single-photon light. Encoding photons with spatial shape through higher-dimensional states significantly increases their information-carrying capability and network capacity. However, constructing such quantum memories is challenging. Here we report the first experimental realization of a true single-photon-carrying orbital angular momentum stored via electromagnetically induced transparency in a cold atomic ensemble. Our experiments show that the non-classical pair correlation between trigger photon and retrieved photon is retained, and the spatial structure of input and retrieved photons exhibits strong similarity. More importantly, we demonstrate that single-photon coherence is preserved during storage. The ability to store spatial structure at the single-photon level opens the possibility for high-dimensional quantum memories. PMID:24084711

  16. Room temperature single photon generation at 1. 5 μ m from covalent dopant states of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Htoonb, Han; He, Xiaowei; Hartmann, Nicolai; Ma, Xuedan; Doorn, Stephen; CenterIntegrated Nanotechnologies, Los Alamos National Laboratory Team

    Recent demonstration that oxygen dopant states covalently attached to the single-walled carbon nanotubes (SWCNTs) are capable of emitting single photons at room-T (RT) opens the possibility of building room-T electrically-driven single photon sources for quantum communication applications. The RT single photon generation was not observed only at wavelength beyond 1.3 μ m. Here in this work we demonstrate RT single photon generation at 1. 5 μ m from diazonium dopant states of (10,3) nanotubes.

  17. Measuring Single Photons

    Science.gov Websites

    Explore the World of Particle Physics Measuring Single Photons The web pages that follow presume phenomenon and then return to our study of single photon measurement. Your choices include: These choices University of Colorado. A Java applet by Phillip Warner. Dive right into the single photon pages here

  18. New Technique for Fabrication of Scanning Single-Electron Transistor Microscopy Tips

    NASA Astrophysics Data System (ADS)

    Goodwin, Eric; Tessmer, Stuart

    Fabrication of glass tips for Scanning Single-Electron Transistor Microscopy (SSETM) can be expensive, time consuming, and inconsistent. Various techniques have been tried, with varying levels of success in regards to cost and reproducibility. The main requirement for SSETM tips is to have a sharp tip ending in a micron-scale flat face to allow for deposition of a quantum dot. Drawing inspiration from methods used to create tips from optical fibers for Near-Field Scanning Optical Microscopes, our group has come up with a quick and cost effective process for creating SSETM tips. By utilizing hydrofluoric acid to etch the tips and oleic acid to guide the etch profile, optical fiber tips with appropriate shaping can be rapidly prepared. Once etched, electric leads are thermally evaporated onto each side of the tip, while an aluminum quantum dot is evaporated onto the face. Preliminary results using various metals, oxide layers, and lead thicknesses have proven promising.

  19. Effects of molecular packing in organic crystals on singlet fission with ab initio many body perturbation theory

    NASA Astrophysics Data System (ADS)

    Haber, Jonah; Refaely-Abramson, Sivan; da Jornada, Felipe H.; Louie, Steven G.; Neaton, Jeffrey B.

    Multi-exciton generation processes, in which multiple charge carriers are generated from a single photon, are mechanisms of significant interest for achieving efficiencies beyond the Shockley-Queisser limit of conventional p-n junction solar cells. One well-studied multiexciton process is singlet fission, whereby a singlet decays into two spin-correlated triplet excitons. Here, we use a newly developed computational approach to calculate singlet-fission coupling terms and rates with an ab initio Green's function formalism based on many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation approach. We compare results for crystalline pentacene and TIPS-pentacene and explore the effect of molecular packing on the singlet fission mechanism. This work is supported by the Department of Energy.

  20. Optically driven self-oscillations of a silica nanospike at low gas pressures

    NASA Astrophysics Data System (ADS)

    Xie, Shangran; Pennetta, Riccardo; Noskov, Roman E.; Russell, Philip St. J.

    2016-09-01

    We report light-driven instability and optomechanical self-oscillation of a fused silica "nanospike" at low gas pressures. The nanospike (tip diameter 400 nm), fabricated by thermally tapering and HF-etching a single mode fiber (SMF), was set pointing at the endface of a hollow-core photonic crystal fiber (HC-PCF) into the field created by the fundamental optical mode emerging from the HC-PCF. At low pressures, the nanospike became unstable and began to self-oscillate for optical powers above a certain threshold, acting like a phonon laser or "phaser". Because the nanospike is robustly connected to the base, direct measurement of the temporal dynamics of the instability is possible. The experiment sheds light on why particles escape from optical traps at low pressures.

  1. Tunneling-Electron-Induced Light Emission from Single Gold Nanoclusters.

    PubMed

    Yu, Arthur; Li, Shaowei; Czap, Gregory; Ho, W

    2016-09-14

    The coupling of tunneling electrons with the tip-nanocluster-substrate junction plasmon was investigated by monitoring light emission in a scanning tunneling microscope (STM). Gold atoms were evaporated onto the ∼5 Å thick Al2O3 thin film grown on the NiAl (110) surface where they formed nanoclusters 3-7 nm wide. Scanning tunneling spectroscopy (STS) of these nanoclusters revealed quantum-confined electronic states. Spatially resolved photon imaging showed localized emission hot spots. Size dependent study and light emission from nanocluster dimers further support the viewpoint that coupling of tunneling electrons to the junction plasmon is the main radiative mechanism. These results showed the potential of the STM to reveal the electronic and optical properties of nanoscale metallic systems in the confined geometry of the tunnel junction.

  2. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Lanjekar, R. D.; Deshmukh, D.

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  3. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters.

    PubMed

    Lanjekar, R D; Deshmukh, D

    2018-02-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n -heptane, n -dodecane and n -tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n -heptane fuel is closely following diesel spray tip penetration along with that of n -tetradecane and n -dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment.

  4. Experimental and numerical investigations on spray characteristics of fatty acid methyl esters

    PubMed Central

    Deshmukh, D.

    2018-01-01

    A comparative experimental and numerical study is conducted to establish the significance of the use of single-component over multi-component representatives of biodiesel, diesel and their blend for predicting spray tip penetration. Methyl oleate and methyl laurate are used as single-component representative fuels for biodiesel. The pure components n-heptane, n-dodecane and n-tetradecane are used as single-component representative fuels for diesel. Methyl laurate is found to represent biodiesel of coconut, whereas methyl oleate is found to represent biodiesel having high percentage of long-chain fatty acid esters. The spray tip penetration of methyl oleate is found to be in good agreement with the measured spray tip penetration of karanja biodiesel. The spray tip penetration prediction of n-heptane fuel is closely following diesel spray tip penetration along with that of n-tetradecane and n-dodecane. The study suggests that the knowledge of the single-component representatives of biodiesel, diesel and their blend is sufficient to predict the spray tip penetration of the corresponding biodiesel, diesel and their blend under non-evaporating environment. PMID:29515835

  5. Single photon laser altimeter data processing, analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan

    2015-10-01

    Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).

  6. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities.

    PubMed

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F; Machiya, Hidenori; Htoon, Han; Doorn, Stephen K; Kato, Yuichiro K

    2018-06-13

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ∼50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ∼30% decrease of emission lifetime is observed. The statistics of photons emitted from the cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ∼1.7 × 10 7 Hz.

  7. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  8. Enhanced Single-Photon Emission from Carbon-Nanotube Dopant States Coupled to Silicon Microcavities

    DOE PAGES

    Ishii, Akihiro; He, Xiaowei; Hartmann, Nicolai F.; ...

    2018-05-21

    Single-walled carbon nanotubes are a promising material as quantum light sources at room temperature and as nanoscale light sources for integrated photonic circuits on silicon. Here, we show that the integration of dopant states in carbon nanotubes and silicon microcavities can provide bright and high-purity single-photon emitters on a silicon photonics platform at room temperature. We perform photoluminescence spectroscopy and observe the enhancement of emission from the dopant states by a factor of ~50, and cavity-enhanced radiative decay is confirmed using time-resolved measurements, in which a ~30% decrease of emission lifetime is observed. The statistics of photons emitted from themore » cavity-coupled dopant states are investigated by photon-correlation measurements, and high-purity single photon generation is observed. The excitation power dependence of photon emission statistics shows that the degree of photon antibunching can be kept high even when the excitation power increases, while the single-photon emission rate can be increased to ~1.7 × 10 7 Hz.« less

  9. A quantum dot single-photon source with on-the-fly all-optical polarization control and timed emission.

    PubMed

    Heinze, Dirk; Breddermann, Dominik; Zrenner, Artur; Schumacher, Stefan

    2015-10-05

    Sources of single photons are key elements for applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their integrability in semiconductor on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon is emitted from a single-exciton ground state. Polarization of the photon and time of emission are either probabilistic or pre-determined by electronic properties of the system. Here, we study the direct two-photon emission from the biexciton. The two-photon emission is enabled by a laser pulse driving the system into a virtual state inside the band gap. From this intermediate state, the single photon of interest is then spontaneously emitted. We show that emission through this higher-order transition provides a versatile approach to generate a single photon. Through the driving laser pulse, polarization state, frequency and emission time of the photon can be controlled on-the-fly.

  10. Tuning single-photon sources for telecom multi-photon experiments.

    PubMed

    Greganti, Chiara; Schiansky, Peter; Calafell, Irati Alonso; Procopio, Lorenzo M; Rozema, Lee A; Walther, Philip

    2018-02-05

    Multi-photon state generation is of great interest for near-future quantum simulation and quantum computation experiments. To-date spontaneous parametric down-conversion is still the most promising process, even though two major impediments still exist: accidental photon noise (caused by the probabilistic non-linear process) and imperfect single-photon purity (arising from spectral entanglement between the photon pairs). In this work, we overcome both of these difficulties by (1) exploiting a passive temporal multiplexing scheme and (2) carefully optimizing the spectral properties of the down-converted photons using periodically-poled KTP crystals. We construct two down-conversion sources in the telecom wavelength regime, finding spectral purities of > 91%, while maintaining high four-photon count rates. We use single-photon grating spectrometers together with superconducting nanowire single-photon detectors to perform a detailed characterization of our multi-photon source. Our methods provide practical solutions to produce high-quality multi-photon states, which are in demand for many quantum photonics applications.

  11. Multi-photon absorption limits to heralded single photon sources

    PubMed Central

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  12. Single-photon non-linear optics with a quantum dot in a waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G.; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.

    2015-10-01

    Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.

  13. Time-Bin-Encoded Boson Sampling with a Single-Photon Device.

    PubMed

    He, Yu; Ding, X; Su, Z-E; Huang, H-L; Qin, J; Wang, C; Unsleber, S; Chen, C; Wang, H; He, Y-M; Wang, X-L; Zhang, W-J; Chen, S-J; Schneider, C; Kamp, M; You, L-X; Wang, Z; Höfling, S; Lu, Chao-Yang; Pan, Jian-Wei

    2017-05-12

    Boson sampling is a problem strongly believed to be intractable for classical computers, but can be naturally solved on a specialized photonic quantum simulator. Here, we implement the first time-bin-encoded boson sampling using a highly indistinguishable (∼94%) single-photon source based on a single quantum-dot-micropillar device. The protocol requires only one single-photon source, two detectors, and a loop-based interferometer for an arbitrary number of photons. The single-photon pulse train is time-bin encoded and deterministically injected into an electrically programmable multimode network. The observed three- and four-photon boson sampling rates are 18.8 and 0.2 Hz, respectively, which are more than 100 times faster than previous experiments based on parametric down-conversion.

  14. On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar.

    PubMed

    Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, S; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei

    2016-01-15

    Scalable photonic quantum technologies require on-demand single-photon sources with simultaneously high levels of purity, indistinguishability, and efficiency. These key features, however, have only been demonstrated separately in previous experiments. Here, by s-shell pulsed resonant excitation of a Purcell-enhanced quantum dot-micropillar system, we deterministically generate resonance fluorescence single photons which, at π pulse excitation, have an extraction efficiency of 66%, single-photon purity of 99.1%, and photon indistinguishability of 98.5%. Such a single-photon source for the first time combines the features of high efficiency and near-perfect levels of purity and indistinguishabilty, and thus opens the way to multiphoton experiments with semiconductor quantum dots.

  15. Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk.

    PubMed

    Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon

    2013-01-01

    A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region.

  16. Interferometric Quantum-Nondemolition Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Kok, Peter; Lee, Hwang; Dowling, Jonathan

    2007-01-01

    Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.

  17. The midline-based nasolabial transposition (MNT) flap: an original single-stage technique for nasal tip reconstruction.

    PubMed

    Beustes-Stefanelli, Matthieu; O'Toole, Greg; Schertenleib, Pierre

    2015-04-01

    Nasolabial flaps based on the lateral side of the nose for the reconstruction of lateral nasal defects in a single-stage procedure have been described. Similarly, in midline defects, nasolabial flaps can be used but a 2-stage procedure is classically required. The Midline-based Nasolabial Transposition (MNT) flap is presented as a new single-stage procedure for nasal tip reconstruction. Between 2009 and 2011, an MNT flap was used as a single-stage procedure in 3 cases of large nasal defects of the tip where the forehead flap was either contraindicated or rejected as an option by the patient. There were no complications and a satisfactory aesthetic result was achieved in all cases. The MNT flap is a new single-stage procedure for large nasal tip defects and as such represents an interesting alternative to the classical 2-stage forehead and nasolabial flaps, especially in elderly patients.

  18. Plasmonic superfocusing on metallic tips for near-field optical imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Neacsu, Catalin C.; Olmon, Rob; Berweger, Samuel; Kappus, Alexandria; Kirchner, Friedrich; Ropers, Claus; Saraf, Lax; Raschke, Markus B.

    2008-03-01

    Realization of localized light sources through nonlocal excitation is important in the context of plasmon photonics, molecular sensing, and in particular near-field optical techniques. Here, the efficient conversion of propagating surface plasmons, launched on the shaft of a scanning probe tip, into localized plasmon at the apex provides a true nanoconfined light source. Focused ion beam milling is used to generate periodic surface nanostructures on the tip shaft that allow for tailoring the plasmon excitation. Using ultrashort visible and mid-IR transients the dynamics of the propagation and subsequent scattered emission is characterized. The strong field enhancement and spatial field confinement at the apex is demonstrated studying the coupling of the tip in near-field interaction with a flat sample surface. It is used in scattering near-field spectroscopic imaging (s-SNOM) to probe surface nanostructures with spatial resolution down to 10 nm.

  19. Single colloidal quantum dots as sources of single photons for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Pisanello, Ferruccio; Qualtieri, Antonio; Leménager, Godefroy; Martiradonna, Luigi; Stomeo, Tiziana; Cingolani, Roberto; Bramati, Alberto; De Vittorio, Massimo

    2011-02-01

    Colloidal nanocrystals, i.e. quantum dots synthesized trough wet-chemistry approaches, are promising nanoparticles for photonic applications and, remarkably, their quantum nature makes them very promising for single photon emission at room temperature. In this work we describe two approaches to engineer the emission properties of these nanoemitters in terms of radiative lifetime and photon polarization, drawing a viable strategy for their exploitation as room-temperature single photon sources for quantum information and quantum telecommunications.

  20. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  1. Hong-Ou-Mandel Interference Between Triggered And Heralded Single Photons From Separate Atomic Systems

    NASA Astrophysics Data System (ADS)

    Cere, Alessandro; Leong, Victor; Kaur Gulati, Gurpreet; Srivathsan, Bharath; Kosen, Sandoko; Kurtsiefer, Christian

    2015-05-01

    The realization of quantum networks and long distance quantum communication rely on the capability of generating entanglement between separated nodes. We demonstrate the compatibility of two different sources of single photons: a single atom and four-wave mixing in a cold cloud of atoms. The four-wave mixing process in a cloud of cold 87Rb generates photon pairs. The cascade level scheme used ensures the generation of heralded single photons with exponentially decaying temporal envelope. The temporal shape of the heralding photons matches the shape of photons emitted by spontaneous decay but for the shorter coherence time A single 87Rb atom is trapped in an far-off-resonance optical dipole trap and can be excited with high probability using a short (~3 ns) intense pulse of resonant light, emitting a single photon by spontaneous decay. A large numerical aperture lens collects ~4% of the total fluorescence. The heralded and the triggered photons are launched into a Houng-Ou-Mandel interferometer: a symmetrical beam-splitter with outputs connected to single photon detectors. Scanning the relative delay between the two sources we observe the HOM dip with a maximum visibility of 70 +/-4%.

  2. Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source.

    PubMed

    Loredo, J C; Broome, M A; Hilaire, P; Gazzano, O; Sagnes, I; Lemaitre, A; Almeida, M P; Senellart, P; White, A G

    2017-03-31

    A boson-sampling device is a quantum machine expected to perform tasks intractable for a classical computer, yet requiring minimal nonclassical resources as compared to full-scale quantum computers. Photonic implementations to date employed sources based on inefficient processes that only simulate heralded single-photon statistics when strongly reducing emission probabilities. Boson sampling with only single-photon input has thus never been realized. Here, we report on a boson-sampling device operated with a bright solid-state source of single-photon Fock states with high photon-number purity: the emission from an efficient and deterministic quantum dot-micropillar system is demultiplexed into three partially indistinguishable single photons, with a single-photon purity 1-g^{(2)}(0) of 0.990±0.001, interfering in a linear optics network. Our demultiplexed source is between 1 and 2 orders of magnitude more efficient than current heralded multiphoton sources based on spontaneous parametric down-conversion, allowing us to complete the boson-sampling experiment faster than previous equivalent implementations.

  3. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  4. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  5. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  6. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride

    DOE PAGES

    Grosso, Gabriele; Moon, Hyowon; Lienhard, Benjamin; ...

    2017-09-26

    Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single photon purity. We observe high single photon count rates exceeding 7 × 10 6 counts per second at saturation, after correcting for uncorrelated photonmore » background. Furthermore, these emitters are stable to material transfer to other substrates. High-purity and photostable single photon emission at room temperature, together with spectral tunability and transferability, opens the door to scalable integration of high-quality quantum emitters in photonic quantum technologies.« less

  7. Automated extraction of single H atoms with STM: tip state dependency

    NASA Astrophysics Data System (ADS)

    Møller, Morten; Jarvis, Samuel P.; Guérinet, Laurent; Sharp, Peter; Woolley, Richard; Rahe, Philipp; Moriarty, Philip

    2017-02-01

    The atomistic structure of the tip apex plays a crucial role in performing reliable atomic-scale surface and adsorbate manipulation using scanning probe techniques. We have developed an automated extraction routine for controlled removal of single hydrogen atoms from the H:Si(100) surface. The set of atomic extraction protocols detect a variety of desorption events during scanning tunneling microscope (STM)-induced modification of the hydrogen-passivated surface. The influence of the tip state on the probability for hydrogen removal was examined by comparing the desorption efficiency for various classifications of STM topographs (rows, dimers, atoms, etc). We find that dimer-row-resolving tip apices extract hydrogen atoms most readily and reliably (and with least spurious desorption), while tip states which provide atomic resolution counter-intuitively have a lower probability for single H atom removal.

  8. Spin-based single-photon transistor, dynamic random access memory, diodes, and routers in semiconductors

    NASA Astrophysics Data System (ADS)

    Hu, C. Y.

    2016-12-01

    The realization of quantum computers and quantum Internet requires not only quantum gates and quantum memories, but also transistors at single-photon levels to control the flow of information encoded on single photons. Single-photon transistor (SPT) is an optical transistor in the quantum limit, which uses a single photon to open or block a photonic channel. In sharp contrast to all previous SPT proposals which are based on single-photon nonlinearities, here I present a design for a high-gain and high-speed (up to THz) SPT based on a linear optical effect: giant circular birefringence induced by a single spin in a double-sided optical microcavity. A gate photon sets the spin state via projective measurement and controls the light propagation in the optical channel. This spin-cavity transistor can be directly configured as diodes, routers, DRAM units, switches, modulators, etc. Due to the duality as quantum gate and transistor, the spin-cavity unit provides a solid-state platform ideal for future Internet: a mixture of all-optical Internet with quantum Internet.

  9. Direct detection of a single photon by humans

    PubMed Central

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  10. Integrated spatial multiplexing of heralded single-photon sources

    PubMed Central

    Collins, M.J.; Xiong, C.; Rey, I.H.; Vo, T.D.; He, J.; Shahnia, S.; Reardon, C.; Krauss, T.F.; Steel, M.J.; Clark, A.S.; Eggleton, B.J.

    2013-01-01

    The non-deterministic nature of photon sources is a key limitation for single-photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single-photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon-based correlated photon pair sources in the telecommunications band, demonstrating a 62.4% increase in the heralded single-photon output without an increase in unwanted multipair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two-photon interference, required at the core of optical quantum computing and quantum communication protocols. PMID:24107840

  11. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  12. On-chip low loss heralded source of pure single photons.

    PubMed

    Spring, Justin B; Salter, Patrick S; Metcalf, Benjamin J; Humphreys, Peter C; Moore, Merritt; Thomas-Peter, Nicholas; Barbieri, Marco; Jin, Xian-Min; Langford, Nathan K; Kolthammer, W Steven; Booth, Martin J; Walmsley, Ian A

    2013-06-03

    A key obstacle to the experimental realization of many photonic quantum-enhanced technologies is the lack of low-loss sources of single photons in pure quantum states. We demonstrate a promising solution: generation of heralded single photons in a silica photonic chip by spontaneous four-wave mixing. A heralding efficiency of 40%, corresponding to a preparation efficiency of 80% accounting for detector performance, is achieved due to efficient coupling of the low-loss source to optical fibers. A single photon purity of 0.86 is measured from the source number statistics without narrow spectral filtering, and confirmed by direct measurement of the joint spectral intensity. We calculate that similar high-heralded-purity output can be obtained from visible to telecom spectral regions using this approach. On-chip silica sources can have immediate application in a wide range of single-photon quantum optics applications which employ silica photonics.

  13. Single-photon absorption by single photosynthetic light-harvesting complexes

    NASA Astrophysics Data System (ADS)

    Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta

    2018-03-01

    We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode < n > -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment-protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment-protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton-phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ˜0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.

  14. Manipulating, Reacting, and Constructing Single Molecules with a Scanning Tunneling Microscope Tip

    NASA Astrophysics Data System (ADS)

    Hla, S.-W.

    The fascinating advances in atom and molecule manipulation with the scanning tunneling microscope (STM) tip allow scientists to fabricate artificial atomic scale structures, to study local quantum phenomena, or to probe physical and chemical properties of single atoms and molecules on surfaces. Recent achievements in individual synthesis of single molecules with the STM tip further open up an entirely new opportunities in nanoscience and technology. The STM manipulation techniques usef ul in the molecular construction are reviewed and prospects for future opportunities of single molecule chemical engineering and their possible implications to nano-scale science and technology are discussed.

  15. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcella, Carmelo; Tosi, Alberto, E-mail: alberto.tosi@polimi.it; Villa, Federica

    2013-12-15

    We developed a single-photon counting multichannel detection system, based on a monolithic linear array of 32 CMOS SPADs (Complementary Metal-Oxide-Semiconductor Single-Photon Avalanche Diodes). All channels achieve a timing resolution of 100 ps (full-width at half maximum) and a photon detection efficiency of 50% at 400 nm. Dark count rate is very low even at room temperature, being about 125 counts/s for 50 μm active area diameter SPADs. Detection performance and microelectronic compactness of this CMOS SPAD array make it the best candidate for ultra-compact time-resolved spectrometers with single-photon sensitivity from 300 nm to 900 nm.

  16. From plasmon-induced luminescence enhancement in gold nanorods to plasmon-induced luminescence turn-off: a way to control reshaping.

    PubMed

    Molinaro, Céline; Marguet, Sylvie; Douillard, Ludovic; Charra, Fabrice; Fiorini-Debuisschert, Céline

    2018-05-07

    Two-photon luminescence (TPL) turn-off in small single gold nanorods (GNRs) exposed to increased resonant femtosecond laser excitation (800 nm wavelength, pulse energy density varying from 125 μJ cm -2 to 2.5 mJ cm -2 ) is investigated. The origin is shown to be a photo-induced decrease of the rod aspect ratio. This aspect ratio reduction could reasonably be assigned to gold atom diffusion away from the rod tips, where hot spots are localized. The two-photon luminescence signal can be recovered after a blue-shift of the incident excitation wavelength. No change in the excitation wavelength results in an out of resonance excitation of the rods and thus a reduced absorption, acting as feedback to stabilize the GNR shape and size. A theoretical analysis is presented evidencing limited thermal effects in the femtosecond regime for small nanoparticles, in good agreement with complementary topographic characterizations using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We show finally that TPL reveals itself as a highly sensitive tool to follow tiny changes resulting from the photo-induced reshaping of GNRs.

  17. Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances

    PubMed Central

    Gorniaczyk, H.; Tresp, C.; Bienias, P.; Paris-Mandoki, A.; Li, W.; Mirgorodskiy, I.; Büchler, H. P.; Lesanovsky, I.; Hofferberth, S.

    2016-01-01

    Mapping the strong interaction between Rydberg atoms onto single photons via electromagnetically induced transparency enables manipulation of light at the single-photon level and few-photon devices such as all-optical switches and transistors operated by individual photons. Here we demonstrate experimentally that Stark-tuned Förster resonances can substantially increase this effective interaction between individual photons. This technique boosts the gain of a single-photon transistor to over 100, enhances the non-destructive detection of single Rydberg atoms to a fidelity beyond 0.8, and enables high-precision spectroscopy on Rydberg pair states. On top, we achieve a gain larger than 2 with gate photon read-out after the transistor operation. Theory models for Rydberg polariton propagation on Förster resonance and for the projection of the stored spin-wave yield excellent agreement to our data and successfully identify the main decoherence mechanism of the Rydberg transistor, paving the way towards photonic quantum gates. PMID:27515278

  18. Molecular tips for scanning tunneling microscopy: intermolecular electron tunneling for single-molecule recognition and electronics.

    PubMed

    Nishino, Tomoaki

    2014-01-01

    This paper reviews the development of molecular tips for scanning tunneling microscopy (STM). Molecular tips offer many advantages: first is their ability to perform chemically selective imaging because of chemical interactions between the sample and the molecular tip, thus improving a major drawback of conventional STM. Rational design of the molecular tip allows sophisticated chemical recognition; e.g., chiral recognition and selective visualization of atomic defects in carbon nanotubes. Another advantage is that they provide a unique method to quantify electron transfer between single molecules. Understanding such electron transfer is mandatory for the realization of molecular electronics.

  19. Quantum Logic with Cavity Photons From Single Atoms.

    PubMed

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  20. Single-Photon Routing for a L-Shaped Channel

    NASA Astrophysics Data System (ADS)

    Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun

    2018-02-01

    We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.

  1. Single photon at a configurable quantum-memory-based beam splitter

    NASA Astrophysics Data System (ADS)

    Guo, Xianxin; Mei, Yefeng; Du, Shengwang

    2018-06-01

    We report the demonstration of a configurable coherent quantum-memory-based beam splitter (BS) for a single-photon wave packet making use of laser-cooled 85Rb atoms and electromagnetically induced transparency. The single-photon wave packet is converted (stored) into a collective atomic spin state and later retrieved (split) into two nearly opposing directions. The storage time, beam-splitting ratio, and relative phase are configurable and can be dynamically controlled. We experimentally confirm that such a BS preserves the quantum particle nature of the single photon and the coherence between the two split wave packets of the single photon.

  2. Single photon ranging system using two wavelengths laser and analysis of precision

    NASA Astrophysics Data System (ADS)

    Chen, Yunfei; He, Weiji; Miao, Zhuang; Gu, Guohua; Chen, Qian

    2013-09-01

    The laser ranging system based on time correlation single photon counting technology and single photon detector has the feature of high precision and low emergent energy etc. In this paper, we established a single photon laser ranging system that use the supercontinuum laser as light source, and two wavelengths (532nm and 830nm) of echo signal as the stop signal. We propose a new method that is capable to improve the single photon ranging system performance. The method is implemented by using two single-photon detectors to receive respectively the two different wavelength signals at the same time. We extracted the firings of the two detectors triggered by the same laser pulse at the same time and then took mean time of the two firings as the combined detection time-of-flight. The detection by two channels using two wavelengths will effectively improve the detection precision and decrease the false alarm probability. Finally, an experimental single photon ranging system was established. Through a lot of experiments, we got the system precision using both single and two wavelengths and verified the effectiveness of the method.

  3. Single-photon frequency conversion via cascaded quadratic nonlinear processes

    NASA Astrophysics Data System (ADS)

    Xiang, Tong; Sun, Qi-Chao; Li, Yuanhua; Zheng, Yuanlin; Chen, Xianfeng

    2018-06-01

    Frequency conversion of single photons is an important technology for quantum interface and quantum communication networks. Here, single-photon frequency conversion in the telecommunication band is experimentally demonstrated via cascaded quadratic nonlinear processes. Using cascaded quasi-phase-matched sum and difference frequency generation in a periodically poled lithium niobate waveguide, the signal photon of a photon pair from spontaneous down-conversion is precisely shifted to identically match its counterpart, i.e., the idler photon, in frequency to manifest a clear nonclassical dip in the Hong-Ou-Mandel interference. Moreover, quantum entanglement between the photon pair is maintained after the frequency conversion, as is proved in time-energy entanglement measurement. The scheme is used to switch single photons between dense wavelength-division multiplexing channels, which holds great promise in applications in realistic quantum networks.

  4. Size dependence of nanoscale wear of silicon carbide

    Treesearch

    Chaiyapat Tangpatjaroen; David Grierson; Steve Shannon; Joseph E. Jakes; Izabela Szlufarska

    2017-01-01

    Nanoscale, single-asperity wear of single-crystal silicon carbide (sc- SiC) and nanocrystalline silicon carbide (nc-SiC) is investigated using single-crystal diamond nanoindenter tips and nanocrystalline diamond atomic force microscopy (AFM) tips under dry conditions, and the wear behavior is compared to that of single-crystal silicon with both thin and thick native...

  5. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  6. Single-cell isolation by a modular single-cell pipette for RNA-sequencing.

    PubMed

    Zhang, Kai; Gao, Min; Chong, Zechen; Li, Ying; Han, Xin; Chen, Rui; Qin, Lidong

    2016-11-29

    Single-cell transcriptome sequencing highly requires a convenient and reliable method to rapidly isolate a live cell into a specific container such as a PCR tube. Here, we report a modular single-cell pipette (mSCP) consisting of three modular components, a SCP-Tip, an air-displacement pipette (ADP), and ADP-Tips, that can be easily assembled, disassembled, and reassembled. By assembling the SCP-Tip containing a hydrodynamic trap, the mSCP can isolate single cells from 5-10 cells per μL of cell suspension. The mSCP is compatible with microscopic identification of captured single cells to finally achieve 100% single-cell isolation efficiency. The isolated live single cells are in submicroliter volumes and well suitable for single-cell PCR analysis and RNA-sequencing. The mSCP possesses merits of convenience, rapidness, and high efficiency, making it a powerful tool to isolate single cells for transcriptome analysis.

  7. Modification of emission photon statistics from single quantum dots using metal/SiO2 core/shell nanostructures.

    PubMed

    Naiki, Hiroyuki; Oikawa, Hidetoshi; Masuo, Sadahiro

    2017-04-12

    Emission photon statistics, i.e., single-photon and multi-photon emissions, of isolated QDs is required for tailoring optoelectronic applications. In this article, we demonstrate that the emission photon statistics can be modified by the control of the spectral overlap of the QDs with the localized surface plasmon resonance (LSPR) of the metal nanoparticle (metal NP) and by the distance between the QD and the metal NP. Moreover, the contribution to the modification of the emission photon statistics, which is the excitation and emission enhancements and the quenching generated by the spectral overlap and the distance, is elucidated. By fabricating well-defined SiO 2 -coated AgNPs and AuNPs (metal/SiO 2 ), the spectral overlap originated from the metal species of Ag and Au and the distance constituted by the thickness of the SiO 2 shell are controlled. The probability of single-photon emission of single QD was increased by the enhancement of the excitation rate via adjusting the distance using Ag/SiO 2 while the single-photon emission was converted to multi-photon emission by the effect of exciton quenching at a short distance and a small spectral overlap. By contrast, the probability of multi-photon emission was increased by enhancement of the multi-photon emission rate and the quenching via the spectral overlap using Au/SiO 2 . These results indicated the fundamental finding to control emission photon statistics in single QDs by controlling the spectral overlap and the distance, and understand the interaction of plasmonic nanostructures and single QD systems.

  8. Entanglement and quantum superposition induced by a single photon

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  9. Photon and radiowave emission from peeling pressure sensitive adhesives in air

    NASA Technical Reports Server (NTRS)

    Donaldson, E. E.; Shen, X. A.; Dickinson, J. T.

    1985-01-01

    During separation of an adhesive from a polymer substrate in air, intense bursts of photons ('phE', for photon emission) and long wavelength electromagnetic radiation ('RE', for radiowave emission), similar to those reported earlier by Deryagin, et al. (1978) have been observed. In this paper, careful measurements of the phE time distributions, as well as time correlations between bursts of phE and RE, are reported. These results support the view that patches of electrical charge produced by charge separation between dissimilar materials lead to microdischarges in and near the crack tip. The role of these discharges in producing sustained phE after the discharge has been extinguished is also discussed.

  10. High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits

    PubMed Central

    Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.

    2012-01-01

    Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658

  11. Deterministically swapping frequency-bin entanglement from photon-photon to atom-photon hybrid systems

    NASA Astrophysics Data System (ADS)

    Ou, Bao-Quan; Liu, Chang; Sun, Yuan; Chen, Ping-Xing

    2018-02-01

    Inspired by the recent developments of the research on the atom-photon quantum interface and energy-time entanglement between single-photon pulses, we are motivated to study the deterministic protocol for the frequency-bin entanglement of the atom-photon hybrid system, which is analogous to the frequency-bin entanglement between single-photon pulses. We show that such entanglement arises naturally in considering the interaction between a frequency-bin entangled single-photon pulse pair and a single atom coupled to an optical cavity, via straightforward atom-photon phase gate operations. Its anticipated properties and preliminary examples of its potential application in quantum networking are also demonstrated. Moreover, we construct a specific quantum entanglement witness tool to detect such extended frequency-bin entanglement from a reasonably general set of separable states, and prove its capability theoretically. We focus on the energy-time considerations throughout the analysis.

  12. Single-Photon Nanoantennas

    PubMed Central

    2017-01-01

    Single-photon nanoantennas are broadband strongly scattering nanostructures placed in the near field of a single quantum emitter, with the goal to enhance the coupling between the emitter and far-field radiation channels. Recently, great strides have been made in the use of nanoantennas to realize fluorescence brightness enhancements, and Purcell enhancements, of several orders of magnitude. This perspective reviews the key figures of merit by which single-photon nanoantenna performance is quantified and the recent advances in measuring these metrics unambiguously. Next, this perspective discusses what the state of the art is in terms of fluoresent brightness enhancements, Purcell factors, and directivity control on the level of single photons. Finally, I discuss future challenges for single-photon nanoantennas. PMID:29354664

  13. CMOS-compatible photonic devices for single-photon generation

    NASA Astrophysics Data System (ADS)

    Xiong, Chunle; Bell, Bryn; Eggleton, Benjamin J.

    2016-09-01

    Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal-oxide-semiconductor (CMOS)-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon) and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  14. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors.

    PubMed

    Dutton, Neale A W; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K

    2016-07-20

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed.

  15. Dynamic evolution of double Λ five-level atom interacting with one-mode electromagnetic cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Salah, Ahmed

    2017-12-01

    In this paper, the model describing a double Λ five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom-field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

  16. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    NASA Astrophysics Data System (ADS)

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  17. Fabrication of a trimer/single atom tip for gas field ion sources by means of field evaporation without tip heating.

    PubMed

    Kim, Kwang-Il; Kim, Young Heon; Ogawa, Takashi; Choi, Suji; Cho, Boklae; Ahn, Sang Jung; Park, In-Yong

    2018-05-11

    A gas field ion source (GFIS) has many advantages that are suitable for ion microscope sources, such as high brightness and a small virtual source size, among others. In order to apply a tip-based GFIS to an ion microscope, it is better to create a trimer/single atom tip (TSAT), where the ion beam must be generated in several atoms of the tip apex. Here, unlike the conventional method which uses tip heating or a reactive gas, we show that the tip surface can be cleaned using only the field evaporation phenomenon and that the TSAT can also be fabricated using an insulating layer containing tungsten oxide, which remains after electrochemical etching. Using this method, we could get TSAT over 90% of yield. Copyright © 2018. Published by Elsevier B.V.

  18. Fused Silica Ion Trap Chip with Efficient Optical Collection System for Timekeeping, Sensing, and Emulation

    DTIC Science & Technology

    2015-01-22

    applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum

  19. Single photon quantum cryptography.

    PubMed

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  20. Quantum Probability Cancellation Due to a Single-Photon State

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.

    1996-01-01

    When an N-photon state enters a lossless symmetric beamsplitter from one input port, the photon distribution for the two output ports has the form of Bernouli Binormial, with highest probability at equal partition (N/2 at one outport and N/2 at the other). However, injection of a single photon state at the other input port can dramatically change the photon distribution at the outputs, resulting in zero probability at equal partition. Such a strong deviation from classical particle theory stems from quantum probability amplitude cancellation. The effect persists even if the N-photon state is replaced by an arbitrary state of light. A special case is the coherent state which corresponds to homodyne detection of a single photon state and can lead to the measurement of the wave function of a single photon state.

  1. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  2. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    NASA Astrophysics Data System (ADS)

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-11-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  3. Heralded wave packet manipulation and storage of a frequency-converted pair photon at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Kroh, Tim; Ahlrichs, Andreas; Sprenger, Benjamin; Benson, Oliver

    2017-09-01

    Future quantum networks require a hybrid platform of dissimilar quantum systems. Within the platform, joint quantum states have to be mediated either by single photons, photon pairs or entangled photon pairs. The photon wavelength has to lie within the telecommunication band to enable long-distance fibre transmission. In addition, the temporal shape of the photons needs to be tailored to efficiently match the involved quantum systems. Altogether, this requires the efficient coherent wavelength-conversion of arbitrarily shaped single-photon wave packets. Here, we demonstrate the heralded temporal filtering of single photons as well as the synchronisation of state manipulation and detection as key elements in a typical experiment, besides of delaying a photon in a long fibre. All three are realised by utilising commercial telecommunication fibre-optical components which will permit the transition of quantum networks from the lab to real-world applications. The combination of these renders a temporally filtering single-photon storage in a fast switchable fibre loop possible.

  4. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    PubMed

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  5. Loading a single photon into an optical cavity

    NASA Astrophysics Data System (ADS)

    Du, Shengwang; Liu, Chang; Sun, Yuan; Zhao, Luwei; Zhang, Shanchao; Loy, M. M. T.

    2015-05-01

    Confining and manipulating single photons inside a reflective optical cavity is an essential task of cavity quantum electrodynamics (CQED) for probing the quantum nature of light quanta. Such systems are also elementary building blocks for many protocols of quantum network, where remote cavity quantum nodes are coupled through flying photons. The connectivity and scalability of such a quantum network strongly depends on the efficiency of loading a single photon into cavity. In this work we demonstrate that a single photon with an optimal temporal waveform can be efficiently loaded into a cavity. Using heralded narrow-band single photons with exponential growth wave packet whose time constant matches the photon lifetime in the cavity, we demonstrate a loading efficiency of more than 87 percent from free space to a single-sided Fabry-Perot cavity. Our result and approach may enable promising applications in realizing large-scale CQED-based quantum networks. The work was supported by the Hong Kong RGC (Project No. 601411).

  6. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    PubMed

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  7. On-demand semiconductor single-photon source with near-unity indistinguishability.

    PubMed

    He, Yu-Ming; He, Yu; Wei, Yu-Jia; Wu, Dian; Atatüre, Mete; Schneider, Christian; Höfling, Sven; Kamp, Martin; Lu, Chao-Yang; Pan, Jian-Wei

    2013-03-01

    Single-photon sources based on semiconductor quantum dots offer distinct advantages for quantum information, including a scalable solid-state platform, ultrabrightness and interconnectivity with matter qubits. A key prerequisite for their use in optical quantum computing and solid-state networks is a high level of efficiency and indistinguishability. Pulsed resonance fluorescence has been anticipated as the optimum condition for the deterministic generation of high-quality photons with vanishing effects of dephasing. Here, we generate pulsed single photons on demand from a single, microcavity-embedded quantum dot under s-shell excitation with 3 ps laser pulses. The π pulse-excited resonance-fluorescence photons have less than 0.3% background contribution and a vanishing two-photon emission probability. Non-postselective Hong-Ou-Mandel interference between two successively emitted photons is observed with a visibility of 0.97(2), comparable to trapped atoms and ions. Two single photons are further used to implement a high-fidelity quantum controlled-NOT gate.

  8. (Gene sequencing by scanning molecular exciton microscopy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)

  9. An integrated single- and two-photon non-diffracting light-sheet microscope

    NASA Astrophysics Data System (ADS)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  10. Radiotherapy fiber dosimeter probes based on silver-only coated hollow glass waveguides

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Melzer, Jeffrey E.; Harrington, James A.; Kassaee, Alireza; Finlay, Jarod C.

    2018-01-01

    Manifestation of Čerenkov radiation as a contaminating signal is a significant issue in radiation therapy dose measurement by fiber-coupled scintillator dosimeters. To enhance the scintillation signal transmission while minimizing Čerenkov radiation contamination, we designed a fiber probe using a silver-only coated hollow waveguide (HWG). The HWG with scintillator inserted in its tip, embedded in tissue-mimicking phantoms, was irradiated with clinical electron and photon beams generated by a medical linear accelerator. Optical spectra of the irradiated tip were taken using a fiber spectrometer, and the signal was deconvolved with a linear fitting algorithm. The resultant decomposed spectra of the scintillator with and without Čerenkov correction were in agreement with measurements performed by a standard electron diode and ion chamber for electron and photon beam dosimetry, respectively, indicating the minimal effect of Čerenkov contamination in the HWG-based dosimeter. Furthermore, compared with a silver/dielectric-coated HWG fiber dosimeter design, we observed higher signal transmission in the design based on the use of silver-only HWG.

  11. Quantum optics with nanowires (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zwiller, Val

    2017-02-01

    Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.

  12. Field emission properties of a DWCNT bundle and a single MWCNT

    NASA Astrophysics Data System (ADS)

    Fujishige, Masatsugu; Wongwiriyapan, Winadda; Muramatsu, Hiroyuki; Takeuchi, Kenji; Arai, Susumu

    2018-02-01

    The field emission properties of a bundle of double-walled carbon nanotubes (DWCNTs) and a single multiwalled carbon nanotube (MWCNT) were investigated. A DWCNT bundle or a single MWCNT was attached to the head of sharpened tip of tungsten by electrophoresis; the tungsten tip was dipped into a drop of a carbon nanotube/1,2-dichloroethane suspension on a stainless plate, and a high-frequency AC voltage (20 V peak to peak with a frequency of 15 MHz) was applied between the tungsten tip and the stainless steel plate. The turn-on fields of the DWCNT and MWCNT tips for 1 nA/cm2 were 0.05 and 0.48 V/μm, respectively. From the Fowler-Nordheim plots, the field enhancement factor (β) of the tips was estimated to be 109,600 (DWCNT) and 6780 (MWCNT). The present DWCNT emitter is characterized by a very small turn-on field and large β. The field emission performance is discussed in terms of the sizes of the bundle of DWCNTs and a single MWCNT.

  13. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  14. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  15. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    PubMed Central

    DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859

  16. Optimizing single-nanoparticle two-photon microscopy by in situ adaptive control of femtosecond pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Donghai; Deng, Yongkai; Chu, Saisai

    2016-07-11

    Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-orientedmore » optimization of single-nanoparticle two-photon microscopy for its future applications.« less

  17. Wiring up pre-characterized single-photon emitters by laser lithography

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Sontheimer, B.; Nikolay, N.; Schell, A. W.; Fischer, J.; Naber, A.; Benson, O.; Wegener, M.

    2016-08-01

    Future quantum optical chips will likely be hybrid in nature and include many single-photon emitters, waveguides, filters, as well as single-photon detectors. Here, we introduce a scalable optical localization-selection-lithography procedure for wiring up a large number of single-photon emitters via polymeric photonic wire bonds in three dimensions. First, we localize and characterize nitrogen vacancies in nanodiamonds inside a solid photoresist exhibiting low background fluorescence. Next, without intermediate steps and using the same optical instrument, we perform aligned three-dimensional laser lithography. As a proof of concept, we design, fabricate, and characterize three-dimensional functional waveguide elements on an optical chip. Each element consists of one single-photon emitter centered in a crossed-arc waveguide configuration, allowing for integrated optical excitation and efficient background suppression at the same time.

  18. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  19. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W.; Morozov, P.

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels withmore » counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.« less

  20. Teleporting photonic qudits using multimode quantum scissors.

    PubMed

    Goyal, Sandeep K; Konrad, Thomas

    2013-12-19

    Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a "qudit") by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of "quantum scissors" they are converted back into a qudit carried by a single photon which completes the teleportation scheme.

  1. Teleporting photonic qudits using multimode quantum scissors

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Konrad, Thomas

    2013-12-01

    Teleportation plays an important role in the communication of quantum information between the nodes of a quantum network and is viewed as an essential ingredient for long-distance Quantum Cryptography. We describe a method to teleport the quantum information carried by a photon in a superposition of a number d of light modes (a ``qudit'') by the help of d additional photons based on transcription. A qudit encoded into a single excitation of d light modes (in our case Laguerre-Gauss modes which carry orbital angular momentum) is transcribed to d single-rail photonic qubits, which are spatially separated. Each single-rail qubit consists of a superposition of vacuum and a single photon in each one of the modes. After successful teleportation of each of the d single-rail qubits by means of ``quantum scissors'' they are converted back into a qudit carried by a single photon which completes the teleportation scheme.

  2. Coherent control of the single-photon multichannel scattering in the dissipation case

    NASA Astrophysics Data System (ADS)

    Shi, Yun-Xia; Wang, Hang-Yu; Ma, Jin-Lou; Li, Qing; Tan, Lei

    2018-03-01

    Based on the quasi-boson approach, a model of a Λ-type three-level atom coupled to a X-shaped coupled cavity arrays (CCAs) is used to study the transport properties of a single-photon in the dissipative case, and a classical field is introduced to motivate the one transition of the Λ-type three-level atom (ΛTLA). The analytical expressions of transmission and transfer rate are obtained. Our results show that the cavity dissipation will obviously weaken the single-photon transfer rate where the incident energy of the single photon is resonant with the excited energy of the atom. Whether the cavity dissipation exists or not, the single photon can be almost confined in the incident channel at large detuning, and we can regulate the intensity of the classical field to control the total transmission of the single-photon.

  3. Single Photon Counting Performance and Noise Analysis of CMOS SPAD-Based Image Sensors

    PubMed Central

    Dutton, Neale A. W.; Gyongy, Istvan; Parmesan, Luca; Henderson, Robert K.

    2016-01-01

    SPAD-based solid state CMOS image sensors utilising analogue integrators have attained deep sub-electron read noise (DSERN) permitting single photon counting (SPC) imaging. A new method is proposed to determine the read noise in DSERN image sensors by evaluating the peak separation and width (PSW) of single photon peaks in a photon counting histogram (PCH). The technique is used to identify and analyse cumulative noise in analogue integrating SPC SPAD-based pixels. The DSERN of our SPAD image sensor is exploited to confirm recent multi-photon threshold quanta image sensor (QIS) theory. Finally, various single and multiple photon spatio-temporal oversampling techniques are reviewed. PMID:27447643

  4. Single photon generation through exciton-exciton annihilation in air-suspended carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, Akihiro; Uda, Takushi; Kato, Yuichiro K.

    Carbon nanotubes have great potential for single photon sources as they have stable exciton states even at room temperature and their emission wavelengths cover the telecommunication bands. In recent years, single photon emission from carbon nanotubes has been achieved by creating localized states of excitons. In contrast to such an approach, here we utilize mobile excitons and show that single photons can be generated in air-suspended carbon nanotubes, where exciton diffusion length is as long as several hundred nanometers and exciton-exciton annihilation is efficient. We perform photoluminescence microscopy on as-grown air-suspended carbon nanotubes in order to determine their chirality and suspended length. Photon correlation measurements are performed on nanotube emission at room temperature using a Hanbury-Brown-Twiss setup with InGaAs/InP single photon detectors. We observe antibunching with a clear excitation power dependence, where we obtain g (2) (0) value less than 0.5 at low excitation powers, indicating single photon generation. We show such g (2) (0) data with different chiralities and suspended lengths, and the effects of exciton diffusion on single photon generation processes are discussed. Work supported by KAKENHI (26610080, 16H05962), The Canon Foundation, and MEXT (Photon Frontier Network Program, Nanotechnology Platform). A.I. is supported by MERIT and JSPS Research Fellowship, and T.U. is supported by ALPS.

  5. Single-Shot Quantum Nondemolition Detection of Individual Itinerant Microwave Photons

    NASA Astrophysics Data System (ADS)

    Besse, Jean-Claude; Gasparinetti, Simone; Collodo, Michele C.; Walter, Theo; Kurpiers, Philipp; Pechal, Marek; Eichler, Christopher; Wallraff, Andreas

    2018-04-01

    Single-photon detection is an essential component in many experiments in quantum optics, but it remains challenging in the microwave domain. We realize a quantum nondemolition detector for propagating microwave photons and characterize its performance using a single-photon source. To this aim, we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in a single shot, we reach an external (internal) photon-detection fidelity of 50% (71%), limited by transmission efficiency between the source and the detector (75%) and the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum nondemolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

  6. Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim

    We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

  7. Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira

    2015-12-01

    The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.

  8. Experimental optimal maximum-confidence discrimination and optimal unambiguous discrimination of two mixed single-photon states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steudle, Gesine A.; Knauer, Sebastian; Herzog, Ulrike

    2011-05-15

    We present an experimental implementation of optimum measurements for quantum state discrimination. Optimum maximum-confidence discrimination and optimum unambiguous discrimination of two mixed single-photon polarization states were performed. For the latter the states of rank 2 in a four-dimensional Hilbert space are prepared using both path and polarization encoding. Linear optics and single photons from a true single-photon source based on a semiconductor quantum dot are utilized.

  9. High-Performance Single-Photon Sources via Spatial Multiplexing

    DTIC Science & Technology

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  10. Scalable Quantum Information Processing and Applications

    DTIC Science & Technology

    2008-01-19

    qubit logic gates, and finally emitting an entangled photon from the single- photon emitter. For the program, we proposed to demonstrate the...coherent, single photon transmitter/receiver system. These requirements included careful tailoring of the g factor for conduction band electrons in...physics required for the realization of a spin-coherent, single photon transmitter/receiver system. These requirements included careful tailoring of

  11. Practical single-photon-assisted remote state preparation with non-maximally entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu

    2016-08-01

    Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.

  12. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    NASA Technical Reports Server (NTRS)

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  13. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    PubMed Central

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-01-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223

  14. What are single photons good for?

    NASA Astrophysics Data System (ADS)

    Sangouard, Nicolas; Zbinden, Hugo

    2012-10-01

    In a long-held preconception, photons play a central role in present-day quantum technologies. But what are sources producing photons one by one good for precisely? Well, in opposition to what many suggest, we show that single-photon sources are not helpful for point to point quantum key distribution because faint laser pulses do the job comfortably. However, there is no doubt about the usefulness of sources producing single photons for future quantum technologies. In particular, we show how single-photon sources could become the seed of a revolution in the framework of quantum communication, making the security of quantum key distribution device-independent or extending quantum communication over many hundreds of kilometers. Hopefully, these promising applications will provide a guideline for researchers to develop more and more efficient sources, producing narrowband, pure and indistinguishable photons at appropriate wavelengths.

  15. All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    PubMed Central

    Muñoz-Matutano, G.; Barrera, D.; Fernández-Pousa, C.R.; Chulia-Jordan, R.; Seravalli, L.; Trevisi, G.; Frigeri, P.; Sales, S.; Martínez-Pastor, J.

    2016-01-01

    New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 μeV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. PMID:27257122

  16. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  17. A stable wavelength-tunable triggered source of single photons and cascaded photon pairs at the telecom C-band

    NASA Astrophysics Data System (ADS)

    Zeuner, Katharina D.; Paul, Matthias; Lettner, Thomas; Reuterskiöld Hedlund, Carl; Schweickert, Lucas; Steinhauer, Stephan; Yang, Lily; Zichi, Julien; Hammar, Mattias; Jöns, Klaus D.; Zwiller, Val

    2018-04-01

    The implementation of fiber-based long-range quantum communication requires tunable sources of single photons at the telecom C-band. Stable and easy-to-implement wavelength-tunability of individual sources is crucial to (i) bring remote sources into resonance, (ii) define a wavelength standard, and (iii) ensure scalability to operate a quantum repeater. So far, the most promising sources for true, telecom single photons are semiconductor quantum dots, due to their ability to deterministically and reliably emit single and entangled photons. However, the required wavelength-tunability is hard to attain. Here, we show a stable wavelength-tunable quantum light source by integrating strain-released InAs quantum dots on piezoelectric substrates. We present triggered single-photon emission at 1.55 μm with a multi-photon emission probability as low as 0.097, as well as photon pair emission from the radiative biexciton-exciton cascade. We achieve a tuning range of 0.25 nm which will allow us to spectrally overlap remote quantum dots or tuning distant quantum dots into resonance with quantum memories. This opens up realistic avenues for the implementation of photonic quantum information processing applications at telecom wavelengths.

  18. Fiber-Coupled Cavity-QED Source of Identical Single Photons

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.

    2018-03-01

    We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.

  19. Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source.

    PubMed

    Gazzano, O; Almeida, M P; Nowak, A K; Portalupi, S L; Lemaître, A; Sagnes, I; White, A G; Senellart, P

    2013-06-21

    We demonstrate the unambiguous entangling operation of a photonic quantum-logic gate driven by an ultrabright solid-state single-photon source. Indistinguishable single photons emitted by a single semiconductor quantum dot in a micropillar optical cavity are used as target and control qubits. For a source brightness of 0.56 photons per pulse, the measured truth table has an overlap with the ideal case of 68.4±0.5%, increasing to 73.0±1.6% for a source brightness of 0.17 photons per pulse. The gate is entangling: At a source brightness of 0.48, the Bell-state fidelity is above the entangling threshold of 50% and reaches 71.0±3.6% for a source brightness of 0.15.

  20. Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Daradkeh, Samer

    2018-02-01

    Recent investigations that are presented here illustrate the initial results that were obtained from a modified technique for holding the CNT on a W clean blunt tip. Field Electron Emission (FEE) has been investigated for single walled carbon nanotube (SWCNT) mounted on tungsten tip under (~10-8 mbar) vacuum conditions. The measurements recorded presented results showed that the CNT mounted on the W tip could emit electron current of at (0.7 V/μm) and reach up to (24 μA) of emission current at normal emission conditions. Such electron field emission tip was fabricated by electrolytically etching the high purity tungsten wire of (0.1 mm) in diameter in NaOH of (0.1) Molar solution, then mounting the single-walled carbon nanotube on the tip to be nearest to the tin oxide-coated and phosphorus glass anode. Such process was possible to be carried out under the microscope. A field electron microscope with a tip-screen separation at (~10mm) was used to characterize the electron emitter. The system was evacuated to an ultra-high vacuum level obtained after initial backing the system at up to (~180 °C) overnight. The emission characteristic has been investigated employing the I-V characteristics with Fowler-Nordheim plots and recording the emission images

  1. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots.

    PubMed

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander

    2016-08-24

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.

  2. Separation of ballistic and diffusive fluorescence photons in confocal Light-Sheet Microscopy of Arabidopsis roots

    PubMed Central

    Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander

    2016-01-01

    Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506

  3. Spin-photon interface and spin-controlled photon switching in a nanobeam waveguide

    NASA Astrophysics Data System (ADS)

    Javadi, Alisa; Ding, Dapeng; Appel, Martin Hayhurst; Mahmoodian, Sahand; Löbl, Matthias Christian; Söllner, Immo; Schott, Rüdiger; Papon, Camille; Pregnolato, Tommaso; Stobbe, Søren; Midolo, Leonardo; Schröder, Tim; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John; Lodahl, Peter

    2018-05-01

    The spin of an electron is a promising memory state and qubit. Connecting spin states that are spatially far apart will enable quantum nodes and quantum networks based on the electron spin. Towards this goal, an integrated spin-photon interface would be a major leap forward as it combines the memory capability of a single spin with the efficient transfer of information by photons. Here, we demonstrate such an efficient and optically programmable interface between the spin of an electron in a quantum dot and photons in a nanophotonic waveguide. The spin can be deterministically prepared in the ground state with a fidelity of up to 96%. Subsequently, the system is used to implement a single-spin photonic switch, in which the spin state of the electron directs the flow of photons through the waveguide. The spin-photon interface may enable on-chip photon-photon gates, single-photon transistors and the efficient generation of a photonic cluster state.

  4. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    PubMed

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  5. Theory of single-photon detectors employing smart strategies of detection

    NASA Astrophysics Data System (ADS)

    Silva, João Batista Rosa; Ramos, Rubens Viana

    2005-11-01

    Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.

  6. Controlling single-photon transport in an optical waveguide coupled to an optomechanical cavity with a Λ-type three-level atom

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei

    2018-06-01

    We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.

  7. Dynamics of Single-Photon Emission from Electrically Pumped Color Centers

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Agio, Mario; Fedyanin, Dmitry Yu.

    2017-08-01

    Low-power, high-speed, and bright electrically driven true single-photon sources, which are able to operate at room temperature, are vital for the practical realization of quantum-communication networks and optical quantum computations. Color centers in semiconductors are currently the best candidates; however, in spite of their intensive study in the past decade, the behavior of color centers in electrically controlled systems is poorly understood. Here we present a physical model and establish a theoretical approach to address single-photon emission dynamics of electrically pumped color centers, which interprets experimental results. We support our analysis with self-consistent numerical simulations of a single-photon emitting diode based on a single nitrogen-vacancy center in diamond and predict the second-order autocorrelation function and other emission characteristics. Our theoretical findings demonstrate remarkable agreement with the experimental results and pave the way to the understanding of single-electron and single-photon processes in semiconductors.

  8. Photonic quantum information: science and technology.

    PubMed

    Takeuchi, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author's past and recent works.

  9. Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement

    PubMed Central

    2014-01-01

    We present a method to couple surface plasmon polariton (SPP) guiding mode into dielectric-loaded SPP waveguide (DLSPPW) devices with spectral and mode selectivity. The method combined a transmission-mode near-field spectroscopy to excite the SPP mode and a leakage radiation optical microscope for direct visualization. By using a near-field fiber tip, incident photons with different wavelengths were converted into SPPs at the metal/dielectric interface. Real-time SPP radiation images were taken through leakage radiation images. The wavelength-dependent propagation lengths for silver- and gold-based DLSPPWs were measured and compared. It confirms that silver-based SPP has a propagation length longer than a gold-based one by 1.25, 1.38, and 1.52 times for red, green, and blue photons. The resonant coupling as a function of wavelength in dual DLSPPWs was measured. The coupling lengths measured from leakage radiation images were in good agreement with finite-difference time domain simulations. In addition, the propagation profile due to multi-SPP modes interference was studied by changing position of the fiber tip. In a multimode DLSPPW, SPP was split into two branches with a gap of 2.237 μm when the tip was at the center of the waveguide. It became a zigzag profile when the SPP was excited at the corner of the waveguide. PMID:25177228

  10. Measurement of doubly differential electron bremsstrahlung cross sections at the end point (tip) for C, Al, Te, Ta and Au

    NASA Astrophysics Data System (ADS)

    García-Alvarez, J. A.; Fernández-Varea, J. M.; Vanin, V. R.; Santos, O. C. B.; Barros, S. F.; Malafronte, A. A.; Rodrigues, C. L.; Martins, M. N.; Koskinas, M. F.; Maidana, N. L.

    2017-08-01

    We have used the low-energy beam line of the São Paulo Microtron accelerator to study the maximum energy transfer point (tip) of electron-atom bremsstrahlung spectra for C, Al, Te, Ta and Au. Absolute cross sections differential in energy and angle of the emitted photon were measured for various electron kinetic energies between 20 and 100 keV, and photon emission angles of 35◦, 90◦ and 131◦. The bremsstrahlung spectra were collected with three HPGe detectors and their response functions were evaluated analytically. Rutherford backscattering spectrometry allowed us to obtain the thicknesses of the targets with good accuracy. We propose a simple model for the tip region of the bremsstrahlung spectrum emitted at a given angle, whose adjustable parameters are the mean energy of the incident beam and its spread as well as an amplitude. The model was fitted simultaneously to the pulse-height distributions recorded at the three angles, determining the doubly differential cross sections from the corresponding amplitudes. The measured values have uncertainties between 3% and 13%. The agreement of the experimental results with the theoretical partial-wave calculations of Pratt and co-workers depends on the analyzed element and angle but is generally satisfactory. In the case of Al and Au, the uncertainty attributed to the theory is probably overestimated.

  11. A scalable multi-photon coincidence detector based on superconducting nanowires.

    PubMed

    Zhu, Di; Zhao, Qing-Yuan; Choi, Hyeongrak; Lu, Tsung-Ju; Dane, Andrew E; Englund, Dirk; Berggren, Karl K

    2018-06-04

    Coincidence detection of single photons is crucial in numerous quantum technologies and usually requires multiple time-resolved single-photon detectors. However, the electronic readout becomes a major challenge when the measurement basis scales to large numbers of spatial modes. Here, we address this problem by introducing a two-terminal coincidence detector that enables scalable readout of an array of detector segments based on superconducting nanowire microstrip transmission line. Exploiting timing logic, we demonstrate a sixteen-element detector that resolves all 136 possible single-photon and two-photon coincidence events. We further explore the pulse shapes of the detector output and resolve up to four-photon events in a four-element device, giving the detector photon-number-resolving capability. This new detector architecture and operating scheme will be particularly useful for multi-photon coincidence detection in large-scale photonic integrated circuits.

  12. A numerical study of crack tip constraint in ductile single crystals

    NASA Astrophysics Data System (ADS)

    Patil, Swapnil D.; Narasimhan, R.; Mishra, R. K.

    In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.

  13. Processing multiphoton states through operation on a single photon: Methods and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Qing; He Bing; Bergou, Janos A.

    2009-10-15

    Multiphoton states are widely applied in quantum information technology. By the methods presented in this paper, the structure of a multiphoton state in the form of multiple single-photon qubit products can be mapped to a single-photon qudit, which could also be in a separable product with other photons. This makes possible the manipulation of such multiphoton states by processing single-photon states. The optical realization of unknown qubit discrimination [B. He, J. A. Bergou, and Y.-H. Ren, Phys. Rev. A 76, 032301 (2007)] is simplified with the transformation methods. Another application is the construction of quantum logic gates, where the inversemore » transformations back to the input state spaces are also necessary. We especially show that the modified setups to implement the transformations can realize the deterministic multicontrol gates (including Toffoli gate) operating directly on the products of single-photon qubits.« less

  14. GaN-based integrated photonics chip with suspended LED and waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Yongjin; Hane, Kazuhiro; Shi, Zheng; Yan, Jiang

    2018-05-01

    We propose a GaN-based integrated photonics chip with suspended LED and straight waveguide with different geometric parameters. The integrated photonics chip is prepared by double-side process. Light transmission performance of the integrated chip verse current is quantitatively analyzed by capturing light transmitted to waveguide tip and BPM (beam propagation method) simulation. Reduction of the waveguide width from 8 μm to 4 μm results in an over linear reduction of the light output power while a doubling of the length from 250 μm to 500 μm only results in under linear decrease of the output power. Free-space data transmission with 80 Mbps random binary sequence of the integrated chip is capable of achieving high speed data transmission via visible light. This study provides a potential approach for GaN-based integrated photonics chip as micro light source and passive optical device in VLC (visible light communication).

  15. A photon-photon quantum gate based on a single atom in an optical resonator.

    PubMed

    Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan

    2016-08-11

    That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations. The demonstrated feasibility of deterministic protocols for the optical processing of quantum information could lead to new applications in which photons are essential, especially long-distance quantum communication and scalable quantum computing.

  16. Frequency-multiplexed bias and readout of a 16-pixel superconducting nanowire single-photon detector array

    NASA Astrophysics Data System (ADS)

    Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.

    2017-07-01

    We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.

  17. Theoretical study of carbon-based tips for scanning tunnelling microscopy.

    PubMed

    González, C; Abad, E; Dappe, Y J; Cuevas, J C

    2016-03-11

    Motivated by recent experiments, we present here a detailed theoretical analysis of the use of carbon-based conductive tips in scanning tunnelling microscopy. In particular, we employ ab initio methods based on density functional theory to explore a graphitic, an amorphous carbon and two diamond-like tips for imaging with a scanning tunnelling microscope (STM), and we compare them with standard metallic tips made of gold and tungsten. We investigate the performance of these tips in terms of the corrugation of the STM images acquired when scanning a single graphene sheet. Moreover, we analyse the impact of the tip-sample distance and show that it plays a fundamental role in the resolution and symmetry of the STM images. We also explore in depth how the adsorption of single atoms and molecules in the tip apexes modifies the STM images and demonstrate that, in general, it leads to an improved image resolution. The ensemble of our results provides strong evidence that carbon-based tips can significantly improve the resolution of STM images, as compared to more standard metallic tips, which may open a new line of research in scanning tunnelling microscopy.

  18. On-chip detection of non-classical light by scalable integration of single-photon detectors

    PubMed Central

    Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk

    2015-01-01

    Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346

  19. Optimal antibunching in passive photonic devices based on coupled nonlinear resonators

    NASA Astrophysics Data System (ADS)

    Ferretti, S.; Savona, V.; Gerace, D.

    2013-02-01

    We propose the use of weakly nonlinear passive materials for prospective applications in integrated quantum photonics. It is shown that strong enhancement of native optical nonlinearities by electromagnetic field confinement in photonic crystal resonators can lead to single-photon generation only exploiting the quantum interference of two coupled modes and the effect of photon blockade under resonant coherent driving. For realistic system parameters in state of the art microcavities, the efficiency of such a single-photon source is theoretically characterized by means of the second-order correlation function at zero-time delay as the main figure of merit, where major sources of loss and decoherence are taken into account within a standard master equation treatment. These results could stimulate the realization of integrated quantum photonic devices based on non-resonant material media, fully integrable with current semiconductor technology and matching the relevant telecom band operational wavelengths, as an alternative to single-photon nonlinear devices based on cavity quantum electrodynamics with artificial atoms or single atomic-like emitters.

  20. Generation of single photons with highly tunable wave shape from a cold atomic ensemble

    PubMed Central

    Farrera, Pau; Heinze, Georg; Albrecht, Boris; Ho, Melvyn; Chávez, Matías; Teo, Colin; Sangouard, Nicolas; de Riedmatten, Hugues

    2016-01-01

    The generation of ultra-narrowband, pure and storable single photons with widely tunable wave shape is an enabling step toward hybrid quantum networks requiring interconnection of remote disparate quantum systems. It allows interaction of quantum light with several material systems, including photonic quantum memories, single trapped ions and opto-mechanical systems. Previous approaches have offered a limited tuning range of the photon duration of at most one order of magnitude. Here we report on a heralded single photon source with controllable emission time based on a cold atomic ensemble, which can generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the readout efficiency. We prove the nonclassicality of the emitted photons, show that they are emitted in a pure state, and demonstrate that ultra-long photons with nonstandard wave shape can be generated, which are ideally suited for several quantum information tasks. PMID:27886166

  1. Observation of quantum entanglement between a photon and a single electron spin confined to an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu

    2013-03-01

    A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.

  2. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  3. Critical Current Statistics of a Graphene-Based Josephson Junction Infrared Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Graphene is a promising material for single photon detection due to its broadband absorption and exceptionally low specific heat. We present a photon detector using a graphene sheet as the weak link in a Josephson junction (JJ) to form a threshold detector for single infrared photons. Calculations show that such a device could experience temperature changes of a few hundred percent leading to sub-Hz dark count rates and internal efficiencies approaching unity. We have fabricated the graphene-based JJ (gJJ) detector and measure switching events that are consistent with single photon detection under illumination by an attenuated laser. We study the physical mechanism for these events through the critical current behavior of the gJJ as a function of incident photon flux.

  4. Photon correlation in single-photon frequency upconversion.

    PubMed

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  5. One-by-one single-molecule detection of mutated nucleobases by monitoring tunneling current using a DNA tip.

    PubMed

    Bui, Phuc Tan; Nishino, Tomoaki; Shiigi, Hiroshi; Nagaoka, Tsutomu

    2015-01-31

    A DNA molecule was utilized as a probe tip to achieve single-molecule genetic diagnoses. Hybridization of the probe and target DNAs resulted in electron tunneling along the emergent double-stranded DNA. Simple stationary monitoring of the tunneling current leads to single-molecule DNA detection and discovery of base mismatches and methylation.

  6. Photonic quantum information: science and technology

    PubMed Central

    TAKEUCHI, Shigeki

    2016-01-01

    Recent technological progress in the generation, manipulation and detection of individual single photons has opened a new scientific field of photonic quantum information. This progress includes the realization of single photon switches, photonic quantum circuits with specific functions, and the application of novel photonic states to novel optical metrology beyond the limits of standard optics. In this review article, the recent developments and current status of photonic quantum information technology are overviewed based on the author’s past and recent works. PMID:26755398

  7. Indistinguishable near-infrared single photons from an individual organic molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trebbia, Jean-Baptiste; Tamarat, Philippe; Lounis, Brahim

    2010-12-15

    By using the zero-phonon line emission of an individual organic molecule, we realized a source of indistinguishable single photons in the near infrared. A Hong-Ou-Mandel interference experiment is performed and a two-photon coalescence probability higher than 50% at 2 K is obtained. The contribution of the temperature-dependent dephasing processes to the two-photon interference contrast is studied. We show that the molecule delivers nearly ideal indistinguishable single photons at the lowest temperatures when the dephasing is nearly lifetime limited. This source is used to generate postselected polarization-entangled photon pairs as a test bench for applications in quantum information.

  8. QUANTUM CRYPTOGRAPHY: Single Photons.

    PubMed

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  9. Joining the quantum state of two photons into one

    NASA Astrophysics Data System (ADS)

    Vitelli, Chiara; Spagnolo, Nicolò; Aparo, Lorenzo; Sciarrino, Fabio; Santamato, Enrico; Marrucci, Lorenzo

    2013-07-01

    Photons are the ideal carriers of quantum information for communication. Each photon can have a single or multiple qubits encoded in its internal quantum state, as defined by optical degrees of freedom such as polarization, wavelength, transverse modes and so on. However, as photons do not interact, multiplexing and demultiplexing the quantum information across photons has not been possible hitherto. Here, we introduce and demonstrate experimentally a physical process, named `quantum joining', in which the two-dimensional quantum states (qubits) of two input photons are combined into a single output photon, within a four-dimensional Hilbert space. The inverse process is also proposed, in which the four-dimensional quantum state of a single photon is split into two photons, each carrying a qubit. Both processes can be iterated, and hence provide a flexible quantum interconnect to bridge multiparticle protocols of quantum information with multidegree-of-freedom ones, with possible applications in future quantum networking.

  10. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  11. Experimental Realization of Efficient, Room Temperature Single-Photon Sources with Definite Circular and Linear Polarizations

    NASA Astrophysics Data System (ADS)

    Boutsidis, Christos

    In this thesis I present experimental demonstrations of room-temperature, single-photon sources with definite linear and circular polarizations. Definite photon polarization increases the efficiency of quantum communication systems. In contrast with cryogenic-temperature single-photon sources based on epitaxial quantum dots requiring expensive MBE and nanofabrication, my method utilizes a mature liquid crystal technology, which I made consistent with single-emitter fluorescence microscopy. The structures I have prepared are planar-aligned cholesteric liquid crystals forming 1-D photonic bandgaps for circularly-polarized light, which were used to achieve definite circularly-polarized fluorescence of single emitters doped in this environment. I also used planar-aligned nematic liquid crystals to align single molecules with linear dipole moments and achieved definite linearly-polarized fluorescence. I used single nanocrystal quantum dots, single nanodiamond color-centers, rare-earth-doped nanocrystals, and single terrylene and DiIC18(3) dye molecules as emitters. For nanocrystal quantum dots I observed circular polarization dissymmetry factors as large as ge = --1.6. In addition, I observed circularly-polarized resonances in the fluorescence of emitters within a cholesteric microcavity, with cavity quality factors of up to Q ˜ 250. I also showed that the fluorescence of DiIC18(3) dye molecules in planar-aligned nematic cells exhibits definite linear polarization, with a degree of polarization of rho = --0.58 +/- 0.03. Distributed Bragg reflectors form another type of microcavity that can be used to realize a single-photon source. I characterized the fluorescence from nanocrystal quantum dots doped in the defect layers of such microcavites, both organic and inorganic. Finally, to demonstrate the single-photon properties of single-emitter-doped cholesteric and nematic liquid crystal structures and distributed Bragg reflector microcavities, I present observations of photon antibunching from emitters doped in each of these structures. These experimental observations include photon antibunching from: nanocrystal quantum dots and nanodiamond color-centers doped in a cholesteric microcavity; terrylene and DiIC 18(3) dye molecules doped in nematic structures, and nanocrystal quantum dots doped in the distributed Bragg reflector microcavity. A value of the zero-time second-order coherence as low as g(2)(0) = 0.001 +/- 0.03 was measured. These results represent an important step forward in the realization of room temperature single-photon sources with definite polarization for secure quantum communication.

  12. On-chip III-V monolithic integration of heralded single photon sources and beamsplitters

    NASA Astrophysics Data System (ADS)

    Belhassen, J.; Baboux, F.; Yao, Q.; Amanti, M.; Favero, I.; Lemaître, A.; Kolthammer, W. S.; Walmsley, I. A.; Ducci, S.

    2018-02-01

    We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation gher(2 )(0 )=0.10 ±0.02 that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information.

  13. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  14. Particle trapping in 3-D using a single fiber probe with an annular light distribution.

    PubMed

    Taylor, R; Hnatovsky, C

    2003-10-20

    A single optical fiber probe has been used to trap a solid 2 ìm diameter glass bead in 3-D in water. Optical confinement in 2-D was produced by the annular light distribution emerging from a selectively chemically etched, tapered, hollow tipped metalized fiber probe. Confinement of the bead in 3-D was achieved by balancing an electrostatic force of attraction towards the tip and the optical scattering force pushing the particle away from the tip.

  15. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency ofmore » (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.« less

  16. Cu2O-tipped ZnO nanorods with enhanced photoelectrochemical performance for CO2 photoreduction

    NASA Astrophysics Data System (ADS)

    Iqbal, Muzaffar; Wang, Yanjie; Hu, Haifeng; He, Meng; Hassan Shah, Aamir; Lin, Lin; Li, Pan; Shao, Kunjuan; Reda Woldu, Abebe; He, Tao

    2018-06-01

    The design of Cu2O-tipped ZnO nanorods is proposed here aiming at enhanced photoelectrochemical properties. The tip-selective deposition of Cu2O is confirmed by scanning transmission electron microscopy (STEM). The photoinduced charge behavior like charge generation, separation and transport has been thoroughly studied by UV-vis absorption analysis and different photoelectrochemical characterizations, including transient photocurrent, incident photon-to-current efficiency (IPCE), electrochemical impedance spectroscopy (EIS), intensity-modulated photocurrent spectroscopy (IMPS), and Mott-Schottky measurements. The photoelectrochemical characterizations clearly indicate that ZnO/Cu2O structures exhibit much higher performance than pristine ZnO, due to the formation of p-n junction, as well as the tip selective growth of Cu2O on ZnO. Photocatalytic CO2 reduction in aqueous solution under UV-visible light illumination shows that CO is the main product, and with the increase of the Cu2O content in the heterostructure, the CO yield increases. This work shows that Cu2O-tipped ZnO nanorods possess improved behavior of charge generation, separation and transport, which may work as a potential candidate for photocatalytic CO2 reduction.

  17. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  18. Measurements of wavelength-dependent double photoelectron emission from single photons in VUV-sensitive photomultiplier tubes

    NASA Astrophysics Data System (ADS)

    Faham, C. H.; Gehman, V. M.; Currie, A.; Dobi, A.; Sorensen, P.; Gaitskell, R. J.

    2015-09-01

    Measurements of double photoelectron emission (DPE) probabilities as a function of wavelength are reported for Hamamatsu R8778, R8520, and R11410 VUV-sensitive photomultiplier tubes (PMTs). In DPE, a single photon strikes the PMT photocathode and produces two photoelectrons instead of a single one. It was found that the fraction of detected photons that result in DPE emission is a function of the incident photon wavelength, and manifests itself below ~250 nm. For the xenon scintillation wavelength of 175 nm, a DPE probability of 18-24% was measured depending on the tube and measurement method. This wavelength-dependent single photon response has implications for the energy calibration and photon counting of current and future liquid xenon detectors such as LUX, LZ, XENON100/1T, Panda-X and XMASS.

  19. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  20. Changing optical band structure with single photons

    NASA Astrophysics Data System (ADS)

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  1. Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide

    NASA Astrophysics Data System (ADS)

    KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter

    2017-10-01

    We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.

  2. Site-controlled InGaN/GaN single-photon-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Deng, Hui, E-mail: dengh@umich.edu; Teng, Chu-Hsiang

    2016-04-11

    We report single-photon emission from electrically driven site-controlled InGaN/GaN quantum dots. The device is fabricated from a planar light-emitting diode structure containing a single InGaN quantum well, using a top-down approach. The location, dimension, and height of each single-photon-emitting diode are controlled lithographically, providing great flexibility for chip-scale integration.

  3. Asymmetric Bidirectional Controlled Teleportation via Seven-Photon Entangled State

    NASA Astrophysics Data System (ADS)

    Nie, Yi-you; Sang, Ming-huang

    2017-11-01

    We propose a protocol of asymmetric bidirectional controlled teleportation by using a seven-photon entangled state. In our protocol, Alice can teleport an arbitrary single-photon state to Bob and at the same time Bob can teleport an arbitrary two-photon state to Alice via the control of the supervisor Charlie. In addition, ones only carry out the Bell-state measurements and single-photon measurement.

  4. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  5. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  6. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less

  7. Tunable room-temperature single-photon emission at telecom wavelengths from sp 3 defects in carbon nanotubes

    DOE PAGES

    He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; ...

    2017-07-31

    Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less

  8. [Gene sequencing by scanning molecular exciton microscopy]. Progress report, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    This report details progress made in setting up a laboratory for optical microscopy of genes. The apparatus including a fluorescence microscope, a scanning optical microscope, various spectrometers, and supporting computers is described. Results in developing photon and exciton tips, and in preparing samples are presented. (GHH)

  9. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    PubMed Central

    Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J.; Nötzel, Richard; Notomi, Masaya

    2012-01-01

    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres. PMID:22432053

  10. Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling.

    PubMed

    Birowosuto, Muhammad Danang; Sumikura, Hisashi; Matsuo, Shinji; Taniyama, Hideaki; van Veldhoven, Peter J; Nötzel, Richard; Notomi, Masaya

    2012-01-01

    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.

  11. Superluminescence from an optically pumped molecular tunneling junction by injection of plasmon induced hot electrons

    PubMed Central

    Braun, Kai; Wang, Xiao; Kern, Andreas M; Adler, Hilmar; Peisert, Heiko; Chassé, Thomas; Zhang, Dai

    2015-01-01

    Summary Here, we demonstrate a bias-driven superluminescent point light-source based on an optically pumped molecular junction (gold substrate/self-assembled molecular monolayer/gold tip) of a scanning tunneling microscope, operating at ambient conditions and providing almost three orders of magnitude higher electron-to-photon conversion efficiency than electroluminescence induced by inelastic tunneling without optical pumping. A positive, steadily increasing bias voltage induces a step-like rise of the Stokes shifted optical signal emitted from the junction. This emission is strongly attenuated by reversing the applied bias voltage. At high bias voltage, the emission intensity depends non-linearly on the optical pump power. The enhanced emission can be modelled by rate equations taking into account hole injection from the tip (anode) into the highest occupied orbital of the closest substrate-bound molecule (lower level) and radiative recombination with an electron from above the Fermi level (upper level), hence feeding photons back by stimulated emission resonant with the gap mode. The system reflects many essential features of a superluminescent light emitting diode. PMID:26171286

  12. Low-noise quantum frequency down-conversion of indistinguishable photons (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kambs, Benjamin; Kettler, Jan; Bock, Matthias; Becker, Jonas; Arend, Carsten; Jetter, Michael; Michler, Peter; Becher, Christoph

    2016-04-01

    Single-photon sources based on quantum dots have been shown to exhibit almost ideal properties such as high brightness and purity in terms of clear anti-bunching as well as high two-photon interference visibilities of the emitted photons, making them promising candidates for different quantum information applications such as quantum computing, quantum communication and quantum teleportation. However, as most single-photon sources also quantum dots typically emit light at wavelengths of electronic transitions within the visible or the near infrared range. In order to establish quantum networks with remote building blocks, low-loss single photons at telecom wavelengths are preferable, though. Despite recent progress on emitters of telecom-photons, the most efficient single-photon sources still work at shorter wavelengths. On that matter, quantum frequency down-conversion, being a nonlinear optical process, has been used in recent years to alter the wavelength of single photons to the telecom wavelength range while conserving their nonclassical properties. Characteristics such as lifetime, first-order coherence, anti-bunching and entanglement have been shown to be conserved or even improved due to background suppression during the conversion process, while the conservation of indistinguishability was yet to be shown. Here we present our experimental results on quantum frequency down-conversion of single photons emitted by an InAs/GaAs quantum dot at 903.6 nm following a pulsed excitation of a p-shell exciton at 884 nm. The emitted fluorescence photons are mixed with a strong pump-field at 2155 nm inside a periodically poled lithium niobate ridge waveguide and converted to 1557 nm. Common issues of a large background due to Raman-scattered pump-light photons spectrally overlapping with the converted single photons could largely be avoided, as the pump-wavelength was chosen to be fairly longer than the target wavelength. Additional narrowband spectral filtering at the telecom regime as a result of the small conversion bandwidth and using a high-performance fiber-Bragg-grating solely left the detector dark counts as the only noise source in our setup. Therefore, we could achieve conversion efficiencies of more than 20 %. In order to test the indistinguishability, sequentially emitted photons were fed into a Mach-Zehnder interferometer and spatially as well as temporally overlapped at the output beam splitter. Cross-correlation measurements between both output-ports of the beam splitter exhibit two-photon interference contrasts of more than 40 % prior to and after the down-conversion step. Accordingly, we demonstrate that the process of quantum frequency conversion preserves photon indistinguishability and can be used to establish a versatile source of indistinguishable single photons at the telecom C-Band. Furthermore our scheme allows for converting photons in a wavelength band from 900 nm to 910 nm to the same telecom target wavelength. This enables us to test indistinguishability of frequency-converted photons, originally stemming from different sources with dinstinguishable wavelengths.

  13. Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source

    PubMed Central

    2017-01-01

    Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources. PMID:28670600

  14. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  15. Time-reversal-symmetric single-photon wave packets for free-space quantum communication.

    PubMed

    Trautmann, N; Alber, G; Agarwal, G S; Leuchs, G

    2015-05-01

    Readout and retrieval processes are proposed for efficient, high-fidelity quantum state transfer between a matter qubit, encoded in the level structure of a single atom or ion, and a photonic qubit, encoded in a time-reversal-symmetric single-photon wave packet. They are based on controlling spontaneous photon emission and absorption of a matter qubit on demand in free space by stimulated Raman adiabatic passage. As these processes do not involve mode selection by high-finesse cavities or photon transport through optical fibers, they offer interesting perspectives as basic building blocks for free-space quantum-communication protocols.

  16. Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Xiang; Yuan, Hong-Chun

    2014-05-01

    By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.

  17. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    PubMed

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  18. Fabrication of [001]-oriented tungsten tips for high resolution scanning tunneling microscopy

    PubMed Central

    Chaika, A. N.; Orlova, N. N.; Semenov, V. N.; Postnova, E. Yu.; Krasnikov, S. A.; Lazarev, M. G.; Chekmazov, S. V.; Aristov, V. Yu.; Glebovsky, V. G.; Bozhko, S. I.; Shvets, I. V.

    2014-01-01

    The structure of the [001]-oriented single crystalline tungsten probes sharpened in ultra-high vacuum using electron beam heating and ion sputtering has been studied using scanning and transmission electron microscopy. The electron microscopy data prove reproducible fabrication of the single-apex tips with nanoscale pyramids grained by the {011} planes at the apexes. These sharp, [001]-oriented tungsten tips have been successfully utilized in high resolution scanning tunneling microscopy imaging of HOPG(0001), SiC(001) and graphene/SiC(001) surfaces. The electron microscopy characterization performed before and after the high resolution STM experiments provides direct correlation between the tip structure and picoscale spatial resolution achieved in the experiments. PMID:24434734

  19. Coherent state amplification using frequency conversion and a single photon source

    NASA Astrophysics Data System (ADS)

    Kasture, Sachin

    2017-11-01

    Quantum state discrimination lies at the heart of quantum communication and quantum cryptography protocols. Quantum Key Distribution (QKD) using coherent states and homodyne detection has been shown to be a feasible method for quantum communication over long distances. However, this method is still limited because of optical losses. Noiseless coherent state amplification has been proposed as a way to overcome this. Photon addition using stimulated Spontaneous Parametric Down-conversion followed by photon subtraction has been used as a way to implement amplification. However, this process occurs with very low probability which makes it very difficult to implement cascaded stages of amplification due to dark count probability in the single photon detectors used to herald the addition and subtraction of single photons. We discuss a scheme using the χ (2) and χ (3) optical non-linearity and frequency conversion (sum and difference frequency generation) along with a single photon source to implement photon addition. Unlike the photon addition scheme using SPDC, this scheme allows us to tune the success probability at the cost of reduced amplification. The photon statistics of the converted field can be controlled using the power of the pump field and the interaction time.

  20. Single-photon imager based on a superconducting nanowire delay line

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; Zhu, Di; Calandri, Niccolò; Dane, Andrew E.; McCaughan, Adam N.; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F.; Berggren, Karl K.

    2017-03-01

    Detecting spatial and temporal information of individual photons is critical to applications in spectroscopy, communication, biological imaging, astronomical observation and quantum-information processing. Here we demonstrate a scalable single-photon imager using a single continuous superconducting nanowire that is not only a single-photon detector but also functions as an efficient microwave delay line. In this context, photon-detection pulses are guided in the nanowire and enable the readout of the position and time of photon-absorption events from the arrival times of the detection pulses at the nanowire's two ends. Experimentally, we slowed down the velocity of pulse propagation to ∼2% of the speed of light in free space. In a 19.7 mm long nanowire that meandered across an area of 286 × 193 μm2, we were able to resolve ∼590 effective pixels with a temporal resolution of 50 ps (full width at half maximum). The nanowire imager presents a scalable approach for high-resolution photon imaging in space and time.

  1. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  2. On-chip interference of single photons from an embedded quantum dot and an external laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prtljaga, N., E-mail: n.prtljaga@sheffield.ac.uk; Bentham, C.; O'Hara, J.

    2016-06-20

    In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler.more » This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.« less

  3. Tomography of a displacement photon counter for discrimination of single-rail optical qubits

    NASA Astrophysics Data System (ADS)

    Izumi, Shuro; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2018-04-01

    We investigate the performance of a detection strategy composed of a displacement operation and a photon counter, which is known as a beneficial tool in optical coherent communications, to the quantum state discrimination of the two superpositions of vacuum and single photon states corresponding to the {\\hat{σ }}x eigenstates in the single-rail encoding of photonic qubits. We experimentally characterize the detection strategy in vacuum-single photon two-dimensional space using quantum detector tomography and evaluate the achievable discrimination error probability from the reconstructed measurement operators. We furthermore derive the minimum error rate obtainable with Gaussian transformations and homodyne detection. Our proof-of-principle experiment shows that the proposed scheme can achieve a discrimination error surpassing homodyne detection.

  4. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  5. Self-aligned placement and detection of quantum dots on the tips of individual conical plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Fulmes, Julia; Jäger, Regina; Bräuer, Annika; Schäfer, Christian; Jäger, Sebastian; Gollmer, Dominik A.; Horrer, Andreas; Nadler, Elke; Chassé, Thomas; Zhang, Dai; Meixner, Alfred J.; Kern, Dieter P.; Fleischer, Monika

    2015-08-01

    Hybrid structures of few or single quantum dots (QDs) coupled to single optical antennas are of prime interest for nano-optical research. The photoluminescence (PL) signal from single nanoemitters, such as QDs, can be enhanced, and their emission characteristics modified, by coupling them to plasmonic nanostructures. Here, a self-aligned technique for placing nanoscale QDs with about 10 nm lateral accuracy and well-defined molecular distances to the tips of individual nanocones is reported. This way the QDs are positioned exactly in the high near-field region that can be created near the cone apex. The cones are excited in the focus of a radially polarized laser beam and the PL signal of few or single QDs on the cone tips is spectrally detected.

  6. Cooling in the single-photon strong-coupling regime of cavity optomechanics

    NASA Astrophysics Data System (ADS)

    Nunnenkamp, A.; Børkje, K.; Girvin, S. M.

    2012-05-01

    In this Rapid Communication we discuss how red-sideband cooling is modified in the single-photon strong-coupling regime of cavity optomechanics where the radiation pressure of a single photon displaces the mechanical oscillator by more than its zero-point uncertainty. Using Fermi's golden rule we calculate the transition rates induced by the optical drive without linearizing the optomechanical interaction. In the resolved-sideband limit we find multiple-phonon cooling resonances for strong single-photon coupling that lead to nonthermal steady states including the possibility of phonon antibunching. Our study generalizes the standard linear cooling theory.

  7. Atom-atom entanglement by single-photon detection.

    PubMed

    Slodička, L; Hétet, G; Röck, N; Schindler, P; Hennrich, M; Blatt, R

    2013-02-22

    A scheme for entangling distant atoms is realized, as proposed in the seminal paper by [C. Cabrillo et al., Phys. Rev. A 59, 1025 (1999)]. The protocol is based on quantum interference and detection of a single photon scattered from two effectively one meter distant laser cooled and trapped atomic ions. The detection of a single photon heralds entanglement of two internal states of the trapped ions with high rate and with a fidelity limited mostly by atomic motion. Control of the entangled state phase is demonstrated by changing the path length of the single-photon interferometer.

  8. Elliptical quantum dots as on-demand single photons sources with deterministic polarization states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Chu-Hsiang; Demory, Brandon; Ku, Pei-Cheng, E-mail: peicheng@umich.edu

    In quantum information, control of the single photon's polarization is essential. Here, we demonstrate single photon generation in a pre-programmed and deterministic polarization state, on a chip-scale platform, utilizing site-controlled elliptical quantum dots (QDs) synthesized by a top-down approach. The polarization from the QD emission is found to be linear with a high degree of linear polarization and parallel to the long axis of the ellipse. Single photon emission with orthogonal polarizations is achieved, and the dependence of the degree of linear polarization on the QD geometry is analyzed.

  9. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  10. Signatures of two-photon pulses from a quantum two-level system

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Hanschke, Lukas; Wierzbowski, Jakob; Simmet, Tobias; Dory, Constantin; Finley, Jonathan J.; Vučković, Jelena; Müller, Kai

    2017-07-01

    A two-level atom can generate a strong many-body interaction with light under pulsed excitation. The best known effect is single-photon generation, where a short Gaussian laser pulse is converted into a Lorentzian single-photon wavepacket. However, recent studies suggested that scattering of intense laser fields off a two-level atom may generate oscillations in two-photon emission that come out of phase with the Rabi oscillations, as the power of the pulse increases. Here, we provide an intuitive explanation for these oscillations using a quantum trajectory approach and show how they may preferentially result in emission of two-photon pulses. Experimentally, we observe the signatures of these oscillations by measuring the bunching of photon pulses scattered off a two-level quantum system. Our theory and measurements provide insight into the re-excitation process that plagues on-demand single-photon sources while suggesting the possibility of producing new multi-photon states.

  11. Photon Counting Imaging with an Electron-Bombarded Pixel Image Sensor

    PubMed Central

    Hirvonen, Liisa M.; Suhling, Klaus

    2016-01-01

    Electron-bombarded pixel image sensors, where a single photoelectron is accelerated directly into a CCD or CMOS sensor, allow wide-field imaging at extremely low light levels as they are sensitive enough to detect single photons. This technology allows the detection of up to hundreds or thousands of photon events per frame, depending on the sensor size, and photon event centroiding can be employed to recover resolution lost in the detection process. Unlike photon events from electron-multiplying sensors, the photon events from electron-bombarded sensors have a narrow, acceleration-voltage-dependent pulse height distribution. Thus a gain voltage sweep during exposure in an electron-bombarded sensor could allow photon arrival time determination from the pulse height with sub-frame exposure time resolution. We give a brief overview of our work with electron-bombarded pixel image sensor technology and recent developments in this field for single photon counting imaging, and examples of some applications. PMID:27136556

  12. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-07-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon-photon interactions mediated by mechanical motion may be within experimental reach.

  13. Temporal interference with frequency-controllable long photons from independent cold atomic sources

    NASA Astrophysics Data System (ADS)

    Qian, Peng; Gu, Zhenjie; Wen, Rong; Zhang, Weiping; Chen, J. F.

    2018-01-01

    The interference of single photons from independent sources is an essential tool in quantum information processing. However, the interfering of photons with long temporal states in a time-resolved manner has rarely been studied. This is because without transmitting spectral filters or coupling to a cavity mode single photons generated in traditional nonlinear crystals suffer from a short temporal profile below 1 ns. With spectral correlation maintained in the biphotons generated from spontaneous four-wave mixing process in cold atom clouds, here we demonstrate the temporal interference of two frequency-tunable long photons from two independent cold atomic sources. We observe and analyze the interference of frequency-mismatched photons, where the phenomenon of the quantum beat at megahertz separation is displayed. Our paper provides more details for the quantum beat of two independent narrow-band single photons, which may find potential application in frequency-encoded photonic qubits in quantum information processing.

  14. A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions

    NASA Astrophysics Data System (ADS)

    Smith, Michael S. D.; Ko, Alex C. T.; Ridsdale, Andrew; Schattka, Bernie; Pegoraro, Adrian; Hewko, Mark D.; Shiomi, Masashi; Stolow, Albert; Sowa, Michael G.

    2009-06-01

    In this study we compare the single-photon autofluorescence and multi-photon emission spectra obtained from the luminal surface of healthy segments of artery with segments where there are early atherosclerotic lesions. Arterial tissue was harvested from atherosclerosis-prone WHHL-MI rabbits (Watanabe heritable hyperlipidemic rabbit-myocardial infarction), an animal model which mimics spontaneous myocardial infarction in humans. Single photon fluorescence emission spectra of samples were acquired using a simple spectrofluorometer set-up with 400 nm excitation. Samples were also investigated using a home built multi-photon microscope based on a Ti:sapphire femto-second oscillator. The excitation wavelength was set at 800 nm with a ~100 femto-second pulse width. Epi-multi-photon spectroscopic signals were collected through a fibre-optics coupled spectrometer. While the single-photon fluorescence spectra of atherosclerotic lesions show minimal spectroscopic difference from those of healthy arterial tissue, the multi-photon spectra collected from atherosclerotic lesions show marked changes in the relative intensity of two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) signals when compared with those from healthy arterial tissue. The observed sharp increase of the relative SHG signal intensity in a plaque is in agreement with the known pathology of early lesions which have increased collagen content.

  15. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  16. Mid-infrared coincidence measurements on twin photons at room temperature

    PubMed Central

    Mancinelli, M.; Trenti, A.; Piccione, S.; Fontana, G.; Dam, J. S.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L.

    2017-01-01

    Quantum measurements using single-photon detectors are opening interesting new perspectives in diverse fields such as remote sensing, quantum cryptography and quantum computing. A particularly demanding class of applications relies on the simultaneous detection of correlated single photons. In the visible and near infrared wavelength ranges suitable single-photon detectors do exist. However, low detector quantum efficiency or excessive noise has hampered their mid-infrared (MIR) counterpart. Fast and highly efficient single-photon detectors are thus highly sought after for MIR applications. Here we pave the way to quantum measurements in the MIR by the demonstration of a room temperature coincidence measurement with non-degenerate twin photons at about 3.1 μm. The experiment is based on the spectral translation of MIR radiation into the visible region, by means of efficient up-converter modules. The up-converted pairs are then detected with low-noise silicon avalanche photodiodes without the need for cryogenic cooling. PMID:28504244

  17. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate

    PubMed Central

    Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.

    2013-01-01

    Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696

  18. Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission.

    PubMed

    Pazzagli, Sofia; Lombardi, Pietro; Martella, Daniele; Colautti, Maja; Tiribilli, Bruno; Cataliotti, Francesco Saverio; Toninelli, Costanza

    2018-05-22

    Quantum technologies could largely benefit from the control of quantum emitters in sub-micrometric size crystals. These are naturally prone to integration in hybrid devices, including heterostructures and complex photonic devices. Currently available quantum emitters in nanocrystals suffer from spectral instability, preventing their use as single-photon sources for most quantum optics operations. In this work we report on the performances of single-photon emission from organic nanocrystals (average size of hundreds of nm), made of anthracene (Ac) and doped with dibenzoterrylene (DBT) molecules. The source has hours-long photostability with respect to frequency and intensity, both at room and at cryogenic temperature. When cooled to 3 K, the 00-zero phonon line shows linewidth values (50 MHz) close to the lifetime limit. Such optical properties in a nanocrystalline environment recommend the proposed organic nanocrystals as single-photon sources for integrated photonic quantum technologies.

  19. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity

    NASA Astrophysics Data System (ADS)

    Hu, C. Y.

    2017-03-01

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.

  20. Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity

    PubMed Central

    Hu, C. Y.

    2017-01-01

    The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks. PMID:28349960

  1. Fast time-domain measurements on telecom single photons

    NASA Astrophysics Data System (ADS)

    Allgaier, Markus; Vigh, Gesche; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Brecht, Benjamin; Silberhorn, Christine

    2017-09-01

    Direct measurements on the temporal envelope of quantum light are a challenging task and not many examples are known because most classical pulse characterisation methods do not work on the single-photon level. Knowledge of both spectrum and timing can, however, give insights on properties that cannot be determined by the spectral intensity alone. While temporal measurements on single photons on timescales of tens of picoseconds are possible with superconducting photon detectors, and picosecond measurements have been performed using streak cameras, there are no commercial single-photon sensitive devices with femtosecond resolution available. While time-domain sampling using sum-frequency generation has already been exploited for such a measurement, inefficient conversion has necessitated long integration times to build the temporal profile. We demonstrate a highly efficient waveguided sum-frequency generation process in Lithium Niobate to measure the temporal envelope of single photons with femtosecond resolution with short enough acquisition time to provide a live-view of the measurement. We demonstrate the measurement technique and combine it with spectral measurements using a dispersive-fibre time-of-flight spectrometer to determine upper and lower bounds for the spectral purity of heralded single photons. The approach complements the joint spectral intensity measurements as a measure on the purity can be given without knowledge of the spectral phase.

  2. Efficient room-temperature source of polarized single photons

    DOEpatents

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  3. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  4. Two-photon interference and coherent control of single InAs quantum dot emissions in an Ag-embedded structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, X., E-mail: iu.xiangming@nims.go.jp; National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044; Kumano, H.

    2014-07-28

    We have recently reported the successful fabrication of bright single-photon sources based on Ag-embedded nanocone structures that incorporate InAs quantum dots. The source had a photon collection efficiency as high as 24.6%. Here, we show the results of various types of photonic characterizations of the Ag-embedded nanocone structures that confirm their versatility as regards a broad range of quantum optical applications. We measure the first-order autocorrelation function to evaluate the coherence time of emitted photons, and the second-order correlation function, which reveals the strong suppression of multiple photon generation. The high indistinguishability of emitted photons is shown by the Hong-Ou-Mandel-typemore » two-photon interference. With quasi-resonant excitation, coherent population flopping is demonstrated through Rabi oscillations. Extremely high single-photon purity with a g{sup (2)}(0) value of 0.008 is achieved with π-pulse quasi-resonant excitation.« less

  5. Two-photon interference of temporally separated photons.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-10-06

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms.

  6. On-chip electrically controlled routing of photons from a single quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bentham, C.; Coles, R. J.; Royall, B.

    2015-06-01

    Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integratedmore » quantum photonic circuits.« less

  7. Localised excitation of a single photon source by a nanowaveguide.

    PubMed

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-29

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10(-4) only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system.

  8. Localised excitation of a single photon source by a nanowaveguide

    PubMed Central

    Geng, Wei; Manceau, Mathieu; Rahbany, Nancy; Sallet, Vincent; De Vittorio, Massimo; Carbone, Luigi; Glorieux, Quentin; Bramati, Alberto; Couteau, Christophe

    2016-01-01

    Nowadays, integrated photonics is a key technology in quantum information processing (QIP) but achieving all-optical buses for quantum networks with efficient integration of single photon emitters remains a challenge. Photonic crystals and cavities are good candidates but do not tackle how to effectively address a nanoscale emitter. Using a nanowire nanowaveguide, we realise an hybrid nanodevice which locally excites a single photon source (SPS). The nanowire acts as a passive or active sub-wavelength waveguide to excite the quantum emitter. Our results show that localised excitation of a SPS is possible and is compared with free-space excitation. Our proof of principle experiment presents an absolute addressing efficiency ηa ~ 10−4 only ~50% lower than the one using free-space optics. This important step demonstrates that sufficient guided light in a nanowaveguide made of a semiconductor nanowire is achievable to excite a single photon source. We accomplish a hybrid system offering great potentials for electrically driven SPSs and efficient single photon collection and detection, opening the way for optimum absorption/emission of nanoscale emitters. We also discuss how to improve the addressing efficiency of a dipolar nanoscale emitter with our system. PMID:26822999

  9. On-demand generation of background-free single photons from a solid-state source

    NASA Astrophysics Data System (ADS)

    Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val

    2018-02-01

    True on-demand high-repetition-rate single-photon sources are highly sought after for quantum information processing applications. However, any coherently driven two-level quantum system suffers from a finite re-excitation probability under pulsed excitation, causing undesirable multi-photon emission. Here, we present a solid-state source of on-demand single photons yielding a raw second-order coherence of g(2 )(0 )=(7.5 ±1.6 )×10-5 without any background subtraction or data processing. To this date, this is the lowest value of g(2 )(0 ) reported for any single-photon source even compared to the previously reported best background subtracted values. We achieve this result on GaAs/AlGaAs quantum dots embedded in a low-Q planar cavity by employing (i) a two-photon excitation process and (ii) a filtering and detection setup featuring two superconducting single-photon detectors with ultralow dark-count rates of (0.0056 ±0.0007 ) s-1 and (0.017 ±0.001 ) s-1, respectively. Re-excitation processes are dramatically suppressed by (i), while (ii) removes false coincidences resulting in a negligibly low noise floor.

  10. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  11. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  12. Upconversion single-microbelt photodetector via two-photon absorption simultaneous

    NASA Astrophysics Data System (ADS)

    Lou, Guanlin; Wu, Yanyan; Zhu, Hai; Li, Jinyu; Chen, Anqi; Chen, Zhiyang; Liang, Yunfeng; Ren, Yuhao; Gui, Xuchun; Zhong, Dingyong; Qiu, Zhiren; Tang, Zikang; Su, Shi C.

    2018-05-01

    Single microbelt (MB) photodetectors with metal–semiconductor-metal structure have been demonstrated and characterized comprehensively. For single-photon absorption, the maximum responsivity of ZnO-MB photodetector can reach as high as 1.4  ×  105 A W‑1 at 20 V bias. The results about photoresponse of MB-detector reveals that two relaxation mechanisms contribute to the carrier decay time. Moreover, the two-photon absorption upconversion photoresponsivity in the single-MB detector has also been realized, which is the first report about the two-photon absorption detector to the best of our knowledge. The excellent two-photon absorption photoresponsivity characteristic of the MB device can be available not only for detector but also for solar cell and biomedical imaging. The above results present a significant step towards future fabrication of single micro/nano-structure based multiphoton excitation optoelectronic devices.

  13. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    PubMed

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  14. Low-coherence interferometric tip-clearance probe

    NASA Astrophysics Data System (ADS)

    Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken

    2003-08-01

    We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.

  15. Fourier analysis of surface plasmon waves launched from single nanohole and nanohole arrays: unraveling tip-induced effects.

    PubMed

    Chang, Y C; Chu, J Y; Wang, T J; Lin, M W; Yeh, J T; Wang, J K

    2008-01-21

    The authors report the investigation of surface plasmon waves (SPW) generated by single nanohole and nanohole arrays. Scattering-type scanning near-field microscopy is used to directly observe near-field distribution. The images after Fourier transformation display characteristic patterns that match with the derived analytic formula. The correspondence helps to identify the role of the scanning tip in generating SPW, making possible of the removal of this tip-induced effect. This study provides a means to perform in-depth investigation on surface plasmon polaritons.

  16. Quantum Communication Systems

    DTIC Science & Technology

    2008-03-15

    numbers make the observation of non -Poissonian features easier, which calls for higher pump power and better mode matching of the pump beam , more...heralded two-photon NOON states, we rely on the local photon- bunching effect of two heralded single photons at a beam splitter , as sketched in Fig. 1. Two...heralded single photons are sent to separate input ports of a 50:50 beam splitter (BS1). The photons bunch at the beam splitter , exiting together from

  17. Bridging visible and telecom wavelengths with a single-mode broadband photon pair source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soeller, C.; Brecht, B.; Mosley, P. J.

    We present a spectrally decorrelated photon pair source bridging the visible and telecom wavelength regions. Tailored design and fabrication of a solid-core photonic crystal fiber (PCF) lead to the emission of signal and idler photons into only a single spectral and spatial mode. Thus no narrowband filtering is necessary and the heralded generation of pure photon number states in ultrafast wave packets at telecom wavelengths becomes possible.

  18. Electric sail, photonic sail and deorbiting applications of the freely guided photonic blade

    NASA Astrophysics Data System (ADS)

    Janhunen, Pekka

    2014-01-01

    We consider a freely guided photonic blade (FGPB) which is a centrifugally stretched sheet of photonic sail membrane that can be tilted by changing the centre of mass or by other means. The FGPB can be installed at the tip of each main tether of an electric solar wind sail (E-sail) so that one can actively manage the tethers to avoid their mutual collisions and to modify the spin rate of the sail if needed. This enables a more scalable and modular E-sail than the baseline approach where auxiliary tethers are used for collision avoidance. For purely photonic sail applications one can remove the tethers and increase the size of the blades to obtain a novel variant of the heliogyro that can have a significantly higher packing density than the traditional heliogyro. For satellite deorbiting in low Earth orbit (LEO) conditions, analogous designs exist where the E-sail effect is replaced by the negative polarity plasma brake effect and the photonic pressure by atmospheric drag. We conclude that the FGPB appears to be an enabling technique for diverse applications. We also outline a way of demonstrating it on ground and in LEO at low cost.

  19. Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale.

    PubMed

    Mivelle, Mathieu; Viktorovitch, Pierre; Baida, Fadi I; El Eter, Ali; Xie, Zhihua; Vo, Than-Phong; Atie, Elie; Burr, Geoffrey W; Nedeljkovic, Dusan; Rauch, Jean-Yves; Callard, Ségolène; Grosjean, Thierry

    2014-06-16

    We show that the near-field coupling between a photonic crystal microlaser and a nano-antenna can enable hybrid photonic systems that are both physically compact (free from bulky optics) and efficient at transferring optical energy into the nano-antenna. Up to 19% of the laser power from a micron-scale photonic crystal laser cavity is experimentally transferred to a bowtie aperture nano-antenna (BNA) whose area is 400-fold smaller than the overall emission area of the microlaser. Instead of a direct deposition of the nano-antenna onto the photonic crystal, it is fabricated at the apex of a fiber tip to be accurately placed in the microlaser near-field. Such light funneling within a hybrid structure provides a path for overcoming the diffraction limit in optical energy transfer to the nanoscale and should thus open promising avenues in the nanoscale enhancement and confinement of light in compact architectures, impacting applications such as biosensing, optical trapping, local heating, spectroscopy, and nanoimaging.

  20. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.

  1. Quantum routing of single optical photons with a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Xia, Keyu; Jelezko, Fedor; Twamley, Jason

    2018-05-01

    Interconnecting optical photons with superconducting circuits is a challenging problem but essential for building long-range superconducting quantum networks. We propose a hybrid quantum interface between the microwave and optical domains where the propagation of a single-photon pulse along a nanowaveguide is controlled in a coherent way by tuning the electromagnetically induced transparency window with the quantum state of a flux qubit mediated by the spin in a nanodiamond. The qubit can route a single-photon pulse using the nanodiamond into a quantum superposition of paths without the aid of an optical cavity—simplifying the setup. By preparing the flux qubit in a superposition state our cavityless scheme creates a hybrid state-path entanglement between a flying single optical photon and a static superconducting qubit.

  2. High spectral purity silicon ring resonator photon-pair source

    NASA Astrophysics Data System (ADS)

    Steidle, Jeffrey A.; Fanto, Michael L.; Tison, Christopher C.; Wang, Zihao; Preble, Stefan F.; Alsing, Paul M.

    2015-05-01

    Here we present the experimental demonstration of a Silicon ring resonator photon-pair source. The crystalline Silicon ring resonator (radius of 18.5μm) was designed to realize low dispersion across multiple resonances, which allows for operation with a high quality factor of Q~50k. In turn, the source exhibits very high brightness of >3x105 photons/s/mW2/GHz since the produced photon pairs have a very narrow bandwidth. Furthermore, the waveguidefiber coupling loss was minimized to <1.5dB using an inverse tapered waveguide (tip width of ~150nm over a 300μm length) that is butt-coupled to a high-NA fiber (Nufern UHNA-7). This ensured minimal loss of photon pairs to the detectors, which enabled very high purity photon pairs with minimal noise, as exhibited by a very high Coincidental-Accidental Ratio of >1900. The low coupling loss (3dB fiber-fiber) also allowed for operation with very low off-chip pump power of <200μW. In addition, the zero dispersion of the ring resonator resulted in the production of a photon-pair comb across multiple resonances symmetric about the pump resonance (every ~5nm spanning >20nm), which could be used in future wavelength division multiplexed quantum networks.

  3. Single-photon decision maker

    NASA Astrophysics Data System (ADS)

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  4. 1.5- μm single photon counting using polarization-independent up-conversion detector

    NASA Astrophysics Data System (ADS)

    Takesue, Hiroki; Diamanti, Eleni; Langrock, Carsten; Fejer, M. M.; Yamamoto, Yoshihisa

    2006-12-01

    We report a 1.5- μm band polarization independent single photon detector based on frequency up-conversion in periodically poled lithium niobate (PPLN) waveguides. To overcome the polarization dependence of the PPLN waveguides, we employed a polarization diversity configuration composed of two up-conversion detectors connected with a polarization beam splitter. We experimentally confirmed polarization independent single photon counting using our detector. We undertook a proof-of-principle differential phase shift quantum key distribution experiment using the detector, and confirmed that the sifted key rate and error rate remained stable when the polarization state was changed during single photon transmission.

  5. Bright nanowire single photon source based on SiV centers in diamond

    DOE PAGES

    Marseglia, L.; Saha, K.; Ajoy, A.; ...

    2018-01-01

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  6. 32-channel single photon counting module for ultrasensitive detection of DNA sequences

    NASA Astrophysics Data System (ADS)

    Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera

    2006-10-01

    We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.

  7. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.

    PubMed

    Chandrasekaran, Vigneshwaran; Tessier, Mickaël D; Dupont, Dorian; Geiregat, Pieter; Hens, Zeger; Brainis, Edouard

    2017-10-11

    Colloidal core/shell InP/ZnSe quantum dots (QDs), recently produced using an improved synthesis method, have a great potential in life-science applications as well as in integrated quantum photonics and quantum information processing as single-photon emitters. Single-particle spectroscopy of 10 nm QDs with 3.2 nm cores reveals strong photon antibunching attributed to fast (70 ps) Auger recombination of multiple excitons. The QDs exhibit very good photostability under strong optical excitation. We demonstrate that the antibunching is preserved when the QDs are excited above the saturation intensity of the fundamental-exciton transition. This result paves the way toward their usage as high-purity on-demand single-photon emitters at room temperature. Unconventionally, despite the strong Auger blockade mechanism, InP/ZnSe QDs also display very little luminescence intermittency ("blinking"), with a simple on/off blinking pattern. The analysis of single-particle luminescence statistics places these InP/ZnSe QDs in the class of nearly blinking-free QDs, with emission stability comparable to state-of-the-art thick-shell and alloyed-interface CdSe/CdS, but with improved single-photon purity.

  8. Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range

    NASA Astrophysics Data System (ADS)

    Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.

    2018-02-01

    We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.

  9. Detecting and Segregating Black Tip-Damaged Wheat Kernels Using Visible and Near Infrared Spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Detection of individual wheat kernels with black tip symptom (BTS) and black tip damage (BTD) was demonstrated using near infrared reflectance spectroscopy (NIRS) and silicon light-emitting-diode (LED) based instruments. The two instruments tested, a single kernel near-infrared spectroscopy instrume...

  10. Single-photon transport through a waveguide coupling to a quadratic optomechanical system

    NASA Astrophysics Data System (ADS)

    Qiao, Lei

    2017-07-01

    We study the coherent transport of a single photon, which propagates in a one-dimensional waveguide and is scattered by a quadratic optomechanical system. Our approach, which is based on the Lippmann-Schwinger equation, gives an analytical solution to describe the single-photon transmission and reflection properties. We analyze the transport spectra and find they are not only related to the optomechanical system's energy-level structure, but also dependent on the optomechanical system's inherent parameters. For the existence of atomic degrees of freedom, we get a Rabi-splitting-like or an electromagnetically induced transparency (EIT)-like spectrum, depending on the atom-cavity coupling strength. Here, we focus on the single-photon strong-coupling regime so that single-quantum effects could be seen.

  11. Experimental quasi-single-photon transmission from satellite to earth.

    PubMed

    Yin, Juan; Cao, Yuan; Liu, Shu-Bin; Pan, Ge-Sheng; Wang, Jin-Hong; Yang, Tao; Zhang, Zhong-Ping; Yang, Fu-Min; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-08-26

    Free-space quantum communication with satellites opens a promising avenue for global secure quantum network and large-scale test of quantum foundations. Recently, numerous experimental efforts have been carried out towards this ambitious goal. However, one essential step--transmitting single photons from the satellite to the ground with high signal-to-noise ratio (SNR) at realistic environments--remains experimental challenging. Here, we report a direct experimental demonstration of the satellite-ground transmission of a quasi-single-photon source. In the experiment, single photons (~0.85 photon per pulse) are generated by reflecting weak laser pulses back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected by a 600-mm diameter telescope at the ground station, and finally detected by single-photon counting modules after 400-km free-space link transmission. With the help of high accuracy time synchronization, narrow receiver field-of-view and high-repetition-rate pulses (76 MHz), a SNR of better than 16:1 is obtained, which is sufficient for a secure quantum key distribution. Our experimental results represent an important step towards satellite-ground quantum communication.

  12. Quantum phase gate based on electromagnetically induced transparency in optical cavities

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Villas-Bôas, Celso J.

    2016-11-01

    We theoretically investigate the implementation of a quantum controlled-phase gate in a system constituted by a single atom inside an optical cavity, based on the electromagnetically induced transparency effect. First we show that a probe pulse can experience a π phase shift due to the presence or absence of a classical control field. Considering the interplay of the cavity-EIT effect and the quantum memory process, we demonstrated a controlled-phase gate between two single photons. To this end, first one needs to store a (control) photon in the ground atomic states. In the following, a second (target) photon must impinge on the atom-cavity system. Depending on the atomic state, this second photon will be either transmitted or reflected, acquiring different phase shifts. This protocol can then be easily extended to multiphoton systems, i.e., keeping the control photon stored, it may induce phase shifts in several single photons, thus enabling the generation of multipartite entangled states. We explore the relevant parameter space in the atom-cavity system that allows the implementation of quantum controlled-phase gates using the recent technologies. In particular, we have found a lower bound for the cooperativity of the atom-cavity system which enables the implementation of phase shift on single photons. The induced shift on the phase of a photonic qubit and the controlled-phase gate between single photons, combined with optical devices, enable one to perform universal quantum computation.

  13. Observation of entanglement between a quantum dot spin and a single photon.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  14. Photon catalysis acting as noiseless linear amplification and its application in coherence enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Shengli; Zhang, Xiangdong

    2018-04-01

    Photon catalysis is an intriguing quantum mechanical operation during which no photon is added to or subtracted from the relevant optical system. However, we prove that photon catalysis is in essence equivalent to the simpler but more efficient noiseless linear amplifier. This provides a simple and zero-energy-input method for enhancing quantum coherence. We show that the coherence enhancement holds both for a coherent state and a two-mode squeezed vacuum (TMSV) state. For the TMSV state, biside photon catalysis is shown to be equivalent to two times the single-side photon catalysis, and two times the photon catalysis does not provide a substantial enhancement of quantum coherence compared with single-side catalysis. We further extend our investigation to the performance of coherence enhancement with a more realistic photon catalysis scheme where a heralded approximated single-photon state and an on-off detector are exploited. Moreover, we investigate the influence of an imperfect photon detector and the result shows that the amplification effect of photon catalysis is insensitive to the detector inefficiency. Finally, we apply the coherence measure to quantum illumination and see the same trend of performance improvement as coherence enhancement is identified in practical quantum target detection.

  15. Functionalization of Probe Tips and Supports for Single-Molecule Recognition Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ebner, Andreas; Wildling, Linda; Zhu, Rong; Rankl, Christian; Haselgrübler, Thomas; Hinterdorfer, Peter; Gruber, Hermann J.

    The measuring tip of a force microscope can be converted into a monomolecular sensor if one or few "ligand" molecules are attached to the apex of the tip while maintaining ligand function. Functionalized tips are used to study fine details of receptor-ligand interaction by force spectroscopy or to map cognate "receptor" molecules on the sample surface. The receptor (or target) molecules can be present on the surface of a biological specimen; alternatively, soluble target molecules must be immobilized on ultraflat supports. This review describes the methods of tip functionalization, as well as target molecule immobilization. Silicon nitride tips, silicon chips, and mica have usually been functionalized in three steps: (1) aminofunctionalization, (2) crosslinker attachment, and (3) ligand/receptor coupling, whereby numerous crosslinkers are available to couple widely different ligand molecules. Gold-covered tips and/or supports have usually been coated with a self-assembled monolayer, on top of which the ligand/receptor molecule has been coupled either directly or via a crosslinker molecule. Apart from these general strategies, many simplified methods have been used for tip and/or support functionalization, even single-step methods such as adsorption or chemisorption being very efficient under suitable circumstances. All methods are described with the same explicitness and critical parameters are discussed. In conclusion, this review should help to find suitable methods for specific problems of tip and support functionalization.

  16. Enhancing a slow and weak optomechanical nonlinearity with delayed quantum feedback

    PubMed Central

    Wang, Zhaoyou; Safavi-Naeini, Amir H.

    2017-01-01

    A central goal of quantum optics is to generate large interactions between single photons so that one photon can strongly modify the state of another one. In cavity optomechanics, photons interact with the motional degrees of freedom of an optical resonator, for example, by imparting radiation pressure forces on a movable mirror or sensing minute fluctuations in the position of the mirror. Here, we show that the optical nonlinearity arising from these effects, typically too small to operate on single photons, can be sufficiently enhanced with feedback to generate large interactions between single photons. We propose a protocol that allows photons propagating in a waveguide to interact with each other through multiple bounces off an optomechanical system. The protocol is analysed by evolving the full many-body quantum state of the waveguide-coupled system, illustrating that large photon–photon interactions mediated by mechanical motion may be within experimental reach. PMID:28677674

  17. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  18. III-V quantum light source and cavity-QED on silicon.

    PubMed

    Luxmoore, I J; Toro, R; Del Pozo-Zamudio, O; Wasley, N A; Chekhovich, E A; Sanchez, A M; Beanland, R; Fox, A M; Skolnick, M S; Liu, H Y; Tartakovskii, A I

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III-V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III-V material grown directly on silicon substrates. The high quality of the III-V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems.

  19. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales.

    PubMed

    Saranathan, Vinodkumar; Osuji, Chinedum O; Mochrie, Simon G J; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R; Prum, Richard O

    2010-06-29

    Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4(1)32) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration.

  20. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales

    PubMed Central

    Saranathan, Vinodkumar; Osuji, Chinedum O.; Mochrie, Simon G. J.; Noh, Heeso; Narayanan, Suresh; Sandy, Alec; Dufresne, Eric R.; Prum, Richard O.

    2010-01-01

    Complex three-dimensional biophotonic nanostructures produce the vivid structural colors of many butterfly wing scales, but their exact nanoscale organization is uncertain. We used small angle X-ray scattering (SAXS) on single scales to characterize the 3D photonic nanostructures of five butterfly species from two families (Papilionidae, Lycaenidae). We identify these chitin and air nanostructures as single network gyroid (I4132) photonic crystals. We describe their optical function from SAXS data and photonic band-gap modeling. Butterflies apparently grow these gyroid nanostructures by exploiting the self-organizing physical dynamics of biological lipid-bilayer membranes. These butterfly photonic nanostructures initially develop within scale cells as a core-shell double gyroid (Ia3d), as seen in block-copolymer systems, with a pentacontinuous volume comprised of extracellular space, cell plasma membrane, cellular cytoplasm, smooth endoplasmic reticulum (SER) membrane, and intra-SER lumen. This double gyroid nanostructure is subsequently transformed into a single gyroid network through the deposition of chitin in the extracellular space and the degeneration of the rest of the cell. The butterflies develop the thermodynamically favored double gyroid precursors as a route to the optically more efficient single gyroid nanostructures. Current approaches to photonic crystal engineering also aim to produce single gyroid motifs. The biologically derived photonic nanostructures characterized here may offer a convenient template for producing optical devices based on biomimicry or direct dielectric infiltration. PMID:20547870

  1. A nanodiamond-tapered fiber system with high single-mode coupling efficiency.

    PubMed

    Schröder, Tim; Fujiwara, Masazumi; Noda, Tetsuya; Zhao, Hong-Quan; Benson, Oliver; Takeuchi, Shigeki

    2012-05-07

    We present a fiber-coupled diamond-based single photon system. Single nanodiamonds containing nitrogen vacancy defect centers are deposited on a tapered fiber of 273 nanometer in diameter providing a record-high number of 689,000 single photons per second from a defect center in a single-mode fiber. The system can be cooled to cryogenic temperatures and coupled evanescently to other nanophotonic structures, such as microresonators. The system is suitable for integrated quantum transmission experiments, two-photon interference, quantum-random-number generation and nano-magnetometry.

  2. Security of quantum key distribution with multiphoton components

    PubMed Central

    Yin, Hua-Lei; Fu, Yao; Mao, Yingqiu; Chen, Zeng-Bing

    2016-01-01

    Most qubit-based quantum key distribution (QKD) protocols extract the secure key merely from single-photon component of the attenuated lasers. However, with the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) QKD protocol, the unconditionally secure key can be extracted from the two-photon component by modifying the classical post-processing procedure in the BB84 protocol. Employing the merits of SARG04 QKD protocol and six-state preparation, one can extract secure key from the components of single photon up to four photons. In this paper, we provide the exact relations between the secure key rate and the bit error rate in a six-state SARG04 protocol with single-photon, two-photon, three-photon, and four-photon sources. By restricting the mutual information between the phase error and bit error, we obtain a higher secure bit error rate threshold of the multiphoton components than previous works. Besides, we compare the performances of the six-state SARG04 with other prepare-and-measure QKD protocols using decoy states. PMID:27383014

  3. Histologic and photonic evaluation of a pulsed Nd:YAG laser for ablation of subcutaneous adipose tissue.

    PubMed

    Ichikawa, Kota; Tanino, Ryuzaburo; Wakaki, Moriaki

    2006-12-20

    Although various lasers are available, few of them are applicable in liposculpture. Laser interaction with fat tissue has not also been well documented. The aim of our study was to gather basic data on laser absorption in fat tissue and to analyze the relationship between laser energy and lipolysis for development of a more effective laser system. The transmittance rate in human fat specimens was measured by a spectrophotometer to determine the optimum wavelength. The absorption coefficient was used to evaluate laser absorption at a wavelength of 1064 nm. Areas of heat degeneration and evaporation were measured by scanning electron microscopy. The relation between laser energy and the areas was analyzed statistically among low-power and high-power groups and controls. Energy dispersion at the fiber tip was investigated and analyzed statistically using the far field pattern. A graph of the absorption rate at wavelengths from 400 to 2400 nm showed a peak near 1700 nm and increases at wavelengths over 2000 nm. The formula gave as an absorption coefficient of 0.4 cm(-1), and involvement of the photo-acoustic effect and non-linear effect with short-pulse and high-peak energy was suggested. Findings of tissue evaporation, destruction, heat coagulation, and rupture of cell membrane were more frequently seen in irradiated specimens than in controls in scanning electron microscopy. The destroyed area in the low-power irradiated groups was significantly larger than that of controls in the statistical analysis. The affected area in the high-power irradiated groups was significantly larger than that of low-power specimens. Energy was concentrated at the tip with laser coherency. Energy at the oblique-cut tip was statistically lower than that at the normal tip, revealing that durability and maintenance of the fiber tip is essential to maintain energy levels in clinical practice. This study is the first to demonstrate the histologic and photonic relationship of energy absorption and lipolysis using a pulsed Nd:YAG laser. The results will be useful for research and development of a more effective laser system for liposculpture.

  4. Resolving photon number states in a superconducting circuit.

    PubMed

    Schuster, D I; Houck, A A; Schreier, J A; Wallraff, A; Gambetta, J M; Blais, A; Frunzio, L; Majer, J; Johnson, B; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-02-01

    Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.

  5. Single spontaneous photon as a coherent beamsplitter for an atomic matter-wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomkovič, Jiří; Welte, Joachim; Oberthaler, Markus K.

    2014-12-04

    In free space the spontaneous emission of a single photon destroys motional coherence. Close to a mirror surface the reflection erases the which-path information and the single emitted photon can be regarded as a coherent beam splitter for an atomic matter-wavewhich can be verified by atom interferometry. Our experiment is a realization of the recoiling slit Gedanken experiment by Einstein.

  6. Polymer Waveguides for Quantum Information

    DTIC Science & Technology

    2005-01-01

    a single photon or a very small amount of light plays a critical role in establishing the quantum nature of the process. These materials offer...realizations of Mach-Zehnder interferometers for use in single- photon quantum communication systems. The Scope of the research for this grant: This...to the waveguide we make. We also intend to investigate the transmission of highly attenuated signals mimicking the single photon , which in turn

  7. Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot.

    PubMed

    Verma, V B; Stevens, Martin J; Silverman, K L; Dias, N L; Garg, A; Coleman, J J; Mirin, R P

    2011-02-28

    We demonstrate photon antibunching from a single lithographically defined quantum dot fabricated by electron beam lithography, wet chemical etching, and overgrowth of the barrier layers by metalorganic chemical vapor deposition. Measurement of the second-order autocorrelation function indicates g(2)(0)=0.395±0.030, below the 0.5 limit necessary for classification as a single photon source.

  8. Recent advances in superconducting nanowire single photon detectors for single-photon imaging

    NASA Astrophysics Data System (ADS)

    Verma, V. B.; Allman, M. S.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Marsili, F.; Beyer, A.; Shaw, M. D.; Stern, J. A.; Mirin, R. P.; Nam, S. W.

    2016-05-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  9. Interference with a quantum dot single-photon source and a laser at telecom wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felle, M.; Centre for Advanced Photonics and Electronics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0FA; Huwer, J., E-mail: jan.huwer@crl.toshiba.co.uk

    The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.

  10. Effect of the qubit relaxation on transport properties of microwave photons

    NASA Astrophysics Data System (ADS)

    Sultanov, A. N.; Greenberg, Ya. S.

    2017-11-01

    In this work, using the non-Hermitian Hamiltonian method, the transmission of a single photon in a one-dimensional waveguide interacting with the cavity containing an arbitrary number of photons and the two-level artificial atom is studied with allowance for the relaxation of the latter. For transport factors, analytical expressions which explicitly take into account the qubit relaxation parameter have been obtained. The form of the transmission (reflection) coefficient when there is more than one photon in the cavity qualitatively differs from the single-photon cavity and contains the manifestation of the photon blockade effect. The qubit lifetime depends on the number of photons in the cavity.

  11. On-demand semiconductor source of 780-nm single photons with controlled temporal wave packets

    NASA Astrophysics Data System (ADS)

    Béguin, Lucas; Jahn, Jan-Philipp; Wolters, Janik; Reindl, Marcus; Huo, Yongheng; Trotta, Rinaldo; Rastelli, Armando; Ding, Fei; Schmidt, Oliver G.; Treutlein, Philipp; Warburton, Richard J.

    2018-05-01

    We report on a fast, bandwidth-tunable single-photon source based on an epitaxial GaAs quantum dot. Exploiting spontaneous spin-flip Raman transitions, single photons at 780 nm are generated on demand with tailored temporal profiles of durations exceeding the intrinsic quantum dot lifetime by up to three orders of magnitude. Second-order correlation measurements show a low multiphoton emission probability [g2(0 ) ˜0.10 -0.15 ] at a generation rate up to 10 MHz. We observe Raman photons with linewidths as low as 200 MHz, which is narrow compared to the 1.1-GHz linewidth measured in resonance fluorescence. The generation of such narrow-band single photons with controlled temporal shapes at the rubidium wavelength is a crucial step towards the development of an optimized hybrid semiconductor-atom interface.

  12. Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths.

    PubMed

    Natarajan, Chandra M; Zhang, Lijian; Coldenstrodt-Ronge, Hendrik; Donati, Gaia; Dorenbos, Sander N; Zwiller, Val; Walmsley, Ian A; Hadfield, Robert H

    2013-01-14

    Superconducting nanowire single-photon detectors (SNSPDs) are widely used in telecom wavelength optical quantum information science applications. Quantum detector tomography allows the positive-operator-valued measure (POVM) of a single-photon detector to be determined. We use an all-fiber telecom wavelength detector tomography test bed to measure detector characteristics with respect to photon flux and polarization, and hence determine the POVM. We study the SNSPD both as a binary detector and in an 8-bin, fiber based, Time-Multiplexed (TM) configuration at repetition rates up to 4 MHz. The corresponding POVMs provide an accurate picture of the photon number resolving capability of the TM-SNSPD.

  13. Electrical and optical 3D modelling of light-trapping single-photon avalanche diode

    NASA Astrophysics Data System (ADS)

    Zheng, Tianzhe; Zang, Kai; Morea, Matthew; Xue, Muyu; Lu, Ching-Ying; Jiang, Xiao; Zhang, Qiang; Kamins, Theodore I.; Harris, James S.

    2018-02-01

    Single-photon avalanche diodes (SPADs) have been widely used to push the frontier of scientific research (e.g., quantum science and single-molecule fluorescence) and practical applications (e.g., Lidar). However, there is a typical compromise between photon detection efficiency and jitter distribution. The light-trapping SPAD has been proposed to break this trade-off by coupling the vertically incoming photons into a laterally propagating mode while maintaining a small jitter and a thin Si device layer. In this work, we provide a 3D-based optical and electrical model based on practical fabrication conditions and discuss about design parameters, which include surface texturing, photon injection position, device area, and other features.

  14. An in vitro method for rapid regeneration of a monopodial orchid hybrid Aranda Deborah using thin section culture.

    PubMed

    Lakshmanan, P; Loh, C S; Goh, C J

    1995-05-01

    A thin section culture system for rapid regeneration of the monopodial orchid hybrid Aranda Deborah has been developed. Thin sections (0.6-0.7mm thick) obtained by transverse sectioning of a single shoot tip (6-7mm), when cultured in Vacin and Went medium enriched with coconut water (20% v/v), produced an average 13.6 protocorm-like bodies (PLB) after 45 days, compared to 2.7 PLB formed by a single 6-7 mm long shoot tip under same culture condition. Addition of α-naphthaleneacetic acid to Vacin and Went medium enriched with coconut water further increased PLB production by thin sections. PLB developed into plantlets on solid Vacin and Went medium containing 10% (v/v) coconut water and 0.5 g l(-1) activated charcoal. With this procedure, more than 80,000 plantlets could be produced from thin sections obtained from a single shoot tip in a year as compared to nearly 11,000 plantlets produced by the conventional shoot tip method.

  15. Optimized optical devices for edge-coupling-enabled silicon photonics platform

    NASA Astrophysics Data System (ADS)

    Png, Ching Eng; Ang, Thomas Y. L.; Ong, Jun Rong; Lim, Soon Thor; Sahin, Ezgi; Chen, G. F. R.; Tan, D. T. H.; Guo, Tina X.; Wang, Hong

    2018-02-01

    We present a library of high-performance passive and active silicon photonic devices at the C-band that is specifically designed and optimized for edge-coupling-enabled silicon photonics platform. These devices meet the broadband (100 nm), low-loss (< 2dB per device), high speed (>= 25 Gb/s), and polarization diversity requirements (TE and TM polarization extinction ratio <= 25 dB) for optical communication applications. Ultra-low loss edge couplers, broadband directional couplers, high-extinction ratio polarization beam splitters (PBSs), and high-speed modulators are some of the devices within our library. In particular, we have designed and fabricated inverse taper fiber-to-waveguide edge couplers of tip widths ranging from 120 nm to 200 nm, and we obtained a low coupling loss of 1.80+/-0.28 dB for 160 nm tip width. To achieve polarization diversity operation for inverse tapers, we have experimentally realized different designs of polarization beam splitters (PBS). Our optimized PBS has a measured extinction ratio of <= 25 dB for both the quasiTE modes, and quasi-TM modes. Additionally, a broadband (100 nm) directional coupler with a 50/50 power splitting ratio was experimentally realized on a small footprint of 20×3 μm2 . Last but not least, high-speed silicon modulators with a range of carrier doping concentrations and offset of the PN junction can be used to optimise the modulation efficiency, and insertion losses for operation at 25 GHz.

  16. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.

    PubMed

    Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen

    2014-11-21

    A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.

  17. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    NASA Astrophysics Data System (ADS)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  18. Entangled-photon compressive ghost imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerom, Petros; Chan, Kam Wai Clifford; Howell, John C.

    2011-12-15

    We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for low-light-level and quantum image formation.

  19. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    NASA Astrophysics Data System (ADS)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  20. Graded-index fiber tip optical tweezers: numerical simulation and trapping experiment.

    PubMed

    Gong, Yuan; Ye, Ai-Yan; Wu, Yu; Rao, Yun-Jiang; Yao, Yao; Xiao, Song

    2013-07-01

    Optical fiber tweezers based on a graded-index multimode fiber (GIMMF) tip is proposed. Light propagation characteristics and gradient force distribution near the GIMMF tip are numerically investigated, which are further compared with that of optical fiber tips based on conventional single mode fibers. The simulated results indicated that by selecting optimal GIMMF length, the gradient force of the GIMMF tip tweezers is about 4 times higher than that of the SMF tip tweezers with a same shape. To prove the feasibility of such a new concept, optical trapping of yeast cells with a diameter of ~5 μm using the chemically-etched GIMMF tip is experimentally demonstrated and the trapping force is also calculated.

  1. Two-photon interference of temporally separated photons

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2016-01-01

    We present experimental demonstrations of two-photon interference involving temporally separated photons within two types of interferometers: a Mach-Zehnder interferometer and a polarization-based Michelson interferometer. The two-photon states are probabilistically prepared in a symmetrically superposed state within the two interferometer arms by introducing a large time delay between two input photons; this state is composed of two temporally separated photons, which are in two different or the same spatial modes. We then observe two-photon interference fringes involving both the Hong-Ou-Mandel interference effect and the interference of path-entangled two-photon states simultaneously in a single interferometric setup. The observed two-photon interference fringes provide simultaneous observation of the interferometric properties of the single-photon and two-photon wavepackets. The observations can also facilitate a more comprehensive understanding of the origins of the interference phenomena arising from spatially bunched/anti-bunched two-photon states comprised of two temporally separated photons within the interferometer arms. PMID:27708380

  2. InP Nanoflag Growth from a Nanowire Template by in Situ Catalyst Manipulation.

    PubMed

    Kelrich, Alexander; Sorias, Ofir; Calahorra, Yonatan; Kauffmann, Yaron; Gladstone, Ran; Cohen, Shimon; Orenstein, Meir; Ritter, Dan

    2016-04-13

    Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall. Investigation of the mechanism responsible for catalyst movement shows that its final position is determined by the structural defect density along the nanowire. The crystal structure of the "flagpole" nanowire is epitaxially transferred to the nanoflag. Pure wurtzite InP nanomembranes with just a single stacking fault originating from the defect in the flagpole that pinned the catalyst were obtained. Optical characterization shows efficient highly polarized photoluminescence at room temperature from a single nanoflag with up to 90% degree of linear polarization. Electric field intensity enhancement of the incident light was calculated to be 57, concentrated at the nanoflag tip. The presented growth method is general and thus can be employed for achieving similar nanostructures in other III-V semiconductor material systems with potential applications in active nanophotonics.

  3. Mode Engineering of Single Photons from Cavity Spontaneous Parametric Down-Conversion Source and Quantum Dots

    NASA Astrophysics Data System (ADS)

    Paudel, Uttam

    Over the past decade, much effort has been made in identifying and characterizing systems that can form a building block of quantum networks, among which semiconductor quantum dots (QD) and spontaneous parametric down-conversion (SPDC) source are two of the most promising candidates. The work presented in this thesis will be centered on investigating and engineering the mentioned systems for generating customizable single photons. A type-II SPDC source can generate a highly flexible pair of entangled photons that can be used to interface disparate quantum systems. In this thesis, we have successfully implemented a cavity-SPDC source that emits polarization correlated photons at 942 nm with a lifetime of 950-1050ps that mode matches closely with InAs/GaAs QD photons. The source emits 80 photon pairs per second per mW pump power within the 150MHz bandwidth. Though the detection of idler photons, the source is capable of emitting heralded photons with g2?0.5 for up to 40 mW pump power. For a low pump power of 5 mW, the heralded g2 is 0.06, indicating that the system is an excellent heralded single photon source. By directly exciting a single QD with cavity-SPDC photons, we have demonstrated a heralded-absorption of SPDC photons by QD, resulting in the coupling of the two systems. Due to the large pump bandwidth, the emitted source is highly multimode in nature, requiring us to post-filter the downconverted field, resulting in a lower photon pair emission rate. We propose placing an intra-cavity etalon to suppress the multi-mode emissions and increase the photon count rate. Understanding and experimentally implementing two-photon interference (HOM) measurements will be crucial for building a scalable quantum network. A detailed theoretical description of HOM measurements is given and is experimentally demonstrated using photons emitted by QD. Through HOM measurements we demonstrated that the QD sample in the study is capable of emitting indistinguishable photons, with the visibility exceeding 95%. As an alternative approach to modifying the spectral mode of single photons, we performed phase modulation of photons emitted by a QD to generate additional sidebands that are separated by several GHz. By performing HOM measurements, we have shown that the central component and the sidebands are in the superposition states and the spectrally modified photons have a well-preserved indistinguishability. Such spectrally engineered photons can be used for phase-encoded cryptography applications. These experimental results should lay the foundations towards building a scalable hybrid quantum network.

  4. Single-photon continuous-variable quantum key distribution based on the energy-time uncertainty relation.

    PubMed

    Qi, Bing

    2006-09-15

    We propose a new quantum key distribution protocol in which information is encoded on continuous variables of a single photon. In this protocol, Alice randomly encodes her information on either the central frequency of a narrowband single-photon pulse or the time delay of a broadband single-photon pulse, while Bob randomly chooses to do either frequency measurement or time measurement. The security of this protocol rests on the energy-time uncertainty relation, which prevents Eve from simultaneously determining both frequency and time information with arbitrarily high resolution. Since no interferometer is employed in this scheme, it is more robust against various channel noises, such as polarization and phase fluctuations.

  5. Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer.

    PubMed

    James, David T; Kjellander, B K Charlotte; Smaal, Wiljan T T; Gelinck, Gerwin H; Combe, Craig; McCulloch, Iain; Wilson, Richard; Burroughes, Jeremy H; Bradley, Donal D C; Kim, Ji-Seon

    2011-12-27

    We report thin-film morphology studies of inkjet-printed single-droplet organic thin-film transistors (OTFTs) using angle-dependent polarized Raman spectroscopy. We show this to be an effective technique to determine the degree of molecular order as well as to spatially resolve the orientation of the conjugated backbones of the 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pentacene) molecules. The addition of an insulating polymer, polystyrene (PS), does not disrupt the π-π stacking of the TIPS-Pentacene molecules. Blending in fact improves the uniformity of the molecular morphology and the active layer coverage within the device and reduces the variation in molecular orientation between polycrystalline domains. For OTFT performance, blending enhances the saturation mobility from 0.22 ± 0.05 cm(2)/(V·s) (TIPS-Pentacene) to 0.72 ± 0.17 cm(2)/(V·s) (TIPS-Pentacene:PS) in addition to improving the quality of the interface between TIPS-Pentacene and the gate dielectric in the channel, resulting in threshold voltages of ∼0 V and steep subthreshold slopes.

  6. Photon-HDF5: an open file format for single-molecule fluorescence experiments using photon-counting detectors

    DOE PAGES

    Ingargiola, A.; Laurence, T. A.; Boutelle, R.; ...

    2015-12-23

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode (SPAD), photomultiplier tube (PMT) or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. Themore » format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. As a result, to encourage adoption by the academic and commercial communities, all software is released under the MIT open source license.« less

  7. Three-dimensional photonic crystals created by single-step multi-directional plasma etching.

    PubMed

    Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu

    2014-07-14

    We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (<-15dB) at optical communication wavelengths, suggesting the formation of a complete photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.

  8. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  9. Multiplexed single-mode wavelength-to-time mapping of multimode light

    PubMed Central

    Chandrasekharan, Harikumar K; Izdebski, Frauke; Gris-Sánchez, Itandehui; Krstajić, Nikola; Walker, Richard; Bridle, Helen L.; Dalgarno, Paul A.; MacPherson, William N.; Henderson, Robert K.; Birks, Tim A.; Thomson, Robert R.

    2017-01-01

    When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems. PMID:28120822

  10. Single photon detection and signal analysis for high sensitivity dosimetry based on optically stimulated luminescence with beryllium oxide

    NASA Astrophysics Data System (ADS)

    Radtke, J.; Sponner, J.; Jakobi, C.; Schneider, J.; Sommer, M.; Teichmann, T.; Ullrich, W.; Henniger, J.; Kormoll, T.

    2018-01-01

    Single photon detection applied to optically stimulated luminescence (OSL) dosimetry is a promising approach due to the low level of luminescence light and the known statistical behavior of single photon events. Time resolved detection allows to apply a variety of different and independent data analysis methods. Furthermore, using amplitude modulated stimulation impresses time- and frequency information into the OSL light and therefore allows for additional means of analysis. Considering the impressed frequency information, data analysis by using Fourier transform algorithms or other digital filters can be used for separating the OSL signal from unwanted light or events generated by other phenomena. This potentially lowers the detection limits of low dose measurements and might improve the reproducibility and stability of obtained data. In this work, an OSL system based on a single photon detector, a fast and accurate stimulation unit and an FPGA is presented. Different analysis algorithms which are applied to the single photon data are discussed.

  11. Single-photon sensitive fast ebCMOS camera system for multiple-target tracking of single fluorophores: application to nano-biophotonics

    NASA Astrophysics Data System (ADS)

    Cajgfinger, Thomas; Chabanat, Eric; Dominjon, Agnes; Doan, Quang T.; Guerin, Cyrille; Houles, Julien; Barbier, Remi

    2011-03-01

    Nano-biophotonics applications will benefit from new fluorescent microscopy methods based essentially on super-resolution techniques (beyond the diffraction limit) on large biological structures (membranes) with fast frame rate (1000 Hz). This trend tends to push the photon detectors to the single-photon counting regime and the camera acquisition system to real time dynamic multiple-target tracing. The LUSIPHER prototype presented in this paper aims to give a different approach than those of Electron Multiplied CCD (EMCCD) technology and try to answer to the stringent demands of the new nano-biophotonics imaging techniques. The electron bombarded CMOS (ebCMOS) device has the potential to respond to this challenge, thanks to the linear gain of the accelerating high voltage of the photo-cathode, to the possible ultra fast frame rate of CMOS sensors and to the single-photon sensitivity. We produced a camera system based on a 640 kPixels ebCMOS with its acquisition system. The proof of concept for single-photon based tracking for multiple single-emitters is the main result of this paper.

  12. Three-party Quantum Secure Direct Communication with Single Photons in both Polarization and Spatial-mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Wang, LiLi; Ma, WenPing; Wang, MeiLing; Shen, DongSu

    2016-05-01

    We present an efficient three-party quantum secure direct communication (QSDC) protocol with single photos in both polarization and spatial-mode degrees of freedom. The three legal parties' messages can be encoded on the polarization and the spatial-mode states of single photons independently with desired unitary operations. A party can obtain the other two parties' messages simultaneously through a quantum channel. Because no extra public information is transmitted in the classical channels, the drawback of information leakage or classical correlation does not exist in the proposed scheme. Moreover, the comprehensive security analysis shows that the presented QSDC network protocol can defend the outsider eavesdropper's several sorts of attacks. Compared with the single photons with only one degree of freedom, our protocol based on the single photons in two degrees of freedom has higher capacity. Since the preparation and the measurement of single photon quantum states in both the polarization and the spatial-mode degrees of freedom are available with current quantum techniques, the proposed protocol is practical.

  13. On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rengstl, U.; Schwartz, M.; Herzog, T.

    2015-07-13

    We present an on-chip beamsplitter operating on a single-photon level by means of a quasi-resonantly driven InGaAs/GaAs quantum dot. The single photons are guided by rib waveguides and split into two arms by an evanescent field coupler. Although the waveguides themselves support the fundamental TE and TM modes, the measured degree of polarization (∼90%) reveals the main excitation and propagation of the TE mode. We observe the preserved single-photon nature of a quasi-resonantly excited quantum dot by performing a cross-correlation measurement on the two output arms of the beamsplitter. Additionally, the same quantum dot is investigated under resonant excitation, wheremore » the same splitting ratio is observed. An autocorrelation measurement with an off-chip beamsplitter on a single output arm reveal the single-photon nature after evanescent coupling inside the on-chip splitter. Due to their robustness, adjustable splitting ratio, and their easy implementation, rib waveguide beamsplitters with embedded quantum dots provide a promising step towards fully integrated quantum circuits.« less

  14. Photon pair source via two coupling single quantum emitters

    NASA Astrophysics Data System (ADS)

    Peng, Yong-Gang; Zheng, Yu-Jun

    2015-10-01

    We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source. Project supported by the National Natural Science Foundation of China (Grand Nos. 91021009, 21073110, and 11374191), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AQ020), the Postdoctoral Science Foundation of China (Grant No. 2013M531584), the Doctoral Program of Higher Education of China (Grant Nos. 20130131110005 and 20130131120006), and the Taishan Scholarship Project of Shandong Province, China.

  15. Remote entanglement between a single atom and a Bose-Einstein condensate.

    PubMed

    Lettner, M; Mücke, M; Riedl, S; Vo, C; Hahn, C; Baur, S; Bochmann, J; Ritter, S; Dürr, S; Rempe, G

    2011-05-27

    Entanglement between stationary systems at remote locations is a key resource for quantum networks. We report on the experimental generation of remote entanglement between a single atom inside an optical cavity and a Bose-Einstein condensate (BEC). To produce this, a single photon is created in the atom-cavity system, thereby generating atom-photon entanglement. The photon is transported to the BEC and converted into a collective excitation in the BEC, thus establishing matter-matter entanglement. After a variable delay, this entanglement is converted into photon-photon entanglement. The matter-matter entanglement lifetime of 100 μs exceeds the photon duration by 2 orders of magnitude. The total fidelity of all concatenated operations is 95%. This hybrid system opens up promising perspectives in the field of quantum information. © 2011 American Physical Society

  16. DNA-binding activity of TNF-{alpha} inducing protein from Helicobacter pylori

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzuhara, T.; Suganuma, M.; Oka, K.

    2007-11-03

    Tumor necrosis factor-{alpha} (TNF-{alpha}) inducing protein (Tip{alpha}) is a carcinogenic factor secreted from Helicobacter pylori (H. pylori), mediated through both enhanced expression of TNF-{alpha} and chemokine genes and activation of nuclear factor-{kappa}B. Since Tip{alpha} enters gastric cancer cells, the Tip{alpha} binding molecules in the cells should be investigated. The direct DNA-binding activity of Tip{alpha} was observed by pull down assay using single- and double-stranded genomic DNA cellulose. The surface plasmon resonance assay, indicating an association between Tip{alpha} and DNA, revealed that the affinity of Tip{alpha} for (dGdC)10 is 2400 times stronger than that of del-Tip{alpha}, an inactive Tip{alpha}. This suggestsmore » a strong correlation between DNA-binding activity and carcinogenic activity of Tip{alpha}. And the DNA-binding activity of Tip{alpha} was first demonstrated with a molecule secreted from H. pylori.« less

  17. Joint temporal density measurements for two-photon state characterization.

    PubMed

    Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey

    2008-10-10

    We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.

  18. Continuous-variable teleportation of a negative Wigner function

    NASA Astrophysics Data System (ADS)

    Mišta, Ladislav, Jr.; Filip, Radim; Furusawa, Akira

    2010-07-01

    Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated single-photon state there is a strict threshold squeezing one has to surpass to successfully teleport the negativity of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional one. The main consequences for quantum communication and quantum computing with continuous variables are discussed.

  19. Continuous-variable teleportation of a negative Wigner function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mista, Ladislav Jr.; Filip, Radim; Furusawa, Akira

    2010-07-15

    Teleportation is a basic primitive for quantum communication and quantum computing. We address the problem of continuous-variable (unconditional and conditional) teleportation of a pure single-photon state and a mixed attenuated single-photon state generally in a nonunity-gain regime. Our figure of merit is the maximum negativity of the Wigner function, which demonstrates a highly nonclassical feature of the teleported state. We find that the negativity of the Wigner function of the single-photon state can be unconditionally teleported for an arbitrarily weak squeezed state used to create the entangled state shared in teleportation. In contrast, for the attenuated single-photon state there ismore » a strict threshold squeezing one has to surpass to successfully teleport the negativity of its Wigner function. The conditional teleportation allows one to approach perfect transmission of the single photon for an arbitrarily low squeezing at a cost of decrease of the success rate. In contrast, for the attenuated single photon state, conditional teleportation cannot overcome the squeezing threshold of the unconditional teleportation and it approaches negativity of the input state only if the squeezing increases simultaneously. However, as soon as the threshold squeezing is surpassed, conditional teleportation still pronouncedly outperforms the unconditional one. The main consequences for quantum communication and quantum computing with continuous variables are discussed.« less

  20. Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P

    2017-06-14

    Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.

  1. Implementation of single-photon quantum routing and decoupling using a nitrogen-vacancy center and a whispering-gallery-mode resonator-waveguide system.

    PubMed

    Cao, Cong; Duan, Yu-Wen; Chen, Xi; Zhang, Ru; Wang, Tie-Jun; Wang, Chuan

    2017-07-24

    Quantum router is a key element needed for the construction of future complex quantum networks. However, quantum routing with photons, and its inverse, quantum decoupling, are difficult to implement as photons do not interact, or interact very weakly in nonlinear media. In this paper, we investigate the possibility of implementing photonic quantum routing based on effects in cavity quantum electrodynamics, and present a scheme for single-photon quantum routing controlled by the other photon using a hybrid system consisting of a single nitrogen-vacancy (NV) center coupled with a whispering-gallery-mode resonator-waveguide structure. Different from the cases in which classical information is used to control the path of quantum signals, both the control and signal photons are quantum in our implementation. Compared with the probabilistic quantum routing protocols based on linear optics, our scheme is deterministic and also scalable to multiple photons. We also present a scheme for single-photon quantum decoupling from an initial state with polarization and spatial-mode encoding, which can implement an inverse operation to the quantum routing. We discuss the feasibility of our schemes by considering current or near-future techniques, and show that both the schemes can operate effectively in the bad-cavity regime. We believe that the schemes could be key building blocks for future complex quantum networks and large-scale quantum information processing.

  2. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  3. Triggered generation of single guided photons from a single atom in a nanofiber cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Kien, Fam; Hakuta, K.

    2011-04-15

    We study the deterministic generation of single guided-mode photons from an atom in the vicinity of a nanofiber with two fiber-Bragg-grating (FBG) mirrors. The technique is based on a cavity-enhanced Raman scattering process involving an adiabatic passage. We take into account the scattering of the pump field from the fiber, the multilevel structure of the atom, and the surface-induced van der Waals potential in describing the photon generation process. We find that, due to the confinement of the cavity field in the transverse plane of the fiber and in the space between the FBG mirrors, the probability of the generationmore » of a single guided-mode photon can be close to unity even when the finesse of the nanofiber cavity is moderate. We show the possibilities of saturation and power broadening in the behavior of the number of photons emitted into the nanofiber.« less

  4. Enhancing the Linear Dynamic Range in Multi-Channel Single Photon Detector beyond 7OD

    PubMed Central

    Gudkov, Dmytro; Gudkov, George; Gorbovitski, Boris; Gorfinkel, Vera

    2015-01-01

    We present design, implementation, and characterization of a single photon detector based on 32-channel PMT sensor [model H7260-20, Hamamatsu]. The developed high speed electronics enables the photon counting with linear dynamic range (LDR) up to 108count/s per detector's channel. The experimental characterization and Monte-Carlo simulations showed that in the single photon counting mode the LDR of the PMT sensor is limited by (i) “photon” pulse width (current pulse) of 900ps and (ii) substantial decrease of amplitudes of current pulses for count rates exceeding 108 count/s. The multi-channel architecture of the detector and the developed firm/software allow further expansion of the dynamic range of the device by 32-fold by using appropriate beam shaping. The developed single photon counting detector was tested for the detection of fluorescence labeled microbeads in capillary flow. PMID:27087788

  5. Single-photon routing with whispering-gallery resonators

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Song; Zhang, Jia-Hao; Wei, L. F.

    2018-04-01

    Quantum routing of single photons in a system with two waveguides coupled to two whispering-gallery resonators (WGRs) are investigated theoretically. Using a real-space full quantum theory, photonic scattering amplitudes along four ports of the waveguide network are analytically obtained. It is shown that, by adjusting the geometric and physical parameters of the two-WGR configuration, the quantum routing properties of single photons along the present waveguide network can be controlled effectively. The routing capability from input waveguide to another one can significantly exceed 0.5 near the resonance point of scattering spectra, which can be achieved with only one resonator. By properly designing the distance between two WGRs and the waveguide-WGR coupling strengths, the transfer rate between the waveguides can also reach certain sufficiently high values even in the non-resonance regime. Moreover, Fano-like resonances in the scattering spectra are designable. The proposed system may provide a potential application in controlling single-photon quantum routing.

  6. Dead-time optimized time-correlated photon counting instrument with synchronized, independent timing channels

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Rahn, Hans-Jürgen; Gregor, Ingo; Erdmann, Rainer; Enderlein, Jörg

    2007-03-01

    Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.

  7. High quantum efficiency and low dark count rate in multi-layer superconducting nanowire single-photon detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafari Salim, A., E-mail: ajafaris@uwaterloo.ca; Eftekharian, A.; University of Waterloo, Waterloo, Ontario N2L 3G1

    In this paper, we theoretically show that a multi-layer superconducting nanowire single-photon detector (SNSPD) is capable of approaching characteristics of an ideal SNSPD in terms of the quantum efficiency, dark count, and band-width. A multi-layer structure improves the performance in two ways. First, the potential barrier for thermally activated vortex crossing, which is the major source of dark counts and the reduction of the critical current in SNSPDs is elevated. In a multi-layer SNSPD, a vortex is made of 2D-pancake vortices that form a stack. It will be shown that the stack of pancake vortices effectively experiences a larger potentialmore » barrier compared to a vortex in a single-layer SNSPD. This leads to an increase in the experimental critical current as well as significant decrease in the dark count rate. In consequence, an increase in the quantum efficiency for photons of the same energy or an increase in the sensitivity to photons of lower energy is achieved. Second, a multi-layer structure improves the efficiency of single-photon absorption by increasing the effective optical thickness without compromising the single-photon sensitivity.« less

  8. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.

    PubMed

    Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech

    2017-12-15

    Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.

  9. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.

    PubMed

    Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl

    2010-09-13

    Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).

  10. Partial cross sections of helium satellites at medium photon energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlitz, R.; Sellin, I.A.; Hemmers, O.

    1997-04-01

    Still of current interest is the important role of single ionization with excitation compared to single ionization alone. The coupling between the electrons and the incoming photon is a single-particle operator. Thus, an excitation in addition to an ionization, leading to a so-called satellite line in a photoelectron spectrum, is entirely due to electron-electron interaction and probes the electron correlation in the ground and final state. Therefore the authors have undertaken the study of the intensity of helium satellites He{sup +}nl (n = 2 - 6) relative to the main photoline (n = 1) as a function of photon energymore » at photon energies well above threshold up to 900 eV. From these results they could calculate the partial cross-sections of the helium satellites. In order to test the consistency of their satellite-to-1s ratios with published double-to-single photoionization ratios, the authors calculated the double-to-single photoionization ratio from their measured ratios using the theoretical energy-distribution curves of Chang and Poe and Le Rouzo and Dal Cappello which proved to be valid for photon energies below 120 eV. These calculated double-to-single ionization ratios agree fairly well with recent ion measurements. In the lower photon energy range the authors ratios agree better with the ratios of Doerner et al. while for higher photon energies the agreement is better with the values of Levin et al.« less

  11. Zero-phonon-line emission of single molecules for applications in quantum information processing

    NASA Astrophysics Data System (ADS)

    Kiraz, Alper; Ehrl, M.; Mustecaplioglu, O. E.; Hellerer, T.; Brauchle, C.; Zumbusch, A.

    2005-07-01

    A single photon source which generates transform limited single photons is highly desirable for applications in quantum optics. Transform limited emission guarantees the indistinguishability of the emitted single photons. This, in turn brings groundbreaking applications in linear optics quantum information processing within an experimental reach. Recently, self-assembled InAs quantum dots and trapped atoms have successfully been demonstrated as such sources for highly indistinguishable single photons. Here, we demonstrate that nearly transform limited zero-phonon-line (ZPL) emission from single molecules can be obtained by using vibronic excitation. Furthermore we report the results of coincidence detection experiments at the output of a Michelson-type interferometer. These experiments reveal Hong-Ou-Mandel correlations as a proof of the indistinguishability of the single photons emitted consecutively from a single molecule. Therefore, single molecules constitute an attractive alternative to single InAs quantum dots and trapped atoms for applications in linear optics quantum information processing. Experiments were performed with a home-built confocal microscope keeping the sample in a superfluid liquid Helium bath at 1.4K. We investigated terrylenediimide (TDI) molecules highly diluted in hexadecane (Shpol'skii matrix). A continuous wave single mode dye laser was used for excitation of vibronic transitions of individual molecules. From the integral fluorescence, the ZPL of single molecules was selected with a spectrally narrow interference filter. The ZPL emission was then sent to a scanning Fabry-Perot interferometer for linewidth measurements or a Michelson-type interferometer for coincidence detection.

  12. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  13. Frequency-tuned microwave photon counter based on a superconductive quantum interferometer

    NASA Astrophysics Data System (ADS)

    Shnyrkov, V. I.; Yangcao, Wu; Soroka, A. A.; Turutanov, O. G.; Lyakhno, V. Yu.

    2018-03-01

    Various types of single-photon counters operating in infrared, ultraviolet, and optical wavelength ranges are successfully used to study electromagnetic fields, analyze radiation sources, and solve problems in quantum informatics. However, their operating principles become ineffective at millimeter band, S-band, and ultra-high frequency bands of wavelengths due to the decrease in quantum energy by 4-5 orders of magnitude. Josephson circuits with discrete Hamiltonians and qubits are a good foundation for the construction of single-photon counters at these frequencies. This paper presents a frequency-tuned microwave photon counter based on a single-junction superconducting quantum interferometer and flux qutrit. The control pulse converts the interferometer into a two-level system for resonance absorption of photons. Decay of the photon-induced excited state changes the magnetic flux in the interferometer, which is measured by a SQUID magnetometer. Schemes for recording the magnetic flux using a DC SQUID or ideal parametric detector, based on a qutrit with high-frequency excitation, are discussed. It is shown that the counter consisting of an interferometer with a Josephson junction and a parametric detector demonstrates high performance and is capable of detecting single photons in a microwave band.

  14. The interaction of a gold atom with carbon nanohorn and carbon nanotube tips and their complexes with a CO molecule: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Khongpracha, P.; Probst, M.; Limtrakul, J.

    2008-07-01

    The interactions of a gold atom with: (a) a single-wall carbon nanohorn (SWNH) conic tip; (b) with a single-wall carbon nanotube (SWNT) tip; and (c) their complexes with a CO molecule were studied using first-principle calculations based on density functional theory. The analysis of the pyramidalization angle (θp) as well as the π-orbital misalignment angles indicate that there should be many reactive carbon sites on the tips of SWNH and SWNT. It was found that SWNH provides reactive sites that can more selectively interact with the target atom. We identified five sites on both the SWNT tip and the nanohorn where attachment of a gold atom leads to a stable complex. This metal is found to be bi-coordinated with the tip of SWNH, while it is mono-coordinated with the SWNT tip. The largest interaction energies are -10.75 kcal/mol and -16.17 kcal/mol, respectively. The CO probe molecule binds to Au on the Au/SWNH or Au/SWNT tips with interaction energies of -22.34 and -18.29 kcal/mol, respectively. The main contributions of the interaction with both carbon nanostructures stems from σ-donation and π-backbonding. The results suggest that SWNHs could be one of the promising candidates for the development of high-specifity nanosensors.

  15. Optical levitation of a microdroplet containing a single quantum dot.

    PubMed

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2015-03-15

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.

  16. Polarized two-photon photoselection in EGFP: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Masters, T. A.; Marsh, R. J.; Blacker, T. S.; Armoogum, D. A.; Larijani, B.; Bain, A. J.

    2018-04-01

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S0 → S1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S0 → S1 transition.

  17. Room-Temperature Single-Photon Emission from Micrometer-Long Air-Suspended Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ishii, A.; Uda, T.; Kato, Y. K.

    2017-11-01

    Statistics of photons emitted by mobile excitons in individual carbon nanotubes are investigated. Photoluminescence spectroscopy is used to identify the chiralities and suspended lengths of air-suspended nanotubes, and photon-correlation measurements are performed at room temperature on telecommunication-wavelength nanotube emission with a Hanbury-Brown-Twiss setup. We obtain zero-delay second-order correlation g(2 )(0 ) less than 0.5, indicating single-photon generation. Excitation power dependence of the photon antibunching characteristics is examined for nanotubes with various chiralities and suspended lengths, where we find that the minimum value of g(2 )(0 ) is obtained at the lowest power. The influence of exciton diffusion and end quenching is studied by Monte Carlo simulations, and we derive an analytical expression for the minimum value of g(2 )(0 ). Our results indicate that mobile excitons in micrometer-long nanotubes can in principle produce high-purity single photons, leading to new design strategies for quantum photon sources.

  18. Polarized two-photon photoselection in EGFP: Theory and experiment.

    PubMed

    Masters, T A; Marsh, R J; Blacker, T S; Armoogum, D A; Larijani, B; Bain, A J

    2018-04-07

    In this work, we present a complete theoretical description of the excited state order created by two-photon photoselection from an isotropic ground state; this encompasses both the conventionally measured quadrupolar (K = 2) and the "hidden" degree of hexadecapolar (K = 4) transition dipole alignment, their dependence on the two-photon transition tensor and emission transition dipole moment orientation. Linearly and circularly polarized two-photon absorption (TPA) and time-resolved single- and two-photon fluorescence anisotropy measurements are used to determine the structure of the transition tensor in the deprotonated form of enhanced green fluorescent protein. For excitation wavelengths between 800 nm and 900 nm, TPA is best described by a single element, almost completely diagonal, two-dimensional (planar) transition tensor whose principal axis is collinear to that of the single-photon S 0 → S 1 transition moment. These observations are in accordance with assignments of the near-infrared two-photon absorption band in fluorescent proteins to a vibronically enhanced S 0 → S 1 transition.

  19. High-Efficiency Plug-and-Play Source of Heralded Single Photons

    NASA Astrophysics Data System (ADS)

    Montaut, Nicola; Sansoni, Linda; Meyer-Scott, Evan; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-08-01

    Reliable generation of single photons is of key importance for fundamental physical experiments and to demonstrate quantum protocols. Waveguide-based photon-pair sources have shown great promise in this regard due to their large spectral tunability, high generation rates, and long temporal coherence of the photon wave packet. However, integrating such sources with fiber-optic networks often results in a strong degradation of performance. We answer this challenge by presenting an alignment-free source of photon pairs in the telecommunications band that maintains heralding efficiency >50 % even after fiber pigtailing, photon separation, and pump suppression. The source combines this outstanding performance in heralding efficiency with a compact, stable, and easy-to-use "plug-and-play" package: one simply connects a laser to the input and detectors to the output, and the source is ready to use. This high performance can be achieved even outside the lab without the need for alignment which makes the source extremely useful for any experiment or demonstration needing heralded single photons.

  20. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  1. III–V quantum light source and cavity-QED on Silicon

    PubMed Central

    Luxmoore, I. J.; Toro, R.; Pozo-Zamudio, O. Del; Wasley, N. A.; Chekhovich, E. A.; Sanchez, A. M.; Beanland, R.; Fox, A. M.; Skolnick, M. S.; Liu, H. Y.; Tartakovskii, A. I.

    2013-01-01

    Non-classical light sources offer a myriad of possibilities in both fundamental science and commercial applications. Single photons are the most robust carriers of quantum information and can be exploited for linear optics quantum information processing. Scale-up requires miniaturisation of the waveguide circuit and multiple single photon sources. Silicon photonics, driven by the incentive of optical interconnects is a highly promising platform for the passive optical components, but integrated light sources are limited by silicon's indirect band-gap. III–V semiconductor quantum-dots, on the other hand, are proven quantum emitters. Here we demonstrate single-photon emission from quantum-dots coupled to photonic crystal nanocavities fabricated from III–V material grown directly on silicon substrates. The high quality of the III–V material and photonic structures is emphasized by observation of the strong-coupling regime. This work opens-up the advantages of silicon photonics to the integration and scale-up of solid-state quantum optical systems. PMID:23393621

  2. Qubits, qutrits, and ququads stored in single photons from an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Holleczek, Annemarie; Barter, Oliver; Langfahl-Klabes, Gunnar; Kuhn, Axel

    2015-03-01

    One of today's challenge to realize computing based on quantum mechanics is to reliably and scalably encode information in quantum systems. Here, we present a photon source to on-demand deliver photonic quantum bits of information based on a strongly coupled atom-cavity system. It operates intermittently for periods of up to 100μs, with a single-photon repetition rate of 1MHz, and an intra-cavity production e!ciency of up to 85%. Due to the photons inherent coherence time of 500ns and our ability to arbitrarily shape their amplitude and phase profile we time-bin encode information within one photon. To do so, the spatio-temporal envelope of a single photon is sub-divided in d time bins which allows for the delivery of arbitrary qu-d-its. The latter is done with a fidelity of > 95% for qubits, and 94% for qutrits verified using a newly developed time-resolved quantum-homodyne technique.

  3. Formation of hemoglobin photoproduct is responsible for two-photon and single photon-excited fluorescence of red blood cells

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny A.; Yakimov, Boris P.; Rodionov, Sergey A.; Omelyanenko, Nikolai P.; Priezzhev, Alexander V.; Fadeev, Victor V.; Lademann, Juergen; Darvin, Maxim E.

    2018-07-01

    Two-photon excited fluorescence of red blood cells (RBC) has been reported to be applicable for their assessment in vitro and in vivo. The corresponding fluorescence emission was ascribed to hemoglobin (Hb), however, as Hb is essentially non-fluorescent at single-photon excitation, the mechanism of two-photon excited fluorescence of RBC remains debatable. Here we show that a fluorescent photoproduct, characterized by an ultrafast decay of excitation, is formed after irradiation of Hb with femtosecond laser pulses with ca. 8 · 10‑5 quantum yield, and that it is also fluorescent at single-photon excitation. The formation of a similar photoproduct was also shown for Hb continuous wave irradiation with blue light with ca. 10‑5 formation quantum yield. The kinetics of the Hb photoproduct formation and its spectral properties were investigated. The obtained results clarify the processes responsible for RBC fluorescence observed in two-photon microscopy experiments.

  4. Optical π phase shift created with a single-photon pulse.

    PubMed

    Tiarks, Daniel; Schmidt, Steffen; Rempe, Gerhard; Dürr, Stephan

    2016-04-01

    A deterministic photon-photon quantum logic gate is a long-standing goal. Building such a gate becomes possible if a light pulse containing only one photon imprints a phase shift of π onto another light field. We experimentally demonstrate the generation of such a π phase shift with a single-photon pulse. A first light pulse containing less than one photon on average is stored in an atomic gas. Rydberg blockade combined with electromagnetically induced transparency creates a phase shift for a second light pulse, which propagates through the medium. We measure the π phase shift of the second pulse when we postselect the data upon the detection of a retrieved photon from the first pulse. This demonstrates a crucial step toward a photon-photon gate and offers a variety of applications in the field of quantum information processing.

  5. High speed superconducting nanowire single-photon detector with nine interleaved nanowires

    NASA Astrophysics Data System (ADS)

    Huang, Jia; Zhang, Weijun; You, Lixing; Zhang, Chengjun; Lv, Chaolin; Wang, Yong; Liu, Xiaoyu; Li, Hao; Wang, Zhen

    2018-07-01

    Count rate (CR) is one of the key parameters of superconducting nanowire single-photon detectors (SNSPDs). The practical SNSPDs usually have a CR of a few MHz to a few tens of MHz owing to the large kinetic inductance originating from the long nanowire, which is necessary for effectively coupling the photons. A feasible approach to decrease the kinetic inductance and consequently increase the detection speed is to replace a long single nanowire with multiple individual nanowires in an array. In this study, we report an SNSPD of nine interleaved nanowires with 70% system detection efficiency (SDE) and 200 Hz dark count rate at the low-photon-flux limit of 1550 nm. Owing to the small dead time (<6 ns) of each nanowire, the SNSPD achieved a maximum CR of 0.93 GHz at a photon flux of 1.26 × 1010 photons s‑1 with an SDE of ∼7.4%, and a CR of 200 MHz with an SDE of over 50%. Furthermore, a photon number resolvability of up to nine photons was also demonstrated.

  6. Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities.

    PubMed

    Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H

    2016-01-13

    Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.

  7. EDITORIAL: Progress in quantum technology: one photon at a time Progress in quantum technology: one photon at a time

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-07-01

    Technological developments sparked by quantum mechanics and wave-particle duality are still gaining ground over a hundred years after the theories were devised. While the impact of the theories in fundamental research, philosophy and even art and literature is widely appreciated, the implications in device innovations continue to breed potential. Applications inspired by these concepts include quantum computation and quantum cryptography protocols based on single photons, among many others. In this issue, researchers in Germany and the US report a step towards precisely triggered single-photon sources driven by surface acoustic waves (SAWs) [1]. The work brings technology based on quantum mechanics yet another step closer to practical device reality. Generation of single 'antibunched' photons has been one of the key challenges to progress in quantum information processing and communication. Researchers from Toshiba and Cambridge University in the UK recently reported what they described as 'the first electrically driven single-photon source capable of emitting indistinguishable photons' [2]. Single-photon sources have been reported previously [3]. However the approach demonstrated by Shields and colleagues allows electrical control, which is particularly useful for implementing in compact devices. The researchers used a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode to demonstrate interference between single photons. They also present a complete theory based on the interference of photons with a Lorentzian spectrum, which they compare with both continuous-wave and pulsed experiments. The application of SAWs in achieving precisely triggered single-photon sources develops the work of researchers in Germany in the late 1990s [4]. Surface acoustic waves travel like sound waves, but are characterized by an amplitude that typically decays exponentially with depth into the substrate. As Rocke and colleagues demonstrated, they can be used to dissociate an optically excited exciton and spatially separate the electron and hole, thereby increasing the radiative lifetime by orders of magnitude. The interesting behaviour of SAWs has led to studies towards a number of other applications including sensing [5-7], synthesis and nanoassembly [8]. For applications in single-photon sources, the electron-hole pairs are transported by the SAW to a quantum dot where they recombine emitting a single photon. However, so far various limiting factors in the system, such as the low quality of the quantum dots used leading to multiple-exciton recombinations, have hindered potential applications of the system as a single-photon source. Control over high-quality quantum-dot self-assembly is constantly improving. Researchers at the University of California at Berkeley and Harvard University in the US report the ability to successfully position a small number of colloidal quantum dots to within less than 100 nm accuracy on metallic surfaces [9]. They use single-stranded DNA both to act as an anchor to the gold or silver substrates and to selectively bind to the quantum dots, allowing programmed assembly of quantum dots on plasmonic structures. More recently still, researchers in Germany have reported how they can controllably reduce the density of self-assembled InP quantum dots by cyclic deposition with growth interruptions [10]. The impressive control has great potential for quantum emitter use. In this issue, Völk, Krenner and colleagues use an alternative approach to demonstrate how they can improve the performance of single-photon sources using SAWs. They use an optimized system of isolated self-assembled quantum posts in a quantum-well structure and inject the carriers at a distance from the posts where recombination and emission take place [3]. The SAW dissociates the electron-hole pairs and transports them to the quantum posts, so the two carrier types arrive at the quantum post with a set time delay. Other approaches, such as Coulomb blockade ones, have struggled to achieve the sequential injection of the carriers

  8. Detection of non-classical space-time correlations with a novel type of single-photon camera.

    PubMed

    Just, Felix; Filipenko, Mykhaylo; Cavanna, Andrea; Michel, Thilo; Gleixner, Thomas; Taheri, Michael; Vallerga, John; Campbell, Michael; Tick, Timo; Anton, Gisela; Chekhova, Maria V; Leuchs, Gerd

    2014-07-14

    During the last decades, multi-pixel detectors have been developed capable of registering single photons. The newly developed hybrid photon detector camera has a remarkable property that it has not only spatial but also temporal resolution. In this work, we apply this device to the detection of non-classical light from spontaneous parametric down-conversion and use two-photon correlations for the absolute calibration of its quantum efficiency.

  9. Coherent perfect absorption in deeply subwavelength films in the single-photon regime

    PubMed Central

    Roger, Thomas; Vezzoli, Stefano; Bolduc, Eliot; Valente, Joao; Heitz, Julius J. F.; Jeffers, John; Soci, Cesare; Leach, Jonathan; Couteau, Christophe; Zheludev, Nikolay I.; Faccio, Daniele

    2015-01-01

    The technologies of heating, photovoltaics, water photocatalysis and artificial photosynthesis depend on the absorption of light and novel approaches such as coherent absorption from a standing wave promise total dissipation of energy. Extending the control of absorption down to very low light levels and eventually to the single-photon regime is of great interest and yet remains largely unexplored. Here we demonstrate the coherent absorption of single photons in a deeply subwavelength 50% absorber. We show that while the absorption of photons from a travelling wave is probabilistic, standing wave absorption can be observed deterministically, with nearly unitary probability of coupling a photon into a mode of the material, for example, a localized plasmon when this is a metamaterial excited at the plasmon resonance. These results bring a better understanding of the coherent absorption process, which is of central importance for light harvesting, detection, sensing and photonic data processing applications. PMID:25991584

  10. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons.

    PubMed

    Meng, Xiao; Xie, Shiyu; Zhou, Xinxin; Calandri, Niccolò; Sanzaro, Mirko; Tosi, Alberto; Tan, Chee Hing; Ng, Jo Shien

    2016-03-01

    A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K(-1). Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 10(8) Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured.

  11. InGaAs/InAlAs single photon avalanche diode for 1550 nm photons

    PubMed Central

    Xie, Shiyu; Zhou, Xinxin; Calandri, Niccolò; Sanzaro, Mirko; Tosi, Alberto; Tan, Chee Hing; Ng, Jo Shien

    2016-01-01

    A single photon avalanche diode (SPAD) with an InGaAs absorption region, and an InAlAs avalanche region was designed and demonstrated to detect 1550 nm wavelength photons. The characterization included leakage current, dark count rate and single photon detection efficiency as functions of temperature from 210 to 294 K. The SPAD exhibited good temperature stability, with breakdown voltage dependence of approximately 45 mV K−1. Operating at 210 K and in a gated mode, the SPAD achieved a photon detection probability of 26% at 1550 nm with a dark count rate of 1 × 108 Hz. The time response of the SPAD showed decreasing timing jitter (full width at half maximum) with increasing overbias voltage, with 70 ps being the smallest timing jitter measured. PMID:27069647

  12. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera

    PubMed Central

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-01-01

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167

  13. Electrically tunable liquid crystal photonic bandgap fiber laser

    NASA Astrophysics Data System (ADS)

    Olausson, Christina B.; Scolari, Lara; Wei, Lei; Noordegraaf, Danny; Weirich, Johannes; Alkeskjold, Thomas T.; Hansen, Kim P.; Bjarklev, Anders

    2010-02-01

    We demonstrate electrical tunability of a fiber laser using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an all-spliced laser cavity based on a liquid crystal photonic bandgap fiber mounted on a silicon assembly, a pump/signal combiner with single-mode signal feed-through and an ytterbium-doped photonic crystal fiber. The laser cavity produces a single-mode output and is tuned in the range 1040- 1065 nm by applying an electric field to the silicon assembly.

  14. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments.

    PubMed

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-01-05

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments

    PubMed Central

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-01-01

    We introduce Photon-HDF5, an open and efficient file format to simplify exchange and long-term accessibility of data from single-molecule fluorescence experiments based on photon-counting detectors such as single-photon avalanche diode, photomultiplier tube, or arrays of such detectors. The format is based on HDF5, a widely used platform- and language-independent hierarchical file format for which user-friendly viewers are available. Photon-HDF5 can store raw photon data (timestamp, channel number, etc.) from any acquisition hardware, but also setup and sample description, information on provenance, authorship and other metadata, and is flexible enough to include any kind of custom data. The format specifications are hosted on a public website, which is open to contributions by the biophysics community. As an initial resource, the website provides code examples to read Photon-HDF5 files in several programming languages and a reference Python library (phconvert), to create new Photon-HDF5 files and convert several existing file formats into Photon-HDF5. To encourage adoption by the academic and commercial communities, all software is released under the MIT open source license. PMID:26745406

  16. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot.

    PubMed

    Koshelev, Alexander; Munechika, Keiko; Cabrini, Stefano

    2017-11-01

    In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.

  17. Quantum channel for the transmission of information

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-01-13

    Systems and methods are described for a quantum channel for the transmission of information. A method includes: down converting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometric multi-color entangled photon beam; combining the first interferometric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam within a single beam splitter; wherein combining includes erasing energy and momentum characteristics from both the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam; splitting the first interferometric multi-color entangled photon beam and the second interferometric multi-color entangled photon beam within the single beam splitter, wherein splitting yields a first output beam of multi-color entangled photons and a second output beam of multi-color entangled photons; and modulating the first output beam of multi-color entangled photons.

  18. Time-resolved double-slit interference pattern measurement with entangled photons

    PubMed Central

    Kolenderski, Piotr; Scarcella, Carmelo; Johnsen, Kelsey D.; Hamel, Deny R.; Holloway, Catherine; Shalm, Lynden K.; Tisa, Simone; Tosi, Alberto; Resch, Kevin J.; Jennewein, Thomas

    2014-01-01

    The double-slit experiment strikingly demonstrates the wave-particle duality of quantum objects. In this famous experiment, particles pass one-by-one through a pair of slits and are detected on a distant screen. A distinct wave-like pattern emerges after many discrete particle impacts as if each particle is passing through both slits and interfering with itself. Here we present a temporally- and spatially-resolved measurement of the double-slit interference pattern using single photons. We send single photons through a birefringent double-slit apparatus and use a linear array of single-photon detectors to observe the developing interference pattern. The analysis of the buildup allows us to compare quantum mechanics and the corpuscular model, which aims to explain the mystery of single-particle interference. Finally, we send one photon from an entangled pair through our double-slit setup and show the dependence of the resulting interference pattern on the twin photon's measured state. Our results provide new insight into the dynamics of the buildup process in the double-slit experiment, and can be used as a valuable resource in quantum information applications. PMID:24770360

  19. Modeling of the whispering gallery mode in microdisk and microgear resonators using a Toeplitz matrix formalism for single-photon source

    NASA Astrophysics Data System (ADS)

    Attia, Moez; Gueddana, Amor; Chatta, Rihab; Morand, Alain

    2013-09-01

    The work presented in this paper develops a new formalism to design microdisks and microgears structures. The main objective is to study the optics and geometrics parameters influence on the microdisks and microgears structures resonance behavior. This study is conducted to choice a resonance structure with height quality factor Q to be associated with Quantum dot to form a single photon source. This new method aims to design resonant structures that are simpler and requires less computing performances than FDTD and Floquet Block methods. This formalism is based on simplifying Fourier transformed and using toeplitz matrix writing. This new writing allows designing all kind of resonance structures with any defect and any modification. In other study we have design a quantum dot emitting a photon at 1550 nm of the fundamental mode, but the quantum dot emits other photons at other wavelengths. The focus of the resonant structure and the quantum dot association is the resonance of the photon at 1550 nm and the elimination of all other photons with others energies. The quantum dot studied in [1] is an InAs/GaAs quantum dot, we design an GaAS microdisk and microgear and we compare the quality factor Q of this two structures and we conclude that the microgear is more appropriated to be associate to the quantum dot and increase the probability P1 to obtain a single photon source at 1550 nm and promotes the obtaining of single photon. The performance improving of the resonant structure is able to increase the success of quantum applications such as quantum gates based on single photon source.

  20. Resonance Fluorescence of an InGaAs Quantum Dot in a Planar Cavity Using Orthogonal Excitation and Detection.

    PubMed

    Chen, Disheng; Lander, Gary R; Flagg, Edward B

    2017-10-13

    The ability to perform simultaneous resonant excitation and fluorescence detection is important for quantum optical measurements of quantum dots (QDs). Resonant excitation without fluorescence detection - for example, a differential transmission measurement - can determine some properties of the emitting system, but does not allow applications or measurements based on the emitted photons. For example, the measurement of photon correlations, observation of the Mollow triplet, and realization of single photon sources all require collection of the fluorescence. Incoherent excitation with fluorescence detection - for example, above band-gap excitation - can be used to create single photon sources, but the disturbance of the environment due to the excitation reduces the indistinguishability of the photons. Single photon sources based on QDs will have to be resonantly excited to have high photon indistinguishability, and simultaneous collection of the photons will be necessary to make use of them. We demonstrate a method to resonantly excite a single QD embedded in a planar cavity by coupling the excitation beam into this cavity from the cleaved face of the sample while collecting the fluorescence along the sample's surface normal direction. By carefully matching the excitation beam to the waveguide mode of the cavity, the excitation light can couple into the cavity and interact with the QD. The scattered photons can couple to the Fabry-Perot mode of the cavity and escape in the surface normal direction. This method allows complete freedom in the detection polarization, but the excitation polarization is restricted by the propagation direction of the excitation beam. The fluorescence from the wetting layer provides a guide to align the collection path with respect to the excitation beam. The orthogonality of the excitation and detection modes enables resonant excitation of a single QD with negligible laser scattering background.

  1. Propeller noise caused by blade tip radial forces

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1986-01-01

    New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise.

  2. Temperature dependent optical properties of single, hierarchically self-assembled GaAs/AlGaAs quantum dots

    PubMed Central

    Rastelli, A; Schmidt, OG; Ulrich, SM; Michler, P

    2006-01-01

    We report on the experimental observation of bright photoluminescence emission at room temperature from single unstrained GaAs quantum dots (QDs). The linewidth of a single-QD ground-state emission (≈ 8.5 meV) is comparable to the ensemble inhomogeneous broadening (≈ 12.4 meV). At low temperature (T ≤ 40 K) photon correlation measurements under continuous wave excitation show nearly perfect single-photon emission from a single GaAs QD and reveal the single photon nature of the emitted light up to 77 K. The QD emission energies, homogeneous linewidths and the thermally activated behavior as a function of temperature are discussed.

  3. Analysis of InP-based single photon avalanche diodes based on a single recess-etching process

    NASA Astrophysics Data System (ADS)

    Lee, Kiwon

    2018-04-01

    Effects of the different etching techniques have been investigated by analyzing electrical and optical characteristics of two-types of single-diffused single photon avalanche diodes (SPADs). The fabricated two-types of SPADs have no diffusion depth variation by using a single diffusion process at the same time. The dry-etched SPADs show higher temperature dependence of a breakdown voltage, larger dark-count-rate (DCR), and lower photon-detection-efficiency (PDE) than those of the wet-etched SPADs due to plasma-induced damage of dry-etching process. The results show that the dry etching damages can more significantly affect the performance of the SPADs based on a single recess-etching process.

  4. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.

    PubMed

    Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P

    2015-12-17

    This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.

  5. Fiber based photonic-crystal acoustic sensor

    NASA Astrophysics Data System (ADS)

    Kilic, Onur

    Photonic-crystal slabs are two-dimensional photonic crystals etched into a dielectric layer such as silicon. Standard micro fabrication techniques can be employed to manufacture these structures, which makes it feasible to produce them in large areas, usually an important criterion for practical applications. An appealing feature of these structures is that they can be employed as free-space optical devices such as broadband reflectors. The small thickness of the slab (usually in the vicinity of half a micron) also makes it deflectable. These combined optical and mechanical properties make it possible to employ photonic-crystal slabs in a range of practical applications, including displacement sensors, which in turn can be used for example to detect acoustic waves. An additional benefit of employing a photonic-crystal slab is that it is possible to tailor its optical and mechanical properties by adjusting the geometrical parameters of the structure such as hole radius or shape, pitch, and the slab thickness. By altering the hole radius and pitch, it is possible to make broadband reflectors or sharp transmission filters out of these structures. Adjusting the thickness also affects its deformability, making it possible to make broadband mirrors compliant to acoustic waves. Altering the hole shape, for example by introducing an asymmetry, extends the functionalities of photonic-crystal slabs even further. Breaking the symmetry by introducing asymmetric holes enables polarization-sensitive devices such as retarders, polarization beam splitters, and photonic crystals with additional non-degenerate resonances useful for increased sensitivity in sensors. All these practical advantages of photonic-crystal slabs makes them suitable as key components in micromachined sensor applications. We report one such example of an application of photonic-crystal slabs in the form of a micromachined acoustic sensor. It consists of a Fabry-Perot interferometer made of a photonic-crystal reflector embedded in a compliant silicon diaphragm placed at the tip of a single-mode fiber. Measurements in air indicate that this sensor has a relatively uniform frequency response up to at least 50 kHz, which is at least one order of magnitude higher than existing all-fiber acoustic sensors. This sensor was also shown to be able to detect pressures as low as 18 muPa/Hz 1/2. This limit is four orders of magnitude lower than in similar types of acoustic fiber sensors that are based on a deflectable diaphragm at the fiber end. This significant improvement is to a large extent due to the higher reflectivity of the reflectors, which is itself due to the use of a photonic crystal. Through a modification in the design, such a sensor can also be used in water. In addition to the high compliance of the diaphragm, the advantage for using the photonic-crystal slab is that the holes provide a venting channel for pressure equalization. As a result, the hydrophone can be employed in deep-sea applications without suffering from the high static pressure. Measurements in water over the range of 10 kHz-50 kHz show that this hydrophone has a minimum detectable pressure of only 10 muPa/Hz1/2, close to the ambient thermal-noise level. A model was developed to show that after optimization to ocean acoustics, the sensor has a theoretical minimum detectable pressure that follows the minimum ambient noise spectrum of the ocean in the bandwidth of 1 Hz-100 kHz. This makes this sensor extremely broadband compared to commercial fiber hydrophones, which are bulky and poorly responsive to frequencies above a few hundred Hz, since they require a long length of fiber. By placing several such sensors with different acoustic power ranges within a single sensor chip, this hydrophone is capable of exhibiting a dynamic range in the excess of 200 dB (1010).

  6. Teleportation of atomic and photonic states in low-Q cavity QED

    NASA Astrophysics Data System (ADS)

    Peng, Zhao-Hui; Zou, Jian; Liu, Xiao-Juan; Kuang, Le-Man

    2012-11-01

    We propose two alternative teleportation protocols in low-Q cavity QED. Through the input-output process of photons, we can generate atom-photon entangled states as the quantum channel. Then we propose to teleport single-atom (two-atom entangled) state using coherent photonic states, and to teleport single photonic state with the assistance of three-level atom. The distinct feature of our protocols is that we can teleport both atomic and photonic states via the input-output process of photons in the low-Q cavity. Furthermore, as our protocols work in low-Q cavities and only involve virtual excitation of atoms, they are insensitive to both cavity decay and atomic spontaneous emission, and may be feasible with current technology.

  7. Four-probe measurements with a three-probe scanning tunneling microscope.

    PubMed

    Salomons, Mark; Martins, Bruno V C; Zikovsky, Janik; Wolkow, Robert A

    2014-04-01

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position by imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.

  8. Photon-HDF5: Open Data Format and Computational Tools for Timestamp-based Single-Molecule Experiments

    PubMed Central

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2017-01-01

    Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5. PMID:28649160

  9. Photon-HDF5: Open Data Format and Computational Tools for Timestamp-based Single-Molecule Experiments.

    PubMed

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-02-13

    Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon-HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon-HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon-HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.

  10. Photon-HDF5: open data format and computational tools for timestamp-based single-molecule experiments

    NASA Astrophysics Data System (ADS)

    Ingargiola, Antonino; Laurence, Ted; Boutelle, Robert; Weiss, Shimon; Michalet, Xavier

    2016-02-01

    Archival of experimental data in public databases has increasingly become a requirement for most funding agencies and journals. These data-sharing policies have the potential to maximize data reuse, and to enable confirmatory as well as novel studies. However, the lack of standard data formats can severely hinder data reuse. In photon-counting-based single-molecule fluorescence experiments, data is stored in a variety of vendor-specific or even setup-specific (custom) file formats, making data interchange prohibitively laborious, unless the same hardware-software combination is used. Moreover, the number of available techniques and setup configurations make it difficult to find a common standard. To address this problem, we developed Photon-HDF5 (www.photon-hdf5.org), an open data format for timestamp-based single-molecule fluorescence experiments. Building on the solid foundation of HDF5, Photon- HDF5 provides a platform- and language-independent, easy-to-use file format that is self-describing and supports rich metadata. Photon-HDF5 supports different types of measurements by separating raw data (e.g. photon-timestamps, detectors, etc) from measurement metadata. This approach allows representing several measurement types and setup configurations within the same core structure and makes possible extending the format in backward-compatible way. Complementing the format specifications, we provide open source software to create and convert Photon- HDF5 files, together with code examples in multiple languages showing how to read Photon-HDF5 files. Photon- HDF5 allows sharing data in a format suitable for long term archival, avoiding the effort to document custom binary formats and increasing interoperability with different analysis software. We encourage participation of the single-molecule community to extend interoperability and to help defining future versions of Photon-HDF5.

  11. Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot.

    PubMed

    Fernandez, G; Volz, T; Desbuquois, R; Badolato, A; Imamoglu, A

    2009-08-21

    We report the observation of all-optically tunable Raman fluorescence from a single quantum dot. The Raman photons are produced in an optically driven Lambda system defined by subjecting the single electron charged quantum dot to a magnetic field in Voigt geometry. Detuning the driving laser from resonance, we tune the frequency of the Raman photons by about 2.5 GHz. The number of scattered photons and the linewidth of the Raman photons are investigated as a function of detuning. The study presented here could form the basis of a new technique for investigating spin-bath interactions in the solid state.

  12. Graphene-Based Josephson-Junction Single-Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  13. Efficient single photon detection by quantum dot resonant tunneling diodes.

    PubMed

    Blakesley, J C; See, P; Shields, A J; Kardynał, B E; Atkinson, P; Farrer, I; Ritchie, D A

    2005-02-18

    We demonstrate that the resonant tunnel current through a double-barrier structure is sensitive to the capture of single photoexcited holes by an adjacent layer of quantum dots. This phenomenon could allow the detection of single photons with low dark count rates and high quantum efficiencies. The magnitude of the sensing current may be controlled via the thickness of the tunnel barriers. Larger currents give improved signal to noise and allow sub-mus photon time resolution.

  14. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  15. Photon-triggered nanowire transistors

    NASA Astrophysics Data System (ADS)

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J.; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 106. A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  16. Photon-triggered nanowire transistors.

    PubMed

    Kim, Jungkil; Lee, Hoo-Cheol; Kim, Kyoung-Ho; Hwang, Min-Soo; Park, Jin-Sung; Lee, Jung Min; So, Jae-Pil; Choi, Jae-Hyuck; Kwon, Soon-Hong; Barrelet, Carl J; Park, Hong-Gyu

    2017-10-01

    Photon-triggered electronic circuits have been a long-standing goal of photonics. Recent demonstrations include either all-optical transistors in which photons control other photons or phototransistors with the gate response tuned or enhanced by photons. However, only a few studies report on devices in which electronic currents are optically switched and amplified without an electrical gate. Here we show photon-triggered nanowire (NW) transistors, photon-triggered NW logic gates and a single NW photodetection system. NWs are synthesized with long crystalline silicon (CSi) segments connected by short porous silicon (PSi) segments. In a fabricated device, the electrical contacts on both ends of the NW are connected to a single PSi segment in the middle. Exposing the PSi segment to light triggers a current in the NW with a high on/off ratio of >8 × 10 6 . A device that contains two PSi segments along the NW can be triggered using two independent optical input signals. Using localized pump lasers, we demonstrate photon-triggered logic gates including AND, OR and NAND gates. A photon-triggered NW transistor of diameter 25 nm with a single 100 nm PSi segment requires less than 300 pW of power. Furthermore, we take advantage of the high photosensitivity and fabricate a submicrometre-resolution photodetection system. Photon-triggered transistors offer a new venue towards multifunctional device applications such as programmable logic elements and ultrasensitive photodetectors.

  17. High-speed single-photon signaling for daytime QKD

    NASA Astrophysics Data System (ADS)

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marseglia, L.; Saha, K.; Ajoy, A.

    The practical implementation of quantum technologies such as quantum commu- nication and quantum cryptography relies on the development of indistinguishable, robust, and bright single photon sources that works at room temperature. The silicon- vacancy (SiV -) center in diamond has emerged as a possible candidate for a single photon source with all these characteristics. Unfortunately, due to the high refraction index mismatch between diamond and air, color centers in diamond show low photon out-coupling. This drawback can be overcome by fabrication of photonic structures that improve the in-coupling of excitation laser to the diamond defect as well as the out-couplingmore » emission from the color centers. An additional shortcoming is due to the random localization of native defects in the diamond sample. Here we demonstrate deterministic implantation of Si ions with high conversion effciency to single SiV -, targeted to fabricated nanowires. The co-localization of single SiV - defects with the nanostructures yields a ten times higher light coupling effciency as compared to single SiV - in the bulk. This result, with its intrinsic scalability, enables a new class of devices for integrated photonics and quantum information processing.« less

  19. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    NASA Technical Reports Server (NTRS)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  20. In-depth study of single photon time resolution for the Philips digital silicon photomultiplier

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gundacker, S.; Pizzichemi, M.; Ghezzi, A.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-06-01

    The digital silicon photomultiplier (SiPM) has been commercialised by Philips as an innovative technology compared to analog silicon photomultiplier devices. The Philips digital SiPM, has a pair of time to digital converters (TDCs) connected to 12800 single photon avalanche diodes (SPADs). Detailed measurements were performed to understand the low photon time response of the Philips digital SiPM. The single photon time resolution (SPTR) of every single SPAD in a pixel consisting of 3200 SPADs was measured and an average value of 85 ps full width at half maximum (FWHM) was observed. Each SPAD sends the signal to the TDC with different signal propagation time, resulting in a so called trigger network skew. This distribution of the trigger network skew for a pixel (3200 SPADs) has been measured and a variation of 50 ps FWHM was extracted. The SPTR of the whole pixel is the combination of SPAD jitter, trigger network skew, and the SPAD non-uniformity. The SPTR of a complete pixel was 103 ps FWHM at 3.3 V above breakdown voltage. Further, the effect of the crosstalk at a low photon level has been studied, with the two photon time resolution degrading if the events are a combination of detected (true) photons and crosstalk events. Finally, the time response to multiple photons was investigated.

  1. Coherent manipulation of a solid-state artificial atom with few photons.

    PubMed

    Giesz, V; Somaschi, N; Hornecker, G; Grange, T; Reznychenko, B; De Santis, L; Demory, J; Gomez, C; Sagnes, I; Lemaître, A; Krebs, O; Lanzillotti-Kimura, N D; Lanco, L; Auffeves, A; Senellart, P

    2016-06-17

    In a quantum network based on atoms and photons, a single atom should control the photon state and, reciprocally, a single photon should allow the coherent manipulation of the atom. Both operations require controlling the atom environment and developing efficient atom-photon interfaces, for instance by coupling the natural or artificial atom to cavities. So far, much attention has been drown on manipulating the light field with atomic transitions, recently at the few-photon limit. Here we report on the reciprocal operation and demonstrate the coherent manipulation of an artificial atom by few photons. We study a quantum dot-cavity system with a record cooperativity of 13. Incident photons interact with the atom with probability 0.95, which radiates back in the cavity mode with probability 0.96. Inversion of the atomic transition is achieved for 3.8 photons on average, showing that our artificial atom performs as if fully isolated from the solid-state environment.

  2. Efficient 525 nm laser generation in single or double resonant cavity

    NASA Astrophysics Data System (ADS)

    Liu, Shilong; Han, Zhenhai; Liu, Shikai; Li, Yinhai; Zhou, Zhiyuan; Shi, Baosen

    2018-03-01

    This paper reports the results of a study into highly efficient sum frequency generation from 792 and 1556 nm wavelength light to 525 nm wavelength light using either a single or double resonant ring cavity based on a periodically poled potassium titanyl phosphate crystal (PPKTP). By optimizing the cavity's parameters, the maximum power achieved for the resultant 525 nm laser was 263 and 373 mW for the single and double resonant cavity, respectively. The corresponding quantum conversion efficiencies were 8 and 77% for converting 1556 nm photons to 525 nm photons with the single and double resonant cavity, respectively. The measured intra-cavity single pass conversion efficiency for both configurations was about 5%. The performances of the sum frequency generation in these two configurations was studied and compared in detail. This work will provide guidelines for optimizing the generation of sum frequency generated laser light for a variety of configurations. The high conversion efficiency achieved in this work will help pave the way for frequency up-conversion of non-classical quantum states, such as the squeezed vacuum and single photon states. The proposed green laser source will be used in our future experiments, which includes a plan to generate two-color entangled photon pairs and achieve the frequency down-conversion of single photons carrying orbital angular momentum.

  3. Ultra high tip speed (670.6 m/sec) fan stage with composite rotor: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Burger, G. D.; Dundas, R. E.

    1977-01-01

    A highly loaded, single-stage compressor having a tip speed of 670.6 m/sec was designed for the purpose of investigating very high tip speeds and high aerodynamic loadings to obtain high stage pressure ratios at acceptable levels of efficiency. The design pressure ratio is 2.8 at an adiabatic efficiency of 84.4%. Corrected design flow is 83.4 kg/sec; corrected design speed is 15,200 rpm; and rotor inlet tip diameter is 0.853 m. The rotor uses multiple-circular-arc airfoils from 0 to 15% span, precompression airfoils assuming single, strong oblique shocks from 21 to 43% span, and precompression airfoils assuming multiple oblique shocks from 52% span to the tip. Because of the high tip speeds, the rotor blades are designed to be fabricated of composite materials. Two composite materials were investigated: Courtaulds HTS graphite fiber in a Kerimid 601 polyimide matrix and the same fibers in a PMR polyimide matrix. In addition to providing a description of the aerodynamic and mechanical design of the 670.0 m/sec fan, discussion is presented of the results of structural tests of blades fabricated with both types of matrices.

  4. Multiparameter estimation with single photons—linearly-optically generated quantum entanglement beats the shotnoise limit

    NASA Astrophysics Data System (ADS)

    You, Chenglong; Adhikari, Sushovit; Chi, Yuxi; LaBorde, Margarite L.; Matyas, Corey T.; Zhang, Chenyu; Su, Zuen; Byrnes, Tim; Lu, Chaoyang; Dowling, Jonathan P.; Olson, Jonathan P.

    2017-12-01

    It was suggested in (Motes et al 2015 Phys. Rev. Lett. 114 170802) that optical networks with relatively inexpensive overheads—single photon Fock states, passive optical elements, and single photon detection—can show significant improvements over classical strategies for single-parameter estimation, when the number of modes in the network is small (n< 7). A similar case was made in (Humphreys et al 2013 Phys. Rev. Lett. 111 070403) for multi-parameter estimation, where measurement is instead made using photon-number resolving detectors. In this paper, we analytically compute the quantum Cramér-Rao bound to show these networks can have a constant-factor quantum advantage in multi-parameter estimation for even large number of modes. Additionally, we provide a simplified measurement scheme using only single-photon (on-off) detectors that is capable of approximately obtaining this sensitivity for a small number of modes.

  5. A high-temperature single-photon source from nanowire quantum dots.

    PubMed

    Tribu, Adrien; Sallen, Gregory; Aichele, Thomas; André, Régis; Poizat, Jean-Philippe; Bougerol, Catherine; Tatarenko, Serge; Kheng, Kuntheak

    2008-12-01

    We present a high-temperature single-photon source based on a quantum dot inside a nanowire. The nanowires were grown by molecular beam epitaxy in the vapor-liquid-solid growth mode. We utilize a two-step process that allows a thin, defect-free ZnSe nanowire to grow on top of a broader, cone-shaped nanowire. Quantum dots are formed by incorporating a narrow zone of CdSe into the nanowire. We observe intense and highly polarized photoluminescence even from a single emitter. Efficient photon antibunching is observed up to 220 K, while conserving a normalized antibunching dip of at most 36%. This is the highest reported temperature for single-photon emission from a nonblinking quantum-dot source and principally allows compact and cheap operation by using Peltier cooling.

  6. Work on a quantum dipole by a single-photon pulse.

    PubMed

    Valente, D; Brito, F; Ferreira, R; Werlang, T

    2018-06-01

    Energy transfer from a quantized field to a quantized dipole is investigated. We find that a single photon can transfer energy to a two-level dipole by inducing a dynamic Stark shift, going beyond the well-known absorption and emission processes. A quantum thermodynamical perspective allows us to unravel these two energy transfer mechanisms and to identify the former as a generalized work and the latter as a generalized heat. We show two necessary conditions for the generalized work transfer by a single photon to occur, namely, off-resonance and finite linewidth of the pulse. We also show that the generalized work performed by a single-photon pulse equals the reactive (dispersive) contribution of the work performed by a semiclassical pulse in the low-excitation regime.

  7. Anomalous domain inversion in LiNbO3 single crystals investigated by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Lilienblum, M.; Soergel, E.

    2011-09-01

    Ferroelectric domains were written in lithium niobate (LiNbO3) single crystals by applying voltage pulses to the tip of a scanning force microscope. The generated domains are subsequently imaged by piezoresponse force microscopy. As it has been previously observed not only full domains but also doughnut-shaped ones arise from tip-based domain formation. In this contribution, we present our experiments which were carried out with 10-20 μm thin LiNbO3 single crystals. We show that by choosing appropriate writing parameters, domains of predetermined shape (full or doughnut) can be reliably generated. In addition to the duration and the amplitude of the voltage pulse the moment of the retraction of the tip from the sample surface was found to be a crucial parameter for reproducible domain formation.

  8. A study of pile-up in integrated time-correlated single photon counting systems

    NASA Astrophysics Data System (ADS)

    Arlt, Jochen; Tyndall, David; Rae, Bruce R.; Li, David D.-U.; Richardson, Justin A.; Henderson, Robert K.

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  9. A study of pile-up in integrated time-correlated single photon counting systems.

    PubMed

    Arlt, Jochen; Tyndall, David; Rae, Bruce R; Li, David D-U; Richardson, Justin A; Henderson, Robert K

    2013-10-01

    Recent demonstration of highly integrated, solid-state, time-correlated single photon counting (TCSPC) systems in CMOS technology is set to provide significant increases in performance over existing bulky, expensive hardware. Arrays of single photon single photon avalanche diode (SPAD) detectors, timing channels, and signal processing can be integrated on a single silicon chip with a degree of parallelism and computational speed that is unattainable by discrete photomultiplier tube and photon counting card solutions. New multi-channel, multi-detector TCSPC sensor architectures with greatly enhanced throughput due to minimal detector transit (dead) time or timing channel dead time are now feasible. In this paper, we study the potential for future integrated, solid-state TCSPC sensors to exceed the photon pile-up limit through analytic formula and simulation. The results are validated using a 10% fill factor SPAD array and an 8-channel, 52 ps resolution time-to-digital conversion architecture with embedded lifetime estimation. It is demonstrated that pile-up insensitive acquisition is attainable at greater than 10 times the pulse repetition rate providing over 60 dB of extended dynamic range to the TCSPC technique. Our results predict future CMOS TCSPC sensors capable of live-cell transient observations in confocal scanning microscopy, improved resolution of near-infrared optical tomography systems, and fluorescence lifetime activated cell sorting.

  10. Single-molecule photon emission statistics for systems with explicit time dependence: Generating function approach

    NASA Astrophysics Data System (ADS)

    Peng, Yonggang; Xie, Shijie; Zheng, Yujun; Brown, Frank L. H.

    2009-12-01

    Generating function calculations are extended to allow for laser pulse envelopes of arbitrary shape in numerical applications. We investigate photon emission statistics for two-level and V- and Λ-type three-level systems under time-dependent excitation. Applications relevant to electromagnetically induced transparency and photon emission from single quantum dots are presented.

  11. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection

    PubMed Central

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-01-01

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442

  12. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    PubMed

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  13. Quantum memory and gates using a Λ -type quantum emitter coupled to a chiral waveguide

    NASA Astrophysics Data System (ADS)

    Li, Tao; Miranowicz, Adam; Hu, Xuedong; Xia, Keyu; Nori, Franco

    2018-06-01

    By coupling a Λ -type quantum emitter to a chiral waveguide, in which the polarization of a photon is locked to its propagation direction, we propose a controllable photon-emitter interface for quantum networks. We show that this chiral system enables the swap gate and a hybrid-entangling gate between the emitter and a flying single photon. It also allows deterministic storage and retrieval of single-photon states with high fidelities and efficiencies. In short, this chirally coupled emitter-photon interface can be a critical building block toward a large-scale quantum network.

  14. Optical realization of optimal symmetric real state quantum cloning machine

    NASA Astrophysics Data System (ADS)

    Hu, Gui-Yu; Zhang, Wen-Hai; Ye, Liu

    2010-01-01

    We present an experimentally uniform linear optical scheme to implement the optimal 1→2 symmetric and optimal 1→3 symmetric economical real state quantum cloning machine of the polarization state of the single photon. This scheme requires single-photon sources and two-photon polarization entangled state as input states. It also involves linear optical elements and three-photon coincidence. Then we consider the realistic realization of the scheme by using the parametric down-conversion as photon resources. It is shown that under certain condition, the scheme is feasible by current experimental technology.

  15. Entanglement Concentration for Arbitrary Four-Photon Cluster State Assisted with Single Photons

    NASA Astrophysics Data System (ADS)

    Zhao, Sheng-Yang; Cai, Chun; Liu, Jiong; Zhou, Lan; Sheng, Yu-Bo

    2016-02-01

    We present an entanglement concentration protocol (ECP) to concentrate arbitrary four-photon less-entangled cluster state into maximally entangled cluster state. Different from other ECPs for cluster state, we only exploit the single photon as auxiliary, which makes this protocol feasible and economic. In our ECP, the concentrated maximally entangled state can be retained for further application and the discarded state can be reused for a higher success probability. This ECP works with the help of cross-Kerr nonlinearity and conventional photon detectors. This ECP may be useful in future one-way quantum computation.

  16. Total teleportation of a single-photon state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Bennink, Ryan S; Grice, Warren P

    2008-01-01

    Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.

  17. Applications of high-dimensional photonic entaglement

    NASA Astrophysics Data System (ADS)

    Broadbent, Curtis J.

    This thesis presents the results of four experiments related to applications of higher dimensional photonic entanglement. (1) We use energy-time entangled biphotons from spontaneous parametric down-conversion (SPDC) to implement a large-alphabet quantum key distribution (QKD) system which securely transmits up to 10 bits of the random key per photon. An advantage over binary alphabet QKD is demonstrated for quantum channels with a single-photon transmission-rate ceiling. The security of the QKD system is based on the measurable reduction of entanglement in the presence of eavesdropping. (2) We demonstrate the preservation of energy-time entanglement in a tunable slow-light medium. The fine-structure resonances of a hot Rubidium vapor are used to slow one photon from an energy-time entangled biphoton generated with non-degenerate SPDC. The slow-light medium is placed in one arm of a Franson interferometer. The observed Franson fringes witness the presence of entanglement and quantify a delay of 1.3 biphoton correlation lengths. (3) We utilize holograms to discriminate between two spatially-coherent single-photon images. Heralded single photons are created with degenerate SPDC and sent through one of two transmission masks to make single-photon images with no spatial overlap. The single-photon images are sent through a previously prepared holographic filter. The filter discriminates the single-photon images with an average confidence level of 95%. (4) We employ polarization entangled biphotons generated from non-collinear SPDC to violate a generalized Leggett-Garg inequality with non-local weak measurements. The weak measurement is implemented with Fresnel reflection of a microscope coverslip on one member of the entangled biphoton. Projective measurement with computer-controlled polarizers on the entangled state after the weak measurement yields a joint probability with three degrees of freedom. Contextual values are then used to determine statistical averages of measurement operations from the joint probability. Correlations between the measured averages are shown to violate the upper bound of three distinct two-object Leggett-Garg inequalities derived from assumptions of macro-realism. A relationship between the violation of two-object Leggett-Garg inequalities and strange non-local weak values is derived and experimentally demonstrated.

  18. Low-power chip-level optical interconnects based on bulk-silicon single-chip photonic transceivers

    NASA Astrophysics Data System (ADS)

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Kim, Sun Ae; Oh, Jin Hyuk; Park, Jaegyu; Kim, Sanggi

    2016-03-01

    We present new scheme for chip-level photonic I/Os, based on monolithically integrated vertical photonic devices on bulk silicon, which increases the integration level of PICs to a complete photonic transceiver (TRx) including chip-level light source. A prototype of the single-chip photonic TRx based on a bulk silicon substrate demonstrated 20 Gb/s low power chip-level optical interconnects between fabricated chips, proving that this scheme can offer compact low-cost chip-level I/O solutions and have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, 3D-IC, and LAN/SAN/data-center and network applications.

  19. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    NASA Astrophysics Data System (ADS)

    Meyer-Scott, Evan; Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-01

    Using tapered fibers of As2Se3 chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  20. Quantum theory of structured monochromatic light

    NASA Astrophysics Data System (ADS)

    Punnoose, Alexander; Tu, J. J.

    2017-08-01

    Applications that envisage utilizing the orbital angular momentum (OAM) at the single photon level assume that the OAM degrees of freedom of the photons are orthogonal. To test this critical assumption, we quantize the beam-like solutions of the vector Helmholtz equation from first principles. We show that although the photon operators of a diffracting monochromatic beam do not in general satisfy the canonical commutation relations, implying that the photon states in Fock space are not orthogonal, the states are bona fide eigenstates of the number and Hamiltonian operators. As a result, the representation for the photon operators presented in this work form a natural basis to study structured monochromatic light at the single photon level.

  1. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy].

    PubMed

    Wu, Xiao-Bin; Wang, Jia; Wang, Rui; Xu, Ji-Ying; Tian, Qian; Yu, Jian-Yuan

    2009-10-01

    Raman spectroscopy is a powerful technique in the characterization of carbon nanotubes (CNTs). However, this spectral method is subject to two obstacles. One is spatial resolution, namely the diffraction limits of light, and the other is its inherent small Raman cross section and weak signal. To resolve these problems, a new approach has been developed, denoted tip-enhanced Raman spectroscopy (TERS). TERS has been demonstrated to be a powerful spectroscopic and microscopic technique to characterize nanomaterial or nanostructures. Excited by a focused laser beam, an enhanced electric field is generated in the vicinity of a metallic tip because of the surface plasmon polariton (SPP) and lightening rod effect. Consequently, Raman signal from the sample area illuminated by the enhanced field nearby the tip is enhanced. At the same time, the topography is obtained in the nanometer scale. The exact corresponding relationship between the localized Raman and the topography makes the Raman identification at the nanometer scale to be feasible. In the present paper, based on an inverted microscope and a metallic AFM tip, a tip-enhanced Raman system was set up. The radius of the Au-coated metallic tip is about 30 nm. The 532 nm laser passes through a high numerical objective (NA0.95) from the bottom to illuminate the tip to excite the enhanced electric field. Corresponding with the AFM image, the tip-enhanced near-field Raman of a 100 nm diameter single-walled carbon nanotube (SWNT) bundles was obtained. The SWNTs were prepared by arc method. Furthermore, the near-field Raman of about 3 SWNTs of the bundles was received with the spatial resolution beyond the diffraction limit. Compared with the far-field Raman, the enhancement factor of the tip-enhanced Raman is more than 230. With the super-diffraction spatial resolution and the tip-enhanced Raman ability, tip-enhanced Raman spectroscopy will play an important role in the nano-material and nano-structure characterization.

  2. Observation of entanglement of a single photon with a trapped atom.

    PubMed

    Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-27

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.

  3. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130

  4. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  5. Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors.

    PubMed

    Takemoto, Kazuya; Nambu, Yoshihiro; Miyazawa, Toshiyuki; Sakuma, Yoshiki; Yamamoto, Tsuyoshi; Yorozu, Shinichi; Arakawa, Yasuhiko

    2015-09-25

    Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.

  6. Single-photon interference experiment for high schools

    NASA Astrophysics Data System (ADS)

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  7. Direct experimental observation of nonclassicality in ensembles of single-photon emitters

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.

    2017-11-01

    In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.

  8. Linewidth Narrowing and Purcell Enhancement in Photonic Crystal Cavities on an Er-Doped Silicon Nitride Platform

    DTIC Science & Technology

    2010-02-01

    Low noise superconducting single photon detectors on silicon,” Appl. Phys. Lett. 93, 131101 (2008). 20. M. T. Tanner, C. M. Natarajan, V. K... wavelength sensitivity in NbTiN superconducting nanowire single-photon detectors fabricated on oxidized silicon substrates,” Proceedings of Single...cavity resonance wavelength and Q-factor for the PC cavity are shown in Figure 3. The data are taken both at low (0.050 mW) pump power and high (30 mW

  9. Single Microwave-Photon Detector using an Artificial Lambda-type Three-Level System

    DTIC Science & Technology

    2016-01-11

    Single microwave-photon detector using an artificial Λ-type three- level system Kunihiro Inomata,1∗†, Zhirong Lin,1†, Kazuki Koshino,2, William D...three- level system Kunihiro Inomata,1∗† Zhirong Lin,1† Kazuki Koshino,2 William D. Oliver,3,4 Jaw-Shen Tsai,1 Tsuyoshi Yamamoto,5 Yasunobu Nakamura...single-microwave-photon detector based on the deterministic switching in an artificial Λ-type three- level system implemented using the dressed states of a

  10. Multimode intravascular RF coil for MRI-guided interventions.

    PubMed

    Kurpad, Krishna N; Unal, Orhan

    2011-04-01

    To demonstrate the feasibility of using a single intravascular radiofrequency (RF) probe connected to the external magnetic resonance imaging (MRI) system via a single coaxial cable to perform active tip tracking and catheter visualization and high signal-to-noise ratio (SNR) intravascular imaging. A multimode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. The multimode coil behaves as an inductively coupled transmit coil. The forward-looking capability of 6 mm was measured. A greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil was demonstrated. Simultaneous active tip tracking and catheter visualization was demonstrated. It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multimode intravascular RF coil that is connected to the external system via a single coaxial cable. Copyright © 2011 Wiley-Liss, Inc.

  11. Multi-mode Intravascular RF Coil for MRI-guided Interventions

    PubMed Central

    Kurpad, Krishna N.; Unal, Orhan

    2011-01-01

    Purpose To demonstrate the feasibility of using a single intravascular RF probe connected to the external MRI system via a single coaxial cable to perform active tip tracking and catheter visualization, and high SNR intravascular imaging. Materials and Methods A multi-mode intravascular RF coil was constructed on a 6F balloon catheter and interfaced to a 1.5T MRI scanner via a decoupling circuit. Bench measurements of coil impedances were followed by imaging experiments in saline and phantoms. Results The multi-mode coil behaves as an inductively-coupled transmit coil. Forward looking capability of 6mm is measured. Greater than 3-fold increase in SNR compared to conventional imaging using optimized external coil is demonstrated. Simultaneous active tip tracking and catheter visualization is demonstrated. Conclusions It is feasible to perform 1) active tip tracking, 2) catheter visualization, and 3) high SNR imaging using a single multi-mode intravascular RF coil that is connected to the external system via a single coaxial cable. PMID:21448969

  12. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  13. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    We use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated and therebymore » the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  14. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  15. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    PubMed Central

    Li, Sha; Jones, R. R.

    2016-01-01

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm

  16. Detecting element specific electrons from a single cobalt nanocluster with synchrotron x-ray scanning tunneling microscopy

    DOE PAGES

    Kersell, Heath; Shirato, Nozomi; Cummings, Marvin; ...

    2017-09-05

    Here, we use a nanofabricated scanning tunneling microscope tip as a detector to investigate local X-ray induced tunneling and electron emission from a single cobalt nanocluster on a Au(111) surface. The tip-detector is positioned a few angstroms above the nanocluster, and ramping the incident X-ray energy across the Co photoabsorption K-edge enables the detection of element specific electrons. Atomic-scale spatial dependent changes in the X-ray absorption cross section are directly measured by taking the X-ray induced current as a function of X-ray energy. From the measured sample and tip currents, element specific X-ray induced current components can be separated andmore » thereby the corresponding yields for the X-ray induced processes of the single cobalt nanocluster can be determined. The detection of element specific synchrotron X-ray induced electrons of a single nanocluster opens a new avenue for materials characterization on a one particle at-a-time basis.« less

  17. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    PubMed

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  18. Controlling the transmitted information of a multi-photon interacting with a single-Cooper pair box

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadry, Heba, E-mail: hkadry1@yahoo.com; Abdel-Aty, Abdel-Haleem, E-mail: hkadry1@yahoo.com; Zakaria, Nordin, E-mail: hkadry1@yahoo.com

    2014-10-24

    We study a model of a multi-photon interaction of a single Cooper pair box with a cavity field. The exchange of the information using this system is studied. We quantify the fidelity of the transmitted information. The effect of the system parameters (detuning parameter, field photons, state density and mean photon number) in the fidelity of the transmitted information is investigated. We found that the fidelity of the transmitted information can be controlled using the system parameters.

  19. Loophole-free Bell test with one atom and less than one photon on average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangouard, N.; Bancal, J.-D.; Gisin, N.

    2011-11-15

    We consider the entanglement between two internal states of a single atom and two photon number states describing either the vacuum or a single photon and thus containing, on average, less than one photon. We show that this intriguing entanglement can be characterized through substantial violations of a Bell inequality by performing homodyne detections on the optical mode. We present the experimental challenges that need to be overcome to pave the way toward a loophole-free Bell test.

  20. Channel analysis for single photon underwater free space quantum key distribution.

    PubMed

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  1. Time stamping of single optical photons with 10 ns resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc. Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Here, photon counting is already widely used in X-ray imaging, where the high energy of the photons makes their detection easier.

  2. Time stamping of single optical photons with 10 ns resolution

    DOE PAGES

    Chakaberia, Irakli; Cotlet, Mircea; Fisher-Levine, Merlin; ...

    2017-05-08

    High spatial and temporal resolution are key features for many modern applications, e.g. mass spectrometry, probing the structure of materials via neutron scattering, studying molecular structure, etc. Fast imaging also provides the capability of coincidence detection, and the further addition of sensitivity to single optical photons with the capability of timestamping them further broadens the field of potential applications. Here, photon counting is already widely used in X-ray imaging, where the high energy of the photons makes their detection easier.

  3. Coherent interaction of single molecules and plasmonic nanowires

    NASA Astrophysics Data System (ADS)

    Gerhardt, Ilja; Grotz, Bernhard; Siyushev, Petr; Wrachtrup, Jörg

    2017-09-01

    Quantum plasmonics opens the option to integrate complex quantum optical circuitry onto chip scale devices. In the past, often external light sources were used and nonclassical light was coupled in and out of plasmonic structures, such as hole arrays or waveguide structures. Another option to launch single plasmonic excitations is the coupling of single emitters in the direct proximity of, e.g., a silver or gold nanostructure. Here, we present our attempts to integrate the research of single emitters with wet-chemically grown silver nanowires. The emitters of choice are single organic dye molecules under cryogenic conditions, which are known to act as high-brightness and extremely narrow-band single photon sources. Another advantage is their high optical nonlinearity, such that they might mediate photon-photon interactions on the nanoscale. We report on the coupling of a single molecule fluorescence emission through the wire over the length of several wavelengths. The transmission of coherently emitted photons is proven by an extinction type experiment. As for influencing the spectral properties of a single emitter, we are able to show a remote change of the line-width of a single terrylene molecule, which is in close proximity to the nanowire.

  4. Four-probe measurements with a three-probe scanning tunneling microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salomons, Mark; Martins, Bruno V. C.; Zikovsky, Janik

    2014-04-15

    We present an ultrahigh vacuum (UHV) three-probe scanning tunneling microscope in which each probe is capable of atomic resolution. A UHV JEOL scanning electron microscope aids in the placement of the probes on the sample. The machine also has a field ion microscope to clean, atomically image, and shape the probe tips. The machine uses bare conductive samples and tips with a homebuilt set of pliers for heating and loading. Automated feedback controlled tip-surface contacts allow for electrical stability and reproducibility while also greatly reducing tip and surface damage due to contact formation. The ability to register inter-tip position bymore » imaging of a single surface feature by multiple tips is demonstrated. Four-probe material characterization is achieved by deploying two tips as fixed current probes and the third tip as a movable voltage probe.« less

  5. Magnetic elements for switching magnetization magnetic force microscopy tips.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cambel, V.; Elias, P.; Gregusova, D.

    2010-09-01

    Using combination of micromagnetic calculations and magnetic force microscopy (MFM) imaging we find optimal parameters for novel magnetic tips suitable for switching magnetization MFM. Switching magnetization MFM is based on two-pass scanning atomic force microscopy with reversed tip magnetization between the scans. Within the technique the sum of the scanned data with reversed tip magnetization depicts local atomic forces, while their difference maps the local magnetic forces. Here we propose the design and calculate the magnetic properties of tips suitable for this scanning probe technique. We find that for best performance the spin-polarized tips must exhibit low magnetic moment, lowmore » switching fields, and single-domain state at remanence. The switching field of such tips is calculated and optimum shape of the Permalloy elements for the tips is found. We show excellent correspondence between calculated and experimental results for Py elements.« less

  6. Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.; Fairbanks, N. P.

    1982-01-01

    Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.

  7. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.

    PubMed

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-10-15

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

  8. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects.

    PubMed

    Kim, Gyungock; Park, Hyundai; Joo, Jiho; Jang, Ki-Seok; Kwack, Myung-Joon; Kim, Sanghoon; Kim, In Gyoo; Oh, Jin Hyuk; Kim, Sun Ae; Park, Jaegyu; Kim, Sanggi

    2015-06-10

    When silicon photonic integrated circuits (PICs), defined for transmitting and receiving optical data, are successfully monolithic-integrated into major silicon electronic chips as chip-level optical I/Os (inputs/outputs), it will bring innovative changes in data computing and communications. Here, we propose new photonic integration scheme, a single-chip optical transceiver based on a monolithic-integrated vertical photonic I/O device set including light source on bulk-silicon. This scheme can solve the major issues which impede practical implementation of silicon-based chip-level optical interconnects. We demonstrated a prototype of a single-chip photonic transceiver with monolithic-integrated vertical-illumination type Ge-on-Si photodetectors and VCSELs-on-Si on the same bulk-silicon substrate operating up to 50 Gb/s and 20 Gb/s, respectively. The prototype realized 20 Gb/s low-power chip-level optical interconnects for λ ~ 850 nm between fabricated chips. This approach can have a significant impact on practical electronic-photonic integration in high performance computers (HPC), cpu-memory interface, hybrid memory cube, and LAN, SAN, data center and network applications.

  9. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  10. Observation of Biological Tissues Using Common Path Optical Coherence Tomography with Gold Coated Conical Tip Lens Fiber

    NASA Astrophysics Data System (ADS)

    Taguchi, K.; Sugiyama, J.; Totsuka, M.; Imanaka, S.

    2012-03-01

    In this paper, we proposed a high lateral resolution common-path Fourier domain optical coherence tomography(OCT) system with the use of a chemically etched single mode fiber. In our experiments, single mode optical fiber for 1310nm was used for preparing the tapered tips. Our system used a conical microlens that was chemically etched by selective chemical etching technique using an etching solution of buffered hydrofluoric acid (BHF). From experimental results, we verified that our proposed optical coherence tomography system could operate as a common-path Fourier domain OCT system and conical tip lens fiber was very useful for a high lateral resolution common-path Fourier domain OCT system. Furthermore, we could observe a surface of paramecium bursaria and symbiotic chlorella in the paramecium bursaria using gold coated conical-tip fiber in the water.

  11. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  12. Generation and transfer of single photons on a photonic crystal chip.

    PubMed

    Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena

    2007-04-30

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

  13. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  14. Phospholipase C mediated Suppression of Dark Noise Enables Single Photon Detection in Drosophila Photoreceptors

    PubMed Central

    Katz, Ben; Minke, Baruch

    2012-01-01

    Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single photon sensitivity. This is manifested in the single photon responses (quantum bumps). In photoreceptor cells, dark activation of Gqα molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous Gqα activation and dark bump production potentially hampers single photon detection. We found that in wild type flies the in vivo rate of spontaneous Gqα activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production, arising from spontaneous Gqα activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca2+ modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity, selectively suppressed random production of single Gqα-activated dark bumps despite a high rate of spontaneous Gqα activation. This minimal PLC activity level is reliably obtained by photon induced synchronized activation of several neighboring Gqα molecules activating several PLC molecules, but not by random activation of single Gqα molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling. PMID:22357856

  15. Study of π 0 pair production in single-tag two-photon collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masuda, M.; Uehara, S.; Watanabe, Y.

    2016-02-01

    We report a measurement of the differential cross section of π^0 pair production in single-tag two-photon collisions, y*y->π^0π^0, in e+e- scattering. The cross section is measured for Q^2up to 30 GeV^2 is the negative of the invariant mass squared of the tagged photon

  16. Simple and Efficient Single Photon Filter for a Rb-based Quantum Memory

    NASA Astrophysics Data System (ADS)

    Stack, Daniel; Li, Xiao; Quraishi, Qudsia

    2015-05-01

    Distribution of entangled quantum states over significant distances is important to the development of future quantum technologies such as long-distance cryptography, networks of atomic clocks, distributed quantum computing, etc. Long-lived quantum memories and single photons are building blocks for systems capable of realizing such applications. The ability to store and retrieve quantum information while filtering unwanted light signals is critical to the operation of quantum memories based on neutral-atom ensembles. We report on an efficient frequency filter which uses a glass cell filled with 85Rb vapor to attenuate noise photons by an order of magnitude with little loss to the single photons associated with the operation of our cold 87Rb quantum memory. An Ar buffer gas is required to differentiate between signal and noise photons or similar statement. Our simple, passive filter requires no optical pumping or external frequency references and provides an additional 18 dB attenuation of our pump laser for every 1 dB loss of the single photon signal. We observe improved non-classical correlations and our data shows that the addition of a frequency filter increases the non-classical correlations and readout efficiency of our quantum memory by ~ 35%.

  17. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide

    NASA Astrophysics Data System (ADS)

    Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-03-01

    Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.

  18. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    NASA Astrophysics Data System (ADS)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  19. Periodically modulated single-photon transport in one-dimensional waveguide

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Wei, L. F.

    2018-03-01

    Single-photon transport along a one-dimension waveguide interacting with a quantum system (e.g., two-level atom) is a very useful and meaningful simplified model of the waveguide-based optical quantum devices. Thus, how to modulate the transport of the photons in the waveguide structures by adjusting certain external parameters should be particularly important. In this paper, we discuss how such a modulation could be implemented by periodically driving the energy splitting of the interacting atom and the atom-photon coupling strength. By generalizing the well developed time-independent full quantum mechanical theory in real space to the time-dependent one, we show that various sideband-transmission phenomena could be observed. This means that, with these modulations the photon has certain probabilities to transmit through the scattering atom in the other energy sidebands. Inversely, by controlling the sideband transmission the periodic modulations of the single photon waveguide devices could be designed for the future optical quantum information processing applications.

  20. Chiral photonic crystal fibers with single mode and single polarization

    NASA Astrophysics Data System (ADS)

    Li, She; Li, Junqing

    2015-12-01

    Chiral photonic crystal fiber (PCF) with a solid core is numerically investigated by a modified chiral plane-wave expansion method. The effects of structural parameters and chirality strength are analyzed on single-polarization single-mode range and polarization states of guided modes. The simulation demonstrates that the chiral photonic crystal fiber compared to its achiral counterpart possesses another single-circular-polarization operation range, which is located in the short-wavelength region. The original single-polarization operation range in the long-wavelength region extends to the short wavelength caused by introducing chirality. Then this range becomes a broadened one with elliptical polarization from linear polarization. With increase of chirality, the two single-polarization single-mode ranges may fuse together. By optimizing the structure, an ultra-wide single-circular-polarization operation range from 0.5 μm to 1.67 μm for chiral PCF can be realized with moderate chirality strength.

  1. Precise single-qubit control of the reflection phase of a photon mediated by a strongly-coupled ancilla–cavity system

    NASA Astrophysics Data System (ADS)

    Motzoi, F.; Mølmer, K.

    2018-05-01

    We propose to use the interaction between a single qubit atom and a surrounding ensemble of three level atoms to control the phase of light reflected by an optical cavity. Our scheme employs an ensemble dark resonance that is perturbed by the qubit atom to yield a single-atom single photon gate. We show here that off-resonant excitation towards Rydberg states with strong dipolar interactions offers experimentally-viable regimes of operations with low errors (in the 10‑3 range) as required for fault-tolerant optical-photon, gate-based quantum computation. We also propose and analyze an implementation within microwave circuit-QED, where a strongly-coupled ancilla superconducting qubit can be used in the place of the atomic ensemble to provide high-fidelity coupling to microwave photons.

  2. 1.3 μm single-photon emission from strain-coupled bilayer of InAs/GaAs quantum dots at the temperature up to 120 K

    NASA Astrophysics Data System (ADS)

    Xue, Yongzhou; Chen, Zesheng; Ni, Haiqiao; Niu, Zhichuan; Jiang, Desheng; Dou, Xiuming; Sun, Baoquan

    2017-10-01

    We report on 1.3 μm single-photon emission based on a self-assembled strain-coupled bilayer of InAs quantum dots (QDs) embedded in a micropillar Bragg cavity at temperature of liquid nitrogen or even as high as 120 K. The obtained single-photon flux into the first lens of the collection optics is 4.2 × 106 and 3.3 × 106/s at 82 and 120 K, respectively, corresponding to a second-order correlation function at zero delay times of 0.27(2) and 0.28(3). This work reports on the significant effect of the micropillar cavity-related enhancement of QD emission and demonstrates an opportunity to employ telecom band single-photon emitters at liquid nitrogen or even higher temperature.

  3. Germanium and InGaAs/InP SPADs for single-photon detection in the near-infrared

    NASA Astrophysics Data System (ADS)

    Tosi, Alberto; Dalla Mora, Alberto; Zappa, Franco; Cova, Sergio

    2007-09-01

    Single-Photon Avalanche Diodes (SPADs) for near-infrared (800-1700 nm) wavelengths can be manufactured both in InGaAs/InP and in germanium. Recently, new InGaAs/InP SPADs became commercially available with good overall performances, but with the intrinsic bottleneck of strong afterpulsing effect, originated in the InP multiplication layer. At present, germanium technology is not exploited for single-photon detectors, but previous devices demonstrate lower afterpulsing even at very low temperatures and promising dark count rate when employing pure manufacturing process. In this work, we compare germanium and InGaAs/InP SPADs in terms of dark counts, afterpulsing, timing jitter, and quantum efficiency. Eventually, we highlight the motivations for considering germanium as a key material for single-photon counting in the NIR.

  4. Two-Color Single-Photon Photoinitiation and Photoinhibition for Subdiffraction Photolithography

    NASA Astrophysics Data System (ADS)

    Scott, Timothy F.; Kowalski, Benjamin A.; Sullivan, Amy C.; Bowman, Christopher N.; McLeod, Robert R.

    2009-05-01

    Controlling and reducing the developed region initiated by photoexposure is one of the fundamental goals of optical lithography. Here, we demonstrate a two-color irradiation scheme whereby initiating species are generated by single-photon absorption at one wavelength while inhibiting species are generated by single-photon absorption at a second, independent wavelength. Co-irradiation at the second wavelength thus reduces the polymerization rate, delaying gelation of the material and facilitating enhanced spatial control over the polymerization. Appropriate overlapping of the two beams produces structures with both feature sizes and monomer conversions otherwise unobtainable with use of single- or two-photon absorption photopolymerization. Additionally, the generated inhibiting species rapidly recombine when irradiation with the second wavelength ceases, allowing for fast sequential exposures not limited by memory effects in the material and thus enabling fabrication of complex two- or three-dimensional structures.

  5. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    NASA Astrophysics Data System (ADS)

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  6. Quantum interference of independently generated telecom-band single photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping

    We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.

  7. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    PubMed

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy.

    PubMed

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-12-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy.

  9. Three-photon N00N states generated by photon subtraction from double photon pairs.

    PubMed

    Kim, Heonoh; Park, Hee Su; Choi, Sang-Kyung

    2009-10-26

    We describe an experimental demonstration of a novel three-photon N00N state generation scheme using a single source of photons based on spontaneous parametric down-conversion (SPDC). The three-photon entangled state is generated when a photon is subtracted from a double pair of photons and detected by a heralding counter. Interference fringes measured with an emulated three-photon detector reveal the three-photon de Broglie wavelength and exhibit visibility > 70% without background subtraction.

  10. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-04-01

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  11. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  12. A stiffness derivative finite element technique for determination of crack tip stress intensity factors

    NASA Technical Reports Server (NTRS)

    Parks, D. M.

    1974-01-01

    A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.

  13. Single and dual fiber nano-tip optical tweezers: trapping and analysis.

    PubMed

    Decombe, Jean-Baptiste; Huant, Serge; Fick, Jochen

    2013-12-16

    An original optical tweezers using one or two chemically etched fiber nano-tips is developed. We demonstrate optical trapping of 1 micrometer polystyrene spheres at optical powers down to 2 mW. Harmonic trap potentials were found in the case of dual fiber tweezers by analyzing the trapped particle position fluctuations. The trap stiffness was deduced using three different models. Consistent values of up to 1 fN/nm were found. The stiffness linearly decreases with decreasing light intensity and increasing fiber tip-to-tip distance.

  14. Decorating fiber nanotip with single perovskite quantum dot and other luminescent nanocrystals synthesized in oil-phase

    NASA Astrophysics Data System (ADS)

    Qian, Yu; Xing, Xing; Xu, Ya; Lu, Zhenda; Zhang, Weihua

    2017-11-01

    We report a simple yet robust method for fabricating single perovskite quantum dot (QD) decorated fiber nanotips. In this method, a single QD is directly picked up and subsequently glued on the apex of a specially fabricated cantilever fiber tip with a high success rate (approx. 70%) without using expensive close-loop feedback systems. Thanks to the flexibility and robustness of the fiber tips, no damage of the tips was observed in the process. Moreover, nanocrystal (NC) dispersing technique was developed to avoid undesired aggregations of QDs, and it guarantees that only one QD is glued each time. Finally, we demonstrate that this technique can also be applied to other oil-phase synthesized NCs, including CdSe QDs and upconversion luminescent NCs. It leads to many important applications on probing the local environment using high performance luminescent nanoprobes.

  15. Electrochemical Visualization of Intracellular Hydrogen Peroxide at Single Cells.

    PubMed

    He, Ruiqin; Tang, Huifen; Jiang, Dechen; Chen, Hong-yuan

    2016-02-16

    In this Letter, the electrochemical visualization of hydrogen peroxide inside one cell was achieved first using a comprehensive Au-luminol-microelectrode and electrochemiluminescence. The capillary with a tip opening of 1-2 μm was filled with the mixture of chitosan and luminol, which was coated with the thin layers of polyvinyl chloride/nitrophenyloctyl ether (PVC/NPOE) and gold as the microelectrode. Upon contact with the aqueous hydrogen peroxide, hydrogen peroxide and luminol in contact with the gold layer were oxidized under the positive potential resulting in luminescence for the imaging. Due to the small diameter of the electrode, the microelectrode tip was inserted into one cell and the bright luminescence observed at the tip confirmed the visualization of intracellular hydrogen peroxide. The further coupling of oxidase on the electrode surface could open the field in the electrochemical imaging of intracellular biomolecules at single cells, which benefited the single cell electrochemical detection.

  16. Nanoscale assembly of superconducting vortices with scanning tunnelling microscope tip

    PubMed Central

    Ge, Jun-Yi; Gladilin, Vladimir N.; Tempere, Jacques; Xue, Cun; Devreese, Jozef T.; Van de Vondel, Joris; Zhou, Youhe; Moshchalkov, Victor V.

    2016-01-01

    Vortices play a crucial role in determining the properties of superconductors as well as their applications. Therefore, characterization and manipulation of vortices, especially at the single-vortex level, is of great importance. Among many techniques to study single vortices, scanning tunnelling microscopy (STM) stands out as a powerful tool, due to its ability to detect the local electronic states and high spatial resolution. However, local control of superconductivity as well as the manipulation of individual vortices with the STM tip is still lacking. Here we report a new function of the STM, namely to control the local pinning in a superconductor through the heating effect. Such effect allows us to quench the superconducting state at nanoscale, and leads to the growth of vortex clusters whose size can be controlled by the bias voltage. We also demonstrate the use of an STM tip to assemble single-quantum vortices into desired nanoscale configurations. PMID:27934960

  17. Amplitude distributions of dark counts and photon counts in NbN superconducting single-photon detectors integrated with the HEMT readout

    NASA Astrophysics Data System (ADS)

    Kitaygorsky, J.; Słysz, W.; Shouten, R.; Dorenbos, S.; Reiger, E.; Zwiller, V.; Sobolewski, Roman

    2017-01-01

    We present a new operation regime of NbN superconducting single-photon detectors (SSPDs) by integrating them with a low-noise cryogenic high-electron-mobility transistor and a high-load resistor. The integrated sensors are designed to get a better understanding of the origin of dark counts triggered by the detector, as our scheme allows us to distinguish the origin of dark pulses from the actual photon pulses in SSPDs. The presented approach is based on a statistical analysis of amplitude distributions of recorded trains of the SSPD photoresponse transients. It also enables to obtain information on energy of the incident photons, as well as demonstrates some photon-number-resolving capability of meander-type SSPDs.

  18. Multiple-photon excitation of nitrogen vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Balili, R.; Beaumariage, J.; Mukherjee, S.; Snoke, D.; Dutt, M. V. Gurudev

    2018-04-01

    We report the observation of multiphoton photoluminescence excitation (PLE) below the resonant energies of nitrogen vacancy (NV) centers in diamond. The quadratic and cubic dependence of the integrated fluorescence intensity as a function of excitation power indicates a two-photon excitation pathway for the NV- charge state and a three-photon process involved for the neutral NV0 charge state, respectively. Comparing the total multiphoton energy with its single-photon equivalent, the PLE spectra follows the absorption spectrum of single photon excitation. We also observed that the efficiency of photoluminescence for different charge states, as well as the decay time constant, was dependent on the excitation wavelength and power.

  19. Evaluation of a fast single-photon avalanche photodiode for measurement of early transmitted photons through diffusive media.

    PubMed

    Mu, Ying; Valim, Niksa; Niedre, Mark

    2013-06-15

    We tested the performance of a fast single-photon avalanche photodiode (SPAD) in measurement of early transmitted photons through diffusive media. In combination with a femtosecond titanium:sapphire laser, the overall instrument temporal response time was 59 ps. Using two experimental models, we showed that the SPAD allowed measurement of photon-density sensitivity functions that were approximately 65% narrower than the ungated continuous wave case at very early times. This exceeds the performance that we have previously achieved with photomultiplier-tube-based systems and approaches the theoretical maximum predicted by time-resolved Monte Carlo simulations.

  20. Atom-Resonant Heralded Single Photons by Interaction-Free Measurement

    NASA Astrophysics Data System (ADS)

    Wolfgramm, Florian; de Icaza Astiz, Yannick A.; Beduini, Federica A.; Cerè, Alessandro; Mitchell, Morgan W.

    2011-02-01

    We demonstrate the generation of rubidium-resonant heralded single photons for quantum memories. Photon pairs are created by cavity-enhanced down-conversion and narrowed in bandwidth to 7 MHz with a novel atom-based filter operating by “interaction-free measurement” principles. At least 94% of the heralded photons are atom-resonant as demonstrated by a direct absorption measurement with rubidium vapor. A heralded autocorrelation measurement shows gc(2)(0)=0.040±0.012, i.e., suppression of multiphoton contributions by a factor of 25 relative to a coherent state. The generated heralded photons can readily be used in quantum memories and quantum networks.

  1. High energy, single-polarized, single-transverse-mode, nanosecond pulses generated by a multi-stage Yb-doped photonic crystal fiber amplifier

    NASA Astrophysics Data System (ADS)

    Shen, Xinglai; Zhang, Haitao; Hao, He; Li, Dan; Li, Qinghua; Yan, Ping; Gong, Mali

    2015-06-01

    We report the construction of a cascaded fiber amplifier where a 40-μm-core-diameter photonic crystal fiber is utilized in the main amplifier stage. Single-transverse-mode, linearly-polarized, 7.5 ns pulses with 1.5 mJ energy, 123 kW peak power and 10 nm spectral bandwidth centered at 1062 nm are generated. To our knowledge, the pulse energy we obtain is the highest from 40-μm-core-diameter photonic crystal fibers, and also the highest for long pulses (>1 ns) with linear polarization and single transverse mode.

  2. Irrigant flow during photon-induced photoacoustic streaming (PIPS) using Particle Image Velocimetry (PIV).

    PubMed

    Koch, Jon D; Jaramillo, David E; DiVito, Enrico; Peters, Ove A

    2016-03-01

    This study aimed to compare fluid movements generated from photon-induced photoacoustic streaming (PIPS) and passive ultrasonic irrigation (PUI). Particle Image Velocimetry (PIV) was performed using 6-μm melamine spheres in water. Measurement areas were 3-mm-long sections of the canal in the coronal, midroot and apical regions for PIPS (erbium/yttrium-aluminium garnet (Er:YAG) laser set at 15 Hz with 20 mJ), or passive ultrasonic irrigation (PUI, non-cutting insert at 30% unit power) was performed in simulated root canals prepared to an apical size #30/0.04 taper. Fluid movement was analysed directly subjacent to the apical ends of ultrasonic insert or fiber optic tips as well as at midroot and apically. During PUI, measured average velocities were around 0.03 m/s in the immediate vicinity of the sides and tip of the ultrasonic file. Speeds decayed to non-measureable values at a distance of about 2 mm from the sides and tip. During PIPS, typical average speeds were about ten times higher than those measured for PUI, and they were measured throughout the length of the canal, at distances up to 20 mm away. PIPS caused higher average fluid speeds when compared to PUI, both close and distant from the instrument. The findings of this study could be relevant to the debriding and disinfecting stage of endodontic therapy. Irrigation enhancement beyond needle irrigation is relevant to more effectively eradicate microorganisms from root canal systems. PIPS may be an alternative approach due to its ability to create high streaming velocities further away from the activation source compared to ultrasonic activation.

  3. Tissue dissolution ability of sodium hypochlorite activated by photon-initiated photoacoustic streaming technique.

    PubMed

    Guneser, Mehmet Burak; Arslan, Dilara; Usumez, Aslihan

    2015-05-01

    The aim of this study was to evaluate the effect of the photon-initiated photoacoustic streaming (PIPS) technique on the pulp tissue-dissolving capacity of sodium hypochlorite (NaOCl) and compare it with the EndoActivator System (Dentsply Tulsa Dental Specialties, Tulsa, OK) and the Er:YAG laser with an endodontic fiber tip. Bovine pulp tissue samples (45 ± 15 mg) and dentin powder (10 mg) were placed in 1.5-mL Eppendorf tubes with 1 mL 5.25% NaOCl (Wizard; Rehber Kimya, Istanbul, Turkey) or distilled water (control) for 5 minutes with activation by the EndoActivator System, the Er:YAG laser with an endodontic fiber tip, and the PIPS technique. Nonactivated NaOCl served as the positive control. All testing procedures were performed at room temperature. The tissue samples were weighed before and after treatment, and the percentage of weight loss was calculated. The differences were statistically analyzed. The highest rate of tissue dissolution was observed in the NaOCl + Er:YAG group (P < .05). The NaOCl + PIPS group dissolved more bovine pulp tissue than the nonactivated NaOCl group (P < .05). There was no statistically significant difference between the rates of tissue dissolution of the NaOCl + EA and the nonactivated NaOCl groups (P > .05). NaOCl activation with the Er:YAG laser with an endodontic fiber tip was the most effective in bovine pulp tissue dissolution. The PIPS technique also promoted superior tissue-dissolving effects when compared with no activation. However, the EndoActivator System had no direct effect on tissue dissolution. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Dynamical Casimir effect in stochastic systems: Photon harvesting through noise

    NASA Astrophysics Data System (ADS)

    Román-Ancheyta, Ricardo; Ramos-Prieto, Irán; Perez-Leija, Armando; Busch, Kurt; León-Montiel, Roberto de J.

    2017-09-01

    We theoretically investigate the dynamical Casimir effect in a single-mode cavity endowed with a driven off-resonant mirror. We explore the dynamics of photon generation as a function of the ratio between the cavity mode and the mirror's driving frequency. Interestingly, we find that this ratio defines a threshold—which we referred to as a metal-insulator phase transition—between exponential growth and low photon production. The low photon production is due to Bloch-like oscillations that produce a strong localization of the initial vacuum state, thus preventing higher generation of photons. To break localization of the vacuum state and enhance the photon generation, we impose a dephasing mechanism, based on dynamic disorder, into the driving frequency of the mirror. Additionally, we explore the effects of finite temperature on the photon production. Concurrently, we propose a classical analog of the dynamical Casimir effect in engineered photonic lattices, where the propagation of classical light emulates the photon generation from the quantum vacuum of a single-mode tunable cavity.

  5. Entanglement generation and manipulation in the Hong-Ou-Mandel experiment: a hidden scenario beyond two-photon interference

    NASA Astrophysics Data System (ADS)

    Yang, Li-Kai; Cai, Han; Peng, Tao; Wang, Da-Wei

    2018-06-01

    The Hong‑Ou‑Mandel (HOM) effect was long believed to be a two-photon interference phenomenon. It describes the fact that two indistinguishable photons mixed at a beam splitter will bunch together to one of the two output modes. Considering the two single-photon emitters such as trapped ions, we explore a hidden scenario of the HOM effect, where entanglement can be generated between the two ions when a single photon is detected by one of the detectors. A second photon emitted by the entangled photon sources will be subsequently detected by the same detector. However, we can also control the fate of the second photon by manipulating the entangled state. Instead of two-photon interference, the phase of the entangled state is responsible for the photon’s path in our proposal. Toward a feasible experimental realization, we conduct a quantum jump simulation on the system to show its robustness against experimental errors.

  6. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  7. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    PubMed

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  8. Single photon emission from charged excitons in CdTe/ZnTe quantum dots

    NASA Astrophysics Data System (ADS)

    Belyaev, K. G.; Rakhlin, M. V.; Sorokin, S. V.; Klimko, G. V.; Gronin, S. V.; Sedova, I. V.; Mukhin, I. S.; Ivanov, S. V.; Toropov, A. A.

    2017-11-01

    We report on micro-photoluminescence studies of individual self-organized CdTe/ZnTe quantum dots intended for single-photon-source applications in a visible spectral range. The quantum dots surface density below 1010 per cm2 was achieved by using a thermally activated regime of molecular beam epitaxy that allowed fabrication of etched mesa-structures containing only a few emitting quantum dots. The single photon emission with the autocorrelation function g(2)(0)<0.2 was detected and identified as recombination of charged excitons in the individual quantum dot.

  9. Optimal entangling operations between deterministic blocks of qubits encoded into single photons

    NASA Astrophysics Data System (ADS)

    Smith, Jake A.; Kaplan, Lev

    2018-01-01

    Here, we numerically simulate probabilistic elementary entangling operations between rail-encoded photons for the purpose of scalable universal quantum computation or communication. We propose grouping logical qubits into single-photon blocks wherein single-qubit rotations and the controlled-not (cnot) gate are fully deterministic and simple to implement. Interblock communication is then allowed through said probabilistic entangling operations. We find a promising trend in the increasing probability of successful interblock communication as we increase the number of optical modes operated on by our elementary entangling operations.

  10. Quantum Key Distribution Using Polarized Single Photons

    DTIC Science & Technology

    2009-04-01

    liquid helium the SSPD with a low - noise , cryogenic high-electron-mobility transistor (HEMT) with high-input impedance. This arrangement allowed us...Sobolewski, IEEE Trans. Appl. Supercon., accepted (2009). 19. " Measurements of amplitude distributions of dark counts and photon counts in NbN ...75, 174507 (2007). 6. "Fiber-Coupled NbN Superconducting Single-Photon Detectors for Quantum Correlation Measurements ," W. Slysz, M. Wegrzecki, J

  11. Multiparty Quantum English Auction Scheme Using Single Photons as Message Carrier

    NASA Astrophysics Data System (ADS)

    Liu, Ge; Zhang, Jian-Zhong; Xie, Shu-Cui

    2018-03-01

    In this paper, a secure and economic multiparty english auction protocol using the single photons as message carrier of bids is proposed. In order to achieve unconditional security, fairness, undeniability and so on, we adopt the decoy photon checking technique and quantum encryption algorithm. Analysis result shows that our protocol satisfies all the characteristics of traditional english auction, meanwhile, it can resist malicious attacks.

  12. High quality GaAs single photon emitters on Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bietti, S.; Sanguinetti, S.; Cavigli, L.

    2013-12-04

    We describe a method for the direct epitaxial growth of a single photon emitter, based on GaAs quantum dots fabricated by droplet epitaxy, working at liquid nitrogen temperatures on Si substrates. The achievement of quantum photon statistics up to T=80 K is directly proved by antibunching in the second order correlation function as measured with a H anbury Brown and Twiss interferometer.

  13. Single photons from a gain medium below threshold

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjib; Liew, Timothy C. H.

    2018-06-01

    The emission from a nonlinear photonic mode coupled weakly to a gain medium operating below threshold is predicted to exhibit antibunching. In the steady state regime, analytical solutions for the relevant observable quantities are found in accurate agreement with exact numerical results. Under pulsed excitation, the unequal time second-order correlation function demonstrates the triggered probabilistic generation of single photons well separated in time.

  14. Silicon technology-based micro-systems for atomic force microscopy/photon scanning tunnelling microscopy.

    PubMed

    Gall-Borrut, P; Belier, B; Falgayrettes, P; Castagne, M; Bergaud, C; Temple-Boyer, P

    2001-04-01

    We developed silicon nitride cantilevers integrating a probe tip and a wave guide that is prolonged on the silicon holder with one or two guides. A micro-system is bonded to a photodetector. The resulting hybrid system enables us to obtain simultaneously topographic and optical near-field images. Examples of images obtained on a longitudinal cross-section of an optical fibre are shown.

  15. Numerical Analysis of the Acoustic Field of Tip-Clearance Flow

    NASA Astrophysics Data System (ADS)

    Alavi Moghadam, S. M.; M. Meinke Team; W. Schröder Team

    2015-11-01

    Numerical simulations of the acoustic field generated by a shrouded axial fan are studied by a hybrid fluid-dynamics-acoustics method. In a first step, large-eddy simulations are performed to investigate the dynamics of tip clearance flow for various tip gap sizes and to determine the acoustic sources. The simulations are performed for a single blade out of five blades with periodic boundary conditions in the circumferential direction on a multi-block structured mesh with 1.4 ×108 grid points. The turbulent flow is simulated at a Reynolds number of 9.36 ×105 at undisturbed inflow condition and the results are compared with experimental data. The diameter and strength of the tip vortex increase with the tip gap size, while simultaneously the efficiency of the fan decreases. In a second step, the acoustic field on the near field is determined by solving the acoustic perturbation equations (APE) on a mesh for a single blade consisting of approx. 9.8 ×108 grid points. The overall agreement of the pressure spectrum and its directivity with measurements confirm the correct identification of the sound sources and accurate prediction of the acoustic duct propagation. The results show that the longer the tip gap size the higher the broadband noise level. Senior Scientist, Institute of Aerodynamics, RWTH Aachen University.

  16. Bright Single InAsP Quantum Dots at Telecom Wavelengths in Position-Controlled InP Nanowires: The Role of the Photonic Waveguide.

    PubMed

    Haffouz, Sofiane; Zeuner, Katharina D; Dalacu, Dan; Poole, Philip J; Lapointe, Jean; Poitras, Daniel; Mnaymneh, Khaled; Wu, Xiaohua; Couillard, Martin; Korkusinski, Marek; Schöll, Eva; Jöns, Klaus D; Zwiller, Valery; Williams, Robin L

    2018-05-09

    We report on the site-selected growth of bright single InAsP quantum dots embedded within InP photonic nanowire waveguides emitting at telecom wavelengths. We demonstrate a dramatic dependence of the emission rate on both the emission wavelength and the nanowire diameter. With an appropriately designed waveguide, tailored to the emission wavelength of the dot, an increase in the count rate by nearly 2 orders of magnitude (0.4 to 35 kcps) is obtained for quantum dots emitting in the telecom O-band, showing high single-photon purity with multiphoton emission probabilities down to 2%. Using emission-wavelength-optimized waveguides, we demonstrate bright, narrow-line-width emission from single InAsP quantum dots with an unprecedented tuning range of 880 to 1550 nm. These results pave the way toward efficient single-photon sources at telecom wavelengths using deterministically grown InAsP/InP nanowire quantum dots.

  17. Atomic Source of Single Photons in the Telecom Band

    NASA Astrophysics Data System (ADS)

    Dibos, A. M.; Raha, M.; Phenicie, C. M.; Thompson, J. D.

    2018-06-01

    Single atoms and atomlike defects in solids are ideal quantum light sources and memories for quantum networks. However, most atomic transitions are in the ultraviolet-visible portion of the electromagnetic spectrum, where propagation losses in optical fibers are prohibitively large. Here, we observe for the first time the emission of single photons from a single Er3 + ion in a solid-state host, whose optical transition at 1.5 μ m is in the telecom band, allowing for low-loss propagation in optical fiber. This is enabled by integrating Er3 + ions with silicon nanophotonic structures, which results in an enhancement of the photon emission rate by a factor of more than 650. Dozens of distinct ions can be addressed in a single device, and the splitting of the lines in a magnetic field confirms that the optical transitions are coupled to the electronic spin of the Er3 + ions. These results are a significant step towards long-distance quantum networks and deterministic quantum logic for photons based on a scalable silicon nanophotonics architecture.

  18. Semi-quantum Dialogue Based on Single Photons

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu; Ye, Chong-Qiang

    2018-02-01

    In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party's randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party' classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party's randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party' classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cernoch, Antonin; Soubusta, Jan; Celechovska, Lucie

    We report on experimental implementation of the optimal universal asymmetric 1->2 quantum cloning machine for qubits encoded into polarization states of single photons. Our linear-optical machine performs asymmetric cloning by partially symmetrizing the input polarization state of signal photon and a blank copy idler photon prepared in a maximally mixed state. We show that the employed method of measurement of mean clone fidelities exhibits strong resilience to imperfect calibration of the relative efficiencies of single-photon detectors used in the experiment. Reliable characterization of the quantum cloner is thus possible even when precise detector calibration is difficult to achieve.

  20. A miniaturized 4 K platform for superconducting infrared photon counting detectors

    NASA Astrophysics Data System (ADS)

    Gemmell, Nathan R.; Hills, Matthew; Bradshaw, Tom; Rawlings, Tom; Green, Ben; Heath, Robert M.; Tsimvrakidis, Konstantinos; Dobrovolskiy, Sergiy; Zwiller, Val; Dorenbos, Sander N.; Crook, Martin; Hadfield, Robert H.

    2017-11-01

    We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule-Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection.

Top