Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B
2015-01-01
Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.
Sapra, K. Tanuj; Balasubramanian, G. Prakash; Labudde, Dirk; Bowie, James U.; Muller, Daniel J.
2009-01-01
Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wild-type and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others. PMID:18191146
Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier
2017-01-01
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity. PMID:28181556
NASA Astrophysics Data System (ADS)
Noguera, Martín E.; Vazquez, Diego S.; Ferrer-Sueta, Gerardo; Agudelo, William A.; Howard, Eduardo; Rasia, Rodolfo M.; Manta, Bruno; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier
2017-02-01
Thioredoxin is a ubiquitous small protein that catalyzes redox reactions of protein thiols. Additionally, thioredoxin from E. coli (EcTRX) is a widely-used model for structure-function studies. In a previous paper, we characterized several single-point mutants of the C-terminal helix (CTH) that alter global stability of EcTRX. However, spectroscopic signatures and enzymatic activity for some of these mutants were found essentially unaffected. A comprehensive structural characterization at the atomic level of these near-invariant mutants can provide detailed information about structural variability of EcTRX. We address this point through the determination of the crystal structures of four point-mutants, whose mutations occurs within or near the CTH, namely L94A, E101G, N106A and L107A. These structures are mostly unaffected compared with the wild-type variant. Notably, the E101G mutant presents a large region with two alternative traces for the backbone of the same chain. It represents a significant shift in backbone positions. Enzymatic activity measurements and conformational dynamics studies monitored by NMR and molecular dynamic simulations show that E101G mutation results in a small effect in the structural features of the protein. We hypothesize that these alternative conformations represent samples of the native-state ensemble of EcTRX, specifically the magnitude and location of conformational heterogeneity.
Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful
2017-07-01
The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
Thomas, Justin C; O'Hara, Joanne M; Hu, Lei; Gao, Fei P; Joshi, Sangeeta B; Volkin, David B; Brey, Robert N; Fang, Jianwen; Karanicolas, John; Mantis, Nicholas J; Middaugh, C Russell
2013-04-01
There is great interest in the design and development of highly thermostable and immunogenic protein subunit vaccines for biodefense. In this study, we used two orthogonal and complementary computational protein design approaches to generate a series of single-point mutants of RiVax, an attenuated recombinant ricin A chain (RTA) protein subunit vaccine antigen. As assessed by differential scanning calorimetry, the conformational stabilities of the designed mutants ranged from 4°C less stable to 4.5°C more stable than RiVax, depending on solution pH. Two more thermostable (V18P, C171L) and two less thermostable (T13V, S89T) mutants that displayed native-like secondary and tertiary structures (as determined by circular dichroism and fluorescence spectral analysis, respectively) were tested for their capacity to elicit RTA-specific antibodies and toxin-neutralizing activity. Following a prime-boost regimen, we found qualitative differences with respect to specific antibody titers and toxin neutralizing antibody levels induced by the different mutants. Upon a second boost with the more thermostable mutant C171L, a statistically significant increase in RTA-specific antibody titers was observed when compared with RiVax-immunized mice. Notably, the results indicate that single residue changes can be made to the RiVax antigen that increase its thermal stability without adversely impacting the efficacy of the vaccine.
Almási, Asztéria; Nemes, Katalin; Csömör, Zsófia; Tóbiás, István; Palkovics, László; Salánki, Katalin
2017-06-01
The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.
Role of the hydrophilic channels of simian virus 40 T-antigen helicase in DNA replication.
Wang, Weiping; Manna, David; Simmons, Daniel T
2007-05-01
The simian virus 40 (SV40) hexameric helicase consists of a central channel and six hydrophilic channels located between adjacent large tier domains within each hexamer. To study the function of the hydrophilic channels in SV40 DNA replication, a series of single-point substitutions were introduced at sites not directly involved in protein-protein contacts. The mutants were characterized biochemically in various ways. All mutants oligomerized normally in the absence of DNA. Interestingly, 8 of the 10 mutants failed to unwind an origin-containing DNA fragment and nine of them were totally unable to support SV40 DNA replication in vitro. The mutants fell into four classes based on their biochemical properties. Class A mutants bound DNA normally and had normal ATPase and helicase activities but failed to unwind origin DNA and support SV40 DNA replication. Class B mutants were compromised in single-stranded DNA and origin DNA binding at low protein concentrations. They were defective in helicase activity and unwinding of the origin and in supporting DNA replication. Class C and D mutants possessed higher-than-normal single-stranded DNA binding activity at low protein concentrations. The class C mutants failed to separate origin DNA and support DNA replication. The class D mutants unwound origin DNA normally but were compromised in their ability to support DNA replication. Taken together, these results suggest that the hydrophilic channels have an active role in the unwinding of SV40 DNA from the origin and the placement of the resulting single strands within the helicase.
FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants.
Bednar, David; Beerens, Koen; Sebestova, Eva; Bendl, Jaroslav; Khare, Sagar; Chaloupkova, Radka; Prokop, Zbynek; Brezovsky, Jan; Baker, David; Damborsky, Jiri
2015-11-01
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
Morsomme, P; Dambly, S; Maudoux, O; Boutry, M
1998-12-25
The Nicotiana plumbaginifolia pma2 (plasma membrane H+-ATPase) gene is capable of functionally replacing the H+-ATPase genes of the yeast Saccharomyces cerevisiae, provided that the external pH is kept above 5.0. Single point mutations within the pma2 gene were previously identified that improved H+-ATPase activity and allowed yeast growth at pH 4.0. The aim of the present study was to identify most of the PMA2 positions, the mutation of which would lead to improved growth and to determine whether all these mutations result in similar enzymatic and structural modifications. We selected additional mutants in total 42 distinct point mutations localized in 30 codons. They were distributed in 10 soluble and membrane regions of the enzyme. Most mutant PMA2 H+-ATPases were characterized by a higher specific activity, lower inhibition by ADP, and lower stimulation by lysophosphatidylcholine than wild-type PMA2. The mutants thus seem to be constitutively activated. Partial tryptic digestion and immunodetection showed that the PMA2 mutants had a conformational change making the C-terminal region more accessible. These data therefore support the hypothesis that point mutations in various H+-ATPase parts displace the inhibitory C-terminal region, resulting in enzyme activation. The high density of mutations within the first half of the C-terminal region suggests that this part is involved in the interaction between the inhibitory C-terminal region and the rest of the enzyme.
Rivera-Torres, Natalia; Banas, Kelly; Bialk, Pawel; Bloh, Kevin M; Kmiec, Eric B
2017-01-01
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex.
Rivera-Torres, Natalia; Bialk, Pawel; Bloh, Kevin M.; Kmiec, Eric B.
2017-01-01
CRISPR/Cas9 and single-stranded DNA oligonucleotides (ssODNs) have been used to direct the repair of a single base mutation in human genes. Here, we examine a method designed to increase the precision of RNA guided genome editing in human cells by utilizing a CRISPR/Cas9 ribonucleoprotein (RNP) complex to initiate DNA cleavage. The RNP is assembled in vitro and induces a double stranded break at a specific site surrounding the mutant base designated for correction by the ssODN. We use an integrated mutant eGFP gene, bearing a single base change rendering the expressed protein nonfunctional, as a single copy target in HCT 116 cells. We observe significant gene correction activity of the mutant base, promoted by the RNP and single-stranded DNA oligonucleotide with validation through genotypic and phenotypic readout. We demonstrate that all individual components must be present to obtain successful gene editing. Importantly, we examine the genotype of individually sorted corrected and uncorrected clonally expanded cell populations for the mutagenic footprint left by the action of these gene editing tools. While the DNA sequence of the corrected population is exact with no adjacent sequence modification, the uncorrected population exhibits heterogeneous mutagenicity with a wide variety of deletions and insertions surrounding the target site. We designate this type of DNA aberration as on-site mutagenicity. Analyses of two clonal populations bearing specific DNA insertions surrounding the target site, indicate that point mutation repair has occurred at the level of the gene. The phenotype, however, is not rescued because a section of the single-stranded oligonucleotide has been inserted altering the reading frame and generating truncated proteins. These data illustrate the importance of analysing mutagenicity in uncorrected cells. Our results also form the basis of a simple model for point mutation repair directed by a short single-stranded DNA oligonucleotides and CRISPR/Cas9 ribonucleoprotein complex. PMID:28052104
Sharma, Reetu; Sastry, G Narahari
2015-01-01
Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant's functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.
An, Changlong; Beard, William A; Chen, Desheng; Wilson, Samuel H; Makridakis, Nick M
2013-10-01
Human DNA polymerase (pol) β is essential for base excision repair. We previously reported a triple somatic mutant of pol β (p.P261L/T292A/I298T) found in an early onset prostate tumor. This mutation abolishes polymerase activity, and the wild-type allele was not present in the tumor, indicating a complete deficiency in pol β function. The effect on polymerase activity is unexpected because the point mutations that comprise the triple mutant are not part of the active site. Herein, we demonstrate the mechanism of this loss-of-function. In order to understand the effect of the individual point mutations we biochemically analyzed all single and double mutants that comprise the triple mutant. We found that the p.I298T mutation is responsible for a marked instability of the triple mutant protein at 37˚C. At room temperature the triple mutant's low efficiency is also due to a decrease in the apparent binding affinity for the dNTP substrate, which is due to the p.T292A mutation. Furthermore, the triple mutant displays lower fidelity for transversions in vitro, due to the p.T292A mutation. We conclude that distinct mutations of the triple pol β mutant are responsible for the loss of activity, lower fidelity, and instability observed in vitro.
Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle
Ahuja, Ishita; de Vos, Ric C. H.; Rohloff, Jens; Stoopen, Geert M.; Halle, Kari K.; Ahmad, Samina Jam Nazeer; Hoang, Linh; Hall, Robert D.; Bones, Atle M.
2016-01-01
Both physical barriers and reactive phytochemicals represent two important components of a plant’s defence system against environmental stress. However, these two defence systems have generally been studied independently. Here, we have taken an exclusive opportunity to investigate the connection between a chemical-based plant defence system, represented by the glucosinolate-myrosinase system, and a physical barrier, represented by the cuticle, using Arabidopsis myrosinase (thioglucosidase; TGG) mutants. The tgg1, single and tgg1 tgg2 double mutants showed morphological changes compared to wild-type plants visible as changes in pavement cells, stomatal cells and the ultrastructure of the cuticle. Extensive metabolite analyses of leaves from tgg mutants and wild-type Arabidopsis plants showed altered levels of cuticular fatty acids, fatty acid phytyl esters, glucosinolates, and indole compounds in tgg single and double mutants as compared to wild-type plants. These results point to a close and novel association between chemical defence systems and physical defence barriers. PMID:27976683
Smith, Robert A.; Remington, Kathryn M.; Preston, Bradley D.; Schinazi, Raymond F.; North, Thomas W.
1998-01-01
Mutants of feline immunodeficiency virus (FIV) resistant to (−)-β-2′,3′-dideoxy-3′-thiacytidine (3TC) were selected by culturing virus in the presence of increasing stepwise concentrations of 3TC. Two plaque-purified variants were isolated from the original mutant population, and both of these mutants were resistant to 3TC. Surprisingly, these mutants were also phenotypically resistant to 3′-azido-3′-deoxythymidine (AZT) and to the combination of 3TC and AZT. Purified reverse transcriptase (RT) from one of these plaque-purified mutants was resistant to the 5′-triphosphates of 3TC and AZT. DNA sequence analysis of the RT-encoding region of the pol gene amplified from the plaque-purified mutants revealed a Pro-to-Ser mutation at position 156 of RT. A site-directed mutant of FIV engineered to contain this Pro-156-Ser mutation was resistant to 3TC, AZT, and the combination of 3TC and AZT, confirming the role of the Pro-156-Ser mutation in the resistance of FIV to these two nucleoside analogs. This represents the first report of a lentiviral mutant resistant to the combination of AZT and 3TC due to a single, unique point mutation. PMID:9499094
Enhanced production of a single domain antibody with an engineered stabilizing extra disulfide bond.
Liu, Jinny L; Goldman, Ellen R; Zabetakis, Dan; Walper, Scott A; Turner, Kendrick B; Shriver-Lake, Lisa C; Anderson, George P
2015-10-09
Single domain antibodies derived from the variable region of the unique heavy chain antibodies found in camelids yield high affinity and regenerable recognition elements. Adding an additional disulfide bond that bridges framework regions is a proven method to increase their melting temperature, however often at the expense of protein production. To fulfill their full potential it is essential to achieve robust protein production of these stable binding elements. In this work, we tested the hypothesis that decreasing the isoelectric point of single domain antibody extra disulfide bond mutants whose production fell due to the incorporation of the extra disulfide bond would lead to recovery of the protein yield, while maintaining the favorable melting temperature and affinity. Introduction of negative charges into a disulfide bond mutant of a single domain antibody specific for the L1 antigen of the vaccinia virus led to approximately 3.5-fold increase of protein production to 14 mg/L, while affinity and melting temperature was maintained. In addition, refolding following heat denaturation improved from 15 to 70 %. It also maintained nearly 100 % of its binding function after heating to 85 °C for an hour at 1 mg/mL. Disappointingly, the replacement of neutral or positively charged amino acids with negatively charged ones to lower the isoelectric point of two anti-toxin single domain antibodies stabilized with a second disulfide bond yielded only slight increases in protein production. Nonetheless, for one of these binders the charge change itself stabilized the structure equivalent to disulfide bond addition, thus providing an alternative route to stabilization which is not accompanied by loss in production. The ability to produce high affinity, stable single domain antibodies is critical for their utility. While the addition of a second disulfide bond is a proven method for enhancing stability of single domain antibodies, it frequently comes at the cost of reduced yields. While decreasing the isoelectric point of double disulfide mutants of single domain antibodies may improve protein production, charge addition appears to consistently improve refolding and some charge changes can also improve thermal stability, thus providing a number of benefits making the examination of such mutations worth consideration.
Aleksandrov, I D; Afanas'eva, K P; Aleksandrova, M V; Lapidus, I L
2012-01-01
The screening of PCR-detected DNA alterations in 9 spontaneous and 59 gamma-ray-, neutron - or neutron + gamma-ray-induced Drosophila vestigial (vg) gene/"point" mutations was carried out. The detected patterns of existence or absence of either of 16 overlapping fragments into which vg gene (15.1 kb, 8 exons, 7 introns) was divided enable us to subdivide all mutants into 4 classes: (i) PCR+ (40.7%) without the detected changes; (ii) "single-site" (33.9%) with the loss of a single fragment; (iii) partial detections (15.2%) as a loss of 2-9 adjacent fragments and (iv) "cluster" mutants (10.2%) having 2-3 independent changes of(ii) and/or (iii) classes. All spontaneous mutants except one were found to be classified as (ii) whereas radiation-induced mutants are represented by all 4 classes whose interrelation is determined by the dose and radiation quality. In particular, the efficacy of neutrons was found to be nine times as large as that of gamma-rays under the "cluster" mutant induction. Essentially, the distribution of DNA changes along the gene is uneven. CSGE-assay of PCR+-exon 3 revealed DNA heteroduplexes in 5 out of 17 PCR+-mutants studied, 2 of which had small deletions (5 and 11 b) and 3 others made transitions (A --> G) as shown by the sequencing. Therefore, gamma-rays and neutrons seem to be significant environmental agents increasing the SNP risk for the population through their action on the germ cells. The results obtained are also discussed within the framework of the track structure theory and the notion of quite different chromatin organization in somatic and germ cells.
Consonni, R; Santomo, L; Fusi, P; Tortora, P; Zetta, L
1999-09-28
Sso7d is a basic 7-kDa DNA-binding protein from Sulfolobus solfataricus, also endowed with ribonuclease activity. The protein consists of a double-stranded antiparallel beta-sheet, onto which an orthogonal triple-stranded antiparallel beta-sheet is packed, and of a small helical stretch at the C-terminus. Furthermore, the two beta-sheets enclose an aromatic cluster displaying a fishbone geometry. We previously cloned the Sso7d-encoding gene, expressed it in Escherichia coli, and produced several single-point mutants, either of residues located in the hydrophobic core or of Trp23, which is exposed to the solvent and plays a major role in DNA binding. The mutation F31A was dramatically destabilizing, with a loss in thermo- and piezostabilities by at least 27 K and 10 kbar, respectively. Here, we report the solution structure of the F31A mutant, which was determined by NMR spectroscopy using 744 distance constraints obtained from analysis of multidimensional spectra in conjunction with simulated annealing protocols. The most remarkable finding is the change in orientation of the Trp23 side chain, which in the wild type is completely exposed to the solvent, whereas in the mutant is largely buried in the aromatic cluster. This prevents the formation of a cavity in the hydrophobic core of the mutant, which would arise in the absence of structural rearrangements. We found additional changes produced by the mutation, notably a strong distortion in the beta-sheets with loss in several hydrogen bonds, increased flexibility of some stretches of the backbone, and some local strains. On one hand, these features may justify the dramatic destabilization provoked by the mutation; on the other hand, they highlight the crucial role of the hydrophobic core in protein stability. To the best of our knowledge, no similar rearrangement has been so far described as a result of a single-point mutation.
Tian, Ye; Huang, Xiaoqiang; Li, Qing; Zhu, Yushan
2017-01-01
In this report, redesigning cephalosporin C acylase from the Pseudomonas strain N176 revealed that the loss of stability owing to the introduced mutations at the active site can be recovered by repacking the nearby hydrophobic core regions. Starting from a quadruple mutant M31βF/H57βS/V68βA/H70βS, whose decrease in stability is largely owing to the mutation V68βA at the active site, we employed a computational enzyme design strategy that integrated design both at hydrophobic core regions for stability enhancement and at the active site for activity improvement. Single-point mutations L154βF, Y167βF, L180βF and their combinations L154βF/L180βF and L154βF/Y167βF/L180βF were found to display improved stability and activity. The two-point mutant L154βF/L180βF increased the protein melting temperature (T m ) by 11.7 °C and the catalytic efficiency V max /K m by 57 % compared with the values of the starting quadruple mutant. The catalytic efficiency of the resulting sixfold mutant M31βF/H57βS/V68βA/H70βS/L154βF/L180βF is recovered to become comparable to that of the triple mutant M31βF/H57βS/H70βS, but with a higher T m . Further experiments showed that single-point mutations L154βF, L180βF, and their combination contribute no stability enhancement to the triple mutant M31βF/H57βS/H70βS. These results verify that the lost stability because of mutation V68βA at the active site was recovered by introducing mutations L154βF and L180βF at hydrophobic core regions. Importantly, mutation V68βA in the six-residue mutant provides more space to accommodate the bulky side chain of cephalosporin C, which could help in designing cephalosporin C acylase mutants with higher activities and the practical one-step enzymatic route to prepare 7-aminocephalosporanic acid at industrial-scale levels.
Insilico modeling and molecular dynamic simulation of claudin-1 point mutations in HCV infection.
Vipperla, Bhavaniprasad; Dass, J Febin Prabhu; Jayanthi, S
2014-01-01
Claudin-1 (CLDN1) in association with envelope glycoprotein (CD81) mediates the fusion of HCV into the cytosol. Recent studies have indicated that point mutations in CLDN1 are important for the entry of hepatitis C virus (HCV). To validate these findings, we employed a computational platform to investigate the structural effect of two point mutations (I32M and E48K). Initially, three-dimensional co-ordinates for CLDN1 receptor sequence were generated. Then, three mutant models were built using the point mutation including a double mutant (I32M/E48K) model from the native model structure. Finally, all the four model structures including the native and three mutant models were subjected to molecular dynamics (MD) simulation for a period of 25 ns to appreciate their dynamic behavior. The MD trajectory files were analyzed using cluster and principal component method. The analysis suggested that either of the single mutation has negligible effect on the overall structure of CLDN1 compared to the double mutant form. However, the double mutant model of CLDN1 shows significant negative impact through the impairment of H-bonds and the simultaneous increase in solvent accessible surface area. Our simulation results are visibly consistent with the experimental report suggesting that the CLDN1 receptor distortion is prominent due to the double mutation with large surface accessibility. This increase in accessible surface area due to the coexistence of double mutation may be presumed as one of the key factor that results in permissive action of HCV attachment and infection.
Molecular Mechanism of Terbinafine Resistance in Saccharomyces cerevisiae
Leber, Regina; Fuchsbichler, Sandra; Klobučníková, Vlasta; Schweighofer, Natascha; Pitters, Eva; Wohlfarter, Kathrin; Lederer, Mojca; Landl, Karina; Ruckenstuhl, Christoph; Hapala, Ivan; Turnowsky, Friederike
2003-01-01
Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine. PMID:14638499
PCR-mediated site-directed mutagenesis.
Carey, Michael F; Peterson, Craig L; Smale, Stephen T
2013-08-01
Unlike traditional site-directed mutagenesis, this protocol requires only a single PCR step using full plasmid amplification to generate point mutants. The method can introduce small mutations into promoter sites and is even better suited for introducing single or double mutations into proteins. It is elegant in its simplicity and can be applied quite easily in any laboratory using standard protein expression vectors and commercially available reagents.
d'Acierno, Antonio; Facchiano, Angelo; Marabotti, Anna
2009-06-01
We describe the GALT-Prot database and its related web-based application that have been developed to collect information about the structural and functional effects of mutations on the human enzyme galactose-1-phosphate uridyltransferase (GALT) involved in the genetic disease named galactosemia type I. Besides a list of missense mutations at gene and protein sequence levels, GALT-Prot reports the analysis results of mutant GALT structures. In addition to the structural information about the wild-type enzyme, the database also includes structures of over 100 single point mutants simulated by means of a computational procedure, and the analysis to each mutant was made with several bioinformatics programs in order to investigate the effect of the mutations. The web-based interface allows querying of the database, and several links are also provided in order to guarantee a high integration with other resources already present on the web. Moreover, the architecture of the database and the web application is flexible and can be easily adapted to store data related to other proteins with point mutations. GALT-Prot is freely available at http://bioinformatica.isa.cnr.it/GALT/.
Convergent mechanisms favor fast amyloid formation in two lambda 6a Ig light chain mutants.
Valdés-García, Gilberto; Millán-Pacheco, César; Pastor, Nina
2017-08-01
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenger, Drake C., E-mail: drake.stenger@ars.usda.
Population structure of Homalodisca coagulata Virus-1 (HoCV-1) among and within field-collected insects sampled from a single point in space and time was examined. Polymorphism in complete consensus sequences among single-insect isolates was dominated by synonymous substitutions. The mutant spectrum of the C2 helicase region within each single-insect isolate was unique and dominated by nonsynonymous singletons. Bootstrapping was used to correct the within-isolate nonsynonymous:synonymous arithmetic ratio (N:S) for RT-PCR error, yielding an N:S value ~one log-unit greater than that of consensus sequences. Probability of all possible single-base substitutions for the C2 region predicted N:S values within 95% confidence limits of themore » corrected within-isolate N:S when the only constraint imposed was viral polymerase error bias for transitions over transversions. These results indicate that bottlenecks coupled with strong negative/purifying selection drive consensus sequences toward neutral sequence space, and that most polymorphism within single-insect isolates is composed of newly-minted mutations sampled prior to selection. -- Highlights: •Sampling protocol minimized differential selection/history among isolates. •Polymorphism among consensus sequences dominated by negative/purifying selection. •Within-isolate N:S ratio corrected for RT-PCR error by bootstrapping. •Within-isolate mutant spectrum dominated by new mutations yet to undergo selection.« less
Song, Yunke; Zhang, Yi; Wang, Tza-Huei
2013-04-08
Gene point mutations present important biomarkers for genetic diseases. However, existing point mutation detection methods suffer from low sensitivity, specificity, and a tedious assay processes. In this report, an assay technology is proposed which combines the outstanding specificity of gap ligase chain reaction (Gap-LCR), the high sensitivity of single-molecule coincidence detection, and the superior optical properties of quantum dots (QDs) for multiplexed detection of point mutations in genomic DNA. Mutant-specific ligation products are generated by Gap-LCR and subsequently captured by QDs to form DNA-QD nanocomplexes that are detected by single-molecule spectroscopy (SMS) through multi-color fluorescence burst coincidence analysis, allowing for multiplexed mutation detection in a separation-free format. The proposed assay is capable of detecting zeptomoles of KRAS codon 12 mutation variants with near 100% specificity. Its high sensitivity allows direct detection of KRAS mutation in crude genomic DNA without PCR pre-amplification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization and classification of zebrafish brain morphology mutants
Lowery, Laura Anne; De Rienzo, Gianluca; Gutzman, Jennifer H.; Sive, Hazel
2010-01-01
The mechanisms by which the vertebrate brain achieves its three-dimensional structure are clearly complex, requiring the functions of many genes. Using the zebrafish as a model, we have begun to define genes required for brain morphogenesis, including brain ventricle formation, by studying 16 mutants previously identified as having embryonic brain morphology defects. We report the phenotypic characterization of these mutants at several time-points, using brain ventricle dye injection, imaging, and immunohistochemistry with neuronal markers. Most of these mutants display early phenotypes, affecting initial brain shaping, while others show later phenotypes, affecting brain ventricle expansion. In the early phenotype group, we further define four phenotypic classes and corresponding functions required for brain morphogenesis. Although we did not use known genotypes for this classification, basing it solely on phenotypes, many mutants with defects in functionally related genes clustered in a single class. In particular, class 1 mutants show midline separation defects, corresponding to epithelial junction defects; class 2 mutants show reduced brain ventricle size; class 3 mutants show midbrain-hindbrain abnormalities, corresponding to basement membrane defects; and class 4 mutants show absence of ventricle lumen inflation, corresponding to defective ion pumping. Later brain ventricle expansion requires the extracellular matrix, cardiovascular circulation, and transcription/splicing-dependent events. We suggest that these mutants define processes likely to be used during brain morphogenesis throughout the vertebrates. PMID:19051268
Structural Analysis of Single-Point Mutations Given an RNA Sequence: A Case Study with RNAMute
NASA Astrophysics Data System (ADS)
Churkin, Alexander; Barash, Danny
2006-12-01
We introduce here for the first time the RNAMute package, a pattern-recognition-based utility to perform mutational analysis and detect vulnerable spots within an RNA sequence that affect structure. Mutations in these spots may lead to a structural change that directly relates to a change in functionality. Previously, the concept was tried on RNA genetic control elements called "riboswitches" and other known RNA switches, without an organized utility that analyzes all single-point mutations and can be further expanded. The RNAMute package allows a comprehensive categorization, given an RNA sequence that has functional relevance, by exploring the patterns of all single-point mutants. For illustration, we apply the RNAMute package on an RNA transcript for which individual point mutations were shown experimentally to inactivate spectinomycin resistance in Escherichia coli. Functional analysis of mutations on this case study was performed experimentally by creating a library of point mutations using PCR and screening to locate those mutations. With the availability of RNAMute, preanalysis can be performed computationally before conducting an experiment.
Improving thermostability of phosphatidylinositol-synthesizing Streptomyces phospholipase D.
Damnjanović, Jasmina; Takahashi, Rie; Suzuki, Atsuo; Nakano, Hideo; Iwasaki, Yugo
2012-08-01
Aimed to produce thermostable phosphatidylinositol (PI)-synthesizing phospholipase D (PLD), we initiated site-directed combinatorial mutagenesis followed by high-throughput screening. Previous site-directed combinatorial mutagenesis of wild-type Streptomyces PLD produced a mutant, DYR (W187D/Y191Y/Y385R) with PI-synthesizing ability. Deriving PI as a product of transphosphatidylation between phosphatidylcholine and myo-inositol, with myo-inositol in excess at high-temperature reaction conditions can increase yield due to enhanced solubility of this substrate. Thus, we improved DYR's thermostability by introduction of random mutations into selected amino acid positions having high B-factor. Screening of the libraries under restricted conditions yielded single-point mutants, specifically D40H, T291Y and R329G. Combinations of these point mutations yielded double (D40H/T291Y, D40H/R329G and T291Y/R329G) and triple (D40H/T291Y/R329G) mutants. PI synthesis at elevated temperatures pointed at D40H/T291Y as the most efficient enzyme. Circular dichroism analysis revealed D40H/T291Y to have increased melting temperature and postponed onset of thermal unfolding compared with DYR. Thermal tolerance study at 65°C confirmed D40H/T291Y's thermostability as its half-inactivation time was 8.7 min longer compared with DYR. This mutant had significantly less root-mean-square deviation change compared with DYR and showed no change in root-mean-square fluctuation when temperature shifts from 40 to 60°C, as determined by molecular dynamics analysis. Acquired different degrees of thermostability were also observed for several other DYR mutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proudnikov, D.; Kirillov, E.; Chumakov, K.
2000-01-01
This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less
Acevedo, Julyana; Yan, Shan; Michael, W. Matthew
2016-01-01
A critical event for the ability of cells to tolerate DNA damage and replication stress is activation of the ATR kinase. ATR activation is dependent on the BRCT (BRCA1 C terminus) repeat-containing protein TopBP1. Previous work has shown that recruitment of TopBP1 to sites of DNA damage and stalled replication forks is necessary for downstream events in ATR activation; however, the mechanism for this recruitment was not known. Here, we use protein binding assays and functional studies in Xenopus egg extracts to show that TopBP1 makes a direct interaction, via its BRCT2 domain, with RPA-coated single-stranded DNA. We identify a point mutant that abrogates this interaction and show that this mutant fails to accumulate at sites of DNA damage and that the mutant cannot activate ATR. These data thus supply a mechanism for how the critical ATR activator, TopBP1, senses DNA damage and stalled replication forks to initiate assembly of checkpoint signaling complexes. PMID:27129245
Maltseva, E A; Krasikova, Y S; Naegeli, H; Lavrik, O I; Rechkunova, N I
2014-06-01
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the interaction of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E > K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.
Division Planes Alternate in Spherical Cells of Escherichia coli
Begg, K. J.; Donachie, W. D.
1998-01-01
In the spherical cells of Escherichia coli rodA mutants, division is initiated at a single point, from which a furrow extends progressively around the cell. Using “giant” rodA ftsA cells, we confirmed that each new division furrow is initiated at the midpoint of the previous division plane and runs perpendicular to it. PMID:9573213
Akula, Sravani; Kamasani, Swapna; Sivan, Sree Kanth; Manga, Vijjulatha; Vudem, Dashavantha Reddy; Kancha, Rama Krishna
2018-05-01
A significant proportion of patients with lung cancer carry mutations in the EGFR kinase domain. The presence of a deletion mutation in exon 19 or L858R point mutation in the EGFR kinase domain has been shown to cause enhanced efficacy of inhibitor treatment in patients with NSCLC. Several less frequent (uncommon) mutations in the EGFR kinase domain with potential implications in treatment response have also been reported. The role of a limited number of uncommon mutations in drug sensitivity was experimentally verified. However, a huge number of these mutations remain uncharacterized for inhibitor sensitivity or resistance. A large-scale computational analysis of clinically reported 298 point mutants of EGFR kinase domain has been performed, and drug sensitivity profiles for each mutant toward seven kinase inhibitors has been determined by molecular docking. In addition, the relative inhibitor binding affinity toward each drug as compared with that of adenosine triphosphate was calculated for each mutant. The inhibitor sensitivity profiles predicted in this study for a set of previously characterized mutants correlated well with the published clinical, experimental, and computational data. Both the single and compound mutations displayed differential inhibitor sensitivity toward first- and next-generation kinase inhibitors. The present study provides predicted drug sensitivity profiles for a large panel of uncommon EGFR mutations toward multiple inhibitors, which may help clinicians in deciding mutant-specific treatment strategies. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
Vaze, Nachiket D.; Park, Sin; Brooks, Ari D.; Fridman, Alexander; Joshi, Suresh G.
2017-01-01
A lab-scale, tunable, single-filament, point-to-point nonthermal dieletric-barrier discharge (DBD) plasma device was built to study the mechanisms of inactivation of aerosolized bacterial pathogens. The system inactivates airborne antibiotic-resistant pathogens efficiently. Nebulization mediated pre-optimized (4 log and 7 log) bacterial loads were challenged to plasma-charged aerosols, and lethal and sublethal doses determined using colony assay, and cell viability assay; and the loss of membrane potential and cellular respiration were determined using cell membrane potential assay and XTT assay. Using the strategies of Escherichia coli wildtype, over-expression mutant, deletion mutants, and peroxide and heat stress scavenging, we analyzed activation of intracellular reactive oxygen species (ROS) and heat shock protein (hsp) chaperons. Superoxide dismutase deletion mutants (ΔsodA, ΔsodB, ΔsodAΔsodB) and catalase mutants ΔkatG and ΔkatEΔkatG did not show significant difference from wildtype strain, and ΔkatE and ΔahpC was found significantly more susceptible to cell death than wildtype. The oxyR regulon was found to mediate plasma-charged aerosol-induced oxidative stress in bacteria. Hsp deficient E. coli (ΔhtpG, ΔgroEL, ΔclpX, ΔgrpE) showed complete inactivation of cells at ambient temperature, and the treatment at cold temperature (4°C) significantly protected hsp deletion mutants and wildtype cells, and indicate a direct involvement of hsp in plasma-charged aerosol mediated E. coli cell death. PMID:28166240
Chen, Yen-Ting; Hsu, Chiao-Ling; Hou, Shao-Yi
2008-04-15
The current study reports an assay approach that can detect single-nucleotide polymorphisms (SNPs) and identify the position of the point mutation through a single-strand-specific nuclease reaction and a gold nanoparticle assembly. The assay can be implemented via three steps: a single-strand-specific nuclease reaction that allows the enzyme to truncate the mutant DNA; a purification step that uses capture probe-gold nanoparticles and centrifugation; and a hybridization reaction that induces detector probe-gold nanoparticles, capture probe-gold nanoparticles, and the target DNA to form large DNA-linked three-dimensional aggregates of gold nanoparticles. At high temperature (63 degrees C in the current case), the purple color of the perfect match solution would not change to red, whereas a mismatched solution becomes red as the assembled gold nanoparticles separate. Using melting analysis, the position of the point mutation could be identified. This assay provides a convenient colorimetric detection that enables point mutation identification without the need for expensive mass spectrometry. To our knowledge, this is the first report concerning SNP detection based on a single-strand-specific nuclease reaction and a gold nanoparticle assembly.
Vaškebová, L; Šamaj, J; Ovecka, M
2017-12-27
The actin cytoskeleton forms a dynamic network in plant cells. A single-point mutation in the DER1 (deformed root hairs1) locus located in the sequence of ACTIN2, a gene for major actin in vegetative tissues of Arabidopsis thaliana, leads to impaired root hair development (Ringli C, Baumberger N, Diet A, Frey B, Keller B. 2002. ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiology129: 1464-1472). Only root hair phenotypes have been described so far in der1 mutants, but here we demonstrate obvious aberrations in the organization of the actin cytoskeleton and overall plant development. Organization of the actin cytoskeleton in epidermal cells of cotyledons, hypocotyls and roots was studied qualitatively and quantitatively by live-cell imaging of transgenic lines carrying the GFP-FABD2 fusion protein and in fixed cells after phalloidin labelling. Patterns of root growth were characterized by FM4-64 vital staining, light-sheet microscopy imaging and microtubule immunolabelling. Plant phenotyping included analyses of germination, root growth and plant biomass. Speed of germination, plant fresh weight and total leaf area were significantly reduced in the der1-3 mutant in comparison with the C24 wild-type. Actin filaments in root, hypocotyl and cotyledon epidermal cells of the der1-3 mutant were shorter, thinner and arranged in more random orientations, while actin bundles were shorter and had altered orientations. The wavy pattern of root growth in der1-3 mutant was connected with higher frequencies of shifted cell division planes (CDPs) in root cells, which was consistent with the shifted positioning of microtubule-based preprophase bands and phragmoplasts. The organization of cortical microtubules in the root cells of the der1-3 mutant, however, was not altered. Root growth rate of the der1-3 mutant is not reduced, but changes in the actin cytoskeleton organization can induce a wavy root growth pattern through deregulation of CDP orientation. The results suggest that the der1-3 mutation in the ACT2 gene does not influence solely root hair formation process, but also has more general effects on the actin cytoskeleton, plant growth and development. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company.
A mechanistic model of tau amyloid aggregation based on direct observation of oligomers
NASA Astrophysics Data System (ADS)
Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David
2015-04-01
Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.
Ergothioneine Is a Secreted Antioxidant in Mycobacterium smegmatis
Williams, Monique J.; Wiid, Ian J.; Hiten, Nicholas F.; Viljoen, Albertus J.; Pietersen, Ray-Dean D.; van Helden, Paul D.
2013-01-01
Ergothioneine (ERG) and mycothiol (MSH) are two low-molecular-weight thiols synthesized by mycobacteria. The role of MSH has been extensively investigated in mycobacteria; however, little is known about the role of ERG in mycobacterial physiology. In this study, quantification of ERG at various points in the growth cycle of Mycobacterium smegmatis revealed that a significant portion of ERG is found in the culture media, suggesting that it is actively secreted. A mutant of M. smegmatis lacking egtD (MSMEG_6247) was unable to synthesize ERG, confirming its role in ERG biosynthesis. Deletion of egtD from wild-type M. smegmatis and an MSH-deficient mutant did not affect their susceptibility to antibiotics tested in this study. The ERG- and MSH-deficient double mutant was significantly more sensitive to peroxide than either of the single mutants lacking either ERG or MSH, suggesting that both thiols play a role in protecting M. smegmatis against oxidative stress and that ERG is able to partly compensate for the loss of MSH. PMID:23629716
FireProt: web server for automated design of thermostable proteins
Musil, Milos; Stourac, Jan; Brezovsky, Jan; Prokop, Zbynek; Zendulka, Jaroslav; Martinek, Tomas
2017-01-01
Abstract There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing tools and have to be followed by laborious protein expression, purification, and characterization. Here, we present FireProt, a web server for the automated design of multiple-point thermostable mutant proteins that combines structural and evolutionary information in its calculation core. FireProt utilizes sixteen tools and three protein engineering strategies for making reliable protein designs. The server is complemented with interactive, easy-to-use interface that allows users to directly analyze and optionally modify designed thermostable mutants. FireProt is freely available at http://loschmidt.chemi.muni.cz/fireprot. PMID:28449074
Single-Molecule Counting of Point Mutations by Transient DNA Binding
NASA Astrophysics Data System (ADS)
Su, Xin; Li, Lidan; Wang, Shanshan; Hao, Dandan; Wang, Lei; Yu, Changyuan
2017-03-01
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Mogre, Aalap; Veetil, Reshma T.; Seshasayee, Aswin Sai Narain
2017-01-01
Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA. Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants. PMID:29046437
Genetic analysis of an Escherichia coli syndrome.
Lennette, E T; Apirion, D
1971-12-01
A mutant strain of Escherichia coli that fails to recover from prolonged (72 hr) starvation also fails to grow at 43 C. Extracts of this mutant strain show an increased ribonuclease II activity as compared to extracts of the parental strain, and stable ribonucleic acid is degraded to a larger extent in this strain during starvation. Ts(+) transductants and revertants were tested for all the above-mentioned phenotypes. All the Ts(+) transductants and revertants tested behaved like the Ts(+) parental strain, which suggests that all the observed phenotypes are caused by a single sts (starvation-temperature sensitivity) mutation. The reversion rate from sts(-) to sts(+) is rather low but is within the range of reversion rates for other single-site mutations. Three-point transduction crosses located this sts mutation between the ilv and rbs genes. The properties of sts(+)/sts(-) merozygotes suggested that the Ts(-) phenotype of this mutation is recessive.
Edery, M; Rozakis-Adcock, M; Goujon, L; Finidori, J; Lévi-Meyrueis, C; Paly, J; Djiane, J; Postel-Vinay, M C; Kelly, P A
1993-01-01
A single point mutation in the growth hormone (GH) receptor gene generating a Phe-->Ser substitution in the extracellular binding domain of the receptor has been identified in one family with Laron type dwarfism. The mutation was introduced by site-directed mutagenesis into cDNAs encoding the full-length rabbit GH receptor and the extracellular domain or binding protein (BP) of the human and rabbit GH receptor, and also in cDNAs encoding the full length and the extracellular domain of the related rabbit prolactin (PRL) receptor. All constructs were transiently expressed in COS-7 cells. Both wild type and mutant full-length rabbit GH and PRL receptors, as well as GH and prolactin BPs (wild type and mutant), were detected by Western blot in cell membranes and concentrated culture media, respectively. Immunofluorescence studies showed that wild type and mutant full-length GH receptors had the same cell surface and intracellular distribution and were expressed with comparable intensities. In contrast, all mutant forms (full-length receptors or BPs), completely lost their modify the synthesis ligand. These results clearly demonstrate that this point mutation (patients with Laron syndrome) does not modify the synthesis or the intracellular pathway of receptor proteins, but rather abolishes ability of the receptor or BP to bind GH and is thus responsible for the extreme GH resistance in these patients. Images PMID:8450064
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staedtler, F.; Locher, F.; Sreenan, G.
1997-10-01
In order to evaluate the in vivo genotoxic potential of three putative genotoxic mouse liver carcinogens, high doses of 4-chloro-o-phenylenediamine, 2-nitro-p-phenylenediamine and 2, 4-diaminotoluene were tested short term in the Big Blue{reg_sign} transgenic mouse mutation assay. Small statistically significant increases in the lacI mutant frequencies in the liver by factors 1.7 to 2.0 were found. A representative number of 347 lacI mutants isolated from liver tissue of male and female animals were analyses by DNA sequencing. The mutational spectra were examined with the Adams-Skopek algorithm. The spontaneous mutational spectra from untreated male and female animals were similar and consistent withmore » spectral Big Blue{reg_sign} control data stored in the lacI database. Most of the background mutations were located in the 5{prime} portion of the coding region of the lacI gene. Single base substitutions were most prominent. G:C to A:T transitions and G:C to T:A transversions occurred predominatly and were preferentially located at CpG sites. Despite the increases observed in the mutant frequencies of the treated animals, the corresponding mutational spectra did not differ from the controls. However, it is possible that certain classes of point mutations were substantially increased but not detected due to the limited number of sequenced mutants. In two animals treated with 2, 4- diaminotoluene unusually high mutant frequencies and the multiple occurrence of certain mutations in the liver was observed. From one of these animals six lacI mutants isolated from colon tissue were all different. Since 2, 4-diaminotoluene was shown to induce liver cell proliferation these results may reflect clonal expansion of single mutated liver cells.« less
Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph
2017-01-01
Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O ( MLO ) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi.
Kuhn, Hannah; Lorek, Justine; Kwaaitaal, Mark; Consonni, Chiara; Becker, Katia; Micali, Cristina; Ver Loren van Themaat, Emiel; Bednarek, Paweł; Raaymakers, Tom M.; Appiano, Michela; Bai, Yuling; Meldau, Dorothea; Baum, Stephani; Conrath, Uwe; Feussner, Ivo; Panstruga, Ralph
2017-01-01
Loss of function mutations of particular plant MILDEW RESISTANCE LOCUS O (MLO) genes confer durable and broad-spectrum penetration resistance against powdery mildew fungi. Here, we combined genetic, transcriptomic and metabolomic analyses to explore the defense mechanisms in the fully resistant Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant. We found that this genotype unexpectedly overcomes the requirement for indolic antimicrobials and defense-related secretion, which are critical for incomplete resistance of mlo2 single mutants. Comparative microarray-based transcriptome analysis of mlo2 mlo6 mlo12 mutants and wild type plants upon Golovinomyces orontii inoculation revealed an increased and accelerated accumulation of many defense-related transcripts. Despite the biotrophic nature of the interaction, this included the non-canonical activation of a jasmonic acid/ethylene-dependent transcriptional program. In contrast to a non-adapted powdery mildew pathogen, the adapted powdery mildew fungus is able to defeat the accumulation of defense-relevant indolic metabolites in a MLO protein-dependent manner. We suggest that a broad and fast activation of immune responses in mlo2 mlo6 mlo12 plants can compensate for the lack of single or few defense pathways. In addition, our results point to a role of Arabidopsis MLO2, MLO6, and MLO12 in enabling defense suppression during invasion by adapted powdery mildew fungi. PMID:28674541
Sensitive detection of point mutation by electrochemiluminescence and DNA ligase-based assay
NASA Astrophysics Data System (ADS)
Zhou, Huijuan; Wu, Baoyan
2008-12-01
The technology of single-base mutation detection plays an increasingly important role in diagnosis and prognosis of genetic-based diseases. Here we reported a new method for the analysis of point mutations in genomic DNA through the integration of allele-specific oligonucleotide ligation assay (OLA) with magnetic beads-based electrochemiluminescence (ECL) detection scheme. In this assay the tris(bipyridine) ruthenium (TBR) labeled probe and the biotinylated probe are designed to perfectly complementary to the mutant target, thus a ligation can be generated between those two probes by Taq DNA Ligase in the presence of mutant target. If there is an allele mismatch, the ligation does not take place. The ligation products are then captured onto streptavidin-coated paramagnetic beads, and detected by measuring the ECL signal of the TBR label. Results showed that the new method held a low detection limit down to 10 fmol and was successfully applied in the identification of point mutations from ASTC-α-1, PANC-1 and normal cell lines in codon 273 of TP53 oncogene. In summary, this method provides a sensitive, cost-effective and easy operation approach for point mutation detection.
Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.
Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J
2017-01-24
Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.
Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants
Somerville, Chris R [Portola Valley, CA; Scheible, Wolf [Golm, DE
2007-07-10
Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.
Calmodulin point mutations affect Drosophila development and behavior.
Nelson, H B; Heiman, R G; Bolduc, C; Kovalick, G E; Whitley, P; Stern, M; Beckingham, K
1997-12-01
Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations.
Calmodulin Point Mutations Affect Drosophila Development and Behavior
Nelson, H. B.; Heiman, R. G.; Bolduc, C.; Kovalick, G. E.; Whitley, P.; Stern, M.; Beckingham, K.
1997-01-01
Calmodulin (CAM) is recognized as a major intermediary in intracellular calcium signaling, but as yet little is known of its role in developmental and behavioral processes. We have generated and studied mutations to the endogenous Cam gene of Drosophila melanogaster that change single amino acids within the protein coding region. One of these mutations produces a striking pupal lethal phenotype involving failure of head eversion. Various mutant combinations produce specific patterns of ectopic wing vein formation or melanotic scabs on the cuticle. Anaphase chromosome bridging is also seen as a maternal effect during the early embryonic nuclear divisions. In addition, specific behavioral defects such as poor climbing and flightlessness are detected among these mutants. Comparisons with other Drosophila mutant phenotypes suggests potential CAM targets that may mediate these developmental and behavioral effects, and analysis of the CAM crystal structure suggests the structural consequences of the individual mutations. PMID:9409836
Mutants of feline immunodeficiency virus resistant to 2',3'-dideoxy-2',3'-didehydrothymidine.
Zhu, Y Q; Remington, K M; North, T W
1996-01-01
We selected mutants of feline immunodeficiency virus (FIV) that are resistant to 2',3'-dideoxy-2',3'-didehydrothymidine (d4T). Two mutants were selected in cultured cells with a stepwise increase in d4T concentration, resulting in mutants able to replicate in 100 microM d4T. These mutants were three- to sixfold more resistant to d4T than wild-type FIV. They were also cross-resistant to 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-2',3'-dideoxythymidine, 2',3'-dideoxycytidine, 2',3'-dideoxyinosine, and 9-(2-phosphonylmethoxyethyl)adenine, and they were highly resistant to phosphonoformic acid (PFA). Plaque-purified mutants were isolated from each of the mutant populations. The mutant phenotype was stable, because both of the plaque-purified mutants remained d4T resistant even after three passages in the absence of d4T. One of the plaque-purified mutants, designated D4R-3c, was further characterized. Compared with wild-type reverse transcriptase (RT), RT purified from D4R-3c was 3-fold resistant to inhibition by the 5'-triphosphate of d4T, 10-fold resistant to inhibition by the 5'-triphosphate of AZT, and 6-fold resistant to PFA. D4R-3c had a single point mutation in the RT-encoding region of the pol gene at position 2474, resulting in a Val to Ile mutation at codon 47 of the FIV RT. The role of this mutation in d4T resistance was confirmed by site-directed mutagenesis. PMID:8878567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrol, Ravinder, E-mail: abrol@wag.caltech.edu; Edderkaoui, Mouad; Goddard, William A.
2012-06-15
Highlights: Black-Right-Pointing-Pointer Direct role of Bcl-2 protein interactions in cell proliferation is not clear. Black-Right-Pointing-Pointer Designed Bcl-xL mutants show opposite effects on apoptosis and proliferation. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction increased apoptosis in pancreatic cancer. Black-Right-Pointing-Pointer Disrupting Bcl-xL:Bim interaction decreased proliferation in pancreatic cancer. Black-Right-Pointing-Pointer Bcl-xL:Bim interaction can control both apoptosis and proliferation. -- Abstract: A major mechanism through which cancer cells avoid apoptosis is by promoting the association of anti-apoptotic members of the pro-survival Bcl-2 protein family (like Bcl-2 and Bcl-xL) with BH{sub 3} domain-only proteins (like Bim and Bid). Apoptosis and cell proliferation have been shown to be linkedmore » for many cancers but the molecular basis for this link is far from understood. We have identified the Bcl-xL:Bim protein-protein interface as a direct regulator of proliferation and apoptosis in pancreatic cancer cells. We were able to predict and subsequently verify experimentally the effect of various Bcl-xL single-point mutants (at the position A142) on binding to Bim by structural analysis and computational modeling of the inter-residue interactions at the Bcl-xL:Bim protein-protein interface. The mutants A142N, A142Q, and A142Y decreased binding of Bim to Bcl-xL and A142S increased this binding. The Bcl-xL mutants, with decreased affinity for Bim, caused an increase in apoptosis and a corresponding decrease in cell proliferation. However, we could prevent these effects by introducing a small interfering RNA (siRNA) targeted at Bim. These results show a novel role played by the Bcl-xL:Bim interaction in regulating proliferation of pancreatic cancer cells at the expense of apoptosis. This study presents a physiologically relevant model of the Bcl-xL:Bim interface that can be used for rational therapeutic design for the inhibition of proliferation and cancer cell resistance to apoptosis.« less
Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.
Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A
1997-10-15
Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.
Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity
NASA Astrophysics Data System (ADS)
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2016-10-01
Molecular level understanding of mutational effects on stability and activity of enzymes is challenging particularly when several point mutations are incorporated during the directed evolution experiments. In our earlier study, we have suggested the lack of consistency in the effect of point mutations incorporated during the initial generations of directed evolution experiments, towards conformational stabilization of B. subtilis lipase mutants of later generations. Here, we report that the cumulative point mutations incorporated in mutants 2M (with two point mutations) to 6M (with six point mutations) possibly do not retain their original stabilizing nature in the most thermostable 12M mutant (with 12 point mutations). We have carried out MD simulations using structures incorporating reversal of different sets of point mutations to assess their effect on the conformational stability and activity of 12M. Our analysis has revealed that reversal of certain point mutations in 12M had little effect on its conformational stability, suggesting that these mutations were probably inconsequential towards the thermostability of the 12M mutant. Interestingly these mutations involved evolutionarily conserved residues. On the other hand, some of the other point mutations incorporated in nonconserved regions, appeared to contribute significantly towards the conformational stability and/or activity of 12M. Based on the analysis of dynamics of in silico mutants generated using the consensus sequence, we identified experimentally verifiable residue positions to further increase the conformational stability and activity of the 12M mutant.
Mohandesi, Nooshin; Haghbeen, Kamahldin; Ranaei, Omid; Arab, Seyed Shahriar; Hassani, Sorour
2017-01-01
Engineering of invertases has come to attention because of increasing demand for possible applications of invertases in various industrial processes. Due to the known physicochemical properties, invertases from micro-organisms such as Saccharomyces cerevisiae carrying SUC2 gene are considered as primary models. To improve thermostability and catalytic efficiency of SUC2 invertase (SInv), six influential residues with Relative Solvent Accessibility<5% were selected through multiple-sequence alignments, molecular modelling, structural and computational analyses. Consequently, SInv and 5 mutants including three mutants with single point substitution [Mut1=P152V, Mut2=S85V and Mut3=K153F)], one mutant with two points [Mut4=S305V-N463V] and one mutant with three points [Mut5=S85V-K153F-T271V] were developed via site-directed mutagenesis and produced using Pichia pastoris as the host. Physicochemical studies on these enzymes indicated that the selected amino acids which were located in the active site region mainly influenced catalytic efficiency. The best improvement belonged to Mut1 (54% increase in K cat /K m ) and Mut3 exhibited the worst effect (90% increase in K m ). These results suggest that Pro152 and Lys153 play key role in preparation of the right substrate lodging in the active site of SInv. The best thermostability improvement (16%) was observed for Mut4 in which two hydrophilic residues located on the loops, far from the active site, were replaced by Valines. These results suggest that tactful simultaneous substitution of influential hydrophilic residues in both active site region and peripheral loops with hydrophobic amino acids could result in more thermostable invertases with enhanced catalytic efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.
Point mutations in the post-M2 region of human alpha-ENaC regulate cation selectivity.
Ji, H L; Parker, S; Langloh, A L; Fuller, C M; Benos, D J
2001-07-01
We tested the hypothesis that an arginine-rich region immediately following the second transmembrane domain may constitute part of the inner mouth of the epithelial Na+ channel (ENaC) pore and, hence, influence conduction and/or selectivity properties of the channel by expressing double point mutants in Xenopus oocytes. Double point mutations of arginines in this post-M2 region of the human alpha-ENaC (alpha-hENaC) led to a decrease and increase in the macroscopic conductance of alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, respectively, but had no effect on the single-channel conductance of either double point mutant. However, the apparent equilibrium dissociation constant for Na+ was decreased for both alphaR586E,R587Ebetagamma- and alphaR589E,R591Ebetagamma-hENaC, and the maximum amiloride-sensitive Na+ current was decreased for alphaR586E,R587Ebetagamma-hENaC and increased for alphaR589E,R591Ebetagamma-hENaC. The relative permeabilities of Li+ and K+ vs. Na+ were increased 11.25- to 27.57-fold for alphaR586E,R587Ebetagamma-hENaC compared with wild type. The relative ion permeability of these double mutants and wild-type ENaC was inversely related to the crystal diameter of the permeant ions. Thus the region of positive charge is important for the ion permeation properties of the channel and may form part of the pore itself.
Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase
NASA Astrophysics Data System (ADS)
Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis
2011-06-01
Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay of long-range electrostatic forces and local structural fluctuations in the control of proton movement and provide a physical explanation for the restoration of proton pumping activity in the double mutant.
Analysis of galactosemia-linked mutations of GALT enzyme using a computational biology approach.
Facchiano, A; Marabotti, A
2010-02-01
We describe the prediction of the structural and functional effects of mutations on the enzyme galactose-1-phosphate uridyltransferase related to the genetic disease galactosemia, using a fully computational approach. One hundred and seven single-point mutants were simulated starting from the structural model of the enzyme obtained by homology modeling methods. Several bioinformatics programs were then applied to each resulting mutant protein to analyze the effect of the mutations. The mutations have a direct effect on the active site, or on the dimer assembly and stability, or on the monomer stability. We describe how mutations may exert their effect at a molecular level by altering H-bonds, salt bridges, secondary structure or surface features. The alteration of protein stability, at level of monomer and/or dimer, is the main effect observed. We found an agreement between our results and the functional experimental data available in literature for some mutants. The data and analyses for all the mutants are fully available in the web-accessible database hosted at http://bioinformatica.isa.cnr.it/GALT.
Discovery of a Splicing Regulator Required for Cell Cycle Progression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suvorova, Elena S.; Croken, Matthew; Kratzer, Stella
2013-02-01
In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to amore » single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms.« less
Jimenez-Sandoval, Pedro; Vique-Sanchez, Jose Luis; Hidalgo, Marisol López; Velazquez-Juarez, Gilberto; Diaz-Quezada, Corina; Arroyo-Navarro, Luis Fernando; Moran, Gabriela Montero; Fattori, Juliana; Jessica Diaz-Salazar, A; Rudiño-Pinera, Enrique; Sotelo-Mundo, Rogerio; Figueira, Ana Carolina Migliorini; Lara-Gonzalez, Samuel; Benítez-Cardoza, Claudia G; Brieba, Luis G
2017-11-01
The protozoan parasite Trichomonas vaginalis contains two nearly identical triosephosphate isomerases (TvTIMs) that dissociate into stable monomers and dimerize upon substrate binding. Herein, we compare the role of the "ball and socket" and loop 3 interactions in substrate assisted dimer assembly in both TvTIMs. We found that point mutants at the "ball" are only 39 and 29-fold less catalytically active than their corresponding wild-type counterparts, whereas Δloop 3 deletions are 1502 and 9400-fold less active. Point and deletion mutants dissociate into stable monomers. However, point mutants assemble as catalytic competent dimers upon binding of the transition state substrate analog PGH, whereas loop 3 deletions remain monomeric. A comparison between crystal structures of point and loop 3 deletion monomeric mutants illustrates that the catalytic residues in point mutants and wild-type TvTIMs are maintained in the same orientation, whereas the catalytic residues in deletion mutants show an increase in thermal mobility and present structural disorder that may hamper their catalytic role. The high enzymatic activity present in monomeric point mutants correlates with the formation of dimeric TvTIMs upon substrate binding. In contrast, the low activity and lack of dimer assembly in deletion mutants suggests a role of loop 3 in promoting the formation of the active site as well as dimer assembly. Our results suggest that in TvTIMs the active site is assembled during dimerization and that the integrity of loop 3 and ball and socket residues is crucial to stabilize the dimer. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Jana K
2010-06-02
It is now widely recognized that the unfolded state of a protein in equilibrium with the native state under folding conditions may contain significant residual structures. However, due to technical difficulties residue-specific interactions in the unfolded state remain elusive. Here we introduce a method derived from the Wyman-Tanford theory to determine residue-specific pK(a)'s in the unfolded state. This method requires equilibrium stability measurements of the wild type and single-point mutants in which titrable residues are replaced with charge-neutral ones under two pH conditions. Application of the proposed approach reveals a highly depressed pK(a) for Asp8 in the unfolded state of the NTL9 protein. Knowledge of unfolded-state pK(a)'s enables quantitative estimation of the unfolded-state electrostatic effects on protein stability. It also provides valuable benchmarks for the improvement of force fields and validation of microscopic information from molecular dynamics simulations.
Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.
Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J; Aghera, Nilesh; Varadarajan, Raghavan
2016-11-01
Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95 pdz3 ) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Demir, Özlem; Baronio, Roberta; Salehi, Faezeh; Wassman, Christopher D.; Hall, Linda; Hatfield, G. Wesley; Chamberlin, Richard; Kaiser, Peter; Lathrop, Richard H.; Amaro, Rommie E.
2011-01-01
The tumor suppressor protein p53 can lose its function upon single-point missense mutations in the core DNA-binding domain (“cancer mutants”). Activity can be restored by second-site suppressor mutations (“rescue mutants”). This paper relates the functional activity of p53 cancer and rescue mutants to their overall molecular dynamics (MD), without focusing on local structural details. A novel global measure of protein flexibility for the p53 core DNA-binding domain, the number of clusters at a certain RMSD cutoff, was computed by clustering over 0.7 µs of explicitly solvated all-atom MD simulations. For wild-type p53 and a sample of p53 cancer or rescue mutants, the number of clusters was a good predictor of in vivo p53 functional activity in cell-based assays. This number-of-clusters (NOC) metric was strongly correlated (r2 = 0.77) with reported values of experimentally measured ΔΔG protein thermodynamic stability. Interpreting the number of clusters as a measure of protein flexibility: (i) p53 cancer mutants were more flexible than wild-type protein, (ii) second-site rescue mutations decreased the flexibility of cancer mutants, and (iii) negative controls of non-rescue second-site mutants did not. This new method reflects the overall stability of the p53 core domain and can discriminate which second-site mutations restore activity to p53 cancer mutants. PMID:22028641
Improving the affinity of an antibody for its antigen via long-range electrostatic interactions.
Fukunaga, Atsushi; Tsumoto, Kouhei
2013-12-01
To address how long-range electrostatic force can affect antibody-antigen binding, we focused on the interactions between human cardiac troponin I and its specific single-chain antibodies (scFvs). We first isolated two scFvs against two linear epitopes with distinct isoelectric points. For the scFv against the acidic epitope (A1scFv), we mutated five residues of framework region 3 of the light chain to Lys or Arg, designated as the K- or R-mutant, respectively. For the scFv against the basic epitope (A2scFv), we mutated four or three residues in framework region 3 of the light or heavy chain to Asp, to generate the VL- and VH-mutant, respectively. Surface plasmon resonance analyses showed that the kon values of all of the mutants were greater than that of wild type, even though framework region 3 does not make direct contact with the epitope. The affinity of the K-mutant was pM range, and that of the R-mutant improved further by more than two orders of magnitude due to a decrease in the dissociation rate constant. For the A2scFv mutants, the affinity of the VL-mutant for its target improved through an increase in the kon value without a decrease in the koff value. The stability slightly decreased in all mutants. These results suggest that introducing electrostatic interaction can improve the affinity of an antibody for its target, even if the mutation reduces stability of the antibody.
Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, Chris R.; Scieble, Wolf
Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS genemore » can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.« less
All-Atom Simulations Reveal How Single-Point Mutations Promote Serpin Misfolding
NASA Astrophysics Data System (ADS)
Wang, Fang; Orioli, Simone; Ianeselli, Alan; Spagnolli, Giovanni; a Beccara, Silvio; Gershenson, Anne; Faccioli, Pietro; Wintrode, Patrick L.
2018-05-01
Protein misfolding is implicated in many diseases, including the serpinopathies. For the canonical inhibitory serpin {\\alpha}1-antitrypsin (A1AT), mutations can result in protein deficiencies leading to lung disease, and misfolded mutants can accumulate in hepatocytes leading to liver disease. Using all-atom simulations based on the recently developed Bias Functional algorithm we elucidate how wild-type A1AT folds and how the disease-associated S (Glu264Val) and Z (Glu342Lys) mutations lead to misfolding. The deleterious Z mutation disrupts folding at an early stage, while the relatively benign S mutant shows late stage minor misfolding. A number of suppressor mutations ameliorate the effects of the Z mutation and simulations on these mutants help to elucidate the relative roles of steric clashes and electrostatic interactions in Z misfolding. These results demonstrate a striking correlation between atomistic events and disease severity and shine light on the mechanisms driving chains away from their correct folding routes.
Giampaolo, Alessia Di; Mazza, Fernando; Daidone, Isabella; Amicosante, Gianfranco; Perilli, Mariagrazia; Aschi, Massimiliano
2013-07-12
Molecular Dynamics simulations have been carried out in order to provide a molecular rationalization of the biological and thermodynamic differences observed for a class of TEM β-lactamases. In particular we have considered the TEM-1(wt), the single point mutants TEM-40 and TEM-19 representative of IRT and ESBL classes respectively, and TEM-1 mutant M182T, TEM-32 and TEM-20 which differ from the first three for the additional of M182T mutation. Results indicate that most of the thermodynamic, and probably biological behaviour of these systems arise from subtle effects which, starting from the alterations of the local interactions, produce drastic modifications of the conformational space spanned by the enzymes. The present study suggests that systems showing essentially the same secondary and tertiary structure may differentiate their chemical-biological activity essentially (and probably exclusively) on the basis of the thermal fluctuations occurring in their physiological environment. Copyright © 2013 Elsevier Inc. All rights reserved.
Porwollik, Steffen; Santiviago, Carlos A; Cheng, Pui; Long, Fred; Desai, Prerak; Fredlund, Jennifer; Srikumar, Shabarinath; Silva, Cecilia A; Chu, Weiping; Chen, Xin; Canals, Rocío; Reynolds, M Megan; Bogomolnaya, Lydia; Shields, Christine; Cui, Ping; Guo, Jinbai; Zheng, Yi; Endicott-Yazdani, Tiana; Yang, Hee-Jeong; Maple, Aimee; Ragoza, Yury; Blondel, Carlos J; Valenzuela, Camila; Andrews-Polymenis, Helene; McClelland, Michael
2014-01-01
We constructed two collections of targeted single gene deletion (SGD) mutants and two collections of targeted multi-gene deletion (MGD) mutants in Salmonella enterica sv Typhimurium 14028s. The SGD mutant collections contain (1), 3517 mutants in which a single gene is replaced by a cassette containing a kanamycin resistance (KanR) gene oriented in the sense direction (SGD-K), and (2), 3376 mutants with a chloramphenicol resistance gene (CamR) oriented in the antisense direction (SGD-C). A combined total of 3773 individual genes were deleted across these SGD collections. The MGD collections contain mutants bearing deletions of contiguous regions of three or more genes and include (3), 198 mutants spanning 2543 genes replaced by a KanR cassette (MGD-K), and (4), 251 mutants spanning 2799 genes replaced by a CamR cassette (MGD-C). Overall, 3476 genes were deleted in at least one MGD collection. The collections with different antibiotic markers permit construction of all viable combinations of mutants in the same background. Together, the libraries allow hierarchical screening of MGDs for different phenotypic followed by screening of SGDs within the target MGD regions. The mutants of these collections are stored at BEI Resources (www.beiresources.org) and publicly available.
Mohanty, Sujit K; Donnelly, Bryan; Dupree, Phylicia; Lobeck, Inna; Mowery, Sarah; Meller, Jaroslaw; McNeal, Monica; Tiao, Greg
2017-08-01
Rotavirus infection is one of the most common causes of diarrheal illness in humans. In neonatal mice, rhesus rotavirus (RRV) can induce biliary atresia (BA), a disease resulting in inflammatory obstruction of the extrahepatic biliary tract and intrahepatic bile ducts. We previously showed that the amino acid arginine (R) within the sequence SRL (amino acids 445 to 447) in the RRV VP4 protein is required for viral binding and entry into biliary epithelial cells. To determine if this single amino acid (R) influences the pathogenicity of the virus, we generated a recombinant virus with a single amino acid mutation at this site through a reverse genetics system. We demonstrated that the RRV mutant (RRV VP4-R446G ) produced less symptomatology and replicated to lower titers both in vivo and in vitro than those seen with wild-type RRV, with reduced binding in cholangiocytes. Our results demonstrate that a single amino acid change in the RRV VP4 gene influences cholangiocyte tropism and reduces pathogenicity in mice. IMPORTANCE Rotavirus is the leading cause of diarrhea in humans. Rhesus rotavirus (RRV) can also lead to biliary atresia (a neonatal human disease) in mice. We developed a reverse genetics system to create a mutant of RRV (RRV VP4-R446G ) with a single amino acid change in the VP4 protein compared to that of wild-type RRV. In vitro , the mutant virus had reduced binding and infectivity in cholangiocytes. In vivo , it produced fewer symptoms and lower mortality in neonatal mice, resulting in an attenuated form of biliary atresia. Copyright © 2017 American Society for Microbiology.
Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.
2001-01-01
Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889
Khmelnitskiy, Anton; Saer, Rafael G; Blankenship, Robert E; Jankowiak, Ryszard
2018-04-12
We report high-resolution (low-temperature) absorption, emission, and nonresonant/resonant hole-burned (HB) spectra and results of excitonic calculations using a non-Markovian reduced density matrix theory (with an improved algorithm for parameter optimization in heterogeneous samples) obtained for the Y16F mutant of the Fenna-Matthews-Olson (FMO) trimer from the green sulfur bacterium Chlorobium tepidum. We show that the Y16F mutant is a mixture of FMO complexes with three independent low-energy traps (located near 817, 821, and 826 nm), in agreement with measured composite emission and HB spectra. Two of these traps belong to mutated FMO subpopulations characterized by significantly modified low-energy excitonic states. Hamiltonians for the two major subpopulations (Sub 821 and Sub 817 ) provide new insight into extensive changes induced by the single-point mutation in the vicinity of BChl 3 (where tyrosine Y16 was replaced with phenylalanine F16). The average decay time(s) from the higher exciton state(s) in the Y16F mutant depends on frequency and occurs on a picosecond time scale.
Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia
2010-12-01
Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.
Unsolved Problems in Evolutionary Theory
1967-01-01
finding the probability of survival of a single new mutant). Most natural populations probably satisfy these conditions , as is illustrated by the...Ykl) of small quantities adding to zero. Then under suitable conditions on the function f(x), (3) xi + Yi,t+i = fi(x) + YE yjfi(tf) + O(y yt...It is clear that a sufficient condition for the point x to be locally stable is that all the roots of the matrix, (4) (a j) = ____ should have moduli
Kowalsky, Caitlin A; Whitehead, Timothy A
2016-12-01
The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Line-Tension Controlled Mechanism for Influenza Fusion
Risselada, Herre Jelger; Smirnova, Yuliya G.; Grubmüller, Helmut; Marrink, Siewert Jan; Müller, Marcus
2012-01-01
Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide’s ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a ‘super’ bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions. PMID:22761674
Wang, Liang; Chen, Xusheng; Wu, Guangyao; Li, Shu; Zeng, Xin; Ren, Xidong; Tang, Lei; Mao, Zhonggui
2017-02-01
ε-Poly-L-lysine (ε-PL), as a food additive, has been widely used in many countries. However, its production still needs to be improved. We successfully enhanced ε-PL production of Streptomyces albulus FEEL-1 by introducing mutations related to antibiotics, such as streptomycin, gentamicin, and rifampin. Single- and double-resistant mutants (S-88 and SG-31) were finally screened with the improved ε-PL productions of 2.81 and 3.83 g/L, 1.75- to 2.39-fold compared with that of initial strain FEEL-1. Then, the performances of mutants S-88 and SG-31 were compared with the parent strain FEEL-1 in a 5-L bioreactor under the optimal condition for ε-PL production. After 174-h fed-batch fermentation, the ε-PL production and productivity of hyper-strain SG-31 reached the maximum of 59.50 g/L and 8.21 g/L/day, respectively, which was 138 and 105% higher than that of FEEL-1. Analysis of streptomycin-resistant mutants demonstrated that a point mutation occurred in rpsL gene (encoding the ribosomal protein S12). These single and double mutants displayed remarkable increases of the activities and transcriptional levels of key enzymes in ε-PL biosynthesis pathway, which may be responsible for the enhanced mycelia viability, respiratory activity, and ε-PL productions of SG-31. These results showed that the new breeding method, called ribosome engineering, could be a novel and effective breeding strategy for the evolution of ε-PL-producing strains.
Ji, S H; Gururani, M A; Lee, J W; Ahn, B-O; Chun, S-C
2014-03-01
We have isolated a severe dwarf mutant derived from a Ds (Dissociation) insertion mutant rice (Oryza sativa var. japonica c.v. Dongjin). This severe dwarf phenotype, has short and dark green leaves, reduced shoot growth early in the seedling stage, and later severe dwarfism with failure to initiate flowering. When treated with bioactive GA3 , mutants are restored to the normal wild-type phenotype. Reverse transcription PCR analyses of 22 candidate genes related to the gibberellin (GA) biosynthesis pathway revealed that among 22 candidate genes tested, a dwarf mutant transcript was not expressed only in one OsKS2 gene. Genetic analysis revealed that the severe dwarf phenotype was controlled by recessive mutation of a single nuclear gene. The putative OsKS2 gene was a chromosome 4-located ent-kaurene synthase (KS), encoding the enzyme that catalyses an early step of the GA biosynthesis pathway. Sequence analysis revealed that osks2 carried a 1-bp deletion in the ORF region of OsKS2, which led to a loss-of-function mutation. The expression pattern of OsKS2 in wild-type cv Dongjin, showed that it is expressed in all organs, most prominently in the stem and floral organs. Morphological characteristics of the dwarf mutant showed dramatic modifications in internal structure and external morphology. We propose that dwarfism in this mutant is caused by a point mutation in OsKS2, which plays a significant role in growth and development of higher plants. Further investigation on OsKS2 and other OsKS-like proteins is underway and may yield better understanding of the putative role of OsKS in severe dwarf mutants. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Mahajan, Sai Pooja; Velez-Vega, Camilo; Escobedo, Fernando A
2013-01-10
Nanobodies are single-domain antibodies found in camelids. These are the smallest naturally occurring binding domains and derive functionality via three hypervariable loops (H1-H3) that form the binding surface. They are excellent candidates for antibody engineering because of their favorable characteristics like small size, high solubility, and stability. To rationally engineer antibodies with affinity for a specific target, the hypervariable loops can be tailored to obtain the desired binding surface. As a first step toward such a goal, we consider the design of loops with a desired conformation. In this study, we focus on the H1 loop of the anti-hCG llama nanobody that exhibits a noncanonical conformation. We aim to "tilt" the stability of the H1 loop structure from a noncanonical conformation to a (humanized) type 1 canonical conformation by studying the effect of selected mutations to the amino acid sequence of the H1, H2, and proximal residues. We use all-atomistic, explicit-solvent, biased molecular dynamic simulations to simulate the wild-type and mutant loops in a prefolded framework. We thus find mutants with increasing propensity to form a stable type 1 canonical conformation of the H1 loop. Free energy landscapes reveal the existence of conformational isomers of the canonical conformation that may play a role in binding different antigenic surfaces. We also elucidate the approximate mechanism and kinetics of transitions between such conformational isomers by using a Markovian model. We find that a particular three-point mutant has the strongest thermodynamic propensity to form the H1 type 1 canonical structure but also to exhibit transitions between conformational isomers, while a different, more rigid three-point mutant has the strongest propensity to be kinetically trapped in such a canonical structure.
Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice
Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K
2005-01-01
Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676
Directed evolution to re-adapt a co-evolved network within an enzyme.
Strafford, John; Payongsri, Panwajee; Hibbert, Edward G; Morris, Phattaraporn; Batth, Sukhjeet S; Steadman, David; Smith, Mark E B; Ward, John M; Hailes, Helen C; Dalby, Paul A
2012-01-01
We have previously used targeted active-site saturation mutagenesis to identify a number of transketolase single mutants that improved activity towards either glycolaldehyde (GA), or the non-natural substrate propionaldehyde (PA). Here, all attempts to recombine the singles into double mutants led to unexpected losses of specific activity towards both substrates. A typical trade-off occurred between soluble expression levels and specific activity for all single mutants, but many double mutants decreased both properties more severely suggesting a critical loss of protein stability or native folding. Statistical coupling analysis (SCA) of a large multiple sequence alignment revealed a network of nine co-evolved residues that affected all but one double mutant. Such networks maintain important functional properties such as activity, specificity, folding, stability, and solubility and may be rapidly disrupted by introducing one or more non-naturally occurring mutations. To identify variants of this network that would accept and improve upon our best D469 mutants for activity towards PA, we created a library of random single, double and triple mutants across seven of the co-evolved residues, combining our D469 variants with only naturally occurring mutations at the remaining sites. A triple mutant cluster at D469, E498 and R520 was found to behave synergistically for the specific activity towards PA. Protein expression was severely reduced by E498D and improved by R520Q, yet variants containing both mutations led to improved specific activity and enzyme expression, but with loss of solubility and the formation of inclusion bodies. D469S and R520Q combined synergistically to improve k(cat) 20-fold for PA, more than for any previous transketolase mutant. R520Q also doubled the specific activity of the previously identified D469T to create our most active transketolase mutant to date. Our results show that recombining active-site mutants obtained by saturation mutagenesis can rapidly destabilise critical networks of co-evolved residues, whereas beneficial single mutants can be retained and improved upon by randomly recombining them with natural variants at other positions in the network. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Posch, Sandra; Obser, Tobias; König, Gesa; Schneppenheim, Reinhard; Tampé, Robert; Hinterdorfer, Peter
2018-03-01
von Willebrand factor (VWF) is a huge multimeric protein that plays a key role in primary hemostasis. Sites for collagen binding, an initial event of hemostasis, are located in the VWF-domains A1 and A3. In this study, we investigated single molecule interactions between collagen surfaces and wild type VWF A1A2A3 domain constructs, as well as clinically relevant VWF A3 domain point mutations, such as p.Ser1731Thr, p.Gln1734His, and p.His1786Arg. For this, we utilized atomic force microscopy based single molecular force spectroscopy. The p.Ser1731Thr mutant had no impact on the VWF-collagen type III and VI interactions, while the p.Gln1734His and p.His1786Arg mutants showed a slight increase in bond stability to collagen type III. This effect probably arises from additional hydrogen bonds that come along with the introduction of these mutations. Using the same mutants, but collagen type VI as a binding partner, resulted in a significant increase in bond stability. VWF domain A1 was reported to be essential for the interaction with collagen type VI and thus our findings strengthen the hypothesis that the VWF A1 domain can compensate for mutations in the VWF A3 domain. Additionally, our data suggest that the mutations could even stabilize the interaction between VWF and collagen without shear. VWF-collagen interactions seem to be an important system in which defective interactions between one VWF domain and one type of collagen can be compensated by alternative binding events.
Engineering a pH responsive pore forming protein.
Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor
2017-02-08
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
Engineering a pH responsive pore forming protein
NASA Astrophysics Data System (ADS)
Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor
2017-02-01
Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.
Versatile Genetic Tool Box for the Crenarchaeote Sulfolobus acidocaldarius
Wagner, Michaela; van Wolferen, Marleen; Wagner, Alexander; Lassak, Kerstin; Meyer, Benjamin H.; Reimann, Julia; Albers, Sonja-Verena
2012-01-01
For reverse genetic approaches inactivation or selective modification of genes are required to elucidate their putative function. Sulfolobus acidocaldarius is a thermoacidophilic Crenarchaeon which grows optimally at 76°C and pH 3. As many antibiotics do not withstand these conditions the development of a genetic system in this organism is dependent on auxotrophies. Therefore we constructed a pyrE deletion mutant of S. acidocaldarius wild type strain DSM639 missing 322 bp called MW001. Using this strain as the starting point, we describe here different methods using single as well as double crossover events to obtain markerless deletion mutants, tag genes genomically and ectopically integrate foreign DNA into MW001. These methods enable us to construct single, double, and triple deletions strains that can still be complemented with the pRN1 based expression vector. Taken together we have developed a versatile and robust genetic tool box for the crenarchaeote S. acidocaldarius that will promote the study of unknown gene functions in this organism and makes it a suitable host for synthetic biology approaches. PMID:22707949
Janovick, Jo Ann; Goulet, Mark; Bush, Eugene; Greer, Jonathan; Wettlaufer, David G; Conn, P Michael
2003-05-01
We expressed a test system of wild-type (WT) rat (r) and human (h) gonadotropin-releasing hormone (GnRH) receptors (GnRHRs), including naturally occurring (13) and manufactured (five) "loss-of-function" mutants of the GnRHR. These were used to assess the ability of different GnRH peptidomimetics to rescue defective GnRHR mutants and determine their effect on the level of membrane expression of the WT receptors. Among the manufactured mutants were the shortest rGnRHR C-terminal truncation mutant that resulted in receptor loss-of-function (des(325-327)-rGnRHR), two nonfunctional deletion mutants (des(237-241)-rGnRHR and des(260-265)-rGnRHR), two nonfunctional Cys mutants (C(229)A-rGnRHR and C(278)A-rGnRHR); the naturally occurring mutants included all 13 full-length GnRHR point mutations reported to date that result in full or partial human hypogonadotropic hypogonadism. The 10 peptidomimetics assessed as potential rescue molecules ("pharmacoperones") are from three differing chemical pedigrees (indoles, quinolones, and erythromycin-derived macrolides) and were originally developed as GnRH peptidomimetic antagonists. These structures were selected for this study because of their predicted ability to permeate the cell membrane and interact with a defined affinity with the GnRH receptor. All peptidomimetics studied with an IC(50) value (for hGnRHR)
Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A
2009-09-01
A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.
Ken, Chuian-Fu; Lin, Chi-Tsai; Wen, Yu-Der; Wu, Jen-Leih
2007-01-01
Zebrafish Cu/Zn-superoxide dismutase (ZSOD1) has one free cysteine (Cys-7) in a first beta-strand with lower thermostability. We predicted the stability would be increased with single-point mutation at 70 degrees C via the I-Mutant 2.0 server, and generated a mutant SOD with replacement of the free Cys to Ala (ZSODC7A) by site-directed mutagenesis. The mutant was expressed and purified from the Escherichia coli strain AD494(DE3)pLysS and the yield was 2 mg from 0.4 L of culture. The ZSODC7A was heated at 90 degrees C. In a time-dependent assay, the time interval for 50% inactivation was 32 min, and its thermal inactivation rate constant K (d) was 2 x 10(-2) min(-1). The mutant was still activated in broad pH range (2.3-12), and had only a moderate effect under sodium dodecyl sulfate treatment. The calculated specific activity of the mutant was 3980 U/mg, twice that of wild-type ZSOD1. In addition, we soaked fish larva with equal enzyme units of either ZSOD1 or ZSODC7A for 2 h, and then stressed them with 100 ppm of paraquat to induce oxidative injury. The survival rate was significant.
Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39
Carvalho, Sandra M.; Kloosterman, Tomas G.; Manzoor, Irfan; Caldas, José; Vinga, Susana; Martinussen, Jan; Saraiva, Lígia M.; Kuipers, Oscar P.; Neves, Ana R.
2018-01-01
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae. In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the −10 box of capsule operon promoter (Pcps). By directed mutagenesis we showed that the point mutation in Pcps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased Pcps activity and capsule amounts. Importantly, Pcps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA. In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae. PMID:29599757
Interplay Between Capsule Expression and Uracil Metabolism in Streptococcus pneumoniae D39.
Carvalho, Sandra M; Kloosterman, Tomas G; Manzoor, Irfan; Caldas, José; Vinga, Susana; Martinussen, Jan; Saraiva, Lígia M; Kuipers, Oscar P; Neves, Ana R
2018-01-01
Pyrimidine nucleotides play an important role in the biosynthesis of activated nucleotide sugars (NDP-sugars). NDP-sugars are the precursors of structural polysaccharides in bacteria, including capsule, which is a major virulence factor of the human pathogen S. pneumoniae . In this work, we identified a spontaneous non-reversible mutant of strain D39 that displayed a non-producing capsule phenotype. Whole-genome sequencing analysis of this mutant revealed several non-synonymous single base modifications, including in genes of the de novo synthesis of pyrimidines and in the -10 box of capsule operon promoter (P cps ). By directed mutagenesis we showed that the point mutation in P cps was solely responsible for the drastic decrease in capsule expression. We also demonstrated that D39 subjected to uracil deprivation shows increased biomass and decreased P cps activity and capsule amounts. Importantly, P cps expression is further decreased by mutating the first gene of the de novo synthesis of pyrimidines, carA . In contrast, the absence of uracil from the culture medium showed no effect on the spontaneous mutant strain. Co-cultivation of the wild-type and the mutant strain indicated a competitive advantage of the spontaneous mutant (non-producing capsule) in medium devoid of uracil. We propose a model in that uracil may act as a signal for the production of different capsule amounts in S. pneumoniae .
Gromiha, M Michael; Anoosha, P; Huang, Liang-Tsung
2016-01-01
Protein stability is the free energy difference between unfolded and folded states of a protein, which lies in the range of 5-25 kcal/mol. Experimentally, protein stability is measured with circular dichroism, differential scanning calorimetry, and fluorescence spectroscopy using thermal and denaturant denaturation methods. These experimental data have been accumulated in the form of a database, ProTherm, thermodynamic database for proteins and mutants. It also contains sequence and structure information of a protein, experimental methods and conditions, and literature information. Different features such as search, display, and sorting options and visualization tools have been incorporated in the database. ProTherm is a valuable resource for understanding/predicting the stability of proteins and it can be accessed at http://www.abren.net/protherm/ . ProTherm has been effectively used to examine the relationship among thermodynamics, structure, and function of proteins. We describe the recent progress on the development of methods for understanding/predicting protein stability, such as (1) general trends on mutational effects on stability, (2) relationship between the stability of protein mutants and amino acid properties, (3) applications of protein three-dimensional structures for predicting their stability upon point mutations, (4) prediction of protein stability upon single mutations from amino acid sequence, and (5) prediction methods for addressing double mutants. A list of online resources for predicting has also been provided.
Pommerrenig, Benjamin; Popko, Jennifer; Heilmann, Mareike; Schulmeister, Sylwia; Dietel, Katharina; Schmitt, Bianca; Stadler, Ruth; Feussner, Ivo; Sauer, Norbert
2013-01-01
The Arabidopsis SUC5 protein represents a classical sucrose/H+ symporter. Functional analyses previously revealed that SUC5 also transports biotin, an essential co-factor for fatty acid synthesis. However, evidence for a dual role in transport of the structurally unrelated compounds sucrose and biotin in plants was lacking. Here we show that SUC5 localizes to the plasma membrane, and that the SUC5 gene is expressed in developing embryos, confirming the role of the SUC5 protein as substrate carrier across apoplastic barriers in seeds. We show that transport of biotin but not of sucrose across these barriers is impaired in suc5 mutant embryos. In addition, we show that SUC5 is essential for the delivery of biotin into the embryo of biotin biosynthesis-defective mutants (bio1 and bio2). We compared embryo and seedling development as well as triacylglycerol accumulation and fatty acid composition in seeds of single mutants (suc5, bio1 or bio2), double mutants (suc5 bio1 and suc5 bio2) and wild-type plants. Although suc5 mutants were like the wild-type, bio1 and bio2 mutants showed developmental defects and reduced triacylglycerol contents. In suc5 bio1 and suc5 bio2 double mutants, developmental defects were severely increased and the triacylglycerol content was reduced to a greater extent in comparison to the single mutants. Supplementation with externally applied biotin helped to reduce symptoms in both single and double mutants, but the efficacy of supplementation was significantly lower in double than in single mutants, showing that transport of biotin into the embryo is lower in the absence of SUC5. PMID:23031218
Russell, P W; Orndorff, P E
1992-01-01
We describe the characterization of two genes, fimF and fimG (also called pilD), that encode two minor components of type 1 pili in Escherichia coli. Defined, in-frame deletion mutations were generated in vitro in each of these two genes. A double mutation that had deletions identical to both single lesions was also constructed. Examination of minicell transcription and translation products of parental and mutant plasmids revealed that, as predicted from the nucleotide sequence and previous reports, the fimF gene product was a protein of ca. 16 kDa and that the fimG gene product was a protein of ca. 14 kDa. Each of the constructions was introduced, via homologous recombination, into the E. coli chromosome. All three of the resulting mutants produced type 1 pili and exhibited hemagglutination of guinea pig erythrocytes. The latter property was also exhibited by partially purified pili isolated from each of the mutants. Electron microscopic examination revealed that the fimF mutant had markedly reduced numbers of pili per cell, whereas the fimG mutant had very long pili. The double mutant displayed the characteristics of both single mutants. However, pili in the double mutant were even longer than those seen in the fimG mutant, and the numbers of pili were even fewer than those displayed by the fimF mutant. All three mutants could be complemented in trans with a single-copy-number plasmid bearing the appropriate parental gene or genes to give near-normal parental piliation. On the basis of the phenotypes exhibited by the single and double mutants, we believe that the fimF gene product may aid in initiating pilus assembly and that the fimG product may act as an inhibitor of pilus polymerization. In contrast to previous studies, we found that neither gene product was required for type 1 pilus receptor binding. Images PMID:1355769
The effects of a high-fat meal on single-dose vemurafenib pharmacokinetics.
Ribas, Antoni; Zhang, Weijiang; Chang, Ilsung; Shirai, Keisuke; Ernstoff, Marc S; Daud, Adil; Cowey, C Lance; Daniels, Gregory; Seja, Elizabeth; O'Laco, Elizabeth; Glaspy, John A; Chmielowski, Bartosz; Hill, Todd; Joe, Andrew K; Grippo, Joseph F
2014-04-01
Vemurafenib is an orally bioavailable BRAF inhibitor approved for the treatment of BRAF(V600) -mutant metastatic melanoma. It is important to understand the effects of a high-fat meal on the pharmacokinetics (PK) of vemurafenib in humans because it is a Biopharmaceutics Classification System Class IV drug and its PK can be altered by food. An open-label, multicenter, randomized, 2-period crossover study was performed to evaluate the effect of food (high-fat meal) on the PK of a single oral dose of vemurafenib. Secondary objectives were safety and tolerability, efficacy with best overall response rate, and overall survival during the treatment period. The concomitant intake of food (high-fat meal) increased mean Cmax 3.5 to 7.5 µg/mL and mean AUC0-∞ 119 to 360 µg·h/mL after a single 960 mg dose of vemurafenib (N = 13-15 patients). An effect of food on single-dose exposure is suggested by point estimates and 90% CI of geometric mean ratios for vemurafenib plasma AUC0-∞ (4.7) and Cmax (2.5). Toxicity and response rate of vemurafenib in this study were consistent with prior experience in patients with BRAF(V600) -mutant metastatic melanoma. A high-fat meal increased the exposure to vemurafenib without altering the mean terminal half-life. © 2014, The American College of Clinical Pharmacology.
Proteins evolve on the edge of supramolecular self-assembly.
Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D
2017-08-10
The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.
Proteins evolve on the edge of supramolecular self-assembly
NASA Astrophysics Data System (ADS)
Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.
2017-08-01
The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.
Lühr, B; Scheller, J; Meyer, P; Kramer, W
1998-02-01
We have analysed the correction of defined mismatches in wild-type and msh2, msh3, msh6 and msh3 msh6 mutants of Saccharomyces cerevisiae in two different yeast strain backgrounds by transformation with plasmid heteroduplex DNA constructs. Ten different base/base mismatches, two single-nucleotide loops and a 38-nucleotide loop were tested. Repair of all types of mismatches was severely impaired in msh2 and msh3 msh6 mutants. In msh6 mutants, repair efficiency of most base/base mismatches was reduced to a similar extent as in msh3 msh6 double mutants. G/T and A/C mismatches, however, displayed residual repair in msh6 mutants in one strain background, implying a role for Msh3p in recognition of base/base mismatches. Furthermore, the efficiency of repair of base/base mismatches was considerably reduced in msh3 mutants in one strain background, indicating a requirement for MSH3 for fully efficient mismatch correction. Also the efficiency of repair of the 38-nucleotide loop was reduced in msh3 mutants, and to a lesser extent in msh6 mutants. The single-nucleotide loop with an unpaired A was less efficiently repaired in msh3 mutants and that with an unpaired T was less efficiently corrected in msh6 mutants, indicating non-redundant functions for the two proteins in the recognition of single-nucleotide loops.
Bacterial cell motility of Burkholderia gut symbiont is required to colonize the insect gut.
Lee, Jun Beom; Byeon, Jin Hee; Jang, Ho Am; Kim, Jiyeun Kate; Yoo, Jin Wook; Kikuchi, Yoshitomo; Lee, Bok Luel
2015-09-14
We generated a Burkholderia mutant, which is deficient of an N-acetylmuramyl-l-alanine amidase, AmiC, involved in peptidoglycan degradation. When non-motile ΔamiC mutant Burkholderia cells harboring chain form were orally administered to Riptortus insects, ΔamiC mutant cells were unable to establish symbiotic association. But, ΔamiC mutant complemented with amiC gene restored in vivo symbiotic association. ΔamiC mutant cultured in minimal medium restored their motility with single-celled morphology. When ΔamiC mutant cells harboring single-celled morphology were administered to the host insect, this mutant established normal symbiotic association, suggesting that bacterial motility is essential for the successful symbiosis between host insect and Burkholderia symbiont. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G
2013-12-01
Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.
Adaptive evolutionary walks require neutral intermediates in RNA fitness landscapes.
Rendel, Mark D
2011-01-01
In RNA fitness landscapes with interconnected networks of neutral mutations, neutral precursor mutations can play an important role in facilitating the accessibility of epistatic adaptive mutant combinations. I use an exhaustively surveyed fitness landscape model based on short sequence RNA genotypes (and their secondary structure phenotypes) to calculate the minimum rate at which mutants initially appearing as neutral are incorporated into an adaptive evolutionary walk. I show first, that incorporating neutral mutations significantly increases the number of point mutations in a given evolutionary walk when compared to estimates from previous adaptive walk models. Second, that incorporating neutral mutants into such a walk significantly increases the final fitness encountered on that walk - indeed evolutionary walks including neutral steps often reach the global optimum in this model. Third, and perhaps most importantly, evolutionary paths of this kind are often extremely winding in their nature and have the potential to undergo multiple mutations at a given sequence position within a single walk; the potential of these winding paths to mislead phylogenetic reconstruction is briefly considered. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamir, Sagi; Eisenberg-Domovich, Yael; Conlan, Andrea R.
2014-06-01
NAF-1 has been shown to be related with human health and disease, is upregulated in epithelial breast cancer and suppression of its expression significantly suppresses tumor growth. It is shown that replacement of the single His ligand with Cys resulted in dramatic changes to the properties of its 2Fe-2S clusters without any global crystal structural changes. NAF-1 is an important [2Fe–2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression bymore » knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe–2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Å resolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe–2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Å resolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe–2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe–2S] cluster of NAF-1 in vivo.« less
Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.
Szot-Karpińska, Katarzyna; Golec, Piotr; Leśniewski, Adam; Pałys, Barbara; Marken, Frank; Niedziółka-Jönsson, Joanna; Węgrzyn, Grzegorz; Łoś, Marcin
2016-12-21
With the advent of nanotechnology, carbon nanomaterials such as carbon nanofibers (CNF) have aroused substantial interest in various research fields, including energy storage and sensing. Further improvement of their properties might be achieved via the application of viral particles such as bacteriophages. In this report, we present a filamentous M13 bacteriophage with a point mutation in gene VII (pVII-mutant-M13) that selectively binds to the carbon nanofibers to form 3D structures. The phage-display technique was utilized for the selection of the pVII-mutant-M13 phage from the phage display peptide library. The properties of this phage make it a prospective candidate for a scaffold material for CNFs. The results for binding of CNF by mutant phage were compared with those for maternal bacteriophage (pVII-M13). The efficiency of binding between pVII-mutant-M13 and CNF is about 2 orders of magnitude higher compared to that of the pVII-M13. Binding affinity between pVII-mutant-M13 and CNF was also characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, which confirmed the specificity of the interaction of the phage pVII-mutant-M13 and the CNF; the binding occurs via the phage's ending, where the mutated pVII protein is located. No similar behavior has been observed for other carbon nanomaterials such as graphite, reduced graphene oxide, single-walled carbon nanotubes, and multiwalled carbon nanotubes. Infrared spectra confirmed differences in the interaction with CNF between the pVII-mutant-M13 and the pVII-M13. Basing on conducted research, we hypothesize that the interactions are noncovalent in nature, with π-π interactions playing the dominant role. Herein, the new bioconjugate material is introduced.
Qin, Jiufu; Gao, Weiwei; Li, Qi; Li, Yongxian; Zheng, Feiyun; Liu, Chunfeng; Gu, Guoxian
2010-09-01
In vitro evolution methods are often used to modify protein with improved characteristics. We developed a directed evolution protocol to enhance the thermostability of the beta-1,3-1,4-glucanase. The thermostability of the enzyme was significantly improved after two rounds of directed evolution. Three variants with higher thermostability were obtained. The mutant enzymes were further analyzed by their melting temperature, halftime and kinetic parameters. Comparing to intact enzyme, the T50 of mutant enzymes 2-JF-01, 2-JF-02 and 2-JF-03 were increased by 2.2 degrees C, 5.5 degrees C and 3.5 degrees C, respectively, the halftime (t1/2, 60 degrees C) of mutant enzymes 2-JF-01, 2-JF-02 and 2-JF-03 were shortened by 4,13 and 17 min, respectively, the V(max) of mutant enzymes were decreased by 8.3%, 2.6% and 10.6%, respectively, while K(m) of mutant enzymes were nearly unchanged. Sequence analysis revealed seven single amino acid mutant happened among three mutant enzymes, such as 2-JF-01 (N36S, G213R), 2-JF-02 (C86R, S115I, N150G) and 2-JF-03 (E156V, K105R). Homology-modeling showed that five of seven substituted amino acids were located on the surface of or in hole of protein. 42.8% of substituted amino acids were arginine, which indicated that arginine may play a role in the improvement of the thermostability of the beta-1,3-1,4-glucanase.This study provide some intresting results of the structural basis of the thermostability of beta-1,3-1,4-glucanase,and provide some new point of view in modifying enzyme for future industrial use.
Bagchi, Sayan; Thorpe, Dayton G; Thorpe, Ian F; Voth, Gregory A; Fayer, M D
2010-12-30
Myoglobin is an important protein for the study of structure and dynamics. Three conformational substates have been identified for the carbonmonoxy form of myoglobin (MbCO). These are manifested as distinct peaks in the IR absorption spectrum of the CO stretching mode. Ultrafast 2D IR vibrational echo chemical exchange experiments are used to observed switching between two of these substates, A(1) and A(3), on a time scale of <100 ps for two mutants of wild-type Mb. The two mutants are a single mutation of Mb, L29I, and a double mutation, T67R/S92D. Molecular dynamics (MD) simulations are used to model the structural differences between the substates of the two MbCO mutants. The MD simulations are also employed to examine the substate switching in the two mutants as a test of the ability of MD simulations to predict protein dynamics correctly for a system in which there is a well-defined transition over a significant potential barrier between two substates. For one mutant, L29I, the simulations show that translation of the His64 backbone may differentiate the two substates. The simulations accurately reproduce the experimentally observed interconversion time for the L29I mutant. However, MD simulations exploring the same His64 backbone coordinate fail to display substate interconversion for the other mutant, T67R/S92D, thus pointing to the likely complexity of the underlying protein interactions. We anticipate that understanding conformational dynamics in MbCO via ultrafast 2D IR vibrational echo chemical exchange experiments can help to elucidate fast conformational switching processes in other proteins.
Ruiz, Zandra; D'Abramo, Anthony; Tattersall, Peter
2006-06-05
The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.
Guo, L; Kubo, Y
1998-01-01
To test whether a single amino-acid residue at the center of pore region can dictate the difference of open-close kinetics in a steady-state at hyperpolarized potentials among members of the inward K+ channel family, the Q140E mutant of the inward rectifier K+ channel (IRK1) was made and its gating properties were compared with those of IRK1 wild type (Wt) in Xenopus oocytes. The distinct differences were observed only at the single channel level. The open time constant of mutant tau(o)(Q140E) at -80 mV was over ten-fold shorter than that of Wt tau(o)(Wt); in Wt, the closed time distribution was fitted with a sum of two exponentials (c-slow and c-fast), whereas it could be fitted with three exponentials (c-slow, c-fast, and additional c-extrafast) in Q140E. However, the time constant of burst duration of mutant tau(b)(Q140E) was close to tau(o)(Wt) and both showed a similarly strong voltage dependence, and a high sensitivity to pH0 in the absence of Mg02+, indicating that tau(b)(Q140E) is closely related to tau(o)(Wt). These results demonstrated that Q140E shortened the channel openings by acquiring an extra-fast closing state. From the analysis of the effects of cations on both Wt and Q140E, it was suggested that the transition from the open state to this extra-fast closing state was not due to the block by H+ or Mg2+ but possibly by extracellular K+.
Pacheco, Sabino; Gómez, Isabel; Sánchez, Jorge; García-Gómez, Blanca-Ines; Soberón, Mario; Bravo, Alejandra
2017-10-15
Bacillus thuringiensis three-domain Cry toxins kill insects by forming pores in the apical membrane of larval midgut cells. Oligomerization of the toxin is an important step for pore formation. Domain I helix α-3 participates in toxin oligomerization. Here we identify an intramolecular salt bridge within helix α-3 of Cry4Ba (D111-K115) that is conserved in many members of the family of three-domain Cry toxins. Single point mutations such as D111K or K115D resulted in proteins severely affected in toxicity. These mutants were also altered in oligomerization, and the mutant K115D was more sensitive to protease digestion. The double point mutant with reversed charges, D111K-K115D, recovered both oligomerization and toxicity, suggesting that this salt bridge is highly important for conservation of the structure of helix α-3 and necessary to promote the correct oligomerization of the toxin. IMPORTANCE Domain I has been shown to be involved in oligomerization through helix α-3 in different Cry toxins, and mutations affecting oligomerization also elicit changes in toxicity. The three-dimensional structure of the Cry4Ba toxin reveals an intramolecular salt bridge in helix α-3 of domain I. Mutations that disrupt this salt bridge resulted in changes in Cry4Ba oligomerization and toxicity, while a double point reciprocal mutation that restored the salt bridge resulted in recovery of toxin oligomerization and toxicity. These data highlight the role of oligomer formation as a key step in Cry4Ba toxicity. Copyright © 2017 American Society for Microbiology.
Ritt, Jean-François; Raymond, Frédéric; Leprohon, Philippe; Légaré, Danielle; Corbeil, Jacques; Ouellette, Marc
2013-01-01
Background The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines. Methodology/Principal Findings Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import. Conclusion/Significance This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania. PMID:24278495
Structural characterization of V57D and V57P mutants of human cystatin C, an amyloidogenic protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlikowska, Marta; Szymańska, Aneta; Borek, Dominika
2013-04-01
Val57 point mutants of human cystatin C, which were designed to assess the influence of changes in the properties of the L1 loop on the dimerization propensity, were structurally characterized. Wild-type human cystatin C (hCC wt) is a low-molecular-mass protein (120 amino-acid residues, 13 343 Da) that is found in all nucleated cells. Physiologically, it functions as a potent regulator of cysteine protease activity. While the biologically active hCC wt is a monomeric protein, all crystallization efforts to date have resulted in a three-dimensional domain-swapped dimeric structure. In the recently published structure of a mutated hCC, the monomeric fold wasmore » preserved by a stabilization of the conformationally constrained loop L1 caused by a single amino-acid substitution: Val57Asn. Additional hCC mutants were obtained in order to elucidate the relationship between the stability of the L1 loop and the propensity of human cystatin C to dimerize. In one mutant Val57 was substituted by an aspartic acid residue, which is favoured in β-turns, and in the second mutant proline, a residue known for broadening turns, was substituted for the same Val57. Here, 2.26 and 3.0 Å resolution crystal structures of the V57D andV57P mutants of hCC are reported and their dimeric architecture is discussed in terms of the stabilization and destabilization effects of the introduced mutations.« less
Jeong, Eunjoo; Houn, Thavrak; Kuk, Yongin; Kim, Eun-Seon; Chandru, Hema Kumar; Baik, Myunggi; Back, Kyoungwhan; Guh, Ja-Ock; Han, Oksoo
2003-10-01
In an effort to asses the effect of Val311Met point mutation of Bacillus subtilis protoporphyrinogen oxidase on the resistance to diphenyl ether herbicides, a Val311Met point mutant of B. subtilis protoporphyrinogen oxidase was prepared, heterologously expressed in Escherichia coli, and the purified recombinant Val311Met mutant protoporphyrinogen oxidase was kinetically characterized. The mutant protoporphyrinogen oxidase showed very similar kinetic patterns to wild type protoporphyrinogen oxidase, with slightly decreased activity dependent on pH and the concentrations of NaCl, Tween 20, and imidazole. When oxyfluorfen was used as a competitive inhibitor, the Val311Met mutant protoporphyrinogen oxidase showed an increased inhibition constant about 1.5 times that of wild type protoporphyrinogen oxidase. The marginal increase of the inhibition constant indicates that the Val311Met point mutation in B. subtilis protoporphyrinogen oxidase may not be an important determinant in the mechanism that protects protoporphyrinogen oxidase against diphenyl ether herbicides.
Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis.
Novak, K D; Peterson, M D; Reedy, M C; Titus, M A
1995-12-01
The functional relationship between three Dictyostelium myosin Is, myoA, myoB, and myoC, has been examined through the creation of double mutants. Two double mutants, myoA-/B- and myoB-/C-, exhibit similar conditional defects in fluid-phase pinocytosis. Double mutants grown in suspension culture are significantly impaired in their ability to take in nutrients from the medium, whereas they are almost indistinguishable from wild-type and single mutant strains when grown on a surface. The double mutants are also found to internalize gp126, a 116-kD membrane protein, at a slower rate than either the wild-type or single mutant cells. Ultrastructural analysis reveals that both double mutants possess numerous small vesicles, in contrast to the wild-type or myosin I single mutants that exhibit several large, clear vacuoles. The alterations in fluid and membrane internalization in the suspension-grown double mutants, coupled with the altered vesicular profile, suggest that these cells may be compromised during the early stages of pinocytosis, a process that has been proposed to occur via actin-based cytoskeletal rearrangements. Scanning electron microscopy and rhodamine-phalloidin staining indicates that the myosin I double mutants appear to extend a larger number of actin-filled structures, such as filopodia and crowns, than wild-type cells. Rhodamine-phalloidin staining of the F-actin cytoskeleton of these suspension-grown cells also reveals that the double mutant cells are delayed in the rearrangement of cortical actin-rich structures upon adhesion to a substrate. We propose that myoA, myoB, and myoC play roles in controlling F-actin filled membrane projections that are required for pinosome internalization in suspension.
The role of RNase H2 in processing ribonucleotides incorporated during DNA replication.
Williams, Jessica S; Gehle, Daniel B; Kunkel, Thomas A
2017-05-01
Saccharomyces cerevisiae RNase H2 resolves RNA-DNA hybrids formed during transcription and it incises DNA at single ribonucleotides incorporated during nuclear DNA replication. To distinguish between the roles of these two activities in maintenance of genome stability, here we investigate the phenotypes of a mutant of yeast RNase H2 (rnh201-RED; ribonucleotide excision defective) that retains activity on RNA-DNA hybrids but is unable to cleave single ribonucleotides that are stably incorporated into the genome. The rnh201-RED mutant was expressed in wild type yeast or in a strain that also encodes a mutant allele of DNA polymerase ε (pol2-M644G) that enhances ribonucleotide incorporation during DNA replication. Similar to a strain that completely lacks RNase H2 (rnh201Δ), the pol2-M644G rnh201-RED strain exhibits replication stress and checkpoint activation. Moreover, like its null mutant counterpart, the double mutant pol2-M644G rnh201-RED strain and the single mutant rnh201-RED strain delete 2-5 base pairs in repetitive sequences at a high rate that is topoisomerase 1-dependent. The results highlight an important role for RNase H2 in maintaining genome integrity by removing single ribonucleotides incorporated during DNA replication. Published by Elsevier B.V.
A Statistical Guide to the Design of Deep Mutational Scanning Experiments
Matuszewski, Sebastian; Hildebrandt, Marcel E.; Ghenu, Ana-Hermina; Jensen, Jeffrey D.; Bank, Claudia
2016-01-01
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. PMID:27412710
Chen, Mingjie; Thelen, Jay J.
2011-01-01
Nucleotides are synthesized from de novo and salvage pathways. To characterize the uridine salvage pathway, two genes, UKL1 and UKL2, that tentatively encode uridine kinase (UK) and uracil phosphoribosyltransferase (UPRT) bifunctional enzymes were studied in Arabidopsis thaliana. T-DNA insertions in UKL1 and UKL2 reduced transcript expression and increased plant tolerance to toxic analogs 5-fluorouridine and 5-fluorouracil. Enzyme activity assays using purified recombinant proteins indicated that UKL1 and UKL2 have UK but not UPRT activity. Subcellular localization using a C-terminal enhanced yellow fluorescent protein fusion indicated that UKL1 and UKL2 localize to plastids. The ukl2 mutant shows reduced transient leaf starch during the day. External application of orotate rescued this phenotype in ukl2, indicating pyrimidine pools are limiting for starch synthesis in ukl2. Intermediates for lignin synthesis were upregulated, and there was increased lignin and reduced cellulose content in the ukl2 mutant. Levels of ATP, ADP, ADP-glucose, UTP, UDP, and UDP-glucose were altered in a light-dependent manner. Seed composition of the ukl1 and ukl2 mutants included lower oil and higher protein compared with the wild type. Unlike single gene mutants, the ukl1 ukl2 double mutant has severe developmental defects and reduced biomass accumulation, indicating these enzymes catalyze redundant reactions. These findings point to crucial roles played by uridine salvage for photoassimilate allocation and partitioning. PMID:21828290
Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian
2016-01-01
Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points. PMID:27136541
Preuner, Sandra; Barna, Agnes; Frommlet, Florian; Czurda, Stefan; Konstantin, Byrgazov; Alikian, Mary; Machova Polakova, Katerina; Sacha, Tomasz; Richter, Johan; Lion, Thomas; Gabriel, Christian
2016-04-29
Identification and quantitative monitoring of mutant BCR-ABL1 subclones displaying resistance to tyrosine kinase inhibitors (TKIs) have become important tasks in patients with Ph-positive leukemias. Different technologies have been established for patient screening. Various next-generation sequencing (NGS) platforms facilitating sensitive detection and quantitative monitoring of mutations in the ABL1-kinase domain (KD) have been introduced recently, and are expected to become the preferred technology in the future. However, broad clinical implementation of NGS methods has been hampered by the limited accessibility at different centers and the current costs of analysis which may not be regarded as readily affordable for routine diagnostic monitoring. It is therefore of interest to determine whether NGS platforms can be adequately substituted by other methodological approaches. We have tested three different techniques including pyrosequencing, LD (ligation-dependent)-PCR and NGS in a series of peripheral blood specimens from chronic myeloid leukemia (CML) patients carrying single or multiple mutations in the BCR-ABL1 KD. The proliferation kinetics of mutant subclones in serial specimens obtained during the course of TKI-treatment revealed similar profiles via all technical approaches, but individual specimens showed statistically significant differences between NGS and the other methods tested. The observations indicate that different approaches to detection and quantification of mutant subclones may be applicable for the monitoring of clonal kinetics, but careful calibration of each method is required for accurate size assessment of mutant subclones at individual time points.
Mutagenic effects of a single and an exact number of alpha particles in mammalian cells
NASA Technical Reports Server (NTRS)
Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.
1997-01-01
One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.
Mutagenic effects of a single and an exact number of alpha particles in mammalian cells.
Hei, T K; Wu, L J; Liu, S X; Vannais, D; Waldren, C A; Randers-Pehrson, G
1997-04-15
One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.
Book, Adam J; Smalle, Jan; Lee, Kwang-Hee; Yang, Peizhen; Walker, Joseph M; Casper, Sarah; Holmes, James H; Russo, Laura A; Buzzinotti, Zachri W; Jenik, Pablo D; Vierstra, Richard D
2009-02-01
The 26S proteasome is an essential multicatalytic protease complex that degrades a wide range of intracellular proteins, especially those modified with ubiquitin. Arabidopsis thaliana and other plants use pairs of genes to encode most of the core subunits, with both of the isoforms often incorporated into the mature complex. Here, we show that the gene pair encoding the regulatory particle non-ATPase subunit (RPN5) has a unique role in proteasome function and Arabidopsis development. Homozygous rpn5a rpn5b mutants could not be generated due to a defect in male gametogenesis. While single rpn5b mutants appear wild-type, single rpn5a mutants display a host of morphogenic defects, including abnormal embryogenesis, partially deetiolated development in the dark, a severely dwarfed phenotype when grown in the light, and infertility. Proteasome complexes missing RPN5a are less stable in vitro, suggesting that some of the rpn5a defects are caused by altered complex integrity. The rpn5a phenotype could be rescued by expression of either RPN5a or RPN5b, indicating functional redundancy. However, abnormal phenotypes generated by overexpression implied that paralog-specific functions also exist. Collectively, the data point to a specific role for RPN5 in the plant 26S proteasome and suggest that its two paralogous genes in Arabidopsis have both redundant and unique roles in development.
Crane, Jonathan M.; Verkman, Alan S.
2009-01-01
Summary We investigated the molecular determinants of aquaporin-4 (AQP4) assembly in orthogonal arrays of particles (OAPs) by visualizing fluorescently labeled AQP4 mutants in cell membranes using quantum-dot single-particle tracking and total internal reflection fluorescence microscopy. The full-length `long' (M1) form of AQP4 diffused freely in membranes and did not form OAPs, whereas the `short' (M23) form of AQP4 formed OAPs and was nearly immobile. Analysis of AQP4 deletion mutants revealed progressive disruption of OAPs by the addition of three to seven residues at the AQP4-M23 N-terminus, with polyalanines as effective as native AQP4 fragments. OAPs disappeared upon downstream deletions of AQP4-M23, which, from analysis of point mutants, involves N-terminus interactions of residues Val24, Ala25 and Phe26. OAP formation was also prevented by introducing proline residues at sites just downstream from the hydrophobic N-terminus of AQP4-M23. AQP1, an AQP4 homolog that does not form OAPs, was induced to form OAPs upon replacement of its N-terminal domain with that of AQP4-M23. Our results indicate that OAP formation by AQP4-M23 is stabilized by hydrophobic intermolecular interactions involving N-terminus residues, and that absence of OAPs in AQP4-M1 results from non-selective blocking of this interaction by seven residues just upstream from Met23. PMID:19240114
Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian
2013-01-01
High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering strategy may be useful for the protein engineering of the other microbial enzymes to fulfill industrial requirements.
Prediction of change in protein unfolding rates upon point mutations in two state proteins.
Chaudhary, Priyashree; Naganathan, Athi N; Gromiha, M Michael
2016-09-01
Studies on protein unfolding rates are limited and challenging due to the complexity of unfolding mechanism and the larger dynamic range of the experimental data. Though attempts have been made to predict unfolding rates using protein sequence-structure information there is no available method for predicting the unfolding rates of proteins upon specific point mutations. In this work, we have systematically analyzed a set of 790 single mutants and developed a robust method for predicting protein unfolding rates upon mutations (Δlnku) in two-state proteins by combining amino acid properties and knowledge-based classification of mutants with multiple linear regression technique. We obtain a mean absolute error (MAE) of 0.79/s and a Pearson correlation coefficient (PCC) of 0.71 between predicted unfolding rates and experimental observations using jack-knife test. We have developed a web server for predicting protein unfolding rates upon mutation and it is freely available at https://www.iitm.ac.in/bioinfo/proteinunfolding/unfoldingrace.html. Prominent features that determine unfolding kinetics as well as plausible reasons for the observed outliers are also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Simon, Marissa; Bruex, Angela; Kainkaryam, Raghunandan M.; Zheng, Xiaohua; Huang, Ling; Woolf, Peter J.; Schiefelbein, John
2013-01-01
Traditional genetic analysis relies on mutants with observable phenotypes. Mutants lacking visible abnormalities may nevertheless exhibit molecular differences useful for defining gene function. To examine this, we analyzed tissue-specific transcript profiles from Arabidopsis thaliana transcription factor gene mutants with known roles in root epidermis development, but lacking a single-gene mutant phenotype due to genetic redundancy. We discovered substantial transcriptional changes in each mutant, preferentially affecting root epidermal genes in a manner consistent with the known double mutant effects. Furthermore, comparing transcript profiles of single and double mutants, we observed remarkable variation in the sensitivity of target genes to the loss of one or both paralogous genes, including preferential effects on specific branches of the epidermal gene network, likely reflecting the pathways of paralog subfunctionalization during evolution. In addition, we analyzed the root epidermal transcriptome of the transparent testa glabra2 mutant to clarify its role in the network. These findings provide insight into the molecular basis of genetic redundancy and duplicate gene diversification at the level of a specific gene regulatory network, and they demonstrate the usefulness of tissue-specific transcript profiling to define gene function in mutants lacking informative visible changes in phenotype. PMID:24014549
Problem-Solving Test: Tryptophan Operon Mutants
ERIC Educational Resources Information Center
Szeberenyi, Jozsef
2010-01-01
This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…
Microfluidics and microbial engineering.
Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming
2016-02-07
The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Yuko; Matsumoto, Takashi; Yamano, Akihito
2013-07-12
Highlights: •A single amino acid change on the ferredoxin surface affects electron transfer. •Precise positions of amide atoms were located utilizing no prior structural data. •Ultra high resolution and SAD phasing may be used for bias-free model building. -- Abstract: Cyanidioschyzon merolae (Cm) is a single cell red algae that grows in rather thermophilic (40–50 °C) and acidic (pH 1–3) conditions. Ferredoxin (Fd) was purified from this algae and characterized as a plant-type [2Fe–2S] Fd by physicochemical techniques. A high resolution (0.97 Å) three-dimensional structure of the CmFd D58N mutant molecule has been determined using the Fe-SAD phasing method tomore » clarify the precise position of the Asn58 amide, as this substitution increases the electron-transfer ability relative to wild-type CmFd by a factor of 1.5. The crystal structure reveals an electro-positive surface surrounding Asn58 that may interact with ferredoxin NADP{sup +} reductase or cytochrome c.« less
Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Tohge, Takayuki; Larson, Tony R.; Krahnert, Ina; Balbo, Ilse; Witt, Sandra; Dörmann, Peter; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.
2011-01-01
The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors to this complex. In addition both enzymes play a role in the breakdown of cellular carbon storage reserves with isovaleryl-CoA dehydrogenase being involved in degradation of the branched-chain amino acids, phytol, and lysine while 2-hydroxyglutarate dehydrogenase is exclusively involved in lysine degradation. Given that the chlorophyll breakdown intermediate phytanoyl-CoA accumulates dramatically both in knockout mutants of the ETF/ETFQO complex and of isovaleryl-CoA dehydrogenase following growth in extended dark periods we have investigated the direct importance of chlorophyll breakdown for the supply of carbon and electrons during this process. For this purpose we isolated three independent Arabidopsis (Arabidopsis thaliana) knockout mutants of phytanoyl-CoA 2-hydroxylase and grew them under the same extended darkness regime as previously used. Despite the fact that these mutants accumulated phytanoyl-CoA and also 2-hydroxyglutarate they exhibited no morphological changes in comparison to the other mutants previously characterized. These results are consistent with a single entry point of phytol breakdown into the ETF/ETFQO system and furthermore suggest that phytol is not primarily metabolized by this pathway. Furthermore analysis of isovaleryl-CoA dehydrogenase/2-hydroxyglutarate dehydrogenase double mutants generated here suggest that these two enzymes essentially account for the entire electron input via the ETF complex. PMID:21788362
mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.
Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin
2017-11-14
Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.
Huang, C.; Chien, M.S.; Landolt, M.L.; Batts, W.; Winton, J.
1996-01-01
Twelve neutralizing monoclonal antibodies (MAbs) against the fish rhabdovirus, infectious haematopoietic necrosis virus (IHNV), were used to select 20 MAb escape mutants. The nucleotide sequence of the entire glycoprotein (G) gene was determined for six mutants representing differing cross-neutralization patterns and each had a single nucleotide change leading to a single amino acid substitution within one of three regions of the protein. These data were used to design nested PCR primers to amplify portions of the G gene of the 14 remaining mutants. When the PCR products from these mutants were sequenced, they also had single nucleotide substitutions coding for amino acid substitutions at the same, or nearby, locations. Of the 20 mutants for which all or part of the glycoprotein gene was sequenced, two MAbs selected mutants with substitutions at amino acids 230-231 (antigenic site I) and the remaining MAbs selected mutants with substitutions at amino acids 272-276 (antigenic site II). Two MAbs that selected mutants mapping to amino acids 272-276, selected other mutants that mapped to amino acids 78-81, raising the possibility that this portion of the N terminus of the protein was part of a discontinuous epitope defining antigenic site II. CLUSTAL alignment of the glycoproteins of rabies virus, vesicular stomatitis virus and IHNV revealed similarities in the location of the neutralizing epitopes and a high degree of conservation among cysteine residues, indicating that the glycoproteins of three different genera of animal rhabdoviruses may share a similar three-dimensional structure in spite of extensive sequence divergence.
Seidman, M M; Bredberg, A; Seetharam, S; Kraemer, K H
1987-07-01
Mutagenesis was studied at the DNA-sequence level in human fibroblast and lymphoid cells by use of a shuttle vector plasmid, pZ189, containing a suppressor tRNA marker gene. In a series of experiments, 62 plasmids were recovered that had two to six base substitutions in the 160-base-pair marker gene. Approximately 20-30% of the mutant plasmids that were recovered after passing ultraviolet-treated pZ189 through a repair-proficient human fibroblast line contained these multiple mutations. In contrast, passage of ultraviolet-treated pZ189 through an excision-repair-deficient (xeroderma pigmentosum) line yielded only 2% multiple base substitution mutants. Introducing a single-strand nick in otherwise unmodified pZ189 adjacent to the marker, followed by passage through the xeroderma pigmentosum cells, resulted in about 66% multiple base substitution mutants. The multiple mutations were found in a 160-base-pair region containing the marker gene but were rarely found in an adjacent 170-base-pair region. Passing ultraviolet-treated or nicked pZ189 through a repair-proficient human B-cell line also yielded multiple base substitution mutations in 20-33% of the mutant plasmids. An explanation for these multiple mutations is that they were generated by an error-prone polymerase while filling gaps. These mutations share many of the properties displayed by mutations in the immunoglobulin hypervariable regions.
Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System1
Castelblanque, Lourdes; Balaguer, Begoña; Rodríguez, Juan José; Orozco, Marianela; Vera, Pablo
2016-01-01
Laticifer cells are specialized plant cells that synthesize and accumulate latex. Studies on laticifers have lagged behind in recent years, and data regarding the functional role of laticifers and their fitness benefit still remain elusive. Laticifer differentiation and its impact on plant growth and development also remain to be investigated. Here, cellular, molecular, and genetic tools were developed to examine the distribution, differentiation, ontogeny, and other characteristic features, as well as the potential developmental role of laticifer cells in the latex-bearing plant Euphorbia lathyris. The organization of the laticiferous system within the E. lathyris plant body is reported, emerging as a single elongated and branched coenocytic cell, constituting the largest cell type existing in plants. We also report the ontogeny and organization of laticifer cells in the embryo and the identification of a laticifer-associated gene expression pattern. Moreover, the identification of laticifer- and latex-deficient mutants (pil mutants) allowed for the identification of distinct loci regulating laticifer differentiation, growth, and metabolic activity. Additionally, pil mutants revealed that laticifer cells appear nonessential for plant growth and development, thus pointing toward their importance, instead, for specific ecophysiological adaptations of latex-bearing plants in natural environments. PMID:27468995
Pandey, Rajan Kumar; Sharma, Drista; Ojha, Rupal; Bhatt, Tarun Kumar; Prajapati, Vijay Kumar
2018-05-09
The emergence of mutations leading to drug resistance is the main cause of therapeutic failure in the human HIV infection. Chemical system biology approach has drawn great attention to discover new antiretroviral hits with high efficacy and negligible toxicity, which can be used as a prerequisite for HIV drug resistance global action plan 2017-21. To discover potential hits, we docked 49 antiretroviral analogs (n = 6294) against HIV-1 reverse transcriptase Q151M mutant & its wild-type form and narrow downed their number in three sequential modes of docking using Schrödinger suite. Later on, 80 ligands having better docking score than reference ligands (tenofovir and lamivudine) were screened for ADME, toxicity prediction, and binding energy estimation. Simultaneously, the area under the curve (AUC) was estimated using receiver operating characteristics (ROC) curve analysis to validate docking protocols. Finally, single point energy and molecular dynamics simulation approaches were performed for best two ligands (L3 and L14). This study reveals the antiretroviral efficacy of obtained two best ligands and delivers the hits against HIV-1 reverse transcriptase Q151M mutant. Copyright © 2018 Elsevier B.V. All rights reserved.
Early-onset lymphoma and extensive embryonic apoptosis in two domain-specific Fen1 mice mutants.
Larsen, Elisabeth; Kleppa, Liv; Meza, Trine J; Meza-Zepeda, Leonardo A; Rada, Christina; Castellanos, Cesilie G; Lien, Guro F; Nesse, Gaute J; Neuberger, Michael S; Laerdahl, Jon K; William Doughty, Richard; Klungland, Arne
2008-06-15
Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis, and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1 in both DNA replication and repair. Here we present two gene-targeted mice with mutations in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site of the nuclease domain of FEN1 (Fen1(E160D/E160D)), and the second mutant mouse contains two amino acid substitutions in the highly conserved PCNA interaction domain of FEN1 (Fen1(DeltaPCNA/DeltaPCNA)). Fen1(E160D/E160D) mice develop a considerably elevated incidence of B-cell lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more than 90% of the Fen1(E160D/E160D) females have tumors, primarily lymphomas. By contrast, Fen1(DeltaPCNA/DeltaPCNA) mouse embryos show extensive apoptosis in the forebrain and vertebrae area and die around stage E9.5 to E11.5.
Southern Analysis of Genomic Alterations in Gamma-Ray-Induced Aprt- Hamster Cell Mutants
Grosovsky, Andrew J.; Drobetsky, Elliot A.; deJong, Pieter J.; Glickman, Barry W.
1986-01-01
The role of genomic alterations in mutagenesis induced by ionizing radiation has been the subject of considerable speculation. By Southern blotting analysis we show here that 9 of 55 (approximately 1/6) gamma-ray-induced mutants at the adenine phosphoribosyl transferase (aprt) locus of Chinese hamster ovary (CHO) cells have a detectable genomic rearrangement. These fall into two classes: intragenic deletions and chromosomal rearrangements. In contrast, no major genomic alterations were detected among 67 spontaneous mutants, although two restriction site loss events were observed. Three gamma-ray-induced mutants were found to be intragenic deletions; all may have identical break-points. The remaining six gamma-ray-induced mutants demonstrating a genomic alteration appear to be the result of chromosomal rearrangements, possibly translocation or inversion events. None of the remaining gamma-ray-induced mutants showed any observable alteration in blotting pattern indicating a substantial role for point mutation in gamma-ray-induced mutagenesis at the aprt locus. PMID:3013724
Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.
Zheng, Xuelian; Yang, Shixin; Zhang, Dengwei; Zhong, Zhaohui; Tang, Xu; Deng, Kejun; Zhou, Jianping; Qi, Yiping; Zhang, Yong
2016-07-01
A method based on DNA single-strand conformation polymorphism is demonstrated for effective genotyping of CRISPR/Cas9-induced mutants in rice. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) has been widely adopted for genome editing in many organisms. A large proportion of mutations generated by CRISPR/Cas9 are very small insertions and deletions (indels), presumably because Cas9 generates blunt-ended double-strand breaks which are subsequently repaired without extensive end-processing. CRISPR/Cas9 is highly effective for targeted mutagenesis in the important crop, rice. For example, homozygous mutant seedlings are commonly recovered from CRISPR/Cas9-treated calli. However, many current mutation detection methods are not very suitable for screening homozygous mutants that typically carry small indels. In this study, we tested a mutation detection method based on single-strand conformational polymorphism (SSCP). We found it can effectively detect small indels in pilot experiments. By applying the SSCP method for CRISRP-Cas9-mediated targeted mutagenesis in rice, we successfully identified multiple mutants of OsROC5 and OsDEP1. In conclusion, the SSCP analysis will be a useful genotyping method for rapid identification of CRISPR/Cas9-induced mutants, including the most desirable homozygous mutants. The method also has high potential for similar applications in other plant species.
A Statistical Guide to the Design of Deep Mutational Scanning Experiments.
Matuszewski, Sebastian; Hildebrandt, Marcel E; Ghenu, Ana-Hermina; Jensen, Jeffrey D; Bank, Claudia
2016-09-01
The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining deviations from neutrality for specific selection coefficient estimates. Copyright © 2016 by the Genetics Society of America.
Murray, R; Pederson, K; Prosser, H; Muller, D; Hutchison, C A; Frelinger, J A
1988-01-01
We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells. Images PMID:2903482
Ohya, Y.; Botstein, D.
1994-01-01
Conditional-lethal mutations of the single calmodulin gene in Saccharomyces cerevisiae have been very difficult to isolate by random and systematic methods, despite the fact that deletions cause recessive lethality. We report here the isolation of numerous conditional-lethal mutants that were recovered by systematically altering phenylalanine residues. The phenylalanine residues of calmodulin were implicated in function both by structural studies of calmodulin bound to target peptides and by their extraordinary conservation in evolution. Seven single and 26 multiple Phe -> Ala mutations were constructed. Mutant phenotypes were examined in a haploid cmd1 disrupted strain under three conditions: single copy, low copy, and overexpressed. Whereas all but one of the single mutations caused no obvious phenotype, most of the multiple mutations caused obvious growth phenotypes. Five were lethal, 6 were lethal only in synthetic medium, 13 were temperature-sensitive lethal and 2 had no discernible phenotypic consequences. Overexpression of some of the mutant genes restored the phenotype to nearly wild type. Several temperature-sensitive calmodulin mutations were suppressed by elevated concentration of CaCl(2) in the medium. Mutant calmodulin protein was detected at normal levels in extracts of most of the lethal mutant cells, suggesting that the deleterious phenotypes were due to loss of the calmodulin function and not protein instability. Analysis of diploid strains heterozygous for all combinations of cmd1-ts alleles revealed four intragenic complementation groups. The contributions of individual phe->ala changes to mutant phenotypes support the idea of internal functional redundancy in the symmetrical calmodulin protein molecule. These results suggest that the several phenylalanine residues in calmodulin are required to different extents in different combinations in order to carry out each of the several essential tasks. PMID:7896089
Pearson, Selina; Brooker, Rachael H.; Spiden, Sarah; Kiernan, Amy E.; Guénet, Jean-Louis; Steel, Karen P.
2012-01-01
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system. PMID:23226461
Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E
1999-03-01
Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.
Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.
1999-01-01
Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates. PMID:10049289
Lundin, Erik; Tang, Po-Cheng; Guy, Lionel; Näsvall, Joakim; Andersson, Dan I
2018-01-01
Abstract The distribution of fitness effects of mutations is a factor of fundamental importance in evolutionary biology. We determined the distribution of fitness effects of 510 mutants that each carried between 1 and 10 mutations (synonymous and nonsynonymous) in the hisA gene, encoding an essential enzyme in the l-histidine biosynthesis pathway of Salmonella enterica. For the full set of mutants, the distribution was bimodal with many apparently neutral mutations and many lethal mutations. For a subset of 81 single, nonsynonymous mutants most mutations appeared neutral at high expression levels, whereas at low expression levels only a few mutations were neutral. Furthermore, we examined how the magnitude of the observed fitness effects was correlated to several measures of biophysical properties and phylogenetic conservation.We conclude that for HisA: (i) The effect of mutations can be masked by high expression levels, such that mutations that are deleterious to the function of the protein can still be neutral with regard to organism fitness if the protein is expressed at a sufficiently high level; (ii) the shape of the fitness distribution is dependent on the extent to which the protein is rate-limiting for growth; (iii) negative epistatic interactions, on an average, amplified the combined effect of nonsynonymous mutations; and (iv) no single sequence-based predictor could confidently predict the fitness effects of mutations in HisA, but a combination of multiple predictors could predict the effect with a SD of 0.04 resulting in 80% of the mutations predicted within 12% of their observed selection coefficients. PMID:29294020
Sha, Jian; Kirtley, Michelle L.; van Lier, Christina J.; Wang, Shaofei; Erova, Tatiana E.; Kozlova, Elena V.; Cao, Anthony; Cong, Yingzi; Fitts, Eric C.; Rosenzweig, Jason A.
2013-01-01
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future. PMID:23275092
Blakely, Collin M.; Watkins, Thomas B.K.; Wu, Wei; Gini, Beatrice; Chabon, Jacob J.; McCoach, Caroline E.; McGranahan, Nicholas; Wilson, Gareth A.; Birkbak, Nicolai J.; Olivas, Victor R.; Rotow, Julia; Maynard, Ashley; Wang, Victoria; Gubens, Matthew A.; Banks, Kimberly C.; Lanman, Richard B.; Caulin, Aleah F.; John, John St.; Cordero, Anibal R.; Giannikopoulos, Petros; Simmons, Andrew D.; Mack, Philip C.; Gandara, David R.; Husain, Hatim; Doebele, Robert C.; Riess, Jonathan W.; Diehn, Maximilian; Swanton, Charles; Bivona, Trever G.
2017-01-01
A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant protein product (e.g. EGFR inhibitor treatment in EGFR-mutant lung cancers). However, genetically-driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1122 EGFR-mutant lung cancer cell-free DNA samples and whole exome analysis of seven longitudinally collected tumor samples from an EGFR-mutant lung cancer patient, we identify critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers. We define new pathways limiting EGFR inhibitor response, including WNT/β-catenin and cell cycle gene (e.g. CDK4, CDK6) alterations. Tumor genomic complexity increases with EGFR inhibitor treatment and co-occurring alterations in CTNNB1, and PIK3CA exhibit non-redundant functions that cooperatively promote tumor metastasis or limit EGFR inhibitor response. This study challenges the prevailing single-gene driver oncogene view and links clinical outcomes to co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancer patients. PMID:29106415
Pham, Nikki T.; Wei, Tong; Schackwitz, Wendy S.; Lipzen, Anna M.; Duong, Phat Q.; Jones, Kyle C.; Ruan, Deling; Bauer, Diane; Peng, Yi; Schmutz, Jeremy
2017-01-01
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. PMID:28576844
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, K.; Liu, J; Lombardo, M
2009-01-01
Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and foundmore » that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.« less
Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu
2012-03-01
The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.
Ohashi, Takao; Nakakita, Shin-ichi; Sumiyoshi, Wataru; Yamada, Naotaka; Ikeda, Yuka; Tanaka, Naotaka; Takegawa, Kaoru
2011-03-01
In the fission yeast Schizosaccharomyces pombe, galactose (Gal) residues are transferred to N- and O-linked oligosaccharides of glycoproteins by galactosyltransferases in the lumen of the Golgi apparatus. In S. pombe, the major in vitro α1,2-galactosyltransferase activity has been purified, the gma12(+) gene has been cloned, and three α-galactosyltransferase genes (gmh1(+)-gmh3(+)) have also been partially characterized. In this study, we found three additional uncharacterized genes with homology to gmh1(+) (gmh4(+)-gmh6(+)) in the fission yeast genome sequence. All possible single disruption mutants and the septuple disruption strain were constructed and characterized. The electrophoretic mobility of acid phosphatase prepared from gma12Δ, gmh2Δ, gmh3Δ and gmh6Δ mutants was higher than that from wild type, indicating that Gma12p, Gmh2p, Gmh3p and Gmh6p are required for the galactosylation of N-linked oligosaccharides. High-performance liquid chromatography (HPLC) analysis of pyridylaminated O-linked oligosaccharides from each single mutant showed that Gma12p, Gmh2p and Gmh6p are involved in galactosylation of O-linked oligosaccharides. The septuple mutant exhibited similar drug and temperature sensitivity as a gms1Δ mutant that is incapable of galactosylation. Oligosaccharide structural analysis based on HPLC and methylation analysis revealed that the septuple mutant still contained oligosaccharides consisting of α1,3-linked Gal residues, indicating that an unknown α1,3-galactosyltransferase activity was still present in the septuple mutant.
Chemotaxis-defective mutants of the nematode Caenorhabditis elegans.
Dusenbery, D B; Sheridan, R E; Russell, R L
1975-06-01
The technique of countercurrent separation has been used to isolate 17 independent chemotaxis-defective mutants of the nematode Caenorhabditis elegans. The mutants, selected to be relatively insensitive to the normally attractive salt NaCl, show varying degrees of residual sensitivity; some are actually weakly repelled by NaCl. The mutants are due to single gene defects, are autosomal and recessive, and identify at least five complementation groups.
Genome-wide bisulfite sensitivity profiling of yeast suggests bisulfite inhibits transcription.
Segovia, Romulo; Mathew, Veena; Tam, Annie S; Stirling, Peter C
2017-09-01
Bisulfite, in the form of sodium bisulfite or metabisulfite, is used commercially as a food preservative. Bisulfite is used in the laboratory as a single-stranded DNA mutagen in epigenomic analyses of DNA methylation. Recently it has also been used on whole yeast cells to induce mutations in exposed single-stranded regions in vivo. To understand the effects of bisulfite on live cells we conducted a genome-wide screen for bisulfite sensitive mutants in yeast. Screening the deletion mutant array, and collections of essential gene mutants we define a genetic network of bisulfite sensitive mutants. Validation of screen hits revealed hyper-sensitivity of transcription and RNA processing mutants, rather than DNA repair pathways and follow-up analyses support a role in perturbation of RNA transactions. We propose a model in which bisulfite-modified nucleotides may interfere with transcription or RNA metabolism when used in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarthy, Balu, E-mail: Balu.Chakravarthy@nrc-cnrc.gc.ca; Gaudet, Chantal; Menard, Michel
2012-10-12
Highlights: Black-Right-Pointing-Pointer A{beta} and tau-induced neurofibrillary tangles play a key role in Alzheimer's disease. Black-Right-Pointing-Pointer A{beta}{sub 1-42} and mutant tau protein together reduce the primary cilium length. Black-Right-Pointing-Pointer This shortening likely reduces cilium-dependent neurogenesis and memory function. Black-Right-Pointing-Pointer This provides a model of an A{beta}/tau targeting of a neuronal signaling organelle. -- Abstract: The hippocampal dentate gyrus is one of the two sites of continuous neurogenesis in adult rodents and humans. Virtually all dentate granule cells have a single immobile cilium with a microtubule spine or axoneme covered with a specialized cell membrane loaded with receptors such as the somatostatinmore » receptor 3 (SSTR3), and the p75 neurotrophin receptor (p75{sup NTR}). The signals from these receptors have been reported to stimulate neuroprogenitor proliferation and the post-mitotic maturation of newborn granule cells into functioning granule cells. We have found that in 6-24-months-old triple transgenic Alzheimer's disease model mice (3xTg-AD) producing both A{beta}{sub 1-42} and the mutant human tau protein tau{sub P301L,} the dentate granule cells still had immunostainable SSTR3- and p75{sup NTR}-bearing cilia but they were only half the length of the immunostained cilia in the corresponding wild-type mice. However, the immunostainable length of the granule cell cilia was not reduced either in 2xTg-AD mice accumulating large amounts of A{beta}{sub 1-42} or in mice accumulating only a mutant human tau protein. Thus it appears that a combination of A{beta}{sub 1-42} and tau protein accumulation affects the levels of functionally important receptors in 3xTg-AD mice. These observations raise the important possibility that structural and functional changes in granule cell cilia might have a role in AD.« less
Chen, Mo; Drury, Jason E; Christianson, David W; Penning, Trevor M
2012-05-11
Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ(4)-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His(120) (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ(4)-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ(4)-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mo; Drury, Jason E.; Christianson, David W.
2012-10-10
Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1Cmore » enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.« less
Kubo, Yoshihiro; Murata, Yoshimichi
2001-01-01
The rectification property of the inward rectifier K+ channel is chiefly due to the block of outward current by cytoplasmic Mg2+ and polyamines. In the cloned inward rectifier K+ channel Kir2.1 (IRK1), Asp172 in the second transmembrane region (M2) and Glu224 in the putative cytoplasmic region after M2 are reported to be critical for the sensitivity to these blockers. However, the difference in the inward rectification properties between Kir2.1 and a very weak inward rectifier sWIRK could not be explained by differences at these two sites. Following sequence comparison of Kir2.1 and sWIRK, we focused this study on Glu299 located in the centre of the putative cytoplasmic region after M2. Single-point mutants of Kir2.1 (Glu224Gly and Glu299Ser) and a double-point mutant (Glu224Gly-Glu299Ser) were made and expressed in Xenopus oocytes or in HEK293T cells. Their electrophysiological properties were compared with those of wild-type (WT) Kir2.1 and the following observations were made. (a) Glu299Ser showed a weaker inward rectification, a slower activation upon hyperpolarization, a slower decay of the outward current upon depolarization, a lower sensitivity to block by cytoplasmic spermine and a smaller single-channel conductance than WT. (b) The features of Glu224Gly were similar to those of Glu299Ser. (c) In the double mutant (Glu224Gly-Glu299Ser), the differences from WT described above were more prominent. These results demonstrate that Glu299 as well as Glu224 control rectification and permeation, and suggest the possibility that the two sites contribute to the inner vestibule of the channel pore. The slowing down of the on- and off-blocking processes by mutation of these sites implies that Glu224 and Glu299 function to facilitate the entry (and exit) of spermine to (and from) the blocking site. PMID:11251047
Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.
2012-01-01
Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5β-reduction of Δ4-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5β-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5α-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3β-HSD as opposed to a 3α-HSD. The catalytic efficiency achieved for 3β-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5β-dihydrotestosterone, and Δ4-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the Δ4-double bond and confers 3β-HSD activity on the 5β-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its α-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference. PMID:22437839
Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa
2014-01-01
We previously found a very large NAD-dependent glutamate dehydrogenase with approximately 170 kDa subunit from Janthinobacterium lividum (Jl-GDH) and predicted that GDH reaction occurred in the central domain of the subunit. To gain further insights into the role of the central domain, several single point mutations were introduced. The enzyme activity was completely lost in all single mutants of R784A, K810A, K820A, D885A, and S1142A. Because, in sequence alignment analysis, these residues corresponded to the residues responsible for glutamate binding in well-known small GDH with approximately 50 kDa subunit, very large GDH and well-known small GDH may share the same catalytic mechanism. In addition, we demonstrated that C1141, one of the three cysteine residues in the central domain, was responsible for the inhibition of enzyme activity by HgCl2, and HgCl2 functioned as an activating compound for a C1141T mutant. At low concentrations, moreover, HgCl2 was found to function as an activating compound for a wild-type Jl-GDH. This suggests that the mechanism for the activation is entirely different from that for the inhibition.
Thakkar, Shraddha; Nanaware-Kharade, Nisha; Celikel, Reha; Peterson, Eric C.; Varughese, Kottayil I.
2014-01-01
Methamphetamine (METH) abuse is a worldwide threat, without any FDA approved medications. Anti-METH IgGs and single chain fragments (scFvs) have shown efficacy in preclinical studies. Here we report affinity enhancement of an anti-METH scFv for METH and its active metabolite amphetamine (AMP), through the introduction of point mutations, rationally designed to optimize the shape and hydrophobicity of the antibody binding pocket. The binding affinity was measured using saturation binding technique. The mutant scFv-S93T showed 3.1 fold enhancement in affinity for METH and 26 fold for AMP. The scFv-I37M and scFv-Y34M mutants showed enhancement of 94, and 8 fold for AMP, respectively. Structural analysis of scFv-S93T:METH revealed that the substitution of Ser residue by Thr caused the expulsion of a water molecule from the cavity, creating a more hydrophobic environment for the binding that dramatically increases the affinities for METH and AMP. PMID:24419156
Different states of synaptotagmin regulate evoked versus spontaneous release
Bai, Hua; Xue, Renhao; Bao, Huan; Zhang, Leili; Yethiraj, Arun; Cui, Qiang; Chapman, Edwin R.
2016-01-01
The tandem C2-domains of synaptotagmin 1 (syt) function as Ca2+-binding modules that trigger exocytosis; in the absence of Ca2+, syt inhibits spontaneous release. Here, we used proline linkers to constrain and alter the relative orientation of these C2-domains. Short poly-proline helices have a period of three, so large changes in the relative disposition of the C2-domains result from changing the length of the poly-proline linker by a single residue. The length of the linker was varied one residue at a time, revealing a periodicity of three for the ability of the linker mutants to interact with anionic phospholipids and drive evoked synaptic transmission; syt efficiently drove exocytosis when its tandem C2-domains pointed in the same direction. Analysis of spontaneous release revealed a reciprocal relationship between the activation and clamping activities of the linker mutants. Hence, different structural states of syt underlie the control of distinct forms of synaptic transmission. PMID:27001899
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittekind, M.; Klevit, R.E.; Reizer, J.
1990-08-07
On the basis of an analysis of two-dimensional {sup 1}H NMR spectra, the complete sequence-specific {sup 1}H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four {beta}-strands that form a single antiparallel {beta}-sheet and two well-defined {alpha}-helices. There are two stretchesmore » of extended backbone structure, one of which contains the active site His{sub 15}. The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies.« less
Characterization of a bi-pistil mutant in Medicago truncatula Gaertn
USDA-ARS?s Scientific Manuscript database
We propose the name bi-pistil, bip, for a floral organ mutant observed in transgenic Medicago truncatula plants. The mutant has two separate stigmas borne on two separate styles that emerge from a single superior carpel primordium. The bip plant was crossed to a previously reported male sterile mtap...
Cleaver, James E.
1977-01-01
Cultured Chinese hamster cells were labeled with 6-3H-thymidine or 5-methyl-3H-thymidine and allowed to accumulate damage from 3H decays for various periods of time while frozen. The frequencies of cells resistant to 6-thioguanine or ouabain and the amount of DNA damage (i.e., number of single-strand breaks) were determined and compared with the mutation frequencies resulting from X and ultraviolet light irradiation. Whereas 3H decays and X rays made only 6-thioguanine-resistant mutants, ultraviolet light made both 6-thioguanine- and ouabain-resistant mutants. 3H decays originating at the 6 position were two to three times as effective as decays at the 5-methyl position in making drug-resistant mutants, but decays at both sites were equally effective in making single-strand breaks. Mutants and strand breaks produced by beta irradiation of the nucleus probably are the same irrespective of the site of the decay in thymine; these results indicate that the local transmutation effects of 3H decay produce more mutations when they occur at the 6 position than at the 5-methyl position. PMID:914028
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A
2012-07-20
The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. Copyright © 2012. Published by Elsevier Ltd.
Alexander, Helen K.; Mayer, Stephanie I.; Bonhoeffer, Sebastian
2017-01-01
Abstract Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, the propensity to mutate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We review the evidence for mutation rate heterogeneity and explore its consequences by extending classic population genetic models to allow an arbitrary distribution of mutation rate among individuals, either with or without inheritance. With this general new framework, we rigorously establish the effects of heterogeneity at various evolutionary timescales. In a single generation, variation of mutation rate about the mean increases the probability of producing zero or many simultaneous mutations on a genome. Over multiple generations of mutation and selection, heterogeneity accelerates the appearance of both deleterious and beneficial multi-point mutants. At mutation-selection balance, higher-order mutant frequencies are likewise boosted, while lower-order mutants exhibit subtler effects; nonetheless, population mean fitness is always enhanced. We quantify the dependencies on moments of the mutation rate distribution and selection coefficients, and clarify the role of mutation rate inheritance. While typical methods of estimating mutation rate will recover only the population mean, analyses assuming mutation rate is fixed to this mean could underestimate the potential for multi-locus adaptation, including medically relevant evolution in pathogenic and cancerous populations. We discuss the potential to empirically parameterize mutation rate distributions, which have to date hardly been quantified. PMID:27836985
IDH-mutant glioma specific association of rs55705857 located at 8q24.21 involves MYC deregulation
Oktay, Yavuz; Ülgen, Ege; Can, Özge; Akyerli, Cemaliye B.; Yüksel, Şirin; Erdemgil, Yiğit; Durası, İ. Melis; Henegariu, Octavian Ioan; Nanni, E. Paolo; Selevsek, Nathalie; Grossmann, Jonas; Erson-Omay, E. Zeynep; Bai, Hanwen; Gupta, Manu; Lee, William; Turcan, Şevin; Özpınar, Aysel; Huse, Jason T.; Sav, M. Aydın; Flanagan, Adrienne; Günel, Murat; Sezerman, O. Uğur; Yakıcıer, M. Cengiz; Pamir, M. Necmettin; Özduman, Koray
2016-01-01
The single nucleotide polymorphism rs55705857, located in a non-coding but evolutionarily conserved region at 8q24.21, is strongly associated with IDH-mutant glioma development and was suggested to be a causal variant. However, the molecular mechanism underlying this association has remained unknown. With a case control study in 285 gliomas, 316 healthy controls, 380 systemic cancers, 31 other CNS-tumors, and 120 IDH-mutant cartilaginous tumors, we identified that the association was specific to IDH-mutant gliomas. Odds-ratios were 9.25 (5.17–16.52; 95% CI) for IDH-mutated gliomas and 12.85 (5.94–27.83; 95% CI) for IDH-mutated, 1p/19q co-deleted gliomas. Decreasing strength with increasing anaplasia implied a modulatory effect. No somatic mutations were noted at this locus in 114 blood-tumor pairs, nor was there a copy number difference between risk-allele and only-ancestral allele carriers. CCDC26 RNA-expression was rare and not different between the two groups. There were only minor subtype-specific differences in common glioma driver genes. RNA sequencing and LC-MS/MS comparisons pointed to significantly altered MYC-signaling. Baseline enhancer activity of the conserved region specifically on the MYC promoter and its further positive modulation by the SNP risk-allele was shown in vitro. Our findings implicate MYC deregulation as the underlying cause of the observed association. PMID:27282637
Effects of mutation, truncation and temperature on the folding kinetics of a WW domain
Maisuradze, Gia G.; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A.
2013-01-01
The purpose of this work is to show how mutation, truncation and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis (PCA) of molecular dynamics (MD)-generated folding trajectories of the triple β-strand WW domain from the Formin binding protein 28 (FBP) [PDB: 1E0L] and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement, (MSD), and PCA eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992
Romano, Christine A; Sontz, Pamela A; Barton, Jacqueline K
2011-07-12
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75, and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. On the basis of circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome.
Romano, Christine A.; Sontz, Pamela A.; Barton, Jacqueline K.
2011-01-01
Endonuclease III (EndoIII) is a base excision repair glycosylase that targets damaged pyrimidines and contains a [4Fe-4S] cluster. We have proposed a model where BER proteins that contain redox-active [4Fe-4S] clusters utilize DNA charge transport (CT) as a first step in the detection of DNA lesions. Here, several mutants of EndoIII were prepared to probe their efficiency of DNA/protein charge transport. Cyclic voltammetry experiments on DNA-modified electrodes show that aromatic residues F30, Y55, Y75 and Y82 help mediate charge transport between DNA and the [4Fe-4S] cluster. Based on circular dichroism studies to measure protein stability, mutations at residues W178 and Y185 are found to destabilize the protein; these residues may function to protect the [4Fe-4S] cluster. Atomic force microscopy studies furthermore reveal a correlation in the ability of mutants to carry out protein/DNA CT and their ability to relocalize onto DNA strands containing a single base mismatch; EndoIII mutants that are defective in carrying out DNA/protein CT do not redistribute onto mismatch-containing strands, consistent with our model. These results demonstrate a link between the ability of the repair protein to carry out DNA CT and its ability to relocalize near lesions, thus pointing to DNA CT as a key first step in the detection of base damage in the genome. PMID:21651304
Shcherbakov, Victor P; Kudryashova, Elena
2014-09-01
The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3-8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Yujie; Yang, Hong; Zhou, Xuedong; Luo, Hongke; Tang, Fan; Yang, Jin; Alterovitz, Gil; Cheng, Lei; Ren, Biao
2018-06-01
The increase of fungal infectious diseases and lack of safe and efficacious antifungal drugs result in the urgent need of new therapeutic strategies. Here, we repurposed the lovastatin (LOV) as a synergistic antifungal potentiator to itraconazole (ITZ) against Candida albicans planktonic cells and biofilms in vitro for the first time. Mutants from ergosterol biosynthesis pathway were employed and key gene expression profiles of ergosterol pathway were also measured. LOV single treatment was unable to inhibit C. albicans strains except the ERG3 and ERG11 double mutant. LOV and ITZ combination was capable of inhibiting the C. albicans planktonic cells and biofilms synergistically including the ITZ resistant mutants. The synergistic antifungal ability was stronger in either ERG11 or ERG3 dysfunctional mutants compared to wild type. The combination lost the synergistic activities in the ERG11 and ERG3 double mutant, while it was sensitive to LOV single treatment. The expression of HMG1, encoding HMG-CoA the target of LOV, was significantly upregulated in ERG11 and ERG3 double mutant strain by the treatment of the combination at 1.5 and 3 h. The combination also significantly increased the HMG1 expression in mutants from ergosterol pathway compared with wild type. The ERG11 and ERG3 gene expressions were upregulated by ITZ and its combination with LOV, but seemingly not by LOV single treatment after 1.5 and 3 h. The combination of LOV and ITZ on C. albicans planktonic cells and biofilms highlights its potential clinical practice especially against the azole drug-resistant mutants.
Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C
2017-06-01
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.
Li, Guotian; Jain, Rashmi; Chern, Mawsheng; ...
2017-06-02
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportionmore » of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. In conclusion, this work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.« less
Genetic studies of cell fusion induced by herpes simplex virus type 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, G.S.; Person, S.; Keller, P.M.
1980-07-01
Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less
A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.
2015-01-01
Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids. PMID:26063505
Shimizu, Nobuaki; Soda, Yasushi; Kanbe, Katsuaki; Liu, Hui-Yu; Jinno, Atsushi; Kitamura, Toshio; Hoshino, Hiroo
1999-01-01
Twelve G protein-coupled receptors, including chemokine receptors, act as coreceptors and determinants for the cell tropisms of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We isolated HIV-1 variants from T-cell-line (T)- and macrophage (M)-tropic (i.e., dualtropic) (R5-R3-X4) HIV-1 strains and also produced six HIV-1 mutants carrying single-point amino acid substitutions at the tip of the V3 region of the Env protein of HIV-1. These variants and three mutants infected brain-derived CD4-positive cells that are resistant to M-, T-, or dualtropic (R5, X4, or R5-X4) HIV-1 strains. However, a factor that determines this cell tropism has not been identified. This study shows that primary brain-derived fibroblast-like cell strains, BT-3 and BT-20/N, as well as a CD4-transduced glioma cell line, U87/CD4, which were susceptible to these HIV-1 variants and mutants and the HIV-2ROD strain, expressed mRNA of an orphan G protein-coupled receptor (GPCR), GPR1. When a CD4-positive cell line which was strictly resistant to infection with diverse HIV-1 and HIV-2 strains was transduced with GPR1, the cell line became susceptible to these HIV-1 variants and mutants and to an HIV-2 strain but not to T- or dualtropic HIV-1 strains, and numerous syncytia formed after infection. These results indicate that GPR1 functions as a coreceptor for the HIV-1 variants and mutants and for the HIV-2ROD strain in vitro. PMID:10233994
Danisman, Selahattin; van der Wal, Froukje; Dhondt, Stijn; Waites, Richard; de Folter, Stefan; Bimbo, Andrea; van Dijk, Aalt DJ; Muino, Jose M.; Cutri, Lucas; Dornelas, Marcelo C.; Angenent, Gerco C.; Immink, Richard G.H.
2012-01-01
TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1 (TCP) transcription factors control developmental processes in plants. The 24 TCP transcription factors encoded in the Arabidopsis (Arabidopsis thaliana) genome are divided into two classes, class I and class II TCPs, which are proposed to act antagonistically. We performed a detailed phenotypic analysis of the class I tcp20 mutant, showing an increase in leaf pavement cell sizes in 10-d-old seedlings. Subsequently, a glucocorticoid receptor induction assay was performed, aiming to identify potential target genes of the TCP20 protein during leaf development. The LIPOXYGENASE2 (LOX2) and class I TCP9 genes were identified as TCP20 targets, and binding of TCP20 to their regulatory sequences could be confirmed by chromatin immunoprecipitation analyses. LOX2 encodes for a jasmonate biosynthesis gene, which is also targeted by class II TCP proteins that are under the control of the microRNA JAGGED AND WAVY (JAW), although in an antagonistic manner. Mutation of TCP9, the second identified TCP20 target, resulted in increased pavement cell sizes during early leaf developmental stages. Analysis of senescence in the single tcp9 and tcp20 mutants and the tcp9tcp20 double mutants showed an earlier onset of this process in comparison with wild-type control plants in the double mutant only. Both the cell size and senescence phenotypes are opposite to the known class II TCP mutant phenotype in JAW plants. Altogether, these results point to an antagonistic function of class I and class II TCP proteins in the control of leaf development via the jasmonate signaling pathway. PMID:22718775
Rahman, Habibur; Singer, Stacy D; Weselake, Randall J
2013-06-01
Designing the fatty acid composition of Brassica napus L. seed oil for specific applications would extend the value of this crop. A mutation in Fatty Acid Desaturase 3 (FAD3), which encodes the desaturase responsible for catalyzing the formation of α-linolenic acid (ALA; 18:3 (cisΔ9,12,15)), in a diploid Brassica species would potentially result in useful germplasm for creating an amphidiploid displaying low ALA content in the seed oil. For this, seeds of B. oleracea (CC), one of the progenitor species of B. napus, were treated with ethyl-methane-sulfonate to induce mutations in genes encoding enzymes involved in fatty acid biosynthesis. Seeds from 1,430 M2 plants were analyzed, from which M3 seed families with 5.7-6.9 % ALA were obtained. Progeny testing and selection for low ALA content were carried out in M3-M7 generations, from which mutant lines with <2.0 % ALA were obtained. Molecular analysis revealed that the mutation was due to a single nucleotide substitution from G to A in exon 3 of FAD3, which corresponds to an amino acid residue substitution from glutamic acid to lysine. No obvious differences in the expression of the FAD3 gene were detected between wild type and mutant lines; however, evaluation of the performance of recombinant Δ-15 desaturase from mutant lines in yeast indicated reduced production of ALA. The novelty of this mutation can be inferred from the position of the point mutation in the C-genome FAD3 gene when compared to the position of mutations reported previously by other researchers. This B. oleracea mutant line has the potential to be used for the development of low-ALA B. napus and B. carinata oilseed crops.
Structural symmetry in evolutionary games.
McAvoy, Alex; Hauert, Christoph
2015-10-06
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be 'evolutionarily equivalent' in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term 'homogeneous' should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. © 2015 The Author(s).
Structural symmetry in evolutionary games
McAvoy, Alex; Hauert, Christoph
2015-01-01
In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436
Novel Insights into the Organization of Laticifer Cells: A Cell Comprising a Unified Whole System.
Castelblanque, Lourdes; Balaguer, Begoña; Martí, Cristina; Rodríguez, Juan José; Orozco, Marianela; Vera, Pablo
2016-10-01
Laticifer cells are specialized plant cells that synthesize and accumulate latex. Studies on laticifers have lagged behind in recent years, and data regarding the functional role of laticifers and their fitness benefit still remain elusive. Laticifer differentiation and its impact on plant growth and development also remain to be investigated. Here, cellular, molecular, and genetic tools were developed to examine the distribution, differentiation, ontogeny, and other characteristic features, as well as the potential developmental role of laticifer cells in the latex-bearing plant Euphorbia lathyris. The organization of the laticiferous system within the E. lathyris plant body is reported, emerging as a single elongated and branched coenocytic cell, constituting the largest cell type existing in plants. We also report the ontogeny and organization of laticifer cells in the embryo and the identification of a laticifer-associated gene expression pattern. Moreover, the identification of laticifer- and latex-deficient mutants (pil mutants) allowed for the identification of distinct loci regulating laticifer differentiation, growth, and metabolic activity. Additionally, pil mutants revealed that laticifer cells appear nonessential for plant growth and development, thus pointing toward their importance, instead, for specific ecophysiological adaptations of latex-bearing plants in natural environments. © 2016 American Society of Plant Biologists. All Rights Reserved.
Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier
2014-01-01
Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated. PMID:24319148
Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier
2014-02-01
Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated.
Buzard, G S; Enomoto, T; Hongyo, T; Perantoni, A O; Diwan, B A; Devor, D E; Reed, C D; Dove, L F; Rice, J M
1999-10-01
Peripheral nerve tumors (PNT) and melanomas induced transplacentally on day 14 of gestation in Syrian golden hamsters by N-nitrosoethylurea were analyzed for activated oncogenes by the NIH 3T3 transfection assay, and for mutations in the neu oncogene by direct sequencing, allele-specific oligonucleotide hybridization, MnlI restriction-fragment-length polymorphism, single-strand conformation polymorphism, and mismatch amplification mutation assays. All (67/67) of the PNT, but none of the melanomas, contained a somatic missense T --> A transversion within the neu oncogene transmembrane domain at a site corresponding to that which also occurs in rat schwannomas transplacentally induced by N-nitrosoethylurea. In only 2 of the 67 individual hamster PNT did the majority of tumor cells appear to carry the mutant neu allele, in contrast to comparable rat schwannomas in which it overwhelmingly predominates. The low fraction of hamster tumor cells carrying the mutation was stable through multiple transplantation passages. In the hamster, as in the rat, specific point-mutational activation of the neu oncogene thus constitutes the major pathway for induction of PNT by transplacental exposure to an alkylating agent, but the low allelic representation of mutant neu in hamster PNT suggests a significant difference in mechanism by which the mutant oncogene acts in this species.
Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.
Hu, Kejin; Guo, Shuguang; Yan, Gonghong; Yuan, Wenjie; Zheng, Yin; Jiang, Yu
2016-04-01
In the yeast Saccharomyces cerevisiae the TOR complex 1 (TORC1) controls many growth-related cellular processes and is essential for cell growth and proliferation. Macrolide antibiotic rapamycin, in complex with a cytosol protein named FKBP12, specifically inhibits TORC1, causing growth arrest. The FKBP12-rapamycin complex interferes with TORC1 function by binding to the FRB domain of the TOR proteins. In an attempt to understand the role of the FRB domain in TOR function, we identified a single point mutation (Tor2(W2041R) ) in the FRB domain of Tor2 that renders yeast cells rapamycin resistant and temperature sensitive. At the permissive temperature, the Tor2 mutant protein is partially defective for binding with Kog1 and TORC1 is impaired for membrane association. At the restrictive temperature, Kog1 but not the Tor2 mutant protein, is rapidly degraded. Overexpression of ubiquitin stabilizes Kog1 and suppresses the growth defect associated with the tor2 mutant at the nonpremissive temperature. We find that ubiquitin binds non-covalently to Kog1, prevents Kog1 from degradation and stabilizes TORC1. Our data reveal a unique role for ubiquitin in regulation of TORC1 and suggest that Kog1 requires association with the Tor proteins for stabilization. © 2016 John Wiley & Sons Ltd.
Time-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection.
Yang, Guanhua; Billings, Gabriel; Hubbard, Troy P; Park, Joseph S; Yin Leung, Ka; Liu, Qin; Davis, Brigid M; Zhang, Yuanxing; Wang, Qiyao; Waldor, Matthew K
2017-10-03
Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g., during infection). Here, we describe structured analysis of TIS data collected as a time series, termed pattern analysis of conditional essentiality (PACE). From a temporal series of TIS data, PACE derives a quantitative assessment of each mutant's fitness over the course of an experiment and identifies mutants with related fitness profiles. In so doing, PACE circumvents major limitations of existing methodologies, specifically the need for artificial effect size thresholds and enumeration of bacterial population expansion. We used PACE to analyze TIS samples of Edwardsiella piscicida (a fish pathogen) collected over a 2-week infection period from a natural host (the flatfish turbot). PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a cutoff at a terminal sampling point, and it identified subpopulations of mutants with distinct fitness profiles, one of which informed the design of new live vaccine candidates. Overall, PACE enables efficient mining of time series TIS data and enhances the power and sensitivity of TIS-based analyses. IMPORTANCE Transposon insertion sequencing (TIS) enables genome-wide mapping of the genetic determinants of fitness, typically based on observations at a single sampling point. Here, we move beyond analysis of endpoint TIS data to create a framework for analysis of time series TIS data, termed pattern analysis of conditional essentiality (PACE). We applied PACE to identify genes that contribute to colonization of a natural host by the fish pathogen Edwardsiella piscicida. PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a terminal sampling point, and its clustering of mutants with related fitness profiles informed design of new live vaccine candidates. PACE yields insights into patterns of fitness dynamics and circumvents major limitations of existing methodologies. Finally, the PACE method should be applicable to additional "omic" time series data, including screens based on clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR/Cas9). Copyright © 2017 Yang et al.
Higgins, LeeAnn; Markowski, Todd; Brambl, Robert
2016-01-01
A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869
Engineering of a novel Ca{sup 2+}-regulated kinesin molecular motor using a calmodulin dimer linker
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishido, Hideki; Maruta, Shinsaku, E-mail: maruta@soka.ac.jp
Highlights: Black-Right-Pointing-Pointer Engineered kinesin-M13 and calmodulin involving single cysteine were prepared. Black-Right-Pointing-Pointer CaM mutant was cross-linked to dimer by bifunctional thiol reactive reagent. Black-Right-Pointing-Pointer Kinesin-M13 was dimerized via CaM dimer in the presence of calcium. Black-Right-Pointing-Pointer Function of the engineered kinesin was regulated by a Ca{sup 2+}-calmodulin dimer linker. -- Abstract: The kinesin-microtubule system holds great promise as a molecular shuttle device within biochips. However, one current barrier is that such shuttles do not have 'on-off' control of their movement. Here we report the development of a novel molecular motor powered by an accelerator and brake system, using a kinesinmore » monomer and a calmodulin (CaM) dimer. The kinesin monomer, K355, was fused with a CaM target peptide (M13 peptide) at the C-terminal part of the neck region (K355-M13). We also prepared CaM dimers using CaM mutants (Q3C), (R86C), or (A147C) and crosslinkers that react with cysteine residues. Following induction of K355-M13 dimerization with CaM dimers, we measured K355-M13 motility and found that it can be reversibly regulated in a Ca{sup 2+}-dependent manner. We also found that velocities of K355-M13 varied depending on the type and crosslink position of the CaM dimer used; crosslink length also had a moderate effect on motility. These results suggest Ca{sup 2+}-dependent dimerization of K355-M13 could be used as a novel molecular shuttle, equipped with an accelerator and brake system, for biochip applications.« less
Krell, Tino; Greco, Frédéric; Engel, Olivier; Dubayle, Jean; Dubayle, Joseline; Kennel, Audrey; Charloteaux, Benoit; Brasseur, Robert; Chevalier, Michel; Sodoyer, Regis; El Habib, Raphaëlle
2004-04-01
HIV gp41(24-157) unfolds cooperatively over the pH range of 1.0-4.0 with T(m) values of > 100 degrees C. At pH 2.8, protein unfolding was 80% reversible and the DeltaH(vH)/DeltaH(cal) ratio of 3.7 is indicative of gp41 being trimeric. No evidence for a monomer-trimer equilibrium in the concentration range of 0.3-36 micro m was obtained by DSC and tryptophan fluorescence. Glycosylation of gp41 was found to have only a marginal impact on the thermal stability. Reduction of the disulfide bond or mutation of both cysteine residues had only a marginal impact on protein stability. There was no cooperative unfolding event in the DSC thermogram of gp160 in NaCl/P(i), pH 7.4, over a temperature range of 8-129 degrees C. When the pH was lowered to 5.5-3.4, a single unfolding event at around 120 degrees C was noted, and three unfolding events at 93.3, 106.4 and 111.8 degrees C were observed at pH 2.8. Differences between gp41 and gp160, and hyperthermostable proteins from thermophile organisms are discussed. A series of gp41 mutants containing single, double, triple or quadruple point mutations were analysed by DSC and CD. The impact of mutations on the protein structure, in the context of generating a gp41 based vaccine antigen that resembles a fusion intermediate state, is discussed. A gp41 mutant, in which three hydrophobic amino acids in the gp41 loop were replaced with charged residues, showed an increased solubility at neutral pH.
Mutations in SLC2A2 Gene Reveal hGLUT2 Function in Pancreatic β Cell Development*
Michau, Aurélien; Guillemain, Ghislaine; Grosfeld, Alexandra; Vuillaumier-Barrot, Sandrine; Grand, Teddy; Keck, Mathilde; L'Hoste, Sébastien; Chateau, Danielle; Serradas, Patricia; Teulon, Jacques; De Lonlay, Pascale; Scharfmann, Raphaël; Brot-Laroche, Edith; Leturque, Armelle; Le Gall, Maude
2013-01-01
The structure-function relationships of sugar transporter-receptor hGLUT2 coded by SLC2A2 and their impact on insulin secretion and β cell differentiation were investigated through the detailed characterization of a panel of mutations along the protein. We studied naturally occurring SLC2A2 variants or mutants: two single-nucleotide polymorphisms and four proposed inactivating mutations associated to Fanconi-Bickel syndrome. We also engineered mutations based on sequence alignment and conserved amino acids in selected domains. The single-nucleotide polymorphisms P68L and T110I did not impact on sugar transport as assayed in Xenopus oocytes. All the Fanconi-Bickel syndrome-associated mutations invalidated glucose transport by hGLUT2 either through absence of protein at the plasma membrane (G20D and S242R) or through loss of transport capacity despite membrane targeting (P417L and W444R), pointing out crucial amino acids for hGLUT2 transport function. In contrast, engineered mutants were located at the plasma membrane and able to transport sugar, albeit with modified kinetic parameters. Notably, these mutations resulted in gain of function. G20S and L368P mutations increased insulin secretion in the absence of glucose. In addition, these mutants increased insulin-positive cell differentiation when expressed in cultured rat embryonic pancreas. F295Y mutation induced β cell differentiation even in the absence of glucose, suggesting that mutated GLUT2, as a sugar receptor, triggers a signaling pathway independently of glucose transport and metabolism. Our results describe the first gain of function mutations for hGLUT2, revealing the importance of its receptor versus transporter function in pancreatic β cell development and insulin secretion. PMID:23986439
Structural effects of extracellular loop mutations in CFTR helical hairpins.
Chang, Yuan-Heng; Stone, Tracy A; Chin, Stephanie; Glibowicka, Mira; Bear, Christine E; Deber, Charles M
2018-05-01
Missense mutations constitute 40% of 2000 cystic fibrosis-phenotypic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) database, yet the precise mechanism as to how a point mutation can render the entire 1480-residue CFTR protein dysfunctional is not well-understood. Here we investigate the structural effects of two CF-phenotypic mutations - glutamic acid to glycine at position 217 (E217G) and glutamine to arginine at position 220 (Q220R) - in the extracellular (ECL2) loop region of human CFTR using helical hairpin constructs derived from transmembrane (TM) helices 3 and 4 of the first membrane domain. We systematically replaced the wild type (WT) residues E217 and Q220 with the subset of missense mutations that could arise through a single nucleotide change in their respective codons. Circular dichroism spectra of E217G revealed that a significant increase in helicity vs. WT arises in the membrane-mimetic environment of sodium dodecylsulfate (SDS) micelles, while this mutant showed a similar gel shift to WT on SDS-PAGE gels. In contrast, the CF-mutant Q220R showed similar helicity but an increased gel shift vs. WT. These structural variations are compared with the maturation levels of the corresponding mutant full-length CFTRs, which we found are reduced to approx. 50% for E217G and 30% for Q220R vs. WT. The overall results with CFTR hairpins illustrate the range of impacts that single mutations can evoke in intramolecular protein-protein and/or protein-lipid interactions - and the levels to which corresponding mutations in full-length CFTR may be flagged by quality control mechanisms during biosynthesis. Copyright © 2018 Elsevier B.V. All rights reserved.
Doolan, Kyle M; Colby, David W
2015-01-30
Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation-specific antibodies. We used mutational scanning by cell-surface display to screen 1341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single-molecule real-time gene sequencing was used to quantify enrichment of mutants, returning 26,000 high-quality full-length reads for each screened population on average. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Prado-Cabrero, Alfonso; Schaub, Patrick; Díaz-Sánchez, Violeta; Estrada, Alejandro F; Al-Babili, Salim; Avalos, Javier
2009-08-01
Carotenoids are widespread terpenoid pigments with applications in the food and feed industries. Upon illumination, the gibberellin-producing fungus Fusarium fujikuroi (Gibberella fujikuroi mating population C) develops an orange pigmentation caused by an accumulation of the carboxylic apocarotenoid neurosporaxanthin. The synthesis of this xanthophyll includes five desaturation steps presumed to be catalysed by the carB-encoded phytoene desaturase. In this study, we identified a yellow mutant (SF21) by mutagenesis of a carotenoid-overproducing strain. HPLC analyses indicated a specific impairment in the ability of SF21-CarB to perform the fifth desaturation, as implied by the accumulation of gamma-carotene and beta-carotene, which arise through four-step desaturation. Sequencing of the SF21 carB allele revealed a single mutation resulting in an exchange of a residue conserved in other five-step desaturases. Targeted carB allele replacement proved that this single mutation is the cause of the SF21 carotenoid pattern. In support, expression of SF21 CarB in engineered carotene-producing Escherichia coli strains demonstrated its reduced ability to catalyse the fifth desaturation step on both monocyclic and acyclic substrates. Further mutagenesis of SF21 led to the isolation of two mutants, SF73 and SF98, showing low desaturase activities, which mediated only two desaturation steps, resulting in accumulation of the intermediate zeta-carotene at low levels. Both strains contained an additional mutation affecting a CarB domain tentatively associated with carotenoid binding. SF21 exhibited higher carotenoid amounts than its precursor strain or the SF73 and SF98 mutants, although carotenogenic mRNA levels were similar in the four strains.
Zou, Zhen; Qing, Zhihe; He, Xiaoxiao; Wang, Kemin; He, Dinggeng; Shi, Hui; Yang, Xue; Qing, Taiping; Yang, Xiaoxiao
2014-07-01
A novel approach for highly sensitive and selective genotyping of single-nucleotide polymorphism (SNP) has been developed based on ligation-rolling circle amplification (L-RCA) and stemless molecular beacon. In this approach, two tailored DNA probes were involved. The stemless molecular beacon, formed through the inclusion interactions of γ-cyclodextrin (γ-CD) and bis-pyrene labeled DNA fragment, was served as signal probe. In the absence of mutant target, the two pyrene molecules were bound in the γ-CD cavity to form an excimer and showed a strong fluorescence at 475 nm. It was here named γ-CD-P-MB. The padlock DNA probe was designed as recognition probe. Upon the recognition of a point mutation DNA targets, the padlock probe was ligated to generate a circular template. An RCA amplification was then initiated using the circular template in the presence of Phi29 polymerase and dNTPs. The L-RCA products, containing repetitive sequence units, subsequently hybridized with the γ-CD-P-MB. This made pyrene molecules away from γ-CD cavity and caused a decrease of excimer fluorescence. As a proof-of-concept, SNP typing of β-thalassemia gene at position -28 was investigated using this approach. The detection limit of mutated target was determined to be 40 fM. In addition, DNA ligase offered high fidelity in distinguishing the mismatched bases at the ligation site, resulting in positive detection of mutant target even when the ratio of the wildtype to the mutant is 999:1. Given these attractive characteristics, the developed approach might provide a great genotyping platform for pathogenic diagnosis and genetic analysis. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhan, Yaoyao; Maung, Saw W; Shao, Bing; Myat, Monn Monn
2010-11-30
The pair-rule gene, hairy, encodes a basic helix-loop-helix transcription factor and is required for patterning of the early Drosophila embryo and for morphogenesis of the embryonic salivary gland. Although hairy was shown to be expressed in the tracheal primordia and in surrounding mesoderm, whether hairy plays a role in tracheal development is not known. Here, we report that hairy is required for refining the terminal cell fate in the embryonic trachea and that hairy's tracheal function is distinct from its earlier role in embryonic patterning. In hairy mutant embryos where the repressive activity of hairy is lost due to lack of its co-repressor binding site, extra terminal cells are specified in the dorsal branches. We show that hairy functions in the muscle to refine the terminal cell fate to a single cell at the tip of the dorsal branch by limiting the expression domain of branchless (bnl), encoding the FGF ligand, in surrounding muscle cells. Abnormal activation of the Bnl signaling pathway in hairy mutant tracheal cells is exemplified by increased number of dorsal branch cells expressing Bnl receptor, Breathless (Btl) and Pointed, a downstream target of the Bnl/Btl signaling pathway. We also show that hairy genetically interacts with bnl in TC fate restriction and that overexpression of bnl in a subset of the muscle surrounding tracheal cells phenocopied the hairy mutant phenotype. Our studies demonstrate a novel role for Hairy in restriction of the terminal cell fate by limiting the domain of bnl expression in surrounding muscle cells such that only a single dorsal branch cell becomes specified as a terminal cell. These studies provide the first evidence for Hairy in regulation of the FGF signaling pathway during branching morphogenesis.
Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum.
Mochama, Pauline; Jadhav, Prajakta; Neupane, Achal; Lee Marzano, Shin-Yi
2018-04-22
This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by infecting wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a DNA virus. Key silencing-related genes were disrupted to dissect the RNA silencing pathway. Specifically, dicer genes ( dcl-1, dcl-2 , and both dcl-1 / dcl-2 ) were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, and susceptibility to virus infections. Wild-type and mutant strains were transfected with a single-stranded RNA virus, SsHV2-L, and copies of a single-stranded DNA mycovirus, SsHADV-1, as a synthetic virus constructed in this study. Disruption of dcl-1 or dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum ; however, the double dicer mutant strain exhibited significantly slower growth. Furthermore, the Δdcl-1/dcl-2 double mutant, which was slow growing without virus infection, exhibited much more severe debilitation following virus infections including phenotypic changes such as slower growth, reduced pigmentation, and delayed sclerotial formation. These phenotypic changes were absent in the single mutants, Δdcl-1 and Δdcl-2 . Complementation of a single dicer in the double disruption mutant reversed viral susceptibility to the wild-type state. Virus-derived small RNAs were accumulated from virus-infected wild-type strains with strand bias towards the negative sense. The findings of these studies indicate that S. sclerotiorum has robust RNA silencing mechanisms that process both DNA and RNA mycoviruses and that, when both dicers are silenced, invasive nucleic acids can greatly debilitate the virulence of this fungus.
Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara
2009-09-23
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.
Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara
2009-01-01
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545
Candel, Adela M; van Nuland, Nico A J; Martin-Sierra, Francisco M; Martinez, Jose C; Conejero-Lara, Francisco
2008-03-14
A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the alpha-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the "unbound" and "bound" states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2 approximately P7 approximately P10>P9 approximately P6>P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy-entropy compensation for all the mutants. This compensation appears to derive from an increase in conformational flexibility concomitant to the weakening of the interactions at the binding interface. We conclude that our approach, based on DSC and site-directed mutagenesis analysis of chimeric fusion proteins, may serve as a suitable tool to analyse the energetics of weak biomolecular interactions such as those involving SH3 domains.
Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut
2013-01-01
To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol−1 (15.1 kJ mol−1). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation. PMID:24100332
Genome-Wide Mutagenesis in Borrelia burgdorferi.
Lin, Tao; Gao, Lihui
2018-01-01
Signature-tagged mutagenesis (STM) is a functional genomics approach to identify bacterial virulence determinants and virulence factors by simultaneously screening multiple mutants in a single host animal, and has been utilized extensively for the study of bacterial pathogenesis, host-pathogen interactions, and spirochete and tick biology. The signature-tagged transposon mutagenesis has been developed to investigate virulence determinants and pathogenesis of Borrelia burgdorferi. Mutants in genes important in virulence are identified by negative selection in which the mutants fail to colonize or disseminate in the animal host and tick vector. STM procedure combined with Luminex Flex ® Map™ technology and next-generation sequencing (e.g., Tn-seq) are the powerful high-throughput tools for the determination of Borrelia burgdorferi virulence determinants. The assessment of multiple tissue sites and two DNA resources at two different time points using Luminex Flex ® Map™ technology provides a robust data set. B. burgdorferi transposon mutant screening indicates that a high proportion of genes are the novel virulence determinants that are required for mouse and tick infection. In this protocol, an effective signature-tagged Himar1-based transposon suicide vector was developed and used to generate a sequence-defined library of nearly 4800 mutants in the infectious B. burgdorferi B31 clone. In STM, signature-tagged suicide vectors are constructed by inserting unique DNA sequences (tags) into the transposable elements. The signature-tagged transposon mutants are generated when transposon suicide vectors are transformed into an infectious B. burgdorferi clone, and the transposable element is transposed into the 5'-TA-3' sequence in the B. burgdorferi genome with the signature tag. The transposon library is created and consists of many sub-libraries, each sub-library has several hundreds of mutants with same tags. A group of mice or ticks are infected with a mixed population of mutants with different tags, after recovered from different tissues of infected mice and ticks, mutants from output pool and input pool are detected using high-throughput, semi-quantitative Luminex ® FLEXMAP™ or next-generation sequencing (Tn-seq) technologies. Thus far, we have created a high-density, sequence-defined transposon library of over 6600 STM mutants for the efficient genome-wide investigation of genes and gene products required for wild-type pathogenesis, host-pathogen interactions, in vitro growth, in vivo survival, physiology, morphology, chemotaxis, motility, structure, metabolism, gene regulation, plasmid maintenance and replication, etc. The insertion sites of 4480 transposon mutants have been determined. About 800 predicted protein-encoding genes in the genome were disrupted in the STM transposon library. The infectivity and some functions of 800 mutants in 500 genes have been determined. Analysis of these transposon mutants has yielded valuable information regarding the genes and gene products important in the pathogenesis and biology of B. burgdorferi and its tick vectors.
Baym, Michael; Shaket, Lev; Anzai, Isao A; Adesina, Oluwakemi; Barstow, Buz
2016-11-10
Whole-genome knockout collections are invaluable for connecting gene sequence to function, yet traditionally, their construction has required an extraordinary technical effort. Here we report a method for the construction and purification of a curated whole-genome collection of single-gene transposon disruption mutants termed Knockout Sudoku. Using simple combinatorial pooling, a highly oversampled collection of mutants is condensed into a next-generation sequencing library in a single day, a 30- to 100-fold improvement over prior methods. The identities of the mutants in the collection are then solved by a probabilistic algorithm that uses internal self-consistency within the sequencing data set, followed by rapid algorithmically guided condensation to a minimal representative set of mutants, validation, and curation. Starting from a progenitor collection of 39,918 mutants, we compile a quality-controlled knockout collection of the electroactive microbe Shewanella oneidensis MR-1 containing representatives for 3,667 genes that is functionally validated by high-throughput kinetic measurements of quinone reduction.
Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.
2007-01-01
Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062
USDA-ARS?s Scientific Manuscript database
We report on a pearly eye mutant (PEM) line generated from a single male Bactrocera cucurbitae collected in Kapoho, Hawaii. Crossing experiments with colony wild-type flies indicate that the locus controlling this trait is autosomal and the mutant allele is recessive. Experiments with females to ass...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guotian; Jain, Rashmi; Chern, Mawsheng
The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportionmore » of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. In conclusion, this work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.« less
Novel Two-Step Hierarchical Screening of Mutant Pools Reveals Mutants under Selection in Chicks
Yang, Hee-Jeong; Bogomolnaya, Lydia M.; Elfenbein, Johanna R.; Endicott-Yazdani, Tiana; Reynolds, M. Megan; Porwollik, Steffen; Cheng, Pui; Xia, Xiao-Qin
2016-01-01
Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection. PMID:26857572
Bhat, Ashwin; Tamuli, Ranjan; Kasbekar, Durgadas P
2004-01-01
The pseudohomothallic fungus Neurospora tetrasperma is naturally resistant to the antibiotic hygromycin. We discovered that mutation of its erg-3 (sterol C-14 reductase) gene confers a hygromycin-sensitive phenotype that can be used to select transformants on hygromycin medium by complementation with the N. crassa erg-3+ and bacterial hph genes. Cotransformation of hph with PCR-amplified DNA of other genes enabled us to construct strains duplicated for the amplified DNA. Using transformation we constructed self-fertile strains that were homoallelic for an ectopic erg-3+ transgene and a mutant erg-3 allele at the endogenous locus. Self-crosses of these strains yielded erg-3 mutant ascospores that produced colonies with the characteristic morphology on Vogel's sorbose agar described previously for erg-3 mutants of N. crassa. The mutants were generated by repeat-induced point mutation (RIP), a genome defense process that causes numerous G:C to A:T mutations in duplicated DNA sequences. Homozygosity for novel recessive RIP-deficient mutations was signaled by self-crosses of erg-3-duplication strains that fail to produce erg-3 mutant progeny. Using this assay we isolated a UV-induced mutant with a putative partial RIP defect. RIP-induced mutants were isolated in rid-1 and sad-1, which are essential genes, respectively, for RIP and another genome defense mechanism called meiotic silencing by unpaired DNA. PMID:15280231
Zhou, Yue; Zhang, Na; Chen, Wenjuan; Zhao, Lijiao; Zhong, Rugang
2016-04-07
Protein-protein interactions (PPIs) are fundamental to all biological processes. Recently, the CK2β-derived cyclic peptide Pc has been demonstrated to efficiently antagonize the CK2α/CK2β interaction and strongly affect the phosphorylation of CK2β-dependent CK2 substrate specificity. The binding affinity of Pc to CK2α is destroyed to different extents by two single-point mutations of Tyr188 to Ala (Y188A) and Phe190 to Ala (F190A), which exert negative effects on the inhibitory activity (IC50) of Pc against the CK2α/CK2β interaction from 3.0 μM to 54.0 μM and ≫100 μM, respectively. However, the structural influences of Y188A and F190A mutations on the CK2α-Pc complex remain unclear. In this study, comparative molecular dynamics (MD) simulations, principal component analysis (PCA), domain cross-correlation map (DCCM) analysis and energy calculations were performed on wild type (WT), Y188A mutant, and F190A mutant systems. The results revealed that ordered communications between hydrophobic and polar interactions were essential for CK2α-Pc binding in the WT system. In addition to the loss of the hydrogen bond between Gln36 of CK2α and Gly189 of Pc in the two mutants, the improper recognition mechanisms occurred through different pathways. These pathways included the weakened hydrophobic interactions in the Y188A mutant as well as decreased polar and hydrophobic interactions in the F190A mutant. The energy analysis results qualitatively elucidated the instability of the two mutants and energetic contributions of the key residues. This study not only revealed the structural mechanisms for the decreased binding affinity of Y188A and F190A mutant CK2α-Pc complexes, but also provided valuable clues for the rational design of CK2α/CK2β subunit interaction inhibitors with high affinity and specificity.
Bibb, Maureen J.; Molle, Virginie; Buttner, Mark J.
2000-01-01
Sporulation mutants of Streptomyces coelicolor appear white because they are defective in the synthesis of the gray polyketide spore pigment, and such white (whi) mutants have been used to define 13 sporulation loci. whiN, one of five new whi loci identified in a recent screen of NTG (N-methyl-N′-nitro-N-nitrosoguanidine)-induced whi strains (N. J. Ryding et al., J. Bacteriol. 181:5419–5425, 1999), was defined by two mutants, R112 and R650. R650 produced frequent spores that were longer than those of the wild type. In contrast, R112 produced long, straight, undifferentiated hyphae, although rare spore chains were observed, sometimes showing highly irregular septum placement. Subcloning and sequencing showed that whiN encodes a member of the extracytoplasmic function subfamily of RNA polymerase sigma factors and that the sigma factor has an unusual N-terminal extension of approximately 86 residues that is not present in other sigma factors. A constructed whiN null mutant failed to form aerial mycelium (the “bald” phenotype) and, as a consequence, whiN was renamed bldN. This observation was not totally unexpected because, on some media, the R112 point mutant produced substantially less aerial mycelium than its parent, M145. The bldN null mutant did not fit simply into the extracellular signaling cascade proposed for S. coelicolor bld mutants. Expression of bldN was analyzed during colony development in wild-type and aerial mycelium-deficient bld strains. bldN was transcribed from a single promoter, bldNp. bldN transcription was developmentally regulated, commencing approximately at the time of aerial mycelium formation, and depended on bldG and bldH, but not on bldA, bldB, bldC, bldF, bldK, or bldJ or on bldN itself. Transcription from the p1 promoter of the response-regulator gene bldM depended on bldN in vivo, and the bldMp1 promoter was shown to be a direct biochemical target for ςBldN holoenzyme in vitro. PMID:10913095
Sani, Hartini Ahmad; Shariff, Fairolniza Mohd; Rahman, Raja Noor Zaliha Raja Abd; Leow, Thean Chor; Salleh, Abu Bakar
2018-01-01
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris-HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris-HCl pH 8, while for L2 lipase it was at 70 °C in Glycine-NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m ) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.
Fukuda, A; Sinsheimer, R L
1976-01-01
Mutation in several different cistrons of bacteriophage phi chi 174 blocks net progeny single-stranded DNA synthesis at the late period of infection (15). For the study of the functions of these cistrons in single-stranded DNA synthesis, asymmetric replication of replicative form DNA was examined at the late period of infection with amber mutants of these cistrons. While the normal, rapid process of asymmetric single-stranded viral DNA synthesis is blocked at the late period of these mutant infections, an asymmetric synthesis of the viral strand of replicative-form DNA is observed in this period, though at a reduced level, together with degradation of prelabeled viral strand. Some intermediate replicative-form molecules were also detected. Asymmetric synthesis of the viral strand of replicative-form DNA at the late period of phi chi infection is completely inhibited in the presence of a low concentration (35mug/ml) of chloramphenicol (which also blocks net single-stranded viral DNA synthesis). These results are discussed in terms of the possible role of the specific viral proteins for normal single-stranded DNA synthesis. PMID:1255871
Yi, Ping; Chen, Zhuqin; Yu, Lili; Zheng, Yingru; Liu, Guodong; Xie, Haichang; Zhou, Yuanguo; Zheng, Xiuhui; Han, Jian; Li, Li
2010-08-01
Analysis of fetal DNA in maternal plasma has recently been introduced for non-invasive prenatal diagnosis. We have now investigated the feasibility of polymerase chain reaction (PCR)/ligase detection reaction (LDR)/capillary electrophoresis for the detection of fetal point mutations, such as the beta-thalassemia mutation, IVS2 654(C --> T), in maternal plasma DNA. The sensitivity of LDR/capillary electrophoresis was examined by quantifying the mutant PCR products in the presence of a vast excess of non-mutant competitor template, a situation that mimics the detection of rare fetal mutations in the presence of excess maternal DNA. PCR/LDR/capillary electrophoresis was applied to detect the mutation, IVS2 654(C --> T), in an experimental model at different sensitivity levels and from 10 maternal plasma samples. Our results demonstrated that this approach to detect a low abundance IVS2 654(C --> T) mutation achieved a sensitivity of approximately 1:10,000. The approach was applied to maternal plasma DNA to detect the paternally inherited fetal IVS2 654(C --> T) mutation, and the results were equivalent to those obtained by PCR/reverse dot blot of amniotic fluid cell DNA. PCR/LDR/capillary electrophoresis has a very high sensitivity that can distinguish low abundance single nucleotide differences and can detect paternally inherited fetal point mutations in maternal plasma.
Bryant, Kirsten L.; Antonyak, Marc A.; Cerione, Richard A.; Baird, Barbara; Holowka, David
2013-01-01
Deregulation of ErbB receptor-tyrosine kinases is a hallmark of many human cancers. Conserved in the ErbB family is a cluster of basic amino acid residues in the cytoplasmic juxtamembrane region. We found that charge-silencing mutagenesis within this juxtamembrane region of the epidermal growth factor receptor (EGFR) results in the generation of a mutant receptor (EGFR Mut R1-6) that spontaneously transforms NIH 3T3 cells in a ligand-independent manner. A similar mutant with one additional basic residue, EGFR Mut R1-5, fails to exhibit ligand-independent transformation. The capacity of EGFR Mut R1-6 to mediate this transformation is maintained when this mutant is retained in the endoplasmic reticulum via a single point mutation, L393H, which we describe. We show that EGFR Mut R1-6 with or without L393H exhibits enhanced basal tyrosine phosphorylation when ectopically expressed, and the ligand-independent transforming activity of EGFR Mut R1-6 is sensitive to inhibition of EGFR kinase activity and is particularly dependent on PI3K and mTOR activity. Similar to EGFR Mut R1-6/L393H in NIH 3T3 cells, EGFR variant type III, a highly oncogenic mutant form of EGFR linked to human brain cancers, confers transforming activity while it is wholly endoplasmic reticulum-retained in U87 cells. Our findings highlight the importance of the polybasic juxtamembrane sequence in regulating the oncogenic potential of EGFR signaling. PMID:24142702
USDA-ARS?s Scientific Manuscript database
The nuclear male sterility (NMS) trait is a useful tool for sunflower (Helianthus annuus L.) breeding and genetic programs. Previously, we induced NMS mutants in cultivated line HA 89. The mutants possessed single recessive genes, ms6, ms7, and ms8, respectively, in NMS HA 89-872, NMS HA 89-552, and...
Ambrosio, Rafael; Ortiz-Marquez, Juan Cesar Federico; Curatti, Leonardo
2017-03-01
The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. However, with the exception of the symbiotic rhizobia-legumes system, progress towards a more extensive realization of this goal has been slow. In this study we manipulated the endogenous regulation of both nitrogen fixation and assimilation in the aerobic bacterium Azotobacter vinelandii. Substituting an exogenously inducible promoter for the native promoter of glutamine synthetase produced conditional lethal mutant strains unable to grow diazotrophically in the absence of the inducer. This mutant phenotype could be reverted in a double mutant strain bearing a deletion in the nifL gene that resulted in constitutive expression of nif genes and increased production of ammonium. Under GS non-inducing conditions both the single and the double mutant strains consistently released very high levels of ammonium (>20mM) into the growth medium. The double mutant strain grew and excreted high levels of ammonium under a wider range of concentrations of the inducer than the single mutant strain. Induced mutant cells could be loaded with glutamine synthetase at different levels, which resulted in different patterns of extracellular ammonium accumulation afterwards. Inoculation of the engineered bacteria into a microalgal culture in the absence of sources of C and N other than N 2 and CO 2 from the air, resulted in a strong proliferation of microalgae that was suppressed upon addition of the inducer. Both single and double mutant strains also promoted growth of cucumber plants in the absence of added N-fertilizer, while this property was only marginal in the parental strain. This study provides a simple synthetic genetic circuit that might inspire engineering of optimized inoculants that efficiently channel N 2 from the air into crops. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Genetic requirements for high constitutive SOS expression in recA730 mutants of Escherichia coli.
Vlašić, Ignacija; Šimatović, Ana; Brčić-Kostić, Krunoslav
2011-09-01
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo. Copyright © 2011, American Society for Microbiology. All Rights Reserved.
Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis.
Ali, Muhammad Amjad; Azeem, Farrukh; Nawaz, Muhammad Amjad; Acet, Tuba; Abbas, Amjad; Imran, Qari Muhammad; Shah, Kausar Hussain; Rehman, Hafiz Mamoon; Chung, Gyuhwa; Yang, Seung Hwan; Bohlmann, Holger
2018-04-17
Plant WRKY transcription factors play a vital role in abiotic stress tolerance and regulation of plant defense responses. This study examined AtWRKY11 and AtWRKY17 expression under ABA, salt, and osmotic stress at different developmental stages in Arabidopsis. We used reverse transcriptase PCR, quantitative real-time PCR, and promoter:GUS lines to analyze expression. Both genes were upregulated in response to abiotic stress. Next, we applied the same stressors to seedlings of T-DNA insertion wrky11 and 17 knock-out mutants (single and double). Under stress, the mutants exhibited slower germination and compromised root growth compared with the wild type. In most cases, double-mutant seedlings were more affected than single mutants. These results suggest that wrky11 and wrky17 are not strictly limited to plant defense responses but are also involved in conferring stress tolerance. Copyright © 2018 Elsevier GmbH. All rights reserved.
A mutational approach for the detection of genetic factors affecting seed size in maize.
Sangiorgio, Stefano; Carabelli, Laura; Gabotti, Damiano; Manzotti, Priscilla Sofia; Persico, Martina; Consonni, Gabriella; Gavazzi, Giuseppe
2016-12-01
Genes influencing seed size. The designation emp (empty pericarp) refers to a group of defective kernel mutants that exhibit a drastic reduction in endosperm tissue production. They allow the isolation of genes controlling seed development and affecting seed size. Nine independently isolated emp mutants have been analyzed in this study and in all cases longitudinal sections of mature seeds revealed the absence of morphogenesis in the embryo proper, an observation that correlates with their failure to germinate. Complementation tests with the nine emp mutants, crossed inter se in all pairwise combinations, identified complementing and non-complementing pairs in the F 1 progenies. Data were then validated in the F 2 /F 3 generations. Mutant chromosomal location was also established. Overall our study has identified two novel emp genes and a novel allele at the previously identified emp4 gene. The introgression of single emp mutants in a different genetic background revealed the existence of a cryptic genetic variation (CGV) recognizable as a variable increase in the endosperm tissue. The unmasking of CGV by introducing single mutants in different genetic backgrounds is the result of the interaction of the emp mutants with a suppressor that has no obvious phenotype of its own and is present in the genetic background of the inbred lines into which the emp mutants were transferred. On the basis of these results, emp mutants could be used as tools for the detection of genetic factors that enhance the amount of endosperm tissue in the maize kernel and which could thus become valuable targets to exploit in future breeding programs.
Single-cell analysis of intercellular heteroplasmy of mtDNA in Leber hereditary optic neuropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Y.; Sharpe, H.; Brown, N.
1994-07-01
The authors have investigated the distribution of mutant mtDNA molecules in single cells from a patient with Leber hereditary optic neuropathy (LHON). LHON is a maternally inherited disease that is characterized by a sudden-onset bilateral loss of central vision, which typically occurs in early adulthood. More than 50% of all LHON patients carry an mtDNA mutation at nucleotide position 11778. This nucleotide change converts a highly conserved arginine residue to histidine at codon 340 in the NADH-ubiquinone oxidoreductase subunit 4 (ND4) gene of mtDNA. In the present study, the authors used PCR amplification of mtDNA from lymphocytes to investigate mtDNAmore » heteroplasmy at the single-cell level in a LHON patient. They found that most cells were either homoplasmic normal or homoplasmic mutant at nucleotide position 11778. Some (16%) cells contained both mutant and normal mtDNA.« less
An annotated database of Arabidopsis mutants of acyl lipid metabolism
McGlew, Kathleen; Shaw, Vincent; Zhang, Meng; ...
2014-12-10
Mutants have played a fundamental role in gene discovery and in understanding the function of genes involved in plant acyl lipid metabolism. The first mutant in Arabidopsis lipid metabolism ( fad4) was described in 1985. Since that time, characterization of mutants in more than 280 genes associated with acyl lipid metabolism has been reported. This review provides a brief background and history on identification of mutants in acyl lipid metabolism, an analysis of the distribution of mutants in different areas of acyl lipid metabolism and presents an annotated database (ARALIPmutantDB) of these mutants. The database provides information on the phenotypesmore » of mutants, pathways and enzymes/proteins associated with the mutants, and allows rapid access via hyperlinks to summaries of information about each mutant and to literature that provides information on the lipid composition of the mutants. Mutants for at least 30 % of the genes in the database have multiple names, which have been compiled here to reduce ambiguities in searches for information. Furthermore, the database should also provide a tool for exploring the relationships between mutants in acyl lipid-related genes and their lipid phenotypes and point to opportunities for further research.« less
Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar
2016-11-01
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.
Role of aromatic interactions in amyloid formation by islet amyloid polypeptide.
Tu, Ling-Hsien; Raleigh, Daniel P
2013-01-15
Aromatic-aromatic and aromatic-hydrophobic interactions have been proposed to play a role in amyloid formation by a range of polypeptides, including islet amyloid polypeptide (IAPP or amylin). IAPP is responsible for amyloid formation in patients with type 2 diabetes. The polypeptide is 37 residues long and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. The ability of all single aromatic to leucine mutants, all double aromatic to leucine mutants, and the triple leucine mutant to form amyloid were examined. Amyloid formation was almost twice as rapid for the F15L mutant as for the wild type but was almost 3-fold slower for the Y37L mutant and almost 2-fold slower for the F23L mutant. Amyloid fibrils formed from each of the single mutants were effective at seeding amyloid formation by wild-type IAPP, implying that the fibril structures are similar. The F15L/F23L double mutant has a larger effect than the F15L/Y37L double mutant on the rate of amyloid formation, even though a Y37L substitution has more drastic consequences in the wild-type background than does the F23L mutation, suggesting nonadditive effects between the different sites. The triple leucine mutant and the F23L/Y37L double mutant are the slowest to form amyloid. F15 has been proposed to make important contacts early in the aggregation pathway, but the data for the F15L mutant indicate that they are not optimal. A set of variants containing natural and unnatural amino acids at position 15, which were designed to conserve hydrophobicity, but alter α-helix and β-sheet propensity, were analyzed to determine the properties of this position that control the rate of amyloid formation. There is no correlation between β-sheet propensity at this position and the rate of amyloid formation, but there is a correlation with α-helical propensity.
An undergraduate laboratory class using CRISPR/Cas9 technology to mutate drosophila genes.
Adame, Vanesa; Chapapas, Holly; Cisneros, Marilyn; Deaton, Carol; Deichmann, Sophia; Gadek, Chauncey; Lovato, TyAnna L; Chechenova, Maria B; Guerin, Paul; Cripps, Richard M
2016-05-06
CRISPR/Cas9 genome editing technology is used in the manipulation of genome sequences and gene expression. Because of the ease and rapidity with which genes can be mutated using CRISPR/Cas9, we sought to determine if a single-semester undergraduate class could be successfully taught, wherein students isolate mutants for specific genes using CRISPR/Cas9. Six students were each assigned a single Drosophila gene, for which no mutants currently exist. Each student designed and created plasmids to encode single guide RNAs that target their selected gene; injected the plasmids into Cas9-expressing embryos, in order to delete the selected gene; carried out a three-generation cross to test for germline transmission of a mutated allele and generate a stable stock of the mutant; and characterized the mutant alleles by PCR and sequencing. Three genes out of six were successfully mutated. Pre- and post- survey evaluations of the students in the class revealed that student attitudes towards their research competencies increased, although the changes were not statistically significant. We conclude that it is feasible to develop a laboratory genome editing class, to provide effective laboratory training to undergraduate students, and to generate mutant lines for use by the broader scientific community. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:263-275, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.
Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting
2014-01-01
ABSTRACT Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity. PMID:24965464
The flexibility of two tropomyosin mutants, D175N and E180G, that cause hypertrophic cardiomyopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaochuan; Suphamungmee, Worawit; Janco, Miro
2012-08-03
Highlights: Black-Right-Pointing-Pointer Well-known tropomyosin mutants, D175N and E180G are linked to cardiomyopathies. Black-Right-Pointing-Pointer The structural mechanics of D175N and E180G tropomyosins have been investigated. Black-Right-Pointing-Pointer D175N and E180G mutations increase both local and global tropomyosin flexibility. Black-Right-Pointing-Pointer In muscle, this increased flexibility will enhance myosin interactions on actin. Black-Right-Pointing-Pointer Extra myosin interaction can alter cardiac Ca{sup 2+}-switching, leading to dysfunction. -- Abstract: Point mutations targeting muscle thin filament proteins are the cause of a number of cardiomyopathies. In many cases, biological effects of the mutations are well-documented, whereas their structural and mechanical impact on filament assembly and regulatory function ismore » lacking. In order to elucidate molecular defects leading to cardiac dysfunction, we have examined the structural mechanics of two tropomyosin mutants, E180G and D175N, which are associated with hypertrophic cardiomyopathy (HCM). Tropomyosin is an {alpha}-helical coiled-coil dimer which polymerizes end-to-end to create an elongated superhelix that wraps around F-actin filaments of muscle and non-muscle cells, thus modulating the binding of other actin-binding proteins. Here, we study how flexibility changes in the E180G and D175N mutants might affect tropomyosin binding and regulatory motion on F-actin. Electron microscopy and Molecular Dynamics simulations show that E180G and D175N mutations cause an increase in bending flexibility of tropomyosin both locally and globally. This excess flexibility is likely to increase accessibility of the myosin-binding sites on F-actin, thus destabilizing the low-Ca{sup 2+} relaxed-state of cardiac muscle. The resulting imbalance in the on-off switching mechanism of the mutants will shift the regulatory equilibrium towards Ca{sup 2+}-activation of cardiac muscle, as is observed in affected muscle, accompanied by enhanced systolic activity, diastolic dysfunction, and cardiac compensations associated with HCM and heart failure.« less
Buglino, John A; Resh, Marilyn D
2010-06-23
Sonic hedgehog (Shh) is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat), a member of the membrane bound O-acyl transferase (MBOAT) family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown. Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234) that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m) and V(max) for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants. This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Computational design of thermostabilizing point mutations for G protein-coupled receptors
Popov, Petr; Peng, Yao; Shen, Ling; Stevens, Raymond C; Cherezov, Vadim; Liu, Zhi-Jie
2018-01-01
Engineering of GPCR constructs with improved thermostability is a key for successful structural and biochemical studies of this transmembrane protein family, targeted by 40% of all therapeutic drugs. Here we introduce a comprehensive computational approach to effective prediction of stabilizing mutations in GPCRs, named CompoMug, which employs sequence-based analysis, structural information, and a derived machine learning predictor. Tested experimentally on the serotonin 5-HT2C receptor target, CompoMug predictions resulted in 10 new stabilizing mutations, with an apparent thermostability gain ~8.8°C for the best single mutation and ~13°C for a triple mutant. Binding of antagonists confers further stabilization for the triple mutant receptor, with total gains of ~21°C as compared to wild type apo 5-HT2C. The predicted mutations enabled crystallization and structure determination for the 5-HT2C receptor complexes in inactive and active-like states. While CompoMug already shows high 25% hit rate and utility in GPCR structural studies, further improvements are expected with accumulation of structural and mutation data. PMID:29927385
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...
2017-07-07
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.
2006-01-01
The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6–1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. PMID:16606825
A Computational Methodology to Screen Activities of Enzyme Variants
Hediger, Martin R.; De Vico, Luca; Svendsen, Allan; Besenmatter, Werner; Jensen, Jan H.
2012-01-01
We present a fast computational method to efficiently screen enzyme activity. In the presented method, the effect of mutations on the barrier height of an enzyme-catalysed reaction can be computed within 24 hours on roughly 10 processors. The methodology is based on the PM6 and MOZYME methods as implemented in MOPAC2009, and is tested on the first step of the amide hydrolysis reaction catalyzed by the Candida Antarctica lipase B (CalB) enzyme. The barrier heights are estimated using adiabatic mapping and shown to give barrier heights to within 3 kcal/mol of B3LYP/6-31G(d)//RHF/3-21G results for a small model system. Relatively strict convergence criteria (0.5 kcal/(molÅ)), long NDDO cutoff distances within the MOZYME method (15 Å) and single point evaluations using conventional PM6 are needed for reliable results. The generation of mutant structures and subsequent setup of the semiempirical calculations are automated so that the effect on barrier heights can be estimated for hundreds of mutants in a matter of weeks using high performance computing. PMID:23284627
A new Gsdma3 mutation affecting anagen phase of first hair cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Shigekazu; Department of Genetics, School of Life Science, Graduate University for Advanced Studies, 1111 Yata, Mishima, Shizuoka 411-8540; Tamura, Masaru
2007-08-10
Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showedmore » hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells.« less
Transcriptome Analysis of a Premature Leaf Senescence Mutant of Common Wheat (Triticum aestivum L.)
Xia, Chuan; Zhang, Lichao; Dong, Chunhao; Liu, Xu; Kong, Xiuying
2018-01-01
Leaf senescence is an important agronomic trait that affects both crop yield and quality. In this study, we characterized a premature leaf senescence mutant of wheat (Triticum aestivum L.) obtained by ethylmethane sulfonate (EMS) mutagenesis, named m68. Genetic analysis showed that the leaf senescence phenotype of m68 is controlled by a single recessive nuclear gene. We compared the transcriptome of wheat leaves between the wild type (WT) and the m68 mutant at four time points. Differentially expressed gene (DEG) analysis revealed many genes that were closely related to senescence genes. Gene Ontology (GO) enrichment analysis suggested that transcription factors and protein transport genes might function in the beginning of leaf senescence, while genes that were associated with chlorophyll and carbon metabolism might function in the later stage. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the genes that are involved in plant hormone signal transduction were significantly enriched. Through expression pattern clustering of DEGs, we identified 1012 genes that were induced during senescence, and we found that the WRKY family and zinc finger transcription factors might be more important than other transcription factors in the early stage of leaf senescence. These results will not only support further gene cloning and functional analysis of m68, but also facilitate the study of leaf senescence in wheat. PMID:29534430
Reznicek, O; Facey, S J; de Waal, P P; Teunissen, A W R H; de Bont, J A M; Nijland, J G; Driessen, A J M; Hauer, B
2015-07-01
Saccharomyces cerevisiae does not express any xylose-specific transporters. To enhance the xylose uptake of S. cerevisiae, directed evolution of the Gal2 transporter was performed. Three rounds of error-prone PCR were used to generate mutants with improved xylose-transport characteristics. After developing a fast and reliable high-throughput screening assay based on flow cytometry, eight mutants were obtained showing an improved uptake of xylose compared to wild-type Gal2 out of 41 200 single yeast cells. Gal2 variant 2·1 harbouring five amino acid substitutions showed an increased affinity towards xylose with a faster overall sugar metabolism of glucose and xylose. Another Gal2 variant 3·1 carrying an additional amino acid substitution revealed an impaired growth on glucose but not on xylose. Random mutagenesis of the S. cerevisiae Gal2 led to an increased xylose uptake capacity and decreased glucose affinity, allowing improved co-consumption. Random mutagenesis is a powerful tool to evolve sugar transporters like Gal2 towards co-consumption of new substrates. Using a high-throughput screening system based on flow-through cytometry, various mutants were identified with improved xylose-transport characteristics. The Gal2 variants in this work are a promising starting point for further engineering to improve xylose uptake from mixed sugars in biomass. © 2015 The Society for Applied Microbiology.
Tuplin, A.; Evans, D. J.; Buckley, A.; Jones, I. M.; Gould, E. A.; Gritsun, T. S.
2011-01-01
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents. PMID:21622960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori
In wild type plants, decreasing CO 2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b 6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO 2. The increased thylakoid proton conductivitymore » (g H +) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO 2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less
Kanazawa, Atsuko; Ostendorf, Elisabeth; Kohzuma, Kaori; ...
2017-05-03
In wild type plants, decreasing CO 2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf). The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b 6f complex. Here in this paper, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO 2. The increased thylakoid proton conductivitymore » (g H +) in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO 2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.« less
Determination of mutated genes in the presence of wild-type DNA by using molecular beacons as probe
NASA Astrophysics Data System (ADS)
Zhang, Yonghua; Ai, Junjie; Gu, Qiaorong; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao
2017-03-01
Low-abundance mutations in the presence of wild-type DNA can be determined using molecular beacon (MB) as probe. A MB is generally used as DNA probe because it can distinguish single-base mismatched target DNA from fully matched target DNA. However, the probe can not determine low-abundance mutations in the presence of wild-type DNA. In this study, this limitation is addressed by enhancing the stability of unpaired base-containing dsDNA with a hydrogen-bonding ligand, which was added after hybridization of the MB to the target DNA. The ligand formed hydrogen bonds with unpaired bases and stabilized the unpaired base-containing dsDNA if target DNA is mutated one. As a result, more MBs were opened by the mutant genes in the presence of the ligand and a further increase in the fluorescence intensity was obtained. By contrast, fluorescence intensity did not change if target DNA is wild-type one. Consequent increase in the fluorescence intensity of the MB was regarded as a signal derived from mutant genes. The proposed method was applied in synthetic template systems to determine point mutation in DNA obtained from PCR analysis. The method also allows rapid and simple discrimination of a signal if it is originated in the presence of mutant gene or alternatively by a lower concentration of wild gene.
Schmitt, Joachim P; Debold, Edward P; Ahmad, Ferhaan; Armstrong, Amy; Frederico, Andrea; Conner, David A; Mende, Ulrike; Lohse, Martin J; Warshaw, David; Seidman, Christine E; Seidman, J G
2006-09-26
Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Veach, Darren; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R; DeMatteo, Ronald P; Besmer, Peter
2017-10-03
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic Kit V558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant Kit V558Δ/+ mice, double-mutant Kit V558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in Kit V558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing Kit V558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant Kit V558Δ;T669I/+ tumors.
Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q.; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R.; DeMatteo, Ronald P.; Besmer, Peter
2017-01-01
Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha–restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors. PMID:28923937
Interpreting a sequenced genome: toward a cosmid transgenic library of Caenorhabditis elegans.
Janke, D L; Schein, J E; Ha, T; Franz, N W; O'Neil, N J; Vatcher, G P; Stewart, H I; Kuervers, L M; Baillie, D L; Rose, A M
1997-10-01
We have generated a library of transgenic Caenorhabditis elegans strains that carry sequenced cosmids from the genome of the nematode. Each strain carries an extrachromosomal array containing a single cosmid, sequenced by the C. elegans Genome Sequencing Consortium, and a dominate Rol-6 marker. More than 500 transgenic strains representing 250 cosmids have been constructed. Collectively, these strains contain approximately 8 Mb of sequence data, or approximately 8% of the C. elegans genome. The transgenic strains are being used to rescue mutant phenotypes, resulting in a high-resolution map alignment of the genetic, physical, and DNA sequence maps of the nematode. We have chosen the region of chromosome III deleted by sDf127 and not covered by the duplication sDp8(III;I) as a starting point for a systematic correlation of mutant phenotypes with nucleotide sequence. In this defined region, we have identified 10 new essential genes whose mutant phenotypes range from developmental arrest at early larva, to maternal effect lethal. To date, 8 of these 10 essential genes have been rescued. In this region, these rescues represent approximately 10% of the genes predicted by GENEFINDER and considerably enhance the map alignment. Furthermore, this alignment facilitates future efforts to physically position and clone other genes in the region. [Updated information about the Transgenic Library is available via the Internet at http://darwin.mbb.sfu.ca/imbb/dbaillie/cos mid.html.
Okuno, Daichi; Fujisawa, Ryo; Iino, Ryota; Hirono-Hara, Yoko; Imamura, Hiromi; Noji, Hiroyuki
2008-01-01
F1-ATPase is a rotary molecular motor driven by ATP hydrolysis that rotates the γ-subunit against the α3β3 ring. The crystal structures of F1, which provide the structural basis for the catalysis mechanism, have shown essentially 1 stable conformational state. In contrast, single-molecule studies have revealed that F1 has 2 stable conformational states: ATP-binding dwell state and catalytic dwell state. Although structural and single-molecule studies are crucial for the understanding of the molecular mechanism of F1, it remains unclear as to which catalytic state the crystal structure represents. To address this issue, we introduced cysteine residues at βE391 and γR84 of F1 from thermophilic Bacillus PS3. In the crystal structures of the mitochondrial F1, the corresponding residues in the ADP-bound β (βDP) and γ were in direct contact. The βE190D mutation was additionally introduced into the β to slow ATP hydrolysis. By incorporating a single copy of the mutant β-subunit, the chimera F1, α3β2β(E190D/E391C)γ(R84C), was prepared. In single-molecule rotation assay, chimera F1 showed a catalytic dwell pause in every turn because of the slowed ATP hydrolysis of β(E190D/E391C). When the mutant β and γ were cross-linked through a disulfide bond between βE391C and γR84C, F1 paused the rotation at the catalytic dwell angle of β(E190D/E391C), indicating that the crystal structure represents the catalytic dwell state and that βDP is the catalytically active form. The former point was again confirmed in experiments where F1 rotation was inhibited by adenosine-5′-(β,γ-imino)-triphosphate and/or azide, the most commonly used inhibitors for the crystallization of F1. PMID:19075235
A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1
de Berardinis, Véronique; Vallenet, David; Castelli, Vanina; Besnard, Marielle; Pinet, Agnès; Cruaud, Corinne; Samair, Sumitta; Lechaplais, Christophe; Gyapay, Gabor; Richez, Céline; Durot, Maxime; Kreimeyer, Annett; Le Fèvre, François; Schächter, Vincent; Pezo, Valérie; Döring, Volker; Scarpelli, Claude; Médigue, Claudine; Cohen, Georges N; Marlière, Philippe; Salanoubat, Marcel; Weissenbach, Jean
2008-01-01
We have constructed a collection of single-gene deletion mutants for all dispensable genes of the soil bacterium Acinetobacter baylyi ADP1. A total of 2594 deletion mutants were obtained, whereas 499 (16%) were not, and are therefore candidate essential genes for life on minimal medium. This essentiality data set is 88% consistent with the Escherichia coli data set inferred from the Keio mutant collection profiled for growth on minimal medium, while 80% of the orthologous genes described as essential in Pseudomonas aeruginosa are also essential in ADP1. Several strategies were undertaken to investigate ADP1 metabolism by (1) searching for discrepancies between our essentiality data and current metabolic knowledge, (2) comparing this essentiality data set to those from other organisms, (3) systematic phenotyping of the mutant collection on a variety of carbon sources (quinate, 2-3 butanediol, glucose, etc.). This collection provides a new resource for the study of gene function by forward and reverse genetic approaches and constitutes a robust experimental data source for systems biology approaches. PMID:18319726
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakuma, Yuji, E-mail: ysakuma@gancen.asahi.yokohama.jp; Yamazaki, Yukiko; Nakamura, Yoshiyasu
2012-07-13
Highlights: Black-Right-Pointing-Pointer EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. Black-Right-Pointing-Pointer Degradation of I{kappa}B and activation of NF-{kappa}B are observed in 3D-cultured cells. Black-Right-Pointing-Pointer Inhibiting NF-{kappa}B enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cellsmore » cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of I{kappa}B{alpha}, the inhibitor of nuclear factor (NF)-{kappa}B, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-{kappa}B. Moreover, the inhibition of NF-{kappa}B with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-{kappa}B signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.« less
Fermani, Simona; Calvaresi, Matteo; Mangini, Vincenzo; Falini, Giuseppe; Bottoni, Andrea; Natile, Giovanni; Arnesano, Fabio
2018-03-15
Ubiquitin-positive protein aggregates are biomarkers of neurodegeneration, but the molecular mechanism responsible for their formation and accumulation is still unclear. Possible aggregation pathways of human ubiquitin (hUb) promoted by both intrinsic and extrinsic factors, are here investigated. By a computational analysis, two different hUb dimers are indicated as possible precursors of amyloid-like structures, but their formation is disfavored by an electrostatic repulsion involving Glu16 and other carboxylate residues present at the dimer interface. Experimental data on the E16V mutant of hUb shows that this single-point mutation, although not affecting the overall protein conformation, promotes protein aggregation. It is sufficient to shift the same mutation by only two residues (E18V) to regain the behavior of wild-type hUb. The neutralization of Glu16 negative charge by a metal ion and a decrease of the dielectric constant of the medium by addition of trifluoroethanol (TFE), also promote hUb aggregation. The outcomes of this research have important implications for the prediction of physiological parameters that favor aggregate formation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Berthet, Serge; Demont-Caulet, Nathalie; Pollet, Brigitte; Bidzinski, Przemyslaw; Cézard, Laurent; Le Bris, Phillipe; Borrega, Nero; Hervé, Jonathan; Blondet, Eddy; Balzergue, Sandrine; Lapierre, Catherine; Jouanin, Lise
2011-01-01
Peroxidases have been shown to be involved in the polymerization of lignin precursors, but it remains unclear whether laccases (EC 1.10.3.2) participate in constitutive lignification. We addressed this issue by studying laccase T-DNA insertion mutants in Arabidopsis thaliana. We identified two genes, LAC4 and LAC17, which are strongly expressed in stems. LAC17 was mainly expressed in the interfascicular fibers, whereas LAC4 was expressed in vascular bundles and interfascicular fibers. We produced two double mutants by crossing the LAC17 (lac17) mutant with two LAC4 mutants (lac4-1 and lac4-2). The single and double mutants grew normally in greenhouse conditions. The single mutants had moderately low lignin levels, whereas the stems of lac4-1 lac17 and lac4-2 lac17 mutants had lignin contents that were 20 and 40% lower than those of the control, respectively. These lower lignin levels resulted in higher saccharification yields. Thioacidolysis revealed that disrupting LAC17 principally affected the deposition of G lignin units in the interfascicular fibers and that complementation of lac17 with LAC17 restored a normal lignin profile. This study provides evidence that both LAC4 and LAC17 contribute to the constitutive lignification of Arabidopsis stems and that LAC17 is involved in the deposition of G lignin units in fibers. PMID:21447792
Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant
Ramírez-Nava, Edson Jiovany; González-Valdez, Abigail; Vanoye-Carlo, America; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Hernández-Pineda, Jessica; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto; Oria-Hernández, Jesús; Reyes-Vivas, Horacio; Marcial-Quino, Jaime
2017-01-01
Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD) and G6PD Nefza (Leu323Pro), and the double mutant G6PD A− (Asn126Asp + Leu323Pro). The mutants showed lower residual activity (≤50% of WT G6PD) and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations. PMID:29072585
NASA Technical Reports Server (NTRS)
Guan, Changhui; Rosen, Elizabeth S.; Boonsirichai, Kanokporn; Poff, Kenneth L.; Masson, Patrick H.
2003-01-01
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.
Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue.
Wang, Yong; Tian, Kai; Shi, Ruicheng; Gu, Amy; Pennella, Michael; Alberts, Lindsey; Gates, Kent S; Li, Guangfu; Fan, Hongxin; Wang, Michael X; Gu, Li-Qun
2017-07-28
Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.
A Role for Single-Stranded Exonucleases in the Use of DNA as a Nutrient▿
Palchevskiy, Vyacheslav; Finkel, Steven E.
2009-01-01
Nutritional competence is the ability of bacterial cells to utilize exogenous double-stranded DNA molecules as a nutrient source. We previously identified several genes in Escherichia coli that are important for this process and proposed a model, based on models of natural competence and transformation in bacteria, where it is assumed that single-stranded DNA (ssDNA) is degraded following entry into the cytoplasm. Since E. coli has several exonucleases, we determined whether they play a role in the long-term survival and the catabolism of DNA as a nutrient. We show here that mutants lacking either ExoI, ExoVII, ExoX, or RecJ are viable during all phases of the bacterial life cycle yet cannot compete with wild-type cells during long-term stationary-phase incubation. We also show that nuclease mutants, alone or in combination, are defective in DNA catabolism, with the exception of the ExoX− single mutant. The ExoX− mutant consumes double-stranded DNA better than wild-type cells, possibly implying the presence of two pathways in E. coli for the processing of ssDNA as it enters the cytoplasm. PMID:19329645
[The inheritance of an ultra-dwarf plant mutant from upland cotton].
Chen, Xu-Sheng; DI, Jia-Chun; Xu, Nai-Yin; Xiao, Song-Hua; Liu, Jian-Guang
2007-04-01
The inheritance of an ultra-dwarf plant mutant from upland cotton (Gossypium hirsutum L.) was studied, which showed that the mutant was controlled by single recessive quality gene. This gene was denominated as du tentatively. No similar mutant has been found in upland cotton. The mutation could not normally flower and produce bolls under natural conditions, and its mature height was only 10.5 cm. When treated with exogenous GA3, it could normally flower and boll, and plant height could reach 57.8 cm finally.
Correlation of Resistance to Proflavine and Penicillin in Escherichia coli
McKellar, Robin C.; McKenzie, Colin N.; Kushner, Donn J.
1976-01-01
A number of proflavine (PF)-resistant mutants of Escherichia coli B were also resistant to penicillin and cephalothin. Mutants resistant to 1.0 mM PF were 10 times more penicillin resistant than were the PF-susceptible, wild-type cells. Single-step mutants selected for resistance to either PF or penicillin were also resistant to the other drug. None of the resistant mutants tested possessed β-lactamase activity. These results suggest that resistance to PF and penicillin in E. coli B may be due to permeability changes in the cell envelope. PMID:791110
Sanders, Jeffrey M.; Wampole, Matthew E.; Chen, Chang-Po; Sethi, Dalip; Singh, Amrita; Dupradeau, François-Yves; Wang, Fan; Gray, Brian D.; Thakur, Mathew L.; Wickstrom, Eric
2013-01-01
Genetic disorders can arise from single base substitutions in a single gene. A single base substitution for wild type guanine in the twelfth codon of KRAS2 mRNA occurs frequently to initiate lung, pancreatic, and colon cancer. We have observed single base mismatch specificity in radioimaging of mutant KRAS2 mRNA in tumors in mice by in vivo hybridization with radiolabeled peptide nucleic acid (PNA) dodecamers. We hypothesized that multi-mutant specificity could be achieved with a PNA dodecamer incorporating hypoxanthine, which can form Watson-Crick basepairs with adenine, cytosine, thymine, and uracil. Using molecular dynamics simulations and free energy calculations, we show that hypoxanthine substitutions in PNAs are tolerated in KRAS2 RNA-PNA duplexes where wild type guanine is replaced by mutant uracil or adenine in RNA. To validate our predictions, we synthesized PNA dodecamers with hypoxanthine, and then measured the thermal stability of RNA-PNA duplexes. Circular dichroism thermal melting results showed that hypoxanthine-containing PNAs are more stable in duplexes where hypoxanthine-adenine and hypoxanthine-uracil base pairs are formed than single mismatch duplexes or duplexes containing hypoxanthine-guanine opposition. PMID:23972113
The Molecular Basis of Muscular Dystrophy in the mdx Mouse: A Point Mutation
NASA Astrophysics Data System (ADS)
Sicinski, Piotr; Geng, Yan; Ryder-Cook, Allan S.; Barnard, Eric A.; Darlison, Mark G.; Barnard, Pene J.
1989-06-01
The mdx mouse is an X-linked myopathic mutant, an animal model for human Duchenne muscular dystrophy. In both mouse and man the mutations lie within the dystrophin gene, but the phenotypic differences of the disease in the two species confer much interest on the molecular basis of the mdx mutation. The complementary DNA for mouse dystrophin has been cloned, and the sequence has been used in the polymerase chain reaction to amplify normal and mdx dystrophin transcripts in the area of the mdx mutation. Sequence analysis of the amplification products showed that the mdx mouse has a single base substitution within an exon, which causes premature termination of the polypeptide chain.
Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization
NASA Astrophysics Data System (ADS)
Tapper, Andrew R.; McKinney, Sheri L.; Nashmi, Raad; Schwarz, Johannes; Deshpande, Purnima; Labarca, Cesar; Whiteaker, Paul; Marks, Michael J.; Collins, Allan C.; Lester, Henry A.
2004-11-01
The identity of nicotinic receptor subtypes sufficient to elicit both the acute and chronic effects of nicotine dependence is unknown. We engineered mutant mice with α4 nicotinic subunits containing a single point mutation, Leu9' --> Ala9' in the pore-forming M2 domain, rendering α4* receptors hypersensitive to nicotine. Selective activation of α4* nicotinic acetylcholine receptors with low doses of agonist recapitulates nicotine effects thought to be important in dependence, including reinforcement in response to acute nicotine administration, as well as tolerance and sensitization elicited by chronic nicotine administration. These data indicate that activation of α4* receptors is sufficient for nicotine-induced reward, tolerance, and sensitization.
Bazzoli, Andrea; Vance, David J; Rudolph, Michael J; Rong, Yinghui; Angalakurthi, Siva Krishna; Toth, Ronald T; Middaugh, C Russell; Volkin, David B; Weis, David D; Karanicolas, John; Mantis, Nicholas J
2017-11-01
In this report we investigated, within a group of closely related single domain camelid antibodies (V H Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like V H Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1 R29G mutant was largely devoid of toxin-neutralizing activity (TNA). However, the TNA of the V1C7 G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen-deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function. © 2017 Wiley Periodicals, Inc.
Variations of Human DNA Polymerase Genes as Biomarkers of Prostate Cancer Progression
2013-07-01
discovery , cancer genetics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...variations identified (including all single and double mutant combinations of the Triple mutant), and some POLK mutants • Discovery of a novel...Athens, Greece, 07/10 Makridakis N. Error-prone polymerase mutations and prostate cancer progression, COBRE /Cancer Genetics group seminar, Tulane
Does a coffee plant develop from one initial cell in the shoot apex of an embryo ?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moh, C. C.
1961-01-01
Evidence obtained from Ri morphological mutants suggests that except for the epidermis, development of a young coffee shoot is from a single initial cell of the corpus. This conclusion is supported by the high frequency of Ri non- chimeric mutants, shapes of the dosage response curves with x rays and neutrons and the association of pollen sterility with some of the mutants.
Genetic Perturbation of the Maize Methylome[W
Li, Qing; Hermanson, Peter J.; Zaunbrecher, Virginia M.; Song, Jawon; Wendt, Jennifer; Rosenbaum, Heidi; Madzima, Thelma F.; Sloan, Amy E.; Huang, Ji; Burgess, Daniel L.; Richmond, Todd A.; McGinnis, Karen M.; Meeley, Robert B.; Danilevskaya, Olga N.; Vaughn, Matthew W.; Kaeppler, Shawn M.; Jeddeloh, Jeffrey A.
2014-01-01
DNA methylation can play important roles in the regulation of transposable elements and genes. A collection of mutant alleles for 11 maize (Zea mays) genes predicted to play roles in controlling DNA methylation were isolated through forward- or reverse-genetic approaches. Low-coverage whole-genome bisulfite sequencing and high-coverage sequence-capture bisulfite sequencing were applied to mutant lines to determine context- and locus-specific effects of these mutations on DNA methylation profiles. Plants containing mutant alleles for components of the RNA-directed DNA methylation pathway exhibit loss of CHH methylation at many loci as well as CG and CHG methylation at a small number of loci. Plants containing loss-of-function alleles for chromomethylase (CMT) genes exhibit strong genome-wide reductions in CHG methylation and some locus-specific loss of CHH methylation. In an attempt to identify stocks with stronger reductions in DNA methylation levels than provided by single gene mutations, we performed crosses to create double mutants for the maize CMT3 orthologs, Zmet2 and Zmet5, and for the maize DDM1 orthologs, Chr101 and Chr106. While loss-of-function alleles are viable as single gene mutants, the double mutants were not recovered, suggesting that severe perturbations of the maize methylome may have stronger deleterious phenotypic effects than in Arabidopsis thaliana. PMID:25527708
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira
2013-10-01
X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutationmore » substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared with wild-type p53. These suppressor mutations appear to rescue p53 function by creating novel intradomain interactions that stabilize the core domain, allowing compensation for the destabilizing V157F mutation.« less
Fan, Lili; Fu, Kehe; Yu, Chuanjin; Ma, Jia; Li, Yaqian; Chen, Jie
2014-01-01
Agrobacterium tumefaciens-mediated transformation (ATMT) was used to generate an insertional mutant library of the mycelial fungus Trichoderma harzianum. From a total of 450 mutants, six mutants that showed significant influence on maize resistance to C. lunata were analyzed in detail. Maize coated with these mutants was more susceptible to C. lunata compared with those coated with a wild-type (WT) strain. Similar to other fungal ATMT libraries, all six mutants were single copy integrations, which occurred preferentially in noncoding regions (except two mutants) and were frequently accompanied by the loss of border sequences. Two mutants (T66 and T312) that were linked to resistance were characterized further. Maize seeds coated with T66 and T312 were more susceptible to C. lunata than those treated with WT. Moreover, the mutants affected the resistance of maize to C. lunata by enhancing jasmonate-responsive gene expression. T66 and T312 induced maize resistance to C. lunata infection through a jasmonic acid-dependent pathway.
Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandova, Jana; Janda, Jaroslav; Sligh, James E, E-mail: jsligh@azcc.arizona.edu
We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarraymore » analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. Black-Right-Pointing-Pointer MMP-9 is up-regulated and Col1a1 is down-regulated in mutant cybrids. Black-Right-Pointing-Pointer GM6001 reduced the enhanced motility of mutant cybrids caused by up-regulated MMP-9. Black-Right-Pointing-Pointer The MMP-9 expression and invasiveness of mutant cybrids were reduced by Bay 11-7802.« less
Hamrick, Terri S.; Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Horton, John R.; Russell, Perry W.; Orndorff, Paul E.
2000-01-01
Five Escherichia coli type 1 pilus mutants that had point mutations in fimH, the gene encoding the type 1 pilus adhesin FimH, were characterized. FimH is a minor component of type 1 pili that is required for the pili to bind and agglutinate guinea pig erythrocytes in a mannose-inhibitable manner. Point mutations were located by DNA sequencing and deletion mapping. All mutations mapped within the signal sequence or in the first 28% of the predicted mature protein. All mutations were missense mutations except for one, a frameshift lesion that was predicted to cause the loss of approximately 60% of the mature FimH protein. Bacterial agglutination tests with polyclonal antiserum raised to a LacZ-FimH fusion protein failed to confirm that parental amounts of FimH cross-reacting material were expressed in four of the five mutants. The remaining mutant, a temperature-sensitive (ts) fimH mutant that agglutinated guinea pig erythrocytes after growth at 31°C but not at 42°C, reacted with antiserum at both temperatures in a manner similar to the parent. Consequently, this mutant was chosen for further study. Temperature shift experiments revealed that new FimH biosynthesis was required for the phenotypic change. Guinea pig erythrocyte and mouse macrophage binding experiments using the ts mutant grown at the restrictive and permissive temperatures revealed that whereas erythrocyte binding was reduced to a level comparable to that of a fimH insertion mutant at the restrictive temperature, mouse peritoneal macrophages were bound with parental efficiency at both the permissive and restrictive temperatures. Also, macrophage binding by the ts mutant was insensitive to mannose inhibition after growth at 42°C but sensitive after growth at 31°C. The ts mutant thus binds macrophages with one receptor specificity at 31°C and another at 42°C. PMID:10869080
Mutant onco-proteins as drug targets: successes, failures, and future prospects.
McCormick, Frank
2011-02-01
Mutant onco-proteins play a direct, causal role in cancer and are therefore considered attractive drug targets. Clinical experience has supported this view, with some exceptions. However, clinical benefit has often been restricted by rapid emergence of drug-resistant clones through several distinct mechanisms. This problem can, in principle, be addressed through cocktails containing several drugs. However, the number of tumors whose survival is dependent on a single, druggable mutant onco-protein is currently unknown. The majority of tumors may be driven either by single drivers that are un-druggable, or by combinations of drivers. In both cases, new approaches will be necessary. Development of systemic RNA interference may be a solution to these problems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells.
Ramirez, Lisa; Herschkowitz, Jason I; Wang, Jun
2016-09-01
Cellular heterogeneity in function and response to therapeutics has been a major challenge in cancer treatment. The complex nature of tumor systems calls for the development of advanced multiplexed single-cell tools that can address the heterogeneity issue. However, to date such tools are only available in a laboratory setting and don't have the portability to meet the needs in point-of-care cancer diagnostics. Towards that application, we have developed a portable single-cell system that is comprised of a microchip and an adjustable clamp, so on-chip operation only needs pipetting and adjusting of clamping force. Up to 10 proteins can be quantitated from each cell with hundreds of single-cell assays performed in parallel from one chip operation. We validated the technology and analyzed the oncogenic signatures of cancer stem cells by quantitating both aldehyde dehydrogenase (ALDH) activities and 5 signaling proteins in single MDA-MB-231 breast cancer cells. The technology has also been used to investigate the PI3K pathway activities of brain cancer cells expressing mutant epidermal growth factor receptor (EGFR) after drug intervention targeting EGFR signaling. Our portable single-cell system will potentially have broad application in the preclinical and clinical settings for cancer diagnosis in the future.
Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities
Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P
2016-01-01
Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577
Tracing the tracks of genotoxicity by trivalent and hexavalent chromium in Drosophila melanogaster.
Mishra, Manish; Sharma, Anurag; Negi, M P S; Dwivedi, U N; Chowdhuri, D Kar
2011-05-18
Mutagen sensitive strains (mus) in Drosophila are known for their hypersensitivity to mutagens and environmental carcinogens. Accordingly, these mutants were grouped in pre- and post-replication repair pathways. However, studying mutants belonging to one particular repair pathway may not be adequate for examining chemical-induced genotoxicity when other repair pathways may neutralize its effect. To test whether both pre-and post-replication pathways are involved and effect of Cr(III)- and Cr(VI)-induced genotoxicity in absence or presence of others, we used double mutant approach in D. melanogaster. We observed DNA damage as evident by changes in Comet assay DNA migration in cells of larvae of Oregon R(+) and single mutants of pre- (mei-9, mus201 and mus210) and post- (mei-41, mus209 and mus309) replication repair pathways and also in double mutants of different combinations (pre-pre, pre-post and post-post replication repair) exposed to increasing concentrations of Cr(VI) (0.0, 5.0, 10.0 and 20.0 μg/ml) for 48 h. The damage was greater in pre-replication repair mutants after exposure to 5.0 μg/ml Cr(VI), while effects on Oregon R(+) and post replication repair mutants were insignificant. Post-replication repair mutants revealed significant DNA damage after exposure to 20.0 μg/ml Cr(VI). Further, double mutants generated in the above repair categories were examined for DNA damage following Cr(VI) exposure and a comparison of damage was studied between single and double mutants. Combinations of double mutants generated in the pre-pre replication repair pathways showed an indifferent interaction between the two mutants after Cr(VI) exposure while a synergistic interaction was evident in exposed post-post replication repair double mutants. Cr(III) (20.0 μg/ml) exposure to these strains did not induce any significant DNA damage in their cells. The study suggests that both pre- and post-replication pathways are affected in Drosophila by Cr(VI) leading to genotoxicity, which may have consequences for metal-induced carcinogenesis. 2011 Elsevier B.V. All rights reserved.
Molecular characterization of baculovirus Bombyx mori nucleopolyhedrovirus polyhedron mutants.
Katsuma, S; Noguchi, Y; Shimada, T; Nagata, M; Kobayashi, M; Maeda, S
1999-01-01
Four newly isolated and two previously isolated polyhedron mutants of Bombyx mori nucleopolyhedrovirus (BmNPV) were studied. Two polyhedron deficient mutants, #126 and #136, produced small uncrystallized particles of polyhedrin in the nuclei and cytoplasm of infected cells. Mutant #211 produced a large number of variably sized polyhedra in the nucleus and #220 produced a few large cuboidal polyhedra in the nucleus. Mutant #24 and #128 were previously isolated BmNPV mutants. Mutant #24 could not produce polyhedrin mRNA and polyhedra produced by mutant #128 lacked oral infectivity. Nucleotide sequence analysis indicated that five mutants (#126, #136, #211, #220 and #128) had amino acid substitutions in polyhedrin and mutant #24 had a point mutation only in the promoter region of the polyhedrin gene. Cotransfection experiments showed that the altered phenotypes were due to the mutations found in the polyhedrin gene regions. In mutants #126 and #136, amino acid sequences of the nuclear localization signal of polyhedrin were identical to those of wild-type BmNPV, suggesting that this sequence was necessary but not sufficient for nuclear localization of polyhedrin. Electron microscopic observation revealed that fewer occluded virions were contained in polyhedra of #128 and #220.
Reith, A D; Ellis, C; Maroc, N; Pawson, T; Bernstein, A; Dubreuil, P
1993-01-01
Point mutations in highly conserved amino acid residues in the catalytic domain of the Kit receptor tyrosine kinase (RTK) are responsible for the coat color, fertility and hematopoietic defects of mice bearing mutant alleles at the dominant white-spotting (W) locus. The dominant nature of structural Kit mutations suggests that expression of other kinase-defective RTKs might also specifically interfere with signal transduction by normal receptors. To test this possibility, we have investigated the functional consequences of introducing analogous mutations into the RTK encoded by the c-fms proto-oncogene. Both Fms37 (glu582-->lys) and Fms42 (asp776-->asn) mutant proteins, corresponding to the strongly dominant-negative W37 and W42 mutant c-kit alleles, had undetectable in vitro kinase activity and were unable to transform Rat-2 fibroblasts in the presence of exogenous CSF-1. Moreover, expression of Fms37 or Fms42 proteins in Rat-2 cells specifically inhibited anchorage-independent growth mediated by the normal Fms receptor in the presence of exogenous CSF-1 and conferred a dominant loss of Fms-associated PI3-kinase activity on CSF-1 stimulation. Mutant RTKs, bearing point substitutions identical to those present in mild or severe W mutants, may provide a generally applicable strategy for inducing dominant loss of function defects in RTK-mediated signalling pathways.
Monahan, Pamela; Himes, Ashley D.; Parfieniuk, Agata; Raetzman, Lori T.
2011-01-01
A delicate balance between proliferation and differentiation must be maintained in the developing pituitary to ensure the formation of the appropriate number of hormone producing cells. In the adult, proliferation is actively restrained to prevent tumor formation. The cyclin dependent kinase inhibitors (CDKIs) of the CIP/KIP family, p21, p27 and p57, mediate cell cycle inhibition. Although p21 is induced in the pituitary upon loss of Notch signaling or initiation of tumor formation to halt cell cycle progression, its role in normal pituitary organogenesis has not been explored. In wildtype pituitaries, expression of p21 is limited to a subset of cells embryonically as well as during the postnatal proliferative phase. Mice lacking p21 do not have altered cell proliferation during early embryogenesis, but do show a slight delay in separation of proliferating progenitors from the oral ectoderm. By embryonic day 16.5, p21 mutants have an alteration in the spatial distribution of proliferating pituitary progenitors, however there is no overall change in proliferation. At postnatal day 21, there appears to be no change in proliferation, as assessed by cells expressing Ki67 protein. However, p21 mutant pituitaries have significantly less mRNA of Myc and the cyclins Ccnb1, Ccnd1, Ccnd2 and Ccne1 than wildtype pituitaries. Interestingly, unlike the redundant role in cell cycle inhibition uncovered in p27/p57 double mutants, the pituitary of p21/p27 double mutants has a similar proliferation profile to p27 single mutants at the time points examined. Taken together, these studies demonstrate that unlike p27 or p57, p21 does not play a major role in control of progenitor proliferation in the developing pituitary. However, p21 may be required to maintain normal levels of cell cycle components. PMID:22154697
Huang, Jian-Wen; Cheng, Ya-Shan; Ko, Tzu-Ping; Lin, Cheng-Yen; Lai, Hui-Lin; Chen, Chun-Chi; Ma, Yanhe; Zheng, Yingying; Huang, Chun-Hsiang; Zou, Peijian; Liu, Je-Ruei; Guo, Rey-Ting
2012-04-01
1,3-1,4-β-D-Glucanase has been widely used as a feed additive to help non-ruminant animals digest plant fibers, with potential in increasing nutrition turnover rate and reducing sanitary problems. Engineering of enzymes for better thermostability is of great importance because it not only can broaden their industrial applications, but also facilitate exploring the mechanism of enzyme stability from structural point of view. To obtain enzyme with higher thermostability and specific activity, structure-based rational design was carried out in this study. Eleven mutants of Fibrobacter succinogenes 1,3-1,4-β-D-glucanase were constructed in attempt to improve the enzyme properties. In particular, the crude proteins expressed in Pichia pastoris were examined firstly to ensure that the protein productions meet the need for industrial fermentation. The crude protein of V18Y mutant showed a 2 °C increment of Tm and W203Y showed ∼30% increment of the specific activity. To further investigate the structure-function relationship, some mutants were expressed and purified from P. pastoris and Escherichia coli. Notably, the specific activity of purified W203Y which was expressed in E. coli was 63% higher than the wild-type protein. The double mutant V18Y/W203Y showed the same increments of Tm and specific activity as the single mutants did. When expressed and purified from E. coli, V18Y/W203Y showed similar pattern of thermostability increment and 75% higher specific activity. Furthermore, the apo-form and substrate complex structures of V18Y/W203Y were solved by X-ray crystallography. Analyzing protein structure of V18Y/W203Y helps elucidate how the mutations could enhance the protein stability and enzyme activity.
USDA-ARS?s Scientific Manuscript database
Identification of genes with differential transcript abundance (GDTA) in seedless mutants may enhance understanding of seedless citrus development. Transcriptome analysis was conducted at three time points during early fruit development (Phase 1) of three seedy citrus genotypes: Fallglo [Bower citru...
Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.
Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N
2011-01-14
Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.
Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.
2003-01-01
Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348
Zou, Qingliang; Gang, Kai; Yang, Qifen; Liu, Xiaolin; Tang, Xuemei; Lu, Huiqiang; He, Jianbo; Luo, Lingfei
2018-06-05
Degenerative diseases of organs lead to their impaired function. The cellular and molecular mechanisms underlying organ degeneration are therefore of great research and clinical interest but are currently incompletely characterized. Here, using a forward-genetic screen for genes regulating liver development and function in zebrafish, we identified a cq5 mutant that exhibited a liver-degeneration phenotype at 5 days post-fertilization, the developmental stage at which a functional liver develops. Positional cloning revealed that the liver degeneration was caused by a single point mutation in the gene zinc finger CCCH-type containing 8 (zc3h8), changing a highly conserved histidine to glutamine at position 353 of the Zc3h8 protein. The zc3h8 mutation-induced liver degeneration in the mutant was accompanied by reduced proliferation, increased apoptosis, and macrophage phagocytosis of hepatocytes. Transcriptional profile analyses revealed up-regulation and activation of both pro-inflammatory cytokines and the NF-κB signaling pathway in the zc3h8 mutant. Suppression of NF-κB signaling activity efficiently rescued the pro-inflammatory cytokine response as well as the inflammation-mediated liver degeneration phenotype of the mutant. Of note, the zc3h8 mutation induced degeneration of several other organs, including the gut and exocrine pancreas, indicating that Zc3h8 is a general repressor of inflammation in zebrafish. Collectively, our findings demonstrate that Zc3h8 maintains organ homeostasis by inhibiting the NF-κB-mediated inflammatory response in zebrafish and that Zc3h8 dysfunction causes degeneration of multiple organs, including the liver, gut, and pancreas. Copyright © 2018, The American Society for Biochemistry and Molecular Biology.
Hubin, Ellen; Deroo, Stéphanie; Schierle, Gabriele Kaminksi; Kaminski, Clemens; Serpell, Louise; Subramaniam, Vinod; van Nuland, Nico; Broersen, Kerensa; Raussens, Vincent; Sarroukh, Rabia
2015-12-01
Most Alzheimer's disease (AD) cases are late-onset and characterized by the aggregation and deposition of the amyloid-beta (Aβ) peptide in extracellular plaques in the brain. However, a few rare and hereditary Aβ mutations, such as the Italian Glu22-to-Lys (E22K) mutation, guarantee the development of early-onset familial AD. This type of AD is associated with a younger age at disease onset, increased β-amyloid accumulation, and Aβ deposition in cerebral blood vessel walls, giving rise to cerebral amyloid angiopathy (CAA). It remains largely unknown how the Italian mutation results in the clinical phenotype that is characteristic of CAA. We therefore investigated how this single point mutation may affect the aggregation of Aβ1-42 in vitro and structurally characterized the resulting fibrils using a biophysical approach. This paper reports that wild-type and Italian-mutant Aβ both form fibrils characterized by the cross-β architecture, but with distinct β-sheet organizations, resulting in differences in thioflavin T fluorescence and solvent accessibility. E22K Aβ1-42 oligomers and fibrils both display an antiparallel β-sheet structure, in comparison with the parallel β-sheet structure of wild-type fibrils, characteristic of most amyloid fibrils described in the literature. Moreover, we demonstrate structural plasticity for Italian-mutant Aβ fibrils in a pH-dependent manner, in terms of their underlying β-sheet arrangement. These findings are of interest in the ongoing debate that (1) antiparallel β-sheet structure might represent a signature for toxicity, which could explain the higher toxicity reported for the Italian mutant, and that (2) fibril polymorphism might underlie differences in disease pathology and clinical manifestation.
Patel, S; Sprung, A U; Keller, B A; Heaton, V J; Fisher, L M
1997-10-01
Doxorubicin is a therapeutically useful anticancer drug that exerts multiple biological effects. Its antitumor and cardiotoxic properties have been ascribed to anthracycline-mediated free radical damage to DNA and membranes. Evidence for this idea comes in part from the selection by doxorubicin from stationary phase yeast cells of mutants (petites) deficient in mitochondrial respiration and therefore defective in free radical generation. However, doxorubicin also binds to DNA topoisomerase II, converting the enzyme into a DNA damaging agent through the trapping of a covalent enzyme-DNA complex termed the 'cleavable complex.' We have used yeast to determine whether stabilization of cleavable complexes plays a role in doxorubicin action and cytotoxicity. A plasmid-borne yeast TOP2 gene was mutagenized with hydroxylamine and used to transform drug-permeable yeast strain JN394t2-4, which carries a temperature-sensitive top2-4 mutation in its chromosomal TOP2 gene. Selection in growth medium at the nonpermissive temperature of 35 degrees in the presence of doxorubicin resulted in the isolation of plasmid-borne top2 mutants specifying functional doxorubicin-resistant DNA topoisomerase II. Single-point changes of Gly748 to Glu or Ala642 to Ser in yeast topoisomerase II, which lie in and adjacent to the CAP-like DNA binding domain, respectively, were identified as responsible for resistance to doxorubicin, implicating these regions in drug action. None of the mutants selected in JN394t2-4, which has a rad52 defect in double-strand DNA break repair, was respiration-deficient. We conclude that topoisomerase II is an intracellular target for doxorubicin and that the genetic background and/or cell proliferation status can determine the relative importance of topoisomerase II- versus free radical-killing.
NASA Astrophysics Data System (ADS)
Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong
2009-10-01
The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.
Herbert, Andrew P; Kavanagh, David; Johansson, Conny; Morgan, Hugh P; Blaum, Bärbel S; Hannan, Jonathan P; Barlow, Paul N; Uhrín, Dušan
2012-03-06
Numerous complement factor H (FH) mutations predispose patients to atypical hemolytic uremic syndrome (aHUS) and other disorders arising from inadequately regulated complement activation. No unifying structural or mechanistic consequences have been ascribed to these mutants beyond impaired self-cell protection. The S1191L and V1197A mutations toward the C-terminus of FH, which occur in patients singly or together, arose from gene conversion between CFH encoding FH and CFHR1 encoding FH-related 1. We show that neither single nor double mutations structurally perturbed recombinant proteins consisting of the FH C-terminal modules, 19 and 20 (FH19-20), although all three FH19-20 mutants were poor, compared to wild-type FH19-20, at promoting hemolysis of C3b-coated erythrocytes through competition with full-length FH. Indeed, our new crystal structure of the S1191L mutant of FH19-20 complexed with an activation-specific complement fragment, C3d, was nearly identical to that of the wild-type FH19-20:C3d complex, consistent with mutants binding to C3b with wild-type-like affinity. The S1191L mutation enhanced thermal stability of module 20, whereas the V1197A mutation dramatically decreased it. Thus, although mutant proteins were folded at 37 °C, they differ in conformational rigidity. Neither single substitutions nor double substitutions increased measurably the extent of FH19-20 self-association, nor did these mutations significantly affect the affinity of FH19-20 for three glycosaminoglycans, despite critical roles of module 20 in recognizing polyanionic self-surface markers. Unexpectedly, FH19-20 mutants containing Leu1191 self-associated on a heparin-coated surface to a higher degree than on surfaces coated with dermatan or chondroitin sulfates. Thus, potentially disease-related functional distinctions between mutants, and between FH and FH-related 1, may manifest in the presence of specific glycosaminoglycans.
Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2014-01-01
In filamentous fungi, the expression of secretory glycoside hydrolase encoding genes, such as those for amylases, cellulases, and xylanases, is generally repressed in the presence of glucose. CreA and CreB have been observed to be regulating factors for carbon catabolite repression. In this study, we generated single and double deletion creA and/or creB mutants in Aspergillus oryzae. The α-amylase activities of each strain were compared under various culture conditions. For the wild-type strain, mRNA levels of α-amylase were markedly decreased in the later stage of submerged culture under inducing conditions, whereas this reduced expression was not observed for single creA and double creA/creB deletion mutants. In addition, α-amylase activity of the wild-type strain was reduced in submerged culture containing high concentrations of inducing sugars, whereas all constructed mutants showed higher α-amylase activities. In particular, the α-amylase activity of the double deletion mutant in a medium containing 5% starch was >10-fold higher than that of the wild-type strain under the same culture conditions. In solid-state cultures using wheat bran as a substrate, the α-amylase activities of single creA and double deletion mutants were >2-fold higher than that of the wild-type strain. These results suggested that deleting both creA and creB resulted in dramatic improvements in the production of secretory glycoside hydrolases in filamentous fungi.
Zheng, Ling; Shockey, Jay; Bian, Fei; Chen, Gao; Shan, Lei; Li, Xinguo; Wan, Shubo; Peng, Zhenying
2017-01-01
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triacylglycerol (TAG) biosynthesis via the acyl-CoA-dependent acylation of diacylglycerol. This reaction is a major control point in the Kennedy pathway for biosynthesis of TAG, which is the most important form of stored metabolic energy in most oil-producing plants. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14.’ Sequence analysis of 11 different peanut cultivars revealed a gene family of 8 peanut DGAT2 genes (designated AhDGAT2a-h). Sequence alignments revealed 21 nucleotide differences between the eight ORFs, but only six differences result in changes to the predicted amino acid (AA) sequences. A representative full-length cDNA clone (AhDGAT2a) was characterized in detail. The biochemical effects of altering the AhDGAT2a sequence to include single variable AA residues were tested by mutagenesis and functional complementation assays in transgenic yeast systems. All six mutant variants retained enzyme activity and produced lipid droplets in vivo. The N6D and A26P mutants also displayed increased enzyme activity and/or total cellular fatty acid (FA) content. N6D mutant mainly increased the content of palmitoleic acid, and A26P mutant mainly increased the content of palmitic acid. The A26P mutant grew well both in the presence of oleic and C18:2, but the other mutants grew better in the presence of C18:2. AhDGAT2 is expressed in all peanut organs analyzed, with high transcript levels in leaves and flowers. These levels are comparable to that found in immature seeds, where DGAT2 expression is most abundant in other plants. Over-expression of AhDGAT2a in tobacco substantially increased the FA content of transformed tobacco seeds. Expression of AhDGAT2a also altered transcription levels of endogenous tobacco lipid metabolic genes in transgenic tobacco, apparently creating a larger carbon ‘sink’ that supports increased FA levels. PMID:29085382
Gervais, David; Foote, Nicholas
2014-10-01
The enzyme Erwinia chrysanthemi L-asparaginase (ErA) is an important biopharmaceutical product used in the treatment of acute lymphoblastic leukaemia. Like all proteins, certain asparagine (Asn) residues of ErA are susceptible to deamidation to aspartic acid (Asp), which may be a concern with respect to enzyme activity and potentially to pharmaceutical efficacy. Recombinant ErA mutants containing Asn to Asp changes were expressed, purified and characterised. Two mutants with single deamidation sites (N41D and N281D) were found to have approximately the same specific activity (1,062 and 924 U/mg, respectively) as the wild-type (908 U/mg). However, a double mutant (N41D N281D) had an increased specific activity (1261 U/mg). The N41D mutation conferred a slight increase in the catalytic constant (k cat 657 s(-1)) when compared to the WT (k cat 565 s(-1)), which was further increased in the double mutant, with a k cat of 798 s(-1). Structural analyses showed that the slight changes caused by point mutation of Asn41 to Asp may have reduced the number of hydrogen bonds in this α-helical part of the protein structure, resulting in subtle changes in enzyme turnover, both structurally and catalytically. The increased α-helical content observed with the N41D mutation by circular dichroism spectroscopy correlates with the difference in k cat, but not K m. The N281D mutation resulted in a lower glutaminase activity compared with WT and the N41D mutant, however the N281D mutation also imparted less stability to the enzyme at elevated temperatures. Taken as a whole, these data suggest that ErA deamidation at the Asn41 and Asn281 sites does not affect enzyme activity and should not be a concern during processing, storage or clinical use. The production of recombinant deamidated variants has proven an effective and powerful means of studying the effect of these changes and may be a useful strategy for other biopharmaceutical products.
SELF-STERILE AUXOTROPHS AND THEIR RELATION TO HETEROTHALLISM IN SORDARIA FIMICOLA.
EL-ANI, A S
1964-09-04
Eighty morphological mutants in the homothallic fungus Sordaria fimicola were tested on liquid minimal medium for nutritional requirements. Five had nutritional requirements, one for adenine, three for arginine, and one for lysine. All five were from among the eighty single gene mutants that were also partially or completely self-sterile. Nutritional requirements and centromere-locus intervals provide better criteria than morphological characters for selecting self-sterile mutants at complex loci governing heterothallism.
Detection of BRAF mutations from solid tumors using Tumorplex™ technology
Yo, Jacob; Hay, Katie S.L.; Vinayagamoorthy, Dilanthi; Maryanski, Danielle; Carter, Mark; Wiegel, Joseph; Vinayagamoorthy, Thuraiayah
2015-01-01
Allele specific multiplex sequencing (Tumorplex™) is a new molecular platform for the detection of single base mutation in tumor biopsies with high sensitivity for clinical testing. Tumorplex™ is a novel modification of Sanger sequencing technology that generates both mutant and wild type nucleotide sequences simultaneously in the same electropherogram. The molecular weight of the two sequencing primers are different such that the two sequences generated are separated, thus eliminating possible suppression of mutant signal by the more abundant wild type signal. Tumorplex™ platform technology was tested using BRAF mutation V600E. These studies were performed with cloned BRAF mutations and genomic DNA extracted from tumor cells carrying 50% mutant allele. The lower limit of detection for BRAF V600E was found to be 20 genome equivalents (GE) using genomic DNA extracted from mutation specific cell lines. Sensitivity of the assay was tested by challenging the mutant allele with wild type allele at 20 GE, and was able to detect BRAF mutant signal at a GE ration of 20:1 × 107 (mutant to wild-type). This level of sensitivity can detect low abundance of clonal mutations in tumor biopsies and eliminate the need for cell enrichment. • Tumorplex™ is a single tube assay that permits the recognition of mutant allele without suppression by wildtype signal. • Tumorplex™ provides a high level of sensitivity. • Tumorplex™ can be used with small sample size with mixed population of cells carrying heterogeneous gDNA. PMID:26258049
Repair of Ultraviolet Radiation Damage in Sensitive Mutants of Micrococcus radiodurans
Moseley, B. E. B.
1969-01-01
Various aspects of the repair of ultraviolet (UV) radiation-induced damage were compared in wild-type Micrococcus radiodurans and two UV-sensitive mutants. Unlike the wild type, the mutants are more sensitive to radiation at 265 nm than at 280 nm. The delay in deoxyribonucleic acid (DNA) synthesis following exposure to UV is about seven times as long in the mutants as in the wild type. All three strains excise UV-induced pyrimidine dimers from their DNA, although the rate at which cytosine-thymine dimers are excised is slower in the mutants. The three strains also mend the single-strand breaks that appear in the irradiated DNA as a result of dimer excision, although the process is less efficient in the mutants. It is suggested that the increased sensitivity of the mutants to UV radiation may be caused by a partial defect in the second step of dimer excision. PMID:5773016
Muto, Shigeharu; Yamada, Katsuya; Kato, Tatsuya; Ando, Masamitsu; Inoue, Yoshimi; Iwase, Yumiko; Uno, Yoshifumi
2016-11-15
A collaborative study of the endogenous phosphatidylinositol glycan class A (Pig-a) gene mutation assay was conducted by the Japanese Environmental Mutagen Society/Mammalian Mutagenicity Study Group with a single-dosing regimen of test chemicals administered to male rats. As a part of the study, two DNA alkylating agents, methylnitrosourea (MNU) and temozolomide (TMZ), were dosed by single oral gavage at 25, 50, and 100mg/kg body weight. Pig-a mutant analysis of total red blood cells (RBCs; RBC Pig-a assay) and reticulocytes (RETs; PIGRET assay) was performed on Days 8, 15 and 29 after the administration. Both chemicals increased Pig-a mutants among RBCs and RETs with dose dependency on all days examined. The mutant frequencies were higher among RETs compared with RBCs, indicating that the PIGRET assay could detect mutagenicity more sensitively than the RBC Pig-a assay after a single dose of test chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.
The roles of the conserved tyrosine in the β2-α2 loop of the prion protein.
Huang, Danzhi; Caflisch, Amedeo
2015-01-01
Prions cause neurodegenerative diseases for which no cure exists. Despite decades of research activities the function of the prion protein (PrP) in mammalians is not known. Moreover, little is known on the molecular mechanisms of the self-assembly of the PrP from its monomeric state (cellular PrP, PrP(C)) to the multimeric state. The latter state includes the toxic species (scrapie PrP, PrP(Sc)) knowledge of which would facilitate the development of drugs against prion diseases. Here we analyze the role of a tyrosine residue (Y169) which is strictly conserved in mammalian PrPs. Nuclear magnetic resonance (NMR) spectroscopy studies of many mammalian PrP(C) proteins have provided evidence of a conformational equilibrium between a 3(10)-helical turn and a type I β turn conformation in the β2-α2 loop (residues 165-175). In vitro cell-free experiments of the seeded conversion of PrP(C) indicate that non-aromatic residues at position 169 reduce the formation of proteinase K-resistant PrP. Recent molecular dynamics (MD) simulations of monomeric PrP and several single-point mutants show that Y169 stabilizes the 3(10)-helical turn conformation more than single-point mutants at position 169 or residues in contact with it. In the 3(10)-helical turn conformation the hydrophobic and aggregation-prone segment 169-YSNQNNF-175 is buried and thus not-available for self-assembly. From the combined analysis of simulation and experimental results it emerges that Y169 is an aggregation gatekeeper with a twofold role. Mutations related to 3 human prion diseases are interpreted on the basis of the gatekeeper role in the monomeric state. Another potential role of the Y169 side chain is the stabilization of the ordered aggregates, i.e., reduction of frangibility of filamentous protofibrils and fibrils, which is likely to reduce the generation of toxic species.
Resch, Marcus; Striegl, Harald; Henssler, Eva Maria; Sevvana, Madhumati; Egerer-Sieber, Claudia; Schiltz, Emile; Hillen, Wolfgang; Muller, Yves A
2008-08-01
Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.
A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio.
Rizal, Govinda; Karki, Shanta; Thakur, Vivek; Wanchana, Samart; Alonso-Cantabrana, Hugo; Dionora, Jacque; Sheehy, John E; Furbank, Robert; von Caemmerer, Susanne; Quick, William Paul
2017-01-01
Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium's efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants.
A sorghum (Sorghum bicolor) mutant with altered carbon isotope ratio
Karki, Shanta; Thakur, Vivek; Wanchana, Samart; Alonso-Cantabrana, Hugo; Dionora, Jacque; Sheehy, John E.; Furbank, Robert; von Caemmerer, Susanne; Quick, William Paul
2017-01-01
Recent efforts to engineer C4 photosynthetic traits into C3 plants such as rice demand an understanding of the genetic elements that enable C4 plants to outperform C3 plants. As a part of the C4 Rice Consortium’s efforts to identify genes needed to support C4 photosynthesis, EMS mutagenized sorghum populations were generated and screened to identify genes that cause a loss of C4 function. Stable carbon isotope ratio (δ13C) of leaf dry matter has been used to distinguishspecies with C3 and C4 photosynthetic pathways. Here, we report the identification of a sorghum (Sorghum bicolor) mutant with a low δ13C characteristic. A mutant (named Mut33) with a pale phenotype and stunted growth was identified from an EMS treated sorghum M2 population. The stable carbon isotope analysis of the mutants showed a decrease of 13C uptake capacity. The noise of random mutation was reduced by crossing the mutant and its wildtype (WT). The back-cross (BC1F1) progenies were like the WT parent in terms of 13C values and plant phenotypes. All the BC1F2 plants with low δ13C died before they produced their 6th leaf. Gas exchange measurements of the low δ13C sorghum mutants showed a higher CO2 compensation point (25.24 μmol CO2.mol-1air) and the maximum rate of photosynthesis was less than 5μmol.m-2.s-1. To identify the genetic determinant of this trait, four DNA pools were isolated; two each from normal and low δ13C BC1F2 mutant plants. These were sequenced using an Illumina platform. Comparison of allele frequency of the single nucleotide polymorphisms (SNPs) between the pools with contrasting phenotype showed that a locus in Chromosome 10 between 57,941,104 and 59,985,708 bps had an allele frequency of 1. There were 211 mutations and 37 genes in the locus, out of which mutations in 9 genes showed non-synonymous changes. This finding is expected to contribute to future research on the identification of the causal factor differentiating C4 from C3 species that can be used in the transformation of C3 to C4 plants. PMID:28640841
USDA-ARS?s Scientific Manuscript database
Induced or spontaneously occuring color mutants in plants provide valuable tools for elucidating the genetic and developmental regulation of genes that influence pigmentation. We identified a single plant of the eggplant (Solanum melongena) cultivar Black Beauty bearing green fruit. Black Beauty no...
Tamarappoo, B K; Verkman, A S
1998-01-01
Five single-point aquaporin-2 (AQP2) mutations that cause non-X-linked nephrogenic diabetes insipidus (NDI) were characterized to establish the cellular defect and to develop therapeutic strategies. In Xenopus oocytes expressing AQP2 cRNAs, single-channel water permeabilities of mutants L22V, T126M, and A147T were similar to that of wild-type AQP2, whereas R187C and C181W were nonfunctional. In [35S]methionine pulse-chase experiments in transiently transfected CHO cells, half-times for AQP2 degradation were approximately 4 h for wild-type AQP2 and L22V, and mildly decreased for T126M (2.7 h), C181W (2.4 h), R187C (2.0 h), and A147T (1.8 h). Immunofluorescence showed three distinct AQP2-staining patterns: plasma membrane and endosomal staining (wild-type, L22V), endoplasmic reticulum (ER) staining (T126M > A147T approximately R187C), or a mixed pattern of reticular and perinuclear vesicular staining. Immunoblot of fractionated vesicles confirmed primary ER localization of T126M, R187C, and A147T. To determine if the AQP2-trafficking defect is correctable, cells were incubated with the "chemical chaperone" glycerol for 48 h. Immunoblot showed that glycerol produced a nearly complete redistribution of AQP2 (T126M, A147T, and R187C) from ER to membrane/endosome fractions. Immunofluorescence confirmed the cellular redistribution. Redistribution of AQP2 mutants was also demonstrated in transfected MDCK cells, and using the chaperones TMAO and DMSO in place of glycerol in CHO cells. Water permeability measurements indicated that functional correction was achieved. These results indicate defective mammalian cell processing of mutant AQP2 water channels in NDI, and provide evidence for pharmacological correction of the processing defect by chemical chaperones. PMID:9593782
Kristensen, Tatjana P; Maria Cherian, Reeja; Gray, Fiona C; MacNeill, Stuart A
2014-01-01
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies.
Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.
Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie
2014-10-10
The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences. Copyright © 2014 Elsevier B.V. All rights reserved.
Sdt97: A Point Mutation in the 5′ Untranslated Region Confers Semidwarfism in Rice
Tong, Jiping; Han, Zhengshu; Han, Aonan; Liu, Xuejun; Zhang, Shiyong; Fu, Binying; Hu, Jun; Su, Jingping; Li, Shaoqing; Wang, Shengjun; Zhu, Yingguo
2016-01-01
Semidwarfism is an important agronomic trait in rice breeding programs. The semidwarf mutant gene Sdt97 was previously described. However, the molecular mechanism underlying the mutant is yet to be elucidated. In this study, we identified the mutant gene by a map-based cloning method. Using a residual heterozygous line (RHL) population, Sdt97 was mapped to the long arm of chromosome 6 in the interval of nearly 60 kb between STS marker N6 and SNP marker N16 within the PAC clone P0453H04. Sequencing of the candidate genes in the target region revealed that a base transversion from G to C occurred in the 5′ untranslated region of Sdt97. qRT-PCR results confirmed that the transversion induced an obvious change in the expression pattern of Sdt97 at different growth and developmental stages. Plants transgenic for Sdt97 resulted in the restoration of semidwarfism of the mutant phenotype, or displayed a greater dwarf phenotype than the mutant. Our results indicate that a point mutation in the 5′ untranslated region of Sdt97 confers semidwarfism in rice. Functional analysis of Sdt97 will open a new field of study for rice semidwarfism, and also expand our knowledge of the molecular mechanism of semidwarfism in rice. PMID:27172200
Züst, Roland; Dong, Hongping; Li, Xiao-Feng; Chang, David C; Zhang, Bo; Balakrishnan, Thavamalar; Toh, Ying-Xiu; Jiang, Tao; Li, Shi-Hua; Deng, Yong-Qiang; Ellis, Brett R; Ellis, Esther M; Poidinger, Michael; Zolezzi, Francesca; Qin, Cheng-Feng; Shi, Pei-Yong; Fink, Katja
2013-01-01
Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.
Ichinose, Sakurako; Tanaka, Mizuki; Shintani, Takahiro; Gomi, Katsuya
2018-02-01
In a previous study, we reported that a double gene deletion mutant for CreA and CreB, which constitute the regulatory machinery involved in carbon catabolite repression, exhibited improved production of α-amylase compared with the wild-type strain and single creA or creB deletion mutants in Aspergillus oryzae. Because A. oryzae can also produce biomass-degrading enzymes, such as xylolytic and cellulolytic enzymes, we examined the production levels of those enzymes in deletion mutants in this study. Xylanase and β-glucosidase activities in the wild-type were hardly detected in submerged culture containing xylose as the carbon source, whereas those enzyme activities were significantly increased in the single creA deletion (ΔcreA) and double creA and creB deletion (ΔcreAΔcreB) mutants. In particular, the ΔcreAΔcreB mutant exhibited >100-fold higher xylanase and β-glucosidase activities than the wild-type. Moreover, in solid-state culture, the β-glucosidase activity of the double deletion mutant was >7-fold higher than in the wild-type. These results suggested that deletion of both creA and creB genes could also efficiently improve the production levels of biomass-degrading enzymes in A. oryzae. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
A Dual Strategy to Cope with High Light in Chlamydomonas reinhardtii[W
Allorent, Guillaume; Tokutsu, Ryutaro; Roach, Thomas; Peers, Graham; Cardol, Pierre; Girard-Bascou, Jacqueline; Seigneurin-Berny, Daphné; Petroutsos, Dimitris; Kuntz, Marcel; Breyton, Cécile; Franck, Fabrice; Wollman, Francis-André; Niyogi, Krishna K.; Krieger-Liszkay, Anja; Minagawa, Jun; Finazzi, Giovanni
2013-01-01
Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition–deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II. PMID:23424243
Wang, Hong; Wang, Congcong; Li, Ya; Yue, Xiaofeng; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi
2013-01-01
Methylenetetrahydrofolate reductases (MTHFRs) play a key role in the biosynthesis of methionine in both prokaryotic and eukaryotic organisms. In this study, we report the identification of a novel T-DNA-tagged mutant WH672 in the rice blast fungus Magnaporthe oryzae, which was defective in vegetative growth, conidiation and pathogenicity. Analysis of the mutation confirmed a single T-DNA insertion upstream of MET13, which encodes a 626-amino-acid protein encoding a MTHFR. Targeted gene deletion of MET13 resulted in mutants that were non-pathogenic and significantly impaired in aerial growth and melanin pigmentation. All phenotypes associated with Δmet13 mutants could be overcome by addition of exogenous methionine. The M. oryzae genome contains a second predicted MTHFR-encoding gene, MET12. The deduced amino acid sequences of Met13 and Met12 share 32% identity. Interestingly, Δmet12 mutants produced significantly less conidia compared with the isogenic wild-type strain and grew very poorly in the absence of methionine, but were fully pathogenic. Deletion of both genes resulted in Δmet13Δmet12 mutants that showed similar phenotypes to single Δmet13 mutants. Taken together, we conclude that the MTHFR gene, MET13, is essential for infection-related morphogenesis by the rice blast fungus M. oryzae. PMID:24116181
Chang, David C.; Zhang, Bo; Balakrishnan, Thavamalar; Toh, Ying-Xiu; Jiang, Tao; Li, Shi-Hua; Deng, Yong-Qiang; Ellis, Brett R.; Ellis, Esther M.; Poidinger, Michael; Zolezzi, Francesca; Qin, Cheng-Feng; Shi, Pei-Yong; Fink, Katja
2013-01-01
Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2′-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2′-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2′-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response. PMID:23935499
Functional characterization of GPC-1 genes in hexaploid wheat.
Avni, Raz; Zhao, Rongrong; Pearce, Stephen; Jun, Yan; Uauy, Cristobal; Tabbita, Facundo; Fahima, Tzion; Slade, Ann; Dubcovsky, Jorge; Distelfeld, Assaf
2014-02-01
In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (grain protein content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methanesulfonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that the GPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat.
Functional characterization of GPC-1 genes in hexaploid wheat
Pearce, Stephen; Jun, Yan; Uauy, Cristobal; Tabbita, Facundo; Fahima, Tzion; Slade, Ann; Dubcovsky, Jorge; Distelfeld, Assaf
2016-01-01
In wheat, monocarpic senescence is a tightly regulated process during which nitrogen (N) and micronutrients stored pre-anthesis are remobilized from vegetative tissues to the developing grains. Recently, a close connection between senescence and remobilization was shown through the map-based cloning of the GPC (Grain Protein Content) gene in wheat. GPC-B1 encodes a NAC transcription factor associated with earlier senescence and increased grain protein, iron and zinc content, and is deleted or non-functional in most commercial wheat varieties. In the current research, we identified 'loss of function' ethyl methane sulphonate mutants for the two GPC-B1 homoeologous genes; GPC-A1 and GPC-D1, in a hexaploid wheat mutant population. The single gpc-a1 and gpc-d1 mutants, the double gpc-1 mutant and control lines were grown under field conditions at four locations and were characterized for senescence, GPC, micronutrients and yield parameters. Our results show a significant delay in senescence in both the gpc-a1 and gpc-d1 single mutants and an even stronger effect in the gpc-1 double mutant in all the environments tested in this study. The accumulation of total N in the developing grains showed a similar increase in the control and gpc-1 plants until 25 days after anthesis (DAA) but at 41 and 60 DAA the control plants had higher Grain N content than the gpc-1 mutants. At maturity, GPC in all mutants was significantly lower than in control plants while grain weight was unaffected. These results demonstrate that theGPC-A1 and GPC-D1 genes have a redundant function and play a major role in the regulation of monocarpic senescence and nutrient remobilization in wheat. PMID:24170335
Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila.
Barton, Lacy J; Wilmington, Shameika R; Martin, Melinda J; Skopec, Hannah M; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K
2014-06-01
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. Copyright © 2014 by the Genetics Society of America.
Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila
Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.
2014-01-01
The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158
Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis
Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J.; Xiang, Cheng-Bin
2010-01-01
Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a ‘sulphur-free’ solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance. PMID:20547563
Bao, Shaopan; Lu, Qicong; Dai, Heping; Zhang, Chao
2015-01-01
To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles. PMID:26386067
Isolation and characterization of low-sulphur-tolerant mutants of Arabidopsis.
Wu, Yu; Zhao, Qing; Gao, Lei; Yu, Xiao-Min; Fang, Ping; Oliver, David J; Xiang, Cheng-Bin
2010-07-01
Sulphur is an essential element for plant growth and development as well as for defence against biotic and abiotic stresses. Increasing sulphate utilization efficiency (SUE) is an important issue for crop improvement. Little is known about the genetic determinants of sulphate utilization efficiency. No gain-of-function mutants with improved SUE have been reported to date. Here the isolation and characterization of two low-sulphur-tolerant mutants, sue3 and sue4 are reported using a high-throughput genetic screen where a 'sulphur-free' solid medium was devised to give the selection pressure necessary to suppress the growth of the wild-type seedlings. Both mutants showed improved tolerance to low sulphur conditions and well-developed root systems. The mutant phenotype of both sue3 and sue4 was specific to sulphate deficiency and the mutants displayed enhanced tolerance to heavy metal and oxidative stress. Genetic analysis revealed that sue3 was caused by a single recessive nuclear mutation while sue4 was caused by a single dominant nuclear mutation. The recessive locus in sue3 is the previously identified VirE2-interacting Protein 1. The dominant locus in sue4 is a function-unknown locus activated by the four enhancers on the T-DNA. The function of SUE3 and SUE4 in low sulphur tolerance was confirmed either by multiple mutant alleles or by recapitulation analysis. Taken together, our results demonstrate that this genetic screen is a reasonable approach to isolate Arabidopsis mutants with improved low sulphur tolerance and potentially with enhanced sulphate utilization efficiency. The two loci identified in sue3 and sue4 should assist in understanding the molecular mechanisms of low sulphur tolerance.
Yi, Ping; Chen, Zhuqin; Zhao, Yan; Guo, Jianxin; Fu, Huabin; Zhou, Yuanguo; Yu, Lili; Li, Li
2009-03-01
The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive diagnosis. We have now assessed the possibility of detecting single-nucleotide differences between fetal and maternal DNA in maternal plasma by polymerase chain reaction (PCR)/ligase detection reaction((LDR)/capillary electrophoresis. PCR/LDR/capillary electrophoresis was applied to detect the genotype of c.454-397T>gene (ESR1) from experimental DNA models of maternal plasma at different sensitivity levels and 13 maternal plasma samples.alphaC in estrogen receptor. (1) Our results demonstrated that the technique could discriminate low abundance single-nucleotide mutation with a mutant/normal allele ratio up to 1:10 000. (2) Examination of ESR1 c.454-397T>C genotypes by using the method of restriction fragment length analysis was performed in 25 pregnant women, of whom 13 pregnant women had homozygous genotypes. The c.454-397T>C genotypes of paternally inherited fetal DNA in maternal plasma of these 13 women were detected by PCR/LDR/capillary electrophoresis, which were accordant with the results of umbilical cord blood. PCR/LDR/capillary electrophoresis has very high sensitivity to distinguish low abundance single nucleotide differences and can discriminate point mutations and single-nucleotide polymorphisms(SNPs) of paternally inherited fetal DNA in maternal plasma.
Modification of SR-PSOX functions by multi-point mutations of basic amino acid residues.
Liu, Weiwei; Yin, Lan; Dai, Yalei
2013-02-01
SR-PSOX can function as a scavenger receptor, a chemokine and an adhesion molecule, and it could be an interesting player in the formation of atherosclerotic lesions. Our previous studies demonstrated that basic amino acid residues in the chemokine domain of SR-PSOX are critical for its functions. In this study the combinations of the key basic amino acids in the chemokine domain of SR-PSOX have been identified. Five combinations of basic amino acid residues that may form conformational motif for SR-PSOX functions were selected for multi-point mutants. The double mutants of K61AR62A, R76AK79A, R82AH85A, and treble mutants of R76AR78AK79A, R78AR82AH85A were successfully constructed by replacing the combinations of two or three basic amino acid residues with alanine. After successful expression of these mutants on the cells, the functional studies showed that the cells expressing R76AK79A and R82AH85A mutants significantly increased the activity of oxLDL uptake compared with that of wild-type SR-PSOX. Meanwhile, the cells expressing R76AK79A mutant also dramatically enhanced the phagocytotic activity of SR-PSOX. However, the cells expressing the construct of combination of R78A mutation in R76AK79A or R82AH85A could abolish these effects. More interestingly, the adhesive activities were remarkably down regulated in the cells expressing the multi-point mutants respectively. This study revealed that some conformational motifs of basic amino acid residues, especially R76 with K79 in SR-PSOX, may form a common functional motif for its critical functions. R78 in SR-PSOX has the potential action to stabilize the function of oxLDL uptake and bacterial phagocytosis. The results obtained may provide new insight for the development of drug target of atherosclerosis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants
Danziger, Samuel A.; Swamidass, S. Joshua; Zeng, Jue; Dearth, Lawrence R.; Lu, Qiang; Chen, Jonathan H.; Cheng, Jainlin; Hoang, Vinh P.; Saigo, Hiroto; Luo, Ray; Baldi, Pierre; Brachmann, Rainer K.; Lathrop, Richard H.
2009-01-01
Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 rescue. We devised a general methodology for conducting a functional census of a mutation sequence space, and conducted a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3. Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r = 0.74). Code and data are available upon request1. PMID:17048398
USDA-ARS?s Scientific Manuscript database
Ethyl methanesulfonate (EMS) efficiently generates high-density mutations in genomes. Conventionally, these mutations are identified by techniques that can detect single-nucleotide mismatches in heteroduplexes of individual PCR amplicons. We applied whole-genome sequencing to 256-phenotyped mutant l...
Soybean proteins GmTic110 and GmPsbP are crucial for chloroplast development and function
USDA-ARS?s Scientific Manuscript database
We have identified a viable-yellow and a lethal-yellow chlorophyll-deficient mutant in soybean. Segregation patterns suggested single-gene recessive inheritance for each mutant. The viable- and lethal-yellow plants showed significant reduction of chlorophyll a and b. Photochemical energy conversion ...
ACA12 Is a Deregulated Isoform of Plasma Membrane Ca2+-ATPase of Arabidopsis thaliana
Limonta, Margherita; Romanowsky, Shawn; Olivari, Claudio; Bonza, Maria Cristina; Luoni, Laura; Rosenberg, Alexa; Harper, Jeffrey F.; De Michelis, Maria Ida
2014-01-01
Plant auto-inhibited Ca2+-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca2+-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues - highly conserved in other ACA isoforms - localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation. PMID:24101142
Brockmeier, Susan L.; Loving, Crystal L.; Register, Karen B.; Kehrli, Marcus E.; Stibitz, Scott E.; Shore, Sarah M.
2012-01-01
The majority of virulence gene expression in Bordetella is regulated by a two-component sensory transduction system encoded by the bvg locus. In response to environmental cues, the BvgAS regulatory system controls expression of a spectrum of phenotypic phases, transitioning between a virulent (Bvg+) phase and a nonvirulent (Bvg−) phase, a process referred to as phenotypic modulation. We hypothesized that the ability of Bordetella bronchiseptica to undergo phenotypic modulation is required at one or more points during the infectious cycle in swine. To investigate the Bvg phase-dependent contribution to pathogenesis of B. bronchiseptica in swine, we constructed a series of isogenic mutants in a virulent B. bronchiseptica swine isolate and compared each mutant to the wild-type isolate for its ability to colonize and cause disease. We additionally tested whether a BvgAS system capable of modulation is required for direct or indirect transmission. The Bvg− phase-locked mutant was never recovered from any respiratory tract site at any time point examined. An intermediate phase-locked mutant (Bvgi) was found in numbers lower than the wild type at all respiratory tract sites and time points examined and caused limited to no disease. In contrast, colonization of the respiratory tract and disease caused by the Bvg+ phase-locked mutant and the wild-type strain were indistinguishable. The Bvg+ phase-locked mutant transmitted to naïve pigs by both direct and indirect contact with efficiency equal to that of the wild-type isolate. These results indicate that while full activation of the BvgAS regulatory system is required for colonization and severe disease, it is not deleterious to direct and indirect transmission. Overall, our results demonstrate that the Bvg+ phase is sufficient for respiratory infection and host-to-host transmission of B. bronchiseptica in swine. PMID:22158743
Chaitanya V, Sundeep; Das, Madhusmita; Bhat, Pritesh; Ebenezer, Mannam
2015-10-01
The molecular basis for determination of resistance to anti-leprosy drugs is the presence of point mutations within the genes of Mycobacterium leprae (M. leprae) that encode active drug targets. The downstream structural and functional implications of these point mutations on drug targets were scarcely studied. In this study, we utilized computational tools to develop native and mutant protein models for 5 point mutations at codon positions 53 and 55 in 6-hydroxymethyl-7, 8-dihydropteroate synthase (DHPS) of M. leprae, an active target for dapsone encoded by folp1 gene, that confer resistance to dapsone. Molecular docking was performed to identify variations in dapsone interaction with mutant DHPS in terms of hydrogen bonding, hydrophobic interactions, and energy changes. Schrodinger Suite 2014-3 was used to build homology models and in performing molecular docking. An increase in volume of the binding cavities of mutant structures was noted when compared to native form indicating a weakening in interaction (60.7 Å(3) in native vs. 233.6 Å(3) in Thr53Ala, 659.9 Å(3) in Thr53Ile, 400 Å(3) for Thr53Val, 385 Å(3) for Pro55Arg, and 210 Å(3) for Pro55Leu). This was also reflected by changes in hydrogen bonds and decrease in hydrophobic interactions in the mutant models. The total binding energy (ΔG) decreased significantly in mutant forms when compared to the native form (-51.92 Kcal/mol for native vs. -35.64, -35.24, -46.47, -47.69, and -41.36 Kcal/mol for mutations Thr53Ala, Thr53Ile, Thr53Val, Pro55Arg, and Pro55Leu, respectively. In brief, this analysis provided structural and mechanistic insights to the degree of dapsone resistance contributed by each of these DHPS mutants in leprosy. © 2015 Wiley Periodicals, Inc.
Suzuki, Emiko; Saga, Yumiko
2017-01-01
The segmental pattern of the vertebrate body is established via the periodic formation of somites from the presomitic mesoderm (PSM). This periodical process is controlled by the cyclic and synchronized activation of Notch signaling in the PSM. Protein O-fucosyltransferase1 (Pofut1), which transfers O-fucose to the EGF domains of the Notch1 receptor, is indispensable for Notch signaling activation. The Drosophila homologue Ofut1 was reported to control Notch localization via two different mechanisms, working as a chaperone for Notch or as a regulator of Notch endocytosis. However, these were found to be independent of O-fucosyltransferase activity because the phenotypes were rescued by Ofut1 mutants lacking O-fucosyltransferase activity. Pofut1 may also be involved in the Notch receptor localization in mice. However, the contribution of enzymatic activity of Pofut1 to the Notch receptor dynamics remains to be elucidated. In order to clarify the importance of the O-fucosyltransferase activity of Pofut1 for Notch signaling activation and the protein localization in the PSM, we established mice carrying point mutations at the 245th a.a. or 370-372th a.a., highly conserved amino-acid sequences whose mutations disrupt the O-fucosyltransferase activity of both Drosophila Ofut1 and mammalian Pofut1, with the CRISPR/Cas9 mediated genome-engineering technique. Both mutants displayed the same severely perturbed somite formation and Notch1 subcellular localization defects as the Pofut1 null mutants. In the mutants, Pofut1 protein, but not RNA, became undetectable by E9.5. Furthermore, both wild-type and mutant Pofut1 proteins were degraded through lysosome dependent machinery. Pofut1 protein loss in the point mutant embryos caused the same phenotypes as those observed in Pofut1 null embryos. PMID:29095923
Phospholamban mutants compete with wild type for SERCA binding in living cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruber, Simon J.; Haydon, Suzanne; Thomas, David D., E-mail: ddt@umn.edu
2012-04-06
Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCAmore » activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.« less
Mapping heterogeneity in patient-derived melanoma cultures by single-cell RNA-seq
Loeffler-Wirth, Henry; Hopp, Lydia; Schadendorf, Dirk; Schartl, Manfred; Anderegg, Ulf; Camp, Gray; Treutlein, Barbara; Binder, Hans; Kunz, Manfred
2017-01-01
Recent technological advances in single-cell genomics make it possible to analyze cellular heterogeneity of tumor samples. Here, we applied single-cell RNA-seq to measure the transcriptomes of 307 single cells cultured from three biopsies of three different patients with a BRAF/NRAS wild type, BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant melanoma metastasis, respectively. Analysis based on self-organizing maps identified sub-populations defined by multiple gene expression modules involved in proliferation, oxidative phosphorylation, pigmentation and cellular stroma. Gene expression modules had prognostic relevance when compared with gene expression data from published melanoma samples and patient survival data. We surveyed kinome expression patterns across sub-populations of the BRAF/NRAS wild type sample and found that CDK4 and CDK2 were consistently highly expressed in the majority of cells, suggesting that these kinases might be involved in melanoma progression. Treatment of cells with the CDK4 inhibitor palbociclib restricted cell proliferation to a similar, and in some cases greater, extent than MAPK inhibitors. Finally, we identified a low abundant sub-population in this sample that highly expressed a module containing ABC transporter ABCB5, surface markers CD271 and CD133, and multiple aldehyde dehydrogenases (ALDHs). Patient-derived cultures of the BRAF mutant/NRAS wild type and BRAF wild type/NRAS mutant metastases showed more homogeneous single-cell gene expression patterns with gene expression modules for proliferation and ABC transporters. Taken together, our results describe an intertumor and intratumor heterogeneity in melanoma short-term cultures which might be relevant for patient survival, and suggest promising targets for new treatment approaches in melanoma therapy. PMID:27903987
Chen, M X; Bouquin, N; Norris, V; Casarégola, S; Séror, S J; Holland, I B
1991-01-01
We have isolated several classes of spontaneous mutants resistant to the calmodulin inhibitor 48/80 which inhibits cell division in Escherichia coli K12. Several mutants were also temperature sensitive for growth and this property was exploited to clone a DNA fragment from an E. coli gene library restoring growth at 42 degrees C and drug sensitivity at 30 degrees C in one such mutant. Physical and genetic mapping confirmed that both the mutation and the cloned DNA were located at 15.5 min on the E. coli chromosome at a locus designated feeB. By subcloning, complementation analysis and sequencing, the feeB locus was identified as identical to the tRNA(CUALEU) gene. When the mutant locus was isolated and sequenced, the mutation was confirmed as a single base change, C to A, at position 77 in the acceptor stem of this rare Leu tRNA. In other studies we obtained evidence that this mutant tRNA, recognizing the rare Leu codon, CUA, was defective in translation at both permissive and non-permissive temperatures. The feeB1 mutant is defective in division and shows a reduced growth rate at non-permissive temperature. We discuss the possibility that the mutant tRNA(3Leu) is limiting for the synthesis of a polypeptide(s), requiring several CUA codons for translation which in turn regulates in some way the level or activity of the drug target, a putative cell cycle protein. Images PMID:1915285
Durand, Adeline; Desfontaines, Jean-Michel; Iurchenko, Ielyzaveta; Auger, Hélène; Leach, David R. F.
2017-01-01
Marker frequency analysis of the Escherichia coli recB mutant chromosome has revealed a deficit of DNA in a specific zone of the terminus, centred on the dif/TerC region. Using fluorescence microscopy of a marked chromosomal site, we show that the dif region is lost after replication completion, at the time of cell division, in one daughter cell only, and that the phenomenon is transmitted to progeny. Analysis by marker frequency and microscopy shows that the position of DNA loss is not defined by the replication fork merging point since it still occurs in the dif/TerC region when the replication fork trap is displaced in strains harbouring ectopic Ter sites. Terminus DNA loss in the recB mutant is also independent of dimer resolution by XerCD at dif and of Topo IV action close to dif. It occurs in the terminus region, at the point of inversion of the GC skew, which is also the point of convergence of specific sequence motifs like KOPS and Chi sites, regardless of whether the convergence of GC skew is at dif (wild-type) or a newly created sequence. In the absence of FtsK-driven DNA translocation, terminus DNA loss is less precisely targeted to the KOPS convergence sequence, but occurs at a similar frequency and follows the same pattern as in FtsK+ cells. Importantly, using ftsIts, ftsAts division mutants and cephalexin treated cells, we show that DNA loss of the dif region in the recB mutant is decreased by the inactivation of cell division. We propose that it results from septum-induced chromosome breakage, and largely contributes to the low viability of the recB mutant. PMID:28968392
A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans
Bricker, Daniel K.; Taylor, Eric B.; Schell, John C.; Orsak, Thomas; Boutron, Audrey; Chen, Yu-Chan; Cox, James E.; Cardon, Caleb M.; Van Vranken, Jonathan G.; Dephoure, Noah; Redin, Claire; Boudina, Sihem; Gygi, Steven P.; Brivet, Michèle; Thummel, Carl S.; Rutter, Jared
2013-01-01
Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. PMID:22628558
CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice.
Oji, Asami; Noda, Taichi; Fujihara, Yoshitaka; Miyata, Haruhiko; Kim, Yeon Joo; Muto, Masanaga; Nozawa, Kaori; Matsumura, Takafumi; Isotani, Ayako; Ikawa, Masahito
2016-08-17
Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.
A new spontaneous allele at the pink-eyed dilution (p) locus discovered in Mus musculus castaneus.
Tsuji, A; Wakayama, T; Ishikawa, A
1995-10-01
Mutant mice characterized by a cream coat and pink eyes were spontaneously discovered among the descendants of Indonesian wild mice (Mus musculus castaneus). This mutant phenotype was controlled by a single autosomal recessive gene that was allelic to the pink-eyed dilution (p) gene. The mutant mouse phenotypically resembled the original p mouse which was the first mutant identified at this locus. Nevertheless, these two alleles differed in origin, a previous report suggesting that the original p allele was derived from Japanese wild mice (M. m. molossinus). Thus the symbol pcas (pink-eyed castaneus) was proposed for the present mutation allele.
Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina
2017-01-01
ABSTRACT Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu393, Phe397, Phe415, and His440) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. PMID:28416557
Yamada, Tsuyoshi; Maeda, Mari; Alshahni, Mohamed Mahdi; Tanaka, Reiko; Yaguchi, Takashi; Bontems, Olympia; Salamin, Karine; Fratti, Marina; Monod, Michel
2017-07-01
Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu 393 , Phe 397 , Phe 415 , and His 440 ) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes ) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains. Copyright © 2017 American Society for Microbiology.
Idnurm, Alexander; Rodríguez-Romero, Julio; Corrochano, Luis M; Sanz, Catalina; Iturriaga, Enrique A; Eslava, Arturo P; Heitman, Joseph
2006-03-21
Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses. The Phycomyces madA mutants were first isolated more than 40 years ago, and they exhibit reduced sensitivity to light. Here, we identify two (duplicated) homologs in the White Collar 1 family of blue-light photoreceptors in Phycomyces. We describe that the madA mutant strains contain point mutations in one of these genes and that these mutations cosegregate with a defect in phototropism after genetic crosses. Thus, the phototropic responses of fungi through madA and plants through phototropin rely on diverse proteins; however, these proteins share a conserved flavin-binding domain for photon detection.
Idnurm, Alexander; Rodríguez-Romero, Julio; Corrochano, Luis M.; Sanz, Catalina; Iturriaga, Enrique A.; Eslava, Arturo P.; Heitman, Joseph
2006-01-01
Phycomyces blakesleeanus is a filamentous zygomycete fungus that produces striking elongated single cells that extend up to 10 cm into the air, with each such sporangiophore supporting a sphere containing the spores for dispersal. This organism has served as a model for the detection of environmental signals as diverse as light, chemicals, touch, wind, gravity, and adjacent objects. In particular, sporangiophore growth is regulated by light, and it exhibits phototropism by bending toward near-UV and blue wavelengths and away from far-UV wavelengths in a manner that is physiologically similar to plant phototropic responses. The Phycomyces madA mutants were first isolated more than 40 years ago, and they exhibit reduced sensitivity to light. Here, we identify two (duplicated) homologs in the White Collar 1 family of blue-light photoreceptors in Phycomyces. We describe that the madA mutant strains contain point mutations in one of these genes and that these mutations cosegregate with a defect in phototropism after genetic crosses. Thus, the phototropic responses of fungi through madA and plants through phototropin rely on diverse proteins; however, these proteins share a conserved flavin-binding domain for photon detection. PMID:16537433
NASA Astrophysics Data System (ADS)
Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.
2006-04-01
The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6-1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. atomic force microscopy | cowpea chlorotic mottle virus | finite element analysis | biomechanics
Bosshart, Andreas; Hee, Chee Seng; Bechtold, Matthias; Schirmer, Tilman; Panke, Sven
2015-03-02
Functional promiscuity of enzymes can often be harnessed as the starting point for the directed evolution of novel biocatalysts. Here we describe the divergent morphing of an engineered thermostable variant (Var8) of a promiscuous D-tagatose epimerase (DTE) into two efficient catalysts for the C3 epimerization of D-fructose to D-psicose and of L-sorbose to L-tagatose. Iterative single-site randomization and screening of 48 residues in the first and second shells around the substrate-binding site of Var8 yielded the eight-site mutant IDF8 (ninefold improved kcat for the epimerization of D-fructose) and the six-site mutant ILS6 (14-fold improved epimerization of L-sorbose), compared to Var8. Structure analysis of IDF8 revealed a charged patch at the entrance of its active site; this presumably facilitates entry of the polar substrate. The improvement in catalytic activity of variant ILS6 is thought to relate to subtle changes in the hydration of the bound substrate. The structures can now be used to select additional sites for further directed evolution of the ketohexose epimerase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bouuaert, Corentin Claeys; Tellier, Michael; Chalmers, Ronald
2014-01-01
The development of transposon-based genome manipulation tools can benefit greatly from understanding transposons’ inherent regulatory mechanisms. The Tc1-mariner transposons, which are being widely used in biotechnological applications, are subject to a self-inhibitory mechanism whereby increasing transposase expression beyond a certain point decreases the rate of transposition. In a recent paper, Liu and Chalmers performed saturating mutagenesis on the highly conserved WVPHEL motif in the mariner-family transposase from the Hsmar1 element. Curiously, they found that the majority of all possible single mutations were hyperactive. Biochemical characterizations of the mutants revealed that the hyperactivity is due to a defect in communication between transposase subunits, which normally regulates transposition by reducing the rate of synapsis. This provides important clues for improving transposon-based tools. However, some WVPHEL mutants also showed features that would be undesirable for most biotechnological applications: they showed uncontrolled DNA cleavage activities and defects in the coordination of cleavage between the two transposon ends. The study illustrates how the knowledge of inhibitory mechanisms can help improve transposon tools but also highlights an important challenge, which is to specifically target a regulatory mechanism without affecting other important functions of the transposase. PMID:24812590
Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.
Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda
2008-05-01
The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.
Effects of hypo-O-GlcNAcylation on Drosophila development.
Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F
2018-05-11
Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-09-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different alpha-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Deltagsa1, Deltagsa2, and Deltagsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Galpha-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Deltagsa1Deltagsa2 and Deltagsa1Deltagsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Galpha-subunits, two recently generated Deltapre strains were crossed with all Deltagsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three DeltagsaDeltasac1 double mutants and one Deltagsa2Deltagsa3Deltasac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1-GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Galpha-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora.
Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus
Hodgkin, Jonathan; Kaiser, Dale
1977-01-01
A large number of nonmotile mutants of the gliding bacterium Myxococcus xanthus have been isolated and partly characterized. About [unk] of these mutants are conditional mutants of a novel kind: mutant cells become transiently motile after contact with nonmutant cells or with cells of a different mutant type. These “stimulatable” mutants fall into five phenotypic classes (types B, C, D, E, and F). Most mutants are nonstimulatable (type A) and never become motile, but type A cells (and wild-type cells) can stimulate cells of any of the other five types. Stimulatable mutants of different types are capable of stimulating each other. For example, in a mixture of B and C cells, both become motile. Linkage analysis using a generalized transducing phage has shown that each of types B, C, D, E, and F corresponds to a single distinct genetic locus. Type A mutants, by contrast, belong to at least 17 different loci. Stimulation depends on close apposition of interacting cells, because stimulation does not occur when contact between cells is prevented. It is possible that the stimulatable mutants are defective in components of the gliding mechanism that can be exchanged between cells. Alternatively, they may be defective in a system of cell communication controlling the coordinated cell movements observed in Myxococcus. Images PMID:16592422
Eckardt-Schupp, Friederike; Siede, Wolfram; Game, John C.
1987-01-01
The moderately UV- and X-ray-sensitive mutant of Saccharomyces cerevisiae originally designated rs1 complements all rad and mms mutants available. Therefore, the new nomination rad24-1 according to the RAD nomenclature is suggested. RAD24 maps on chromosome V, close to RAD3 (1.3 cM). In order to associate the RAD24 gene with one of the three repair pathways, double mutants of rad24 and various representative genes of each pathway were constructed. The UV and X-ray sensitivities of the double mutants compared to the single mutants indicate that RAD24 is involved in excision repair of UV damage (RAD3 epistasis group), as well as in recombination repair of UV and X-ray damage (RAD52 epistasis group). Properties of the mutant are discussed which hint at the control of late steps in the pathways. PMID:3549445
φX-174 Bacteriophage Structural Mutants Which Affect Deoxyribonucleic Acid Synthesis
Siegel, Jeff E. D.; Hayashi, Masaki
1969-01-01
Seven cistrons in φX-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form φX-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type. PMID:5823229
Developing noninvasive diagnosis for single-gene disorders: the role of digital PCR.
Barrett, Angela N; Chitty, Lyn S
2014-01-01
Cell-free fetal DNA constitutes approximately 10 % of the cell-free DNA found in maternal plasma and can be used as a reliable source of fetal genetic material for noninvasive prenatal diagnosis (NIPD) from early pregnancy. The relatively high levels of maternal background can make detection of paternally inherited point mutations challenging. Diagnosis of inheritance of autosomal recessive disorders using qPCR is even more challenging due to the high background of mutant maternal allele. Digital PCR is a very sensitive modified method of quantitative real-time PCR (qPCR), allowing absolute quantitation and rare allele detection without the need for standards or normalization. Samples are diluted and then partitioned into a large number of small qPCR reactions, some of which contain the target molecule and some which do not; the proportion of positive reactions can be used to calculate the concentration of targets in the initial sample. Here we discuss the use of digital PCR as an accurate approach to NIPD for single-gene disorders.
Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit
2016-01-01
Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095
Xie, Ning; Chapeland-Leclerc, Florence; Silar, Philippe; Ruprich-Robert, Gwenaël
2014-01-01
Transformation of plant biomass into biofuels may supply environmentally friendly alternative biological sources of energy. Laccases are supposed to be involved in the lysis of lignin, a prerequisite step for efficient breakdown of cellulose into fermentable sugars. The role in development and plant biomass degradation of the nine canonical laccases belonging to three different subfamilies and one related multicopper oxidase of the Ascomycota fungus Podospora anserina was investigated by targeted gene deletion. The 10 genes were inactivated singly, and multiple mutants were constructed by genetic crosses. lac6(Δ), lac8(Δ) and mco(Δ) mutants were significantly reduced in their ability to grow on lignin-containing materials, but also on cellulose and plastic. Furthermore, lac8(Δ), lac7(Δ), mco(Δ) and lac6(Δ) mutants were defective towards resistance to phenolic substrates and H2 O2 , which may also impact lignocellulose breakdown. Double and multiple mutants were generally more affected than single mutants, evidencing redundancy of function among laccases. Our study provides the first genetic evidences that laccases are major actors of wood utilization in a fungus and that they have multiple roles during this process apart from participation in lignin lysis. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Massouh, Amid; Schubert, Julia; Yaneva-Roder, Liliya; Ulbricht-Jones, Elena S.; Johnson, Marc T.J.; Wright, Stephen I.; Pellizzer, Tommaso; Sobanski, Johanna; Greiner, Stephan
2016-01-01
Spontaneous plastome mutants have been used as a research tool since the beginning of genetics. However, technical restrictions have severely limited their contributions to research in physiology and molecular biology. Here, we used full plastome sequencing to systematically characterize a collection of 51 spontaneous chloroplast mutants in Oenothera (evening primrose). Most mutants carry only a single mutation. Unexpectedly, the vast majority of mutations do not represent single nucleotide polymorphisms but are insertions/deletions originating from DNA replication slippage events. Only very few mutations appear to be caused by imprecise double-strand break repair, nucleotide misincorporation during replication, or incorrect nucleotide excision repair following oxidative damage. U-turn inversions were not detected. Replication slippage is induced at repetitive sequences that can be very small and tend to have high A/T content. Interestingly, the mutations are not distributed randomly in the genome. The underrepresentation of mutations caused by faulty double-strand break repair might explain the high structural conservation of seed plant plastomes throughout evolution. In addition to providing a fully characterized mutant collection for future research on plastid genetics, gene expression, and photosynthesis, our work identified the spectrum of spontaneous mutations in plastids and reveals that this spectrum is very different from that in the nucleus. PMID:27053421
Weng, Meizhi; Deng, Xiongwei; Bao, Wei; Zhu, Li; Wu, Jieyuan; Cai, Yongjun; Jia, Yan; Zheng, Zhongliang; Zou, Guolin
2015-09-25
Nattokinase (NK), a bacterial serine protease from Bacillus subtilis var. natto, is a potential cardiovascular drug exhibiting strong fibrinolytic activity. To broaden its commercial and medical applications, we constructed a single-mutant (I31L) and two double-mutants (M222A/I31L and T220S/I31L) by site-directed mutagenesis. Active enzymes were expressed in Escherichia coli with periplasmic secretion and were purified to homogeneity. The kinetic parameters of enzymes were examined by spectroscopy assay and isothermal titration calorimetry (ITC), and their fibrinolytic activities were determined by fibrin plate method. The substitution of Leu(31) for Ile(31) resulted in about 2-fold enhancement of catalytic efficiency (Kcat/KM) compared with wild-type NK. The specific activities of both double-mutants (M222A/I31L and T220S/I31L) were significantly increased when compared with the single-mutants (M222A and T220S) and the oxidative stability of M222A/I31L mutant was enhanced with respect to wild-type NK. This study demonstrates the feasibility of improving activity of NK by site-directed mutagenesis and shows successful protein engineering cases to improve the activity of NK as a potent therapeutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.
Braberg, Hannes; Moehle, Erica A.; Shales, Michael; Guthrie, Christine; Krogan, Nevan J.
2014-01-01
We have achieved a residue-level resolution of genetic interaction mapping – a technique that measures how the function of one gene is affected by the alteration of a second gene – by analyzing point mutations. Here, we describe how to interpret point mutant genetic interactions, and outline key applications for the approach, including interrogation of protein interaction interfaces and active sites, and examination of post-translational modifications. Genetic interaction analysis has proven effective for characterizing cellular processes; however, to date, systematic high-throughput genetic interaction screens have relied on gene deletions or knockdowns, which limits the resolution of gene function analysis and poses problems for multifunctional genes. Our point mutant approach addresses these issues, and further provides a tool for in vivo structure-function analysis that complements traditional biophysical methods. We also discuss the potential for genetic interaction mapping of point mutations in human cells and its application to personalized medicine. PMID:24842270
Bravo Ruiz, Gustavo; Di Pietro, Antonio; Roncero, M Isabel G
2016-04-01
The genome of the tomato pathogen Fusarium oxysporum f. sp. lycopersici encodes eight different polygalacturonases (PGs): four endoPGs and four exoPGs. Quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed that endoPGs pg1 and pg5 and exoPGs pgx4 and pgx6 are expressed at significant levels during growth on citrus pectin, polygalacturonic acid or the monomer galacturonic acid, as well as during the infection of tomato plants. The remaining PG genes exhibit low expression levels under all the conditions tested. Secreted PG activity was decreased significantly during growth on pectin in the single deletion mutants lacking either pg1 or pgx6, as well as in the double mutant. Although the single deletion mutants did not display a significant virulence reduction on tomato plants, the Δpg1Δpgx6 double mutant was significantly attenuated in virulence. The combined action of exoPGs and endoPGs is thus essential for plant infection by the vascular wilt fungus F. oxysporum. © 2015 BSPP and John Wiley & Sons Ltd.
Reavey, Caitlin T; Hickman, Mark J; Dobi, Krista C; Botstein, David; Winston, Fred
2015-10-01
Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance. Copyright © 2015 by the Genetics Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iimori, Makoto; Ozaki, Kanako; Chikashige, Yuji
2012-02-01
Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+ TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a + TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, themore » mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure. -- Highlights: Black-Right-Pointing-Pointer We characterize a mutation (mal3-89R) in fission yeast homolog of EB1. Black-Right-Pointing-Pointer The mutation enhances the activity to assemble microtubules. Black-Right-Pointing-Pointer Mal3 is phosphorylated in a microtubule-dependent manner. Black-Right-Pointing-Pointer The phosphorylation negatively regulates the Mal3 activity.« less
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S.; Wentzell, Jill S.; Kretzschmar, Doris; Giebultowicz, Jadwiga M.
2012-01-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per01) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni1), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni1 mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per01 sni1 flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per01 mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws1), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. PMID:22227001
Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange
Hmelo, Laura R.; Borlee, Bradley R.; Almblad, Henrik; Love, Michelle E.; Randall, Trevor E.; Tseng, Boo Shan; Lin, Chuyang; Irie, Yasuhiko; Storek, Kelly M.; Yang, Jaeun Jane; Siehnel, Richard J.; Howell, P. Lynne; Singh, Pradeep K.; Tolker-Nielsen, Tim; Parsek, Matthew R.; Schweizer, Herbert P.; Harrison, Joe J.
2016-01-01
Allelic exchange is an efficient method of bacterial genome engineering. This protocol describes the use of this technique to make gene knockouts and knockins, as well as single nucleotide insertions, deletions and substitutions in Pseudomonas aeruginosa. Unlike other approaches to allelic exchange, this protocol does not require heterologous recombinases to insert or excise selective markers from the target chromosome. Rather, positive and negative selection are enabled solely by suicide vector-encoded functions and host cell proteins. Here, mutant alleles, which are flanked by regions of homology to the recipient chromosome, are synthesized in vitro and then cloned into allelic exchange vectors using standard procedures. These suicide vectors are then introduced into recipient cells by conjugation. Homologous recombination then results in antibiotic resistant single-crossover mutants in which the plasmid has integrated site-specifically into the chromosome. Subsequently, unmarked double-crossover mutants are isolated directly using sucrose-mediated counter-selection. This two-step process yields seamless mutations that are precise to a single base pair of DNA. The entire procedure requires ~2 weeks. PMID:26492139
Sannigrahi, Achinta; Maity, Pabitra; Karmakar, Sanat; Chattopadhyay, Krishnananda
2017-03-02
KMP-11 is a small protein that is believed to control the overall bilayer pressure of the Leishmania parasite. Recent results have suggested that membrane binding and the presence of cholesterol affect the efficacy of Leishmanial infection, in which KMP-11 plays an important role. Nevertheless, there exists no systematic study of membrane interaction with KMP-11 either in the absence or presence of cholesterol. In this article, we investigated the interaction between KMP-11 and phospholipid membranes using an unsaturated (PC 18:1; 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and saturated (PC 12:0; 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC)) lipid as membrane mimics. Additionally, we studied the effect of cholesterol on the protein-membrane interaction. Steady-state as well as time-resolved fluorescence spectroscopy, isothermal titration calorimetry (ITC), and ζ-potential measurements were used for the determination of the binding constants for the wild-type (WT) and single-site tryptophan mutants. Single-site tryptophan mutants were designed to make sure that the tryptophan residues sample different surface exposures in different mutants. In the absence of cholesterol, the membrane-binding affinities of the partially exposed and buried tryptophan mutants (Y5W and Y48W, respectively) were found to be greater than those of the WT protein. In the presence of cholesterol, the binding constants of the WT and Y48W mutant were found to decrease with an increase in cholesterol concentration. This was in contrast to that in the Y5W and F77W mutants, in which the binding constants increased on adding cholesterol. The present study highlights the interplay among the conformational architecture of a protein, its interaction with the membrane, and membrane composition in modulating the survival of a Leishmania parasite inside host macrophages.
Newman, Emily L; Gunner, Georgia; Huynh, Polly; Gachette, Darrel; Moss, Stephen J; Smart, Trevor G; Rudolph, Uwe; DeBold, Joseph F; Miczek, Klaus A
2016-11-01
Alcohol use disorders are associated with single-nucleotide polymorphisms in GABRA2, the gene encoding the GABA A receptor α2-subunit in humans. Deficient GABAergic functioning is linked to impulse control disorders, intermittent explosive disorder, and to drug abuse and dependence, yet it remains unclear whether α2-containing GABA A receptor sensitivity to endogenous ligands is involved in excessive alcohol drinking. Male wild-type (Wt) C57BL/6J and point-mutated mice rendered insensitive to GABAergic modulation by benzodiazepines (BZD; H101R), allopregnanolone (ALLO) or tetrahydrodeoxycorticosterone (THDOC; Q241M), or high concentrations of ethanol (EtOH) (S270H/L277A) at α2-containing GABA A receptors were assessed for their binge-like, moderate, or escalated chronic drinking using drinking in the dark, continuous access (CA) and intermittent access (IA) to alcohol protocols, respectively. Social approach by mutant and Wt mice in forced alcohol abstinence was compared to approach by EtOH-naïve controls. Social deficits in forced abstinence were treated with allopregnanolone (0, 3.0, 10.0 mg/kg, intraperitoneal [i.p.]) or midazolam (0, 0.56, 1.0 mg/kg, i.p.). Mice with BZD-insensitive α2-containing GABA A receptors (H101R) escalated their binge-like drinking. Mutants harboring the Q241M point substitution in Gabra2 showed blunted chronic intake in the CA and IA protocols. S270H/L277A mutants consumed excessive amounts of alcohol but, unlike wild-types, they did not show forced abstinence-induced social deficits. These findings suggest a role for: (i) H101 in species-typical binge-like drinking, (ii) Q241 in escalated chronic drinking, and (iii) S270 and/or L277 in the development of forced abstinence-associated social deficits. Clinical findings report reduced BZD-binding sites in the cortex of dependent patients; the present findings suggest a specific role for BZD-sensitive α2-containing receptors. In addition, amino acid residue 241 in Gabra2 is necessary for positive modulation and activation of GABA A receptors by ALLO and THDOC; we postulate that neurosteroid action on α2-containing receptor may be necessary for escalated chronic EtOH intake. Copyright © 2016 by the Research Society on Alcoholism.
Li, M; Zhang, H Y; Liang, B
2013-01-01
Twelve-low resistant (LR) mutants of Trichoderma harzianum with the capability of grow fast at 0.8 μg/mL methyl benzimidazol-2-yl carbamate (MBC) were obtained using UV mutagenesis. MR and HR mutants which could grow fast at 10 and 100 μg/mL MBC, respectively, were isolated by step-up selection protocols in which UV-treated mutants were induced and mycelial sector screening was made in plates with growth medium. Subsequently, β-tubulin genes of 14 mutants were cloned to describe-the molecular lesion likely to be responsible-for MBC resistance. Comparison of the β-tubulin sequences of the mutant and sensitive strains of T. harzianum revealed 2 new MBC-binding sites differed from those in other plant pathogens. A single mutation at-amino acid 168, having Phe (TTC) instead of Ser (TCC)', was demonstrated for the HR mutant; a double mutation in amino acid 13 resulting in the substitution of Gly (GGC) by Val (GTG) was observed in β-tubulin gene of MR mutant. On the other hand, no substitutions were identified in the β-tubulin gene and its 5'-flanking regions in 12 LR mutants of T. harzianum.
Dictyostelium discoideum mutants with conditional defects in phagocytosis
1994-01-01
We have isolated and characterized Dictyostelium discoideum mutants with conditional defects in phagocytosis. Under suspension conditions, the mutants exhibited dramatic reductions in the uptake of bacteria and polystyrene latex beads. The initial binding of these ligands was unaffected, however, indicating that the defect was not in a plasma membrane receptor: Because of the phagocytosis defect, the mutants were unable to grow when cultured in suspensions of heat-killed bacteria. The mutants exhibited normal capacities for fluid phase endocytosis and grew as rapidly as parental (AX4) cells in axenic medium. Both the defects in phagocytosis and growth on bacteria were corrected when the mutant Dictyostelium cells were cultured on solid substrates. Reversion and genetic complementation analysis suggested that the mutant phenotypes were caused by single gene defects. While the precise site of action of the mutations was not established, the mutations are likely to affect an early signaling event because the binding of bacteria to mutant cells in suspension was unable to trigger the localized polymerization of actin filaments required for ingestion; other aspects of actin function appeared normal. This class of conditional phagocytosis mutant should prove to be useful for the expression cloning of the affected gene(s). PMID:7519624
Fixation Times in Deme Structured, Finite Populations with Rare Migration
NASA Astrophysics Data System (ADS)
Hauert, Christoph; Chen, Yu-Ting; Imhof, Lorens A.
2014-08-01
Population structure affects both the outcome and the speed of evolutionary dynamics. Here we consider a finite population that is divided into subpopulations called demes. The dynamics within the demes are stochastic and frequency-dependent. Individuals can adopt one of two strategic types, or . The fitness of each individual is determined by interactions with other individuals in the same deme. With small probability, proportional to fitness, individuals migrate to other demes. The outcome of these dynamics has been studied earlier by analyzing the fixation probability of a single mutant in an otherwise homogeneous population. These results give only a partial picture of the dynamics, because the time when fixation occurs can be exceedingly large. In this paper, we study the impact of deme structures on the speed of evolution. We derive analytical approximations of fixation times in the limit of rare migration and rare mutation. In this limit, the conditional fixation time of a single mutant in a population is the same as that of a single in an population. For the prisoner's dilemma game, simulation results fit very well with our analytical predictions and demonstrate that fixation takes place in a moderate amount of time as compared to the expected waiting time until a mutant successfully invades and fixates. The simulations also confirm that the conditional fixation time of a single cooperator is indeed the same as that of a single defector.
Zhao, D; Yang, M; Solava, J; Ma, H
1999-09-01
Normal flower development likely requires both specific and general regulators. We have isolated an Arabidopsis mutant ask1-1 (for -Arabidopsis skp1-like1-1), which exhibits defects in both vegetative and reproductive development. In the ask1-1mutant, rosette leaf growth is reduced, resulting in smaller than normal rosette leaves, and internodes in the floral stem are shorter than normal. Examination of cell sizes in these organs indicates that cell expansion is normal in the mutant, but cell number is reduced. In the mutant, the numbers of petals and stamens are reduced, and many flowers have one or more petals with a reduced size. In addition, all mutant flowers have short stamen filaments. Furthermore, petal/stamen chimeric organs are found in many flowers. These results indicate that the ASK1 gene affects the size of vegetative and floral organs. The ask1 floral phenotype resembles somewhat that of the Arabidopsis ufo mutants in that both genes affect whorls 2 and 3. We therefore tested for possible interactions between ASK1 and UFO by analyzing the phenotypes of ufo-2 ask1-1 double mutant plants. In these plants, vegetative development is similar to that of the ask1-1 single mutant, whereas the floral defects are more severe than those in either single mutant. Interior to the first whorl, the double mutant flowers have more sepals or sepal-like organs than are found in ufo-2, and less petals than ask1-1. Our results suggest that ASK1 interacts with UFO to control floral organ identity in whorls 2 and 3. This is very intriguing because ASK1 is very similar in sequence to the yeast SKP1 protein and UFO contains an F-box, a motif known to interact with SKP1 in yeast. Although the precise mechanism of ASK1 and UFO action is unknown, our results support the hypothesis that these two proteins physically interact in vivo. Copyright 1999 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Honglin; Peng, Xiaohui; Key Laboratory of Structural Biology, Chinese Academy of Sciences, Hefei, Anhui 230026
This study examined recombinant wild-type human phosphoribosylpyrophosphate synthetase 1 (wt-PRS1, EC 2.7.6.1) and the point mutant Asn114Ser PRS1 (N114S-Mutant) in cells of a patient with primary gout. Dynamic light-scattering and sedimentation velocity experiments indicated that the monomeric wt-PRS1 in solution was assembled into hexamers after adding the substrate ATP. However, this ATP-induced aggregation effect was not observed with N114S-Mutant, which has a 50% higher enzymatic activity than that of wt-PRS1. Synchrotron radiation circular dichroism spectroscopy revealed that the point mutation causes an increase of {alpha}-helix content and a decrease of turn content. Examination of the crystal structure of wt-PRS1 indicatedmore » that 12 hydrogen bonds formed by 6 pairs of N114 and D139 have an important role in stabilizing the hexamer. We suggest that the substitution of S114 for N114 in N114S-Mutant leads to the rupture of 12 hydrogen bonds and breakage of the PO{sub 4}{sup 3-} allosteric site where PO{sub 4}{sup 3-} functions as a fixer of the ATP-binding loop. Therefore, we consider that formation of the hexamer as the structural basis of the ADP allosteric inhibition is greatly weakened by the N114S mutation, and that alteration of the ATP-binding loop conformation is the key factor in the increased activity of N114S-Mutant. These two factors could be responsible for the high level of activity of N114S-Mutant in this patient.« less
Melanopsin Polymorphisms in Seasonal Affective Disorder
2005-01-01
Affective Disorder and Melanopsin Pigmentosa (RP), which is a disease characterized by retinal degeneration. Melanopsin is structurally similar to all...abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proceedings of the National Academy of Science U S A, 98(9), p4872-4876...in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa
Daidone, Isabella; Di Nola, Alfredo; Smith, Jeremy C.
2011-01-01
Prion proteins become pathogenic through misfolding. Here, we characterize the folding of a peptide consisting of residues 109–122 of the Syrian hamster prion protein (the H1 peptide) and of a more amyloidogenic A117V point mutant that leads in humans to an inheritable form of the Gerstmann-Sträussler-Scheinker syndrome. Atomistic molecular dynamics simulations are performed for 2.5 μs. Both peptides lose their α-helical starting conformations and assume a β-hairpin that is structurally similar in both systems. In each simulation several unfolding/refolding events occur, leading to convergence of the thermodynamics of the conformational states to within 1 kJ/mol. The similar stability of the β-hairpin relative to the unfolded state is observed in the two peptides. However, substantial differences are found between the two unfolded states. A local minimum is found within the free energy unfolded basin of the A117V mutant populated by misfolded collapsed conformations of comparable stability to the β-hairpin state, consistent with increased amyloidogenicity. This population, in which V117 stabilizes a hydrophobic core, is absent in the wild-type peptide. These results are supported by simulations of oligomers showing a slightly higher stability of the associated structures and a lower barrier to association for the mutated peptide. Hence, a single point mutation carrying only two additional methyl groups is here shown to be responsible for rather dramatic differences of structuring within the unfolded (misfolded) state. PMID:21689534
Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae.
Erdmann, R; Veenhuis, M; Mertens, D; Kunau, W H
1989-01-01
Two mutants of Saccharomyces cerevisiae affected in peroxisomal assembly (pas mutants) have been isolated and characterized. Each strain contains a single mutation that results in (i) the inability to grow on oleic acid, (ii) accumulation of peroxisomal matrix enzymes in the cytosol, and (iii) absence of detectable peroxisomes at the ultrastructural level. These lesions (pas1-1 and pas2) are shown to be nonallelic and recessive. Crossing of pas1-1 and pas2 strains resulted in diploid cells that had regained the ability to grow on oleic acid as sole carbon source and to form peroxisomes. These pas mutants may provide useful tools for future studies on the molecular mechanisms involved in peroxisomal assembly. Images PMID:2568633
Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103
Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M.; Prescott, John F.
2007-01-01
Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genes furA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes. PMID:17193875
Mutation and virulence assessment of chromosomal genes of Rhodococcus equi 103.
Pei, Yanlong; Parreira, Valeria; Nicholson, Vivian M; Prescott, John F
2007-01-01
Rhodococcus equi can cause severe or fatal pneumonia in foals as well as in immunocompromised animals and humans. Its ability to persist in macrophages is fundamental to how it causes disease, but the basis of this is poorly understood. To examine further the general application of a recently developed system of targeted gene mutation and to assess the importance of different genes in resistance to innate immune defenses, we disrupted the genes encoding high-temperature requirement A (htrA), nitrate reductase (narG), peptidase D (pepD), phosphoribosylaminoimidazole-succinocarboxamide synthase (purC), and superoxide dismutase (sodC) in strain 103 of R. equi using a double-crossover homologous recombination approach. Virulence testing by clearance after intravenous injection in mice showed that the htrA and narG mutants were fully attenuated, the purC and sodC mutants were unchanged, and the pepD mutant was slightly attenuated. Complementation with the pREM shuttle plasmid restored the virulence of the htrA and pepD mutants but not that of the narG mutant. A single-crossover mutation approach was simpler and faster than the double-crossover homologous recombination technique and was used to obtain mutations in 6 other genes potentially involved in virulence (clpB, fadD8, fbpB, glnA1, regX3, and sigF). These mutants were not attenuated in the mouse clearance assay. We were not able to obtain mutants for genesfurA, galE, and sigE using the single-crossover mutation approach. In summary, the targeted-mutation system had general applicability but was not always completely successful, perhaps because some genes are essential under the growth conditions used or because the success of mutation depends on the target genes.
Moonjely, Soumya; Keyhani, Nemat O; Bidochka, Michael J
2018-04-01
The hyd1/hyd2 hydrophobins are important constituents of the conidial cell wall of the insect pathogenic fungus Beauveria bassiana. This fungus can also form intimate associations with several plant species. Here, we show that inactivation of two Class I hydrophobin genes, hyd1 or hyd2, significantly decreases the interaction of B. bassiana with bean roots. Curiously, the ∆hyd1/∆hyd2 double mutant was less impaired in root association than Δhyd1 or Δhyd2. Loss of hyd genes affected growth rate, conidiation ability and oosporein production. Expression patterns for genes involved in conidiation, cell wall integrity, insect virulence, signal transduction, adhesion, hydrophobicity and oosporein production were screened in the deletion mutants grown in different conditions. Repression of the major MAP-Kinase signal transduction pathways (Slt2 MAPK pathway) was observed that was more pronounced in the single versus double hyd mutants under certain conditions. The ∆hyd1/∆hyd2 double mutant showed up-regulation of the Hog1 MAPK and the Msn2 transcription factor under certain conditions when compared to the wild-type or single hyd mutants. The expression of the bad2 adhesin and the oosporein polyketide synthase 9 gene was severely reduced in all of the mutants. On the other hand, fewer changes were observed in the expression of key conidiation and cell wall integrity genes in hyd mutants compared to wild-type. Taken together, the data from this study indicated pleiotropic consequences of deletion of hyd1 and hyd2 on signalling and stress pathways as well as the ability of the fungus to form stable associations with plant roots.
Azoulay-Dupuis, E.; Bédos, J. P.; Mohler, J.; Moine, P.; Cherbuliez, C.; Peytavin, G.; Fantin, B.; Köhler, T.
2005-01-01
Gemifloxacin is a novel fluoronaphthyridone quinolone with enhanced in vitro activity against Streptococcus pneumoniae. We investigated the activities of gemifloxacin and trovafloxacin, their abilities to select for resistance in vitro and in vivo, and their efficacies in a mouse model of acute pneumonia. Immunocompetent Swiss mice were infected with 105 CFU of a virulent, encapsulated S. pneumoniae strain, P-4241, or its isogenic parC, gyrA, parC gyrA, and efflux mutant derivatives (serotype 3); and leukopenic mice were infected with 107 CFU of two poorly virulent clinical strains (serotype 11A) carrying either a parE mutation or a parC, gyrA, and parE triple mutation. The drugs were administered six times every 12 h, starting at either 3 or 18 h postinfection. In vitro, gemifloxacin was the most potent agent against strains with and without acquired resistance to fluoroquinolones. While control mice died within 6 days, gemifloxacin at doses of 25 and 50 mg/kg of body weight was highly effective (survival rates, 90 to 100%) against the wild-type strain and against mutants harboring a single mutation, corresponding to area under the time-versus-serum concentration curve at 24 h (AUC24)/MIC ratios of 56.5 to 113, and provided a 40% survival rate against a mutant with a double mutation (parC and gyrA). A total AUC24/MIC ratio of 28.5 was associated with poor efficacy and the emergence of resistant mutants. Trovafloxacin was as effective as gemifloxacin against mutants with single mutations but did not provide any protection against the mutant with double mutations, despite treatment with a high dose of 200 mg/kg. Gemifloxacin preferentially selected for parC mutants both in vitro and in vivo. PMID:15728901
Arabidopsis Fructokinases Are Important for Seed Oil Accumulation and Vascular Development.
Stein, Ofer; Avin-Wittenberg, Tamar; Krahnert, Ina; Zemach, Hanita; Bogol, Vlada; Daron, Oksana; Aloni, Roni; Fernie, Alisdair R; Granot, David
2016-01-01
Sucrose (a disaccharide made of glucose and fructose) is the primary carbon source transported to sink organs in many plants. Since fructose accounts for half of the hexoses used for metabolism in sink tissues, plant fructokinases (FRKs), the main fructose-phosphorylating enzymes, are likely to play a central role in plant development. However, to date, their specific functions have been the subject of only limited study. The Arabidopsis genome contains seven genes encoding six cytosolic FRKs and a single plastidic FRK. T-DNA knockout mutants for five of the seven FRKs were identified and used in this study. Single knockouts of the FRK mutants did not exhibit any unusual phenotype. Double-mutants of AtFRK6 (plastidic) and AtFRK7 showed normal growth in soil, but yielded dark, distorted seeds. The seed distortion could be complemented by expression of the well-characterized tomato SlFRK1 , confirming that a lack of FRK activity was the primary cause of the seed phenotype. Seeds of the double-mutant germinated, but failed to establish on 1/2 MS plates. Seed establishment was made possible by the addition of glucose or sucrose, indicating reduced seed storage reserves. Metabolic profiling of the double-mutant seeds revealed decreased TCA cycle metabolites and reduced fatty acid metabolism. Examination of the mutant embryo cells revealed smaller oil bodies, the primary storage reserve in Arabidopsis seeds. Quadruple and penta FRK mutants showed growth inhibition and leaf wilting. Anatomical analysis revealed smaller trachea elements and smaller xylem area, accompanied by necrosis around the cambium and the phloem. These results demonstrate overlapping and complementary roles of the plastidic AtFRK6 and the cytosolic AtFRK7 in seed storage accumulation, and the importance of AtFRKs for vascular development.
Juárez, Oscar; Nilges, Mark J.; Gillespie, Portia; Cotton, Jennifer; Barquera, Blanca
2008-01-01
Here we present new evidence that riboflavin is present as one of four flavins in Na+-NQR. In particular, we present conclusive evidence that the source of the neutral radical is not one of the FMNs and that riboflavin is the center that gives rise to the neutral flavosemiquinone. The riboflavin is a bona fide redox cofactor and is likely to be the last redox carrier of the enzyme, from which electrons are donated to quinone. We have constructed a double mutant that lacks both covalently bound FMN cofactors (NqrB-T236Y/NqrC-T225Y) and have studied this mutant together with the two single mutants (NqrB-T236Y and NqrC-T225Y) and a mutant that lacks the noncovalently bound FAD in NqrF (NqrF-S246A). The double mutant contains riboflavin and FAD in a 0.6:1 ratio, as the only flavins in the enzyme; noncovalently bound flavins were detected. In the oxidized form, the double mutant exhibits an EPR signal consistent with a neutral flavosemiquinone radical, which is abolished on reduction of the enzyme. The same radical can be observed in the FAD deletion mutant. Furthermore, when the oxidized enzyme reacts with ubiquinol (the reduced form of the usual electron acceptor) in a process that reverses the physiological direction of the electron flow, a single kinetic phase is observed. The kinetic difference spectrum of this process is consistent with one-electron reduction of a neutral flavosemiquinone. The presence of riboflavin in the role of a redox cofactor is thus far unique to Na+-NQR. PMID:18832377
Budka, Josh; Fujioka, Shozo; Johal, Gurmukh
2016-01-01
A small number of phytohormones dictate the pattern of plant form affecting fitness via reproductive architecture and the plant’s ability to forage for light, water, and nutrients. Individual phytohormone contributions to plant architecture have been studied extensively, often following a single component of plant architecture, such as plant height or branching. Both brassinosteroid (BR) and gibberellin (GA) affect plant height, branching, and sexual organ development in maize (Zea mays). We identified the molecular basis of the nana plant2 (na2) phenotype as a loss-of-function mutation in one of the two maize paralogs of the Arabidopsis (Arabidopsis thaliana) BR biosynthetic gene DWARF1 (DWF1). These mutants accumulate the DWF1 substrate 24-methylenecholesterol and exhibit decreased levels of downstream BR metabolites. We utilized this mutant and known GA biosynthetic mutants to investigate the genetic interactions between BR and GA. Double mutants exhibited additivity for some phenotypes and epistasis for others with no unifying pattern, indicating that BR and GA interact to affect development but in a context-dependent manner. Similar results were observed in double mutant analyses using additional BR and GA biosynthetic mutant loci. Thus, the BR and GA interactions were neither locus nor allele specific. Exogenous application of GA3 to na2 and d5, a GA biosynthetic mutant, also resulted in a diverse pattern of growth responses, including BR-dependent GA responses. These findings demonstrate that BR and GA do not interact via a single inclusive pathway in maize but rather suggest that differential signal transduction and downstream responses are affected dependent upon the developmental context. PMID:27288361
Capoferri, Luigi; Leth, Rasmus; ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan N M; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P
2016-03-01
Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug-like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti-inflammatory drugs (NSAIDs). Interestingly, single active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and binding free-energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. © 2016 Wiley Periodicals, Inc.
Ujike, Makoto; Nakajima, Katsuhisa; Nobusawa, Eri
2004-11-01
The cytoplasmic tail (CT) of hemagglutinin (HA) of influenza B virus (BHA) contains at positions 578 and 581 two highly conserved cysteine residues (Cys578 and Cys581) that are modified with palmitic acid (PA) through a thioester linkage. To investigate the role of PA in the fusion activity of BHA, site-specific mutagenesis was performed with influenza B virus B/Kanagawa/73 HA cDNA. All of the HA mutants were expressed on Cos cells by an expression vector. The membrane fusion ability of the HA mutants at a low pH was quantitatively examined with lipid (octadecyl rhodamine B chloride) and aqueous (calcein) dye transfer assays and with the syncytium formation assay. Two deacylation mutants lacking a CT or carrying serine residues substituting for Cys578 and Cys581 promoted full fusion. However, one of the single-acylation-site mutants, C6, in which Cys581 is replaced with serine, promoted hemifusion but not pore formation. In contrast, four other single-acylation-site mutants that have a sole cysteine residue in the CT at position 575, 577, 579, or 581 promoted full fusion. The impaired pore-forming ability of C6 was improved by amino acid substitution between residues 578 and 582 or by deletion of the carboxy-terminal leucine at position 582. Syncytium-forming ability, however, was not adequately restored by these mutations. These facts indicated that the acylation was not significant in membrane fusion by BHA but that pore formation and pore dilation were appreciably affected by the particular amino acid sequence of the CT and the existence of a single acylation site in CT residue 578.
Saldaña, Zeus; Xicohtencatl-Cortes, Juan; Avelino, Fabiola; Phillips, Alan D; Kaper, James B; Puente, José L; Girón, Jorge A
2009-04-01
Curli are adhesive fimbriae of Escherichia coli and Salmonella enterica. Expression of curli (csgA) and cellulose (bcsA) is co-activated by the transcriptional activator CsgD. In this study, we investigated the contribution of curli and cellulose to the adhesive properties of enterohaemorragic (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) O127:H6. While single mutations in csgA, csgD or bcsA in EPEC and EHEC had no dramatic effect on cell adherence, double csgAbcsA mutants were significantly less adherent than the single mutants or wild-type strains to human colonic HT-29 epithelial cells or to cow colon tissue in vitro. Overexpression of csgD (carried on plasmid pCP994) in a csgD mutant, but not in the single csgA or bscA mutants, led to significant increase in adherence and biofilm formation in EPEC and EHEC, suggesting that synchronized over-production of curli and cellulose enhances bacterial adherence. In line with this finding, csgD transcription was activated significantly in the presence of cultured epithelial cells as compared with growth in tissue culture medium. Analysis of the influence of virulence and global regulators in the production of curli in EPEC identified Fis (factor for inversion stimulation) as a, heretofore unrecognized, negative transcriptional regulator of csgA expression. An EPEC E2348/69Deltafis produced abundant amounts of curli whereas a double fis/csgD mutant yielded no detectable curli production. Our data suggest that curli and cellulose act in concert to favour host colonization, biofilm formation and survival in different environments.
Feodorova, V A; Pan'kina, L N; Savostina, E P; Sayapina, L V; Motin, V L; Dentovskaya, S V; Shaikhutdinova, R Z; Ivanov, S A; Lindner, B; Kondakova, A N; Bystrova, O V; Kocharova, N A; Senchenkova, S N; Holst, O; Pier, G B; Knirel, Y A; Anisimov, A P
2007-11-01
The lpxM mutant of the live vaccine Yersinia pestis EV NIIEG strain synthesising a less toxic penta-acylated lipopolysaccharide was found to be avirulent in mice and guinea pigs, notably showing no measurable virulence in Balb/c mice which do retain some susceptibility to the parental strain itself. Twenty-one days after a single injection of the lpxM-mutant, 85-100% protection was achieved in outbred mice and guinea pigs, whereas a 43% protection rate was achieved in Balb/c mice given single low doses (10(3) to 2.5 x 10(4) CFU) of this vaccine. A subcutaneous challenge with 2000 median lethal doses (equal to 20,000 CFU) of fully virulent Y. pestis 231 strain, is a 6-10-fold higher dose than that which the EV NIIEG itself can protect against.
Single-molecule DNA detection with an engineered MspA protein nanopore
Butler, Tom Z.; Pavlenok, Mikhail; Derrington, Ian M.; Niederweis, Michael; Gundlach, Jens H.
2008-01-01
Nanopores hold great promise as single-molecule analytical devices and biophysical model systems because the ionic current blockades they produce contain information about the identity, concentration, structure, and dynamics of target molecules. The porin MspA of Mycobacterium smegmatis has remarkable stability against environmental stresses and can be rationally modified based on its crystal structure. Further, MspA has a short and narrow channel constriction that is promising for DNA sequencing because it may enable improved characterization of short segments of a ssDNA molecule that is threaded through the pore. By eliminating the negative charge in the channel constriction, we designed and constructed an MspA mutant capable of electronically detecting and characterizing single molecules of ssDNA as they are electrophoretically driven through the pore. A second mutant with additional exchanges of negatively-charged residues for positively-charged residues in the vestibule region exhibited a factor of ≈20 higher interaction rates, required only half as much voltage to observe interaction, and allowed ssDNA to reside in the vestibule ≈100 times longer than the first mutant. Our results introduce MspA as a nanopore for nucleic acid analysis and highlight its potential as an engineerable platform for single-molecule detection and characterization applications. PMID:19098105
Brigo, Alessandro; Lee, Keun Woo; Iurcu Mustata, Gabriela; Briggs, James M.
2005-01-01
HIV-1 integrase (IN) is an essential enzyme for the viral replication and an interesting target for the design of new pharmaceuticals for multidrug therapy of AIDS. Single and multiple mutations of IN at residues T66, S153, or M154 confer degrees of resistance to several inhibitors that prevent the enzyme from performing its normal strand transfer activity. Four different conformations of IN were chosen from a prior molecular dynamics (MD) simulation on the modeled IN T66I/M154I catalytic core domain as starting points for additional MD studies. The aim of this article is to understand the dynamic features that may play roles in the catalytic activity of the double mutant enzyme in the absence of any inhibitor. Moreover, we want to verify the influence of using different starting points on the MD trajectories and associated dynamical properties. By comparison of the trajectories obtained from these MD simulations we have demonstrated that the starting point does not affect the conformational space explored by this protein and that the time of the simulation is long enough to achieve convergence for this system. PMID:15764656
Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes.
Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich
2012-02-01
The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information.
Whole-Genome Sequencing of Sordaria macrospora Mutants Identifies Developmental Genes
Nowrousian, Minou; Teichert, Ines; Masloff, Sandra; Kück, Ulrich
2012-01-01
The study of mutants to elucidate gene functions has a long and successful history; however, to discover causative mutations in mutants that were generated by random mutagenesis often takes years of laboratory work and requires previously generated genetic and/or physical markers, or resources like DNA libraries for complementation. Here, we present an alternative method to identify defective genes in developmental mutants of the filamentous fungus Sordaria macrospora through Illumina/Solexa whole-genome sequencing. We sequenced pooled DNA from progeny of crosses of three mutants and the wild type and were able to pinpoint the causative mutations in the mutant strains through bioinformatics analysis. One mutant is a spore color mutant, and the mutated gene encodes a melanin biosynthesis enzyme. The causative mutation is a G to A change in the first base of an intron, leading to a splice defect. The second mutant carries an allelic mutation in the pro41 gene encoding a protein essential for sexual development. In the mutant, we detected a complex pattern of deletion/rearrangements at the pro41 locus. In the third mutant, a point mutation in the stop codon of a transcription factor-encoding gene leads to the production of immature fruiting bodies. For all mutants, transformation with a wild type-copy of the affected gene restored the wild-type phenotype. Our data demonstrate that whole-genome sequencing of mutant strains is a rapid method to identify developmental genes in an organism that can be genetically crossed and where a reference genome sequence is available, even without prior mapping information. PMID:22384404
Quantification of birefringence readily measures the level of muscle damage in zebrafish
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Joachim, E-mail: Joachim.Berger@Monash.edu; Sztal, Tamar; Currie, Peter D.
2012-07-13
Highlights: Black-Right-Pointing-Pointer Report of an unbiased quantification of the birefringence of muscle of fish larvae. Black-Right-Pointing-Pointer Quantification method readily identifies level of overall muscle damage. Black-Right-Pointing-Pointer Compare zebrafish muscle mutants for level of phenotype severity. Black-Right-Pointing-Pointer Proposed tool to survey treatments that aim to ameliorate muscular dystrophy. -- Abstract: Muscular dystrophies are a group of genetic disorders that progressively weaken and degenerate muscle. Many zebrafish models for human muscular dystrophies have been generated and analysed, including dystrophin-deficient zebrafish mutants dmd that model Duchenne Muscular Dystrophy. Under polarised light the zebrafish muscle can be detected as a bright area in anmore » otherwise dark background. This light effect, called birefringence, results from the diffraction of polarised light through the pseudo-crystalline array of the muscle sarcomeres. Muscle damage, as seen in zebrafish models for muscular dystrophies, can readily be detected by a reduction in the birefringence. Therefore, birefringence is a very sensitive indicator of overall muscle integrity within larval zebrafish. Unbiased documentation of the birefringence followed by densitometric measurement enables the quantification of the birefringence of zebrafish larvae. Thereby, the overall level of muscle integrity can be detected, allowing the identification and categorisation of zebrafish muscle mutants. In addition, we propose that the establish protocol can be used to analyse treatments aimed at ameliorating dystrophic zebrafish models.« less
1994-01-01
JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein. PMID:8138567
Ambrosi, Cinzia; Walker, Amy E; Depriest, Adam D; Cone, Angela C; Lu, Connie; Badger, John; Skerrett, I Martha; Sosinsky, Gina E
2013-01-01
Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons) by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26) that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P). Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S) only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels displayed an increased tendency to aggregate. Thus, mutations in TM4 cause a range of phenotypes of dysfunctional gap junction channels that are discussed within the context of the X-ray crystallographic structure.
Gao, Ling; Li, Xiao-hong; Zhao, Jian-qing; Lu, Ji-hong; Zhao, Jia-gang; Zhu, Jia-shi
2012-06-18
To examine maturational changes in expressions of Ophiocordyceps sinensis (O.sinensis) transition and transversion mutation genotypes in Cordyceps sinensis (C.sinensis) stroma. MassARRAY single nucleotide polymorphism (SNP) matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrum genotyping was used, and 8 SNP extension primers were designed based on the scattered, multiple point mutations of known sequences for the O.sinensis mutants within their internal transcribed spacer (ITS) segments. Of the extension primers, 5 (not capable of distinguishing between the 2 AT-biased genotypes) located in rDNA ITS1 and ITS2 regions: 067721-211, 067721-240, 067721-477, 067721-531 and 067721-581. The other 3 extension primers located in 5.8S rDNA region: 067740-324, 067740-328 and 067740-360, to distinguish between the 2 AT-biased genotypes. MS chromatograms at the 8 SNP sites showed dynamic alterations of mutant alleles in C.sinensis stroma. The allele for the AT-biased genotypes at 067721-211 site showed higher peak height than its GC-biased counterpart in the premature C.sinensis stroma, but disappeared with C.sinensis maturation. Chromatograms displayed not only the transition mutation alleles, but also transversion mutants. Some of the transversion mutation alleles displayed higher peak heights than those for GC- and AT-biased alleles, but their peak heights and detection rates tended to be decreased with C.sinensis maturation. When distinguishing between the 2 AT-biases, AB067744 and AB067740 genotype alleles co-existed in the premature C.sinensis stroma. The allele peak height for AB067744 genotype was greatly decreased with C.sinensis maturation, while that for AB067740 genotype increased. Co-existence of at least 5 transition and transversion mutant genotypes of O.sinensis and the dynamic changes in their expressions in C.sinensis stroma along with C.sinensis maturation may be of extreme importance in C.sinensis stroma germination and maturation, enabling C.sinensis to complete its life cycle.
Omosun, Y O; Adoro, S; Anumudu, C I; Odaibo, A B; Uthiapibull, C; Holder, A A; Nwagwu, M; Nwuba, R I
2009-03-01
Merozoite surface protein-1(19) (MSP-1(19)) specific antibodies which include processing inhibitory, blocking and neutral antibodies have been identified in individuals exposed to Plasmodium falciparum. Here we intend to look at the effect of single and multiple amino acid substitutions of MSP-1(19) on the recognition by polyclonal antibodies from children living in Igbo-Ora, Nigeria. This would provide us with information on the possibility of eliciting mainly processing inhibitory antibodies with a recombinant MSP-1(19) vaccine. Blood was collected from children in the rainy season and binding of anti-MSP-1(19) antibodies to modified mutants of MSP-1(19) was analysed by ELISA. The MSP-1(19) mutant proteins with single substitutions at positions 22 (Leu-->Arg), 43 (Glu-->Leu) and 53 (Asn-->Arg) and the MSP-1(19) mutant protein with multiple substitutions at positions 27+31+34+43 (Glu-->Tyr, Leu-->Arg, Tyr-->Ser, Glu-->Leu); which had inhibitory epitopes; had the highest recognition. Children recognised both sets of mutants with different age groups having different recognition levels. The percentage of malaria positive individuals (32-80%) with antibodies that bound to the mutants MSP-1(19) containing epitopes that recognise only processing inhibitory and not blocking antibodies, were significantly different from those with antibodies that did not bind to these mutants (21-28%). The amino acid substitutions that abolished the binding of blocking antibodies without affecting the binding of inhibitory antibodies are of particular interest in the design of MSP-1(19) based malaria vaccines. Although these MSP-1(19) mutants have not been found in natural population, their recognition by polyclonal antibodies from humans naturally infected with malaria is very promising for the future use of MSP-1(19) mutants in the design of a malaria vaccine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamiya, Rina, E-mail: rinataka0429@gmail.com; Takahashi, Motoko; Uehara, Yasuaki
2014-11-21
Highlights: • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of HIF-1α. • The sErbB3 N418Q mutant attenuates cancer cell migration induced by heregulin β1. • The sErbB3 N418Q mutant blocks heregulin β1 induced nuclear accumulation of Nrf2. • The sErbB3 N418Q mutant may be a potential therapeutic application for tumor. - Abstract: It has been well documented that activation of the ErbB3–PI3K–Akt pathway is implicated in tumor survival and progression. We previously demonstrated that the single N-glycan deletion mutant of soluble ErbB3 protein (sErbB3 N418Q) attenuates heregulin β1-induced ErbB3 signaling. The active PI3K–Akt pathway augments the nuclearmore » accumulation of hypoxia inducible factor (HIF)-1α, which activates the transcription of many target genes and drives cancer progression. In this study, we focused on the effects of sErbB3 N418Q mutant on nuclear accumulation of HIF-1α. Pretreatment with the sErbB3 N418Q mutant suppressed heregulin β1-induced HIF-1α activation in MCF7 cells. Similar results were also obtained in other breast cancer cell lines, T47D and BT474. Interestingly, these suppressive effects were not observed with the sErbB3 wild type. In addition, pretreatment with the sErbB3 N418Q mutant suppressed the cell migration of MCF7 cells induced by heregulin β1. Furthermore, incubation with heregulin β1 also induced the nuclear accumulation of Nrf2, and this effect was also reduced by the sErbB3 N418Q mutant, but not the sErbB3 wild type. These findings indicated that the sErbB3 N418Q mutant suppressed malignant formation of cancer cells by blocking of the HIF-1α and Nrf2 pathways.« less
Tiner, Bethany L.; Kirtley, Michelle L.; Erova, Tatiana E.; Popov, Vsevolod L.; Baze, Wallace B.; van Lier, Christina J.; Ponnusamy, Duraisamy; Andersson, Jourdan A.; Motin, Vladimir L.; Chauhan, Sadhana
2015-01-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. PMID:25605764
Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K
2015-04-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
ACA12 is a deregulated isoform of plasma membrane Ca²⁺-ATPase of Arabidopsis thaliana.
Limonta, Margherita; Romanowsky, Shawn; Olivari, Claudio; Bonza, Maria Cristina; Luoni, Laura; Rosenberg, Alexa; Harper, Jeffrey F; De Michelis, Maria Ida
2014-03-01
Plant auto-inhibited Ca²⁺-ATPases (ACA) are crucial in defining the shape of calcium transients and therefore in eliciting plant responses to various stimuli. Arabidopsis thaliana genome encodes ten ACA isoforms that can be divided into four clusters based on gene structure and sequence homology. While isoforms from clusters 1, 2 and 4 have been characterized, virtually nothing is known about members of cluster 3 (ACA12 and ACA13). Here we show that a GFP-tagged ACA12 localizes at the plasma membrane and that expression of ACA12 rescues the phenotype of partial male sterility of a null mutant of the plasma membrane isoform ACA9, thus providing genetic evidence that ACA12 is a functional plasma membrane-resident Ca²⁺-ATPase. By ACA12 expression in yeast and purification by CaM-affinity chromatography, we show that, unlike other ACAs, the activity of ACA12 is not stimulated by CaM. Moreover, full length ACA12 is able to rescue a yeast mutant deficient in calcium pumps. Analysis of single point ACA12 mutants suggests that ACA12 loss of auto-inhibition can be ascribed to the lack of two acidic residues--highly conserved in other ACA isoforms--localized at the cytoplasmic edge of the second and third transmembrane segments. Together, these results support a model in which the calcium pump activity of ACA12 is primarily regulated by increasing or decreasing mRNA expression and/or protein translation and degradation.
Massouh, Amid; Schubert, Julia; Yaneva-Roder, Liliya; Ulbricht-Jones, Elena S; Zupok, Arkadiusz; Johnson, Marc T J; Wright, Stephen I; Pellizzer, Tommaso; Sobanski, Johanna; Bock, Ralph; Greiner, Stephan
2016-04-01
Spontaneous plastome mutants have been used as a research tool since the beginning of genetics. However, technical restrictions have severely limited their contributions to research in physiology and molecular biology. Here, we used full plastome sequencing to systematically characterize a collection of 51 spontaneous chloroplast mutants in Oenothera (evening primrose). Most mutants carry only a single mutation. Unexpectedly, the vast majority of mutations do not represent single nucleotide polymorphisms but are insertions/deletions originating from DNA replication slippage events. Only very few mutations appear to be caused by imprecise double-strand break repair, nucleotide misincorporation during replication, or incorrect nucleotide excision repair following oxidative damage. U-turn inversions were not detected. Replication slippage is induced at repetitive sequences that can be very small and tend to have high A/T content. Interestingly, the mutations are not distributed randomly in the genome. The underrepresentation of mutations caused by faulty double-strand break repair might explain the high structural conservation of seed plant plastomes throughout evolution. In addition to providing a fully characterized mutant collection for future research on plastid genetics, gene expression, and photosynthesis, our work identified the spectrum of spontaneous mutations in plastids and reveals that this spectrum is very different from that in the nucleus. © 2016 American Society of Plant Biologists. All rights reserved.
In vitro selection of resistance in haemophilus influenzae by 4 quinolones and 5 beta-lactams.
Clark, Catherine; Kosowska, Klaudia; Bozdogan, Bülent; Credito, Kim; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C
2004-05-01
We tested abilities of ciprofloxacin, levofloxacin, gatifloxacin, moxifloxacin, amoxicillin, amoxicillin/clavulanate, cefixime, cefpodoxime, and cefdinir to select resistant mutants in 5 beta-lactamase positive and 5 beta-lactamase negative Haemophilus influenzae strains by single and multistep methodology. In multistep tests, amoxicillin, amoxicillin/clavulanate and cefpodoxime exposure did not cause >4-fold minimum inhibitory concentration (MIC) increase after 50 days. One mutant selected by cefdinir had one amino acid substitution (Gly490Glu) in PBP3 and became resistant to cefdinir. Cefixime exposure caused 8-fold MIC-increase in 1 strain with TEM but the mutant remained cefixime susceptible and had no alteration in PBP3 or TEM. Among 10 strains tested, ciprofloxacin, moxifloxacin, gatifloxacin, levofloxacin caused >4-fold MIC increase in 6, 6, 5, and 2 strain, respectively. Despite the increases in quinolone MICs, none of the mutants became resistant to quinolones by established criteria. Quinolone selected mutants had quindone resistance-determining region (QRDR) alterations in GyrA, GyrB, ParC, ParE. Four quinolone mutants had no QRDR alterations. Among beta-lactams cefdinir and cefixime selected one mutant each with higher MICs however amoxicillin, amoxicillin/clavulanate, and cefpodoxime exposure did not select resistant mutants.
A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.
Howden, R; Andersen, C R; Goldsbrough, P B; Cobbett, C S
1995-01-01
The roots of the cadmium-sensitive mutant of Arabidopsis thaliana, cad1-1, become brown in the presence of cadmium. A new cadmium-sensitive mutant affected at a second locus, cad2, has been identified using this phenotype. Genetic analysis has grown that the sensitive phenotype is recessive to the wild type and segregates as a single Mendelian locus. Assays of cadmium accumulation by intact plants indicated that the mutant is deficient in its ability to sequester cadmium. Undifferentiated callus tissue was also cadmium sensitive, suggesting that the mutant phenotype is expressed at the cellular level. The level of cadmium-binding complexes formed in vivo was decreased compared with the wild type and accumulation of phytochelatins was about 10% of that in the wild type. The level of glutathione, the substrate for phytochelatin biosynthesis, in tissues of the mutant was decreased to about 15 to 30% of that in the wild type. Thus, the deficiency in phytochelatin biosynthesis can be explained by a deficiency in glutathione. PMID:7770518
Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.
2016-01-01
Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524
Cho, Suk-Woo; Cho, Jeong-Hoon; Song, Hyun-Ok; Park, Chul-Seung
2005-02-28
Cyclic nucleotide-gated (CNG) channels encoded by the tax-4 and tax-2 genes are required for chemosensing and thermosensing in the nematode C. elegans. We identified a gene in the C. elegans genome, which we designated cng-1, that is highly homologous to tax-4. Partial CNG-1 protein tagged with green fluorescent protein was expressed in several sensory neurons of the amphid. We created a deletion mutant of cng-1, cng-1 (jh111), to investigate its in vivo function. The mutant worms had no detectable abnormalities in terms of their basic behavior or morphology. Whereas tax-4 and tax-2 mutants failed to respond to water-soluble or volatile chemical attractants, the cng-1 null mutant exhibited normal chemotaxis to such chemicals and a tax-4;cng-1 double mutant had a similar phenotype to tax-4 single mutants. Interestingly, cng-1 and tax-4 had a synergistic effect on brood size.
LAZY Genes Mediate the Effects of Gravity on Auxin Gradients and Plant Architecture1[OPEN
2017-01-01
A rice (Oryza sativa) mutant led to the discovery of a plant-specific LAZY1 protein that controls the orientation of shoots. Arabidopsis (Arabidopsis thaliana) possesses six LAZY genes having spatially distinct expression patterns. Branch angle phenotypes previously associated with single LAZY genes were here studied in roots and shoots of single and higher-order atlazy mutants. The results identify the major contributors to root and shoot branch angles and gravitropic behavior of seedling hypocotyls and primary roots. AtLAZY1 is the principal determinant of inflorescence branch angle. The weeping inflorescence phenotype of atlazy1,2,4 mutants may be due at least in part to a reversal in the gravitropism mechanism. AtLAZY2 and AtLAZY4 determined lateral root branch angle. Lateral roots of the atlazy2,4 double mutant emerged slightly upward, approximately 10° greater than perpendicular to the primary root axis, and they were agravitropic. Etiolated hypocotyls of the quadruple atlazy1,2,3,4 mutant were essentially agravitropic, but their phototropic response was robust. In light-grown seedlings, the root of the atlazy2,3,4 mutant was also agravitropic but when adapted to dim red light it displayed a reversed gravitropic response. A reversed auxin gradient across the root visualized by a fluorescent signaling reporter explained the reversed, upward bending response. We propose that AtLAZY proteins control plant architecture by coupling gravity sensing to the formation of auxin gradients that override a LAZY-independent mechanism that creates an opposing gravity-induced auxin gradient. PMID:28821594
Thermodynamic effects of proline introduction on protein stability.
Prajapati, Ravindra Singh; Das, Mili; Sreeramulu, Sridhar; Sirajuddin, Minhajuddin; Srinivasan, Sankaranarayanan; Krishnamurthy, Vaishnavi; Ranjani, Ranganathan; Ramakrishnan, C; Varadarajan, Raghavan
2007-02-01
The amino acid Pro is more rigid than other naturally occurring amino acids and, in proteins, lacks an amide hydrogen. To understand the structural and thermodynamic effects of Pro substitutions, it was introduced at 13 different positions in four different proteins, leucine-isoleucine-valine binding protein, maltose binding protein, ribose binding protein, and thioredoxin. Three of the maltose binding protein mutants were characterized by X-ray crystallography to confirm that no structural changes had occurred upon mutation. In the remaining cases, fluorescence and CD spectroscopy were used to show the absence of structural change. Stabilities of wild type and mutant proteins were characterized by chemical denaturation at neutral pH and by differential scanning calorimetry as a function of pH. The mutants did not show enhanced stability with respect to chemical denaturation at room temperature. However, 6 of the 13 single mutants showed a small but significant increase in the free energy of thermal unfolding in the range of 0.3-2.4 kcal/mol, 2 mutants showed no change, and 5 were destabilized. In five of the six cases, the stabilization was because of reduced entropy of unfolding. However, the magnitude of the reduction in entropy of unfolding was typically several fold larger than the theoretical estimate of -4 cal K(-1) mol(-1) derived from the relative areas in the Ramachandran map accessible to Pro and Ala residues, respectively. Two double mutants were constructed. In both cases, the effects of the single mutations on the free energy of thermal unfolding were nonadditive. Copyright 2006 Wiley-Liss, Inc.
Selva, E M; Maderazo, A B; Lahue, R S
1997-12-01
The products of the yeast mismatch repair genes MSH2 and MSH3 participate in the inhibition of genetic recombination between homeologous (divergent) DNA sequences. In strains deficient for these genes, homeologous recombination rates between repeated elements are elevated due to the loss of this inhibition. In this study, the effects of these mutations were further analyzed by quantitation of mitotic homeologous recombinants as crossovers, gene conversions or exceptional events in wild-type, msh2, msh3 and msh2 msh3 mutant strains. When homeologous sequences were present as a direct repeat in one orientation, crossovers and gene conversions were elevated in msh2, msh3 and msh2 msh3 strains. The increases were greater in the msh2 msh3 double mutant than in either single mutant. When the order of the homeologous sequences was reversed, the msh2 mutation again yielded increased rates of crossovers and gene conversions. However, in an msh3 strain, gene conversions occurred at higher levels but interchromosomal crossovers were not increased and intrachromosomal crossovers were reduced relative to wild type. The msh2 msh3 double mutant behaved like the msh2 single mutant in this orientation. Control strains harboring homologous duplications were largely but not entirely unaffected in mutant strains, suggesting specificity for the mismatched intermediates of homeologous recombination. In all strains, very few (< 10%) recombinants could be attributed to exceptional events. These results suggest that MSH2 and MSH3 can function differentially to control homeologous exchanges.
Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.
Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M
2012-03-01
Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.
Pang, Xiuhua; Aigle, Bertrand; Girardet, Jean-Michel; Mangenot, Sophie; Pernodet, Jean-Luc; Decaris, Bernard; Leblond, Pierre
2004-01-01
Streptomyces ambofaciens has an 8-Mb linear chromosome ending in 200-kb terminal inverted repeats. Analysis of the F6 cosmid overlapping the terminal inverted repeats revealed a locus similar to type II polyketide synthase (PKS) gene clusters. Sequence analysis identified 26 open reading frames, including genes encoding the β-ketoacyl synthase (KS), chain length factor (CLF), and acyl carrier protein (ACP) that make up the minimal PKS. These KS, CLF, and ACP subunits are highly homologous to minimal PKS subunits involved in the biosynthesis of angucycline antibiotics. The genes encoding the KS and ACP subunits are transcribed constitutively but show a remarkable increase in expression after entering transition phase. Five genes, including those encoding the minimal PKS, were replaced by resistance markers to generate single and double mutants (replacement in one and both terminal inverted repeats). Double mutants were unable to produce either diffusible orange pigment or antibacterial activity against Bacillus subtilis. Single mutants showed an intermediate phenotype, suggesting that each copy of the cluster was functional. Transformation of double mutants with a conjugative and integrative form of F6 partially restored both phenotypes. The pigmented and antibacterial compounds were shown to be two distinct molecules produced from the same biosynthetic pathway. High-pressure liquid chromatography analysis of culture extracts from wild-type and double mutants revealed a peak with an associated bioactivity that was absent from the mutants. Two additional genes encoding KS and CLF were present in the cluster. However, disruption of the second KS gene had no effect on either pigment or antibiotic production. PMID:14742212
Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants.
Dolja, V V; Haldeman, R; Robertson, N L; Dougherty, W G; Carrington, J C
1994-01-01
Tobacco etch potyvirus engineered to express the reporter protein beta-glucuronidase (TEV-GUS) was used for direct observation and quantitation of virus translocation in plants. Four TEV-GUS mutants were generated containing capsid proteins (CPs) with single amino acid substitutions (R154D and D198R), a double substitution (DR), or a deletion of part of the N-terminal domain (delta N). Each modified virus replicated as well as the parental virus in protoplasts, but was defective in cell-to-cell movement through inoculated leaves. The R154D, D198R and DR mutants were restricted essentially to single, initially infected cells. The delta N variant exhibited slow cell-to-cell movement in inoculated leaves, but was unable to move systemically due to a lack of entry into or replication in vascular-associated cells. Both cell-to-cell and systemic movement defects of each mutant were rescued in transgenic plants expressing wild-type TEV CP. Cell-to-cell movement, but not systemic movement, of the DR mutant was rescued partially in transgenic plants expressing TEV CP lacking the C-terminal domain, and in plants expressing CP from the heterologous potyvirus, potato virus Y. Despite comparable levels of accumulation of parental virus and each mutant in symptomatic tissue of TEV CP-expressing transgenic plants, virions were detected only in parental virus- and delta N mutant-infected plants, as revealed using three independent assays. These data suggest that the potyvirus CP possesses distinct, separable activities required for virion assembly, cell-to-cell movement and long-distance transport. Images PMID:7511101
Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.
Yeung, Yik A; Wittrup, K Dane
2002-01-01
Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.
Hirose, K; Kawasaki, Y; Kotani, K; Abiko, K; Sato, H
2004-05-01
Quinolone-resistant (QR) mutants of Mycoplasma bovirhinis strain PG43 (type strain) were generated by stepwise selection in increasing concentrations of enrofloxacin (ENR). An alteration was found in the quinolone resistance-determining region (QRDR) of the parC gene coding for the ParC subunit of topoisomerase IV from these mutants, but not in the gyrA, gyrB, and parE gene coding for the GyrA and GyrB subunits of DNA gyrase and the ParE subunit of topoisomerase IV. Similarly, such an alteration in QRDR of parC was found in the field isolates of M. bovirhinis, which possessed various levels of QR. The substitution of leucine (Leu) by serine (Ser) at position 80 of QRDR of ParC was observed in both QR-mutants and QR-isolates. This is the first report of QR based on a point mutation of the parC gene in M. bovirhinis.
Mandal, Aninda; Datta, Animesh K
2014-01-01
A "thick stem" mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that "thick stem" mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding.
Arsovski, Andrej A.; Villota, Maria M.; Rowland, Owen; Subramaniam, Rajagopal; Western, Tamara L.
2009-01-01
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and secretion of pectinaceous mucilage. A number of genes have been identified affecting mucilage secretory cell differentiation, including MUCILAGE-MODIFIED4 (MUM4). mum4 mutants produce a reduced amount of mucilage and cloning of MUM4 revealed that it encodes a UDP-L-rhamnose synthase that is developmentally up-regulated to provide rhamnose for mucilage pectin synthesis. To identify additional genes acting in mucilage synthesis and secretion, a screen for enhancers of the mum4 phenotype was performed. Eight mum enhancers (men) have been identified, two of which result from defects in known mucilage secretory cell genes (MUM2 and MYB61). Our results show that, in a mum4 background, mutations in MEN1, MEN4, and MEN5 lead to further reductions in mucilage compared to mum4 single mutants, suggesting that they are involved in mucilage synthesis or secretion. Conversely, mutations in MEN2 and MEN6 appear to affect mucilage release rather than quantity. With the exception of men4, whose single mutant exhibits reduced mucilage, none of these genes have a single mutant phenotype, suggesting that they would not have been identified outside the compromised mum4 background. PMID:19401413
Lee, Kwanuk; Lee, Hwa Jung; Kim, Dong Hyun; Jeon, Young; Pai, Hyun-Sook; Kang, Hunseung
2014-04-16
Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts.
2014-01-01
Background Although several chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins have been characterized for intron splicing and rRNA processing during chloroplast gene expression, the functional role of a majority of CRM domain proteins in plant growth and development as well as chloroplast RNA metabolism remains largely unknown. Here, we characterized the developmental and stress response roles of a nuclear-encoded chloroplast protein harboring a single CRM domain (At4g39040), designated CFM4, in Arabidopsis thaliana. Results Analysis of CFM4-GFP fusion proteins revealed that CFM4 is localized to chloroplasts. The loss-of-function T-DNA insertion mutants for CFM4 (cfm4) displayed retarded growth and delayed senescence, suggesting that CFM4 plays a role in growth and development of plants under normal growth conditions. In addition, cfm4 mutants showed retarded seed germination and seedling growth under stress conditions. No alteration in the splicing patterns of intron-containing chloroplast genes was observed in the mutant plants, but the processing of 16S and 4.5S rRNAs was abnormal in the mutant plants. Importantly, CFM4 was determined to possess RNA chaperone activity. Conclusions These results suggest that the chloroplast-targeted CFM4, one of two Arabidopsis genes encoding a single CRM domain-containing protein, harbors RNA chaperone activity and plays a role in the Arabidopsis growth and stress response by affecting rRNA processing in chloroplasts. PMID:24739417
Bearded-Ear Encodes a MADS-box Transcription Factor Critical for Maize Floral Development
USDA-ARS?s Scientific Manuscript database
We cloned bde by positional cloning and found that it encodes zag3, a MADS-box transcription factor in the conserved AGL6 clade. Mutants in the maize homolog of AGAMOUS, zag1, have a subset of bde floral defects. bde; zag1 double mutants have a severe ear phenotype, not observed in either single m...
Meisel, Roland; Bardenheuer, Walter; Strehblow, Claudia; Sorg, Ursula Regina; Elmaagacli, Ahmet; Seeber, Siegfried; Flasshove, Michael; Moritz, Thomas
2003-12-01
While retrovirally mediated gene transfer of dihydrofolate reductase mutants (mutDHFR) has convincingly been demonstrated to confer methotrexate (MTX) resistance to murine hematopoietic cells, clinical application of this technology will require high efficacy in human cells. Therefore, we investigated retroviral constructs expressing various point mutants of human DHFR for their ability to confer MTX resistance to human clonogenic progenitor cells (CFU-C) and to allow for in vitro selection of transduced CFU-C. Primary human hematopoietic cells were retrovirally transduced using MMLV- and SFFV/MESV-based vectors expressing DHFR(Ser31), DHFR(Phe22/Ser31), or DHFR(Tyr22/Gly31). MTX resistance of unselected and in vitro-selected CFU-C was determined using MTX-supplemented methylcellulose cultures and gene transfer efficiency was assesed by single-colony PCR analysis. While less than 1% mock-transduced CFU-C survived the presence of > or =5 x 10(-8) M MTX, MMLV- and SFFV/MESV-based vectors expressing DHFR(Ser31) significantly protected CFU-C from MTX at doses ranging from 2.5 to 30 x 10(-8) M. Vectors expressing DHFR(Phe22/Ser31) or DHFR(Tyr22/Gly31) were even more protective and MTX-resistant CFU-C were observed up to 1 x 10(-5) M MTX. Three-day suspension cultures in the presence of 10-20 x 10(-8) M MTX resulted in significant selection of mutDHFR-transduced CFU-C. The percentage of CFU-C resistant to 10 x 10(-8) M MTX increased fourfold to 20-fold and provirus-containing CFU-C increased from 27% to 79-100%. Gene transfer of DHFR using suitable retroviral backbones and DHFR mutants significantly increases MTX resistance of human CFU-C and allows efficient in vitro selection of transduced cells using a short-term selection procedure.
Structural studies of FIV and HIV-1 proteases complexed with an efficient inhibitor of FIV protease.
Li, M; Morris, G M; Lee, T; Laco, G S; Wong, C H; Olson, A J; Elder, J H; Wlodawer, A; Gustchina, A
2000-01-01
Three forms of feline immunodeficiency virus protease (FIV PR), the wild type (wt) and two single point mutants, V59I and Q99V, as well as human immunodeficiency virus type 1 protease (HIV-1 PR), were cocrystallized with the C2-symmetric inhibitor, TL-3. The mutants of FIV PR were designed to replace residues involved in enzyme-ligand interactions by the corresponding HIV-1 PR residues at the structurally equivalent position. TL-3 shows decreased (improved) inhibition constants with these FIV PR mutants relative to wt FIV PR. Despite similar modes of binding of the inhibitor to all PRs (from P3 to P3'), small differences are evident in the conformation of the Phe side chains of TL-3 at the P1 and P1' positions in the complexes with the mutated FIV PRs. The differences mimick the observed binding of TL-3 in HIV-1 PR and correlate with a significant improvement in the inhibition constants of TL-3 with the two mutant FIV PRs. Large differences between the HIV-1 and FIV PR complexes are evident in the binding modes of the carboxybenzyl groups of TL-3 at P4 and P4'. In HIV-1 PR:TL-3, these groups bind over the flap region, whereas in the FIV PR complexes, the rings are located along the major axis of the active site. A significant difference in the location of the flaps in this region of the HIV-1 and FIV PRs correlates with the observed conformational changes in the binding mode of the peptidomimetic inhibitor at the P4 and P4' positions. These findings provide a structural explanation of the observed Ki values for TL-3 with the different PRs and will further assist in the development of improved inhibitors.
Calahorro, Fernando; Ruiz-Rubio, Manuel
2012-01-01
Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders. PMID:22723984
Calahorro, Fernando; Ruiz-Rubio, Manuel
2012-01-01
Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.
Roberts, Kari L.; Leser, George P.; Ma, Chunlong
2013-01-01
Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a “beads-on-a-string” morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission. PMID:23843641
A new genetic factor for root gravitropism in rice (Oryza sativa L.).
Shi, Jiang-hua; Hao, Xi; Wu, Zhong-chang; Wu, Ping
2009-10-01
Root gravitropism is one of the important factors to determine root architecture. To understand the mechanism underlying root gravitropism, we isolated a rice (Xiushui63) mutant defective in root gravitropism, designated as gls1. Vertical sections of root caps revealed that gls1 mutant displayed normal distribution of amyloplast in the columella cells compared with the wild type. The gls1 mutant was less sensitive to 2,4-dichlorophenoxyacetic acid (2,4-D) and alpha-naphthaleneacetic acid (NAA) than the wild type. Genetic analysis indicated that the phenotype of gls1 mutant was caused by a single recessive mutation, which is mapped in a 255-kb region between RM16253 and CAPS1 on the short arm of chromosome 4.
Kamerewerd, Jens; Jansson, Malin; Nowrousian, Minou; Pöggeler, Stefanie; Kück, Ulrich
2008-01-01
Sordaria macrospora, a self-fertile filamentous ascomycete, carries genes encoding three different α-subunits of heterotrimeric G proteins (gsa, G protein Sordaria alpha subunit). We generated knockout strains for all three gsa genes (Δgsa1, Δgsa2, and Δgsa3) as well as all combinations of double mutants. Phenotypic analysis of single and double mutants showed that the genes for Gα-subunits have distinct roles in the sexual life cycle. While single mutants show some reduction of fertility, double mutants Δgsa1Δgsa2 and Δgsa1Δgsa3 are completely sterile. To test whether the pheromone receptors PRE1 and PRE2 mediate signaling via distinct Gα-subunits, two recently generated Δpre strains were crossed with all Δgsa strains. Analyses of the corresponding double mutants revealed that compared to GSA2, GSA1 is a more predominant regulator of a signal transduction cascade downstream of the pheromone receptors and that GSA3 is involved in another signaling pathway that also contributes to fruiting body development and fertility. We further isolated the gene encoding adenylyl cyclase (AC) (sac1) for construction of a knockout strain. Analyses of the three ΔgsaΔsac1 double mutants and one Δgsa2Δgsa3Δsac1 triple mutant indicate that SAC1 acts downstream of GSA3, parallel to a GSA1–GSA2-mediated signaling pathway. In addition, the function of STE12 and PRO41, two presumptive signaling components, was investigated in diverse double mutants lacking those developmental genes in combination with the gsa genes. This analysis was further completed by expression studies of the ste12 and pro41 transcripts in wild-type and mutant strains. From the sum of all our data, we propose a model for how different Gα-subunits interact with pheromone receptors, adenylyl cyclase, and STE12 and thus cooperatively regulate sexual development in S. macrospora. PMID:18723884
Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L.; Noori, Hamid R.; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C.; Schloss, Patrick
2017-01-01
ABSTRACT The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene (Slc6a3_N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3_N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. PMID:28167616
Vengeliene, Valentina; Bespalov, Anton; Roßmanith, Martin; Horschitz, Sandra; Berger, Stefan; Relo, Ana L; Noori, Hamid R; Schneider, Peggy; Enkel, Thomas; Bartsch, Dusan; Schneider, Miriam; Behl, Berthold; Hansson, Anita C; Schloss, Patrick; Spanagel, Rainer
2017-04-01
The research domain criteria (RDoC) matrix has been developed to reorient psychiatric research towards measurable behavioral dimensions and underlying mechanisms. Here, we used a new genetic rat model with a loss-of-function point mutation in the dopamine transporter (DAT) gene ( Slc6a3 _N157K) to systematically study the RDoC matrix. First, we examined the impact of the Slc6a3 _N157K mutation on monoaminergic signaling. We then performed behavioral tests representing each of the five RDoC domains: negative and positive valence systems, cognitive, social and arousal/regulatory systems. The use of RDoC may be particularly helpful for drug development. We studied the effects of a novel pharmacological approach metabotropic glutamate receptor mGluR2/3 antagonism, in DAT mutants in a comparative way with standard medications. Loss of DAT functionality in mutant rats not only elevated subcortical extracellular dopamine concentration but also altered the balance of monoaminergic transmission. DAT mutant rats showed deficits in all five RDoC domains. Thus, mutant rats failed to show conditioned fear responses, were anhedonic, were unable to learn stimulus-reward associations, showed impaired cognition and social behavior, and were hyperactive. Hyperactivity in mutant rats was reduced by amphetamine and atomoxetine, which are well-established medications to reduce hyperactivity in humans. The mGluR2/3 antagonist LY341495 also normalized hyperactivity in DAT mutant rats without affecting extracellular dopamine levels. We systematically characterized an altered dopamine system within the context of the RDoC matrix and studied mGluR2/3 antagonism as a new pharmacological strategy to treat mental disorders with underlying subcortical dopaminergic hyperactivity. © 2017. Published by The Company of Biologists Ltd.
Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans
Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.
2011-01-01
Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947
Zabriskie, Matthew S.; Eide, Christopher A.; Tantravahi, Srinivas K.; Vellore, Nadeem A.; Estrada, Johanna; Nicolini, Franck E.; Khoury, Hanna J.; Larson, Richard A.; Konopleva, Marina; Cortes, Jorge E.; Kantarjian, Hagop; Jabbour, Elias J.; Kornblau, Steven M.; Lipton, Jeffrey H.; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J.; Press, Richard D.; Chuah, Charles; Goldberg, Stuart L.; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R.; Heaton, William L.; Eiring, Anna M.; Pomicter, Anthony D.; Khorashad, Jamshid S.; Kelley, Todd W.; Baron, Riccardo; Druker, Brian J.; Deininger, Michael W.; O'Hare, Thomas
2014-01-01
Summary Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph+) leukemia, including the recalcitrant BCR-ABL1T315I mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph+ leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. PMID:25132497
Yasutani, I.; Ozawa, S.; Nishida, T.; Sugiyama, M.; Komamine, A.
1994-01-01
Three temperature-sensitive mutants of Arabidopsis thaliana that were defective in the redifferentiation of shoots were isolated as tools for the study of organogenesis. M3 lines were constructed by harvesting M3 seeds separately from each M2 plant. Comparative examination of shoot redifferentiation in root explants of 2700 M3 lines at 22[deg]C (permissive temperature) and at 27[deg]C (restrictive temperature) led to the identification of seven temperature-sensitive mutant lines. Genetic tests of three of the seven mutant lines indicated that temperature-sensitive redifferentiation of shoots in these three lines resulted from single, nuclear, recessive mutations in three different genes, designated SRD1, SRD2, and SRD3. The morphology of root explants of srd mutants cultured at the restrictive temperature suggests that the products of these SRD genes function at different stages of the redifferentiation of shoots. PMID:12232244
Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma
NASA Astrophysics Data System (ADS)
Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe
2012-04-01
Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.
A SYMMETRY OF FIXATION TIMES IN EVOULTIONARY DYNAMICS
TAYLOR, CHRISTINE; IWASA, YOH; NOWAK, MARTIN A.
2010-01-01
In this paper, we show that for evolutionary dynamics between two types that can be described by a Moran process, the conditional fixation time of either type is the same irrespective of the selective scenario. With frequency dependent selection between two strategies A and B of an evolutionary game, regardless of whether A dominates B, A and B are best replies to themselves, or A and B are best replies to each other, the conditional fixation times of a single A and a single B mutant are identical. This does not hold for Wright-Fisher models, nor when the mutants start from multiple copies. PMID:16890959
The emergence of cooperation from a single cooperative mutant
NASA Astrophysics Data System (ADS)
Cremer, Jonas; Melbinger, Anna; Frey, Erwin
2012-02-01
Population structure is one central condition which promotes the stability of cooperation: If cooperators more likely interact with other cooperators (positive assortment), they keep most of their benefit for themselves and are less exploited by non-cooperators. However, positive assortment can only act successfully if cooperation is already well established in the population such that cooperative individuals can successfully assort. But how can cooperation emerge when starting with a single cooperative mutant? Here we study this issue for a generic situation of microbial systems where microbes regularly form new colonies and show strong population growth. We show how and when the dynamical interplay between colony formation, population growth and evolution within colonies can provoke the emergence of cooperation. In particular, the probability for a single cooperative mutant to succeed is robustly large when colony-formation is fast or comparable to the time-scale of growth within colonies; growth supports cooperation.[4pt] [1] A. Melbinger, J. Cremer, and E. Frey, Evolutionary game theory in growing populations, Phys. Rev. Lett. 105, 178101 (2010)[0pt] [2] J. Cremer, A. Melbinger, and E. Frey, Evolutionary and population dynamics: a coupled approach, arXiv:1108.2604
Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens▿
Risso, Carla; Van Dien, Stephen J.; Orloff, Amber; Lovley, Derek R.; Coppi, Maddalena V.
2008-01-01
The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. PMID:18245290
Komati Reddy, Gajendar; Lindner, Steffen N; Wendisch, Volker F
2015-03-01
Corynebacterium glutamicum uses the Embden-Meyerhof-Parnas pathway of glycolysis and gains 2 mol of ATP per mol of glucose by substrate-level phosphorylation (SLP). To engineer glycolysis without net ATP formation by SLP, endogenous phosphorylating NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was replaced by nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GapN) from Clostridium acetobutylicum, which irreversibly converts glyceraldehyde-3-phosphate (GAP) to 3-phosphoglycerate (3-PG) without generating ATP. As shown recently (S. Takeno, R. Murata, R. Kobayashi, S. Mitsuhashi, and M. Ikeda, Appl Environ Microbiol 76:7154-7160, 2010, http://dx.doi.org/10.1128/AEM.01464-10), this ATP-neutral, NADPH-generating glycolytic pathway did not allow for the growth of Corynebacterium glutamicum with glucose as the sole carbon source unless hitherto unknown suppressor mutations occurred; however, these mutations were not disclosed. In the present study, a suppressor mutation was identified, and it was shown that heterologous expression of udhA encoding soluble transhydrogenase from Escherichia coli partly restored growth, suggesting that growth was inhibited by NADPH accumulation. Moreover, genome sequence analysis of second-site suppressor mutants that were able to grow faster with glucose revealed a single point mutation in the gene of non-proton-pumping NADH:ubiquinone oxidoreductase (NDH-II) leading to the amino acid change D213G, which was shared by these suppressor mutants. Since related NDH-II enzymes accepting NADPH as the substrate possess asparagine or glutamine residues at this position, D213G, D213N, and D213Q variants of C. glutamicum NDH-II were constructed and were shown to oxidize NADPH in addition to NADH. Taking these findings together, ATP-neutral glycolysis by the replacement of endogenous NAD-dependent GAPDH with NADP-dependent GapN became possible via oxidation of NADPH formed in this pathway by mutant NADPH-accepting NDH-II(D213G) and thus by coupling to electron transport phosphorylation (ETP). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Characterization of Escherichia coli Type 1 Pilus Mutants with Altered Binding Specificities
Harris, Sandra L.; Spears, Patricia A.; Havell, Edward A.; Hamrick, Terri S.; Horton, John R.; Orndorff, Paul E.
2001-01-01
PCR mutagenesis and a unique enrichment scheme were used to obtain two mutants, each with a single lesion in fimH, the chromosomal gene that encodes the adhesin protein (FimH) of Escherichia coli type 1 pili. These mutants were noteworthy in part because both were altered in the normal range of cell types bound by FimH. One mutation altered an amino acid at a site previously shown to be involved in temperature-dependent binding, and the other altered an amino acid lining the predicted FimH binding pocket. PMID:11395476
Singh, Bipin; Bulusu, Gopalakrishnan; Mitra, Abhijit
2015-01-15
Improving the thermostability of industrial enzymes is an important protein engineering challenge. Point mutations, induced to increase thermostability, affect the structure and dynamics of the target protein in several ways and thus can also affect its activity. There appears to be no general rules for improving the thermostabilty of enzymes without adversely affecting their enzymatic activity. We report MD simulations, of wild type Bacillus subtilis lipase (WT) and its six progressively thermostable mutants (2M, 3M, 4M, 6M, 9M, and 12M), performed at different temperatures, to address this issue. Less thermostable mutants (LTMs), 2M to 6M, show WT-like dynamics at all simulation temperatures. However, the two more thermostable mutants (MTMs) show the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. They show a deep and rugged free-energy landscape, confining them within a near-native conformational space by conserving noncovalent interactions, and thus protecting them from possible aggregation. In contrast, the LTMs having marginally higher thermostabilities than WT show greater probabilities of accessing non-native conformations, which, due to aggregation, have reduced possibilities of reverting to their respective native states under refolding conditions. Our analysis indicates the possibility of nonadditive effects of point mutations on the conformational stability of LTMs.
Usadel, Björn; Nagel, Axel; Steinhauser, Dirk; Gibon, Yves; Bläsing, Oliver E; Redestig, Henning; Sreenivasulu, Nese; Krall, Leonard; Hannah, Matthew A; Poree, Fabien; Fernie, Alisdair R; Stitt, Mark
2006-12-18
Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/. PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.
Mancini, Giordano; Zazza, Costantino
2015-01-01
The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization. PMID:26415031
Mancini, Giordano; Zazza, Costantino
2015-01-01
The root causes of the outcomes of the single-site mutation in enzymes remain by and large not well understood. This is the case of the F429H mutant of the cytochrome P450 (CYP) 2B4 enzyme where the substitution, on the proximal surface of the active site, of a conserved phenylalanine 429 residue with histidine seems to hamper the formation of the active species, Compound I (porphyrin cation radical-Fe(IV) = O, Cpd I) from the ferric hydroperoxo (Fe(III)OOH-, Cpd 0) precursor. Here we report a study based on extensive molecular dynamic (MD) simulations of 4 CYP-2B4 point mutations compared to the WT enzyme, having the goal of better clarifying the importance of the proximal Phe429 residue on CYP 2B4 catalytic properties. To consolidate the huge amount of data coming from five simulations and extract the most distinct structural features of the five species studied we made an extensive use of cluster analysis. The results show that all studied single polymorphisms of F429, with different side chain properties: i) drastically alter the reservoir of conformations accessible by the protein, perturbing global dynamics ii) expose the thiolate group of residue Cys436 to the solvent, altering the electronic properties of Cpd0 and iii) affect the various ingress and egress channels connecting the distal sites with the bulk environment, altering the reversibility of these channels. In particular, it was observed that the wild type enzyme exhibits unique structural features as compared to all mutant species in terms of weak interactions (hydrogen bonds) that generate a completely different dynamical behavior of the complete system. Albeit not conclusive, the current computational investigation sheds some light on the subtle and critical effects that proximal single-site mutations can exert on the functional mechanisms of human microsomal CYPs which should go rather far beyond local structure characterization.
Honda, Yuki; Zang, Qian; Shimizu, Yasuhiro; Dadashipour, Mohammad; Zhang, Zilian; Kawarabayasi, Yutaka
2017-02-01
The ST0452 protein is a bifunctional protein exhibiting sugar-1-phosphate nucleotidylyltransferase (sugar-1-P NTase) and amino-sugar-1-phosphate acetyltransferase activities and was isolated from the thermophilic archaeon Sulfolobus tokodaii Based on the previous observation that five single mutations increased ST0452 sugar-1-P NTase activity, nine double-mutant ST0452 proteins were generated with the intent of obtaining enzymes exhibiting a further increase in catalysis, but all showed less than 15% of the wild-type N-acetyl-d-glucosamine-1-phosphate uridyltransferase (GlcNAc-1-P UTase) activity. The Y97A mutant exhibited the highest activity of the single-mutant proteins, and thus site saturation mutagenesis of the 97th position (Tyr) was conducted. Six mutants showed both increased GlcNAc-1-P UTase and glucose-1-phosphate uridyltransferase activities, eight mutants showed only enhanced GlcNAc-1-P UTase activity, and six exhibited higher GlcNAc-1-P UTase activity than that of the Y97A mutant. Kinetic analyses of three typical mutants indicated that the increase in sugar-1-P NTase activity was mainly due to an increase in the apparent k cat value. We hypothesized that changing the 97th position (Tyr) to a smaller amino acid with similar electronic properties would increase activity, and thus the Tyr at the corresponding 103rd position of the Escherichia coli GlmU (EcGlmU) enzyme was replaced with the same residues. The Y103N mutant EcGlmU showed increased GlcNAc-1-P UTase activity, revealing that the Tyr at the 97th position of the ST0452 protein (103rd position in EcGlmU) plays an important role in catalysis. The present results provide useful information regarding how to improve the activity of natural enzymes and how to generate powerful enzymes for the industrial production of sugar nucleotides. It is typically difficult to increase enzymatic activity by introducing substitutions into a natural enzyme. However, it was previously found that the ST0452 protein, a thermostable enzyme from the thermophilic archaeon Sulfolobus tokodaii, exhibited increased activity following single amino acid substitutions of Ala. In this study, ST0452 proteins exhibiting a further increase in activity were created using a site saturation mutagenesis strategy at the 97th position. Kinetic analyses showed that the increased activities of the mutant proteins were principally due to increased apparent k cat values. These mutant proteins might suggest clues regarding the mechanism underlying the reaction process and provide very important information for the design of synthetic improved enzymes, and they can be used as powerful biocatalysts for the production of sugar nucleotide molecules. Moreover, this work generated useful proteins for three-dimensional structural analysis clarifying the processes underlying the regulation and mechanism of enzymatic activity. Copyright © 2017 American Society for Microbiology.
GABI-Kat SimpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database.
Kleinboelting, Nils; Huep, Gunnar; Kloetgen, Andreas; Viehoever, Prisca; Weisshaar, Bernd
2012-01-01
T-DNA insertion mutants are very valuable for reverse genetics in Arabidopsis thaliana. Several projects have generated large sequence-indexed collections of T-DNA insertion lines, of which GABI-Kat is the second largest resource worldwide. User access to the collection and its Flanking Sequence Tags (FSTs) is provided by the front end SimpleSearch (http://www.GABI-Kat.de). Several significant improvements have been implemented recently. The database now relies on the TAIRv10 genome sequence and annotation dataset. All FSTs have been newly mapped using an optimized procedure that leads to improved accuracy of insertion site predictions. A fraction of the collection with weak FST yield was re-analysed by generating new FSTs. Along with newly found predictions for older sequences about 20,000 new FSTs were included in the database. Information about groups of FSTs pointing to the same insertion site that is found in several lines but is real only in a single line are included, and many problematic FST-to-line links have been corrected using new wet-lab data. SimpleSearch currently contains data from ~71,000 lines with predicted insertions covering 62.5% of the 27,206 nuclear protein coding genes, and offers insertion allele-specific data from 9545 confirmed lines that are available from the Nottingham Arabidopsis Stock Centre.
Goold, Hugh Douglas; Nguyen, Hoa Mai; Kong, Fantao; Beyly-Adriano, Audrey; Légeret, Bertrand; Billon, Emmanuelle; Cuiné, Stéphan; Beisson, Fred; Peltier, Gilles; Li-Beisson, Yonghua
2016-01-01
Microalgae have emerged as a promising source for biofuel production. Massive oil and starch accumulation in microalgae is possible, but occurs mostly when biomass growth is impaired. The molecular networks underlying the negative correlation between growth and reserve formation are not known. Thus isolation of strains capable of accumulating carbon reserves during optimal growth would be highly desirable. To this end, we screened an insertional mutant library of Chlamydomonas reinhardtii for alterations in oil content. A mutant accumulating five times more oil and twice more starch than wild-type during optimal growth was isolated and named constitutive oil accumulator 1 (coa1). Growth in photobioreactors under highly controlled conditions revealed that the increase in oil and starch content in coa1 was dependent on light intensity. Genetic analysis and DNA hybridization pointed to a single insertional event responsible for the phenotype. Whole genome re-sequencing identified in coa1 a >200 kb deletion on chromosome 14 containing 41 genes. This study demonstrates that, 1), the generation of algal strains accumulating higher reserve amount without compromising biomass accumulation is feasible; 2), light is an important parameter in phenotypic analysis; and 3), a chromosomal region (Quantitative Trait Locus) acts as suppressor of carbon reserve accumulation during optimal growth. PMID:27141848
Belfield, Eric J.; Gan, Xiangchao; Mithani, Aziz; Brown, Carly; Jiang, Caifu; Franklin, Keara; Alvey, Elizabeth; Wibowo, Anjar; Jung, Marko; Bailey, Kit; Kalwani, Sharan; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas P.
2012-01-01
Ionizing radiation has long been known to induce heritable mutagenic change in DNA sequence. However, the genome-wide effect of radiation is not well understood. Here we report the molecular properties and frequency of mutations in phenotypically selected mutant lines isolated following exposure of the genetic model flowering plant Arabidopsis thaliana to fast neutrons (FNs). Previous studies suggested that FNs predominantly induce deletions longer than a kilobase in A. thaliana. However, we found a higher frequency of single base substitution than deletion mutations. While the overall frequency and molecular spectrum of fast-neutron (FN)–induced single base substitutions differed substantially from those of “background” mutations arising spontaneously in laboratory-grown plants, G:C>A:T transitions were favored in both. We found that FN-induced G:C>A:T transitions were concentrated at pyrimidine dinucleotide sites, suggesting that FNs promote the formation of mutational covalent linkages between adjacent pyrimidine residues. In addition, we found that FNs induced more single base than large deletions, and that these single base deletions were possibly caused by replication slippage. Our observations provide an initial picture of the genome-wide molecular profile of mutations induced in A. thaliana by FN irradiation and are particularly informative of the nature and extent of genome-wide mutation in lines selected on the basis of mutant phenotypes from FN-mutagenized A. thaliana populations. PMID:22499668
Zhong, Wen-Zhao; Zhou, Qing; Wu, Yi-Long
2017-01-01
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) have been established as the standard therapy for EGFR-sensitizing mutant advanced non-small-cell lung cancer (NSCLC). However, patients ultimately develop resistance to these drugs. There are several mechanisms of both primary and secondary resistance to EGFR-TKIs. The primary resistance mechanisms include point mutations in exon 18, deletions or insertions in exon 19, insertions, duplications and point mutations in exon 20 and point mutation in exon 21 of EGFR gene. Secondary resistance to EGFR-TKIs is due to emergence of T790M mutation, activation of alternative signaling pathways, bypassing downstream signaling pathways and histological transformation. Strategies to overcome these intrinsic and acquired resistance mechanisms are complex. With the development of the precision medicine for advanced NSCLC, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account resistance mechanism. Though combination therapy is emerging as the standard of to overcome resistance mechanisms. Personalized treatment modalities based on molecular diagnosis and monitoring is essential for disease management. Emerging data from the ongoing clinical trials on combination therapy of third generation TKIs and antibodies in EGFR mutant NSCLC are promising for better survival outcomes. PMID:29050366
Kristensen, Tatjana P.; Maria Cherian, Reeja; Gray, Fiona C.; MacNeill, Stuart A.
2014-01-01
The hexameric MCM complex is the catalytic core of the replicative helicase in eukaryotic and archaeal cells. Here we describe the first in vivo analysis of archaeal MCM protein structure and function relationships using the genetically tractable haloarchaeon Haloferax volcanii as a model system. Hfx. volcanii encodes a single MCM protein that is part of the previously identified core group of haloarchaeal MCM proteins. Three structural features of the N-terminal domain of the Hfx. volcanii MCM protein were targeted for mutagenesis: the β7-β8 and β9-β10 β-hairpin loops and putative zinc binding domain. Five strains carrying single point mutations in the β7-β8 β-hairpin loop were constructed, none of which displayed impaired cell growth under normal conditions or when treated with the DNA damaging agent mitomycin C. However, short sequence deletions within the β7-β8 β-hairpin were not tolerated and neither was replacement of the highly conserved residue glutamate 187 with alanine. Six strains carrying paired alanine substitutions within the β9-β10 β-hairpin loop were constructed, leading to the conclusion that no individual amino acid within that hairpin loop is absolutely required for MCM function, although one of the mutant strains displays greatly enhanced sensitivity to mitomycin C. Deletions of two or four amino acids from the β9-β10 β-hairpin were tolerated but mutants carrying larger deletions were inviable. Similarly, it was not possible to construct mutants in which any of the conserved zinc binding cysteines was replaced with alanine, underlining the likely importance of zinc binding for MCM function. The results of these studies demonstrate the feasibility of using Hfx. volcanii as a model system for reverse genetic analysis of archaeal MCM protein function and provide important confirmation of the in vivo importance of conserved structural features identified by previous bioinformatic, biochemical and structural studies. PMID:24723920
Iwabe, Simone; Ying, Gui-Shuang; Aguirre, Gustavo D.; Beltran, William A.
2016-01-01
The effect of acute exposure to various intensities of white light on visual behavior and retinal structure was evaluated in the T4R RHO dog, a naturally-occurring model of autosomal dominant retinitis pigmentosa due to a mutation in the Rhodopsin gene. A total of 14 dogs (ages: 4–5.5 months) were used in this study: 3 homozygous mutant RHOT4R/T4R, 8 heterozygous mutant RHOT4R/+, and 3 normal wild-type (WT) dogs. Following overnight dark adaptation, the left eyes were acutely exposed to bright white light with a monocular Ganzfeld dome, while the contralateral right eye was shielded. Each of the 3 homozygous (RHOT4R/T4R) mutant dogs had a single unilateral light exposure (LE) to a different (low, moderate, and high) dose of white light (corneal irradiance/illuminance: 0.1 mW/cm2, 170 lux; 0.5 mW/cm2, 820 lux; or 1 mW/cm2, 1590 lux) for 1min. All 8 heterozygous (RHOT4R/+) mutant dogs were exposed once to the same moderate dose of light. The 3 WT dogs had their left eyes exposed 1, 2, or 3 times to the same highest dose of light. Visual function prior to LE and at 2 weeks and 33 weeks after exposure was objectively assessed in the RHOT4R/T4R and WT dogs by using an obstacle-avoidance course. Transit time through the obstacle course was measured under different scotopic to photopic ambient illuminations. Morphological retinal changes were evaluated by non-invasive in vivo cSLO/sdOCT imaging and histology before and at several time-points (2–36 weeks) after light exposure. The analysis of the transit time through the obstacle course showed that no differences were observed in any of mutant or WT dogs at 2 weeks and 33 weeks post LE. The RHOT4R/T4R retina exposed to the lowest dose of white light showed no obvious changes in ONL thickness at 2 weeks, but mild decrease was noted 36 weeks after LE. The RHOT4R/T4R retina that received a moderate dose (showed an obvious decrease in ONL thickness along the superior and temporal meridians at 2 weeks post LE with more severe damage at 36 weeks post LE in all four meridians. The RHOT4R/T4R retina exposed to the high dose showed at 2 weeks after LE extensive ONL damage in all four meridians. This light intensity did not cause any retinal damage in WT dogs even after repeated (up to 3) LE. Analysis of ONL thickness in heterozygous mutant dogs exposed to the moderate dose of light confirmed the increased sensitivity to light damage of the superior/tapetal retina, and the occurrence of an ongoing cell death process several weeks after the acute LE. In conclusion, a short single exposure to a dose of white light that is not retinotoxic in WT dogs causes in the T4R RHO retina an acute loss of ONL in the central to mid peripheral region that keeps progressing over the course of several weeks. However, this severe retinal damage does not affect visual behavior presumably because of islands of surviving photoreceptors found in the area centralis including the newly discovered canine fovea-like area, and the lack of damage to peripheral photoreceptors. PMID:27085210
p53 Mutation suppresses adult neurogenesis in medaka fish (Oryzias latipes)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isoe, Yasuko; Okuyama, Teruhiro; Taniguchi, Yoshihito
2012-07-13
Highlights: Black-Right-Pointing-Pointer Progenitor migration is accompanied by an increase in their numbers in the adult brain. Black-Right-Pointing-Pointer p53 Mutation suppressed an increase in the number of the migrated progenitors. Black-Right-Pointing-Pointer The decreased progenitor number is not due to enhanced cell death. Black-Right-Pointing-Pointer p53 Mutation did not affect proliferation of stem cells. -- Abstract: Tumor suppressor p53 negatively regulates self-renewal of neural stem cells in the adult murine brain. Here, we report that the p53 null mutation in medaka fish (Oryzias latipes) suppressed neurogenesis in the telencephalon, independent of cell death. By using 5-bromo-29-deoxyuridine (BrdU) immunohistochemistry, we identified 18 proliferation zonesmore » in the brains of young medaka fish; in situ hybridization showed that p53 was expressed selectively in at least 12 proliferation zones. We also compared the number of BrdU-positive cells present in the whole telencephalon of wild-type (WT) and p53 mutant fish. Immediately after BrdU exposure, the number of BrdU-positive cells did not differ significantly between them. One week after BrdU-exposure, the BrdU-positive cells migrated from the proliferation zone, which was accompanied by an increased number in the WT brain. In contrast, no significant increase was observed in the p53 mutant brain. Terminal deoxynucleotidyl transferase (dUTP) nick end-labeling revealed that there was no significant difference in the number of apoptotic cells in the telencephalon of p53 mutant and WT medaka, suggesting that the decreased number of BrdU-positive cells in the mutant may be due to the suppression of proliferation rather than the enhancement of neural cell death. These results suggest that p53 positively regulates neurogenesis via cell proliferation.« less
Adenylosuccinate lyase (ADSL) and infantile autism: Absence of previously reported point mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fon, E.A.; Sarrazin, J.; Rouleau, G.A.
Autism is a heterogeneous neuropsychiatric syndrome of unknown etiology. There is evidence that a deficiency in the enzyme adenylosuccinate lyase (ADSL), essential for de novo purine biosynthesis, could be involved in the pathogenesis of certain cases. A point mutation in the ADSL gene, resulting in a predicted serine-to-proline substitution and conferring structural instability to the mutant enzyme, has been reported previously in 3 affected siblings. In order to determine the prevalence of the mutation, we PCR-amplified the exon spanning the site of this mutation from the genomic DNA of patients fulfilling DSM-III-R criteria for autistic disorder. None of the 119more » patients tested were found to have this mutation. Furthermore, on preliminary screening using single-strand conformation polymorphism (SSCP), no novel mutations were detected in the coding sequence of four ADSL exons, spanning approximately 50% of the cDNA. In light of these findings, it appears that mutations in the ADSL gene represent a distinctly uncommon cause of autism. 12 refs., 2 figs.« less
Point mutation impairs centromeric CENH3 loading and induces haploid plants.
Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas
2015-09-08
The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest.
Point mutation impairs centromeric CENH3 loading and induces haploid plants
Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas
2015-01-01
The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called “CENP-A”) is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923–937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252
Stanley, J; Townsend, R
1986-01-01
Intact recombinant DNAs containing single copies of either component of the cassava latent virus genome can elicit infection when mechanically inoculated to host plants in the presence of the appropriate second component. Characterisation of infectious mutant progeny viruses, by analysis of virus-specific supercoiled DNA intermediates, indicates that most if not all of the cloning vector has been deleted, achieved at least in some cases by intermolecular recombination in vivo between DNAs 1 and 2. Significant rearrangements within the intergenic region of DNA 2, predominantly external to the common region, can be tolerated without loss of infectivity suggesting a somewhat passive role in virus multiplication for the sequences in question. Although packaging constraints might impose limits on the amount of DNA within geminate particles, isolation of an infectious coat protein mutant defective in virion production suggests that packaging is not essential for systemic spread of the viral DNA. Images PMID:2875435
Stalk cell differentiation without polyketides in the cellular slime mold.
Sato, Yukie G; Suarez, Teresa; Saito, Tamao
2016-07-01
Polyketides induce prestalk cell differentiation in Dictyostelium. In the double-knockout mutant of the SteelyA and B polyketide synthases, most of the pstA cells-the major part of the prestalk cells-are lost, and we show by whole mount in situ hybridization that expression of prestalk genes is also reduced. Treatment of the double-knockout mutant with the PKS inhibitor cerulenin gave a further reduction, but some pstA cells still remained in the tip region, suggesting the existence of a polyketide-independent subtype of pstA cells. The double-knockout mutant and cerulenin-treated parental Ax2 cells form fruiting bodies with fragile, single-cell layered stalks after cerulenin treatment. Our results indicate that most pstA cells are induced by polyketides, but the pstA cells at the very tip of the slug are induced in some other way. In addition, a fruiting body with a single-cell layered, vacuolated stalk can form without polyketides.
Pineau, Bernard; Girard-Bascou, Jacqueline; Eberhard, Stephan; Choquet, Yves; Trémolières, Antoine; Gérard-Hirne, Catherine; Bennardo-Connan, Annick; Decottignies, Paulette; Gillet, Sylvie; Wollman, Francis-André
2004-01-01
Two mutants of Chlamydomonas reinhardtii, mf1 and mf2, characterized by a marked reduction in their phosphatidylglycerol content together with a complete loss in its Delta3-trans hexadecenoic acid-containing form, also lost photosystem II (PSII) activity. Genetic analysis of crosses between mf2 and wild-type strains shows a strict cosegregation of the PSII and lipid deficiencies, while phenotypic analysis of phototrophic revertant strains suggests that one single nuclear mutation is responsible for the pleiotropic phenotype of the mutants. The nearly complete absence of PSII core is due to a severely decreased synthesis of two subunits, D1 and apoCP47, which is not due to a decrease in translation initiation. Trace amounts of PSII cores that were detected in the mutants did not associate with the light-harvesting chlorophyll a/b-binding protein antenna (LHCII). We discuss the possible role of phosphatidylglycerol in the coupled process of cotranslational insertion and assembly of PSII core subunits.
Mutational analysis of the transcriptional activator VirG of Agrobacterium tumefaciens.
Scheeren-Groot, E P; Rodenburg, K W; den Dulk-Ras, A; Turk, S C; Hooykaas, P J
1994-01-01
To find VirG proteins with altered properties, the virG gene was mutagenized. Random chemical mutagenesis of single-stranded DNA containing the Agrobacterium tumefaciens virG gene led with high frequency to the inactivation of the gene. Sequence analysis showed that 29% of the mutants contained a virG gene with one single-base-pair substitution somewhere in the open reading frame. Thirty-nine different mutations that rendered the VirG protein inactive were mapped. Besides these inactive mutants, two mutants in which the vir genes were active even in the absence of acetosyringone were found on indicator plates. A VirG protein with an N54D substitution turned out to be able to induce a virB-lacZ reporter gene to a high level even in the absence of the inducer acetosyringone. A VirG protein with an I77V substitution exhibited almost no induction in the absence of acetosyringone but showed a maximum induction level already at low concentrations of acetosyringone. Images PMID:7961391
Phenotypic characterization of spontaneously mutated rats showing lethal dwarfism and epilepsy.
Suzuki, Hiroetsu; Takenaka, Motoo; Suzuki, Katsushi
2007-08-01
We have characterized the phenotype of spontaneously mutated rats, found during experimental inbreeding in a closed colony of Wistar Imamichi rats. Mutant rats showed severe dwarfism, short lifespan (early postnatal lethality), and high incidence of epileptic seizures. Mutant rats showed growth retardation after 3 d of age, and at 21 d their weight was about 56% that of normal rats. Most mutant rats died without reaching maturity, and 95% of the mutant rats had an ataxic gait. About 34% of the dwarf rats experienced epileptic seizures, most of which started as 'wild running' convulsions, progressing to generalized tonic-clonic convulsions. At age 28 d, the relative weight of the testes was significantly lower, and the relative weight of the brain was significantly higher, in mutant than in normal rats. Histologically, increased apoptotic germ cells, lack of spermatocytes, and immature Leydig cells were found in the mutant testes, and extracellular vacuoles of various sizes were present in the hippocampus and amygdala of the mutant brain. Mutant rats had significantly increased concentrations of plasma urea nitrogen, creatinine, and inorganic phosphate, as well as decreased concentrations of plasma growth hormone. Hereditary analysis showed that the defects were inherited as a single recessive trait. We have named the hypothetically mutated gene as lde (lethal dwarfism with epilepsy).
An efficient screen for peroxisome-deficient mutants of Pichia pastoris.
Liu, H; Tan, X; Veenhuis, M; McCollum, D; Cregg, J M
1992-01-01
We describe a rapid and efficient screen for peroxisome-deficient (per) mutants in the yeast Pichia pastoris. The screen relies on the unusual ability of P. pastoris to grow on two carbon sources, methanol and oleic acid, both of which absolutely require peroxisomes to be metabolized. A collection of 280 methanol utilization-defective (Mut-) P. pastoris mutants was isolated, organized into 46 complementation groups, and tested for those that were also oleate-utilization defective (Out-) but still capable of growth on ethanol and glucose. Mutants in 10 groups met this phenotypic description, and 8 of these were observed by electron microscopy to be peroxisome deficient (Per-). In each per mutant, Mut-, Out-, and Per- phenotypes were tightly linked and therefore were most likely due to a mutation at a single locus. Subcellular fractionation experiments indicated that the peroxisomal marker enzyme catalase was mislocalized to the cytosol in both methanol- and oleate-induced cultures of the mutants. In contrast, alcohol oxidase, a peroxisomal methanol utilization pathway enzyme, was virtually absent from per mutant cells. The relative ease of per mutant isolation in P. pastoris, in conjunction with well-developed procedures for its molecular and genetic manipulation, makes this organism an attractive system for studies on peroxisome biogenesis. Images PMID:1629154
A Mouse β-Globin Mutant That Is an Exact Model of Hemoglobin Rainier in Man
Peters, J.; Andrews, S. J.; Loutit, J. F.; Clegg, J. B.
1985-01-01
A mutation induced by ethylnitrosourea in a spermatogonial stem cell of a 101/H mouse has resulted in a structurally altered β-diffuse major globin in one of his offspring. The mutant hemoglobin is associated with polycythemia, rubor, increased oxygen affinity and decreased hem-hem interaction. The mutant haplotype has been designated Hbb d4, polycythemia. Amino acid analysis of the mutant globin has shown that a single substitution β145 Tyr → Cys has occurred, and it is proposed that ethylnitrosourea induced an A → G transition in the tyrosine codon (TAC → TGC). This murine polycythemia is homologous with hemoglobin Rainier in man, in which the amino acid substitution is also β145 Tyr → Cys and which is associated with similar physiological consequences. PMID:3839762
Interaction between lysine 102 and aspartate 338 in the insect amino acid cotransporter KAAT1.
Castagna, M; Soragna, A; Mari, S A; Santacroce, M; Betté, S; Mandela, P G; Rudnick, G; Peres, A; Sacchi, V F
2007-10-01
KAAT1 is a lepidopteran neutral amino acid transporter belonging to the NSS super family (SLC6), which has an unusual cation selectivity, being activated by K(+) and Li(+) in addition to Na(+). We have previously demonstrated that Asp338 is essential for KAAT1 activation by K(+) and for the coupling of amino acid and driver ion fluxes. By comparing sequences of NSS family members, site-directed mutagenesis, and expression in Xenopus laevis oocytes, we identified Lys102 as a residue likely to interact with Asp338. Compared with wild type, the single mutants K102V and D338E each showed altered leucine uptake and transport-associated currents in the presence of both Na(+) and K(+). However, in K102V/D338E double mutant, the K102V mutation reversed both the inhibition of Na(+)-dependent transport and the block in K(+)-dependent transport that characterize the D338E mutant. K(+)-dependent leucine currents were not observed in any mutants with D338E. In the presence of the oxidant Cu(II) (1,10-phenanthroline)(3), we observed specific and reversible inhibition of K102C/D338C mutant, but not of the corresponding single cysteine mutants, suggesting that these residues are sufficiently close to form a disulfide bond. Thus both structural and functional evidence suggests that these two residues interact. Similar results have been obtained mutating the bacterial transporter homolog TnaT. Asp338 corresponds to Asn286, a residue located in the Na(+) binding site in the recently solved crystal structure of the NSS transporter LeuT(Aa) (41). Our results suggest that Lys102, interacting with Asp338, could contribute to the spatial organization of KAAT1 cation binding site and permeation pathway.
Poyatos-Pertíñez, Sandra; Quinet, Muriel; Ortíz-Atienza, Ana; Bretones, Sandra; Yuste-Lisbona, Fernando J; Lozano, Rafael
2016-09-01
Genetic interactions of UFD gene support its specific function during reproductive development of tomato; in this process, UFD could play a pivotal role between inflorescence architecture and flower initiation genes. Tomato (Solanum lycopersicum L.) is a major vegetable crop that also constitutes a model species for the study of plant developmental processes. To gain insight into the control of flowering and floral development, a novel tomato mutant, unfinished flower development (ufd), whose inflorescence and flowers were unable to complete their normal development was characterized using double mutant and gene expression analyses. Genetic interactions of ufd with mutations affecting inflorescence fate (uniflora, jointless and single flower truss) were additive and resulted in double mutants displaying the inflorescence structure of the non-ufd parental mutant and the flower phenotype of the ufd mutant. In addition, ufd mutation promotes an earlier inflorescence meristem termination. Taken together, both results indicated that UFD is not involved in the maintenance of inflorescence meristem identity, although it could participate in the regulatory system that modulates the rate of meristem maturation. Regarding the floral meristem identity, the falsiflora mutation was epistatic to the ufd mutation even though FALSIFLORA was upregulated in ufd inflorescences. In terms of floral organ identity, the ufd mutation was epistatic to macrocalyx, and MACROCALYX expression was differently regulated depending on the inflorescence developmental stage. These results suggest that the UFD gene may play a pivotal role between the genes required for flowering initiation and inflorescence development (such as UNIFLORA, FALSIFLORA, JOINTLESS and SINGLE FLOWER TRUSS) and those required for further floral organ development such as the floral organ identity genes.
Miwa, Kyoko; Wakuta, Shinji; Takada, Shigeki; Ide, Koji; Takano, Junpei; Naito, Satoshi; Omori, Hiroyuki; Matsunaga, Toshiro; Fujiwara, Toru
2013-01-01
Boron (B) is required for cross linking of the pectic polysaccharide rhamnogalacturonan II (RG-II) and is consequently essential for the maintenance of cell wall structure. Arabidopsis (Arabidopsis thaliana) BOR1 is an efflux B transporter for xylem loading of B. Here, we describe the roles of BOR2, the most similar paralog of BOR1. BOR2 encodes an efflux B transporter localized in plasma membrane and is strongly expressed in lateral root caps and epidermis of elongation zones of roots. Transfer DNA insertion of BOR2 reduced root elongation by 68%, whereas the mutation in BOR1 reduced it by 32% under low B availability (0.1 µm), but the reduction in shoot growth was not as obvious as that in the BOR1 mutant. A double mutant of BOR1 and BOR2 exhibited much more severe growth defects in both roots and shoots under B-limited conditions than the corresponding single mutants. All single and double mutants grew normally under B-sufficient conditions. These results suggest that both BOR1 and BOR2 are required under B limitation and that their roles are, at least in part, different. The total B concentrations in roots of BOR2 mutants were not significantly different from those in wild-type plants, but the proportion of cross-linked RG-II was reduced under low B availability. Such a reduction in RG-II cross linking was not evident in roots of the BOR1 mutant. Thus, we propose that under B-limited conditions, transport of boric acid/borate by BOR2 from symplast to apoplast is required for effective cross linking of RG-II in cell wall and root cell elongation. PMID:24114060
Mandal, Aninda; Datta, Animesh K.
2014-01-01
A “thick stem” mutant of Corchorus olitorius L. was induced at M2 (0.50%, 4 h, EMS) and the true breeding mutant is assessed across generations (M5 to M7) considering morphometric traits as well as SEM analysis of pollen grains and raw jute fibres, stem anatomy, cytogenetical attributes, and lignin content in relation to control. Furthermore, single fibre diameter and tensile strength are also analysed. The objective is to assess the stability of mutant for its effective exploration for raising a new plant type in tossa jute for commercial exploitation and efficient breeding. The mutant trait is monogenic recessive to normal. Results indicate that “thick stem” mutant is stable across generations (2n = 14) with distinctive high seed and fibre yield and significantly low lignin content. Stem anatomy of the mutant shows significant enhancement in fibre zone, number of fibre pyramids and fibre bundles per pyramid, and diameter of fibre cell in relation to control. Moreover, tensile strength of mutant fibre is significantly higher than control fibre and the trait is inversely related to fibre diameter. However the mutant is associated with low germination frequency, poor seed viability, and high pollen sterility, which may be eliminated through mutational approach followed by rigorous selection and efficient breeding. PMID:24860822
NASA Astrophysics Data System (ADS)
Xu, Min; Bian, Po; Wu, Yuejin; Yu, Zengliang
2008-04-01
A screen for Arabidopsis fertility mutants, mutagenized by low-energy argon ion beam, yielded two partial male-sterile mutants tc243-1 and tc243-2 which have similar phenotypes. tc243-2 was investigated in detail. The segregation ratio of the mutant phenotypes in the M2 pools suggested that mutation behaved as single Mendelian recessive mutations. tc243 showed a series of mutant phenotypes, among which partial male-sterile was its striking mutant characteristic. Phenotype analysis indicates that there are four factors leading to male sterility. a. Floral organs normally develop inside the closed bud, but the anther filaments do not elongate sufficiently to position the locules above the stigma at anthesis. b. The anther locules do not dehisce at the time of flower opening (although limited dehiscence occurs later). c. Pollens of mutant plants develop into several types of pollens at the trinucleated stage, as determined by staining with DAPI (4',6-diamidino-2-phenylindole), which shows a variable size, shape and number of nucleus. d. The viability of pollens is lower than that of the wild type on the germination test in vivo and vitro.
Replication protein A is required for meiotic recombination in Saccharomyces cerevisiae.
Soustelle, Christine; Vedel, Michèle; Kolodner, Richard; Nicolas, Alain
2002-01-01
In Saccharomyces cerevisiae, meiotic recombination is initiated by transient DNA double-stranded breaks (DSBs). These DSBs undergo a 5' --> 3' resection to produce 3' single-stranded DNA ends that serve to channel DSBs into the RAD52 recombinational repair pathway. In vitro studies strongly suggest that several proteins of this pathway--Rad51, Rad52, Rad54, Rad55, Rad57, and replication protein A (RPA)--play a role in the strand exchange reaction. Here, we report a study of the meiotic phenotypes conferred by two missense mutations affecting the largest subunit of RPA, which are localized in the protein interaction domain (rfa1-t11) and in the DNA-binding domain (rfa1-t48). We find that both mutant diploids exhibit reduced sporulation efficiency, very poor spore viability, and a 10- to 100-fold decrease in meiotic recombination. Physical analyses indicate that both mutants form normal levels of meiosis-specific DSBs and that the broken ends are processed into 3'-OH single-stranded tails, indicating that the RPA complex present in these rfa1 mutants is functional in the initial steps of meiotic recombination. However, the 5' ends of the broken fragments undergo extensive resection, similar to what is observed in rad51, rad52, rad55, and rad57 mutants, indicating that these RPA mutants are defective in the repair of the Spo11-dependent DSBs that initiate homologous recombination during meiosis. PMID:12072452
Imidazopyridine Compounds Inhibit Mycobacterial Growth by Depleting ATP Levels.
O'Malley, Theresa; Alling, Torey; Early, Julie V; Wescott, Heather A; Kumar, Anuradha; Moraski, Garrett C; Miller, Marvin J; Masquelin, Thierry; Hipskind, Philip A; Parish, Tanya
2018-06-01
The imidazopyridines are a promising new class of antitubercular agents with potent activity in vitro and in vivo We isolated mutants of Mycobacterium tuberculosis resistant to a representative imidazopyridine; the mutants had large shifts (>20-fold) in MIC. Whole-genome sequencing revealed mutations in Rv1339, a hypothetical protein of unknown function. We isolated mutants resistant to three further compounds from the series; resistant mutants isolated from two of the compounds had single nucleotide polymorphisms in Rv1339 and resistant mutants isolated from the third compound had single nucleotide polymorphisms in QcrB, the proposed target for the series. All the strains were resistant to two compounds, regardless of the mutation, and a strain carrying the QcrB T313I mutation was resistant to all of the imidazopyridine derivatives tested, confirming cross-resistance. By monitoring pH homeostasis and ATP generation, we confirmed that compounds from the series were targeting QcrB; imidazopyridines disrupted pH homeostasis and depleted ATP, providing further evidence of an effect on the electron transport chain. A representative compound was bacteriostatic against replicating bacteria, consistent with a mode of action against QcrB. The series had a narrow inhibitory spectrum, with no activity against other bacterial species. No synergy or antagonism was seen with other antituberculosis drugs under development. In conclusion, our data support the hypothesis that the imidazopyridine series functions by reducing ATP generation via inhibition of QcrB. Copyright © 2018 O'Malley et al.
Cho, Man-Ho; Lim, Hyemin; Shin, Dong Ho; Jeon, Jong-Seong; Bhoo, Seong Hee; Park, Youn-Il; Hahn, Tae-Ryong
2011-04-01
In higher plants, the plastidic glucose translocator (pGlcT) is assumed to play a role in the export of starch degradation products, but this has not yet been studied in detail. To elucidate the role of pGlcT in the leaves of Arabidopsis thaliana, we generated single and double mutants lacking three plastidic sugar transporters, pGlcT, the triose-phosphate/phosphate translocator (TPT), and the maltose transporter (MEX1), and analyzed their growth phenotypes, photosynthetic properties and metabolite contents. In contrast to the pglct-1 and pglct-2 single mutants lacking a visible growth phenotype, the double mutants pglct-1/mex1 and tpt-2/mex1 displayed markedly inhibited plant growth. Notably, pglct-1/mex1 exhibited more severe growth retardation than that seen for the other mutants. In parallel, the most severe reductions in sucrose content and starch turnover were observed in the pglct-1/mex1 mutant. The concurrent loss of pGlcT and MEX1 also resulted in severely reduced photosynthetic activities and extreme chloroplast abnormalities. These findings suggest that pGlcT, together with MEX1, contributes significantly to the export of starch degradation products from chloroplasts in A. thaliana leaves, and that this starch-mediated pathway for photoassimilate export via pGlcT and MEX1 is essential for the growth and development of A. thaliana. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.
2011-01-01
Background The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk. PMID:21714900
Kristensen, Anders S; Larsen, Mads B; Johnsen, Laust B; Wiborg, Ove
2004-03-01
The serotonin transporter (SERT) belongs to a family of sodium-chloride-dependent transporters responsible for uptake of amino acids and biogenic amines from the extracellular space. SERT represents a major pharmacological target in the treatment of several clinical conditions, including depression and anxiety. In the present study we have undertaken a mutational scanning of human SERT in order to identify residues that are responsible for individual differences among related monoamine transporters. One mutant, G100A, was inactive in transport. However, ligand binding affinity was similar to wild-type, suggesting that G100A amongst different possible SERT conformations is restrained to a binding conformation. We suggest that the main role of glycine-100 is to confer structural flexibility during substrate translocation. For the two single mutants, T178A and F263C, uptake rates and K(m) values were both several-fold higher than wild-type while binding affinities and inhibitory potencies decreased considerably for several drugs. Ion dependency increased and only at hyperosmotic concentrations were K(m) values partly restored. For the double mutant, T178A/F263C, shifts in uptake kinetics and ligand affinities, as well as ion dependencies, were drastic. Effects were synergistic compared to the corresponding single mutants. In conclusion, we suggest that mutating threonine-178 to an alanine and phenylalanine-263 to a cysteine mainly alter the overall uptake kinetics of SERT by affecting the conformational equilibrium of different transporter conformations.
Xiao, Xian; He, Qiang-Hua; Yu, Li-Yan; Wang, Song-Qing; Li, Yang; Yang, Hua; Zhang, Ai-Hua; Ma, Xiao-Hong; Peng, Yu-Jie; Chen, Bing
2017-02-01
The PTP non-receptor type 4 (PTPN4) is an important regulator protein in learning, spatial memory and cerebellar synaptic plasticity; targeting the PDZ domain of PTPN4 has become as attractive therapeutic strategy for human neuroglioma. Here, we systematically examined the complex crystal structures of PTPN4 PDZ domain with its known peptide ligands; a number of charged amino acid residues were identified in these ligands and in the peptide-binding pocket of PDZ domain, which can constitute a complicated salt-bridge network across the complex interface. Molecular dynamics (MD) simulations, binding free energy calculations and continuum model analysis revealed that the electrostatic effect plays a predominant role in domain-peptide binding, while other noncovalent interactions such as hydrogen bonds and hydrophobic forces are also responsible for the binding. The computational findings were then used to guide structure-based optimization of the interfacial salt-bridge network. Consequently, five peptides were rationally designed using the high-affinity binder Cyto8-RETEV (RETEV -COOH ) as template, including four single-point mutants (i.e. Cyto8-mtxe 0 : RETEE -COOH , Cyto8-mtxd -1 : RETDV -COOH , Cyto8-mtxd -3 : RDTEV -COOH and Cyto8-mtxk -4 : KETEV -COOH ) and one double-point mutant (i.e. Cyto8-mtxd -1 k -4 : KETDV -COOH ). Binding assays confirmed that three (Cyto8-mtxd -1 , Cyto8-mtxk -4 and Cyto8-mtxd -1 k -4 ) out of the five designed peptides exhibit moderately or considerably increased affinity as compared to the native peptide Cyto8-RETEV. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Qing; Meng, Dong; Gu, Zhaoyu; Li, Wei; Chen, Qiuju; Li, Yang; Yuan, Hui; Yu, Jie; Liu, Chunsheng; Li, Tianzhong
2018-04-18
In S-RNase-mediated self-incompatibility, S-RNase secreted from the style destroys the actin cytoskeleton of the self-pollen tubes, eventually halting their growth, but the mechanism of this process remains unclear. In vitro biochemical assays revealed that S-RNase does not bind or sever filamentous actin (F-actin). In apple (Malus domestica), we identified an actin-binding protein containing myosin, villin and GRAM (MdMVG), that physically interacts with S-RNase and directly binds and severs F-actin. Immunofluorescence assays and total internal reflection fluorescence microscopy indicated that S-RNase inhibits the F-actin-severing activity of MdMVG in vitro. In vivo, the addition of S-RNase to self-pollen tubes increased the fluorescence intensity of actin microfilaments and reduced the severing frequency of microfilaments and the rate of pollen tube growth in self-pollination induction in the presence of MdMVG overexpression. By generating 25 single-, double- and triple-point mutations in the amino acid motif E-E-K-E-K of MdMVG via mutagenesis and testing the resulting mutants with immunofluorescence, we identified a triple-point mutant, MdMVG (E167A/E171A/K185A) , that no longer has F-actin-severing activity or interacts with any of the four S-haplotype S-RNases, indicating that all three amino acids (E167, E171 and K185) are essential for the severing activity of MdMVG and its interaction with S-RNases. We conclude that apple S-RNase interacts with MdMVG to reduce self-pollen tube growth by inhibiting its F-actin-severing activity. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
2010-01-01
Background Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. Results A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. Conclusions This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. PMID:20846421
Induction and characterization of morphologic mutants in a natural Saccharomyces cerevisiae strain.
Barberio, Claudia; Bianchi, Lucia; Pinzauti, Francesca; Lodi, Tiziana; Ferrero, Iliana; Polsinelli, Mario; Casalone, Enrico
2007-02-01
Saccharomyces cerevisiae is a good model with which to study the effects of morphologic differentiation on the ecological behaviour of fungi. In this work, 33 morphologic mutants of a natural strain of S. cerevisiae, obtained with UV mutagenesis, were selected for their streak shape and cell shape on rich medium. Two of them, showing both high sporulation proficiency and constitutive pseudohyphal growth, were analysed from a genetic and physiologic point of view. Each mutant carries a recessive monogenic mutation, and the two mutations reside in unlinked genes. Flocculation ability and responsiveness to different stimuli distinguished the two mutants. Growth at 37 degrees C affected the cell but not the colony morphology, suggesting that these two phenotypes are regulated differently. The effect of ethidium bromide, which affects mitochondrial DNA replication, suggested a possible "retrograde action" of mitochondria in pseudohyphal growth.
Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dryja, T.P.; Han, L.B.; Cowley, G.S.
1991-10-15
The authors searched for point mutations in every exon of the rhodopsin gene in 150 patients from separate families with autosomal dominant retinitis pigmentosa. Including the 4 mutations the authors reported previously, they found a total of 17 different mutations that correlate with the disease. Each of these mutations is a single-base substitution corresponding to a single amino acid substitution. Based on current models for the structure of rhodopsin, 3 of the 17 mutant amino acids are normally located on the cytoplasmic side of the protein, 6 in transmembrane domains, and 8 on the intradiscal side. Forty-three of the 150more » patients (29%) carry 1 of these mutations, and no patient has more than 1 mutation. In every family with a mutation so far analyzed, the mutation cosegregates with the disease. They found one instance of a mutation in an affected patient that was absent in both unaffected parents (i.e., a new germ-line mutation), indicating that some isolate cases of retinitis pigmentosa carry a mutation of the rhodopsin gene.« less
Toh-E, Akio; Ohkusu, Misako; Shimizu, Kiminori; Yamaguchi, Masashi; Ishiwada, Naruhiko; Watanabe, Akira; Kamei, Katsuhiko
2017-12-01
We constructed deletion mutants of Cryptococcus neoformans var neoformans (serotype D) genes encoding late ergosterol biosynthetic pathway enzymes and found that the mutations enhanced susceptibility to various drugs including micafungin, one of the echinocandins, to which wild-type Cryptococcus strains show no susceptibility. Furthermore, through isolation of a mutant resistant to micafungin from a micafungin-sensitive erg mutant and genetic analysis of it, we found that the responsible mutation occurred in the hotspot 2 of FKS1 encoding β-1, 3-glucan synthase, indicating that micafungin inhibited the growth of the erg mutant via inhibiting Fks1 activity. Addition of ergosterol to the culture of the erg mutants recovered the resistance to micafungin, suggesting that the presence of ergosterol in membrane inhibits the accession of micafungin to its target. We found that a loss of one of genes encoding subunits of v-ATPase, VPH1, made Cryptococcus cells sensitive to micafungin. Our observation that the erg2 vph1 double mutant was more sensitive to micafungin than either single mutant suggests that these two genes act differently in becoming resistant to micafungin. The erg mutants allowed us to study the physiological significance of β-1, 3-glucan synthesis in C. neoformans; the inhibition of β-1, 3-glucan synthesis induced cell death and changes in cellular morphology. By observing the erg mutant cells recovering from the growth inhibition imposed by micafungin, we recognized β-1, 3-glucan synthesis would suppress filamentous growth in C. neoformans.
Grigg, Matthew J; Barber, Bridget E; Marfurt, Jutta; Imwong, Mallika; William, Timothy; Bird, Elspeth; Piera, Kim A; Aziz, Ammar; Boonyuen, Usa; Drakeley, Christopher J; Cox, Jonathan; White, Nicholas J; Cheng, Qin; Yeo, Tsin W; Auburn, Sarah; Anstey, Nicholas M
2016-01-01
Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H) transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP) as a potential marker of H-H transmission. The P. knowlesi dihdyrofolate-reductase (pkdhfr) gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo) and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket. Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2%) and R34L (10.0%), resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32%) patients had single mutants and 14 (3%) had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates. Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.
Barrington, Chloe L.; Katsanis, Nicholas
2017-01-01
The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807
Geber, A; Hitchcock, C A; Swartz, J E; Pullen, F S; Marsden, K E; Kwon-Chung, K J; Bennett, J E
1995-01-01
We have cloned and sequenced the structural genes encoding the delta 5,6 sterol desaturase (ERG3 gene) and the 14 alpha-methyl sterol demethylase (ERG11 gene) from Candida glabrata L5 (leu2). Single and double mutants of these genes were created by gene deletion. The phenotypes of these mutants, including sterol profiles, aerobic viabilities, antifungal susceptibilities, and generation times, were studied. Strain L5D (erg3 delta::LEU2) accumulated mainly ergosta-7,22-dien-3 beta-ol, was aerobically viable, and remained susceptible to antifungal agents but had a slower generation time than its parent strain. L5LUD (LEU2 erg11 delta::URA3) strains required medium supplemented with ergosterol and an anaerobic environment for growth. A spontaneous aerobically viable mutant, L5LUD40R (LEU erg11 delta::URA3), obtained from L5LUD (LEU2 erg11 delta::URA3), was found to accumulate lanosterol and obtusifoliol, was resistant to azole antifungal agents, demonstrated some increase in resistance to amphotericin B, and exhibited a 1.86-fold increase in generation time in comparison with L5 (leu2). The double-deletion mutant L5DUD61 (erg3 delta::LEU2 erg11 delta::URA3) was aerobically viable, produced mainly 14 alpha-methyl fecosterol, and had the same antifungal susceptibility pattern as L5LUD40R (LEU2 erg11 delta::URA3), and its generation time was threefold greater than that of L5 (leu2). Northern (RNA) analysis revealed that the single-deletion mutants had a marked increase in message for the undeleted ERG3 and ERG11 genes. These results indicate that differences in antifungal susceptibilities and the restoration of aerobic viability exist between the C. glabrata ergosterol mutants created in this study and those sterol mutants with similar genetic lesions previously reported for Saccharomyces cerevisiae. PMID:8593007
Zhang, Nan; Wu, Yuzhi; Huang, Zilong; Yao, Lihua; Zhang, Longfei; Cai, Qinren; Shen, Xiangguang; Jiang, Hongxia; Ding, Huanzhong
2017-01-01
Mycoplasma gallisepticum is the causative agent of chronic respiratory disease (CRD), a prevalent disease of poultry, which is responsible for significant economic losses in farms. Although several antimicrobial agents are currently recommended for the treatment and prevention of M. gallisepticum infections, investigations of M. gallisepticum have been hampered by their fastidious growth requirements and slow growth rate. As such, little work has been conducted concerning the PK/PD relationship and mechanisms of antibiotic resistance between antimicrobials against M. gallisepticum. In the present study, danofloxacin was orally administrated to the infected chickens once daily for 3 days by an established in vivo M. gallisepticum infection model. Not only the concentrations of danofloxacin in plasma and lung tissues were analyzed, but also the counting of viable cells and changes in antimicrobial susceptibility in air sac and lung were determined. The PK and PD data were fitted by WinNonlin to evaluate the PK/PD interactions of danofloxacin against M. gallisepticum. PCR amplification of quinolone resistance-determining regions (QRDRs) and DNA sequencing were performed to identify point mutations in gyrA, gyrB, parC, and parE of the selected resistant mutant strains. In addition, susceptibility of enrofloxacin, ofloxacin, levofloxacin, gatifloxacin, and norfloxacin against these mutant strains were also determined. The PK profiles indicated that danofloxacin concentration in the lung tissues was higher than plasma. Mycoplasmacidal activity was achieved when infected chickens were exposed to danofloxacin at the dose group above 2.5 mg/kg. The ratios of AUC24/MIC (the area under the concentration-time curve over 24 h divided by the MIC) for 2 log10 (CFU) and 3 log10 (CFU) reduction were 31.97 and 97.98 L h/kg, respectively. Substitutions of Ser-83→Arg or Glu-87→Gly in gyrA; Glu-84→Lys in parC were observed in the resistant mutant strains that were selected from the dose group of 1 and 2.5 mg/kg. MICs of danofloxacin, enrofloxacin, ofloxacin, levofloxacin, gatifloxacin, and norfloxacin against the resistant mutant strains with a single mutation in position-83 were higher than that with a single mutation in position-87. These findings suggested that danofloxacin may be therapeutically effective to treat M. gallisepticum infection in chickens if administered at a dosage of 5.5 mg/kg once daily for 3 days. PMID:28611739
NASA Astrophysics Data System (ADS)
Eigen, Manfred
1988-12-01
The Darwinian concept of evolution through natural selection has been revised and put on a solid physical basis, in a form which applies to self-replicable macromolecules. Two new concepts are introduced: sequence space and quasi-species. Evolutionary change in the DNA- or RNA-sequence of a gene can be mapped as a trajectory in a sequence space of dimension ν, where ν corresponds to the number of changeable positions in the genomic sequence. Emphasis, however, is shifted from the single surviving wildtype, a single point in the sequence space, to the complex structure of the mutant distribution that constitutes the quasi-species. Selection is equivalent to an establishment of the quasi-species in a localized region of sequence space, subject to threshold conditions for the error rate and sequence length. Arrival of a new mutant may violate the local threshold condition and thereby lead to a displacement of the quasi-species into a different region of sequence space. This transformation is similar to a phase transition; the dynamical equations that describe the quase-species have been shown to be analogous to those of the two-dimensional Ising model of ferromagnetism. The occurrence of a selectively advantageous mutant is biased by the particulars of the quasi-species distribution, whose mutants are populated according to their fitness relative to that of the wild-type. Inasmuch as fitness regions are connected (like mountain ridges) the evolutionary trajectory is guided to regions of optimal fitness. Evolution experiments in test tubes confirm this modification of the simple chance and law nature of the Darwinian concept. The results of the theory can also be applied to the construction of a machine that provides optimal conditions for a rapid evolution of functionally active macromolecules. An introduction to the physics of molecular evolution by the author has appeared recently.1 Detailed studies of the kinetics and mechanisms of replication of RNA, the most likely candidate for early evolution2,3, and of the implications on natural selection have been given in Refs. 4 and 5. The quasi-species model has been constructed in Refs. 6 and 7 using the concept of sequence space. Subsequently various methods have been invented to elucidate this concept and to relate it to the theory of critical phenomena 8-19. The instability of the quasi-species at the error threshold is discussed in Ref. 10. Evolution experiments with RNA strands in test tubes are described in Refs. 21 and 22.
Vinayak, Sumiti; Alam, Md Tauqeer; Sem, Rithy; Shah, Naman K.; Susanti, Augustina I.; Lim, Pharath; Muth, Sinuon; Maguire, Jason D.; Rogers, William O.; Fandeur, Thierry; Barnwell, John W.; Escalante, Ananias A.; Wongsrichanalai, Chansuda; Ariey, Frederick; Meshnick, Steven R.; Udhayakumar, Venkatachalam
2011-01-01
Background The emergence of artesunate-mefloquine (AS+MQ)–resistant Plasmodium falciparum in the Thailand-Cambodia region is a major concern for malaria control. Studies indicate that copy number increase and key alleles in the pfmdr1 gene are associated with AS+MQ resistance. In the present study, we investigated evidence for a selective sweep around pfmdr1 because of the spread of adaptive mutation and/or multiple copies of this gene in the P. falciparum population in Cambodia. Methods We characterized 13 microsatellite loci flanking (± 99 kb) pfmdr1 in 93 single-clone P. falciparum infections, of which 31 had multiple copies and 62 had a single copy of the pfmdr1 gene. Results Genetic analysis revealed no difference in the mean (± standard deviation) expected heterozygosity (He) at loci around single (0.75 ± 0.03) and multiple (0.76 ± 0.04) copies of pfmdr1. Evidence of genetic hitchhiking with the selective sweep of certain haplotypes was seen around mutant (184F) pfmdr1 allele, irrespective of the copy number. There was an overall reduction of 28% in mean He (± SD) around mutant allele (0.56 ± 0.05), compared with wild-type allele (0.84 ± 0.02). Significant linkage disequilibrium was also observed between the loci flanking mutant pfmdr1 allele. Conclusion The 184F mutant allele is under selection, whereas amplification of pfmdr1 gene in this population occurs on multiple genetic backgrounds. PMID:20367478
van der Leij, F R; Visser, R G; Ponstein, A S; Jacobsen, E; Feenstra, W J
1991-08-01
The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; "waxy protein") has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type sequence with a cDNA sequence from the literature and a newly isolated cDNA revealed the presence of 13 introns, the first of which is located in the untranslated leader. The promoter contains a G-box-like sequence. The deduced amino acid sequence of the precursor of GBSS shows a high degree of identity with monocot waxy protein sequences in the region corresponding to the mature form of the enzyme. The transit peptide of 77 amino acids, required for routing of the precursor to the plastids, shows much less identity with the transit peptides of the other waxy preproteins, but resembles the hydropathic distributions of these peptides. Alignment of the amino acid sequences of the four mature starch synthases with the Escherichia coli glgA gene product revealed the presence of at least three conserved boxes; there is no homology with previously proposed starch-binding domains of other enzymes involved in starch metabolism. We report the use of chimeric constructs with wild-type and amf sequences to localize, via complementation experiments, the region of the amf allele in which the mutation resides. Direct sequencing of polymerase chain reaction products confirmed that the amf mutation is a deletion of a single AT basepair in the region coding for the transit peptide.(ABSTRACT TRUNCATED AT 250 WORDS)
Structural Determinants of the Insulin Receptor-related Receptor Activation by Alkali*
Deyev, Igor E.; Mitrofanova, Alla V.; Zhevlenev, Egor S.; Radionov, Nikita; Berchatova, Anastasiya A.; Popova, Nadezhda V.; Serova, Oxana V.; Petrenko, Alexander G.
2013-01-01
IRR is a member of the insulin receptor (IR) family that does not have any known agonist of a peptide nature but can be activated by mildly alkaline medium and was thus proposed to function as an extracellular pH sensor. IRR activation by alkali is defined by its N-terminal extracellular region. To reveal key structural elements involved in alkali sensing, we developed an in vitro method to quantify activity of IRR and its mutants. Replacing the IRR L1C domains (residues 1–333) or L2 domain (residues 334–462) or both with the homologous fragments of IR reduced the receptor activity to 35, 64, and 7% percent, respectively. Within L1C domains, five amino acid residues (Leu-135, Gly-188, Arg-244, and vicinal His-318 and Lys-319) were identified as IRR-specific by species conservation analysis of the IR family. These residues are exposed and located in junctions between secondary structure folds. The quintuple mutation of these residues to alanine had the same negative effect as the entire L1C domain replacement, whereas none of the single mutations was as effective. Separate mutations of these five residues and of L2 produced partial negative effects that were additive. The pH dependence of cell-expressed mutants (L1C and L2 swap, L2 plus triple LGR mutation, and L2 plus quintuple LGRHK mutation) was shifted toward alkalinity and, in contrast with IRR, did not show significant positive cooperativity. Our data suggest that IRR activation is not based on a single residue deprotonation in the IRR ectodomain but rather involves synergistic conformational changes at multiple points. PMID:24121506
Zhang, Zhifang; Zhu, Zengrong; Ma, Zhonghua; Li, Hongye
2009-05-31
Sixty-five isolates of Pencillium digitatum (Pers.:Fr) Sacc., a causative agent of green mold of postharvest citrus, were collected from various locations in Zhejiang province in 2000, 2005 and 2006, and assayed for their sensitivity to the quinone outside inhibitor (QoI) fungicide azoxystrobin. The results showed that azoxystrobin is highly effective against P. digitatum, in vitro, and that the effective concentrations resulting in reduction of conidial germination and mycelial growth by 50% (EC(50)) averaged 0.0426 microg/ml and 0.0250 microg/ml, respectively. Twenty-eight azoxystrobin-resistant mutants were obtained by UV mutagenesis and subsequent selection on medium amended with azoxystrobin (12 microg/ml) and salicylhydroxamic acid. All obtained mutants were highly resistant to azoxystrobin and their resistance was genetically stable. Analysis of the cytochrome b gene structure of P. digitatum (Pdcyt b) showed the absence of type I intron in the first hot spot region of mutation. These results indicate that P. digitatum is likely to evolve high levels of resistance to azoxystrobin after its application. Analysis of partial sequences of Pdcyt b from both the azoxystrobin-sensitive parental isolate and the 28 azoxystrobin-resistant mutants revealed that a point mutation, which leads to the substitution at code 143 of alanine for glycine (G143A), is responsible for the observed azoxystrobin resistance in the laboratory mutants. Based on this point mutation, two allele-specific PCR primers were designed and optimized for allele-specific PCR detection of azoxystrobin-resistant isolates of P. digitatum.
Transformation of Saccharomyces cerevisiae with UV-irradiated single-stranded plasmid.
Zgaga, Z
1991-08-01
UV-irradiated single-stranded replicative plasmids were used to transform different yeast strains. The low doses of UV used in this study (10-75 J/m2) caused a significant decrease in the transforming efficiency of plasmid DNA in the Rad+ strain, while they had no effect on transformation with double-stranded plasmids of comparable size. Neither the rev3 mutation, nor the rad18 or rad52 mutations influenced the efficiency of transformation with irradiated single-stranded plasmid. However, it was found to be decreased in the double rev3 rad52 mutant. Extracellular irradiation of plasmid that contains both URA3 and LEU2 genes (psLU) gave rise to up to 5% Leu- transformants among selected Ura+ ones in the repair-proficient strain. Induction of Leu- transformants was dose-dependent and only partially depressed in the rev3 mutant. These results suggest that both mutagenic and recombinational repair processes operate on UV-damaged single-stranded DNA in yeast.
Raman, Suresh B.; Nguyen, M. Hong; Cheng, Shaoji; Badrane, Hassan; Iczkowski, Kenneth A.; Wegener, Marilyn; Gaffen, Sarah L.; Mitchell, Aaron P.
2013-01-01
Candida albicans IRS4 encodes a protein that regulates phosphatidylinositol-(4,5)-bisphosphate, which was shown to contribute to hematogenously disseminated candidiasis (DC) after several days in the standard mouse model. Our objective was to more accurately define the temporal contributions of IRS4 to pathogenesis. During competition assays in vitro, an irs4-null (Δirs4) mutant exhibited wild-type fitness. In DC experiments, mice were infected intravenously with the Δirs4 mutant, strain CAI-12 (1 × 105 CFU), or a mixture of the strains (0.5 × 105 CFU each). In single-strain infections, quantitative PCR revealed reduced Δirs4 mutant burdens within kidneys at days 1, 4, and 7 but not 6 h. In competitive infections, the Δirs4 mutant was outcompeted by CAI-12 in each mouse at ≥6 h (competitive indices, P ≤ 0.0001). At 4 and 7 days, the Δirs4 mutant burdens during competitive infections were significantly lower than those during single-strain infections (P = 0.01 and P < 0.001, respectively), suggesting increased susceptibility to inflammatory responses. Phagocytic infiltration of kidneys in response to CAI-12 or competitive infections was significantly greater than that in response to Δirs4 mutant infection at days 1 and 4 (P < 0.001), and the Δirs4 mutant was more susceptible to phagocytosis and killing by human polymorphonuclear cells (P = 0.01 and P = 0.006, respectively) and mouse macrophages in vitro (P = 0.04 and P = 0.01, respectively). Therefore, IRS4 contributes to tissue invasion at early stages of DC and mediates resistance to phagocytosis as DC progresses. Microarray analysis revealed remarkably similar gene expression by the Δirs4 mutant and reference strain CAI-12 within blood, suggesting that IRS4 is not significantly involved in the hematogenous stage of disease. A competitive DC model detects attenuated virulence that is not evident with the standard model. PMID:23429534
K-Ras mutant fraction in A/J mouse lung increases as a function of benzo[a]pyrene dose
K-Ras mutant fraction (MF) was measured to examine the default assumption of low dose linearity in the benzo[a]pyrene (B[a]P) mutational response. Groups of ten male A/J mice (7-9 weeks-old) received a single i.p. injection of 0, 0.05, 0.5, 5, or 50 mg/kg B[a]P, and were sacrifi...
Dankner, Matthew; Lajoie, Mathieu; Moldoveanu, Dan; Nguyen, Tan-Trieu; Savage, Paul; Rajkumar, Shivshankari; Huang, Xiu; Lvova, Maria; Protopopov, Alexei; Vuzman, Dana; Hogg, David; Park, Morag; Guiot, Marie-Christine; Petrecca, Kevin; Mihalcioiu, Catalin; Watson, Ian R; Siegel, Peter M; Rose, April A N
2018-06-14
Dual MAPK pathway inhibition (dMAPKi) with BRAF and MEK inhibitors improves survival in BRAF V600E/K mutant melanoma, but the efficacy of dMAPKi in non-V600 BRAF mutant tumors is poorly understood. We sought to characterize the responsiveness of class II (enhanced kinase activity, dimerization dependent) BRAF mutant melanoma to dMAPKi. Tumors from patients with BRAF WT, V600E (class I) and L597S (class II) metastatic melanoma were used to generate patient-derived-xenografts (PDX). We assembled a panel of melanoma cell lines with class IIa (activation segment) or IIb (p-loop) mutations and compared these to wild-type or V600E/K BRAF mutant cells. Cell lines and PDXs were treated with BRAFi (vemurafenib, dabrafenib, encorafenib, LY3009120), MEKi (cobimetinib, trametinib, binimetinib) or the combination. We identified two patients with BRAF L597S metastatic melanoma who were treated with dMAPKi. BRAFi impaired MAPK signalling and cell growth in class I and II BRAF mutant cells. dMAPKi was more effective than either single MAPKi at inhibiting cell growth in all class II BRAF mutant cells tested. dMAPKi caused tumor regression in two melanoma PDXs with class II BRAF mutations, and prolonged survival of mice with class II BRAF mutant melanoma brain metastases. Two patients with BRAF L597S mutant melanoma clinically responded to dMAPKi. Class II BRAF mutant melanoma are growth inhibited by dMAPKi. Responses to dMAPKi have been observed in two patients with class II BRAF mutant melanoma. This data provides rationale for clinical investigation of dMAPKi in patients with class II BRAF mutant metastatic melanoma. Copyright ©2018, American Association for Cancer Research.
Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M
2016-03-01
Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.
Watanabe, Mutsumi; Mochida, Keiichi; Kato, Tomohiko; Tabata, Satoshi; Yoshimoto, Naoko; Noji, Masaaki; Saito, Kazuki
2008-01-01
Ser acetyltransferase (SERAT), which catalyzes O-acetyl-Ser (OAS) formation, plays a key role in sulfur assimilation and Cys synthesis. Despite several studies on SERATs from various plant species, the in vivo function of multiple SERAT genes in plant cells remains unaddressed. Comparative genomics studies with the five genes of the SERAT gene family in Arabidopsis thaliana indicated that all three Arabidopsis SERAT subfamilies are conserved across five plant species with available genome sequences. Single and multiple knockout mutants of all Arabidopsis SERAT gene family members were analyzed. All five quadruple mutants with a single gene survived, with three mutants showing dwarfism. However, the quintuple mutant lacking all SERAT genes was embryo-lethal. Thus, all five isoforms show functional redundancy in vivo. The developmental and compartment-specific roles of each SERAT isoform were also demonstrated. Mitochondrial SERAT2;2 plays a predominant role in cellular OAS formation, while plastidic SERAT2;1 contributes less to OAS formation and subsequent Cys synthesis. Three cytosolic isoforms, SERAT1;1, SERAT3;1, and SERAT3;2, may play a major role during seed development. Thus, the evolutionally conserved SERAT gene family is essential in cellular processes, and the substrates and products of SERAT must be exchangeable between the cytosol and organelles. PMID:18776059
Sinha, Siddharth; Verma, Sharad; Singh, Aditi; Somvanshi, Pallavi; Grover, Abhinav
2018-01-01
Spinocerebellar degeneration, termed as ataxia is a neurological disorder of central nervous system, characterized by limb in-coordination and a progressive gait. The patient also demonstrates specific symptoms of muscle weakness, slurring of speech, and decreased vibration senses. Expansion of polyglutamine trinucleotide (CAG) within ATXN2 gene with 35 or more repeats, results in spinocerebellar ataxia type-2. Protein ataxin-2 coded by ATXN2 gene has been reported to have a crucial role in translation of the genetic information through sequestering the histone acetyl transferases (HAT) resulting in a state of hypo-acetylation. In the present study, we have evaluated the outcome for 122 non synonymous single nucleotide polymorphisms (nsSNPs) reported within ATXN2 gene through computational tools such as SIFT, PolyPhen 2.0, PANTHER, I-mutant 2.0, Phd-SNP, Pmut, MutPred. The apo and mutant (L305V and Q339L) form of structures for the ataxin-2 protein were modeled for gaining insights toward 3D spatial arrangement. Further, molecular dynamics simulations and structural analysis were performed to observe the brunt of disease associated nsSNPs toward the strength and secondary properties of ataxin-2 protein structure. Our results showed that, L305V is a highly deleterious and disease causing point substitution. Analysis based on RMSD, RMSF, Rg, SASA, number of hydrogen bonds (NH bonds), covariance matrix trace, projection analysis for eigen vector demonstrated a significant instability and conformation along with rise in mutant flexibility values in comparison to the apo form of ataxin-2 protein. The study provides a blue print of computational methodologies to examine the ataxin-blend SNPs. J. Cell. Biochem. 119: 499-510, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Mullon, Charles; Lehmann, Laurent
2017-08-01
Human evolution depends on the co-evolution between genetically determined behaviors and socially transmitted information. Although vertical transmission of cultural information from parent to offspring is common in hominins, its effects on cumulative cultural evolution are not fully understood. Here, we investigate gene-culture co-evolution in a family-structured population by studying the invasion fitness of a mutant allele that influences a deterministic level of cultural information (e.g., amount of knowledge or skill) to which diploid carriers of the mutant are exposed in subsequent generations. We show that the selection gradient on such a mutant, and the concomitant level of cultural information it generates, can be evaluated analytically under the assumption that the cultural dynamic has a single attractor point, thereby making gene-culture co-evolution in family-structured populations with multigenerational effects mathematically tractable. We apply our result to study how genetically determined phenotypes of individual and social learning co-evolve with the level of adaptive information they generate under vertical transmission. We find that vertical transmission increases adaptive information due to kin selection effects, but when information is transmitted as efficiently between family members as between unrelated individuals, this increase is moderate in diploids. By contrast, we show that the way resource allocation into learning trades off with allocation into reproduction (the "learning-reproduction trade-off") significantly influences levels of adaptive information. We also show that vertical transmission prevents evolutionary branching and may therefore play a qualitative role in gene-culture co-evolutionary dynamics. More generally, our analysis of selection suggests that vertical transmission can significantly increase levels of adaptive information under the biologically plausible condition that information transmission between relatives is more efficient than between unrelated individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
SIRT1 Gene Polymorphisms Affect the Protein Expression in Cardiovascular Diseases
Kilic, Ulkan; Gok, Ozlem; Bacaksiz, Ahmet; Izmirli, Muzeyyen; Elibol-Can, Birsen; Uysal, Omer
2014-01-01
Cardiovascular disease (CVD), the leading cause of death worldwide, is related to gene-environment interactions due to epigenetic factors. SIRT1 protein and its downstream pathways are critical for both normal homeostasis and protection from CVD-induced defects. The aim of this study was to investigate the association between SIRT1 single nucleotide polymorphisms (SNPs) (rs7895833 A>G in the promoter region, rs7069102 C>G in intron 4 and rs2273773 C>T in exon 5 silent mutation) and SIRT1 and eNOS (endothelial nitric oxide synthase) protein expression as well as total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) in CVD patients as compared to controls. The frequencies of mutant genotypes and alleles for rs7069102 and rs2273773 were significantly higher in patients with CVD compared to control group. The risk for CVD was increased by 2.4 times for rs7069102 and 1.9 times for rs2273773 in carriers of mutant allele compared with carriers of wild-type allele pointing the protective role of C allele for both SNPs against CVD. For rs7895833, there was no significant difference in genotype and allele distributions between groups. SIRT1 protein, TAS, TOS and OSI levels significantly increased in patients as compared to control group. In contrast, level of eNOS protein was considerably low in the CVD patients. An increase in the SIRT1 expression in the CVD patients carrying mutant genotype for rs7069102 and heterozygote genotype for all three SNPs was observed. This is the first study reporting an association between SIRT1 gene polymorphisms and the levels of SIRT1 and eNOS expressions as well as TAS, TOS and OSI. PMID:24587358
Winn-Deen
1998-12-01
Background: Currently analysis of point mutations can be done by allele-specific polymerase chain reaction (PCR) followed by gel analysis or by gene-specific PCR followed by hybridization with an allele-specific probe. Both of these mutation detection methods require post-PCR laboratory time and run the risk of contaminating subsequent experiments with the PCR product liberated during the detection step. The author has combined the PCR amplification and detection steps into a single procedure suitable for closed-tube analysis. Methods and Results: Allele-specific PCR primers were designed as Sunrise energy-transfer primers and contained a 3' terminal mismatch to distinguish between normal and mutant DNA. Cloned normal (W64) and mutant (R64) templates of the beta3-adrenergic receptor gene were tested to verify amplification specificity and yield. A no-target negative control was also run with each reaction. After PCR, each reaction was tested for fluorescence yield by measuring fluorescence on a spectrofluorimeter or fluorescent microtitreplate reader. The cloned controls and 24 patient samples were tested for the W64R mutation by two methods. The direct fluorescence results with the Sunrise allele-specific PCR method gave comparable genotypes to those obtained with the PCR/ restriction digest/gel electrophoresis control method. No PCR artifacts were observed in the negative controls or in the PCR reactions run with the mismatched target. Conclusions: The results of this pilot study indicate good PCR product and fluorescence yield from allele-specific energy-transfer labeled primers, and the capability of distinguishing between normal and mutant alleles based on fluorescence alone, without the need for restriction digestion, gel electrophoresis, or hybridization with an allele-specific probe.
Lamichhane-Khadka, Reena; Benoit, Stéphane L.; Miller-Parks, Erica F.
2014-01-01
Salmonella enterica serovar Typhimurium utilizes molecular hydrogen as a substrate in various respiratory pathways, via H2-uptake enzymes termed Hya, Hyb, and Hyd. A different hydrogenase, the hydrogen-evolving Hyc enzyme, removes excess reductant during fermentative growth. Virulence phenotypes conferred by mutations in hyc genes, either alone or in combination with mutations in the H2-uptake enzyme genes, are addressed. Anaerobically grown ΔhycB or ΔhycC single-deletion strains were more sensitive to acid than the wild-type strain, but the Δhyc strains were like the virulent parent strain with respect to both mouse morbidity and mortality and in organ burden numbers. Even fecal-recovery numbers for both mutant strains at several time points prior to the animals succumbing to salmonellosis were like those seen with the parent. Neither hydrogen uptake nor evolution of the gas was detected in a hydrogenase quadruple-mutant strain containing deletions in the hya, hyb, hyd, and hyc genes. As previously described, a strain lacking all H2-uptake ability was severely attenuated in its virulence characteristics, and the quadruple-mutant strain had the same (greatly attenuated) phenotype. While H2 levels were greatly reduced in ceca of mice treated with antibiotics, both the ΔhycB and ΔhycC strains were still like the parent in their ability to cause typhoid salmonellosis. It seems that the level of H2 produced by the pathogen (through formate hydrogen lyase [FHL] and Hyc) is insignificant in terms of providing respiratory reductant to facilitate either organ colonization or contributions to gut growth leading to pathogenesis. PMID:25368112
Neural/Bayes network predictor for inheritable cardiac disease pathogenicity and phenotype.
Burghardt, Thomas P; Ajtai, Katalin
2018-04-11
The cardiac muscle sarcomere contains multiple proteins contributing to contraction energy transduction and its regulation during a heartbeat. Inheritable heart disease mutants affect most of them but none more frequently than the ventricular myosin motor and cardiac myosin binding protein c (mybpc3). These co-localizing proteins have mybpc3 playing a regulatory role to the energy transducing motor. Residue substitution and functional domain assignment of each mutation in the protein sequence decides, under the direction of a sensible disease model, phenotype and pathogenicity. The unknown model mechanism is decided here using a method combing neural and Bayes networks. Missense single nucleotide polymorphisms (SNPs) are clues for the disease mechanism summarized in an extensive database collecting mutant sequence location and residue substitution as independent variables that imply the dependent disease phenotype and pathogenicity characteristics in 4 dimensional data points (4ddps). The SNP database contains entries with the majority having one or both dependent data entries unfulfilled. A neural network relating causes (mutant residue location and substitution) and effects (phenotype and pathogenicity) is trained, validated, and optimized using fulfilled 4ddps. It then predicts unfulfilled 4ddps providing the implicit disease model. A discrete Bayes network interprets fulfilled and predicted 4ddps with conditional probabilities for phenotype and pathogenicity given mutation location and residue substitution thus relating the neural network implicit model to explicit features of the motor and mybpc3 sequence and structural domains. Neural/Bayes network forecasting automates disease mechanism modeling by leveraging the world wide human missense SNP database that is in place and expanding. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hall, Rebecca A.; Bates, Steven; Lenardon, Megan D.; MacCallum, Donna M.; Wagener, Jeanette; Lowman, Douglas W.; Kruppa, Michael D.; Williams, David L.; Odds, Frank C.; Brown, Alistair J. P.; Gow, Neil A. R.
2013-01-01
The fungal cell wall is the first point of interaction between an invading fungal pathogen and the host immune system. The outer layer of the cell wall is comprised of GPI anchored proteins, which are post-translationally modified by both N- and O-linked glycans. These glycans are important pathogen associated molecular patterns (PAMPs) recognised by the innate immune system. Glycan synthesis is mediated by a series of glycosyl transferases, located in the endoplasmic reticulum and Golgi apparatus. Mnn2 is responsible for the addition of the initial α1,2-mannose residue onto the α1,6-mannose backbone, forming the N-mannan outer chain branches. In Candida albicans, the MNN2 gene family is comprised of six members (MNN2, MNN21, MNN22, MNN23, MNN24 and MNN26). Using a series of single, double, triple, quintuple and sextuple mutants, we show, for the first time, that addition of α1,2-mannose is required for stabilisation of the α1,6-mannose backbone and hence regulates mannan fibril length. Sequential deletion of members of the MNN2 gene family resulted in the synthesis of lower molecular weight, less complex and more uniform N-glycans, with the sextuple mutant displaying only un-substituted α1,6-mannose. TEM images confirmed that the sextuple mutant was completely devoid of the outer mannan fibril layer, while deletion of two MNN2 orthologues resulted in short mannan fibrils. These changes in cell wall architecture correlated with decreased proinflammatory cytokine induction from monocytes and a decrease in fungal virulence in two animal models. Therefore, α1,2-mannose of N-mannan is important for both immune recognition and virulence of C. albicans. PMID:23633946
Harris, S L; Elliott, D A; Blake, M C; Must, L M; Messenger, M; Orndorff, P E
1990-01-01
The product of the pilE (also called fimH) gene is a minor component of type 1 pili in Escherichia coli. Mutants that have insertions in the pilE gene are fully piliated but unable to bind to and agglutinate guinea pig erythrocytes, a characteristic of wild-type type 1 piliated E. coli. In this paper we describe the isolation of 48 mutants with point lesions that map to the pilE gene. Such mutants were isolated by using mutT mutagenesis and an enrichment procedure devised to favor the growth of individuals that could form a pellicle in static broth containing alpha-methylmannoside, an inhibitor of erythrocyte binding and pellicle formation. Results indicated that the enrichment favored mutants expressing pilE gene products that were defective in mediating erythrocyte binding. Characterization of 12 of the mutants in greater detail revealed that certain lesions affected pilus number and length. In addition, a mutant that was temperature sensitive for erythrocyte binding was isolated and used to provide evidence that pellicle formation relies on the intercellular interaction of pilE gene products. Our results suggest a molecular explanation for the old and paradoxical observations connecting pellicle formation and erythrocyte agglutination by type 1 piliated E. coli. Images PMID:1977736
Riber, Willi; Müller, Jana T.; Visser, Eric J.W.; Sasidharan, Rashmi; Voesenek, Laurentius A.C.J.; Mustroph, Angelika
2015-01-01
Plants respond to reductions in internal oxygen concentrations with adaptive mechanisms (for example, modifications of metabolism to cope with reduced supply of ATP). These responses are, at the transcriptional level, mediated by the group VII Ethylene Response Factor transcription factors, which have stability that is regulated by the N-end rule pathway of protein degradation. N-end rule pathway mutants are characterized by a constitutive expression of hypoxia response genes and abscisic acid hypersensitivity. Here, we identify a novel proteolysis6 (prt6) mutant allele, named greening after extended darkness1 (ged1), which was previously discovered in a screen for genomes uncoupled-like mutants and shows the ability to withstand long periods of darkness at the seedling stage. Interestingly, this ethyl methanesulfonate-derived mutant shows unusual chromosomal rearrangement instead of a point mutation. Furthermore, the sensitivity of N-end rule pathway mutants ged1 and prt6-1 to submergence was studied in more detail to understand previously contradicting experiments on this topic. Finally, it was shown that mutants for the N-end rule pathway are generally more tolerant to starvation conditions, such as prolonged darkness or submergence, which was partially associated with carbohydrate conservation. PMID:25667318
Stephan, Aaron B.; Schroeder, Julian I.
2016-01-01
Starch metabolism is involved in stomatal movement regulation. However, it remains unknown whether starch-deficient mutants affect CO2-induced stomatal closing and whether starch biosynthesis in guard cells and/or mesophyll cells is rate limiting for high CO2-induced stomatal closing. Stomatal responses to [CO2] shifts and CO2 assimilation rates were compared in Arabidopsis (Arabidopsis thaliana) mutants that were either starch deficient in all plant tissues (ADP-Glc-pyrophosphorylase [ADGase]) or retain starch accumulation in guard cells but are starch deficient in mesophyll cells (plastidial phosphoglucose isomerase [pPGI]). ADGase mutants exhibited impaired CO2-induced stomatal closure, but pPGI mutants did not, showing that starch biosynthesis in guard cells but not mesophyll functions in CO2-induced stomatal closing. Nevertheless, starch-deficient ADGase mutant alleles exhibited partial CO2 responses, pointing toward a starch biosynthesis-independent component of the response that is likely mediated by anion channels. Furthermore, whole-leaf CO2 assimilation rates of both ADGase and pPGI mutants were lower upon shifts to high [CO2], but only ADGase mutants caused impairments in CO2-induced stomatal closing. These genetic analyses determine the roles of starch biosynthesis for high CO2-induced stomatal closing. PMID:27208296
Barros, Jessica A S; Cavalcanti, João Henrique F; Medeiros, David B; Nunes-Nesi, Adriano; Avin-Wittenberg, Tamar; Fernie, Alisdair R; Araújo, Wagner L
2017-11-02
Autophagy is a highly conserved cellular mechanism in eukaryotes allowing the degradation of cell constituents. It is of crucial significance in both cellular homeostasis and nutrient recycling. During energy limited conditions plant cells can metabolize alternative respiratory substrates, such as amino acids, providing electrons to the mitochondrial metabolism via the tricarboxylic acid (TCA) cycle or electron transfer flavoprotein/ electron transfer flavoprotein ubiquinone oxidoreductase (ETF/ETFQO) system. Our recent study reveals the importance of autophagy in the supply of amino acids to provide energy through alternative pathways of respiration during carbon starvation. This fact apart, autophagy seems to have more generalized effects related not only to amino acid catabolism but also to metabolism in general. By further comparing the metabolic data obtained with atg mutants with those of mutants involved in the alternative pathways of respiration, we observed clear differences between these mutants, pointing out additional effects of the autophagy deficiency on metabolism of Arabidopsis leaves. Collectively, our data point to an interdependence between mitochondrial metabolism and autophagy and suggest an exquisite regulation of primary metabolism under low energetic conditions.
Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.
2013-01-22
We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1more » surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.« less
Nakamura, Yuki; Umeki, Nobuhisa; Abe, Mitsuhiro; Sako, Yasushi
2017-10-26
Noonan syndrome (NS) is a congenital hereditary disorder associated with developmental and cardiac defects. Some patients with NS carry mutations in SOS, a guanine nucleotide exchange factor (GEF) for the small GTPase RAS. NS mutations have been identified not only in the GEF domain, but also in various domains of SOS, suggesting that multiple mechanisms disrupt SOS function. In this study, we examined three NS mutations in different domains of SOS to clarify the abnormality in its translocation to the plasma membrane, where SOS activates RAS. The association and dissociation kinetics between SOS tagged with a fluorescent protein and the living cell surface were observed in single molecules. All three mutants showed increased affinity for the plasma membrane, inducing excessive RAS signalling. However, the mechanisms by which their affinity was increased were specific to each mutant. Conformational disorder in the resting state, increased probability of a conformational change on the plasma membrane, and an increased association rate constant with the membrane receptor are the suggested mechanisms. These different properties cause the specific phenotypes of the mutants, which should be rescuable with different therapeutic strategies. Therefore, single-molecule kinetic analyses of living cells are useful for the pathological analysis of genetic diseases.
Evidence for an intermediate conformational state of LacY.
Jiang, Xiaoxu; Guan, Lan; Zhou, Yonggang; Hong, Wen-Xu; Zhang, Qinghai; Kaback, H Ronald
2012-03-20
LacY mutant Cys154 → Gly exhibits a periplasmic-closed crystal structure identical to the WT, but is periplasmic-open in the membrane. The mutant hardly catalyzes transport, but binds galactosides from either side of the membrane with the same affinity and is resistant to site-directed proteolysis relative to the pseudo-WT. Site-directed alkylation was also applied to 11 single-Cys mutants in Cys154 → Gly LacY in right-side-out membrane vesicles or after solubilization and purification in dodecyl-β-D-maltopyranoside (DDM). Unlike the pseudo-WT, Cys replacements on the periplasmic side of the Cys154 → Gly mutant label rapidly in the membrane without sugar, but labeling decreases markedly after the mutant proteins are purified. Thus, Cys154 → Gly LacY likely favors a higher-energy intermediate periplasmic-open conformation in situ, but collapses to a lower-energy periplasmic-closed conformation in DDM after purification. Notably, branched-chain or neopentyl glycol maltoside detergents stabilize Cys154 → Gly LacY in the membrane-embedded form.
Active site-directed double mutants of dihydrofolate reductase.
Ercikan-Abali, E A; Mineishi, S; Tong, Y; Nakahara, S; Waltham, M C; Banerjee, D; Chen, W; Sadelain, M; Bertino, J R
1996-09-15
Variants of dihydrofolate reductase (DHFR), which confer resistance to antifolates, are used as dominant selectable markers in vitro and in vivo and may be useful in the context of gene therapy. To identify improved mutant human DHFRs with increased catalytic efficiency and decreased binding to methotrexate, we constructed by site-directed mutagenesis four variants with substitutions at both Leu22 and Phe31 (i.e., Phe22-Ser31, Tyr22-Ser31, Phe22-Gly31, and Tyr22-Gly31). Antifolate resistance has been observed previously when individual changes are made at these active-site residues. Substrate and antifolate binding properties of these "double" mutants revealed that each have greatly diminished affinity for antifolates (> 10,000-fold) yet only slightly reduced substrate affinity. Comparison of in vitro measured properties with those of single-residue variants indicates that double mutants are indeed significantly superior. This was verified for one of the double mutants that provided high-level methotrexate resistance following retrovirus-mediated gene transfer in NIH3T3 cells.
Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas
2014-09-08
Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. Copyright © 2014 Elsevier Inc. All rights reserved.
Yasuda, Kayo; Hartman, Philip S; Ishii, Takamasa; Suda, Hitoshi; Akatsuka, Akira; Shoyama, Tetsuji; Miyazawa, Masaki; Ishii, Naoaki
2011-01-21
Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development. Copyright © 2010 Elsevier Inc. All rights reserved.
SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability.
Scott, Katherine A; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E; Stuart, David I; Charleston, Bryan; Maree, Francois F
2017-05-15
Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses. Copyright © 2017 American Society for Microbiology.
SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability
Scott, Katherine A.; Kotecha, Abhay; Seago, Julian; Ren, Jingshan; Fry, Elizabeth E.; Stuart, David I.; Charleston, Bryan
2017-01-01
ABSTRACT Foot-and-mouth disease virus (FMDV), particularly strains of the O and SAT serotypes, is notoriously unstable. Consequently, vaccines derived from heat-labile SAT viruses have been linked to the induction of immunity with a poor duration and hence require more frequent vaccinations to ensure protection. In silico calculations predicted residue substitutions that would increase interactions at the interpentamer interface, supporting increased stability. We assessed the stability of the 18 recombinant mutant viruses in regard to their growth kinetics, antigenicity, plaque morphology, genetic stability, and temperature, ionic, and pH stability by using Thermofluor and inactivation assays in order to evaluate potential SAT2 vaccine candidates with improved stability. The most stable mutant for temperature and pH stability was the S2093Y single mutant, while other promising mutants were the E3198A, L2094V, and S2093H single mutants and the F2062Y-H2087M-H3143V triple mutant. Although the S2093Y mutant had the greatest stability, it exhibited smaller plaques, a reduced growth rate, a change in monoclonal antibody footprint, and poor genetic stability properties compared to those of the wild-type virus. However, these factors affecting production can be overcome. The addition of 1 M NaCl was found to further increase the stability of the SAT2 panel of viruses. The S2093Y and S2093H mutants were selected for future use in stabilizing SAT2 vaccines. IMPORTANCE Foot-and-mouth disease virus (FMDV) causes a highly contagious acute vesicular disease in cloven-hoofed livestock and wildlife. The control of the disease by vaccination is essential, especially at livestock-wildlife interfaces. The instability of some serotypes, such as SAT2, affects the quality of vaccines and therefore the duration of immunity. We have shown that we can improve the stability of SAT2 viruses by mutating residues at the capsid interface through predictive modeling. This is an important finding for the potential use of such mutants in improving the stability of SAT2 vaccines in countries where FMD is endemic, which rely heavily on the maintenance of the cold chain, with potential improvement to the duration of immune responses. PMID:28298597
van Lier, Christina J; Tiner, Bethany L; Chauhan, Sadhana; Motin, Vladimir L; Fitts, Eric C; Huante, Matthew B; Endsley, Janice J; Ponnusamy, Duraisamy; Sha, Jian; Chopra, Ashok K
2015-03-01
We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsong, Tian Yow; Su, Zheng-Ding
1999-10-01
Cis/trans isomerization of proline residues is known to exhibit high activation energies. These kinetic barriers often dominate the energy landscape of protein folding. There are 6 proline residues (at positions 11, 31, 42, 47, 56 and 117) in staphylococcal nuclease (SNase) [EC 3.1.31.1]. Stopped-flow CD222nm measuring the evolution of the secondary structure of protein has detected 5 kinetic barriers in SNase folding (ΔG≠ for τfr<15, τf1 16.9, τf2 18.5, τf3 19.5, and τfs 21.8 kcal/mol) and 3 kinetic barriers in unfolding (ΔG≠ for τur<15, τu1 17.4, τus 21.6 kcal/mol). To investigate systematically how individual proline residues and 6 proline residues in toto can shape the folding funnel we have expediently constructed 7 proline mutants for study. They are 6 single-proline-substituted mutants (P11A, P31A, P42A, P47A, P56A and P117A) and 1 proline-free mutant (PallA). Study of equilibrium folding/unfolding and stopped-flow kinetics of the wildtype and the 7 mutants of SNase have allowed us to identify sources of 3 main kinetic barriers in the SNase folding. The highest barrier (ΔG≠=21.8 kcal) belongs to the cis/trans isomerization of Pro117. The next barrier (ΔG≠=19.5 kcal) involves synergetic effects of proline residues which limits the rate of folding of the oligonucleotide binding (OB) domain in all 7 proline-containing SNase. For the proline-free mutant (PallA) the OB domain folds rapidly. Furthermore, we have found that the equilibrium folding/unfolding properties of these proline mutants are remarkably similar to that of the wildtype despite their startlingly different folding/unfolding kinetics. These results lead us to conclude that while free energy of folding (ΔGF=-4.5 kcal/mol) provides the driving force, it is the activation energy that forms a conduit or shapes a kinetic funnel for SNase folding. The landscape for SNase folding is extremely rugged. Data support our previously proposed Least Activation Path (LAP) model for protein folding [Su, Z.D. et al. Proc. Natl. Acad. Sci. USA 93, 2539-2544 (1996)]. The LAP concept depicts protein folding as the movement of the unfolded population of protein along deep valleys of the energy landscape to reach the free energy minimum of the native state. An analogy for the LAP model would be flow of water from a highland over the rugged surface of a landscape to reach the lowest point of the ground. The fine features of the landscape will dictate kinetics and pathways of the flow.
Liu, Xiao-Hong; Ning, Guo-Ao; Huang, Lu-Yao; Zhao, Ya-Hui; Dong, Bo; Lu, Jian-Ping; Lin, Fu-Cheng
2016-01-01
Calpains are ubiquitous and well-conserved proteins that belong to the calcium-dependent, non-lysosomal cysteine protease family. In this study, 8 putative calpains were identified using Pfam domain analysis and BlastP searches in M. oryzae. Three single gene deletion mutants (ΔMocapn7, ΔMocapn9 and ΔMocapn14) and two double gene deletion mutants (ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7) were obtained using the high-throughput gene knockout system. The calpain disruption mutants showed defects in colony characteristics, conidiation, sexual reproduction and cell wall integrity. The mycelia of the ΔMocapn7, ΔMocapn4ΔMocapn7 and ΔMocapn9ΔMocapn7 mutants showed reduced pathogenicity on rice and barley. PMID:27502542
Woodcock, M Ryan; Vaughn-Wolfe, Jennifer; Elias, Alexandra; Kump, D Kevin; Kendall, Katharina Denise; Timoshevskaya, Nataliya; Timoshevskiy, Vladimir; Perry, Dustin W; Smith, Jeramiah J; Spiewak, Jessica E; Parichy, David M; Voss, S Randal
2017-01-31
The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning-candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyr a ) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyr a has a 142 bp deletion and similar engineered alleles recapitulated the albino phenotype. Finally, we show that historical introgression of tyr a significantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl.
Li, Yingmei; Pan, Wenying; Connolly, Ian D.; Reddy, Sunil; Nagpal, Seema
2017-01-01
Cerebral spinal fluid (CSF) from brain tumor patients contains tumor cellular and cell-free DNA (cfDNA), which provides a less-invasive and routinely accessible method to obtain tumor genomic information. In this report, we used droplet digital PCR to test mutant tumor DNA in CSF of a patient to monitor the treatment response of metastatic melanoma leptomeningeal disease (LMD). The primary melanoma was known to have a BRAFV600E mutation, and the patient was treated with whole brain radiotherapy and BRAF inhibitors. We collected 9 CSF samples over 6 months. The mutant cfDNA fraction gradually decreased from 53 % (time of diagnosis) to 0 (time of symptom alleviation) over the first 6 time points. Three months after clinical improvement, the patient returned with severe symptoms and the mutant cfDNA was again detected in CSF at high levels. The mutant DNA fraction corresponded well with the patient’s clinical response. We used whole exome sequencing to examine the mutation profiles of the LMD tumor DNA in CSF before therapeutic response and after disease relapse, and discovered a canonical cancer mutation PTENR130* at both time points. The cellular and cfDNA revealed similar mutation profiles, suggesting cfDNA is representative of LMD cells. This study demonstrates the potential of using cellular or cfDNA in CSF to monitor treatment response for LMD. PMID:26961773
Single-Cell Microfluidics to Study the Effects of Genome Deletion on Bacterial Growth Behavior.
Yuan, Xiaofei; Couto, Jillian M; Glidle, Andrew; Song, Yanqing; Sloan, William; Yin, Huabing
2017-12-15
By directly monitoring single cell growth in a microfluidic platform, we interrogated genome-deletion effects in Escherichia coli strains. We compared the growth dynamics of a wild type strain with a clean genome strain, and their derived mutants at the single-cell level. A decreased average growth rate and extended average lag time were found for the clean genome strain, compared to those of the wild type strain. Direct correlation between the growth rate and lag time of individual cells showed that the clean genome population was more heterogeneous. Cell culturability (the ratio of growing cells to the sum of growing and nongrowing cells) of the clean genome population was also lower. Interestingly, after the random mutations induced by a glucose starvation treatment, for the clean genome population mutants that had survived the competition of chemostat culture, each parameter markedly improved (i.e., the average growth rate and cell culturability increased, and the lag time and heterogeneity decreased). However, this effect was not seen in the wild type strain; the wild type mutants cultured in a chemostat retained a high diversity of growth phenotypes. These results suggest that quasi-essential genes that were deleted in the clean genome might be required to retain a diversity of growth characteristics at the individual cell level under environmental stress. These observations highlight that single-cell microfluidics can reveal subtle individual cellular responses, enabling in-depth understanding of the population.
The, Yu-Kai; Fernandes, Jacqueline; Popa, M. Oana; Alekov, Alexi K.; Timmer, Jens; Lerche, Holger
2006-01-01
Voltage-gated Na+ channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na+ channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na+ channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na+ channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na+ currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na+ and K+ channels. PMID:16513781
NASA Astrophysics Data System (ADS)
Ngo, Hoan T.; Gandra, Naveen; Fales, Andrew M.; Taylor, Steve M.; Vo-Dinh, Tuan
2017-02-01
Nucleic acid-based molecular diagnostics at the point-of-care (POC) and in resource-limited settings is still a challenge. We present a sensitive yet simple DNA detection method with single nucleotide polymorphism (SNP) identification capability. The detection scheme involves sandwich hybridization of magnetic beads conjugated with capture probes, target sequences, and ultrabright surface-enhanced Raman Scattering (SERS) nanorattles conjugated with reporter probes. Upon hybridization, the sandwich probes are concentrated at the detection focus controlled by a magnetic system for SERS measurements. The ultrabright SERS nanorattles, consisting of a core and a shell with resonance Raman reporters loaded in the gap space between the core and the shell, serve as SERS tags for ultrasensitive signal detection. Specific DNA sequences of the malaria parasite Plasmodium falciparum and dengue virus 1 (DENV1) were used as the model marker system. Detection limit of approximately 100 attomoles was achieved. Single nucleotide polymorphism (SNP) discrimination of wild type malaria DNA and mutant malaria DNA, which confers resistance to artemisinin drugs, was also demonstrated. The results demonstrate the molecular diagnostic potential of the nanorattle-based method to both detect and genotype infectious pathogens. The method's simplicity makes it a suitable candidate for molecular diagnosis at the POC and in resource-limited settings.