Sample records for single polypeptide restriction-modification

  1. Restriction/modification polypeptides, polynucleotides, and methods

    DOEpatents

    Westpheling, Janet; Chung, DaeHwan; Huddleston, Jennifer; Farkas, Joel A

    2015-02-24

    The present invention relates to the discovery of a novel restriction/modification system in Caldicellulosiruptor bescii. The discovered restriction enzyme is a HaeIII-like restriction enzyme that possesses a thermophilic activity profile. The restriction/modification system also includes a methyltransferase, M.CbeI, that methylates at least one cytosine residue in the CbeI recognition sequence to m.sup.4C. Thus, the invention provides, in various aspects, isolated CbeI or M.CbeI polypeptides, or biologically active fragments thereof; isolated polynucleotides that encode the CbeI or M.CbeI polypeptides or biologically active fragments thereof, including expression vectors that include such polynucleotide sequences; methods of digesting DNA using a CbeI polypeptide; methods of treating a DNA molecule using a M.CbeI polypeptide; and methods of transforming a Caldicellulosiruptor cell.

  2. Type II restriction modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Newby, Deborah T.; Lacey, Jeffrey A.

    2018-02-13

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  3. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2013-10-29

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  4. Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W

    2015-05-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  5. Type II restriction modification system methylation subunit of Alicyclobacillus acidocaldarius

    DOEpatents

    Lee, Brady D.; Newby, Deborah T.; Lacey, Jeffrey A.; Thompson, David N.; Thompson, Vicki S.; Apel, William A.; Roberto, Francisco F.; Reed, David W.

    2017-02-14

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.

  6. Translocation-coupled DNA cleavage by the Type ISP restriction-modification enzymes

    PubMed Central

    Chand, Mahesh Kumar; Nirwan, Neha; Diffin, Fiona M.; van Aelst, Kara; Kulkarni, Manasi; Pernstich, Christian; Szczelkun, Mark D.; Saikrishnan, Kayarat

    2015-01-01

    Endonucleolytic double-strand DNA break production requires separate strand cleavage events. Although catalytic mechanisms for simple dimeric endonucleases are available, there are many complex nuclease machines which are poorly understood in comparison. Here we studied the single polypeptide Type ISP restriction-modification (RM) enzymes, which cleave random DNA between distant target sites when two enzymes collide following convergent ATP-driven translocation. We report the 2.7 Angstroms resolution X-ray crystal structure of a Type ISP enzyme-DNA complex, revealing that both the helicase-like ATPase and nuclease are unexpectedly located upstream of the direction of translocation, inconsistent with simple nuclease domain-dimerization. Using single-molecule and biochemical techniques, we demonstrate that each ATPase remodels its DNA-protein complex and translocates along DNA without looping it, leading to a collision complex where the nuclease domains are distal. Sequencing of single cleavage events suggests a previously undescribed endonuclease model, where multiple, stochastic strand nicking events combine to produce DNA scission. PMID:26389736

  7. Nucleotide sequence of the gene determining plasmid-mediated citrate utilization.

    PubMed Central

    Ishiguro, N; Sato, G

    1985-01-01

    The citrate utilization determinant from transposon Tn3411 has been cloned and sequenced, and its polypeptide products have been characterized in minicell experiments. The nucleotide sequence was determined for a 2,047-base-pair BglII restriction endonuclease fragment that includes the citrate determinant. This region contains an open reading frame that would encode a 431-amino-acid very hydrophobic polypeptide and which is preceded by a reasonable ribosomal binding site. However, the single polypeptide found in minicell experiments had an apparent molecular weight of 35,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Images PMID:2999087

  8. Cloning of developmentally regulated flagellin genes from Caulobacter crescentus via immunoprecipitation of polyribosomes.

    PubMed Central

    Milhausen, M; Gill, P R; Parker, G; Agabian, N

    1982-01-01

    Immunoprecipitation of Caulobacter crescentus polyribosomes with antiflagellin antibody provided RNA for the synthesis of cDNA probes that were used to identify three specific EcoRI restriction fragments (6.8, 10, and 22 kilobases) in genomic digests of Caulobacter DNA. The RNA was present only in polyribosomes isolated from a time interval in the Caulobacter cell cycle that was coincident with flagellin polypeptide synthesis. The structural gene for Mr 27,500 flagellin polypeptide was assigned to a region of the 10-kilobase EcoRI restriction fragment by DNA sequence analysis. Analysis of mutants defective in motility further established a correlation between the Mr 27,500 flagellin gene and the flaE gene locus [Johnson, R. C. & Ely, B. (1979) J. Bacteriol. 137, 627-634]. The other EcoRI fragments that hybridize with the immunoprecipitated polyribosome-derived cDNA probe are also temporally regulated and have features that suggest they encode other polypeptides associated with the flagellum. Modifications were required to adapt the procedure of immunoprecipitation of polyribosomes for use with Caulobacter and should be applicable to the production of specific structural gene probes from other prokaryotic systems. Images PMID:6294658

  9. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    PubMed Central

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  10. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2] cycloaddition reactions and Staudinger modifications.

  11. Selective posttranslational modification of phage-displayed polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsao, Meng-Lin; Tian, Feng; Schultz, Peter

    The invention relates to posttranslational modification of phage-displayed polypeptides. These displayed polypeptides comprise at least one unnatural amino acid, e.g., an aryl-azide amino acid such as p-azido-L-phenylalanine, or an alkynyl-amino acid such as para-propargyloxyphenylalanine, which are incorporated into the phage-displayed fusion polypeptide at a selected position by using an in vivo orthogonal translation system comprising a suitable orthogonal aminoacyl-tRNA synthetase and a suitable orthogonal tRNA species. These unnatural amino acids advantageously provide targets for posttranslational modifications such as azide-alkyne [3+2]cycloaddition reactions and Staudinger modifications.

  12. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection

    NASA Astrophysics Data System (ADS)

    Andrew Mackay, J.; Chen, Mingnan; McDaniel, Jonathan R.; Liu, Wenge; Simnick, Andrew J.; Chilkoti, Ashutosh

    2009-12-01

    New strategies to self-assemble biocompatible materials into nanoscale, drug-loaded packages with improved therapeutic efficacy are needed for nanomedicine. To address this need, we developed artificial recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into sub-100-nm-sized, near-monodisperse nanoparticles on conjugation of diverse hydrophobic molecules, including chemotherapeutics. These CPs consist of a biodegradable polypeptide that is attached to a short Cys-rich segment. Covalent modification of the Cys residues with a structurally diverse set of hydrophobic small molecules, including chemotherapeutics, leads to spontaneous formation of nanoparticles over a range of CP compositions and molecular weights. When used to deliver chemotherapeutics to a murine cancer model, CP nanoparticles have a fourfold higher maximum tolerated dose than free drug, and induce nearly complete tumour regression after a single dose. This simple strategy can promote co-assembly of drugs, imaging agents and targeting moieties into multifunctional nanomedicines.

  13. Localization of the lysine epsilon-aminotransferase (lat) and delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine epsilon-aminotransferase activity in Escherichia coli.

    PubMed Central

    Tobin, M B; Kovacevic, S; Madduri, K; Hoskins, J A; Skatrud, P L; Vining, L C; Stuttard, C; Miller, J R

    1991-01-01

    Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete. Images PMID:1917855

  14. Functional Modification of Thioether Groups in Peptides, Polypeptides, and Proteins.

    PubMed

    Deming, Timothy J

    2017-03-15

    Recent developments in the modification of methionine and other thioether-containing residues in peptides, polypeptides, and proteins are reviewed. Properties and potential applications of the resulting functionalized products are also discussed. While much of this work is focused on natural Met residues, modifications at other side-chain residues have also emerged as new thioether-containing amino acids have been incorporated into peptidic materials. Functional modification of thioether-containing amino acids has many advantages and is a complementary methodology to the widely utilized methods for modification at cysteine residues.

  15. Thrombin specificity. Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate.

    PubMed

    Chang, J Y

    1985-09-02

    alpha-Thrombin cleavage of 30 polypeptide hormones and their derivatives were analysed by quantitative amino-terminal analysis. The polypeptides included secretin, vasoactive intestinal polypeptide, cholecystokinin fragment, dynorphin A, somatostatins, gastrin-releasing peptide, calcitonins and human parathyroid hormone fragment. Most of them were selected mainly on the ground that they contain sequence structures homologous to the well known tripeptide substrates of alpha-thrombin. All selected polypeptides have one single major cleavage site and both Arg-Xaa and Lys-Xaa bonds were found to be selectively cleaved by alpha-thrombin. Under fixed conditions (1 nmol polypeptide/0.5 NIH unit alpha-thrombin in 20 microliters of 50 mM ammonium bicarbonate at 25 degrees C), the time required for 50% cleavage ranges from less than 1 min to longer than 24 h. Heparin invariably enhanced thrombin cleavage on all polypeptide analysed. The optimum cleavage site for alpha-thrombin has the structures of (a) P4-P3-Pro-Arg-P1'-P2', where P3 and P4 are hydrophobic amino acid and P1', P2' are nonacidic amino acids and (b) P2-Arg-P1', where P2 or P1' are Gly. The requirement for hydrophobic P3 and P4 was further demonstrated by the drastic decrease of thrombin cleavage rates in both gastrin-releasing peptide and calcitonins after chemical removal of hydrophobic P3 and P4 residues. The requirement for nonacidic P1' and P2' residues was demonstrated by the drastic increase of thrombin cleavage rates in both calcitonin and parathyroid hormone fragments, after specific chemical modification of acidic P1' and P2' residues. These findings confirm the importance of hydrophobic P2-P4 residues for thrombin specificity and provide new evidence to indicate that apolar P1' and P2' residues are also crucial for thrombin specificity. It is concluded that specific cleavage of polypeptides by alpha-thrombin can be reasonably predicted and that chemical modification can be a useful tool in enhancing thrombin cleavage.

  16. Design and preparation of beta-sheet forming repetitive and block-copolymerized polypeptides.

    PubMed

    Higashiya, Seiichiro; Topilina, Natalya I; Ngo, Silvana C; Zagorevskii, Dmitri; Welch, John T

    2007-05-01

    The design and rapid construction of libraries of genes coding beta-sheet forming repetitive and block-copolymerized polypeptides bearing various C- and N-terminal sequences are described. The design was based on the assembly of DNA cassettes coding for the (GA)3GX amino acid sequence where the (GAGAGA) sequences would constitute the beta-strand units of a larger beta-sheet assembly. The edges of this beta-sheet would be functionalized by the turn-inducing amino acids (GX). The polypeptides were expressed in Escherichia coli using conventional vectors and were purified by Ni-nitriloacetic acid (NTA) chromatography. The correlation of polymer structure with molecular weight was investigated by gel electrophoresis and mass spectrometry. The monomer sequences and post-translational chemical modifications were found to influence the mobility of the polypeptides over the full range of polypeptide molecular weights while the electrophoretic mobility of lower molecular weight polypeptides was more susceptible to C- and N-termini polypeptide modifications.

  17. Differences in antigen presentation to MHC class I-and class II- restricted influenza virus-specific cytolytic T lymphocyte clones

    PubMed Central

    1986-01-01

    We have examined requirements for antigen presentation to a panel of MHC class I-and class II-restricted, influenza virus-specific CTL clones by controlling the form of virus presented on the target cell surface. Both H-2K/D- and I region-restricted CTL recognize target cells exposed to infectious virus, but only the I region-restricted clones efficiently lysed histocompatible target cells pulsed with inactivated virus preparations. The isolated influenza hemagglutinin (HA) polypeptide also could sensitize target cells for recognition by class II-restricted, HA-specific CTL, but not by class I-restricted, HA- specific CTL. Inhibition of nascent viral protein synthesis abrogated the ability of target cells to present viral antigen relevant for class I-restricted CTL recognition. Significantly, presentation for class II- restricted recognition was unaffected in target cells exposed to preparations of either inactivated or infectious virus. This differential sensitivity suggested that these H-2I region-restricted CTL recognized viral polypeptides derived from the exogenously introduced virions, rather than viral polypeptides newly synthesized in the infected cell. In support of this contention, treatment of the target cells with the lysosomotropic agent chloroquine abolished recognition of infected target cells by class II-restricted CTL without diminishing class I-restricted recognition of infected target cells. Furthermore, when the influenza HA gene was introduced into target cells without exogenous HA polypeptide, the target cells that expressed the newly synthesized protein product of the HA gene were recognized only by H-2K/D-restricted CTL. These observations suggest that important differences may exist in requirements for antigen presentation between H-2K/D and H-2I region-restricted CTL. These differences may reflect the nature of the antigenic epitopes recognized by these two CTL subsets. PMID:3485173

  18. Exploitation of rolling circle amplification for the construction of large phage-display antibody libraries.

    PubMed

    Shahsavarian, Melody A; Le Minoux, Damien; Matti, Kalyankumar M; Kaveri, Srini; Lacroix-Desmazes, Sébastien; Boquet, Didier; Friboulet, Alain; Avalle, Bérangère; Padiolleau-Lefèvre, Séverine

    2014-05-01

    Phage display antibody libraries have proven to have a significant role in the discovery of therapeutic antibodies and polypeptides with desired biological and physicochemical properties. Obtaining a large and diverse phage display antibody library, however, is always a challenging task. Various steps of this technique can still undergo optimization in order to obtain an efficient library. In the construction of a single chain fragment variable (scFv) phage display library, the cloning of the scFv fragments into a phagemid vector is of crucial importance. An efficient restriction enzyme digestion of the scFv DNA leads to its proper ligation with the phagemid followed by its successful cloning and expression. Here, we are reporting a different approach to enhance the efficiency of the restriction enzyme digestion step. We have exploited rolling circle amplification (RCA) to produce a long strand of DNA with tandem repeats of scFv sequences, which is found to be highly susceptible to restriction digestion. With this important modification, we are able to construct a large phage display antibody library of naive SJL/J mice. The size of the library is estimated as ~10(8) clones. The number of clones containing a scFv fragment is estimated at 90%. Hence, the present results could considerably aid the utilization of the phage-display technique in order to get an efficiently large antibody library. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli.

    PubMed Central

    Neidhardt, F C; VanBogelen, R A; Lau, E T

    1983-01-01

    The high-temperature production (HTP) regulon of Escherichia coli consists of a set of operons that are induced coordinately by a shift to a high temperature under the control of a single chromosomal gene called htpR or hin. To identify more components of this regulon, the rates of synthesis of many polypeptides resolved on two-dimensional polyacrylamide gels were measured in various strains by pulse-labeling after a temperature shift-up. A total of 13 polypeptides were found to be heat inducible only in cells bearing a normal htpR gene on the chromosome or on a plasmid; on this basis these polypeptides were designated products of the HTP regulon. Several hybrid plasmids that contain segments of the E. coli chromosome in the 75-min region were found to carry the htpR gene. A restriction map of this region was constructed, and selected fragments were subcloned and tested for the ability to complement an htpR mutant. The polypeptides encoded by these fragments were detected by permitting expression in maxicells, minicells, and chloramphenicol-treated cells. Complementation was accompanied by production of a polypeptide having a molecular weight of approximately 33,000. This polypeptide, designated F33.4, was markedly reduced in amount in an htpR mutant expected to contain very little htpR gene product. Polypeptide F33.4 is postulated to be the product of htpR and to be an effector that controls heat induction of the HTP regulon. Images PMID:6337122

  20. Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae.

    PubMed

    Colson, A M; Slonimski, P P

    1979-01-02

    Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous segments of the mitochondrial DNA sequence which code for a single polypeptide sequence of cytochrome b. In each segment mutations which modify the polypeptide sequence can occur leading to the loss (BOX mutants) or to a modification (drug resistant mutants) of the enzyme activity.

  1. Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843

    PubMed Central

    Kaneko, Takakazu; Nakajima, Nobuyoshi; Okamoto, Shinobu; Suzuki, Iwane; Tanabe, Yuuhiko; Tamaoki, Masanori; Nakamura, Yasukazu; Kasai, Fumie; Watanabe, Akiko; Kawashima, Kumiko; Kishida, Yoshie; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Watanabe, Makoto M.

    2007-01-01

    Abstract The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome. PMID:18192279

  2. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    PubMed

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  3. The methylome and virulence of bovine respiratory disease bacterial pathogens

    USDA-ARS?s Scientific Manuscript database

    With the advent of single molecule, real-time (SMRT®) sequencing, it is now possible to study complete microbial epigenomes. It has been known for decades that methylation and other types of epigenetic modifications in bacteria are responsible for much more than restriction-modification mechanics, b...

  4. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments.

    PubMed

    Gradišar, Helena; Božič, Sabina; Doles, Tibor; Vengust, Damjan; Hafner-Bratkovič, Iva; Mertelj, Alenka; Webb, Ben; Šali, Andrej; Klavžar, Sandi; Jerala, Roman

    2013-06-01

    Protein structures evolved through a complex interplay of cooperative interactions, and it is still very challenging to design new protein folds de novo. Here we present a strategy to design self-assembling polypeptide nanostructured polyhedra based on modularization using orthogonal dimerizing segments. We designed and experimentally demonstrated the formation of the tetrahedron that self-assembles from a single polypeptide chain comprising 12 concatenated coiled coil-forming segments separated by flexible peptide hinges. The path of the polypeptide chain is guided by a defined order of segments that traverse each of the six edges of the tetrahedron exactly twice, forming coiled-coil dimers with their corresponding partners. The coincidence of the polypeptide termini in the same vertex is demonstrated by reconstituting a split fluorescent protein in the polypeptide with the correct tetrahedral topology. Polypeptides with a deleted or scrambled segment order fail to self-assemble correctly. This design platform provides a foundation for constructing new topological polypeptide folds based on the set of orthogonal interacting polypeptide segments.

  5. Sequence-Independent Cloning and Post-Translational Modification of Repetitive Protein Polymers through Sortase and Sfp-Mediated Enzymatic Ligation.

    PubMed

    Ott, Wolfgang; Nicolaus, Thomas; Gaub, Hermann E; Nash, Michael A

    2016-04-11

    Repetitive protein-based polymers are important for many applications in biotechnology and biomaterials development. Here we describe the sequential additive ligation of highly repetitive DNA sequences, their assembly into genes encoding protein-polymers with precisely tunable lengths and compositions, and their end-specific post-translational modification with organic dyes and fluorescent protein domains. Our new Golden Gate-based cloning approach relies on incorporation of only type IIS BsaI restriction enzyme recognition sites using PCR, which allowed us to install ybbR-peptide tags, Sortase c-tags, and cysteine residues onto either end of the repetitive gene polymers without leaving residual cloning scars. The assembled genes were expressed in Escherichia coli and purified using inverse transition cycling (ITC). Characterization by cloud point spectrophotometry, and denaturing polyacrylamide gel electrophoresis with fluorescence detection confirmed successful phosphopantetheinyl transferase (Sfp)-mediated post-translational N-terminal labeling of the protein-polymers with a coenzyme A-647 dye (CoA-647) and simultaneous sortase-mediated C-terminal labeling with a GFP domain containing an N-terminal GG-motif in a one-pot reaction. In a further demonstration, we installed an N-terminal cysteine residue into an elastin-like polypeptide (ELP) that was subsequently conjugated to a single chain poly(ethylene glycol)-maleimide (PEG-maleimide) synthetic polymer, noticeably shifting the ELP cloud point. The ability to straightforwardly assemble repetitive DNA sequences encoding ELPs of precisely tunable length and to post-translationally modify them specifically at the N- and C- termini provides a versatile platform for the design and production of multifunctional smart protein-polymeric materials.

  6. A MUTANT OF YEAST APPARENTLY DEFECTIVE IN THE INITIATION OF PROTEIN SYNTHESIS*

    PubMed Central

    Hartwell, Leland H.; McLaughlin, Calvin S.

    1969-01-01

    A temperature-sensitive mutant of yeast, ts-187, which is apparently unable to initiate the synthesis of new polypeptide chains after a short incubation at the restrictive temperature, is described. The existence of this mutant demonstrates that in eucaryotic cells, as in procaryotic cells, there are processes unique to the initiation of polypeptide chains. PMID:5256225

  7. Role of Side-Chain Molecular Features in Tuning Lower Critical Solution Temperatures (LCSTs) of Oligoethylene Glycol Modified Polypeptides.

    PubMed

    Gharakhanian, Eric G; Deming, Timothy J

    2016-07-07

    A series of thermoresponsive polypeptides has been synthesized using a methodology that allowed facile adjustment of side-chain functional groups. The lower critical solution temperature (LCST) properties of these polymers in water were then evaluated relative to systematic molecular modifications in their side-chains. It was found that in addition to the number of ethylene glycol repeats in the side-chains, terminal and linker groups also have substantial and predictable effects on cloud point temperatures (Tcp). In particular, we found that the structure of these polypeptides allowed for inclusion of polar hydroxyl groups, which significantly increased their hydrophilicity and decreased the need to use long oligoethylene glycol repeats to obtain LCSTs. The thioether linkages in these polypeptides were found to provide an additional structural feature for reversible switching of both polypeptide conformation and thermoresponsive properties.

  8. Structural characterization of the N-terminal mineral modification domains from the molluscan crystal-modulating biomineralization proteins, AP7 and AP24.

    PubMed

    Wustman, Brandon A; Morse, Daniel E; Evans, John Spencer

    2004-08-05

    The AP7 and AP24 proteins represent a class of mineral-interaction polypeptides that are found in the aragonite-containing nacre layer of mollusk shell (H. rufescens). These proteins have been shown to preferentially interfere with calcium carbonate mineral growth in vitro. It is believed that both proteins play an important role in aragonite polymorph selection in the mollusk shell. Previously, we demonstrated the 1-30 amino acid (AA) N-terminal sequences of AP7 and AP24 represent mineral interaction/modification domains in both proteins, as evidenced by their ability to frustrate calcium carbonate crystal growth at step edge regions. In this present report, using free N-terminal, C(alpha)-amide "capped" synthetic polypeptides representing the 1-30 AA regions of AP7 (AP7-1 polypeptide) and AP24 (AP24-1 polypeptide) and NMR spectroscopy, we confirm that both N-terminal sequences possess putative Ca (II) interaction polyanionic sequence regions (2 x -DD- in AP7-1, -DDDED- in AP24-1) that are random coil-like in structure. However, with regard to the remaining sequences regions, each polypeptide features unique structural differences. AP7-1 possesses an extended beta-strand or polyproline type II-like structure within the A11-M10, S12-V13, and S28-I27 sequence regions, with the remaining sequence regions adopting a random-coil-like structure, a trait common to other polyelectrolyte mineral-associated polypeptide sequences. Conversely, AP24-1 possesses random coil-like structure within A1-S9 and Q14-N16 sequence regions, and evidence for turn-like, bend, or loop conformation within the G10-N13, Q17-N24, and M29-F30 sequence regions, similar to the structures identified within the putative elastomeric proteins Lustrin A and sea urchin spicule matrix proteins. The similarities and differences in AP7 and AP24 N-terminal domain structure are discussed with regard to joint AP7-AP24 protein modification of calcium carbonate growth. Copyright 2004 Wiley Periodicals, Inc.

  9. Combined Effects and Cross-Interactions of Different Antibiotics and Polypeptides in Salmonella bredeney.

    PubMed

    Ju, Xiangyu; Zhu, Mengjiao; Han, Jinzhi; Lu, Zhaoxin; Zhao, Haizhen; Bie, Xiaomei

    2018-05-24

    Salmonella spp. are health-threatening foodborne pathogens. The increasingly common spread of antibiotic-resistant Salmonella spp. is a major public healthcare issue worldwide. In this study, we wished to explore (1) antibiotic or polypeptide combinations to inhibit multidrug-resistant Salmonella bredeney and (2) the regulation of cross-resistance and collateral sensitivity of antibiotics and polypeptides. We undertook a study to select antibiotic combinations. Then, we promoted drug-resistant strains of S. bredeney after 15 types of antibiotic treatment. From each evolving population, the S. bredeney strain was exposed to a particular single drug. Then, we analyzed how the evolved S. bredeney strains acquired resistance or susceptibility to other drugs. A total of 105 combinations were tested against S. bredeney following the protocols of CLSI-2016 and EUCAST-2017. The synergistic interactions between drug pairings were diverse. Notably, polypeptides were more likely to be linked to synergistic combinations: 56% (19/34) of the synergistic pairings were relevant to polypeptides. Simultaneously, macrolides demonstrated antagonism toward polypeptides. The latter were more frequently related to collateral sensitivity than the other drugs because the other 13 drugs sensitized S. bredeney to polypeptides. In an experimental evolution involving 15 drugs, single drug-evolved strains were examined against the other 14 drugs, and the results were compared with the minimal inhibitory concentration of the ancestral strain. Single drug-evolved S. bredeney strains could alter the sensitivity to other drugs, and S. bredeney evolution against antibiotics could sensitize it to polypeptides.

  10. hisT is part of a multigene operon in Escherichia coli K-12.

    PubMed Central

    Marvel, C C; Arps, P J; Rubin, B C; Kammen, H O; Penhoet, E E; Winkler, M E

    1985-01-01

    The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon. Images PMID:2981810

  11. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E. coli

    NASA Astrophysics Data System (ADS)

    Küpper, Hans; Keller, Walter; Kurz, Christina; Forss, Sonja; Schaller, Heinz

    1981-02-01

    Double-stranded DNA copies of the single-stranded genomic RNA of foot and mouth disease virus have been cloned into the Escherichia coli plasmid pBR322. A restriction map of the viral genome was established and aligned with the biochemical map of foot and mouth disease virus. The coding sequence for structural protein VP1, the major antigen of the virus, was identified and inserted into a plasmid vector where the expression of this sequence is under control of the phage λ PL promoter. In an appropriate host the synthesis of antigenic polypeptide can be demonstrated by radioimmunoassay.

  12. An energy function for dynamics simulations of polypeptides in torsion angle space

    NASA Astrophysics Data System (ADS)

    Sartori, F.; Melchers, B.; Böttcher, H.; Knapp, E. W.

    1998-05-01

    Conventional simulation techniques to model the dynamics of proteins in atomic detail are restricted to short time scales. A simplified molecular description, in which high frequency motions with small amplitudes are ignored, can overcome this problem. In this protein model only the backbone dihedrals φ and ψ and the χi of the side chains serve as degrees of freedom. Bond angles and lengths are fixed at ideal geometry values provided by the standard molecular dynamics (MD) energy function CHARMM. In this work a Monte Carlo (MC) algorithm is used, whose elementary moves employ cooperative rotations in a small window of consecutive amide planes, leaving the polypeptide conformation outside of this window invariant. A single of these window MC moves generates local conformational changes only. But, the application of many such moves at different parts of the polypeptide backbone leads to global conformational changes. To account for the lack of flexibility in the protein model employed, the energy function used to evaluate conformational energies is split into sequentially neighbored and sequentially distant contributions. The sequentially neighbored part is represented by an effective (φ,ψ)-torsion potential. It is derived from MD simulations of a flexible model dipeptide using a conventional MD energy function. To avoid exaggeration of hydrogen bonding strengths, the electrostatic interactions involving hydrogen atoms are scaled down at short distances. With these adjustments of the energy function, the rigid polypeptide model exhibits the same equilibrium distributions as obtained by conventional MD simulation with a fully flexible molecular model. Also, the same temperature dependence of the stability and build-up of α helices of 18-alanine as found in MD simulations is observed using the adapted energy function for MC simulations. Analyses of transition frequencies demonstrate that also dynamical aspects of MD trajectories are faithfully reproduced. Finally, it is demonstrated that even for high temperature unfolded polypeptides the MC simulation is more efficient by a factor of 10 than conventional MD simulations.

  13. Tracking polypeptide folds on the free energy surface: effects of the chain length and sequence.

    PubMed

    Brukhno, Andrey V; Ricchiuto, Piero; Auer, Stefan

    2012-07-26

    Characterization of the folding transition in polypeptides and assessing the thermodynamic stability of their structured folds are of primary importance for approaching the problem of protein folding. We use molecular dynamics simulations for a coarse grained polypeptide model in order to (1) obtain the equilibrium conformation diagram of homopolypeptides in a broad range of the chain lengths, N = 10, ..., 100, and temperatures, T (in a multicanonical ensemble), and (2) determine free energy profiles (FEPs) projected onto an optimal, so-called "natural", reaction coordinate that preserves the height of barriers and the diffusion coefficients on the underlying free energy hyper-surface. We then address the following fundamental questions. (i) How well does a kinetically determined free energy landscape of a single chain represent the polypeptide equilibrium (ensemble) behavior? In particular, under which conditions might the correspondence be lost, and what are the possible implications for the folding processes? (ii) How does the free energy landscape depend on the chain length (homopolypeptides) and the monomer interaction sequence (heteropolypeptides)? Our data reveal that at low T values equilibrium structures adopted by relatively short homopolypeptides (N < 60) are dominated by α-helical folds which correspond to the primary and secondary minima of the FEP. In contrast, longer homopolypeptides (N > 70), upon quasi-equilibrium cooling, fold preferentially in β-bundles with small helical portions, while the FEPs exhibit no distinct global minima. Moreover, subject to the choice of the initial configuration, at sufficiently low T, essentially metastable structures can be found and prevail far from the true thermodynamic equilibrium. We also show that, by sequence-enabling the polypeptide model, it is possible to restrict the chain to a very specific part of the configuration space, which results in substantial simplification and smoothing of the free energy landscape as compared to the case of the corresponding homopolypeptide.

  14. Self-assembling Polypeptide Nanoparticles: Design, Synthesis, Biophysical Characterization and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Araujo Pereira Falcao Pimentel, Tais de

    Inspired by the architecture of icosahedral viruses, self-assembling polypeptide nanoparticles (SAPN) with icosahedral symmetry were developed. The building block for the SAPN was a single polypeptide chain. Similarly, the capsid of quite a few small viruses are built from one single peptide chain. The polypeptide chain of the SAPN consists of a pentameric coiled-coil domain at the N-terminus joined by a short linker segment to a trimeric coiled-coil domain at the C-terminus. Here we have studied factors governing self-assembly of the SAPN such as linker constitution and trimer length. The interdomain linker 2i88 afforded the most homogenous nanoparticles as verified by TEM and DLS. Furthermore, AUC and STEM analyses suggest that the nanoparticles formed using the linker 2i88 have a T=3-like architecture confirming computer modeling predictions. As for trimer length, we have shown that it is possible to synthesize SAPN with a trimer that is as short as only 17 amino acids. Given that the N-terminus and C-terminus of the SAPN can be extended to include epitopes and give rise to a repetitive antigen display system, vaccine applications of the SAPN were also investigated here. We grafted parts of the SARS virus' spike protein onto our SAPN to repetitively display this B-cell epitope. Biophysical characterization showed that single nanoparticles of the expected size range were formed. Immunization experiments in mice at University of Colorado Denver revealed that the antibodies elicited were conformation-specific. Moreover, the antibodies significantly inhibited SARS virus infection of Vero E6 cells. SAPN were also functionalized at the C-terminus with a B-cell epitope from the circumsporozoite protein (CSP) of the malaria parasite Plasmodium falciparum and at the N-terminus with CTL epitopes from CSP. The trimeric coiled-coil domains of these malaria SAPN were modified to include a HTL epitope. Even will all these modifications, self-assembly occurred as confirmed by TEM and DLS. In immunization experiments performed at WRAIR good immune responses were obtained. Another biomedical application of SAPN is the development of a peptide-based serodiagnostic assay for tuberculosis (Tb). In an ELISA format, Tb-SAPN showed modest responses in serodiagnosis of Tb.

  15. Monoclonal antibodies for the identification and purification of vNAR domains and IgNAR immunoglobulins from the horn shark Heterodontus francisci.

    PubMed

    Juarez, Karla; Dubberke, Gudrun; Lugo, Pavel; Koch-Nolte, Friedrich; Buck, Friedrich; Haag, Friedrich; Licea, Alexei

    2011-08-01

    In addition to conventional antibodies, cartilaginous fish have evolved a distinctive type of immunoglobulin, designated as IgNAR, which lacks the light polypeptide chains and is composed entirely by heavy chains. IgNAR molecules can be manipulated by molecular engineering to produce the variable domain of a single heavy chain polypeptide (vNARs). These, together with the VHH camel domains, constitute the smallest naturally occurring domains able to recognize an antigen. Their special features, such as small size, long extended finger-like CDR3, and thermal and chemical stability, make them suitable candidates for biotechnological purposes. Here we describe the generation of two mouse monoclonal antibodies (MAbs), MAb 370-12 and MAb 533-10, that both specifically react with vNAR domains of the horn shark Heterodontus francisci. While the former recognizes a broad spectrum of recombinant vNAR proteins, the latter is more restricted. MAb 370-12 precipitated a single band from whole shark serum, which was identified as IgNAR by mass spectrometry. Additionally, we used MAb 370-12 to follow the IgNAR-mediated immune response of sharks during immunization protocols with two different antigens (complete cells and a synthethic peptide), thus corroborating that MAb 370-12 recognizes both isolated vNAR domains and whole IgNAR molecules. Both MAbs represent an affordable molecular, biochemical, and biotechnological tool in the field of shark single-domain antibodies.

  16. A versatile expression vector for the growth and amplification of unmodified phage display polypeptides.

    PubMed

    Winton, Alexander J; Baptiste, Janae L; Allen, Mark A

    2018-09-01

    Proteins and polypeptides represent nature's most complex and versatile polymer. They provide complicated shapes, diverse chemical functionalities, and tightly regulated and controlled sizes. Several disease states are related to the misfolding or overproduction of polypeptides and yet polypeptides are present in several therapeutic molecules. In addition to biological roles; short chain polypeptides have been shown to interact with and drive the bio-inspired synthesis or modification of inorganic materials. This paper outlines the development of a versatile cloning vector which allows for the expression of a short polypeptide by controlling the incorporation of a desired DNA coding insert. As a demonstration of the efficacy of the expression system, a solid binding polypeptide identified from M13 phage display was expressed and purified. The solid binding polypeptide was expressed as a soluble 6xHis-SUMO tagged construct. Expression was performed in E. coli using auto-induction followed by Ni-NTA affinity chromatography and ULP1 protease cleavage. Methodology demonstrates the production of greater than 8 mg of purified polypeptide per liter of E. coli culture. Isotopic labeling of the peptide is also demonstrated. The versatility of the designed cloning vector, use of the 6xHis-SUMO solubility partner, bacterial expression in auto-inducing media and the purification methodology make this expressionun vector a readily scalable and user-friendly system for the creation of desired peptide domains. Copyright © 2018. Published by Elsevier Inc.

  17. Synthesis of Globulins in Maize Embryos 1

    PubMed Central

    Kriz, Alan L.; Schwartz, Drew

    1986-01-01

    The two major components of the globulin fraction in Zea mays embryos are specified by the Prot gene. Pulse-chase analysis of protein synthesis in cultured, immature embryos indicates that the smaller Prot-specific polypeptide, PROT, is derived from the larger polypeptide, PROT'. These experiments also demonstrate that PROT' is derived from a short-lived precursor polypeptide, prePROT'. The primary Prot-specific translation product, as detected by in vitro translation of immature embryo RNA, is of a lower apparent molecular weight than pre-PROT', suggesting the involvement of co- and/or post-translational modification in the production of prePROT'. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16665136

  18. Identification of Peroxiredoxin-5 in Bovine Cauda Epididymal Sperm

    PubMed Central

    Nagdas, Subir K; Buchanan, Teresa; Raychoudhury, Samir

    2013-01-01

    Developing spermatozoa require a series of post-testicular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5kDa Wheat Germ Agglutinin (WGA) binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA stained bands, the presence of a 17.5kDa WGA binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide. PMID:24186847

  19. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  20. Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides.

    PubMed

    Valiaev, Alexei; Lim, Dong Woo; Schmidler, Scott; Clark, Robert L; Chilkoti, Ashutosh; Zauscher, Stefan

    2008-08-20

    We investigated the effect of temperature, ionic strength, solvent polarity, and type of guest residue on the force-extension behavior of single, end-tethered elastin-like polypeptides (ELPs), using single molecule force spectroscopy (SMFS). ELPs are stimulus-responsive polypeptides that contain repeats of the five amino acids Val-Pro-Gly-Xaa-Gly (VPGXG), where Xaa is a guest residue that can be any amino acid with the exception of proline. We fitted the force-extension data with a freely jointed chain (FJC) model which allowed us to resolve small differences in the effective Kuhn segment length distributions that largely arise from differences in the hydrophobic hydration behavior of ELP. Our results agree qualitatively with predictions from recent molecular dynamics simulations and demonstrate that hydrophobic hydration modulates the molecular elasticity for ELPs. Furthermore, our results show that SMFS, when combined with our approach for data analysis, can be used to study the subtleties of polypeptide-water interactions and thus provides a basis for the study of hydrophobic hydration in intrinsically unstructured biomacromolecules.

  1. From the Macro to the Micro: Gel Mapping to Differentiate between Sporozoites of Two Immunologically Distinct Strains of Eimeria maxima (Strains M6 and Guelph)

    PubMed Central

    Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John

    2015-01-01

    Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3–10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima. PMID:26641262

  2. From the Macro to the Micro: Gel Mapping to Differentiate between Sporozoites of Two Immunologically Distinct Strains of Eimeria maxima (Strains M6 and Guelph).

    PubMed

    El-Ashram, Saeed; Yin, Qing; Liu, Hongbin; Al Nasr, Ibrahim; Liu, Xianyong; Suo, Xun; Barta, John

    2015-01-01

    Two immunologically distinct strains of E. maxima were examined in this study: the M6 strain and the Guelph strain. The differential expression between the sporozoites of the two strains of E. maxima was determined by image analysis of 100 μg of protein from each strain separated by standard one- and conventional two-dimensional polyacrylamide gel electrophoresis. In addition to differences in both molecular weight and the electrophoretic mobility, differences in the intensity of polypeptide bands for example, GS 136.4 and M6 169 were explored. Pooled gels were prepared from each strain. A representative 2D-PAGE gel spanning a non-linear pH range of 3-10 of E. maxima strain M6 consisted of approximately 694 polypeptide spots with about 67 (9.6%) of the polypeptide spots being unique relative to the other strain. E. maxima strain GS had about 696 discernable polypeptide spots with 69 spots (9.9%) that differed from those of the M6 strain. In-depth characterization of the variable polypeptide spots; unique polypeptide spots (absence or presence) and shared polypeptide spots with modifications may lead to novel vaccine target in the form of multi-component, multi-stage, multi-immunovariant strains, multi-species subunit vaccine, and diagnostic probe for E. maxima.

  3. Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth.

    PubMed

    Gho, Francesca; Peña-Neira, Alvaro; López-Solís, Remigio O

    2007-02-01

    Isoproterenol-induced salivary polypeptides (IISP), a group of proline-rich proteins synthesized by mouse parotids, have been considered as markers for isoproterenol-induced parotid hypertrophy. Rodents fed diets containing high-tannin cereals (sorghum), also develop parotid hypertrophy. To test whether tannins are directly involved in provoking sialotrophic growth, we studied the effect of intraperitoneal and topical oral administrations of tannic acid (TA) on the induction of IISP polypeptides in endogamic mice (A/Snell). TA was characterized by HPLC chromatography and spectral analysis and shown to be composed solely of gallotannins, a complex family of glucose and gallic acid esters. IISP polypeptides were monitored in saliva by SDS-polyacrylamide gel electrophoresis during 36 h after ending TA stimulation. Single daily intraperitoneal administrations of TA for 3 consecutive days (0.033 mg/g bw/day), at variance of parallel administrations of isoproterenol (0.042 mg/g bw/day) failed to induce IISP polypeptides. However, repeated topical applications of TA into the mouse mouths (1.21 mg/g bw divided into three equal doses given at 4-h intervals within a single day) resulted in unequivocal induction of IISP polypeptides. That response was clearly intensified by increasing the stimulation frequency to eight equivalent doses given at 1.5-h intervals within a single day (corresponding to 3.23 mg/g bw) and even further by repeating this protocol for 3 days. Under these productive schemes of stimulations by TA, electrophoretic fractionation of parotid homogenates showed new polypeptide bands migrating in parallel to salivary IISP. These results suggest that topically administered gallotannins are effective inducers of trophic growth in mouse parotids.

  4. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription.

    PubMed

    Zhou, Xin X; Zou, Xinzhi; Chung, Hokyung K; Gao, Yuchen; Liu, Yanxia; Qi, Lei S; Lin, Michael Z

    2018-02-16

    Optical control of CRISPR-Cas9-derived proteins would be useful for restricting gene editing or transcriptional regulation to desired times and places. Optical control of Cas9 functions has been achieved with photouncageable unnatural amino acids or by using light-induced protein interactions to reconstitute Cas9-mediated functions from two polypeptides. However, these methods have only been applied to one Cas9 species and have not been used for optical control of different perturbations at two genes. Here, we use photodissociable dimeric fluorescent protein domains to engineer single-chain photoswitchable Cas9 (ps-Cas9) proteins in which the DNA-binding cleft is occluded at baseline and opened upon illumination. This design successfully controlled different species and functional variants of Cas9, mediated transcriptional activation more robustly than previous optogenetic methods, and enabled light-induced transcription of one gene and editing of another in the same cells. Thus, a single-chain photoswitchable architecture provides a general method to control a variety of Cas9-mediated functions.

  5. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase.

    PubMed

    Nowarski, Roni; Britan-Rosich, Elena; Shiloach, Tamar; Kotler, Moshe

    2008-10-01

    Deamination of cytidine residues in single-stranded DNA (ssDNA) is an important mechanism by which apolipoprotein B mRNA-editing, catalytic polypeptide-like (APOBEC) enzymes restrict endogenous and exogenous viruses. The dynamic process underlying APOBEC-induced hypermutation is not fully understood. Here we show that enzymatically active APOBEC3G can be detected in wild-type Vif(+) HIV-1 virions, albeit at low levels. In vitro studies showed that single enzyme-DNA encounters result in distributive deamination of adjacent cytidines. Nonlinear translocation of APOBEC3G, however, directed scattered deamination of numerous targets along the DNA. Increased ssDNA concentrations abolished enzyme processivity in the case of short, but not long, DNA substrates, emphasizing the key role of rapid intersegmental transfer in targeting the deaminase. Our data support a model by which APOBEC3G intersegmental transfer via monomeric binding to two ssDNA segments results in dispersed hypermutation of viral genomes.

  6. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.; Peters, M.; Lottspeich, F.

    1987-11-01

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less

  7. Genetically encoded lipid-polypeptide hybrid biomaterials that exhibit temperature-triggered hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Mozhdehi, Davoud; Luginbuhl, Kelli M.; Simon, Joseph R.; Dzuricky, Michael; Berger, Rüdiger; Varol, H. Samet; Huang, Fred C.; Buehne, Kristen L.; Mayne, Nicholas R.; Weitzhandler, Isaac; Bonn, Mischa; Parekh, Sapun H.; Chilkoti, Ashutosh

    2018-05-01

    Post-translational modification of proteins is a strategy widely used in biological systems. It expands the diversity of the proteome and allows for tailoring of both the function and localization of proteins within cells as well as the material properties of structural proteins and matrices. Despite their ubiquity in biology, with a few exceptions, the potential of post-translational modifications in biomaterials synthesis has remained largely untapped. As a proof of concept to demonstrate the feasibility of creating a genetically encoded biohybrid material through post-translational modification, we report here the generation of a family of three stimulus-responsive hybrid materials—fatty-acid-modified elastin-like polypeptides—using a one-pot recombinant expression and post-translational lipidation methodology. These hybrid biomaterials contain an amphiphilic domain, composed of a β-sheet-forming peptide that is post-translationally functionalized with a C14 alkyl chain, fused to a thermally responsive elastin-like polypeptide. They exhibit temperature-triggered hierarchical self-assembly across multiple length scales with varied structure and material properties that can be controlled at the sequence level.

  8. Tandem Affinity Purification of Protein Complexes from Eukaryotic Cells.

    PubMed

    Ma, Zheng; Fung, Victor; D'Orso, Iván

    2017-01-26

    The purification of active protein-protein and protein-nucleic acid complexes is crucial for the characterization of enzymatic activities and de novo identification of novel subunits and post-translational modifications. Bacterial systems allow for the expression and purification of a wide variety of single polypeptides and protein complexes. However, this system does not enable the purification of protein subunits that contain post-translational modifications (e.g., phosphorylation and acetylation), and the identification of novel regulatory subunits that are only present/expressed in the eukaryotic system. Here, we provide a detailed description of a novel, robust, and efficient tandem affinity purification (TAP) method using STREP- and FLAG-tagged proteins that facilitates the purification of protein complexes with transiently or stably expressed epitope-tagged proteins from eukaryotic cells. This protocol can be applied to characterize protein complex functionality, to discover post-translational modifications on complex subunits, and to identify novel regulatory complex components by mass spectrometry. Notably, this TAP method can be applied to study protein complexes formed by eukaryotic or pathogenic (viral and bacterial) components, thus yielding a wide array of downstream experimental opportunities. We propose that researchers working with protein complexes could utilize this approach in many different ways.

  9. Odor-induced phosphorylation of olfactory cilia proteins.

    PubMed Central

    Boekhoff, I; Schleicher, S; Strotmann, J; Breer, H

    1992-01-01

    Stimulation of isolated rat olfactory cilia in the presence of [gamma-32P]ATP leads to a significantly enhanced incorporation of [32P]phosphate. Depending on the type of odorants applied, the induced phosphorylation is completely blocked by specific inhibitors of either protein kinase A or protein kinase C. Time-course experiments indicate that the odor-induced modification of ciliary proteins is transient; the intensity of labeling decayed over time (1-10 sec). Separation of ciliary proteins by SDS/polyacrylamide gel electrophoresis followed by autoradiography demonstrated that upon stimulation with lilial, a single polypeptide (50,000 Da) was phosphorylated; the size of the modified protein is in line with the hypothesis that odorant receptors are phosphorylated subsequent to activation by specific odors. Images PMID:1334554

  10. Restriction of a bacteriophage of Streptomyces albus G involving endonuclease SalI.

    PubMed Central

    Chater, K F; Wilde, L C

    1976-01-01

    The bacteriophage Pa16, isolated from soil on Streptomyces albus G, was restricted when transferred from an alternative host back to S. albus G. Extracted unmodified Pa16 deoxyribonucleic acid was cleaved at a single site by a cell-free extract of S. albus G. Fractions cleaving Pal6 deoxyribonucleic acid contained the endonuclease SalI first described by J. Arrand, P. Myers, and R. J. Roberts (unpublished data). A mutant of S. albus G was isolated which was defective in both restriction and modification of Pal6. This mutant lacked SalI activity. It is concluded that SalI is the agent of restriction of Pal6 by S. albus G. Images PMID:977549

  11. Monoclonal antibodies to the light-harvesting chlorophyll a/b protein complex of photosystem II

    PubMed Central

    1986-01-01

    A collection of 17 monoclonal antibodies elicited against the light- harvesting chlorophyll a/b protein complex which serves photosystem II (LHC-II) of Pisum sativum shows six classes of binding specificity. Antibodies of two of the classes recognize a single polypeptide (the 28- or the 26- kD polypeptides), thereby suggesting that the two proteins are not derived from a common precursor. Other classes of antibodies cross-react with several polypeptides of LHC-II or with polypeptides of both LHC-II and the light-harvesting chlorophyll a/b polypeptides of photosystem I (LHC-I), indicating that there are structural similarities among the polypeptides of LHC-II and LHC-I. The evidence for protein processing by which the 26-, 25.5-, and 24.5-kD polypeptides are derived from a common precursor polypeptide is discussed. Binding studies using antibodies specific for individual LHC- II polypeptides were used to quantify the number of antigenic polypeptides in the thylakoid membrane. 27 copies of the 26-kD polypeptide and two copies of the 28-kD polypeptide were found per 400 chlorophylls. In the chlorina f2 mutant of barley, and in intermittent light-treated barley seedlings, the amount of the 26-kD polypeptide in the thylakoid membranes was greatly reduced, while the amount of 28-kD polypeptide was apparently not affected. We propose that stable insertion and assembly of the 28-kD polypeptide, unlike the 26-kD polypeptide, is not regulated by the presence of chlorophyll b. PMID:3528171

  12. Characterization of auxin-binding proteins from zucchini plasma membrane

    NASA Technical Reports Server (NTRS)

    Hicks, G. R.; Rice, M. S.; Lomax, T. L.

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  13. Characterization of auxin-binding proteins from zucchini plasma membrane.

    PubMed

    Hicks, G R; Rice, M S; Lomax, T L

    1993-01-01

    We have previously identified two auxin-binding polypeptides in plasma membrane (PM) preparations from zucchini (Cucurbita pepo L.) (Hicks et al. 1989, Proc. Natl. Acad. Sci. USA 86, 4948-4952). These polypeptides have molecular weights of 40 kDa and 42 kDa and label specifically with the photoaffinity auxin analog 5-N3-7-3H-IAA (azido-IAA). Azido-IAA permits both the covalent and radioactive tagging of auxin-binding proteins and has allowed us to characterize further the 40-kDa and 42-kDa polypeptides, including the nature of their attachment to the PM, their relationship to each other, and their potential function. The azido-IAA-labeled polypeptides remain in the pelleted membrane fraction following high-salt and detergent washes, which indicates a tight and possibly integral association with the PM. Two-dimensional electrophoresis of partially purified azido-IAA-labeled protein demonstrates that, in addition to the major isoforms of the 40-kDa and 42-kDa polypeptides, which possess isoelectric points (pIs) of 8.2 and 7.2, respectively, several less abundant isoforms that display unique pIs are apparent at both molecular masses. Tryptic and chymotryptic digestion of the auxin-binding proteins indicates that the 40-kDa and 42-kDa polypeptides are closely related or are modifications of the same polypeptide. Phase extraction with the nonionic detergent Triton X-114 results in partitioning of the azido-IAA-labeled polypeptides into the aqueous (hydrophilic) phase. This apparently paradoxical behavior is also exhibited by certain integral membrane proteins that aggregate to form channels. The results of gel filtration indicate that the auxin-binding proteins do indeed aggregate strongly and that the polypeptides associate to form a dimer or multimeric complex in vivo. These characteristics are consistent with the hypothesis that the 40-kDa and 42-kDa polypeptides are subunits of a multimeric integral membrane protein which has an auxin-binding site, and which may possess transporter or channel function.

  14. R Factor-Controlled Restriction and Modification of Deoxyribonucleic Acid: Restriction Mutants

    PubMed Central

    Yoshimori, Robert; Roulland-Dussoix, Daisy; Boyer, Herbert W.

    1972-01-01

    Restriction mutants of two different R factor-controlled host specificities (RI and RII) were isolated. All of the restriction mutants examined had a normal modification phenotype. No complementation was observed between the RI and RII host specificities. It is concluded that for each host specificity no protein subunit is shared by the restriction endonuclease and modification methylase. PMID:4565538

  15. Increasing Verbal Behavior of a Student Who Is Selectively Mute

    ERIC Educational Resources Information Center

    Beare, Paul; Torgerson, Colleen; Creviston, Cindy

    2008-01-01

    "Selective mutism" is the term used to describe a disorder in which a person speaks only in restricted stimulus situations. Examination of single-subject research concerning selective mutism reveals the most popular and successful interventions to instate speech involve a combination of behavior modification procedures. The present research…

  16. Fluorescence probe of polypeptide conformational dynamics in gas phase and in solution

    NASA Astrophysics Data System (ADS)

    Iavarone, Anthony T.; Meinen, Jan; Schulze, Susanne; Parks, Joel H.

    2006-07-01

    Fluorescence measurements of polypeptides derivatized with the fluorescent dye BODIPY TMR have been used to probe the polypeptide conformational dynamics as a function of temperature and charge state. Measurements of (BODIPY TMR)-[Pro]n-Arg-Trp and (BODIPY TMR)-[Gly-Ser]m-Arg-Trp have been performed for charge states 1+ and 2+ of n = 4 and 10 and m = 2 and 5. The 2+ charge states of both of these polypeptides exhibit similar temperature dependences for equal chain lengths (n = 4, m = 2 and n = 10, m = 5) and suggest conformations dominated by Coulomb repulsion. In the absence of such Coulomb repulsion, the 1+ charge state conformations appear to be characterized by the flexibility of the polypeptide chain for which [Gly-Ser]m > [Pro]n. Comparisons of these gas phase polypeptide measurements with corresponding measurements in solution provide a direct measure of the effects of solvent on the conformational dynamics. The change in fluorescence as a function of temperature in the gas phase is two orders of magnitude greater than that in solution, a dramatic result we attribute to the restrictions on intramolecular dynamics imposed by diffusion-limited kinetics and the lack of shielding by solvent. Measurements were also made of unsolvated Pron peptides without the tryptophan (Trp) residue to isolate the interaction of the fluorescent dye with charges.

  17. Plasmid mapping computer program.

    PubMed Central

    Nolan, G P; Maina, C V; Szalay, A A

    1984-01-01

    Three new computer algorithms are described which rapidly order the restriction fragments of a plasmid DNA which has been cleaved with two restriction endonucleases in single and double digestions. Two of the algorithms are contained within a single computer program (called MPCIRC). The Rule-Oriented algorithm, constructs all logical circular map solutions within sixty seconds (14 double-digestion fragments) when used in conjunction with the Permutation method. The program is written in Apple Pascal and runs on an Apple II Plus Microcomputer with 64K of memory. A third algorithm is described which rapidly maps double digests and uses the above two algorithms as adducts. Modifications of the algorithms for linear mapping are also presented. PMID:6320105

  18. The role of protein homochirality in shaping the energy landscape of folding

    PubMed Central

    Nanda, Vikas; Andrianarijaona, Aina; Narayanan, Chitra

    2007-01-01

    The homochirality, or isotacticity, of the natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. However, many examples exist in nature where novel polypeptide topologies use both l- and d-amino acids. In this study, we explore how stereochemistry of the polypeptide backbone influences basic properties such as compactness and the size of fold space by simulating both lattice and all-atom polypeptide chains. We formulate a rectangular lattice chain model in both two and three dimensions, where monomers are chiral, having the effect of restricting local conformation. Syndiotactic chains with alternating chirality of adjacent monomers have a very large ensemble of accessible conformations characterized predominantly by extended structures. Isotactic chains on the other hand, have far fewer possible conformations and a significant fraction of these are compact. Syndiotactic chains are often unable to access maximally compact states available to their isotactic counterparts of the same length. Similar features are observed in all-atom models of isotactic versus syndiotactic polyalanine. Our results suggest that protein isotacticity has evolved to increase the enthalpy of chain collapse by facilitating compact helical states and to reduce the entropic cost of folding by restricting the size of the unfolded ensemble of competing states. PMID:17600146

  19. Host Specificity of Salmonella typhimurium Deoxyribonucleic Acid Restriction and Modification

    PubMed Central

    Slocum, Harvey; Boyer, Herbert W.

    1973-01-01

    The restriction and modification genes of Salmonella typhimurium which lie near the thr locus were transferred to a restrictionless mutant of Escherichia coli. These genes were found to be allelic to the E. coli K, B, and A restriction and modification genes. E. coli recombinants with the restriction and modification host specificity of S. typhimurium restricted phage λ that had been modified by each of the seven known host specificities of E. coli at efficiency of plating levels of about 10−2. Phage λ modified with the S. typhimurium host specificity was restricted by six of the seven E. coli host specificities but not by the RII (fi− R-factor controlled) host specificity. It is proposed that the restriction and modification enzymes of this S. typhimurium host specificity have two substrates, one of which is a substrate for the RII host specificity enzymes. PMID:4570605

  20. Possible cleavage sites of glutelin partial degradation confirmed by immunological analysis in globulin-less mutants of rice (Oryza sativa L.).

    PubMed

    Khan, Nadar; Yamaguchi, Satoru; Katsube-Tanaka, Tomoyuki

    2017-10-01

    Proteolytic cleavage or partial degradation of proteins is one of the important post-translational modifications for various biological processes, but it is difficult to analyze. Previously, we demonstrated that some subunits of the major rice (Oryza sativa L.) seed storage protein glutelin are partially degraded to produce newly identified polypeptides X1-X5 in mutants in which another major seed storage protein globulin is absent. In this study, the new polypeptides X3 and X4/X5 were immunologically confirmed to be derived from GluA3 and GluA1/GluA2 subunits, respectively. Additionally, the new polypeptides X1 and X2 were at least in part the α polypeptides of the GluB4 subunit partially degraded at the C-terminus. Simulated 2D-PAGE migration patterns of intact and partially degraded α polypeptides based on the calculation of their MWs and pIs enabled us to narrow or predict the possible locations of cleavage sites. The predicted cleavage sites were also verified by the comparison of 2D-PAGE patterns between seed-extracted and E. coli-expressed proteins of the intact and truncated α polypeptides. The results and methodologies demonstrated here would be useful for analyses of partial degradation of proteins and the structure-function relationships of rice seed protein bodies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Multifunctional quantum dot-polypeptide hybrid nanogel for targeted imaging and drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Yao, Ming-Hao; Wen, Lang; Song, Ji-Tao; Zhang, Ming-Zhen; Zhao, Yuan-Di; Liu, Bo

    2014-09-01

    A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy.A new type of multifunctional quantum dot (QD)-polypeptide hybrid nanogel with targeted imaging and drug delivery properties has been developed by metal-affinity driven self-assembly between artificial polypeptides and CdSe-ZnS core-shell QDs. On the surface of QDs, a tunable sandwich-like microstructure consisting of two hydrophobic layers and one hydrophilic layer between them was verified by capillary electrophoresis, transmission electron microscopy, and dynamic light scattering measurements. Hydrophobic and hydrophilic drugs can be simultaneously loaded in a QD-polypeptide nanogel. In vitro drug release of drug-loaded QD-polypeptide nanogels varies strongly with temperature, pH, and competitors. A drug-loaded QD-polypeptide nanogel with an arginine-glycine-aspartic acid (RGD) motif exhibited efficient receptor-mediated endocytosis in αvβ3 overexpressing HeLa cells but not in the control MCF-7 cells as analyzed by confocal microscopy and flow cytometry. In contrast, non-targeted QD-polypeptide nanogels revealed minimal binding and uptake in HeLa cells. Compared with the original QDs, the QD-polypeptide nanogels showed lower in vitro cytotoxicity for both HeLa cells and NIH 3T3 cells. Furthermore, the cytotoxicity of the targeted QD-polypeptide nanogel was lower for normal NIH 3T3 cells than that for HeLa cancer cells. These results demonstrate that the integration of imaging and drug delivery functions in a single QD-polypeptide nanogel has the potential for application in cancer diagnosis, imaging, and therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03058c

  2. Toward the rational design of macrolide antibiotics to combat resistance

    DOE PAGES

    Pavlova, Anna; Parks, Jerry M.; Oyelere, Adegboyega K.; ...

    2017-04-17

    Here, macrolides, one of the most prescribed classes of antibiotics, bind in the bacterial ribosome's polypeptide exit tunnel and inhibit translation. However, mutations and other ribosomal modifications, especially to the base A2058 of the 23S rRNA, have led to a growing resistance problem. Here, we have used molecular dynamics simulations to study the macrolides erythromycin and azithromycin in wild-type, A2058G-mutated, and singly or doubly A2058-methylated Escherichia coli ribosomes. We find that the ribosomal modifications result in less favorable interactions between the base 2058 and the desosamine sugar of the macrolides, as well as greater displacement of the macrolides from theirmore » crystal structure position, illuminating the causes of resistance. We have also examined four azithromycin derivatives containing aromatic indole-analog moieties, which were previously designed based on simulations of the stalling peptide SecM in the ribosome. Surprisingly, we found that the studied moieties could adopt very different geometries when interacting with a key base in the tunnel, A751, possibly explaining their distinct activities. Based on our simulations, we propose modifications to the indole-analog moieties that should increase their interactions with A751 and, consequently, enhance the potency of future azithromycin derivatives.« less

  3. Toward the rational design of macrolide antibiotics to combat resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlova, Anna; Parks, Jerry M.; Oyelere, Adegboyega K.

    Here, macrolides, one of the most prescribed classes of antibiotics, bind in the bacterial ribosome's polypeptide exit tunnel and inhibit translation. However, mutations and other ribosomal modifications, especially to the base A2058 of the 23S rRNA, have led to a growing resistance problem. Here, we have used molecular dynamics simulations to study the macrolides erythromycin and azithromycin in wild-type, A2058G-mutated, and singly or doubly A2058-methylated Escherichia coli ribosomes. We find that the ribosomal modifications result in less favorable interactions between the base 2058 and the desosamine sugar of the macrolides, as well as greater displacement of the macrolides from theirmore » crystal structure position, illuminating the causes of resistance. We have also examined four azithromycin derivatives containing aromatic indole-analog moieties, which were previously designed based on simulations of the stalling peptide SecM in the ribosome. Surprisingly, we found that the studied moieties could adopt very different geometries when interacting with a key base in the tunnel, A751, possibly explaining their distinct activities. Based on our simulations, we propose modifications to the indole-analog moieties that should increase their interactions with A751 and, consequently, enhance the potency of future azithromycin derivatives.« less

  4. Tailored HIV-1 vectors for genetic modification of primary human dendritic cells and monocytes.

    PubMed

    Durand, Stéphanie; Nguyen, Xuan-Nhi; Turpin, Jocelyn; Cordeil, Stephanie; Nazaret, Nicolas; Croze, Séverine; Mahieux, Renaud; Lachuer, Joël; Legras-Lachuer, Catherine; Cimarelli, Andrea

    2013-01-01

    Monocyte-derived dendritic cells (MDDCs) play a key role in the regulation of the immune system and are the target of numerous gene therapy applications. The genetic modification of MDDCs is possible with human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LVs) but requires high viral doses to bypass their natural resistance to viral infection, and this in turn affects their physiological properties. To date, a single viral protein is able to counter this restrictive phenotype, Vpx, a protein derived from members of the HIV-2/simian immunodeficiency virus SM lineage that counters at least two restriction factors present in myeloid cells. By tagging Vpx with a short heterologous membrane-targeting domain, we have obtained HIV-1 LVs incorporating high levels of this protein (HIV-1-Src-Vpx). These vectors efficiently transduce differentiated MDDCs and monocytes either as previously purified populations or as populations within unsorted peripheral blood mononuclear cells (PBMCs). In addition, these vectors can be efficiently pseudotyped with receptor-specific envelopes, further restricting their cellular tropism almost uniquely to MDDCs. Compared to conventional HIV-1 LVs, these novel vectors allow for an efficient genetic modification of MDDCs and, more importantly, do not cause their maturation or affect their survival, which are unwanted side effects of the transduction process. This study describes HIV-1-Src-Vpx LVs as a novel potent tool for the genetic modification of differentiated MDDCs and of circulating monocyte precursors with strong potential for a wide range of gene therapy applications.

  5. Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.

    PubMed

    Yeung, Yik A; Wittrup, K Dane

    2002-01-01

    Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.

  6. Molecular description of the LCST behavior of an elastin-like polypeptide.

    PubMed

    Li, Nan K; García Quiroz, Felipe; Hall, Carol K; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2014-10-13

    Elastin-like polypeptides (ELPs) with the repeat sequence of VPGVG are widely used as a model system for investigation of lower critical solution temperature (LCST) transition behavior. In this paper, the effect of temperature on the structure, dynamics and association of (VPGVG)18 in aqueous solution is investigated using atomistic molecular dynamics simulations. Our simulations show that as the temperature increases the ELP backbones undergo gradual conformational changes, which are attributed to the formation of more ordered secondary structures such as β-strands. In addition, increasing temperature changes the hydrophobicity of the ELP by exposure of hydrophobic valine-side chains to the solvent and hiding of proline residues. Based on our simulations, we conclude that the transition behavior of (VPGVG)18 can be attributed to a combination of thermal disruption of the water network that surrounds the polypeptide, reduction of solvent accessible surface area of the polypeptide, and increase in its hydrophobicity. Simulations of the association of two (VPGVG)18 molecules demonstrated that the observed gradual changes in the structural properties of the single polypeptide chain are enough to cause the aggregation of polypeptides above the LCST. These results lead us to propose that the LCST phase behavior of poly(VPGVG) is a collective phenomenon that originates from the correlated gradual changes in single polypeptide structure and the abrupt change in properties of hydration water around the peptide and is a result of a competition between peptide-peptide and peptide-water interactions. This is a computational study of an important intrinsically disordered peptide system that provides an atomic-level description of structural features and interactions that are relevant in the LCST phase behavior.

  7. Structural properties of pyruvate carboxylases from chicken liver and other sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barden, R.E.; Taylor, B.L.; Isohashi, F.

    1975-11-01

    Varieties of pyruvate carboxylase (pyruvate: CO/sub 2/ ligase (ADP-forming), EC 6.4.1.1) obtained from the livers of several species of vertebrates, including humans, all show the same basic structure. They are composed of large polypeptide chains of molecular weights ranging from 1.2 to 1.3 x 10/sup 5/ for the different varieties of the enzyme. The native form of the enzyme appears to be a tetramer with a molecular weight of about 5 x 10/sup 5/. In the case of pyruvate carboxylase from chicken liver each polypeptide chain contains a biotin moiety, thus supporting the thesis that the tetramer contains four identicalmore » polypeptide chains. Pyruvate carboxylase from yeast appears to be basically similar to those from the vertebrate species and has a tetrameric structure. Each protomer contains a single polypeptide chain with a molecular weight of 1.25 x 10/sup 5/. In contrast, pyruvate carboxylase from two bacterial species, Pseudomonas citronellolis and Azotobacter vinelandii, appears to be a dimer with a molecular weight (2.5 x 10/sup 5/) about half that of the animal and yeast species. As a further difference, each of the protomers of the bacterial enzymes contain two polypeptides of 6.5 and 5.4 x 10/sup 5/ molecular weight in the case of the Pseudomonas enzyme. The larger of the two polypeptides contains the biotin moiety. The functional units of the bacterial enzyme thus appear to contain two polypeptides while that of the liver and yeast enzymes is made up of a single chain. Neither of these arrangements corresponds with those of other biotin enzymes whose structure has been extensively studied (acetyl-CoA carboxylases from liver or Escherichia coli, and transcarboxylase from Propionibacterium). (auth)« less

  8. Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve

    PubMed Central

    Bottacini, Francesca; Morrissey, Ruth; Roberts, Richard John; James, Kieran; van Breen, Justin; Egan, Muireann; Lambert, Jolanda; van Limpt, Kees; Knol, Jan; Motherway, Mary O’Connell; van Sinderen, Douwe

    2018-01-01

    Abstract Bifidobacterium breve represents one of the most abundant bifidobacterial species in the gastro-intestinal tract of breast-fed infants, where their presence is believed to exert beneficial effects. In the present study whole genome sequencing, employing the PacBio Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that genes encoding Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variable gene content (or variome). Using the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BS-seq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, we show that R/M systems typically impose a very significant barrier to genetic accessibility of B. breve strains, and that cloning of a methyltransferase-encoding gene may overcome such a barrier, thus allowing future functional investigations of members of this species. PMID:29294107

  9. Valyl-tRNA synthetase modification-dependent restriction of bacteriophage T4.

    PubMed Central

    Olson, N J; Marchin, G L

    1984-01-01

    A strain of Escherichia coli, CP 790302, severely restricts the growth of wild-type bacteriophage T4. In broth culture, most infections of single cells are abortive, although a few infected cells exhibit reduced burst sizes. In contrast, bacteriophage T4 mutants impaired in the ability to modify valyl-tRNA synthetase develop normally on this strain. Biochemical evidence indicates that the phage-modified valyl-tRNA synthetase in CP 790302 is different from that previously described. Although the enzyme is able to support normal protein synthesis, a disproportionate amount of phage structural protein (serum blocking power) fails to mature into particles of the appropriate density. The results with host strain CP 790302 are consistent with either a gratuitous inhibition of phage assembly by faulty modification or abrogation of an unknown role that valyl-tRNA synthetase might normally play in viral assembly. PMID:6374167

  10. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  11. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases.

    PubMed Central

    McClelland, M; Nelson, M; Raschke, E

    1994-01-01

    Restriction endonucleases have site-specific interactions with DNA that can often be inhibited by site-specific DNA methylation and other site-specific DNA modifications. However, such inhibition cannot generally be predicted. The empirically acquired data on these effects are tabulated for over 320 restriction endonucleases. In addition, a table of known site-specific DNA modification methyltransferases and their specificities is presented along with EMBL database accession numbers for cloned genes. PMID:7937074

  12. Thioamide Substitution Selectively Modulates Proteolysis and Receptor Activity of Therapeutic Peptide Hormones.

    PubMed

    Chen, Xing; Mietlicki-Baase, Elizabeth G; Barrett, Taylor M; McGrath, Lauren E; Koch-Laskowski, Kieran; Ferrie, John J; Hayes, Matthew R; Petersson, E James

    2017-11-22

    Peptide hormones are attractive as injectable therapeutics and imaging agents, but they often require extensive modification by mutagenesis and/or chemical synthesis to prevent rapid in vivo degradation. Alternatively, the single-atom, O-to-S modification of peptide backbone thioamidation has the potential to selectively perturb interactions with proteases while preserving interactions with other proteins, such as target receptors. Here, we use the validated diabetes therapeutic, glucagon-like peptide-1 (GLP-1), and the target of clinical investigation, gastric inhibitory polypeptide (GIP), as proof-of-principle peptides to demonstrate the value of thioamide substitution. In GLP-1 and GIP, a single thioamide near the scissile bond renders these peptides up to 750-fold more stable than the corresponding oxopeptides toward cleavage by dipeptidyl peptidase 4, the principal regulator of their in vivo stability. These stabilized analogues are nearly equipotent with their parent peptide in cyclic AMP activation assays, but the GLP-1 thiopeptides have much lower β-arrestin potency, making them novel agonists with altered signaling bias. Initial tests show that a thioamide GLP-1 analogue is biologically active in rats, with an in vivo potency for glycemic control surpassing that of native GLP-1. Taken together, these experiments demonstrate the potential for thioamides to modulate specific protein interactions to increase proteolytic stability or tune activation of different signaling pathways.

  13. Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory.

    PubMed

    Hofmann, Hagen

    2016-11-17

    Understanding protein folding and the functional properties of intrinsically disordered proteins (IDPs) requires detailed knowledge of the forces that act in polypeptide chains. These forces determine the dimensions and dynamics of unfolded and disordered proteins and have been suggested to impact processes such as the coupled binding and folding of IDPs, or the rate of protein folding reactions. Much of the progress in understanding the physical and chemical properties of unfolded and intrinsically disordered polypeptide chains has been made possible by the recent developments in single-molecule fluorescence techniques. However, the interpretation of the experimental results requires concepts from polymer physics in order to be understood. Here, I review some of the theories used to describe the dimensions of unfolded polypeptide chains under varying solvent conditions together with their more recent application to experimental data.

  14. cuRRBS: simple and robust evaluation of enzyme combinations for reduced representation approaches.

    PubMed

    Martin-Herranz, Daniel E; Ribeiro, António J M; Krueger, Felix; Thornton, Janet M; Reik, Wolf; Stubbs, Thomas M

    2017-11-16

    DNA methylation is an important epigenetic modification in many species that is critical for development, and implicated in ageing and many complex diseases, such as cancer. Many cost-effective genome-wide analyses of DNA modifications rely on restriction enzymes capable of digesting genomic DNA at defined sequence motifs. There are hundreds of restriction enzyme families but few are used to date, because no tool is available for the systematic evaluation of restriction enzyme combinations that can enrich for certain sites of interest in a genome. Herein, we present customised Reduced Representation Bisulfite Sequencing (cuRRBS), a novel and easy-to-use computational method that solves this problem. By computing the optimal enzymatic digestions and size selection steps required, cuRRBS generalises the traditional MspI-based Reduced Representation Bisulfite Sequencing (RRBS) protocol to all restriction enzyme combinations. In addition, cuRRBS estimates the fold-reduction in sequencing costs and provides a robustness value for the personalised RRBS protocol, allowing users to tailor the protocol to their experimental needs. Moreover, we show in silico that cuRRBS-defined restriction enzymes consistently out-perform MspI digestion in many biological systems, considering both CpG and CHG contexts. Finally, we have validated the accuracy of cuRRBS predictions for single and double enzyme digestions using two independent experimental datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  16. Structures and functions of proteins and nucleic acids in protein biosynthesis

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tatsuo; Yokoyama, Shigeyuki

    Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).

  17. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction.

    PubMed Central

    Oliver, N A; Wallace, D C

    1982-01-01

    Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria. Images PMID:6955589

  18. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes.

    PubMed Central

    Bullas, L R; Colson, C; Neufeld, B

    1980-01-01

    With the use of four different phages, Salmonella strains representing 85 different serotypes were examined to determine their restriction-modification phenotype. They fell into one of three groups on this basis: group 1, those which lacked the common LT system; group 2, those in which only the LT system could be recognized; and group 3. those which possessed the LT system and at least one other system shown with some serotypes to be closely linked to serB. The specificity of the serB-linked restriction-modification system was unique for each serotype, but different strains of the same serotype expressed the same specificity. Two of the systems were shown to behave in genetic crosses as functional alleles of the S. typhimurium SB system. It is possible that these serB-linked restriction-modification systems constitute a large multiallelic series of genes extending throughout the Salmonella genus and Escherichia coli. We suggest that the division of the Salmonella into the three restriction-modification groups may be significant in defining a "biological grouping" of the different serotypes within the genus which may ultimately be useful in describing the Salmonella species. From the genetic relatedness between the genes of some of the Salmonella restriction-modification systems with those of the E. coli systems, we deduce that the restriction endonuclases produced by the Salmonella serB-linked systems are of type 1. Determination of the nucleotide sequences of the recognition sites of the restriction endonucleases of selected Salmonella systems should further our understanding of specificity with these enzymes. PMID:6243623

  19. Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia.

    PubMed

    Johnston, Christopher D; Skeete, Chelsey A; Fomenkov, Alexey; Roberts, Richard J; Rittling, Susan R

    2017-01-01

    Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism's physiology, metabolism, and pathogenesis in human disease.

  20. Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia

    PubMed Central

    Skeete, Chelsey A.; Fomenkov, Alexey; Roberts, Richard J.; Rittling, Susan R.

    2017-01-01

    Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism’s physiology, metabolism, and pathogenesis in human disease. PMID:28934361

  1. A Novel Family in Medicago truncatula Consisting of More Than 300 Nodule-Specific Genes Coding for Small, Secreted Polypeptides with Conserved Cysteine Motifs1[w

    PubMed Central

    Mergaert, Peter; Nikovics, Krisztina; Kelemen, Zsolt; Maunoury, Nicolas; Vaubert, Danièle; Kondorosi, Adam; Kondorosi, Eva

    2003-01-01

    Transcriptome analysis of Medicago truncatula nodules has led to the discovery of a gene family named NCR (nodule-specific cysteine rich) with more than 300 members. The encoded polypeptides were short (60–90 amino acids), carried a conserved signal peptide, and, except for a conserved cysteine motif, displayed otherwise extensive sequence divergence. Family members were found in pea (Pisum sativum), broad bean (Vicia faba), white clover (Trifolium repens), and Galega orientalis but not in other plants, including other legumes, suggesting that the family might be specific for galegoid legumes forming indeterminate nodules. Gene expression of all family members was restricted to nodules except for two, also expressed in mycorrhizal roots. NCR genes exhibited distinct temporal and spatial expression patterns in nodules and, thus, were coupled to different stages of development. The signal peptide targeted the polypeptides in the secretory pathway, as shown by green fluorescent protein fusions expressed in onion (Allium cepa) epidermal cells. Coregulation of certain NCR genes with genes coding for a potentially secreted calmodulin-like protein and for a signal peptide peptidase suggests a concerted action in nodule development. Potential functions of the NCR polypeptides in cell-to-cell signaling and creation of a defense system are discussed. PMID:12746522

  2. New restriction enzymes discovered from Escherichia coli clinical strains using a plasmid transformation method

    PubMed Central

    Kasarjian, Julie K. A.; Iida, Masatake; Ryu, Junichi

    2003-01-01

    The presence of restriction enzymes in bacterial cells has been predicted by either classical phage restriction-modification (R-M) tests, direct in vitro enzyme assays or more recently from bacterial genome sequence analysis. We have applied phage R-M test principles to the transformation of plasmid DNA and established a plasmid R-M test. To validate this test, six plasmids that contain BamHI fragments of phage lambda DNA were constructed and transformed into Escherichia coli strains containing known R-M systems including: type I (EcoBI, EcoAI, Eco124I), type II (HindIII) and type III (EcoP1I). Plasmid DNA with a single recognition site showed a reduction of relative efficiency of transformation (EOT = 10–1–10–2). When multiple recognition sites were present, greater reductions in EOT values were observed. Once established in the cell, the plasmids were subjected to modification (EOT = 1.0). We applied this test to screen E.coli clinical strains and detected the presence of restriction enzymes in 93% (14/15) of cells. Using additional subclones and the computer program, RM Search, we identified four new restriction enzymes, Eco377I, Eco585I, Eco646I and Eco777I, along with their recognition sequences, GGA(8N)ATGC, GCC(6N)TGCG, CCA(7N)CTTC, and GGA(6N)TATC, respectively. Eco1158I, an isoschizomer of EcoBI, was also found in this study. PMID:12595571

  3. Molecular Determinants of Hepatitis B and D Virus Entry Restriction in Mouse Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Yan, Huan; Peng, Bo; He, Wenhui; Zhong, Guocai; Qi, Yonghe; Ren, Bijie; Gao, Zhenchao; Jing, Zhiyi; Song, Mei; Xu, Guangwei; Sui, Jianhua

    2013-01-01

    Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), primarily infect humans, chimpanzees, or tree shrews (Tupaia belangeri). Viral infections in other species are known to be mainly restricted at the entry level since viral replication can be achieved in the cells by transfection of the viral genome. Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for HBV and HDV, and amino acids 157 to 165 of NTCP are critical for viral entry and likely limit viral infection of macaques. However, the molecular determinants for viral entry restriction in mouse NTCP (mNTCP) remain unclear. In this study, mNTCP was found to be unable to support either HBV or HDV infection, although it can bind to pre-S1 of HBV L protein and is functional in transporting substrate taurocholate; comprehensive swapping and point mutations of human NTCP (hNTCP) and mNTCP revealed molecular determinants restricting mNTCP for viral entry of HBV and HDV. Remarkably, when mNTCP residues 84 to 87 were substituted by human counterparts, mNTCP can effectively support viral infections. In addition, a number of cell lines, regardless of their species or tissue origin, supported HDV infection when transfected with hNTCP or mNTCP with residues 84 to 87 replaced by human counterparts, highlighting the central role of NTCP for viral infections mediated by HBV envelope proteins. These studies advance our understanding of NTCP-mediated viral entry of HBV and HDV and have important implications for developing the mouse model for their infections. PMID:23678176

  4. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias.

    PubMed

    Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun

    2012-06-01

    A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Rhodes, Allison Jane

    Rapid renal clearance, liver accumulation, proteolytic degradation and non-specificity are challenges small molecule drugs, peptides, proteins and nucleic acid therapeutics encounter en route to their intended destination within the body. Nanocarriers (i.e. dendritric polymers, vesicles, and micelles) of approximately 100 nm in diameter, shuttle small molecule drugs to their desired location through passive (EPR effect) and active (ligand-mediated) targeting, maximizing therapeutic efficiency. Polypeptide-based polymers are water-soluble, biocompatible, non-toxic and are therefore excellent candidates for nanocarriers. Dendritic polymers, including dendrimers, cylindrical brushes, and star polymers, are the newest class of nanomedicine drug delivery vehicles. The synthesis and characterization of dendritic polymers is challenging, with tedious and costly procedures. Dendritic polymers possess peripheral pendent functional groups that can potentially be used in ligand-mediated drug delivery vehicles and bioimaging applications. More specifically, cylindrical brushes are dendritic polymers where a single linear polymer (primary chain) has polymer chains (secondary chains) grafted to it. Recently, research groups have shown that cylindrical brush polymers are capable of nanoparticle and supramolecular structure self-assembly. The facile preparation of high-density brush copolypeptides by the "grafting from" approach will be discussed. This approach utilizes a novel, tandem catalytic methodology where alloc-alpha-aminoamide groups are installed within the side-chains of the alpha-amino-N-carboxyanhydride (NCA) monomer serving as masked initiators. These groups are inert during cobalt initiated NCA polymerization, and give alloc-alpha-aminoamide substituted polypeptide main-chains. The alloc-alpha-aminoamide groups are activated in situ using nickel to generate initiators for growth of side-chain brush segments. This method proves to be efficient, yielding well-defined, high-density brushes for applications in drug delivery and imaging. Here, we also report a method for the synthesis of soluble, well-defined, azido functionalized polypeptides in a straightforward, 3-step synthesis. Homo and diblock azidopolypeptides were prepared with controlled segment lengths via living polymerization using Co(PMe3)4 initiator. Through copper azide alkyne click chemistry (CuAAC) in organic solvent, azidopolypeptides were regioselectively and quantitatively modified with carboxylic acid (pH-responsive), amino acid and sugar functional groups. Finally, the advances towards well-defined hyperbranched polypeptides through alpha-amino-acid-N-thiocarboxyanhydrides (NTAs) will be discussed. Within the past 10 years, controlled NCA (alpha-amino acid-N-carboxyanhydride) ring-opening polymerization (ROP) has emerged, expanding the application of copolypeptide polymers in various drug delivery and tissue engineering motifs. Modification of NCA monomers to the corresponding alpha-amino-acid-N-thiocarboxyanhydride (NTA) will diversify ROP reactions, leading to more complex polypeptides (such as hyperbranched polymers), in addition to the possibility of performing these polymerizations under ambient conditions, which would greatly expand their potential utility. The project focuses on the preparation of hyperbranched polypeptides with well-defined architectures and controlled branching density in a one-pot reaction. This will be accomplished by taking advantage of the different selectivities of Co(PMe3)4 and depeNi(COD) polymerization initiators, and by exploiting the reactivity difference between NCA and the more stable NTA monomers.

  6. Analysis of the internal nuclear matrix. Oligomers of a 38 kD nucleolar polypeptide stabilized by disulfide bonds.

    PubMed

    Fields, A P; Kaufmann, S H; Shaper, J H

    1986-05-01

    When rat liver nuclei are treated with the sulfhydryl cross-linking reagent sodium tetrathionate (NaTT) prior to nuclease treatment and extraction with 1.6 M NaCl, residual nucleoli and an extensive non-chromatin intranuclear network remain associated with the nuclear envelope. Subsequent treatment of this structure with 1 M NaCl containing 20 mM dithiothreitol (DTT) solubilizes the intranuclear material, while the nuclear envelope remains structurally intact. We have isolated and partially characterized a major polypeptide of the disulfide-stabilized internal nuclear matrix. The polypeptide, which has an apparent molecular mass 38 kD and isoelectric point 5.3, has been localized to the nucleolus of rat liver nuclei by indirect immunofluorescence using a specific polyclonal chicken antiserum. Based on its molecular mass, isoelectric point, intracellular localization and amino acid composition, the 38 kD polypeptide appears to be analogous to the nucleolar phosphoprotein B23 described by Prestayko et al. (Biochemistry 13 (1974) 1945) [20]. Immunologically related polypeptides have likewise been localized to the nucleoli of both hamster and human tissue culture cell lines as well as the cellular slime mold Physarum polycephalum. By immunoblotting, a single 38 kD polypeptide is recognized by the antiserum in rat, mouse, hamster and human cell lines. The antiserum has been utilized to investigate the oligomeric structure of the 38 kD polypeptide and the nature of its association with the rat liver nuclear matrix. By introducing varying numbers of disulfide bonds, we have found that the 38 kD polypeptide becomes incorporated into the internal nuclear matrix in a two-step process. Soluble disulfide-bonded homodimers of the polypeptide are first formed and then are rendered salt-insoluble by more extensive disulfide cross-linking.

  7. Structural parameterization and functional prediction of antigenic polypeptome sequences with biological activity through quantitative sequence-activity models (QSAM) by molecular electronegativity edge-distance vector (VMED).

    PubMed

    Li, ZhiLiang; Wu, ShiRong; Chen, ZeCong; Ye, Nancy; Yang, ShengXi; Liao, ChunYang; Zhang, MengJun; Yang, Li; Mei, Hu; Yang, Yan; Zhao, Na; Zhou, Yuan; Zhou, Ping; Xiong, Qing; Xu, Hong; Liu, ShuShen; Ling, ZiHua; Chen, Gang; Li, GenRong

    2007-10-01

    Only from the primary structures of peptides, a new set of descriptors called the molecular electronegativity edge-distance vector (VMED) was proposed and applied to describing and characterizing the molecular structures of oligopeptides and polypeptides, based on the electronegativity of each atom or electronic charge index (ECI) of atomic clusters and the bonding distance between atom-pairs. Here, the molecular structures of antigenic polypeptides were well expressed in order to propose the automated technique for the computerized identification of helper T lymphocyte (Th) epitopes. Furthermore, a modified MED vector was proposed from the primary structures of polypeptides, based on the ECI and the relative bonding distance of the fundamental skeleton groups. The side-chains of each amino acid were here treated as a pseudo-atom. The developed VMED was easy to calculate and able to work. Some quantitative model was established for 28 immunogenic or antigenic polypeptides (AGPP) with 14 (1-14) A(d) and 14 other restricted activities assigned as "1"(+) and "0"(-), respectively. The latter comprised 6 A(b)(15-20), 3 A(k)(21-23), 2 E(k)(24-26), 2 H-2(k)(27 and 28) restricted sequences. Good results were obtained with 90% correct classification (only 2 wrong ones for 20 training samples) and 100% correct prediction (none wrong for 8 testing samples); while contrastively 100% correct classification (none wrong for 20 training samples) and 88% correct classification (1 wrong for 8 testing samples). Both stochastic samplings and cross validations were performed to demonstrate good performance. The described method may also be suitable for estimation and prediction of classes I and II for major histocompatibility antigen (MHC) epitope of human. It will be useful in immune identification and recognition of proteins and genes and in the design and development of subunit vaccines. Several quantitative structure activity relationship (QSAR) models were developed for various oligopeptides and polypeptides including 58 dipeptides and 31 pentapeptides with angiotensin converting enzyme (ACE) inhibition by multiple linear regression (MLR) method. In order to explain the ability to characterize molecular structure of polypeptides, a molecular modeling investigation on QSAR was performed for functional prediction of polypeptide sequences with antigenic activity and heptapeptide sequences with tachykinin activity through quantitative sequence-activity models (QSAMs) by the molecular electronegativity edge-distance vector (VMED). The results showed that VMED exhibited both excellent structural selectivity and good activity prediction. Moreover, the results showed that VMED behaved quite well for both QSAR and QSAM of poly-and oligopeptides, which exhibited both good estimation ability and prediction power, equal to or better than those reported in the previous references. Finally, a preliminary conclusion was drawn: both classical and modified MED vectors were very useful structural descriptors. Some suggestions were proposed for further studies on QSAR/QSAM of proteins in various fields.

  8. Methods for transforming and expression screening of filamentous fungal cells with a DNA library

    DOEpatents

    Teter, Sarah; Lamsa, Michael; Cherry, Joel; Ward, Connie

    2015-06-02

    The present invention relates to methods for expression screening of filamentous fungal transformants, comprising: (a) isolating single colony transformants of a DNA library introduced into E. coli; (b) preparing DNA from each of the single colony E. coli transformants; (c) introducing a sample of each of the DNA preparations of step (b) into separate suspensions of protoplasts of a filamentous fungus to obtain transformants thereof, wherein each transformant contains one or more copies of an individual polynucleotide from the DNA library; (d) growing the individual filamentous fungal transformants of step (c) on selective growth medium, thereby permitting growth of the filamentous fungal transformants, while suppressing growth of untransformed filamentous fungi; and (e) measuring activity or a property of each polypeptide encoded by the individual polynucleotides. The present invention also relates to isolated polynucleotides encoding polypeptides of interest obtained by such methods, to nucleic acid constructs, expression vectors, and recombinant host cells comprising the isolated polynucleotides, and to methods of producing the polypeptides encoded by the isolated polynucleotides.

  9. Chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in rats.

    PubMed

    Han, Xun; Ran, Ye; Su, Min; Liu, Yinglu; Tang, Wenjing; Dong, Zhao; Yu, Shengyuan

    2017-01-01

    Background Preclinical experimental studies revealed an acute alteration of pituitary adenylate cyclase-activating polypeptide in response to a single activation of the trigeminovascular system, which suggests a potential role of pituitary adenylate cyclase-activating polypeptide in the pathogenesis of migraine. However, changes in pituitary adenylate cyclase-activating polypeptide after repeated migraine-like attacks in chronic migraine are not clear. Therefore, the present study investigated chronic changes in pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulations in the rat. Methods A rat model of chronic migraine was established by repeated chemical dural stimulations using an inflammatory soup for a different numbers of days. The pituitary adenylate cyclase-activating polypeptide levels were quantified in plasma, the trigeminal ganglia, and the trigeminal nucleus caudalis using radioimmunoassay and Western blotting in trigeminal ganglia and trigeminal nucleus caudalis tissues. Western blot analysis and real-time polymerase chain reaction were used to measure the protein and mRNA expression of pituitary adenylate cyclase-activating polypeptide-related receptors (PAC1, VPAC1, and VPAC2) in the trigeminal ganglia and trigeminal nucleus caudalis to identify changes associated with repetitive applications of chemical dural stimulations. Results All rats exhibited significantly decreased periorbital nociceptive thresholds to repeated inflammatory soup stimulations. Radioimmunoassay and Western blot analysis demonstrated significantly decreased pituitary adenylate cyclase-activating polypeptide levels in plasma and trigeminal ganglia after repetitive chronic inflammatory soup stimulation. Protein and mRNA analyses of pituitary adenylate cyclase-activating polypeptide-related receptors demonstrated significantly increased PAC1 receptor protein and mRNA expression in the trigeminal ganglia, but not in the trigeminal nucleus caudalis, and no significant differences were found in the expression of the VPAC1 and VPAC2 receptors. Conclusions This study demonstrated the chronic alteration of pituitary adenylate cyclase-activating polypeptide and related receptors in response to repeated chemical dural stimulation in the rat, which suggests the crucial involvement of pituitary adenylate cyclase-activating polypeptide in the development of migraine. The selective increase in pituitary adenylate cyclase-activating polypeptide-related receptors suggests that the PAC1 receptor pathway is a novel target for the treatment of migraine.

  10. Single-stage autologous ear reconstruction for microtia.

    PubMed

    Kasrai, Leila; Snyder-Warwick, Alison K; Fisher, David M

    2014-03-01

    The authors have been using the Nagata technique since 2002. In this review of 100 consecutive ear reconstructions, the authors present technique modifications that have evolved over this period that have contributed to improved auricular contour and that now allow for auricular reconstruction in a single stage. This study is a retrospective review of a prospectively acquired database. The series is restricted to primary reconstructions performed for congenital microtia. Photographs of 10 consecutive patients are presented to demonstrate the results of the technique. Surgical complication rates are discussed. One hundred ear reconstructions were performed in 96 patients. There were 75 primary cases of congenital microtia. Twenty-four ears underwent a two-stage reconstruction, and 51 ears were reconstructed with a Nagata stage I procedure or a single-stage reconstruction. There was a gradual shift in technique, with a trend to perform fewer Nagata stage II outsetting procedures and more single-stage reconstructions. In patients who underwent an ear reconstruction in two stages, the surgical complication rate was 22 percent. In the last 40 consecutive ear reconstructions since abandoning the two-stage approach, the surgical complication rate is now 15 percent. A modification of Nagata's technique of autologous ear reconstruction for microtia is described. Modifications of the three-dimensional framework address the contour of the inferior crus and control tragal projection and position. Inclusion of a projection block and recruitment of retroauricular skin allow for symmetric projection of the ear in a single stage. Therapeutic, IV.

  11. Putative Porin of Bradyrhizobium sp. (Lupinus) Bacteroids Induced by Glyphosate▿

    PubMed Central

    de María, Nuria; Guevara, Ángeles; Serra, M. Teresa; García-Luque, Isabel; González-Sama, Alfonso; de Lacoba, Mario García; de Felipe, M. Rosario; Fernández-Pascual, Mercedes

    2007-01-01

    Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed. PMID:17557843

  12. The Function and Catalysis of 2-Oxoglutarate-Dependent Oxygenases Involved in Plant Flavonoid Biosynthesis

    PubMed Central

    Cheng, Ai-Xia; Han, Xiao-Juan; Wu, Yi-Feng; Lou, Hong-Xiang

    2014-01-01

    Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism. They fulfil a variety of functions in plants and have health benefits for humans. During the synthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C ring are catalyzed by four of FeII and 2-oxoglutarate dependent (2-ODD) oxygenases, namely flavone synthase I (FNS I), flavonol synthase (FLS), anthocyanidin synthase (ANS) and flavanone 3β-hydroxylase (FHT). FNS I, FLS and ANS are involved in desaturation of C2–C3 of flavonoids and FHT in hydroxylation of C3. FNS I, which is restricted to the Apiaceae species and in rice, is predicted to have evolved from FHT by duplication. Due to their sequence similarity and substrate specificity, FLS and ANS, which interact with the α surface of the substrate, belong to a group of dioxygenases having a broad substrate specificity, while FNS I and FHT are more selective, and interact with the naringenin β surface. Here, we summarize recent findings regarding the function of the four 2-ODD oxygenases and the relationship between their catalytic activity, their polypeptide sequence and their tertiary structure. PMID:24434621

  13. Thylakoid membrane protein topography: transmembrane orientation of the chloroplast cytochrome b-559 psbE gene product.

    PubMed

    Tae, G S; Black, M T; Cramer, W A; Vallon, O; Bogorad, L

    1988-12-27

    Protease accessibility and antibody to a COOH-terminal peptide were used as probes for the in situ topography of the Mr 10,000 psbE gene product (alpha subunit) of the chloroplast cytochrome b-559. Exposure of thylakoid membranes to trypsin or Staphylococcus aureus V8 protease cleaved the alpha subunit to a slightly smaller polypeptide (delta Mr approximately -1000) as detected on Western blots, without loss of reactivity to COOH-terminal antibody. The disappearance of the parent Mr 10,000 polypeptide from thylakoids in the presence of trypsin correlated with the appearance of the smaller polypeptide with delta Mr = -750, the conversion having a half-time of approximately 15 min. Exposure of inside-out vesicles to trypsin resulted in almost complete loss of reactivity to the antibody, showing that the COOH terminus is exposed on the lumenal side of the membrane. Removal of the extrinsic polypeptides of the oxygen-evolving complex resulted in an increase of the accessibility of the alpha subunit to trypsin. These data establish that the alpha subunit of cytochrome b-559 crosses the membrane once, as predicted from its single, 26-residue, hydrophobic domain. The NH2 terminus of the alpha polypeptide is on the stromal side of the membrane, where it is accessible, most likely at Arg-7 or Glu-6/Asp-11, to trypsin or V8 protease, respectively. As a consequence of this orientation, the single histidine residue in the alpha subunit is located on the stromal side of the hydrophobic domain.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Polypeptide multilayer film co-delivers oppositely-charged drug molecules in sustained manners.

    PubMed

    Jiang, Bingbing; Defusco, Elizabeth; Li, Bingyun

    2010-12-13

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intended for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO(3)) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO(3) templates. Two oppositely charged drugs were loaded into capsules within polypeptide multilayer films postpreparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g., opposite charges) any time postpreparation (e.g., minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved.

  15. Polypeptide Multilayer Film Co-Delivers Oppositely-Charged Drug Molecules in Sustained Manners

    PubMed Central

    Jiang, Bingbing; DeFusco, Elizabeth; Li, Bingyun

    2010-01-01

    The current state-of-the-art for drug-carrying biomedical devices is mostly limited to those that release a single drug. Yet there are many situations in which more than one therapeutic agent is needed. Also, most polyelectrolyte multilayer films intending for drug delivery are loaded with active molecules only during multilayer film preparation. In this paper, we present the integration of capsules as vehicles within polypeptide multilayer films for sustained release of multiple oppositely-charged drug molecules using layer-by-layer nanoassembly technology. Calcium carbonate (CaCO3) particles were impregnated with polyelectrolytes, shelled with polyelectrolyte multilayers, and then assembled onto polypeptide multilayer films using glutaraldehyde. Capsule-integrated polypeptide multilayer films were obtained after decomposition of CaCO3 templates. Two oppositely-charged drugs were loaded into capsules within polypeptide multilayer films post-preparation based on electrostatic interactions between the drugs and the polyelectrolytes impregnated within capsules. We determined that the developed innovative capsule-integrated polypeptide multilayer films could be used to load multiple drugs of very different properties (e.g. opposite charges) any time post-preparation (e.g. minutes before surgical implantation inside an operating room), and such capsule-integrated films allowed simultaneous delivery of two oppositely-charged drug molecules and a sustained (up to two weeks or longer) and sequential release was achieved. PMID:21058719

  16. Feline APOBEC3s, Barriers to Cross-Species Transmission of FIV?

    PubMed Central

    Zhang, Zeli; Gu, Qinyong; Marino, Daniela; Lee, Kyeong-Lim; Kong, Il-Keun; Häussinger, Dieter; Münk, Carsten

    2018-01-01

    The replication of lentiviruses highly depends on host cellular factors, which defines their species-specific tropism. Cellular restriction factors that can inhibit lentiviral replication were recently identified. Feline immunodeficiency virus (FIV) was found to be sensitive to several feline cellular restriction factors, such as apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) and tetherin, but FIV evolved to counteract them. Here, we describe the molecular mechanisms by which feline APOBEC3 restriction factors inhibit FIV replication and discuss the molecular interaction of APOBEC3 proteins with the viral antagonizing protein Vif. We speculate that feline APOBEC3 proteins could explain some of the observed FIV cross-species transmissions described in wild Felids. PMID:29642583

  17. NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding.

    PubMed

    Yao, J; Chung, J; Eliezer, D; Wright, P E; Dyson, H J

    2001-03-27

    Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics of this state have been characterized by NMR. Nearly complete backbone and some side chain resonance assignments have been obtained, using a triple-resonance assignment strategy tailored to low protein concentration (0.2 mM) and poor chemical shift dispersion. An estimate of the population and location of residual secondary structure has been made by examining deviations of (13)C(alpha), (13)CO, and (1)H(alpha) chemical shifts from random coil values, scalar (3)J(HN,H)(alpha) coupling constants and (1)H-(1)H NOEs. Chemical shifts constitute a highly reliable indicator of secondary structural preferences, provided the appropriate random coil chemical shift references are used, but in the case of acid-unfolded apomyoglobin, (3)J(HN,H)(alpha) coupling constants are poor diagnostics of secondary structure formation. Substantial populations of helical structure, in dynamic equilibrium with unfolded states, are formed in regions corresponding to the A and H helices of the folded protein. In addition, the deviation of the chemical shifts from random coil values indicates the presence of helical structure encompassing the D helix and extending into the first turn of the E helix. The polypeptide backbone dynamics of acid-unfolded apomyoglobin have been investigated using reduced spectral density function analysis of (15)N relaxation data. The spectral density J(omega(N)) is particularly sensitive to variations in backbone fluctuations on the picosecond to nanosecond time scale. The central region of the polypeptide spanning the C-terminal half of the E helix, the EF turn, and the F helix behaves as a free-flight random coil chain, but there is evidence from J(omega(N)) of restricted motions on the picosecond to nanosecond time scale in the A and H helix regions where there is a propensity to populate helical secondary structure in the acid-unfolded state. Backbone fluctuations are also restricted in parts of the B and G helices due to formation of local hydrophobic clusters. Regions of restricted backbone flexibility are generally associated with large buried surface area. A significant increase in J(0) is observed for the NH resonances of some residues located in the A and G helices of the folded protein and is associated with fluctuations on a microsecond to millisecond time scale that probably arise from transient contacts between these distant regions of the polypeptide chain. Our results indicate that the equilibrium unfolded state of apomyoglobin formed at pH 2.3 is an excellent model for the events that are expected to occur in the earliest stages of protein folding, providing insights into the regions of the polypeptide that spontaneously undergo local hydrophobic collapse and sample nativelike secondary structure.

  18. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery.

    PubMed

    Zheng, Nan; Song, Ziyuan; Yang, Jiandong; Liu, Yang; Li, Fangfang; Cheng, Jianjun; Yin, Lichen

    2017-08-01

    The delivery performance of non-viral gene vectors is greatly related to their intracellular kinetics. Cationic helical polypeptides with potent membrane penetration properties and gene transfection efficiencies have been recently developed by us. However, they suffer from severe drawbacks in terms of their membrane penetration mechanisms that mainly include endocytosis and pore formation. The endocytosis mechanism leads to endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes appreciable cytotoxicity at high concentrations. With the attempt to overcome such critical challenges, we incorporated aromatic motifs into the design of helical polypeptides to enhance their membrane activities and more importantly, to manipulate their membrane penetration mechanisms. The aromatically modified polypeptides exhibited higher cellular internalization level than the unmodified analogue by up to 2.5 folds. Such improvement is possibly because aromatic domains promoted the polypeptides to penetrate cell membranes via direct transduction, a non-endocytosis and non-pore formation mechanism. As such, gene cargos were more efficiently delivered into cells by bypassing endocytosis and subsequently avoiding endosomal entrapment, and the material toxicity associated with excessive pore formation was also reduced. The top-performing aromatic polypeptide containing naphthyl side chains at the incorporated content of 20mol% revealed notably higher transfection efficiencies than commercial reagents in melanoma cells in vitro (by 11.7 folds) and in vivo (by 9.1 folds), and thus found potential utilities toward topical gene delivery for cancer therapy. Cationic helical polypeptides, as efficient gene delivery materials, suffer from severe drawbacks in terms of their membrane penetration mechanisms. The main cell penetration mechanisms involved are endocytosis and pore formation. However, the endocytosis mechanism has the limitation of endosomal entrapment of gene cargos, while the charge- and helicity-induced pore formation causes cytotoxicity at high concentrations. To address such critical issues toward the maximization of gene delivery efficiency, we incorporated aromatic domains into helical polypeptides to promote the cell membrane penetrations via direct transduction, which is a non-endocytosis and non-pore formation mechanism. The manipulation of their membrane penetration mechanisms allows gene cargos to be more efficiently delivered by bypassing endocytosis and subsequently avoiding endosomal entrapment. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Web-ware bioinformatical analysis and structure modelling of N-terminus of human multisynthetase complex auxiliary component protein p43.

    PubMed

    Deineko, Viktor

    2006-01-01

    Human multisynthetase complex auxiliary component, protein p43 is an endothelial monocyte-activating polypeptide II precursor. In this study, comprehensive sequence analysis of N-terminus has been performed to identify structural domains, motifs, sites of post-translation modification and other functionally important parameters. The spatial structure model of full-chain protein p43 is obtained.

  20. Site‐Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome

    PubMed Central

    Kuan, Seah Ling; Wang, Tao

    2016-01-01

    Abstract The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site‐directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site‐selective modifications since most proteins contain disulfide bonds. In this Review, we present the chemical design, advantages and limitations of the disulfide rebridging reagents, while summarizing their relevance for synthetic customization of functional protein bioconjugates, as well as the resultant impact and advancement for biomedical applications. PMID:27778400

  1. The elastic free energy of a tandem modular protein under force.

    PubMed

    Valle-Orero, Jessica; Eckels, Edward C; Stirnemann, Guillaume; Popa, Ionel; Berkovich, Ronen; Fernandez, Julio M

    2015-05-01

    Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins. Copyright © 2015. Published by Elsevier Inc.

  2. 78 FR 63866 - Modification of Restricted Areas R-6901A & R-6901B; Fort McCoy, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ...-0838; Airspace Docket No. 12-AGL-17] Modification of Restricted Areas R-6901A & R-6901B; Fort McCoy, WI...: This action amends Restricted Areas R-6901A and R-6901B, Fort McCoy, WI, to accurately identify the... 44597, December 11, 1986) modifying the boundaries and time of designation of the existing R-6901, Fort...

  3. A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels.

    PubMed

    Jain, Gaurav; Pendola, Martin; Rao, Ashit; Cölfen, Helmut; Evans, John Spencer

    2016-08-09

    In the purple sea urchin Strongylocentrotus purpuratus, the formation and mineralization of fracture-resistant skeletal elements such as the embryonic spicule require the combinatorial participation of numerous spicule matrix proteins such as the SpSM30A-F isoforms. However, because of limited abundance, it has been difficult to pursue extensive biochemical studies of the SpSM30 proteins and deduce their role in spicule formation and mineralization. To circumvent these problems, we expressed a model recombinant spicule matrix protein, rSpSM30B/C, which possesses the key sequence attributes of isoforms "B" and "C". Our findings indicate that rSpSM30B/C is expressed in insect cells as a single polypeptide containing variations in glycosylation that create microheterogeneity in rSpSM30B/C molecular masses. These post-translational modifications incorporate O- and N-glycans and anionic mono- and bisialylated and mono- and bisulfated monosaccharides on the protein molecules and enhance its aggregation propensity. Bioinformatics and biophysical experiments confirm that rSpSM30B/C is an intrinsically disordered, aggregation-prone protein that forms porous protein hydrogels that control the in vitro mineralization process in three ways: (1) increase the time interval for prenucleation cluster formation and transiently stabilize an ACC polymorph, (2) promote and organize single-crystal calcite nanoparticles, and (3) promote faceted growth and create surface texturing of calcite crystals. These features are also common to mollusk shell nacre proteins, and we conclude that rSpSM30B/C is a spiculogenesis protein that exhibits traits found in other calcium carbonate mineral modification proteins.

  4. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    PubMed

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.

  5. Characterization of Nora Virus Structural Proteins via Western Blot Analysis

    PubMed Central

    Ericson, Brad L.; Carlson, Darby J.

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  6. Femtosecond spectroscopy probes the folding quality of antibody fragments expressed as GFP fusions in the cytoplasm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Didier, P.; Weiss, E.; Sibler, A.-P.

    2008-02-22

    Time-resolved femtosecond spectroscopy can improve the application of green fluorescent proteins (GFPs) as protein-folding reporters. The study of ultrafast excited-state dynamics (ESD) of GFP fused to single chain variable fragment (scFv) antibody fragments, allowed us to define and measure an empirical parameter that only depends on the folding quality (FQ) of the fusion. This method has been applied to the analysis of genetic fusions expressed in the bacterial cytoplasm and allowed us to distinguish folded and thus functional antibody fragments (high FQ) with respect to misfolded antibody fragments. Moreover, these findings were strongly correlated to the behavior of the samemore » scFvs expressed in animal cells. This method is based on the sensitivity of the ESD to the modifications in the tertiary structure of the GFP induced by the aggregation state of the fusion partner. This approach may be applicable to the study of the FQ of polypeptides over-expressed under reducing conditions.« less

  7. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes.

    PubMed

    Chen, Chao; Wang, Lianrong; Chen, Si; Wu, Xiaolin; Gu, Meijia; Chen, Xi; Jiang, Susu; Wang, Yunfu; Deng, Zixin; Dedon, Peter C; Chen, Shi

    2017-04-25

    Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, 6m A methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(G PS 6m A) dinucleotides in the G PS 6m AAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(G PS A) motifs per genome, with 6m A arising from a yet-to-be-identified methyltransferase. To further explore PT and 6m A in another consensus sequence, G PS 6m ATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in G PS ATC) and Dam methyltransferase from E. coli DH10B ( 6m A in G 6m ATC). Based on this model, in vitro studies revealed reduced Dam activity in G PS ATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed 6m A in all 2,058 G PS ATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that 6m A can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.

  8. Single-molecule Protein Unfolding in Solid State Nanopores

    PubMed Central

    Talaga, David S.; Li, Jiali

    2009-01-01

    We use single silicon nitride nanopores to study folded, partially folded and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of β-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore when translocation stalls due to the primary charge sequence. Our analysis suggests that the majority of the protein molecules were linear or looped during translocation and that the electrical forces present under physiologically relevant potentials can unfold proteins. Our results show that the nanopore translocation signals are sensitive enough to distinguish the folding state of a protein and distinguish between proteins based on the excluded volume of a local segment of the polypeptide chain that transiently stalls in the nanopore due to the primary sequence of charges. PMID:19530678

  9. Biochemical Activities of Minute Virus of Mice Nonstructural Protein NS1 Are Modulated In Vitro by the Phosphorylation State of the Polypeptide

    PubMed Central

    Nüesch, Jürg P. F.; Corbau, Romuald; Tattersall, Peter; Rommelaere, Jean

    1998-01-01

    NS1, the 83-kDa major nonstructural protein of minute virus of mice (MVM), is a multifunctional nuclear phosphoprotein which is required in a variety of steps during progeny virus production, early as well as late during infection. NS1 is the initiator protein for viral DNA replication. It binds specifically to target DNA motifs; has site-specific single-strand nickase, intrinsic ATPase, and helicase activities; trans regulates viral and cellular promoters; and exerts cytotoxic stress on the host cell. To investigate whether these multiple activities of NS1 depend on posttranslational modifications, in particular phosphorylation, we expressed His-tagged NS1 in HeLa cells by using recombinant vaccinia viruses, dephosphorylated it at serine and threonine residues with calf intestine alkaline phosphatase, and compared the biochemical activities of the purified un(der)phosphorylated (NS1O) and the native (NS1P) polypeptides. Biochemical analyses of replicative functions of NS1O revealed a severe reduction of intrinsic helicase activity and, to a minor extent, of ATPase and nickase activities, whereas its affinity for the target DNA sequence [ACCA]2–3 was enhanced compared to that of NS1P. In the presence of endogenous protein kinases found in replication extracts, NS1O showed all functions necessary for resolution and replication of the 3′ dimer bridge, indicating reactivation of NS1O by rephosphorylation. Partial reactivation of the helicase activity was found as well when NS1O was incubated with protein kinase C. PMID:9733839

  10. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  11. Competitor analogs for defined T cell antigens: peptides incorporating a putative binding motif and polyproline or polyglycine spacers.

    PubMed

    Maryanski, J L; Verdini, A S; Weber, P C; Salemme, F R; Corradin, G

    1990-01-12

    We describe a new approach for modeling antigenic peptides recognized by T cells. Peptide A24 170-182 can compete with other antigenic peptides that are recognized by H-2kd-restricted cytolytic T cells, presumably by binding to the Kd molecule. By comparing substituted A24 peptides as competitors in a functional competition assay, the A24 residues Tyr-171, Thr-178, and Leu-179 were identified as possible contact residues for Kd. A highly active competitor peptide analog was synthesized in which Tyr was separated from the Thr-Leu pair by a pentaproline spacer. The choice of proline allowed the prediction of a probable conformation for the analog when bound to the Kd molecule. The simplest conformation of the A24 peptide that allows the same spacing and orientation of the motif as in the analog would be a nearly extended polypeptide chain incorporating a single 3(10) helical turn or similar structural kink.

  12. Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains.

    PubMed

    Krieger, Florian; Möglich, Andreas; Kiefhaber, Thomas

    2005-03-16

    Glycine and proline residues are frequently found in turn and loop structures of proteins and are believed to play an important role during chain compaction early in folding. We investigated their effect on the dynamics of intrachain loop formation in various unstructured polypeptide chains. Loop formation is significantly slower around trans prolyl peptide bonds and faster around glycine residues compared to any other amino acid. However, short loops are formed fastest around cis prolyl bonds with a time constant of 6 ns for end-to-end contact formation in a four-residue loop. Formation of short loops encounters activation energies in the range of 15 to 30 kJ/mol. The altered dynamics around glycine and trans prolyl bonds can be mainly ascribed to their effects on the activation energy. The fast dynamics around cis prolyl bonds, in contrast, originate in a higher Arrhenius pre-exponential factor, which compensates for an increased activation energy for loop formation compared to trans isomers. All-atom simulations of proline-containing peptides indicate that the conformational space for cis prolyl isomers is largely restricted compared to trans isomers. This leads to decreased average end-to-end distances and to a smaller loss in conformational entropy upon loop formation in cis isomers. The results further show that glycine and proline residues only influence formation of short loops containing between 2 and 10 residues, which is the typical loop size in native proteins. Formation of larger loops is not affected by the presence of a single glycine or proline residue.

  13. Reprint of "pFind-Alioth: A novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data".

    PubMed

    Chi, Hao; He, Kun; Yang, Bing; Chen, Zhen; Sun, Rui-Xiang; Fan, Sheng-Bo; Zhang, Kun; Liu, Chao; Yuan, Zuo-Fei; Wang, Quan-Hui; Liu, Si-Qi; Dong, Meng-Qiu; He, Si-Min

    2015-11-03

    Database search is the dominant approach in high-throughput proteomic analysis. However, the interpretation rate of MS/MS spectra is very low in such a restricted mode, which is mainly due to unexpected modifications and irregular digestion types. In this study, we developed a new algorithm called Alioth, to be integrated into the search engine of pFind, for fast and accurate unrestricted database search on high-resolution MS/MS data. An ion index is constructed for both peptide precursors and fragment ions, by which arbitrary digestions and a single site of any modifications and mutations can be searched efficiently. A new re-ranking algorithm is used to distinguish the correct peptide-spectrum matches from random ones. The algorithm is tested on several HCD datasets and the interpretation rate of MS/MS spectra using Alioth is as high as 60%-80%. Peptides from semi- and non-specific digestions, as well as those with unexpected modifications or mutations, can be effectively identified using Alioth and confidently validated using other search engines. The average processing speed of Alioth is 5-10 times faster than some other unrestricted search engines and is comparable to or even faster than the restricted search algorithms tested.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Improvements to the Kunkel mutagenesis protocol for constructing primary and secondary phage-display libraries.

    PubMed

    Huang, Renhua; Fang, Pete; Kay, Brian K

    2012-09-01

    Site-directed mutagenesis is routinely performed in protein engineering experiments. One method, termed Kunkel mutagenesis, is frequently used for constructing libraries of peptide or protein variants in M13 bacteriophage, followed by affinity selection of phage particles. To make this method more efficient, the following two modifications were introduced: culture was incubated at 25°C for phage replication, which yielded two- to sevenfold more single-stranded DNA template compared to growth at 37°C, and restriction endonuclease recognition sites were used to remove non-recombinants. With both of the improvements, we could construct primary libraries of high complexity and that were 99-100% recombinant. Finally, with a third modification to the standard protocol of Kunkel mutagenesis, two secondary (mutagenic) libraries of a fibronectin type III (FN3) monobody were constructed with DNA segments that were amplified by error-prone and asymmetric PCR. Two advantages of this modification are that it bypasses the lengthy steps of restriction enzyme digestion and ligation, and that the pool of phage clones, recovered after affinity selection, can be used directly to generate a secondary library. Screening one of the two mutagenic libraries yielded variants that bound two- to fourfold tighter to human Pak1 kinase than the starting clone. The protocols described in this study should accelerate the discovery of phage-displayed recombinant affinity reagents. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Prion-Associated Toxicity is Rescued by Elimination of Cotranslational Chaperones

    PubMed Central

    Keefer, Kathryn M.; True, Heather L.

    2016-01-01

    The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders. PMID:27828954

  16. Improvement of physical properties of calcium phosphate cement by elastin-like polypeptide supplementation.

    PubMed

    Jang, Ji-Hyun; Shin, Sumi; Kim, Hyun-Jung; Jeong, Jinyoung; Jin, Hyo-Eon; Desai, Malav S; Lee, Seung-Wuk; Kim, Sun-Young

    2018-03-26

    Calcium phosphate cements (CPCs) are synthetic bioactive cements widely used as hard tissue substitutes. Critical limitations of use include their poor mechanical properties and poor anti-washout behaviour. To address those limitations, we combined CPC with genetically engineered elastin-like polypeptides (ELPs). We investigated the effect of the ELPs on the physical properties and biocompatibility of CPC by testing ELP/CPC composites with various liquid/powder ratios. Our results show that the addition of ELPs improved the mechanical properties of the CPC, including the microhardness, compressive strength, and washout resistance. The biocompatibility of ELP/CPC composites was also comparable to that of the CPC alone. However, supplementing CPC with ELPs functionalized with octaglutamate as a hydroxyapatite binding peptide increased the setting time of the cement. With further design and modification of our biomolecules and composites, our research will lead to products with diverse applications in biology and medicine.

  17. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    PubMed

    Bai, Hua; Deng, Aihua; Liu, Shuwen; Cui, Di; Qiu, Qidi; Wang, Laiyou; Yang, Zhao; Wu, Jie; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-01-19

    Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome editing (RMGE) technique for scarless genetic manipulation in different microorganisms. For bacteria with Type IV REase, an RMGE technique using the inducible DNA methyltransferase gene, bceSIIM (RMGE-bceSIIM), as the counter-selection cassette was developed to edit the genome of Escherichia coli. For bacteria without Type IV REase, an RMGE technique based on a restriction endonuclease (RMGE-mcrA) was established in Bacillus subtilis. These techniques were successfully used for gene deletion and replacement with nearly 100% counter-selection efficiencies, which were higher and more stable compared to conventional methods. Furthermore, precise point mutation without limiting sites was achieved in E. coli using RMGE-bceSIIM to introduce a single base mutation of A128C into the rpsL gene. In addition, the RMGE-mcrA technique was applied to delete the CAN1 gene in Saccharomyces cerevisiae DAY414 with 100% counter-selection efficiency. The effectiveness of the RMGE technique in E. coli, B. subtilis, and S. cerevisiae suggests the potential universal usefulness of this technique for microbial genome manipulation.

  18. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    PubMed

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  19. Fibroblast Activation Protein-Alpha, a Serine protease that Facilitates Metastasis by Modification of Diverse Microenvironments

    DTIC Science & Technology

    2009-10-01

    pyrrolidine (LAF-237, vildagliptin ). Both boroPro compounds are effective against FAP at nanomolar concentrations; however, micromolar LAF-237 is...dependent insulinotropic polypeptide (GIP) that are substrates for DPPIV. NVP LAF-237 or vildagliptin is one of the DPPIV inhibitors approved for type 2...peptide truncation by Tumor growth is promoted by catalytically-inactive FAP 24 Vildagliptin ((2S)-{[(3-hydroxyadamantan-1-yl)amino]acetyl

  20. Group B Streptococcus Vaginal Carriage in Pregnant Women as Deciphered by Clustered Regularly Interspaced Short Palindromic Repeat Analysis.

    PubMed

    Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe

    2018-06-01

    We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.

  1. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    PubMed

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  2. The effect of a long-acting somatostatin analogue (SMS 201-995) on intermediary metabolism and gut hormones after a test meal in normal subjects.

    PubMed

    Fuessl, H S; Burrin, J M; Williams, G; Adrian, T E; Bloom, S R

    1987-08-01

    SMS 201-995 is an octapeptide analogue of somatostatin. The effect of a single subcutaneous (s.c.) injection of 50 micrograms SMS 201-995 on post-prandial intermediary metabolism was investigated in normal subjects. In spite of a long-lasting post-prandial suppression of insulin secretion, there were no significant changes in the plasma concentration of alanine, glycerol, 3-OH-butyrate or lactate. However, SMS 201-995 impairs carbohydrate tolerance, probably due to inhibition of insulin secretion. Basal and post-prandial plasma concentrations of the gut regulatory peptides pancreatic glucagon, motilin, pancreatic polypeptide, gastric inhibitory polypeptide, enteroglucagon, gastrin and peptide YY were suppressed up to 5 hours after subcutaneous administration of a single dose of SMS 201-995.

  3. Effect of single dose of omeprazole on the gastrointestinal peptide response to food.

    PubMed

    Allen, J M; Adrian, T E; Webster, J; Howe, A; Bloom, S R

    1984-02-01

    The gastrointestinal peptide response to food was assessed in 6 healthy subjects following oral administration of 40 mg omeprazole. There was a small but statistically significant increase in basal plasma gastrin six hours after the dose of omeprazole, but the post-prandial plasma gastrin was not significantly increased. There was no significant effect on basal or post-prandial levels of somatostatin, insulin, pancreatic glucagon, enteroglucagon, gastric inhibitory polypeptide, pancreatic polypeptide, motilin, neurotensin, cholecystokinin, secretin, vasoactive intestinal peptide and gastrin-releasing peptide or blood glucose concentration.

  4. High-resolution profiling of linear B-cell epitopes from mucin-associated surface proteins (MASPs) of Trypanosoma cruzi during human infections

    PubMed Central

    Durante, Ignacio M.; La Spina, Pablo E.; Carmona, Santiago J.; Agüero, Fernán

    2017-01-01

    Background The Trypanosoma cruzi genome bears a huge family of genes and pseudogenes coding for Mucin-Associated Surface Proteins (MASPs). MASP molecules display a ‘mosaic’ structure, with highly conserved flanking regions and a strikingly variable central and mature domain made up of different combinations of a large repertoire of short sequence motifs. MASP molecules are highly expressed in mammal-dwelling stages of T. cruzi and may be involved in parasite-host interactions and/or in diverting the immune response. Methods/Principle findings High-density microarrays composed of fully overlapped 15mer peptides spanning the entire sequences of 232 non-redundant MASPs (~25% of the total MASP content) were screened with chronic Chagasic sera. This strategy led to the identification of 86 antigenic motifs, each one likely representing a single linear B-cell epitope, which were mapped to 69 different MASPs. These motifs could be further grouped into 31 clusters of structurally- and likely antigenically-related sequences, and fully characterized. In contrast to previous reports, we show that MASP antigenic motifs are restricted to the central and mature region of MASP polypeptides, consistent with their intracellular processing. The antigenicity of these motifs displayed significant positive correlation with their genome dosage and their relative position within the MASP polypeptide. In addition, we verified the biased genetic co-occurrence of certain antigenic motifs within MASP polypeptides, compatible with proposed intra-family recombination events underlying the evolution of their coding genes. Sequences spanning 7 MASP antigenic motifs were further evaluated using distinct synthesis/display approaches and a large panel of serum samples. Overall, the serological recognition of MASP antigenic motifs exhibited a remarkable non normal distribution among the T. cruzi seropositive population, thus reducing their applicability in conventional serodiagnosis. As previously observed in in vitro and animal infection models, immune signatures supported the concurrent expression of several MASPs during human infection. Conclusions/Significance In spite of their conspicuous expression and potential roles in parasite biology, this study constitutes the first unbiased, high-resolution profiling of linear B-cell epitopes from T. cruzi MASPs during human infection. PMID:28961244

  5. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications.

    PubMed

    Khan, Aliyya; Eikani, Carlo K; Khan, Hana; Iavarone, Anthony T; Pesavento, James J

    2018-01-05

    The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.

  6. Elastin-like Polypeptide Linkers for Single-Molecule Force Spectroscopy.

    PubMed

    Ott, Wolfgang; Jobst, Markus A; Bauer, Magnus S; Durner, Ellis; Milles, Lukas F; Nash, Michael A; Gaub, Hermann E

    2017-06-27

    Single-molecule force spectroscopy (SMFS) is by now well established as a standard technique in biophysics and mechanobiology. In recent years, the technique has benefitted greatly from new approaches to bioconjugation of proteins to surfaces. Indeed, optimized immobilization strategies for biomolecules and refined purification schemes are being steadily adapted and improved, which in turn has enhanced data quality. In many previously reported SMFS studies, poly(ethylene glycol) (PEG) was used to anchor molecules of interest to surfaces and/or cantilever tips. The limitation, however, is that PEG exhibits a well-known trans-trans-gauche to all-trans transition, which results in marked deviation from standard polymer elasticity models such as the worm-like chain, particularly at elevated forces. As a result, the assignment of unfolding events to protein domains based on their corresponding amino acid chain lengths is significantly obscured. Here, we provide a solution to this problem by implementing unstructured elastin-like polypeptides as linkers to replace PEG. We investigate the suitability of tailored elastin-like polypeptides linkers and perform direct comparisons to PEG, focusing on attributes that are critical for single-molecule force experiments such as linker length, monodispersity, and bioorthogonal conjugation tags. Our results demonstrate that by avoiding the ambiguous elastic response of mixed PEG/peptide systems and instead building the molecular mechanical systems with only a single bond type with uniform elastic properties, we improve data quality and facilitate data analysis and interpretation in force spectroscopy experiments. The use of all-peptide linkers allows alternative approaches for precisely defining elastic properties of proteins linked to surfaces.

  7. GENETIC CONTROL OF RESTRICTION AND MODIFICATION IN ESCHERICHIA COLI1

    PubMed Central

    Boyer, Herbert

    1964-01-01

    Boyer, Herbert (Yale University, New Haven, Conn.). Genetic control of restriction and modification in Escherichia coli. J. Bacteriol. 88:1652–1660. 1964.—Bacterial crosses with K-12 strains of Escherichia coli as Hfr donors (Hfr Hayes, Hfr Cavalli, and Hfr P4X-6) and B/r strains of E. coli as F− recipients were found to differ from crosses between K-12 Hfr donors and K-12 F− recipients in two ways: (i) recombinants (leu, pro, lac, and gal) did not appear at discrete time intervals but did appear simultaneously 30 min after matings were initiated, and (ii) the linkage of unselected markers to selected markers was reduced. Integration of a genetic region linked to the threonine locus of K-12 into the B/r genome resulted in a hybrid which no longer gave anomalous results in conjugation experiments. A similar region of the B strain was introduced into the K-12 strain, which then behaved as a typical B F− recipient. These observations are interpreted as the manifestation of host-controlled modification and restriction on the E. coli chromosome. This was verified by experiments on the restriction and modification of the bacteriophage lambda, F-lac, F-gal, and sex-factor, F1. It was found that the genetic region that controlled the mating responses of the K-12 and B/r strains also controlled the modification and restriction properties of these two strains. The genes responsible for the restricting and modifying properties of the K-12 and B strains of E. coli were found to be allelic, linked to each other, and linked to the threonine locus. PMID:14240953

  8. The APOBEC3 Family of Retroelement Restriction Factors

    PubMed Central

    Refsland, Eric W.; Harris, Reuben S.

    2014-01-01

    The ability to regulate and even target mutagenesis is an extremely valuable cellular asset. Enzyme-catalyzed DNA cytosine deamination is a molecular strategy employed by vertebrates to promote antibody diversity and defend against foreign nucleic acids. Ten years ago, a family of cellular enzymes was first described with several proving capable of deaminating DNA and inhibiting HIV-1 replication. Ensuing studies on the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) restriction factors have uncovered a broad-spectrum innate defense network that suppresses the replication of numerous endogenous and exogenous DNA-based parasites. Although many viruses possess equally elaborate counter-defense mechanisms, the APOBEC3 enzymes offer a tantalizing possibility of leveraging innate immunity to fend off viral infection. Here we focus on mechanisms of retroelement restriction by the APOBEC3 family of restriction enzymes and we consider the therapeutic benefits, as well as the possible pathological consequences, of arming cells with active DNA deaminases. PMID:23686230

  9. Antigenic Cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of Goat.

    PubMed

    Jas, Ruma; Ghosh, Joydeb; DAS, Kinsuk

    2016-01-01

    Cross antigenicity is the major problem in developing a reliable tool for immunodiagnosis and immunoprophylaxis of parasitic diseases. Mixed infection due to different types of gastrointestinal parasites is more common than single species infection under field condition. The present study was undertaken to detect antigenic cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of goats by SDS-PAGE and western blot analysis using hyperimmune sera (HIS) rose in rabbit separately against the antigens of the three nematode species. Thirteen, 16 and 14 polypeptides in crude somatic antigen (CSAg) of H. contortus (CSAg-Hc), O. columbianum (CSAg-Oc) and T. ovis (CSAg-To), respectively, were resolved in SDS PAGE analyses. It was revealed that 54 kDa peptide was shared by H.contortus and O. columbianum , whereas 47 kDa peptide was shared by O. columbianum and T. ovis . Western blot analyses revealed that three immunogenic polypeptides (MW 54, 49 and 42 kDa) in CSAg-Hc, five in CSAg-Oc (54, 47, 44, 38 and 35.5 kDa) and CSAg-To and five polypeptides (90, 51, 47, 39.5 and 31 kDa) in CSAg-To cross-reacted with the heterologous HIS. Four species-specific immunoreactive polypeptides (92, 85, 65 and 39 kDa) of H. contortus and two (72 & 26 kDa) in O. columbianum were also identified in the study. The shared polypeptides and species-specific polypeptides might be evaluated as protective antigen and subsequently exploitation for developing immunodiagnostic and for immunoprophylactic tools of for these common nematode species.

  10. Antigenic Cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of Goat

    PubMed Central

    JAS, Ruma; GHOSH, Joydeb; DAS, Kinsuk

    2016-01-01

    Background: Cross antigenicity is the major problem in developing a reliable tool for immunodiagnosis and immunoprophylaxis of parasitic diseases. Mixed infection due to different types of gastrointestinal parasites is more common than single species infection under field condition. Methods: The present study was undertaken to detect antigenic cross-reactivity among Haemonchus contortus, Oesophagostomum columbianum and Trichuris ovis of goats by SDS-PAGE and western blot analysis using hyperimmune sera (HIS) rose in rabbit separately against the antigens of the three nematode species. Results: Thirteen, 16 and 14 polypeptides in crude somatic antigen (CSAg) of H. contortus (CSAg-Hc), O. columbianum (CSAg-Oc) and T. ovis (CSAg-To), respectively, were resolved in SDS PAGE analyses. It was revealed that 54 kDa peptide was shared by H.contortus and O. columbianum, whereas 47 kDa peptide was shared by O. columbianum and T. ovis. Western blot analyses revealed that three immunogenic polypeptides (MW 54, 49 and 42 kDa) in CSAg-Hc, five in CSAg-Oc (54, 47, 44, 38 and 35.5 kDa) and CSAg-To and five polypeptides (90, 51, 47, 39.5 and 31 kDa) in CSAg-To cross-reacted with the heterologous HIS. Four species-specific immunoreactive polypeptides (92, 85, 65 and 39 kDa) of H. contortus and two (72 & 26 kDa) in O. columbianum were also identified in the study. Conclusion: The shared polypeptides and species-specific polypeptides might be evaluated as protective antigen and subsequently exploitation for developing immunodiagnostic and for immunoprophylactic tools of for these common nematode species. PMID:28127366

  11. Targeting allosteric disulphide bonds in cancer.

    PubMed

    Hogg, Philip J

    2013-06-01

    Protein action in nature is generally controlled by the amount of protein produced and by chemical modification of the protein, and both are often perturbed in cancer. The amino acid side chains and the peptide and disulphide bonds that bind the polypeptide backbone can be post-translationally modified. Post-translational cleavage or the formation of disulphide bonds are now being identified in cancer-related proteins and it is timely to consider how these allosteric bonds could be targeted for new therapies.

  12. Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation.

    PubMed Central

    Sherman, M Y; Goldberg, A L

    1993-01-01

    The "molecular chaperone", dnaK, is induced in Escherichia coli upon heat shock and promotes ATP-dependent refolding or degradation of damaged proteins. When cells were grown at 25 degrees C and disrupted, a small fraction of the dnaK bound to affinity columns containing unfolded polypeptides (e.g., a fusion protein named CRAG or casein) and could be dissociated by ATP-Mg2+. After shifting cells to 42 degrees C for 30 min, up to 5-fold more dnaK bound to these columns than after growth at 25 degrees C. This enhanced binding capacity was reversed after shifting cells back to 25 degrees C. It resulted from a covalent modification, which decreases dnaK's electrophoretic mobility and isoelectric point. This modification appears to be phosphorylation; after treatment with phosphatases, the ATP-eluted dnaK resembled the predominant form in electrophoretic and binding properties. In addition, after incubating cells with [32P]orthophosphate at 42 degrees C, the 32P-labeled dnaK bound quantitatively to the CRAG column, unlike the nonlabeled protein. Thus, the phosphorylated dnaK is a special form of the chaperone with enhanced affinity for unfolded proteins. Its accumulation at high temperatures may account for dnaK's function as the "cellular thermometer." Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8378342

  13. Semisynthetic protein nanoreactor for single-molecule chemistry

    PubMed Central

    Lee, Joongoo; Bayley, Hagan

    2015-01-01

    The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203

  14. DNA sequence transfer between two high-cysteine chorion gene families in the silkmoth Bombyx mori.

    PubMed Central

    Iatrou, K; Tsitilou, S G; Kafatos, F C

    1984-01-01

    We have previously shown that one type of high-cysteine silkmoth chorion protein (Hc-A) has evolved from the A family of chorion proteins by radical modifications of the NH2-terminal and COOH-terminal polypeptide arms: most of the arm sequences have been deleted, while short cysteine- and glycine-containing repeats have expanded into long arrays. Strikingly similar modifications of the arms have led to the evolution of a second type of high-cysteine protein (Hc-B) from the B family of chorion proteins. It appears that the parallel evolution of these high-cysteine-encoding gene families has not been entirely independent: examination of 3' untranslated regions shows evidence of information transfer between the two families. PMID:6589605

  15. A single-chain TALEN architecture for genome engineering.

    PubMed

    Sun, Ning; Zhao, Huimin

    2014-03-04

    Transcription-activator like effector nucleases (TALENs) are tailor-made DNA endonucleases and serve as a powerful tool for genome engineering. Site-specific DNA cleavage can be made by the dimerization of FokI nuclease domains at custom-targeted genomic loci, where a pair of TALENs must be positioned in close proximity with an appropriate orientation. However, the simultaneous delivery and coordinated expression of two bulky TALEN monomers (>100 kDa) in cells may be problematic to implement for certain applications. Here, we report the development of a single-chain TALEN (scTALEN) architecture, in which two FokI nuclease domains are fused on a single polypeptide. The scTALEN was created by connecting two FokI nuclease domains with a 95 amino acid polypeptide linker, which was isolated from a linker library by high-throughput screening. We demonstrated that scTALENs were catalytically active as monomers in yeast and human cells. The use of this novel scTALEN architecture should reduce protein payload, simplify design and decrease production cost.

  16. Hydrophobic Hydration of Stimulus-Responsive Polyproteins Measured by Single Molecule Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zauscher, Stefan

    2007-03-01

    We present a new procedure to reduce and analyze force-extension data obtained by single molecule force spectroscopy (SMFS). This approach allows, for the first time, to infer effects of solvent quality and minor changes in molecular architecture on molecular-elasticity of individual (bio)macromolecules. Specifically, we show how changes in the effective Kuhn segment length can be used to interpret the hydrophobic hydration behavior of elastin-like polypeptides (ELPs).Our results are intriguing as they suggest that SMFS in combination with our analysis procedure can be used to study the subtleties of polypeptide-water interactions on the single molecule level. We also report on the force-induced cis-trans isomerization of prolines, which are repeated every fifth residue in the main chain of ELPs. We present evidence for this mechanism by Monte Carlo simulations of the force-extension curves using an elastically coupled two-state system. Our results suggest that SMFS could be used to assay proline cis-trans isomerization in proteins and may thus have significant potential diagnostic utility.

  17. The effect of guar gum on carbohydrate-, fat- and protein-stimulated gut hormone secretion: modification of postprandial gastric inhibitory polypeptide and gastrin responses.

    PubMed

    Morgan, L M; Tredger, J A; Madden, A; Kwasowski, P; Marks, V

    1985-05-01

    The effect of incorporating guar gum into predominantly single-component meals of carbohydrate, fat or protein on liquid gastric emptying and on the secretion of gastric inhibitory polypeptide (GIP), gastrin and motilin, was studied in healthy human volunteers. Volunteers were given either 80 ml Hycal (carbohydrate meal), 150 g cooked lean minced beef (protein meal) or 200 ml double cream (fat meal) either with or without 5 or 6 g guar gum. Liquid gastric emptying was monitored in the fat and protein meals by taking 1.5 g paracetamol, consumed in water, with the meals and monitoring its appearance in circulation. Postprandial insulin and GIP levels were both significantly reduced by addition of guar gum to the carbohydrate meal. Postprandial GIP secretion was also reduced by addition of guar gum to the protein meal, but protein-stimulated gastrin secretion was enhanced by guar gum. There was a significant negative correlation between peak circulating gastrin levels and the corresponding GIP levels. Postprandial GIP secretion and plasma motilin levels were unaffected by addition of guar gum to the fat meal. 5 and 10 g guar gum/l solutions in water possessed buffering capacities between pH 2.75 and 5.5. Guar gum at 5 g/l caused no detectable change in liquid gastric-emptying time. The observed augmentation of gastrin secretion by guar gum following a protein meal could be due either to the buffering capacity of guar gum or to the attenuation of GIP secretion. It is possible that the chronic use of guar gum could be associated with changes in gastric acid secretion.

  18. De novo design and engineering of functional metal and porphyrin-binding protein domains

    NASA Astrophysics Data System (ADS)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  19. Effect of long acting somatostatin-analogue, SMS 201 995, on gut hormone secretion in normal subjects.

    PubMed

    Kraenzlin, M E; Wood, S M; Neufeld, M; Adrian, T E; Bloom, S R

    1985-06-15

    SMS 201 995 is a new long acting analogue of somatostatin. We have investigated its effect on basal and meal stimulated secretion of gut hormones and have shown that after a single s.c. injection of 50 micrograms it lowers significantly the basal plasma levels of pancreatic polypeptide, secretin, motilin, pancreatic glucagon and insulin, it also effectively suppresses the postprandial release of pancreatic polypeptide, gastrin, secretin, gastric inhibitory peptide, pancreatic glucagon and insulin. Except for the usual brief discomfort of an injection, no symptoms or untoward effects were observed.

  20. Genetic Control of the Secondary Modification of Deoxyribonucleic Acid in Escherichia coli1

    PubMed Central

    Mamelak, Linda; Boyer, Herbert W.

    1970-01-01

    The wild-type restriction and modification alleles of Escherichia coli K-12 and B were found to have no measurable effect on the patterns of methylated bases in the deoxyribonucleic acid (DNA) of these strains. The genetic region controlling the methylation of cytosine in E. coli K-12 was mapped close to his, and the presence or absence of this gene in E. coli B or E. coli K had no effect on the restriction and modification properties of these strains. Thus, only a few of the methylated bases in the DNA of these strains are involved in host modification, and the biological role of the remainder remains obscure. PMID:4919756

  1. Using an Engineered Protein Model to Constrain Protein-Mineral Interactions

    NASA Astrophysics Data System (ADS)

    Chacon, S. S.; Reardon, P. N.; Washton, N.; Kleber, M.

    2015-12-01

    Exoenzymes are proteins that can catalyze the depolymerization of soil organic matter (SOM). Proteins can also be an important source of organic N for microorganisms, but must be fragmented into small peptides in order to be transported through their membranes. An exoenzyme's affinity to mineral surfaces found in soil affects their capacity to degrade SOM or other proteins. Our goal was to determine the range of modifications on proteins when they interact with a mineral surface. We hypothesized that pedogenic oxides would fragment or promote greater chemical modifications to a protein than phyllosilicates. A well-characterized protein proxy (Gb1, IEP 4.0, 6.2 kDA) was adsorbed onto functionally different mineral surfaces (goethite, montmorillonite, kaolinite and birnesite) at pH 5 and pH 7. We then generated three engineered proxies of Gb1 by inserting either negatively charged, positively charged or aromatic amino acids into the second loop. We used liquid chromatography coupled with a mass spectrometer (LC-MS/MS) and solution-state Heteronuclear Single Quantum Coherence Spectroscopy Nuclear Magnetic Resonance (HSQC NMR) to observe modifications to Gb1 that was allowed to equilibrate during the adsorption process for kaolinite, goethite, birnessite, and montmorillonite. We also used Helium Ion Microscopy (HIM) to determine which surface archetypes Gb1 preferentially adsorbed to as a function of the mineral type. The three engineered proxies were used to determine how variation of the amino acid sequence affects a protein interaction with a mineral surface. Preliminary results in the LC-MS/MS indicate that birnessite hydrolytically fragments Gb1 into polypeptides. Our results suggest that not all mineral surfaces in soil may act as sorbents for EEs and that chemical modification of their structure should also be considered as an explanation for decrease in EE activity. Our results also indicate an abiotic pathway for the turnover of proteins, although its relative contribution to protein turnover in soil must be further investigated.

  2. The singular behavior of a β-type semi-synthetic two branched polypeptide: three-dimensional structure and mode of action.

    PubMed

    Manzo, Giorgia; Serra, Ilaria; Pira, Alessandro; Pintus, Manuela; Ceccarelli, Matteo; Casu, Mariano; Rinaldi, Andrea C; Scorciapino, Mariano Andrea

    2016-11-16

    Dendrimeric peptides make a versatile group of bioactive peptidomimetics and a potential new class of antimicrobial agents to tackle the pressing threat of multi-drug resistant pathogens. These are branched supramolecular assemblies where multiple copies of the bioactive unit are linked to a central core. Beyond their antimicrobial activity, dendrimeric peptides could also be designed to functionalize the surface of nanoparticles or materials for other medical uses. Despite these properties, however, little is known about the structure-function relationship of such compounds, which is key to unveil the fundamental physico-chemical parameters and design analogues with desired attributes. To close this gap, we focused on a semi-synthetic, two-branched peptide, SB056, endowed with remarkable activity against both Gram-positive and Gram-negative bacteria and limited cytotoxicity. SB056 can be considered the smallest prototypical dendrimeric peptide, with the core restricted to a single lysine residue and only two copies of the same highly cationic 10-mer polypeptide; an octanamide tail is present at the C-terminus. Combining NMR and Molecular Dynamics simulations, we have determined the 3D structure of two analogues. Fluorescence spectroscopy was applied to investigate the water-bilayer partition in the presence of vesicles of variable charge. Vesicle leakage assays were also performed and the experimental data were analyzed by applying an iterative Monte Carlo scheme to estimate the minimum number of bound peptides needed to achieve the release. We unveiled a singular beta hairpin-type structure determined by the peptide chains only, with the octanamide tail available for further functionalization to add new potential properties without affecting the structure.

  3. Health Benefits of Fasting and Caloric Restriction.

    PubMed

    Golbidi, Saeid; Daiber, Andreas; Korac, Bato; Li, Huige; Essop, M Faadiel; Laher, Ismail

    2017-10-23

    Obesity and obesity-related diseases, largely resulting from urbanization and behavioral changes, are now of global importance. Energy restriction, though, is associated with health improvements and increased longevity. We review some important mechanisms related to calorie limitation aimed at controlling of metabolic diseases, particularly diabetes. Calorie restriction triggers a complex series of intricate events, including activation of cellular stress response elements, improved autophagy, modification of apoptosis, and alteration in hormonal balance. Intermittent fasting is not only more acceptable to patients, but it also prevents some of the adverse effects of chronic calorie restriction, especially malnutrition. There are many somatic and potentially psychologic benefits of fasting or intermittent calorie restriction. However, some behavioral modifications related to abstinence of binge eating following a fasting period are crucial in maintaining the desired favorable outcomes.

  4. Hydrogen-Bond Driven Loop-Closure Kinetics in Unfolded Polypeptide Chains

    PubMed Central

    Daidone, Isabella; Neuweiler, Hannes; Doose, Sören; Sauer, Markus; Smith, Jeremy C.

    2010-01-01

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20–100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient β-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events. PMID:20098498

  5. Effects of Protein Structure on Iron–Polypeptide Vibrational Dynamic Coupling in Cytochrome c

    DOE PAGES

    Galinato, Mary Grace I.; Bowman, Sarah E. J.; Kleingardner, Jesse G.; ...

    2014-12-22

    Cytochrome c (Cyt c) has a heme covalently bound to the polypeptide via a Cys-X-X-Cys-His (CXXCH) linker that is located in the interface region for protein–protein interactions. To determine whether the polypeptide matrix influences iron vibrational dynamics, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on 57Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c-552, and variants M13V, M13V/K22M, and A7F, which have structural modifications that alter the composition or environment of the CXXCH pentapeptide loop. Simulations of the NRVS data indicate that the 150–325 cm –1 region is dominated by N His–Fe–S Met axial ligand and polypeptide motions, while the 325–400 cmmore » –1 region shows dominant contributions from ν(Fe–N Pyr) (Pyr = pyrrole) and other heme-based modes. Diagnostic spectral signatures that directly relate to structural features of the heme active site are identified using a quantum chemistry-centered normal coordinate analysis (QCC-NCA). In particular, spectral features that directly correlate with CXXCH loop stiffness, the strength of the Fe–His interaction, and the degree of heme distortion are identified. Cumulative results from our investigation suggest that compared to the wild type (wt), variants M13V and M13V/K22M have a more rigid CXXCH pentapeptide segment, a stronger Fe–N His interaction, and a more ruffled heme. Conversely, the A7F variant has a more planar heme and a weaker Fe–NHis bond. These results are correlated to the observed changes in reduction potential between wt protein and the variants studied here. Lastly, we discuss the implications of these results for Cyt c biogenesis and electron transfer.« less

  6. Investigation of light-induced conformation changes in spiropyran-modified succinylated poly(L-lysine).

    PubMed

    Cooper, T M; Stone, M O; Natarajan, L V; Crane, R L

    1995-08-01

    To determine the maximum range of coupling between side-chain photochromism and polypeptide conformation change, we modified the carboxylate side chains of succinylated poly(L-lysine) with a spiropyran to form polypeptide I. The extent of modification was determined to be 35.5%. The spacer group length between the polypeptide alpha-carbon and the dye was 12 atoms, providing minimum polypeptide-dye interaction. Conformation changes were monitored by circular dichroism as a function of light adaptation and solvent composition (hexafluoroisopropanol [HFIP] vs trifluoroethanol [TFE]). Under all solvent compositions, the dark-adapted dye was in the merocyanine form. Light adaptation by visible light converted the dye to the spiropyran form. When dissolved in TFE, I adopted a helical conformation insensitive to light adaptation. With increasing percentage HFIP, a solvent-induced helix-to-coil transition was observed around 80% (vol/vol) HFIP. At 100% HFIP, both light- and dark-adapted forms of I were in the coil state. Near the midpoint of the solvent-induced helix-to-coil transition, light adaptation caused conformation changes. Applying helix-to-coil transition theory, we measured a statistically significant difference in coil segment-HFIP binding constant for light- vs dark-adapted solutions (6.38 +/- 0.03 M-1 vs 6.56 +/- 0.03 M-1), but not for the nucleation parameter sigma (1.2 +/- 0.4 10(-3) vs 1.3 +/- 0.3 x 10(-3). The small binding constant difference translated to a light-induced binding energy difference of 17 cal/mol/monomer. Near the midpoint of the helix-to-coil transition, collective interactions between monomer units made possible the translation of a small energy difference (less than RT) into large macromolecular conformation changes.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Evidence from in vivo manipulations of lipid composition in mutants that the delta 3-trans-hexadecenoic acid-containing phosphatidylglycerol is involved in the biogenesis of the light-harvesting chlorophyll a/b-protein complex of Chlamydomonas reinhardtii.

    PubMed

    Dubertret, G; Mirshahi, A; Mirshahi, M; Gerard-Hirne, C; Tremolieres, A

    1994-12-01

    The phosphatidylglycerol containing the unusual delta 3-trans hexadecenoic fatty acid is specifically found in photosynthetic membranes of eukaryotic organisms. Its involvement in the biogenesis and the structure of the light-harvesting chlorophyll a/b-protein complex has been evidenced by in vivo targeting this lipid to photosynthetic membranes of Chlamydomonas reinhardtii mutants lacking this lipid. In the mf1 and mf2 mutants, this deficiency results in (a) the absence of the oligomeric light-harvesting complex of photosystem 2; (b) an extensive destacking of thylakoid membranes; (c) a very low 77-K fluorescence emission in the photosystem-2 region. We show in this paper that these deficiencies result from modifications in the pigment and polypeptide compositions of the photosystem-2 light-harvesting complex; it contains less chlorophyll b and some of its constitutive polypeptides are absent or reduced in amount, while immunologically related polypeptides of lower molecular mass accumulate. The direct involvement of the lack of trans-C16: 1-phosphatidylglycerol in these deficiencies is evidenced by the partial restoration of normal characteristics of the light-harvesting complex (pigment and polypeptide composition, oligomerization) after liposome-mediated, in vivo incorporation of this lipid into the photosynthetic membranes of the mf2 mutant. Trans-C16:1-phosphatidylglycerol, therefore, is involved in the biogenesis of the photosystem-2 light-harvesting chlorophyll a/b-protein complex through a mechanism that may prevent degradation processes. Its contribution to the structural conformation of neosynthesized monomers and to their organization into stable oligomeric form is discussed.

  8. Effects of Protein Structure on Iron–Polypeptide Vibrational Dynamic Coupling in Cytochrome c

    PubMed Central

    2015-01-01

    Cytochrome c (Cyt c) has a heme covalently bound to the polypeptide via a Cys-X-X-Cys-His (CXXCH) linker that is located in the interface region for protein–protein interactions. To determine whether the polypeptide matrix influences iron vibrational dynamics, nuclear resonance vibrational spectroscopy (NRVS) measurements were performed on 57Fe-labeled ferric Hydrogenobacter thermophilus cytochrome c-552, and variants M13V, M13V/K22M, and A7F, which have structural modifications that alter the composition or environment of the CXXCH pentapeptide loop. Simulations of the NRVS data indicate that the 150–325 cm–1 region is dominated by NHis–Fe–SMet axial ligand and polypeptide motions, while the 325–400 cm–1 region shows dominant contributions from ν(Fe–NPyr) (Pyr = pyrrole) and other heme-based modes. Diagnostic spectral signatures that directly relate to structural features of the heme active site are identified using a quantum chemistry-centered normal coordinate analysis (QCC-NCA). In particular, spectral features that directly correlate with CXXCH loop stiffness, the strength of the Fe–His interaction, and the degree of heme distortion are identified. Cumulative results from our investigation suggest that compared to the wild type (wt), variants M13V and M13V/K22M have a more rigid CXXCH pentapeptide segment, a stronger Fe–NHis interaction, and a more ruffled heme. Conversely, the A7F variant has a more planar heme and a weaker Fe–NHis bond. These results are correlated to the observed changes in reduction potential between wt protein and the variants studied here. Implications of these results for Cyt c biogenesis and electron transfer are also discussed. PMID:25531247

  9. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    PubMed

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  10. MethSMRT: an integrative database for DNA N6-methyladenine and N4-methylcytosine generated by single-molecular real-time sequencing.

    PubMed

    Ye, Pohao; Luan, Yizhao; Chen, Kaining; Liu, Yizhi; Xiao, Chuanle; Xie, Zhi

    2017-01-04

    DNA methylation is an important type of epigenetic modifications, where 5- methylcytosine (5mC), 6-methyadenine (6mA) and 4-methylcytosine (4mC) are the most common types. Previous efforts have been largely focused on 5mC, providing invaluable insights into epigenetic regulation through DNA methylation. Recently developed single-molecule real-time (SMRT) sequencing technology provides a unique opportunity to detect the less studied DNA 6mA and 4mC modifications at single-nucleotide resolution. With a rapidly increased amount of SMRT sequencing data generated, there is an emerging demand to systematically explore DNA 6mA and 4mC modifications from these data sets. MethSMRT is the first resource hosting DNA 6mA and 4mC methylomes. All the data sets were processed using the same analysis pipeline with the same quality control. The current version of the database provides a platform to store, browse, search and download epigenome-wide methylation profiles of 156 species, including seven eukaryotes such as Arabidopsis, C. elegans, Drosophila, mouse and yeast, as well as 149 prokaryotes. It also offers a genome browser to visualize the methylation sites and related information such as single nucleotide polymorphisms (SNP) and genomic annotation. Furthermore, the database provides a quick summary of statistics of methylome of 6mA and 4mC and predicted methylation motifs for each species. MethSMRT is publicly available at http://sysbio.sysu.edu.cn/methsmrt/ without use restriction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Studies on the structure of sphingomyelinase. Amino acid composition and heterogeneity on isoelectric focusing.

    PubMed Central

    Jones, C S; Shankaran, P; Davidson, D J; Poulos, A; Callahan, J W

    1983-01-01

    Sphingomyelinase, purified to apparent homogeneity from human placenta, is an acidic protein, as judged from its amino acid composition and by isoelectric focusing of the carboxymethylated protein. The amino acid composition is characterized by an approximately equal content of hydrophobic and polar amino acid residues. The reduced-alkylated polypeptides were separated into two groups. Most of the polypeptides were heterogeneous with pI values of 4.4-5.0, but an additional more minor component was observed at pI 5.4. Liquid isoelectric focusing resolved the purified enzyme into a single major component (pI 4.7-4.8), a minor component (pI 5.0-5.4) and a plateau region of activity (pI 6-7). On thin-layer isoelectric focusing, the protein profile obtained from each of these regions was the same. In addition, the substrate specificity, Km values and effect of inhibitory substances were identical. We conclude that sphingomyelinase is an acidic, microheterogeneous protein that likely exists as a holopolymer of a single major polypeptide chain. the heterogeneity of the intact protein on isoelectric focusing appears to reflect this microheterogeneity, which is influenced by a tendency to associate with itself and with detergents such as Triton X-100. Images Fig. 1. Fig. 2. Fig. 4. PMID:6303305

  12. Influence of Dimerization of Lipopeptide Laur-Orn-Orn-Cys-NH2 and an N-terminal Peptide of Human Lactoferricin on Biological Activity.

    PubMed

    Kamysz, Elżbieta; Sikorska, Emilia; Dawgul, Małgorzata; Tyszkowski, Rafał; Kamysz, Wojciech

    Lactoferrin (LF) is a naturally occurring antimicrobial peptide that is cleaved by pepsin to lactoferricin (LFcin). LFcin has an enhanced antimicrobial activity as compared to that of LF. Recently several hetero- and homodimeric antimicrobial peptides stabilized by a single disulfide bond linking linear polypeptide chains have been discovered. We have demonstrated that the S-S bond heterodimerization of lipopeptide Laur-Orn-Orn-Cys-NH 2 (peptide III) and the synthetic N -terminal peptide of human lactoferricin (peptide I) yields a dimer (peptide V), which is almost as microbiologically active as the more active monomer and at the same time it is much less toxic. Furthermore, it has been found that the S-S bond homodimerization of both peptide I and peptide III did not affect antimicrobial and haemolytic activity of the compounds. The homo- and heterodimerization of peptides I and III resulted in either reduction or loss of antifungal activity. This work suggests that heterodimerization of antimicrobial lipopeptides via intermolecular disulfide bond might be a powerful modification deserving consideration in the design of antimicrobial peptides.

  13. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins

    PubMed Central

    Schlapschy, Martin; Binder, Uli; Börger, Claudia; Theobald, Ina; Wachinger, Klaus; Kisling, Sigrid; Haller, Dirk; Skerra, Arne

    2013-01-01

    A major limitation of biopharmaceutical proteins is their fast clearance from circulation via kidney filtration, which strongly hampers efficacy both in animal studies and in human therapy. We have developed conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala and Ser (PAS). PAS sequences are hydrophilic, uncharged biological polymers with biophysical properties very similar to poly-ethylene glycol (PEG), whose chemical conjugation to drugs is an established method for plasma half-life extension. In contrast, PAS polypeptides offer fusion to a therapeutic protein on the genetic level, permitting Escherichia coli production of fully active proteins and obviating in vitro coupling or modification steps. Furthermore, they are biodegradable, thus avoiding organ accumulation, while showing stability in serum and lacking toxicity or immunogenicity in mice. We demonstrate that PASylation bestows typical biologics, such as interferon, growth hormone or Fab fragments, with considerably prolonged circulation and boosts bioactivity in vivo. PMID:23754528

  14. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell.

    PubMed

    Arrigo, André-Patrick

    2017-07-01

    Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.

  15. DNA and RNA editing of retrotransposons accelerate mammalian genome evolution.

    PubMed

    Knisbacher, Binyamin A; Levanon, Erez Y

    2015-04-01

    Genome evolution is commonly viewed as a gradual process that is driven by random mutations that accumulate over time. However, DNA- and RNA-editing enzymes have been identified that can accelerate evolution by actively modifying the genomically encoded information. The apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) are potent restriction factors that can inhibit retroelements by cytosine-to-uridine editing of retroelement DNA after reverse transcription. In some cases, a retroelement may successfully integrate into the genome despite being hypermutated. Such events introduce unique sequences into the genome and are thus a source of genomic innovation. adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine editing in double-stranded RNA, commonly formed by oppositely oriented retroelements. The RNA editing confers plasticity to the transcriptome by generating many transcript variants from a single genomic locus. If the editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function. Here, we discuss how these two powerful editing mechanisms, which both target inserted retroelements, facilitate expedited genome evolution. © 2015 New York Academy of Sciences.

  16. Identification of the gene for fly non-muscle myosin heavy chain: Drosophila myosin heavy chains are encoded by a gene family.

    PubMed Central

    Kiehart, D P; Lutz, M S; Chan, D; Ketchum, A S; Laymon, R A; Nguyen, B; Goldstein, L S

    1989-01-01

    In contrast to vertebrate species Drosophila has a single myosin heavy chain gene that apparently encodes all sarcomeric heavy chain polypeptides. Flies also contain a cytoplasmic myosin heavy chain polypeptide that by immunological and peptide mapping criteria is clearly different from the major thoracic muscle isoform. Here, we identify the gene that encodes this cytoplasmic isoform and demonstrate that it is distinct from the muscle myosin heavy chain gene. Thus, fly myosin heavy chains are the products of a gene family. Our data suggest that the contractile function required to power myosin based movement in non-muscle cells requires myosin diversity beyond that available in a single heavy chain gene. In addition, we show, that accumulation of cytoplasmic myosin transcripts is regulated in a developmental stage specific fashion, consistent with a key role for this protein in the movements of early embryogenesis. Images PMID:2498088

  17. Complementation of a mutant cell line: central role of the 91 kDa polypeptide of ISGF3 in the interferon-alpha and -gamma signal transduction pathways.

    PubMed Central

    Müller, M; Laxton, C; Briscoe, J; Schindler, C; Improta, T; Darnell, J E; Stark, G R; Kerr, I M

    1993-01-01

    Mutants in complementation group U3, completely defective in the response of all genes tested to interferons (IFNs) alpha and gamma, do not express the 91 and 84 kDa polypeptide components of interferon-stimulated gene factor 3 (ISGF3), a transcription factor known to play a primary role in the IFN-alpha response pathway. The 91 and 84 kDa polypeptides are products of a single gene. They result from differential splicing and differ only in a 38 amino acid extension at the C-terminus of the 91 kDa polypeptide. Complementation of U3 mutants with cDNA constructs expressing the 91 kDa product at levels comparable to those observed in induced wild-type cells completely restored the response to both IFN-alpha and -gamma and the ability to form ISGF3. Complementation with the 84 kDa component similarly restored the ability to form ISGF3 and, albeit to a lower level, the IFN-alpha response of all genes tested so far. It failed, however, to restore the IFN-gamma response of any gene analysed. The precise nature of the DNA motifs and combination of factors required for the transcriptional response of all genes inducible by IFN-alpha and -gamma remains to be established. The results presented here, however, emphasize the apparent general requirement of the 91 kDa polypeptide in the primary transcriptional response to both types of IFN. Images PMID:7693454

  18. Purification and characterization of the glycogen-bound protein phosphatase from rat liver.

    PubMed

    Wera, S; Bollen, M; Stalmans, W

    1991-01-05

    Glycogen-bound protein phosphatase G from rat liver was transferred from glycogen to beta-cyclodextrin (cycloheptaamylose) linked to Sepharose 6B. After removal of the catalytic subunit and of contaminating proteins with 2 M NaCl, elution with beta-cyclodextrin yielded a single protein on native polyacrylamide gel electrophoresis and two polypeptides (161 and 54 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Several lines of evidence indicate that the latter polypeptides are subunits of the protein phosphatase G holoenzyme. First, these polypeptides were also present, together with the catalytic subunit, in the extensively purified holoenzyme. Also, polyclonal antibodies against these polypeptides were able to bind the holoenzyme. Further, while bound to cyclodextrin-Sepharose, the polypeptides were able to recombine with separately purified type-1 (AMD) catalytic subunit, but not with type-2A (PCS) catalytic subunit. The characteristics of the reconstituted enzyme resembled those of the nonpurified protein phosphatase G. At low dilutions, the spontaneous phosphorylase phosphatase activity of the reconstituted enzyme was about 10 times lower than that of the catalytic subunit, but it was about 1000-fold more resistant to inhibition by the modulator protein (inhibitor-2). In contrast with the free catalytic subunit, the reconstituted enzyme co-sedimented with glycogen, and it was able to activate purified liver glycogen synthase b. Also, the synthase phosphatase activity was synergistically increased by a cytosolic phosphatase and inhibited by physiological concentrations of phosphorylase alpha and of Ca2+.

  19. Polymers in Small-Interfering RNA Delivery

    PubMed Central

    Singha, Kaushik; Namgung, Ran

    2011-01-01

    This review will cover the current strategies that are being adopted to efficiently deliver small interfering RNA using nonviral vectors, including the use of polymers such as polyethylenimine, poly(lactic-co-glycolic acid), polypeptides, chitosan, cyclodextrin, dendrimers, and polymers-containing different nanoparticles. The article will provide a brief and concise account of underlying principle of these polymeric vectors and their structural and functional modifications which were intended to serve different purposes to affect efficient therapeutic outcome of small-interfering RNA delivery. The modifications of these polymeric vectors will be discussed with reference to stimuli-responsiveness, target specific delivery, and incorporation of nanoconstructs such as carbon nanotubes, gold nanoparticles, and silica nanoparticles. The emergence of small-interfering RNA as the potential therapeutic agent and its mode of action will also be mentioned in a nutshell. PMID:21749290

  20. N-Terminal Acetylation Inhibits Protein Targeting to the Endoplasmic Reticulum

    PubMed Central

    Forte, Gabriella M. A.; Pool, Martin R.; Stirling, Colin J.

    2011-01-01

    Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins. Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species. PMID:21655302

  1. A mitochondrial DNA variant, identified in Leber hereditary optic neuropathy patients, which extends the amino acid sequence of cytochrome c oxidase subunit I.

    PubMed Central

    Brown, M D; Yang, C C; Trounce, I; Torroni, A; Lott, M T; Wallace, D C

    1992-01-01

    A G-to-A transition at nucleotide pair (np) 7444 in the mtDNA was found to correlate with Leber hereditary optic neuropathy (LHON). The mutation eliminates the termination codon of the cytochrome c oxidase subunit I (COI) gene, extending the COI polypeptide by three amino acids. The mutation was discovered as an XbaI restriction-endonuclease-site loss present in 2 (9.1%) of 22 LHON patients who lacked the np 11778 LHON mutation and in 6 (1.1%) of 545 unaffected controls. The mutant polypeptide has an altered mobility on SDS-PAGE, suggesting a structural alteration, and the cytochrome c oxidase enzyme activity of patient lymphocytes is reduced approximately 40% relative to that in controls. These data suggest that the np 7444 mutation results in partial respiratory deficiency and thus contributes to the onset of LHON. Images Figure 1 Figure 3 PMID:1322638

  2. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress1[OPEN

    PubMed Central

    Augustine, Robert C.; Rytz, Thérèse C.

    2016-01-01

    In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense. PMID:27208252

  3. Anomalous temperature dependence of the IR spectrum of polyalanine

    NASA Astrophysics Data System (ADS)

    Helenius, V.; Korppi-Tommola, J.; Kotila, S.; Nieminen, J.; Lohikoski, R.; Timonen, J.

    1997-12-01

    We have studied the temperature dependence of the infrared spectra of acetanilide (ACN), tryptophan-(alanine) 15, and tyrosine-(alanine) 15. No sidebands of the amide-I vibration were observed in the polypeptides, but two anomalous sidebands of the NH stretch with a similar temperature dependence as that of the anomalous amide-I vibrational mode at 1650 cm -1 of crystalline ACN were detected. Fermi resonance combined with the appearance of a red-shifted sideband of NH stretch through coupling to lattice modes seems to explain this band structure. Observations are indicative of excitons that may occur in polypeptides as well as in single crystals of ACN.

  4. Modification of Three Amino Acids in Sodium Taurocholate Cotransporting Polypeptide Renders Mice Susceptible to Infection with Hepatitis D Virus In Vivo

    PubMed Central

    He, Wenhui; Cao, Zhiliang; Mao, Fengfeng; Ren, Bijie; Li, Yunfei; Li, Dan; Li, Huiyu; Peng, Bo; Yan, Huan; Qi, Yonghe; Sun, Yinyan; Wang, Fengchao

    2016-01-01

    ABSTRACT Sodium taurocholate cotransporting polypeptide (NTCP) was identified as a functional receptor for hepatitis D virus (HDV) and its helper hepatitis B virus (HBV). In cultured cell lines, HDV infection through mouse NTCP is restricted by residues 84 to 87 of the receptor. This study shows that mice with these three amino acids altered their corresponding human residues (H84R, T86K, and S87N) in endogenous mouse NTCP support de novo HDV infection in vivo. HDV infection was documented by the presence of replicative forms of HDV RNA and HDV proteins in liver cells at day 6 after viral inoculation. Monoclonal antibody specifically binding to the motif centered on K86 in NTCP partially inhibited HDV infection. These studies demonstrated specific interaction between the receptor and the viral envelopes in vivo and established a novel mouse model with minimal genetic manipulation for studying HDV infection. The model will also be useful for evaluating entry inhibitors against HDV and its helper HBV. IMPORTANCE NTCP was identified as a functional receptor for both HDV and HBV in cell cultures. We recently showed that neonatal C57BL/6 transgenic (Tg) mice exogenously expressing human NTCP (hNTCP-Tg) in liver support transient HDV infection. In this study, we introduced alterations of three amino acids in the endogenous NTCP of FVB mice through genome editing. The mice with the humanized NTCP residues (H84R, T86K, and S87N) are susceptible to HDV infection, and the infection can be established in both neonatal and adult mice with this editing. We also developed a monoclonal antibody specifically targeting the region of NTCP centered on lysine residue 86, and it can differentiate the modified mouse NTCP from that of the wild type and partially inhibited HDV infection. These studies shed new light on NTCP-mediated HDV infection in vivo, and the NTCP-modified mice provide a useful animal model for studying HDV infection and evaluating antivirals against the infection. PMID:27466423

  5. Engineering of N. benthamiana L. plants for production of N-acetylgalactosamine-glycosylated proteins--towards development of a plant-based platform for production of protein therapeutics with mucin type O-glycosylation.

    PubMed

    Daskalova, Sasha M; Radder, Josiah E; Cichacz, Zbigniew A; Olsen, Sam H; Tsaprailis, George; Mason, Hugh; Lopez, Linda C

    2010-08-24

    Mucin type O-glycosylation is one of the most common types of post-translational modifications that impacts stability and biological functions of many mammalian proteins. A large family of UDP-GalNAc polypeptide:N-acetyl-α-galactosaminyltransferases (GalNAc-Ts) catalyzes the first step of mucin type O-glycosylation by transferring GalNAc to serine and/or threonine residues of acceptor polypeptides. Plants do not have the enzyme machinery to perform this process, thus restricting their use as bioreactors for production of recombinant therapeutic proteins. The present study demonstrates that an isoform of the human GalNAc-Ts family, GalNAc-T2, retains its localization and functionality upon expression in N. benthamiana L. plants. The recombinant enzyme resides in the Golgi as evidenced by the fluorescence distribution pattern of the GalNAc-T2:GFP fusion and alteration of the fluorescence signature upon treatment with Brefeldin A. A GalNAc-T2-specific acceptor peptide, the 113-136 aa fragment of chorionic gonadotropin β-subunit, is glycosylated in vitro by the plant-produced enzyme at the "native" GalNAc attachment sites, Ser-121 and Ser-127. Ectopic expression of GalNAc-T2 is sufficient to "arm" tobacco cells with the ability to perform GalNAc-glycosylation, as evidenced by the attachment of GalNAc to Thr-119 of the endogenous enzyme endochitinase. However, glycosylation of highly expressed recombinant glycoproteins, like magnICON-expressed E. coli enterotoxin B subunit:H. sapiens mucin 1 tandem repeat-derived peptide fusion protein (LTBMUC1), is limited by the low endogenous UDP-GalNAc substrate pool and the insufficient translocation of UDP-GalNAc to the Golgi lumen. Further genetic engineering of the GalNAc-T2 plants by co-expressing Y. enterocolitica UDP-GlcNAc 4-epimerase gene and C. elegans UDP-GlcNAc/UDP-GalNAc transporter gene overcomes these limitations as indicated by the expression of the model LTBMUC1 protein exclusively as a glycoform. Plant bioreactors can be engineered that are capable of producing Tn antigen-containing recombinant therapeutics.

  6. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.

    PubMed

    Ma, Jinyu; Peng, Xiaofang; Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2011-08-15

    In the present study, the dual effects of phloretin and phloridzin on methylglyoxal (MGO)-induced glycation were investigated in three N(α)-acetyl amino acid (arginine, cysteine, and lysine) models and three N-terminal polypeptide (PP01, PP02, and PP03 containing arginine, cysteine, and lysine, respectively) models. In both N(α)-acetyl amino acids and N-terminal polypeptides models, the arginine residue was confirmed as the major target for modification induced by MGO. Meanwhile, MGO modification was significantly inhibited by the addition of phloretin or phloridzin via their MGO-trapping abilities, with phloretin being more effective. Interestingly, the cysteine residue was intact when solely incubated with MGO, whereas the consumption of N(α)-acetylcysteine and PP02 was promoted by the addition of phloretin. Additional adducts, [N(α)-acetylcysteine + 2MGO + phloretin-H(2)O] and [2N(α)-acetylcysteine + 2MGO + phloretin-2H(2)O] were formed in the model composed of N(α)-acetylcysteine, MGO, and phloretin. Another adduct, [PP02 + 2MGO + phloretin-H(2)O] was observed in the model composed of PP02, MGO, and phloretin. The generation of adducts indicates that phloretin could directly participate in the modification of the cysteine residue in the presence of MGO. When creatine kinase (model protein) was exposed to MGO, the addition of phloridzin did not show a significant effect on retaining the activity of creatine kinase impaired by MGO, whereas the addition of phloretin completely inactivated creatine kinase. Results of the mass spectrometric analysis of intact creatine kinase in different models demonstrated that phloretin could directly participate in the reaction between creatine kinase and MGO, which would lead to the inactivation of creatine kinase. Furthermore, the addition of N(α)-acetylcysteine was found to maintain the activity of creatine kinase incubated with phloretin and MGO. These results showed that phloretin and phloridzin could inhibit the modification of the arginine residue by MGO and that phloretin could directly participate in the reaction between the thiol group and MGO.

  7. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins

    PubMed Central

    Jung, Huihun; Pena-Francesch, Abdon; Saadat, Alham; Sebastian, Aswathy; Kim, Dong Hwan; Hamilton, Reginald F.; Albert, Istvan; Allen, Benjamin D.; Demirel, Melik C.

    2016-01-01

    Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility. PMID:27222581

  8. Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation.

    PubMed

    Robinson, Philip J; Pringle, Marie Anne; Woolhead, Cheryl A; Bulleid, Neil J

    2017-04-28

    The relationship between protein synthesis, folding, and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested that pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER, that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates. Our results demonstrate that polypeptide folding can occur without complete domain translocation. Protein disulfide isomerase (PDI) interacts with these early intermediates, but disulfide formation does not occur unless the entire sequence of the protein domain is translocated. This is the first evidence that folding of the polypeptide chain precedes disulfide formation within a cellular context and highlights key differences between protein folding in the ER and refolding of purified proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Systematic prediction of control proteins and their DNA binding sites

    PubMed Central

    Sorokin, Valeriy; Severinov, Konstantin; Gelfand, Mikhail S.

    2009-01-01

    We present here the results of a systematic bioinformatics analysis of control (C) proteins, a class of DNA-binding regulators that control time-delayed transcription of their own genes as well as restriction endonuclease genes in many type II restriction-modification systems. More than 290 C protein homologs were identified and DNA-binding sites for ∼70% of new and previously known C proteins were predicted by a combination of phylogenetic footprinting and motif searches in DNA upstream of C protein genes. Additional analysis revealed that a large proportion of C protein genes are translated from leaderless RNA, which may contribute to time-delayed nature of genetic switches operated by these proteins. Analysis of genetic contexts of newly identified C protein genes revealed that they are not exclusively associated with restriction-modification genes; numerous instances of associations with genes originating from mobile genetic elements were observed. These instances might be vestiges of ancient horizontal transfers and indicate that during evolution ancestral restriction-modification system genes were the sites of mobile elements insertions. PMID:19056824

  10. Repetition as the essence of life on this earth: music and genes.

    PubMed

    Ohno, S

    1987-01-01

    In prebiotic nucleic acid replication, templates appear to have been in short supply. A single round of tandem duplication of existing oligomers assured progressive extension of templates to the length adequate for encoding of polypeptide chains. Thus, the first set of coding sequences had to be repeats of base oligomers encoding polypeptide chains of various periodicities. On one hand, the readiness of these periodical polypeptide chains to assume alpha-helical and/or beta-sheet secondary structures contributed to the extremely rapid initial functional diversification of these polypeptide chains. It would be recalled that most, if not all, of the sugar-metabolizing enzymes had already achieved the inviolable functional competence before the division of prokaryotes from eukaryotes. On the other hand, a certain (dipeptidic?) of the peptidic periodicities was apparently chosen as the timekeeping unit by the biological clock. Musical compositions too apparently evolved originally as a timekeeping device. Accordingly, repetitiousness is evident in all musical compositions. Evolution of musical compositions from the early Baroque to the late Romantic parallels that of coding sequences from rather exact repeats of base oligomers to more complex modern coding sequences in which repetitious elements are less conspicuous and more varied. Inasmuch as the earth is governed by the hierarchy of periodicities (days, months and years), such reliance on periodicities is rather expected.

  11. Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule (N-CAM)

    PubMed Central

    1990-01-01

    mAb-based approaches were used to identify cell surface components involved in the development and function of the frog olfactory system. We describe here a 205-kD cell surface glycoprotein on olfactory receptor neurons that was detected with three mAbs: 9-OE, 5-OE, and 13- OE. mAb 9-OE immunoreactivity, unlike mAbs 5-OE and 13-OE, was restricted to only the axons and terminations of the primary sensory olfactory neurons in the frog nervous system. The 9-OE polypeptide(s) were immunoprecipitated and tested for cross-reactivity with known neural cell surface components including HNK-1, the cell adhesion molecule L1, and the neural cell adhesion molecule (N-CAM). These experiments revealed that 9-OE-reactive molecules were not L1 related but were a subset of the 200-kD isoforms of N-CAM. mAb 9-OE recognized epitopes associated with N-linked carbohydrate residues that were distinct from the polysialic acid chains present on the embryonic form of N-CAM. Moreover, 9-OE N-CAM was a heterogeneous population consisting of subsets both with and without the HNK-1 epitope. Thus, combined immunohistochemical and immunoprecipitation experiments have revealed a new glycosylated form of N-CAM unique to the olfactory system. The restricted spatial expression pattern of this N-CAM glycoform suggests a possible role in the unusual regenerative properties of this sensory system. PMID:2186048

  12. A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding

    PubMed Central

    Longo, Liam M; Tenorio, Connie A; Kumru, Ozan S; Middaugh, C Russell; Blaber, Michael

    2015-01-01

    The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile-to-mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile-to-mesophile transition by hydrophobic core-packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile-to-mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table. PMID:25297559

  13. Purification and Characterization of Two Distinct NAD(P)H Dehydrogenases from Onion (Allium cepa L.) Root Plasma Membrane.

    PubMed Central

    Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.

    1994-01-01

    Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306

  14. Chemoenzymatic Labeling of Proteins: Techniques and Approaches

    PubMed Central

    Rashidian, Mohammad; Dozier, Jonathan K.; Distefano, Mark D.

    2013-01-01

    Site-specific modification of proteins is a major challenge in modern chemical biology due to the large number of reactive functional groups typically present in polypeptides. Because of its importance in biology and medicine, the development of methods for site-specific modification of proteins is an area of intense research. Selective protein modification procedures have been useful for oriented protein immobilization, for studies of naturally-occurring post-translational modifications, for creating antibody-drug conjugates, for the introduction of fluorophores and other small molecules on to proteins, for examining protein structure, folding, dynamics and protein-protein interactions and for the preparation of protein-polymer conjugates. One of the most important approaches for protein labeling is to incorporate bioorthogonal functionalities into proteins at specific sites via enzymatic reactions. The incorporated tags then enable reactions that are chemoselective, whose functional groups are not only inert in biological media, but also do not occur natively in proteins or other macromolecules. This review article summarizes the enzymatic strategies, which enable site-specific functionalization of proteins with a variety of different functional groups. The enzymes covered in this review include formylglycine generating enzyme, sialyltransferases, phosphopantetheinyltransferases, O-GlcNAc post-translational modification, sortagging, transglutaminase, farnesyltransferase, biotin ligase, lipoic acid ligase and N-myristoyl transferase. PMID:23837885

  15. Controlled synthesis of phosphorylcholine derivatives of poly(serine) and poly(homoserine).

    PubMed

    Yakovlev, Ilya; Deming, Timothy J

    2015-04-01

    We report methods for the synthesis of polypeptides that are fully functionalized with desirable phosphorylcholine, PC, groups. Because of the inherent challenges in the direct incorporation of the PC group into α-amino acid N-carboxyanhydride (NCA) monomers, we developed a synthetic approach that combined functional NCA polymerization with efficient postpolymerization modification. While poly(L-phosphorylcholine serine) was found to be unstable upon synthesis, we successfully prepared poly(L-phosphorylcholine homoserine) with controlled chain lengths and found these to be water-soluble with disordered chain conformations.

  16. Structural basis of substrate specificity in the serine proteases.

    PubMed Central

    Perona, J. J.; Craik, C. S.

    1995-01-01

    Structure-based mutational analysis of serine protease specificity has produced a large database of information useful in addressing biological function and in establishing a basis for targeted design efforts. Critical issues examined include the function of water molecules in providing strength and specificity of binding, the extent to which binding subsites are interdependent, and the roles of polypeptide chain flexibility and distal structural elements in contributing to specificity profiles. The studies also provide a foundation for exploring why specificity modification can be either straightforward or complex, depending on the particular system. PMID:7795518

  17. Immunoassay of serum polypeptide hormones by using 125I-labelled anti(-immunoglobulin G) antibodies.

    PubMed

    Beck, P; Nicholas, H

    1975-03-01

    1. A technique for indirectly labelling antibodies to polypeptide hormones, by combining them with radioactively labelled anti-(immunoglobulin G) is described. (a) 125I-labelled anti-(rabbit immunoglobulin G) and anti-(guinea-pig immunoglobulin G) antibodies with high specific radioactivity were prepared after purification of the antibodies on immunoadsorbents containing the respective antigens. (b) Rabbit immunoglobulin G antibodies to human growth hormone, porcine glucagon and guinea-pig immunoglobulin G antibodies to bovine insulin and bovine parathyroid hormone were combined with immunoadsorbents containing the respective polypeptide hormone antigen. (c) The immunoglobulin G antibodies to the polypeptide hormones were reacted with 125-I-labelled anti-(immunoglobulin G) antibodies directed against the appropriate species of immunoglobulin G,and the anti-hormone antibodies were combined with the hormone-containing immunoadsorbent. (d) 125I-labelled anti-(immunoglobulin G) antibodies and anti-hormone antibodies were simultaneously eluted from the hormone-containing immunoadsorbent by dilute HCl, pH 2.0. After elution the anti-(immunoglobulin G) antibodies and antihormone antibodies were allowed to recombine at pH 8.0 and 4 degrees C. 2. The resultant immunoglobulin G-anti-immunoglobulin G complex was used in immunoradiometric (labelled antibody) and two-site assays of the respective polypeptide hormone. 3. By using these immunoassays, concentrations down to 90pg of human growth hormone/ml, 100 pg of bovine insulin/ml, 80 pg of bovine parathyroid hormone/ml and 150 pg of glucagon/ml were readily detected. Assays of human plasma for growth hormone and insulin by these methods showed good agreement with results obtained by using a directly 125I-labelled anti-hormone antibody in an immunoradiometric assay of human growth hormone or by radioimmunoassay of human insulin. 4. The method described allows immunoradiometric or two-site assays to be performed starting with as little as 450 ng of polypeptide hormone-antibody protein. An additional advantage of the method is that a single iodination of the readily available antibodies to immunoglobulin G allows the establishemnt of several polypeptide hormone assays

  18. Phosphorylation of Elp1 by Hrr25 Is Required for Elongator-Dependent tRNA Modification in Yeast

    PubMed Central

    Abdel-Fattah, Wael; Jablonowski, Daniel; Di Santo, Rachael; Thüring, Kathrin L.; Scheidt, Viktor; Hammermeister, Alexander; ten Have, Sara; Helm, Mark; Schaffrath, Raffael; Stark, Michael J. R.

    2015-01-01

    Elongator is a conserved protein complex comprising six different polypeptides that has been ascribed a wide range of functions, but which is now known to be required for modification of uridine residues in the wobble position of a subset of tRNAs in yeast, plants, worms and mammals. In previous work, we showed that Elongator's largest subunit (Elp1; also known as Iki3) was phosphorylated and implicated the yeast casein kinase I Hrr25 in Elongator function. Here we report identification of nine in vivo phosphorylation sites within Elp1 and show that four of these, clustered close to the Elp1 C-terminus and adjacent to a region that binds tRNA, are important for Elongator's tRNA modification function. Hrr25 protein kinase directly modifies Elp1 on two sites (Ser-1198 and Ser-1202) and through analyzing non-phosphorylatable (alanine) and acidic, phosphomimic substitutions at Ser-1198, Ser-1202 and Ser-1209, we provide evidence that phosphorylation plays a positive role in the tRNA modification function of Elongator and may regulate the interaction of Elongator both with its accessory protein Kti12 and with Hrr25 kinase. PMID:25569479

  19. Cellobiohydrolase I enzymes

    DOEpatents

    Adney, William S; Himmel, Michael E; Decker, Stephen R; Knoshaug, Eric P; Nimlos, Mark R; Crowley, Michael F; Jeoh, Tina

    2014-01-28

    Provided herein is an isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide, wherein the mutations reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. Also provided herein is an isolated Cel7A polypeptide comprising increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The increased O-linked glycosylation is a result of the addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide. In some embodiments, the isolated Cel7A polypeptide comprising mutations in the catalytic domain of the polypeptide relative to the catalytic domain of a wild type Cel7A polypeptide further comprises increased O-linked glycosylation of the linker domain relative to a linker domain of a wild type Cel7A polypeptide. The mutations in the catalytic domain reduce N-linked glycosylation of the isolated polypeptide relative to the wild type polypeptide. The addition of and/or substitution of one or more serine and/or threonine residues to the linker domain relative to the linker domain of the wild type polypeptide increases O-linked glycosylation of the isolated polypeptide. Further provided are compositions comprising such polypeptides and nucleic acids encoding such polypeptides. Still further provided are methods for making such polypeptides.

  20. Purification and properties of the heterogeneous subunits of elongation factor EF-1 from Guerin epithelioma cells.

    PubMed

    Marcinkiewicz, C; Gajko, A; Gałasiński, W

    1991-01-01

    Elongation factor EF-1 from Guerin epithelioma was separated into two subunit forms EF-1A and EF-1B by chromatography in the presence of 25% glycerol, successively on CM-Sephadex and DEAE-Sephadex. It was shown that EF-1A is a thermolabile, single polypeptide which catalyses the binding of aminoacyl-tRNA to ribosomes, similarly as eukaryotic EF-1 alpha or prokaryotic EF-Tu. EF-1B was characterized as a complex composed of at least two polypeptides. One of them is EF-1A, the other EF-1C, which stimulates EF-1A activity and protects this elongation factor from thermal inactivation.

  1. Rational approaches to the treatment of hypertension: modification of lifestyle measures.

    PubMed

    Sayarlioglu, Hayriye

    2013-12-01

    Hypertension is an important health problem. Informative counseling is required for patients to completely understand the importance of non-pharmacologic treatments. Lifestyle changes such as restriction of salt intake, exercise, restriction of alcohol intake, diet, and weight loss are included in all hypertension treatment guidelines. However, serious motivation is required from the patient and the physician to succeed in this. Although the decrease in blood pressure may be limited with these measures, lifestyle modifications should be continued.

  2. Carbohydrate moieties of myelin-associated glycoprotein, major glycoprotein of the peripheral nervous system myelin and other myelin glycoproteins potentially involved in cell adhesion.

    PubMed

    Badache, A; Burger, D; Villarroya, H; Robert, Y; Kuchler, S; Steck, A J; Zanetta, J P

    1992-01-01

    The myelin-associated glycoprotein (MAG) and the major glycoprotein of the peripheral nervous system myelin (P0) are two members of the family of cell adhesion molecules (CAMs). A role in cell adhesion of the carbohydrate moiety of these molecules has been attributed to the presence of N-glycans bearing the HNK-1 carbohydrate epitope. On the other hand, it has been suggested that these glycoproteins could be ligands of an endogenous mannose-binding lectin present in myelin, the cerebellar soluble lectin (CSL). In order to further document the heterogeneity of the glycans of these two CAMs, we have used several probes: an anti-carbohydrate antibody of the HNK-1 type, called Elec-39, the plant lectin concanavalin A (ConA), and the endogenous lectin CSL involved in myelin compaction. This study shows that CSL binds to a small proportion of the polypeptide chains of MAG found in adult CNS of rats and man and the polypeptide chains of P0 molecules from adult human and rat sciatic nerve. For MAG from adult rat brain, the binding of CSL is restricted to glycans of polypeptide chains which could be separated from the others according to their solubility properties. These MAG molecular entities react also with the Elec-39 antibody and with ConA. These results confirm that P0 and MAG are heterogeneous in their carbohydrate moieties.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. 49 CFR 232.307 - Modification of the single car air brake test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Modification of the single car air brake test... Requirements § 232.307 Modification of the single car air brake test procedures. (a) Request. The AAR or other authorized representative of the railroad industry may seek modification of the single car air brake test...

  4. 49 CFR 232.307 - Modification of the single car air brake test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Modification of the single car air brake test... Requirements § 232.307 Modification of the single car air brake test procedures. (a) Request. The AAR or other authorized representative of the railroad industry may seek modification of the single car air brake test...

  5. 49 CFR 232.307 - Modification of the single car air brake test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Requirements § 232.307 Modification of the single car air brake test procedures. (a) Request. The AAR or other authorized representative of the railroad industry may seek modification of the single car air brake test... 49 Transportation 4 2010-10-01 2010-10-01 false Modification of the single car air brake test...

  6. 49 CFR 232.307 - Modification of the single car air brake test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Requirements § 232.307 Modification of the single car air brake test procedures. (a) Request. The AAR or other authorized representative of the railroad industry may seek modification of the single car air brake test... 49 Transportation 4 2011-10-01 2011-10-01 false Modification of the single car air brake test...

  7. 49 CFR 232.307 - Modification of the single car air brake test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Requirements § 232.307 Modification of the single car air brake test procedures. (a) Request. The AAR or other authorized representative of the railroad industry may seek modification of the single car air brake test... 49 Transportation 4 2012-10-01 2012-10-01 false Modification of the single car air brake test...

  8. Push back to respond better: regulatory inhibition of the DNA double-strand break response.

    PubMed

    Panier, Stephanie; Durocher, Daniel

    2013-10-01

    Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.

  9. A structure-function study of PACAP using conformationally-restricted analogs: identification of PAC1 receptor-selective PACAP agonists

    PubMed Central

    Ramos-Álvarez, Irene; Mantey, Samuel A.; Nakamura, Taichi; Nuche-Berenguer, Bernardo; Moreno, Paola; Moody, Terry W.; Maderdrut, Jerome L.; Coy, David H.; Jensen, Robert T.

    2015-01-01

    Pituitary adenylate-cyclase-activating polypeptide (PACAP) has widespread physiological/pathophysiological actions and there is increased interest for its use therapeutically, especially in the CNS (neuroprotection). Unfortunately, no selective PACAP-analogs exist for PACAP-preferring PAC1-receptors, primarily because of its high sequence identity to VIP and particularly, because of the inability of structure-function studies to separate the pharmacophore of PAC1-R from VPAC1-R, which has high affinity for PACAP and VIP. The present study attempted to develop PAC1-R-selective agonists primarily by making conformationally-restricted PACAP -analogs in positions important for receptor-selectivity/affinity. Forty-six PACAP-related-analogs were synthesized with substitutions in positions 1–4, 14–17, 20–22 ,28,34,38 and receptor-selectivity determined in PAC1-R,VPAC1-R,VPAC2-R-transfected or native cells from binding or cAMP-generation experiments. Fifteen PACAP-analogs had 6–78-fold higher affinities for PAC1-R than VPAC1-R and 13 were agonists. Although binding-affinities correlated significantly with agonist potency, the degree of receptor-spareness varied markedly for the different PACAP-analogs, resulting in selective potencies for activating the PAC1 receptor over the VPAC1 receptor from 0- to-103-fold. In addition, a number of PACAP-analogs were identified that had high selectivity for PAC1-R over VPAC2-R as well as PACAP-analogs that could prove more useful therapeutically because of substitutions known to extend their half-lives (substitutions at potential sites of proteolysis and attachment of long-chain fatty acids). This study provides for the first time a separation of the pharmacophores for PAC1-R and VPAC1-R, resulting in PACAP-related analogs that are PAC1-R-preferring. Some of these analogs, or their modifications, could prove useful as therapeutic agents for various diseases. PMID:25698233

  10. Role of aromatic interactions in amyloid formation by islet amyloid polypeptide.

    PubMed

    Tu, Ling-Hsien; Raleigh, Daniel P

    2013-01-15

    Aromatic-aromatic and aromatic-hydrophobic interactions have been proposed to play a role in amyloid formation by a range of polypeptides, including islet amyloid polypeptide (IAPP or amylin). IAPP is responsible for amyloid formation in patients with type 2 diabetes. The polypeptide is 37 residues long and contains three aromatic residues, Phe-15, Phe-23, and Tyr-37. The ability of all single aromatic to leucine mutants, all double aromatic to leucine mutants, and the triple leucine mutant to form amyloid were examined. Amyloid formation was almost twice as rapid for the F15L mutant as for the wild type but was almost 3-fold slower for the Y37L mutant and almost 2-fold slower for the F23L mutant. Amyloid fibrils formed from each of the single mutants were effective at seeding amyloid formation by wild-type IAPP, implying that the fibril structures are similar. The F15L/F23L double mutant has a larger effect than the F15L/Y37L double mutant on the rate of amyloid formation, even though a Y37L substitution has more drastic consequences in the wild-type background than does the F23L mutation, suggesting nonadditive effects between the different sites. The triple leucine mutant and the F23L/Y37L double mutant are the slowest to form amyloid. F15 has been proposed to make important contacts early in the aggregation pathway, but the data for the F15L mutant indicate that they are not optimal. A set of variants containing natural and unnatural amino acids at position 15, which were designed to conserve hydrophobicity, but alter α-helix and β-sheet propensity, were analyzed to determine the properties of this position that control the rate of amyloid formation. There is no correlation between β-sheet propensity at this position and the rate of amyloid formation, but there is a correlation with α-helical propensity.

  11. In vivo effects of ecdysterone on puff formation, and RNA and protein synthesis in the salivary glands of Rhynchosciara americana.

    PubMed

    Alvarenga, C A; Winter, C E; Stocker, A J; Pueyo, M T; Lara, F J

    1991-01-01

    1. Fourth-instar larvae of Rhynchosciara americana were injected with the insect molting hormone, ecdysterone, giving final hemolymph concentrations from 4.46 to 223 microM. 2. Induction of the DNA puff, B2b, in the proximal (S1) region of the salivary glands of Rhynchosciara americana by 22.6 microM ecdysterone, was accompanied by the production of an mRNA and a polypeptide with the same characteristics as B2b products produced during normal development. This mRNA and polypeptide were restricted to the proximal region of the gland, as is the B2b puff. 3. Synthesis of other poly(A)+RNAs was also stimulated in S1 by ecdysterone, and other puffs that appear during normal development were induced. However, rRNA production in S1 goes through a pattern of inhibition, followed by recovery when B2b is puffed, and subsequent inhibition. 4. Low molecular weight RNA, with a peak in the region of 4S, is stimulated after ecdysterone administration.

  12. Primary structure of the Aequorea victoria green-fluorescent protein.

    PubMed

    Prasher, D C; Eckenrode, V K; Ward, W W; Prendergast, F G; Cormier, M J

    1992-02-15

    Many cnidarians utilize green-fluorescent proteins (GFPs) as energy-transfer acceptors in bioluminescence. GFPs fluoresce in vivo upon receiving energy from either a luciferase-oxyluciferin excited-state complex or a Ca(2+)-activated phosphoprotein. These highly fluorescent proteins are unique due to the chemical nature of their chromophore, which is comprised of modified amino acid (aa) residues within the polypeptide. This report describes the cloning and sequencing of both cDNA and genomic clones of GFP from the cnidarian, Aequorea victoria. The gfp10 cDNA encodes a 238-aa-residue polypeptide with a calculated Mr of 26,888. Comparison of A. victoria GFP genomic clones shows three different restriction enzyme patterns which suggests that at least three different genes are present in the A. victoria population at Friday Harbor, Washington. The gfp gene encoded by the lambda GFP2 genomic clone is comprised of at least three exons spread over 2.6 kb. The nucleotide sequences of the cDNA and the gene will aid in the elucidation of structure-function relationships in this unique class of proteins.

  13. Understanding co-polymerization in amyloid formation by direct observation of mixed oligomers† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00620a Click here for additional data file.

    PubMed Central

    Young, Lydia M.; Tu, Ling-Hsien; Raleigh, Daniel P.; Ashcroft, Alison E.

    2017-01-01

    Although amyloid assembly in vitro is commonly investigated using single protein sequences, fibril formation in vivo can be more heterogeneous, involving co-assembly of proteins of different length, sequence and/or post-translational modifications. Emerging evidence suggests that co-polymerization can alter the rate and/or mechanism of aggregation and can contribute to pathogenicity. Electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is uniquely suited to the study of these heterogeneous ensembles. Here, ESI-IMS-MS combined with analysis of fibrillation rates using thioflavin T (ThT) fluorescence, is used to track the course of aggregation of variants of islet-amyloid polypeptide (IAPP) in isolation and in pairwise mixtures. We identify a sub-population of extended monomers as the key precursors of amyloid assembly, and reveal that the fastest aggregating sequence in peptide mixtures determines the lag time of fibrillation, despite being unable to cross-seed polymerization. The results demonstrate that co-polymerization of IAPP sequences radically alters the rate of amyloid assembly by altering the conformational properties of the mixed oligomers that form. PMID:28970890

  14. Multiple isoelectric forms of poliovirus RNA-dependent RNA polymerase: Evidence for phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransone, L.J.; Dasgupta, A.

    1989-11-01

    Poliovirus-specific RNA-dependent RNA polymerase (3Dpol) was purified to apparent homogeneity. A single polypeptide of an apparent molecular weight of 63,000 catalyzes the synthesis of dimeric and monomeric RNA products in response to the poliovirion RNA template. Analysis of purified 3Dpol by two-dimensional electrophoresis showed multiple forms of 3Dpol, suggesting posttranslational modification of the protein in virus-infected cells. The two major forms of 3Dpol appear to have approximate pI values of 7.1 and 7.4. Incubation of purified 3Dpol with calf intestinal phosphatase resulted in almost complete disappearance of the pI 7.1 form and a concomitant increase in the intensity of themore » pI 7.4 form of 3Dpol. Addition of 32P-labeled Pi during infection of HeLa cells with poliovirus resulted in specific labeling of 3Dpol and 3CD, a viral protein which contains the entire 3Dpol sequence. Both 3Dpol and 3CD appear to be phosphorylated at serine residues. Ribosomal salt washes prepared from both mock- and poliovirus-infected cells contain phosphatases capable of dephosphorylating quantitatively the phosphorylated form (pI 7.1) of 3Dpol.« less

  15. Cell Wall and Membrane-Associated Exo-β-d-Glucanases from Developing Maize Seedlings1

    PubMed Central

    Kim, Jong-Bum; Olek, Anna T.; Carpita, Nicholas C.

    2000-01-01

    A β-d-glucan exohydrolase was purified from the cell walls of developing maize (Zea mays L.) shoots. The cell wall enzyme preferentially hydrolyzes the non-reducing terminal glucosyl residue from (1→3)-β-d-glucans, but also hydrolyzes (1→2)-, (1→6)-, and (1→4)-β-d-glucosyl units in decreasing order of activity. Polyclonal antisera raised against the purified exo-β-d-glucanase (ExGase) were used to select partial-length cDNA clones, and the complete sequence of 622 amino acid residues was deduced from the nucleotide sequences of the cDNA and a full-length genomic clone. Northern gel-blot analysis revealed what appeared to be a single transcript, but three distinct polypeptides were detected in immunogel-blot analyses of the ExGases extracted from growing coleoptiles. Two polypeptides appear in the cell wall, where one polypeptide is constitutive, and the second appears at the time of the maximum rate of elongation and reaches peak activity after elongation has ceased. The appearance of the second polypeptide coincides with the disappearance of the mixed-linkage (1→3),(1→4)-β-d-glucan, whose accumulation is associated with cell elongation in grasses. The third polypeptide of the ExGase is an extrinsic protein associated with the exterior surface of the plasma membrane. Although the activity of the membrane-associated ExGase is highest against (1→3)-β-d-glucans, the activity against (1→4)-β-d-glucan linkages is severely attenuated and, therefore, the enzyme is unlikely to be involved with turnover of the (1→3),(1→4)-β-d-glucan. We propose three potential functions for this novel ExGase at the membrane-wall interface. PMID:10859178

  16. Folding and self-assembly of polypeptides: Dynamics and thermodynamics from molecular simulation

    NASA Astrophysics Data System (ADS)

    Fluitt, Aaron Michael

    Empowered by their exquisite three-dimensional structures, or "folds," proteins carry out biological tasks with high specificity, efficiency, and fidelity. The fold that optimizes biological function represents a stable configuration of the constituent polypeptide molecule(s) under physiological conditions. Proteins and polypeptides are not static, however: battered by thermal motion, they explore a distribution of folds that is determined by the sequence of amino acids, the presence and identity of other molecules, and the thermodynamic conditions. In this dissertation, we apply molecular simulation techniques to the study of two polypeptides that have unusually diffuse distributions of folds under physiological conditions: polyglutamine (polyQ) and islet amyloid polypeptide (IAPP). Neither polyQ nor IAPP adopts a predominant fold in dilute aqueous solution, but at sufficient concentrations, both are prone to self-assemble into stable, periodic, and highly regular aggregate structures known as amyloid. The appearance of amyloid deposits of polyQ in the brain, and of IAPP in the pancreas, are associated with Huntington's disease and type 2 diabetes, respectively. A molecular view of the mechanism(s) by which polyQ and IAPP fold and self-assemble will enhance our understanding of disease pathogenesis, and it has the potential to accelerate the development of therapeutics that target early-stage aggregates. Using molecular simulations with spatial and temporal resolution on the atomic scale, we present analyses of the structural distributions of polyQ and IAPP under various conditions, both in and out of equilibrium. In particular, we examine amyloid fibers of polyQ, the IAPP dimer in solution, and single IAPP fragments at a lipid bilayer. We also benchmark the molecular models, or "force fields," available for such studies, and we introduce a novel simulation algorithm.

  17. Biosynthesis, targeting, and processing of lysosomal proteins: pulse-chase labeling and immune precipitation.

    PubMed

    Pohl, Sandra; Hasilik, Andrej

    2015-01-01

    Incorporation of radioactive precursors of amino acids and/or modifier groups into proteins, isolation and sizing of polypeptide species of interest, and finally their detection and characterization provide a robust handle to examine the life cycle and varied modifications of any protein. A prerequisite in application of these techniques to lysosomal enzymes is the availability of an avid and specific antibody, because lysosomal proteins represent a very minor fraction of the cellular protein and must be purified without a significant loss many 1000-fold as conveniently as possible. Pulse-chase labeling and good knowledge on organelle-specific modifications of lysosomal proteins may enhance the information that can be obtained from such experiments. We describe procedures for pulse-chase labeling experiments that have proven to work with a commercially available antibody against a mouse and a human lysosomal protease and can be used as a reference in establishing the technique in any laboratory that has an access to a certified isotope facility and the knowledge to handle radioactivity safely. We discuss the crucial steps and refer to alternatives described in the literature. The present model protein cathepsin Z is synthesized as a larger proenzyme that contains two N-linked oligosaccharides and matures to a shorter single chain enzyme retaining the processed oligosaccharides. A pulse-chase experiment demonstrates the conversion of the precursor into the mature form. In addition, results on deglycosylation of metabolically labeled cathepsin Z are shown and the alterations in the apparent size of the glycopeptides are explained. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea.

    PubMed Central

    Brown, D P; Idler, K B; Katz, L

    1990-01-01

    The 18.1-kilobase plasmid pSE211 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site. Restriction analysis of the integrated plasmid, pSE211int, and adjacent chromosomal sequences allowed identification of attP, the plasmid attachment site. Nucleotide sequencing of attP, attB, attL, and attR revealed a 57-base-pair sequence common to all sites with no duplications of adjacent plasmid or chromosomal sequences in the integrated state, indicating that integration takes place through conservative, reciprocal strand exchange. An analysis of the sequences indicated the presence of a putative gene for Phe-tRNA at attB which is preserved at attL after integration has occurred. A comparison of the attB site for a number of actinomycete plasmids is presented. Integration at attB was also observed when a 2.4-kilobase segment of pSE211 containing attP and the adjacent plasmid sequence was used to transform a pSE211- host. Nucleotide sequencing of this segment revealed the presence of two complete open reading frames (ORFs) and a segment of a third ORF. The ORF adjacent to attP encodes a putative polypeptide 437 amino acids in length that shows similarity, at its C-terminal domain, to sequences of site-specific recombinases of the integrase family. The adjacent ORF encodes a putative 98-amino-acid basic polypeptide that contains a helix-turn-helix motif at its N terminus which corresponds to domains in the Xis proteins of a number of bacteriophages. A proposal for the function of this polypeptide is presented. The deduced amino acid sequence of the third ORF did not reveal similarities to polypeptide sequences in the current data banks. Images FIG. 2 FIG. 3 PMID:2180909

  19. Polypeptide Synthesis in Simian Virus 5-Infected Cells

    PubMed Central

    Peluso, Richard W.; Lamb, Robert A.; Choppin, Purnell W.

    1977-01-01

    Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F0) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F1 and F2. No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus replication is discussed. Images PMID:196101

  20. Stable expression of hepatitis delta virus antigen in a eukaryotic cell line.

    PubMed

    Macnaughton, T B; Gowans, E J; Reinboth, B; Jilbert, A R; Burrell, C J

    1990-06-01

    The gene encoding the hepatitis delta virus structural antigen (HDAg) was linked to a neomycin resistance gene in a retrovirus expression vector, and human HepG2 cells were transfected with the recombinant plasmid. A stable cell line was cloned that expressed HDAg in the nuclei of 100% of cells, in a pattern indicating a close relationship with cell nucleoli. Analysis of partially purified recombinant HDAg by HPLC showed an Mr in the range of 7 x 10(5) to 2 x 10(6), which appeared to contain conformation-dependent epitopes, whereas the density of the antigen was 1.19 g/ml by equilibrium centrifugation in caesium chloride, and in rate zonal centrifugation it sedimented with a value of 50S, close to that of particulate hepatitis B virus surface antigen. Immunoblotting demonstrated a single polypeptide with an Mr of 24K which corresponded to the smaller of the two HDAg-specific polypeptides present in infected sera. The recombinant HDAg polypeptide was shown to be a RNA-binding protein with specificity for both genomic and antigenomic species of hepatitis delta virus RNA.

  1. Mechanically Controlled Electron Transfer in a Single-Polypeptide Transistor

    NASA Astrophysics Data System (ADS)

    Sheu, Sheh-Yi; Yang, Dah-Yen

    2017-01-01

    Proteins are of interest in nano-bio electronic devices due to their versatile structures, exquisite functionality and specificity. However, quantum transport measurements produce conflicting results due to technical limitations whereby it is difficult to precisely determine molecular orientation, the nature of the moieties, the presence of the surroundings and the temperature; in such circumstances a better understanding of the protein electron transfer (ET) pathway and the mechanism remains a considerable challenge. Here, we report an approach to mechanically drive polypeptide flip-flop motion to achieve a logic gate with ON and OFF states during protein ET. We have calculated the transmission spectra of the peptide-based molecular junctions and observed the hallmarks of electrical current and conductance. The results indicate that peptide ET follows an NC asymmetric process and depends on the amino acid chirality and α-helical handedness. Electron transmission decreases as the number of water molecules increases, and the ET efficiency and its pathway depend on the type of water-bridged H-bonds. Our results provide a rational mechanism for peptide ET and new perspectives on polypeptides as potential candidates in logic nano devices.

  2. The inhibitory effect of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members on the activity of cellular microRNAs.

    PubMed

    Zhang, Hui

    2010-01-01

    The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G or APOBEC3G) and its fellow cytidine deaminase family members are potent restrictive factors for human immunodeficiency virus type 1 (HIV-1) and many other retroviruses. However, the cellular function of APOBEC3G remains to be further clarified. It has been reported that APOBEC3s can restrict the mobility of endogenous retroviruses and LTR-retrotransposons, suggesting that they can maintain stability in host genomes. However, APOBEC3G is normally cytoplasmic. Further studies have demonstrated that it is associated with an RNase-sensitive high molecular mass (HMM) and located in processing bodies (P-bodies) of replicating T-cells, indicating that the major cellular function of APOBEC3G seems to be related to P-body-related RNA processing and metabolism. As the function of P-body is closely related to miRNA activity, APOBEC3G could affect the miRNA function. Recent studies have demonstrated that APOBEC3G and its family members counteract miRNA-mediated repression of protein translation. Further, APOBEC3G enhances the association of miRNA-targeted mRNA with polysomes, and facilitates the dissociation of miRNA-targeted mRNA from P-bodies. As such, APOBEC3G regulate the activity of cellular miRNAs. Whether this function is related to its potent antiviral activity remains to be further determined.

  3. Ultrastructural instability of paired helical filaments from corticobasal degeneration as examined by scanning transmission electron microscopy.

    PubMed Central

    Ksiezak-Reding, H.; Tracz, E.; Yang, L. S.; Dickson, D. W.; Simon, M.; Wall, J. S.

    1996-01-01

    Paired helical filaments (PHFs) accumulate in the brains of subjects affected with Alzheimer's disease (AD) and certain other neurodegenerative disorders, including corticobasal degeneration (CBD). Electron microscope studies have shown that PHFs from CBD differ from those of AD by being wider and having a longer periodicity of the helical twist. Moreover, PHFs from CBD have been shown to be primarily composed of two rather than three highly phosphorylated polypeptides of tau (PHF-tau), with these polypeptides expressing no exons 3 and 10. To further explore the relationship between the heterogeneity of PHF-tau and the appearance of abnormal filaments, the ultrastructure and physical parameters such as mass per unit length and dimensions were compared in filaments from CBD and AD using high resolution scanning transmission electron microscopy (STEM). Filament-enriched fractions were isolated as Sarcosyl-insoluble pellets and for STEM studies, samples were freeze-dried without prior fixation or staining. Ultrastructurally, PHFs from CBD were shown to be a heterogeneous population as double- and single-stranded filaments could be identified based on their width and physical mass per unit length expressed in kilodaltons (kd) per nanometer (nm). Less abundant, double-stranded filaments had a maximal width of 29 nm and a mass per unit length of 133 kd/nm, whereas three times more abundant single-stranded filaments were 15 nm wide and bad a mass per unit length of 62 kd/nm. Double-stranded filaments also displayed a distinct axial region of less dense mass, which appeared to divide the PHFs into two protofilament-like strands. Furthermore, these filaments were frequently observed to physically separate along the long axis into two single strands or to break longitudinally. In contrast, PHFs from AD were ultrastructurally stable and uniform both in their width (22 nm) and physical mass per unit length (104 kd/nm). The ultrastructural features indicate that filaments of CBD and AD differ both in stability and packing of tau and that CBD filaments, composed of two distinct protofilaments, are more labile under STEM conditions. As fixed and stained filaments from CBD have been shown to be stable and uniform in size by conventional transmission electron microscopy, STEM studies may be particularly suitable for detecting instability of unstained and unfixed filaments. The results also suggest that molecular heterogeneity and/or post-translational modifications of tau may strongly influence the morphology and stability of abnormal filaments. Images Figure 1 Figure 2 Figure 3 PMID:8702002

  4. Forward-backward scheme on the B/E grid modified to suppress lattice separation: the two versions, and any impact of the choice made?

    NASA Astrophysics Data System (ADS)

    Mesinger, Fedor; Popovic, Jelena

    2010-09-01

    Ever since its introduction to meteorology in the early 1970s, the forward-backward scheme has proven to be a very efficient method of treating gravity waves, with an added bonus of avoiding the time computational mode of the leapfrog scheme. It has been and it is used today in a number of models. When used on a square grid other than the Arakawa C grid, modification is or modifications are available to suppress the noise-generating separation of solutions on elementary C grids. Yet, in spite of a number of papers addressing the scheme and its modification, or modifications, issues remain that have either not been addressed or have been commented upon in a misleading or even in an incorrect way. Specifically, restricting ourselves to the B/E grid does it matter and if so how which of the two equations, momentum and the continuity equation, is integrated forward? Is there just one modification suppressing the separation of solutions, or have there been proposed two modification schemes? Questions made are addressed and a number of misleading statements made are recalled and commented upon. In particular, it is demonstrated that there is no added computational cost in integrating the momentum equation forward, and it is pointed out that this would seem advantageous given the height perturbations excited in the first step following a perturbation at a single height point. Yet, 48-h numerical experiments with a full-physics model show only a barely visible difference between the forecasts done using one and the other equation forward.

  5. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins.

    PubMed

    Stepper, Judith; Shastri, Shilpa; Loo, Trevor S; Preston, Joanne C; Novak, Petr; Man, Petr; Moore, Christopher H; Havlíček, Vladimír; Patchett, Mark L; Norris, Gillian E

    2011-02-18

    O-Glycosylation is a ubiquitous eukaryotic post-translational modification, whereas early reports of S-linked glycopeptides have never been verified. Prokaryotes also glycosylate proteins, but there are no confirmed examples of sidechain glycosylation in ribosomal antimicrobial polypeptides collectively known as bacteriocins. Here we show that glycocin F, a bacteriocin secreted by Lactobacillus plantarum KW30, is modified by an N-acetylglucosamine β-O-linked to Ser18, and an N-acetylhexosamine S-linked to C-terminal Cys43. The O-linked N-acetylglucosamine is essential for bacteriostatic activity, and the C-terminus is required for full potency (IC(50) 2 nM). Genomic context analysis identified diverse putative glycopeptide bacteriocins in Firmicutes. One of these, the reputed lantibiotic sublancin, was shown to contain a hexose S-linked to Cys22. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. The Dynein Gene Family in Chlamydomonas Reinhardtii

    PubMed Central

    Porter, M. E.; Knott, J. A.; Myster, S. H.; Farlow, S. J.

    1996-01-01

    To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (>13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations. PMID:8889521

  7. PRMT5: A novel regulator of Hepatitis B virus replication and an arginine methylase of HBV core

    PubMed Central

    Lubyova, Barbora; Hodek, Jan; Zabransky, Ales; Prouzova, Hana; Hubalek, Martin; Hirsch, Ivan

    2017-01-01

    In mammals, protein arginine methyltransferase 5, PRMT5, is the main type II enzyme responsible for the majority of symmetric dimethylarginine formation in polypeptides. Recent study reported that PRMT5 restricts Hepatitis B virus (HBV) replication through epigenetic repression of HBV DNA transcription and interference with encapsidation of pregenomic RNA. Here we demonstrate that PRMT5 interacts with the HBV core (HBc) protein and dimethylates arginine residues within the arginine-rich domain (ARD) of the carboxyl-terminus. ARD consists of four arginine rich subdomains, ARDI, ARDII, ARDIII and ARDIV. Mutation analysis of ARDs revealed that arginine methylation of HBc required the wild-type status of both ARDI and ARDII. Mass spectrometry analysis of HBc identified multiple potential ubiquitination, methylation and phosphorylation sites, out of which lysine K7 and arginines R150 (within ARDI) and R156 (outside ARDs) were shown to be modified by ubiquitination and methylation, respectively. The HBc symmetric dimethylation appeared to be linked to serine phosphorylation and nuclear import of HBc protein. Conversely, the monomethylated HBc retained in the cytoplasm. Thus, overexpression of PRMT5 led to increased nuclear accumulation of HBc, and vice versa, down-regulation of PRMT5 resulted in reduced levels of HBc in nuclei of transfected cells. In summary, we identified PRMT5 as a potent controller of HBc cell trafficking and function and described two novel types of HBc post-translational modifications (PTMs), arginine methylation and ubiquitination. PMID:29065155

  8. The Epigenomic Landscape of Prokaryotes

    DOE PAGES

    Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.; ...

    2016-02-12

    DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less

  9. The Epigenomic Landscape of Prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blow, Matthew J.; Clark, Tyson A.; Daum, Chris G.

    DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93%) organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities ofmore » 620 DNA Methyltransferases (MTases), doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active ‘orphan’ MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.« less

  10. Molecular determinants archetypical to the phylum Nematoda

    PubMed Central

    2009-01-01

    Background Nematoda diverged from other animals between 600–1,200 million years ago and has become one of the most diverse animal phyla on earth. Most nematodes are free-living animals, but many are parasites of plants and animals including humans, posing major ecological and economical challenges around the world. Results We investigated phylum-specific molecular characteristics in Nematoda by exploring over 214,000 polypeptides from 32 nematode species including 27 parasites. Over 50,000 nematode protein families were identified based on primary sequence, including ~10% with members from at least three different species. Nearly 1,600 of the multi-species families did not share homology to Pfam domains, including a total of 758 restricted to Nematoda. Majority of the 462 families that were conserved among both free-living and parasitic species contained members from multiple nematode clades, yet ~90% of the 296 parasite-specific families originated only from a single clade. Features of these protein families were revealed through extrapolation of essential functions from observed RNAi phenotypes in C. elegans, bioinformatics-based functional annotations, identification of distant homology based on protein folds, and prediction of expression at accessible nematode surfaces. In addition, we identified a group of nematode-restricted sequence features in energy-generating electron transfer complexes as potential targets for new chemicals with minimal or no toxicity to the host. Conclusion This study identified and characterized the molecular determinants that help in defining the phylum Nematoda, and therefore improved our understanding of nematode protein evolution and provided novel insights for the development of next generation parasite control strategies. PMID:19296854

  11. Studies of protein oxidation as a product quality attribute on a scale-down model for cell culture process development.

    PubMed

    Lee, Nacole D; Kondragunta, Bhargavi; Uplekar, Shaunak; Vallejos, Jose; Moreira, Antonio; Rao, Govind

    2015-01-01

    Of importance to the biological properties of proteins produced in cell culture systems are the complex post-translational modifications that are affected by variations in process conditions. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by such process variations. Dissolved oxygen is a parameter of increasing interest since studies have shown that despite the necessity of oxygen for respiration, there may also be some detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components. Variation, or changes to cell culture products, can affect function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Relative protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by variations in dissolved oxygen levels in cell culture systems. Studies have shown that despite the necessity of oxygen for respiration, there may be detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components, affecting function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. © PDA, Inc. 2015.

  12. Probing protein surface with a solvent mimetic carbene coupled to detection by mass spectrometry.

    PubMed

    Gómez, Gabriela E; Mundo, Mariana R; Craig, Patricio O; Delfino, José M

    2012-01-01

    Much knowledge into protein folding, ligand binding, and complex formation can be derived from the examination of the nature and size of the accessible surface area (SASA) of the polypeptide chain, a key parameter in protein science not directly measurable in an experimental fashion. To this end, an ideal chemical approach should aim at exerting solvent mimicry and achieving minimal selectivity to probe the protein surface regardless of its chemical nature. The choice of the photoreagent diazirine to fulfill these goals arises from its size comparable to water and from being a convenient source of the extremely reactive methylene carbene (:CH(2)). The ensuing methylation depends primarily on the solvent accessibility of the polypeptide chain, turning it into a valuable signal to address experimentally the measurement of SASA in proteins. The superb sensitivity and high resolution of modern mass spectrometry techniques allows us to derive a quantitative signal proportional to the extent of modification (EM) of the sample. Thus, diazirine labeling coupled to electrospray mass spectrometry (ESI-MS) detection can shed light on conformational features of the native as well as non-native states, not easily addressable by other methods. Enzymatic fragmentation of the polypeptide chain at the level of small peptides allows us to locate the covalent tag along the amino acid sequence, therefore enabling the construction of a map of solvent accessibility. Moreover, by subsequent MS/MS analysis of peptides, we demonstrate here the feasibility of attaining amino acid resolution in defining the target sites. © American Society for Mass Spectrometry, 2011

  13. Creatine kinase: Essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry

    PubMed Central

    Wood, Troy D.; Guan, Ziqiang; Borders, Charles L.; Chen, Lorenzo H.; Kenyon, George L.; McLafferty, Fred W.

    1998-01-01

    Phenylglyoxal is an arginine-specific reagent that inactivates creatine kinase (CK). Previous results suggest that modification of the dimeric enzyme at a single arginine residue per subunit causes complete inactivation accompanied by the loss of nucleotide binding; the actual site of modification was not identified. Here, high-resolution tandem mass spectrometry (MS/MS) was used to identify three phenylglyoxal-modified Arg residues in monomeric rabbit muscle CK. Electrospray ionizaton Fourier-transform MS of the phenylglyoxal-modified CK that had lost ≈80% activity identified three species: unmodified, once-modified (+116 Da), and twice-modified (+232 Da) enzyme in a ratio of approximately 1:4:1. MS/MS restricts the derivatized sites to P122-P212 and P283-V332, whereas MS of Lys-C digestions revealed two modified peptides, A266-K297 and G116-K137. The only Arg in A266-K297 is Arg-291 (invariant), whereas MS/MS of modified G116-K137 shows that two of the three sites Arg-129, Arg-131, or Arg-134 (all invariant) can contain the modification. The recently reported x-ray crystal structure for the octameric chicken mitochondrial CK indicates that its nucleotide triphosphate-binding site indeed contains the equivalent of R291, R129, and R131 reported here to be at the active site of rabbit muscle CK. PMID:9520370

  14. Targeted polypeptide degradation

    DOEpatents

    Church, George M [Brookline, MA; Janse, Daniel M [Brookline, MA

    2008-05-13

    This invention pertains to compositions, methods, cells and organisms useful for selectively localizing polypeptides to the proteasome for degradation. Therapeutic methods and pharmaceutical compositions for treating disorders associated with the expression and/or activity of a polypeptide by targeting these polypeptides for degradation, as well as methods for targeting therapeutic polypeptides for degradation and/or activating therapeutic polypeptides by degradation are provided. The invention provides methods for identifying compounds that mediate proteasome localization and/or polypeptide degradation. The invention also provides research tools for the study of protein function.

  15. Characterization of a restriction-modification system of the thermotolerant methylotroph Bacillus methanolicus.

    PubMed Central

    Cue, D; Lam, H; Hanson, R S; Flickinger, M C

    1996-01-01

    We report the isolation of a restriction endonuclease, BmeTI, an isoschizomer of BclI, that recognizes the DNA sequence 5' TGATCA 3'. We also report that BmeTI sites are modified to TGm6ATCA. These findings provide the basis for devising strategies to prevent BmeTI restriction of any DNA introduced into Bacillus methanolicus. PMID:8975604

  16. Hydrogenase polypeptide and methods of use

    DOEpatents

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  17. Cytoskeleton in trichomonads: II. Immunological and biochemical characterization of the preaxostylar fibres and undulating membrane in the genus Tritrichomonas.

    PubMed

    Viscogliosi, E; Brugerolle, G

    1993-11-12

    The production of 3 monoclonal antibodies (MAbs) and the use of immunocytochemical techniques such as immunofluorescence (IF), immunoblotting (IB) and immunogold staining (IGS) reveal that the preaxostylar fibres of Tritrichomonas foetus are composed of at least 3 polypeptides of 55, 53 and 46 kDa. Two of these MAbs cross-react with Tritrichomonas mobilensis and one with Tritrichomonas augusta and Tritrichomonas muris on polypeptides with very similar molecular weights (M.W.) However, no cross-reactivity is seen with the preaxostylar fibres of other trichomonad species tested. These cross-reactivities restricted to the Tritrichomonas genus are similar to those observed with the costa and several explanations are proposed. Similarly, 5 MAbs obtained against Tritrichomonas foetus cytoskeleton label the undulating membrane (UM) by IF and IGS. IB identifies 5 polypeptides of very different M.W. (148, 72, 39, 33 and 23 kDa) in Tritrichomonas foetus. Among them, 2 cross-react by IF and IB in Tritrichomonas mobilensis, one in Tritrichomonas augusta and none in Tritrichomonas muris. These results are in agreement with the electron microscopy studies which have shown that the UM ultrastructure of Tritrichomonas foetus, Tritrichomonas mobilensis and Tritrichomonas augusta are very similar and different from that of Tritrichomonas muris. The lack of cross-reactivity with the lamellar type UM of the Trichomonadinae genera which is very different from the Tritrichomonadinae UM is also demonstrated. Copyright © 1993 Gustav Fischer Verlag · Stuttgart · Jena · New York. Published by Elsevier GmbH.. All rights reserved.

  18. Striking Effects of Storage Buffers on Apparent Half-Lives of the Activity of Pseudomonas aeruginosa Arylsulfatase.

    PubMed

    Li, Yuwei; Yang, Xiaolan; Wang, Deqiang; Hu, Xiaolei; Yuan, Mei; Pu, Jun; Zhan, Chang-Guo; Yang, Zhaoyong; Liao, Fei

    2016-08-01

    To obtain the label enzyme for enzyme-linked-immunoabsorbent-assay of two components each time in one well with conventional microplate readers, molecular engineering of Pseudomonas aeruginosa arylsulfatase (PAAS) is needed. To compare thermostability of PAAS/mutants of limited purity, effects of buffers on the half-activity time (t 0.5) at 37 °C were tested. At pH 7.4, PAAS showed non-exponential decreases of activity, with the apparent t 0.5 of ~6.0 days in 50 mM HEPES, but ~42 days in 10 mM sodium borate with >85 % activity after 15 days; protein concentrations in both buffers decreased at slower rates after there were significant decreases of activities. Additionally, the apparent t 0.5 of PAAS was ~14 days in 50 mM Tris-HCl, and ~21 days in 10 mM sodium phosphate. By sodium dodecyl-polyacrylamide gel electrophoresis, the purified PAAS gave single polypeptide; after storage for 14 days at 37 °C, there were many soluble and insoluble fragmented polypeptides in the HEPES buffer, but just one principal insoluble while negligible soluble fragmented polypeptides in the borate buffer. Of tested mutants in the neutral borate buffer, rates for activity decreases and polypeptide degradation were slower than in the HEPES buffer. Hence, dilute neutral borate buffers were favorable for examining thermostability of PAAS/mutants.

  19. Analysis of polypeptide composition and antigenic components of Rickettsia tsutsugamushi by polyacrylamide gel electrophoresis and immunoblotting.

    PubMed Central

    Tamura, A; Ohashi, N; Urakami, H; Takahashi, K; Oyanagi, M

    1985-01-01

    Polyacrylamide gel electrophoresis of lysates of purified Rickettsia tsutsugamushi revealed as many as 30 polypeptide bands, including major bands corresponding to molecular sizes of 70, 60, 54 to 56, and 46 to 47 kilodaltons. Compared with the polypeptide composition of the rickettsiae of Gilliam, Karp, and Kato strains and a newly isolated Shimokoshi strain, the major polypeptide in the Kato strain (54-56K) and in the Karp strain (46-47K) migrated a little faster and slower, respectively, than the corresponding polypeptides in the other strains. The largest major polypeptide (54-56K) was digestible by the treatment of intact rickettsiae with trypsin and variable in content in separate preparations, suggesting that the polypeptide exists on the rickettsial surface and is easily degraded during the handling of these microorganisms. Several surface polypeptides of rickettsiae, including the 54-56K and 46-47K polypeptides, were detected by radioiodination of intact rickettsiae followed by polyacrylamide gel electrophoresis of the lysate; however, the 70K and 60K polypeptides were not labeled. Immunoblotting experiments with hyperimmune sera prepared in guinea pigs against each strain demonstrated that the 70K, 54-56K, and 46-47K polypeptides showed antigenic activities. The 54-56K polypeptide appeared to be strain specific, whereas the 70K and 46-47K polypeptides cross-reacted with the heterologous antisera. Images PMID:3922893

  20. Transport across the blood-brain barrier of pluronic leptin.

    PubMed

    Price, Tulin O; Farr, Susan A; Yi, Xiang; Vinogradov, Serguei; Batrakova, Elena; Banks, William A; Kabanov, Alexander V

    2010-04-01

    Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (K(i)) = 0.272 +/- 0.037 microl/g x min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0-30 min, p < 0.0005; 0-2 h, p < 0.001]. These studies show that the structure based Pluronic modification of leptin increased metabolic stability, reduced food intake, and allowed BBB penetration by a mechanism-independent BBB leptin transporter.

  1. General theories of linear gravitational perturbations to a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena

    2018-02-01

    We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.

  2. Polypeptide synthesis induced in Nicotiana clevelandii protoplasts by infection with raspberry ringspot nepovirus.

    PubMed

    Acosta, O; Mayo, M A

    1993-01-01

    Infection of Nicotiana clevelandii protoplasts by raspberry ringspot nepovirus resulted in the accumulation of about 24 polypeptides that differed in M(r) and pI from polypeptides accumulating in mock-inoculated protoplasts. Similar polypeptides accumulated in protoplasts infected with the S and E strains of RRV but different infection-specific polypeptides were detected in protoplasts infected with tobacco ringspot nepovirus. The M(r) of RRV-specific polypeptides ranged from 210,000 to 18,000 and most are presumed to be derived from others by proteolytic cleavage. No evidence was found for marked changes in polypeptide abundance with time after inoculation or for any virus-specific polypeptide becoming disproportionately abundant in the medium during culture.

  3. Polypeptides having laccase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having laccase activity and polynucleotides encoding the polypeptides and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Actin expression in trypanosomatids (Euglenozoa: Kinetoplastea)

    PubMed Central

    Souza, Ligia Cristina Kalb; Pinho, Rosana Elisa Gonçalves Gonçalves; Lima, Carla Vanessa de Paula; Fragoso, Stênio Perdigão; Soares, Maurilio José

    2013-01-01

    Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids. PMID:23903980

  5. Identification of a Hyphantria cunea nucleopolyhedrovirus (NPV) gene that is involved in global protein synthesis shutdown and restricted Bombyx mori NPV multiplication in a B. mori cell line.

    PubMed

    Shirata, Noriko; Ikeda, Motoko; Kobayashi, Michihiro

    2010-03-15

    We previously demonstrated that Bombyx mori nucleopolyhedrovirus (BmNPV) multiplication is restricted in permissive BmN-4 cells upon coinfection with Hyphantria cunea NPV (HycuNPV). Here, we show that HycuNPV-encoded hycu-ep32 gene is responsible for the restricted BmNPV multiplication in HycuNPV-coinfected BmN-4 cells. The only homologue for hycu-ep32 is in Orgyia pseudotsugata NPV. hycu-ep32 could encode a polypeptide of 312 amino acids, and it contains no characteristic domains or motifs to suggest its possible functions. hycu-ep32 is an early gene, and Hycu-EP32 expression reaches a maximum by 6 h postinfection. hycu-ep32-defective HycuNPV, vHycuDeltaep32, was generated, indicating that hycu-ep32 is nonessential in permissive SpIm cells. In BmN-4 cells, HycuNPV infection resulted in a severe global protein synthesis shutdown, while vHycuDeltaep32 did not cause any specific protein synthesis shutdown. These results indicate that the restriction of BmNPV multiplication by HycuNPV is caused by a global protein synthesis shutdown induced by hycu-ep32 upon coinfection with HycuNPV. Copyright 2009 Elsevier Inc. All rights reserved.

  6. Stable expression and purification of a functional processed Fab' fragment from a single nascent polypeptide in CHO cells expressing the mCAT-1 retroviral receptor.

    PubMed

    Camper, Nicolas; Byrne, Teresa; Burden, Roberta E; Lowry, Jenny; Gray, Breena; Johnston, James A; Migaud, Marie E; Olwill, Shane A; Buick, Richard J; Scott, Christopher J

    2011-09-30

    Monoclonal antibodies and derivative formats such as Fab' fragments are used in a broad range of therapeutic, diagnostic and research applications. New systems and methodologies that can improve the production of these proteins are consequently of much interest. Here we present a novel approach for the rapid production of processed Fab' fragments in a CHO cell line that has been engineered to express the mouse cationic amino acid transporter receptor 1 (mCAT-1). This facilitated the introduction of the target antibody gene through retroviral transfection, rapidly producing stable expression. Using this system, we designed a single retroviral vector construct for the expression of a target Fab' fragment as a single polypeptide with a furin cleavage site and a FMDV 2A self-cleaving peptide introduced to bridge the light and truncated heavy chain regions. The introduction of these cleavage motifs ensured equimolar expression and processing of the heavy and light domains as exemplified by the production of an active chimeric Fab' fragment against the Fas receptor, routinely expressed in 1-2mg/L yield in spinner-flask cell cultures. These results demonstrate that this method could have application in the facile production of bioactive Fab' fragments. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier.

    PubMed

    Chen, Poyin; Jeannotte, Richard; Weimer, Bart C

    2014-05-01

    Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. CRISPR-Cas and Restriction-Modification Act Additively against Conjugative Antibiotic Resistance Plasmid Transfer in Enterococcus faecalis.

    PubMed

    Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L

    2016-01-01

    Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics.

  9. Polypeptide having an amino acid replaced with N-benzylglycine

    DOEpatents

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  10. Ectopic expression of the gastric inhibitory polypeptide receptor gene is a sufficient genetic event to induce benign adrenocortical tumor in a xenotransplantation model.

    PubMed

    Mazzuco, Tania L; Chabre, Olivier; Sturm, Nathalie; Feige, Jean-Jacques; Thomas, Michaël

    2006-02-01

    Aberrant expression of ectopic G protein-coupled receptors (GPCRs) in adrenal cortex tissue has been observed in several cases of ACTH-independent macronodular adrenal hyperplasias and adenomas associated with Cushing's syndrome. Although there is clear clinical evidence for the implication of these ectopic receptors in abnormal regulation of cortisol production, whether this aberrant GPCR expression is the cause or the consequence of the development of an adrenal hyperplasia is still an open question. To answer it, we genetically engineered primary bovine adrenocortical cells to have them express the gastric inhibitory polypeptide receptor. After transplantation of these modified cells under the renal capsule of adrenalectomized immunodeficient mice, tissues formed had their functional and histological characteristics analyzed. We observed the formation of an enlarged and hyperproliferative adenomatous adrenocortical tissue that secreted cortisol in a gastric inhibitory polypeptide-dependent manner and induced a mild Cushing's syndrome with hyperglycemia. Moreover, we show that tumor development was ACTH independent. Thus, a single genetic event, inappropriate expression of a nonmutated GPCR gene, is sufficient to initiate the complete phenotypic alterations that ultimately lead to the formation of a benign adrenocortical tumor.

  11. Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy.

    PubMed

    Wu, Xilong; Wu, Yundi; Ye, Hongbo; Yu, Shuangjiang; He, Chaoliang; Chen, Xuesi

    2017-06-10

    In situ-forming thermosensitive hydrogels based on poly(ethylene glycol)-poly(γ-ethyl-l-glutamate) diblock copolymers (mPEG-b-PELG) were prepared for the co-delivery of interleukin-15 (IL-15) and cisplatin (CDDP). The polypeptide-based hydrogels as local drug delivery carriers could reduce the systemic toxicity, degrade thoroughly within 3weeks after subcutaneous injection into rats and display an acceptable biocompatibility. When incubated with mouse melanoma B16 cells, only the CDDP-treated groups had significant effects on the S phase cell-cycle arrest in melanoma cells. After a single peritumoral injection of the hydrogel containing IL-15/CDDP in C57BL/6 mice inoculated with B16F0-RFP melanoma cells, the dual drug-loaded hydrogels displayed synergistic anticancer efficacy, which was resulted from a combination of CDDP-mediated S arrest and IL-15/CDDP-induced recovery of CD8 + T cell and NK cell populations to reduce immunosuppression and enhance antitumor immunity. Hence, the as-prepared thermosensitive polypeptide hydrogels for localized and sustained co-delivery of IL-15 and CDDP may have potential for efficient treatment of melanoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Two different domains of the luciferase gene in the heterotrophic dinoflagellate Noctiluca scintillans occur as two separate genes in photosynthetic species

    PubMed Central

    Liu, Liyun; Hastings, J. Woodland

    2007-01-01

    Noctiluca scintillans, a heterotrophic unarmored unicellular bioluminescent dinoflagellate, occurs widely in the oceans, often as a bloom. Molecular phylogenetic analysis based on 18S ribosomal DNA sequences consistently has placed this species on the basal branch of dinoflagellates. Here, we report that the structural organization of its luciferase gene is strikingly different from that of the seven luminous species previously characterized, all of which are photosynthetic. The Noctiluca gene codes for a polypeptide that consists of two distinct but contiguous domains. One, which is located in the N-terminal portion, is shorter than but similar in sequence to the individual domains of the three-domain luciferases found in all other luminous dinoflagellates studied. The other, situated in the C-terminal part, has sequence similarity to the luciferin-binding protein of the luminous dinoflagellate Lingulodinium polyedrum, encoded there by a separate gene. Western analysis shows that the native protein has the same size (≈100 kDa) as the heterologously expressed polypeptide, indicating that it is not a polyprotein. Thus, sequences found in two proteins in the L. polyedrum bioluminescence system are present in a single polypeptide in Noctiluca. PMID:17130452

  13. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.

    PubMed

    Páli, Tibor; Kóta, Zoltán

    2013-01-01

    Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or immobile-spectral components are available. With these topics, this chapter complements a recent methodological paper [Marsh (Methods 46:83-96, 2008)]. The interpretation of the data is discussed briefly, as well as other relevant and recent spin label EPR techniques for studying lipid-protein interactions, not only from the point of view of lipid chain dynamics.

  14. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  15. Glucosamine Treatment-mediated O-GlcNAc Modification of Paxillin Depends on Adhesion State of Rat Insulinoma INS-1 Cells*

    PubMed Central

    Kwak, Tae Kyoung; Kim, Hyeonjung; Jung, Oisun; Lee, Sin-Ae; Kang, Minkyung; Kim, Hyun Jeong; Park, Ji-Min; Kim, Sung-Hoon; Lee, Jung Weon

    2010-01-01

    Protein-protein interactions and/or signaling activities at focal adhesions, where integrin-mediated adhesion to extracellular matrix occurs, are critical for the regulation of adhesion-dependent cellular functions. Although the phosphorylation and activities of focal adhesion molecules have been intensively studied, the effects of the O-GlcNAc modification of their Ser/Thr residues on cellular functions have been largely unexplored. We investigated the effects of O-GlcNAc modification on actin reorganization and morphology of rat insulinoma INS-1 cells after glucosamine (GlcN) treatment. We found that paxillin, a key adaptor molecule in focal adhesions, could be modified by O-GlcNAc in INS-1 cells treated with GlcN and in pancreatic islets from mice treated with streptozotocin. Ser-84/85 in human paxillin appeared to be modified by O-GlcNAc, which was inversely correlated to Ser-85 phosphorylation (Ser-83 in rat paxillin). Integrin-mediated adhesion signaling inhibited the GlcN treatment-enhanced O-GlcNAc modification of paxillin. Adherent INS-1 cells treated with GlcN showed restricted protrusions, whereas untreated cells showed active protrusions for multiple-elongated morphologies. Upon GlcN treatment, expression of a triple mutation (S83A/S84A/S85A) resulted in no further restriction of protrusions. Together these observations suggest that murine pancreatic β cells may have restricted actin organization upon GlcN treatment by virtue of the O-GlcNAc modification of paxillin, which can be antagonized by a persistent cell adhesion process. PMID:20829364

  16. moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.J.; Lidstrom, M.E.

    The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome c/sub L/. In this study, four polypeptides of M/sub r/, 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement ofmore » the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the M/sub r/-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the M/sub r/-20,000 polypeptide, was identified as mature cytochrome c/sub L/, and the product of moxI, the M/sub r/-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the M/sub r/-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the M/sub r/-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the M/sub r/-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the M/sub r/-60,000 MeDH polypeptide. Our data suggest that both the M/sub r/-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1.« less

  17. Elastomeric Polypeptides

    PubMed Central

    van Eldijk, Mark B.; McGann, Christopher L.

    2013-01-01

    Elastomeric polypeptides are very interesting biopolymers and are characterized by rubber-like elasticity, large extensibility before rupture, reversible deformation without loss of energy, and high resilience upon stretching. Their useful properties have motivated their use in a wide variety of materials and biological applications. This chapter focuses on elastin and resilin – two elastomeric biopolymers – and the recombinant polypeptides derived from them (elastin-like polypeptides and resilin-like polypeptides). This chapter also discusses the applications of these recombinant polypeptides in the fields of purification, drug delivery, and tissue engineering. PMID:21826606

  18. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.

    Nitrosomonas europaeais an aerobic nitrifying bacterium that oxidizes ammonia (NH 3) to nitrite (NO 2 ₋) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH 4 +-dependent O 2uptake byN. europaeaby 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, andde novoprotein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide usingmore » a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA.« less

  19. Functional domains of the T lymphocyte plasma membrane: characterization of the polypeptide composition.

    PubMed

    Szamel, M; Kaever, V; Resch, K

    1987-01-01

    Highly purified plasma membranes from calf thymocytes were fractionated by affinity chromatography on Concanavalin A-Sepharose into two subfractions, one eluting freely from the affinity column (MF1) and a second being specifically retained (MF2). SDS-polyacrylamide-gel-electrophoresis revealed different polypeptide patterns of the two plasma membrane subfractions. Polypeptides of apparent molecular weights of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2. In contrast, several proteins in the 55-65 kDa range were preferentially recovered in the non-adherent fraction. Five Five of the six polypeptides, preferentially recovered in MF2 proved to be glycoproteins, the 39 kDa peptide was non-glycosilated. The differences in the amounts of the polypeptides specifically enriched in the adherent fraction MF2 became even more clear-cut when plasma membranes solubilized with non-ionic detergents (lysolecithin, ET-18-2H, Triton-X-100) were separated by affinity chromatography on Concanavalin A-Sepharose. The non-glycosilated peptide of apparent molecular weight of 39 kDa was recovered together with several glycoproteins in the adherent fraction, MF2, suggesting that not single glycoproteins, but plasma membrane domains were separated by Concanavalin A-Sepharose. Although the glycoproteins of the non-adherent fraction MF1 bound significant amounts of Concanavalin A, the major Concanavalin A binding glycoproteins were recovered in the adherent fraction, MF2. The plasma membrane subfractions showed also different functional properties, the specific activities [Na+ + K+]AT-Pase, Ca2+ ATPase and lysolecithin acyltransferase were several-fold enriched in the adherent fraction, MF2, as compared to MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of thymocytes consisting of a different set of proteins, among others the major Concanavalin A binding glycoproteins with some membrane bound enzymes, probably implicated in the initiation of lymphocyte activation.

  20. Activity-Based Protein Profiling of Ammonia Monooxygenase in Nitrosomonas europaea

    PubMed Central

    Bennett, Kristen; Sadler, Natalie C.; Wright, Aaron T.; Yeager, Chris

    2016-01-01

    Nitrosomonas europaea is an aerobic nitrifying bacterium that oxidizes ammonia (NH3) to nitrite (NO2−) through the sequential activities of ammonia monooxygenase (AMO) and hydroxylamine dehydrogenase (HAO). Many alkynes are mechanism-based inactivators of AMO, and here we describe an activity-based protein profiling method for this enzyme using 1,7-octadiyne (17OD) as a probe. Inactivation of NH4+-dependent O2 uptake by N. europaea by 17OD was time- and concentration-dependent. The effects of 17OD were specific for ammonia-oxidizing activity, and de novo protein synthesis was required to reestablish this activity after cells were exposed to 17OD. Cells were reacted with Alexa Fluor 647 azide using a copper-catalyzed azide-alkyne cycloaddition (CuAAC) (click) reaction, solubilized, and analyzed by SDS-PAGE and infrared (IR) scanning. A fluorescent 28-kDa polypeptide was observed for cells previously exposed to 17OD but not for cells treated with either allylthiourea or acetylene prior to exposure to 17OD or for cells not previously exposed to 17OD. The fluorescent polypeptide was membrane associated and aggregated when heated with β-mercaptoethanol and SDS. The fluorescent polypeptide was also detected in cells pretreated with other diynes, but not in cells pretreated with structural homologs containing a single ethynyl functional group. The membrane fraction from 17OD-treated cells was conjugated with biotin-azide and solubilized in SDS. Streptavidin affinity-purified polypeptides were on-bead trypsin-digested, and amino acid sequences of the peptide fragments were determined by liquid chromatography-mass spectrometry (LC-MS) analysis. Peptide fragments from AmoA were the predominant peptides detected in 17OD-treated samples. In-gel digestion and matrix-assisted laser desorption ionization–tandem time of flight (MALDI-TOF/TOF) analyses also confirmed that the fluorescent 28-kDa polypeptide was AmoA. PMID:26826234

  1. A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides.

    PubMed

    Hudgins, Robert R; Huang, Fang; Gramlich, Gabriela; Nau, Werner M

    2002-01-30

    A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.

  2. Methods for engineering polypeptide variants via somatic hypermutation and polypeptide made thereby

    DOEpatents

    Tsien, Roger Y; Wang, Lei

    2015-01-13

    Methods using somatic hypermutation (SHM) for producing polypeptide and nucleic acid variants, and nucleic acids encoding such polypeptide variants are disclosed. Such variants may have desired properties. Also disclosed are novel polypeptides, such as improved fluorescent proteins, produced by the novel methods, and nucleic acids, vectors, and host cells comprising such vectors.

  3. Isolation of single Chlamydia-infected cells using laser microdissection.

    PubMed

    Podgorny, Oleg V; Polina, Nadezhda F; Babenko, Vladislav V; Karpova, Irina Y; Kostryukova, Elena S; Govorun, Vadim M; Lazarev, Vassili N

    2015-02-01

    Chlamydia are obligate intracellular parasites of humans and animals that cause a wide range of acute and chronic infections. To elucidate the genetic basis of chlamydial parasitism, several approaches for making genetic modifications to Chlamydia have recently been reported. However, the lack of the available methods for the fast and effective selection of genetically modified bacteria restricts the application of genetic tools. We suggest the use of laser microdissection to isolate of single live Chlamydia-infected cells for the re-cultivation and whole-genome sequencing of single inclusion-derived Chlamydia. To visualise individual infected cells, we made use of the vital labelling of inclusions with the fluorescent Golgi-specific dye BODIPY® FL C5-ceramide. We demonstrated that single Chlamydia-infected cells isolated by laser microdissection and placed onto a host cell monolayer resulted in new cycles of infection. We also demonstrated the successful use of whole-genome sequencing to study the genomic variability of Chlamydia derived from a single inclusion. Our work provides the first evidence of the successful use of laser microdissection for the isolation of single live Chlamydia-infected cells, thus demonstrating that this method can help overcome the barriers to the fast and effective selection of Chlamydia. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Induction, immunochemical identity and immunofluorescence localization of an 80 000-molecular-weight peroxisome-proliferation-associated polypeptide (polypeptide PPA-80) and peroxisomal enoyl-CoA hydratase of mouse liver and renal cortex.

    PubMed

    Lalwani, N D; Reddy, M K; Mangkornkanok-Mark, M; Reddy, J K

    1981-07-15

    The hypolipidaemic drugs methyl clofenapate, BR-931, Wy-14643 and procetofen induced a marked proliferation of peroxisomes in the parenchymal cells of liver and the proximal-convoluted-tubular epithelium of mouse kidney. The proliferation of peroxisomes was associated with 6-12-fold increase in the peroxisomal palmitoyl-CoA oxidizing capacity of the mouse liver. Enhanced activity of the peroxisomal palmitoyl-CoA oxidation system was also found in the renal-cortical homogenates of hypolipidaemic-drug-treated mice. The activity of enoyl-CoA hydratase in the mouse liver increased 30-50-fold and in the kidney cortex 3-5-fold with hypolipidaemic-drug-induced peroxisome proliferation in these tissues, and over 95% of this induced activity was found to be heat-labile peroxisomal enzyme in both organs. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of large-particle and microsomal fractions obtained from the liver and kidney cortex of mice treated with hypolipidaemic peroxisome proliferators demonstrated a substantial increase in the quantity of an 80000-mol.wt. peroxisome-proliferation-associated polypeptide (polypeptide PPA-80). The heat-labile peroxisomal enoyl-CoA hydratase was purified from the livers of mice treated with the hypolipidaemic drug methyl clofenapate; the antibodies raised against this electrophoretically homogeneous protein yielded a single immunoprecipitin band with purified mouse liver enoyl-CoA hydratase and with liver and kidney cortical extracts of normal and hypolipidaemic-drug-treated mice. These anti-(mouse liver enoyl-CoA hydratase) antibodies also cross-reacted with purified rat liver enoyl-CoA hydratase and with the polypeptide PPA-80 obtained from rat and mouse liver. Immunofluorescence studies with anti-(polypeptide PPA-80) and anti-(peroxisomal enoyl-CoA hydratase) provided visual evidence for the localization and induction of polypeptide PPA-80 and peroxisomal enoyl-CoA hydratase in the liver and kidney respectively of normal and hypolipidaemic-drug-treated mice. In the kidney, the distribution of these two proteins is identical and limited exclusively to the cytoplasm of proximal-convoluted-tubular epithelium. The immunofluorescence studies clearly complement the biochemical and ultrastructural observations of peroxisome induction in the liver and kidney cortex of mice fed on hypolipidaemic drugs. In addition, preliminary ultrastructural studies with the protein-A-gold-complex technique demonstrate that the heat-labile hepatic enoyl-CoA hydratase is localized in the peroxisome matrix.

  5. Modulating the Effects of the Bacterial Chaperonin GroEL on Fibrillogenic Polypeptides through Modification of Domain Hinge Architecture.

    PubMed

    Fukui, Naoya; Araki, Kiho; Hongo, Kunihiro; Mizobata, Tomohiro; Kawata, Yasushi

    2016-11-25

    The isolated apical domain of the Escherichia coli GroEL subunit displays the ability to suppress the irreversible fibrillation of numerous amyloid-forming polypeptides. In previous experiments, we have shown that mutating Gly-192 (located at hinge II that connects the apical domain and the intermediate domain) to a tryptophan results in an inactive chaperonin whose apical domain is disoriented. In this study, we have utilized this disruptive effect of Gly-192 mutation to our advantage, by substituting this residue with amino acid residues of varying van der Waals volumes with the intent to modulate the affinity of GroEL toward fibrillogenic peptides. The affinities of GroEL toward fibrillogenic polypeptides such as Aβ(1-40) (amyloid-β(1-40)) peptide and α-synuclein increased in accordance to the larger van der Waals volume of the substituent amino acid side chain in the G192X mutants. When we compared the effects of wild-type GroEL and selected GroEL G192X mutants on α-synuclein fibril formation, we found that the effects of the chaperonin on α-synuclein fibrillation were different; the wild-type chaperonin caused changes in both the initial lag phase and the rate of fibril extension, whereas the effects of the G192X mutants were more specific toward the nucleus-forming lag phase. The chaperonins also displayed differential effects on α-synuclein fibril morphology, suggesting that through mutation of Gly-192, we may induce changes to the intermolecular affinities between GroEL and α-synuclein, leading to more efficient fibril suppression, and in specific cases, modulation of fibril morphology. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Inhibition and Ultraviolet-Induced Chemical Modification of UDP-Glucose:(1,3)-β-Glucan (Callose) Synthase by Chlorpromazine 1

    PubMed Central

    Harriman, Robert W.; Shao, Ai-Ping; Wasserman, Bruce P.

    1992-01-01

    UDP-glucose:(1,3)-β-glucan (callose) synthase (CS) from storage tissue of red beet (Beta vulgaris L.) was strongly inhibited by the phenothiazine drug chlorpromazine (CPZ). In the absence of ultraviolet irradiation, CPZ was a noncompetitive inhibitor with 50% inhibitory concentration values for plasma membrane and solubilized CS of 100 and 90 μm, respectively. Both the Ca2+- and Mg2+- stimulated components of CS activity were affected. CPZ inhibition was partially alleviated at saturating levels of Ca2+, but not Mg2+, suggesting that CPZ interferes with the Ca2+-binding site of CS. Binding experiments with [14C]CPZ, however, showed strong non-specific partitioning of CPZ into the plasma membrane, providing evidence that perturbation of the membrane environment is probably the predominant mode of inhibition. Ultraviolet irradiation at 254 nm markedly enhanced CPZ inhibition, with complete activity loss following exposure to 4 μm CPZ for 2 min. Inhibition followed a pseudo-first order mechanism with at least three CPZ binding sites per CS complex. Under these conditions, [3H]CPZ was covalently incorporated into plasma membrane preparations by a free radical mechanism; however, polypeptide labeling profiles showed labeling to be largely nonspecific, with many polypeptides labeled even at [3H]CPZ levels as low as 1 μm, and with boiled membranes. Although CPZ is one of the most potent known inhibitors of CS, its use as a photolabel will require a homogeneous CS complex or establishment of conditions that protect against the interaction of CPZ with specific binding sites located on various polypeptide components of the CS complex. PMID:16653219

  7. Gene Concepts in Higher Education Cell and Molecular Biology Textbooks

    ERIC Educational Resources Information Center

    Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel

    2008-01-01

    Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested…

  8. Molecular architecture of classical cytological landmarks: Centromeres and telomeres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyne, J.

    1994-11-01

    Both the human telomere repeat and the pericentromeric repeat sequence (GGAAT)n were isolated based on evolutionary conservation. Their isolation was based on the premise that chromosomal features as structurally and functionally important as telomeres and centromeres should be highly conserved. Both sequences were isolated by high stringency screening of a human repetitive DNA library with rodent repetitive DNA. The pHuR library (plasmid Human Repeat) used for this project was enriched for repetitive DNA by using a modification of the standard DNA library preparation method. Usually DNA for a library is cut with restriction enzymes, packaged, infected, and the library ismore » screened. A problem with this approach is that many tandem repeats don`t have any (or many) common restriction sites. Therefore, many of the repeat sequences will not be represented in the library because they are not restricted to a viable length for the vector used. To prepare the pHuR library, human DNA was mechanically sheared to a small size. These relatively short DNA fragments were denatured and then renatured to C{sub o}t 50. Theoretically only repetitive DNA sequences should renature under C{sub o}t 50 conditions. The single-stranded regions were digested using S1 nuclease, leaving the double-stranded, renatured repeat sequences.« less

  9. 50 CFR 648.140 - Catch quotas and other restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specification process, provided that new information does not require a modification to the multiple-year quotas, to determine the allowable levels of fishing and other restrictions necessary to result in a target... target exploitation rate specified in paragraph (a) of this section is not exceeded: (1) Research quota...

  10. Molecular analysis of a phytohemagglutinin-defective cultivar of Phaseolus vulgaris L.

    PubMed

    Vitale, A; Ceriotti, A; Bollini, R

    1985-10-01

    The seeds of Phaseolus vulgaris cv. Pinto III are known to lack detectable amounts of phytohemagglutinin (PHA) and to accumulate very reduced levels of PHA mRNA compared with normal cultivars. Using PHA complementary-DNA clones and monospecific antibodies we analyzed cv. Pinto III genomic DNA and cotyledonary proteins synthesized both in vitro and in vivo. We detected genomic DNA sequences that hybridize with complementary-DNA clones for the two different classes of PHA polypeptides (PHA-E and PHA-L), at levels comparable to a normal bean cultivar. This indicates that the cv. Pinto III phenotype is not the result of a large deletion of the PHA structural genes. Messenger RNA isolated from cv. Pinto III developing cotyledons synthesizes in vitro very small amounts of a protein which is recognized by antibodies specific for PHA, and gives, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a single band with molecular weight similar but not identical to that of PHA-L polypeptides. This protein is also synthesized in vivo at a very reduced level, less than 1% compared with PHA in normal cultivars, and has mitogenic activity comparable to that of the PHA-L subunit, while it shows very weak erythroagglutinating activity. The initial steps in the synthesis and processing of this protein are identical to those already identified for PHA polypeptides. The cv. Pinto III protein could be either a PHA-L polypeptide whose synthesis is not affected by the mutation or a PHA-like lectin present normally at low levels in P. vulgaris.

  11. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation.

    PubMed

    Santa-Marta, Mariana; da Silva, Frederico Aires; Fonseca, Ana Margarida; Goncalves, Joao

    2005-03-11

    The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.

  12. Chemical nature of the light emitter of the Aequorea green fluorescent protein

    PubMed Central

    Niwa, Haruki; Inouye, Satoshi; Hirano, Takashi; Matsuno, Tatsuki; Kojima, Satoshi; Kubota, Masayuki; Ohashi, Mamoru; Tsuji, Frederick I.

    1996-01-01

    The jellyfish Aequorea victoria possesses in the margin of its umbrella a green fluorescent protein (GFP, 27 kDa) that serves as the ultimate light emitter in the bioluminescence reaction of the animal. The protein is made up of 238 amino acid residues in a single polypeptide chain and produces a greenish fluorescence (λmax = 508 nm) when irradiated with long ultraviolet light. The fluorescence is due to the presence of a chromophore consisting of an imidazolone ring, formed by a post-translational modification of the tripeptide -Ser65-Tyr66-Gly67-. GFP has been used extensively as a reporter protein for monitoring gene expression in eukaryotic and prokaryotic cells, but relatively little is known about the chemical mechanism by which fluorescence is produced. To obtain a better understanding of this problem, we studied a peptide fragment of GFP bearing the chromophore and a synthetic model compound of the chromophore. The results indicate that the GFP chromophore consists of an imidazolone ring structure and that the light emitter is the singlet excited state of the phenolate anion of the chromophore. Further, the light emission is highly dependent on the microenvironment around the chromophore and that inhibition of isomerization of the exo-methylene double bond of the chromophore accounts for its efficient light emission. PMID:8942983

  13. Characterization of a novel isoform of alpha-nascent polypeptide-associated complex as IgE-defined autoantigen.

    PubMed

    Mossabeb, Roschanak; Seiberler, Susanne; Mittermann, Irene; Reininger, Renate; Spitzauer, Susanne; Natter, Susanne; Verdino, Petra; Keller, Walter; Kraft, Dietrich; Valenta, Rudolf

    2002-10-01

    The nascent polypeptide-associated complex is required for intracellular translocation of newly synthesized polypeptides in eukaryotic cells. It may also act as a transcriptional coactivator in humans and various eukaryotic organisms and binds to nucleic acids. Recently, we provided evidence that a component of nascent polypeptide-associated complex, alpha-nascent polypeptide-associated complex, represents an IgE-reactive autoantigen for atopic dermatitis patients. By oligonucleotide screening we isolated a complete cDNA coding for a so far unknown alpha-nascent polypeptide-associated complex isoform from a human epithelial cDNA library. Southern blot hybridization experiments provided further evidence that alpha-nascent polypeptide-associated complex is encoded by a gene family. Recombinant alpha-nascent polypeptide-associated complex was expressed in Escherichia coli as a soluble, His-tagged protein, and purified via nickel affinity chromatography. By circular dichroism analysis it is demonstrated that purified recombinant alpha-nascent polypeptide-associated complex represents a folded protein of mixed alpha-helical and beta-sheet conformation with unusual high thermal stability and remarkable refolding capacity. Complete recombinant alpha-nascent polypeptide-associated complex (215 amino acids) and its 86 amino acid C-terminal fragment specifically bound IgE autoantibodies. Recombinant alpha-nascent polypeptide-associated complex also inhibited IgE binding to natural alpha-nascent polypeptide-associated complex, demonstrating the presence of common IgE epitopes between the recombinant and natural protein. Furthermore, recombinant alpha-nascent polypeptide-associated complex induced specific lymphoproliferative responses in peripheral blood mononuclear cells of a sensitized atopic dermatitis patient. As has been proposed for environmental allergens it is possible that T cell responses to IgE-defined autoantigens may contribute to the chronic skin manifestations in atopic dermatitis.

  14. Polypeptides having catalase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having catalase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Effect of caloric restriction with or without n-3 polyunsaturated fatty acids on insulin sensitivity in obese subjects: A randomized placebo controlled trial.

    PubMed

    Razny, Urszula; Kiec-Wilk, Beata; Polus, Anna; Goralska, Joanna; Malczewska-Malec, Malgorzata; Wnek, Dominika; Zdzienicka, Anna; Gruca, Anna; Childs, Caroline E; Kapusta, Maria; Slowinska-Solnica, Krystyna; Calder, Philip C; Dembinska-Kiec, Aldona

    2015-12-01

    Caloric restriction and n-3 polyunsaturated fatty acid (PUFA) supplementation protect from some of the metabolic complications. The aim of this study was to assess the influence of a low calorie diet with or without n-3 PUFA supplementation on glucose dependent insulinotropic polypeptide (GIP) output and insulin sensitivity markers in obese subjects. Obese, non-diabetic subjects (BMI 30-40 kg/m(2)) and aged 25-65 yr. were put on low calorie diet (1200-1500 kcal/day) supplemented with either 1.8 g/day n-3 PUFA (DHA/EPA, 5:1) (n = 24) or placebo capsules (n = 24) for three months in a randomized placebo controlled trial. Insulin resistance markers and GIP levels were analysed from samples obtained at fasting and during an oral glucose tolerance test (OGTT). Caloric restriction with n-3 PUFA led to a decrease of insulin resistance index (HOMA-IR) and a significant reduction of insulin output as well as decreased GIP secretion during the OGTT. These effects were not seen with caloric restriction alone. Changes in GIP output were inversely associated with changes in red blood cell EPA content whereas fasting GIP level positively correlated with HOMA-IR index. Blood triglyceride level was lowered by caloric restriction with a greater effect when n-3 PUFA were included and correlated positively with fasting GIP level. Three months of caloric restriction with DHA + EPA supplementation exerts beneficial effects on insulin resistance, GIP and triglycerides. Combining caloric restriction and n-3 PUFA improves insulin sensitivity, which may be related to a decrease of GIP levels.

  16. Secretion of pancreatic polypeptide in patients with pancreatic endocrine tumors.

    PubMed

    Adrian, T E; Uttenthal, L O; Williams, S J; Bloom, S R

    1986-07-31

    Pancreatic polypeptide is often secreted by pancreatic endocrine tumors and is considered a marker for such tumors. To investigate the diagnostic value of this marker, we studied 323 patients with proved pancreatic endocrine tumors. We found plasma concentrations of pancreatic polypeptide to be elevated (more than 300 pmol per liter) in 144 patients (diagnostic sensitivity, 45 percent). However, plasma levels of pancreatic polypeptide can also be elevated in the absence of a pancreatic tumor. To ascertain whether the administration of atropine could distinguish between normal and tumor-associated polypeptide secretion, we studied 30 patients with pancreatic tumors and high plasma levels of pancreatic polypeptide, 18 patients without tumors who had elevated levels of pancreatic polypeptide, and eight normal controls. Polypeptide levels in the 18 patients without tumors were substantially lower than in the 30 patients with tumors. Atropine (1 mg intramuscularly) did not suppress polypeptide levels in patients with tumors, but did suppress plasma levels by more than 50 percent in all subjects without tumors. Thus, although its diagnostic sensitivity is low, pancreatic polypeptide appears to be a useful adjunctive marker of many pancreatic endocrine tumors, and the atropine suppression test can be used to distinguish normal from tumor-related secretion of the polypeptide. Identification of the type of pancreatic endocrine tumor still requires measurement of the hormone that is specific for the tumor.

  17. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Duan, Junxin; Zhang, Yu

    Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    Provided are isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Zhang, Yu

    Provided are isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  1. Combinatorial discovery of enzymes with utility in biomass transformation

    DOEpatents

    Fox, Brian G; Elsen, Nathaniel L

    2015-02-03

    Methods for the cell-free identification of polypeptide and polypeptide combinations with utility in biomass transformation, as well as specific novel polypeptides and cell-free systems containing polypeptide combinations discovered by such methods are disclosed.

  2. Phylogenomics and sequence-structure-function relationships in the GmrSD family of Type IV restriction enzymes.

    PubMed

    Machnicka, Magdalena A; Kaminska, Katarzyna H; Dunin-Horkawicz, Stanislaw; Bujnicki, Janusz M

    2015-10-23

    GmrSD is a modification-dependent restriction endonuclease that specifically targets and cleaves glucosylated hydroxymethylcytosine (glc-HMC) modified DNA. It is encoded either as two separate single-domain GmrS and GmrD proteins or as a single protein carrying both domains. Previous studies suggested that GmrS acts as endonuclease and NTPase whereas GmrD binds DNA. In this work we applied homology detection, sequence conservation analysis, fold recognition and homology modeling methods to study sequence-structure-function relationships in the GmrSD restriction endonucleases family. We also analyzed the phylogeny and genomic context of the family members. Results of our comparative genomics study show that GmrS exhibits similarity to proteins from the ParB/Srx fold which can have both NTPase and nuclease activity. In contrast to the previous studies though, we attribute the nuclease activity also to GmrD as we found it to contain the HNH endonuclease motif. We revealed residues potentially important for structure and function in both domains. Moreover, we found that GmrSD systems exist predominantly as a fused, double-domain form rather than as a heterodimer and that their homologs are often encoded in regions enriched in defense and gene mobility-related elements. Finally, phylogenetic reconstructions of GmrS and GmrD domains revealed that they coevolved and only few GmrSD systems appear to be assembled from distantly related GmrS and GmrD components. Our study provides insight into sequence-structure-function relationships in the yet poorly characterized family of Type IV restriction enzymes. Comparative genomics allowed to propose possible role of GmrD domain in the function of the GmrSD enzyme and possible active sites of both GmrS and GmrD domains. Presented results can guide further experimental characterization of these enzymes.

  3. 76 FR 34801 - Petition for Modification of Single Car Air Brake Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...] Petition for Modification of Single Car Air Brake Test Procedures In accordance with Part 232 of Title 49... Railroad Administration (FRA) grant a modification of the single car air brake test procedures as... of 25 flat cars in consist with revenue cars utilized as locomotives in ``work'' trains, where the...

  4. Coexpression patterns of vimentin and glial filament protein with cytokeratins in the normal, hyperplastic, and neoplastic breast.

    PubMed Central

    Gould, V. E.; Koukoulis, G. K.; Jansson, D. S.; Nagle, R. B.; Franke, W. W.; Moll, R.

    1990-01-01

    The authors studied by immunohistochemistry the intermediate filament (IF) protein profile of 66 frozen samples of breast tissue, including normal parenchyma, all variants of fibrocystic disease (FCD), fibroadenomas, cystosarcoma phylloides, and ductal and lobular carcinomas. Monoclonal antibodies (MAbs) to cytokeratins included MAb KA 1, which binds to polypeptide 5 in a complex with polypeptide 14 and recognizes preferentially myoepithelial cells; MAb KA4, which binds to polypeptides 14, 15, 16 and 19; individual MAbs to polypeptides 7, 13, and 16, 17, 18, and 19, and the MAb mixture AE1/AE3. The authors also applied three MAbs to vimentin (Vim), and three MAbs to glial filament protein (GFP). Selected samples were studied by double-label immunofluorescence microscopy and by staining sequential sections with some of the said MAbs, an MAb to alpha-smooth muscle actin, and well-characterized polyclonal antibodies for the possible coexpression of diverse types of cytoskeletal proteins. Gel electrophoresis and immunoblot analysis also were performed. All samples reacted for cytokeratins with MAbs AE1/AE3, although the reaction did not involve all cells. Monoclonal antibody KA4 stained preferentially the luminal-secretory cells in the normal breast and in FCD, whereas it stained the vast majority of cells in all carcinomas. Monoclonal antibody KA1 stained preferentially the basal-myoepithelial cells of the normal breast and FCD while staining tumor cell subpopulations in 4 of 31 carcinomas. Vimentin-positive cells were found in 8 of 12 normal breasts and in 12 of 20 FCD; in most cases, Vim-reactive cells appeared to be myoepithelial, but occasional luminal cells were also stained. Variable subpopulations of Vim-positive cells were noted in 9 of 20 ductal and in 1 of 7 lobular carcinomas. Glial filament protein-reactive cells were found in normal breast lobules and ducts and in 15 of 20 cases of FCD; with rare exceptions, GFP-reactivity was restricted to basally located, myoepithelial-appearing cells. Occasional GFP-reactive cells were found in 3 of 31 carcinomas. Evaluation of sequential sections and double-label immunofluorescence microscopy showed the coexpression of certain cytokeratins (possibly including polypeptides 14 and 17) with vimentin and alpha-smooth muscle actin together with GFP in some myoepithelial cells. The presence of GFP in myoepithelial cells was confirmed by gel electrophoresis and immunoblotting. Our results indicate that coexpression of cytokeratin with vimentin and/or GFP is comparatively frequent in normal basal-myoepithelial cells of the breast.(ABSTRACT TRUNCATED AT 400 WORDS) Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1700618

  5. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors.

    PubMed Central

    Guidotti, A; Forchetti, C M; Corda, M G; Konkel, D; Bennett, C D; Costa, E

    1983-01-01

    A brain polypeptide termed diazepam-binding inhibitor (DBI) and thought to be chemically and functionally related to the endogenous effector of the benzodiazepine recognition site was purified to homogeneity. This peptide gives a single band of protein on NaDodSO4 and acidic urea gel electrophoresis. A single UV-absorbing peak was obtained by HPLC using three different columns and solvent systems. DBI has a molecular mass of approximately equal to 11,000 daltons. Carboxyl-terminus analysis shows that tyrosine is the only residue while the amino-terminus was blocked. Cyanogen bromide treatment of DBI yields three polypeptide fragments, and the sequences of two of them have been determined for a total of 45 amino acids. DBI is a competitive inhibitor for the binding of [3H]diazepam, [3H]flunitrazepam, beta-[3H]carboline propyl esters, and 3H-labeled Ro 15-1788. The Ki for [3H]-diazepam and beta-[3H]carboline binding were 4 and 1 microM, respectively. Doses of DBI that inhibited [3H]diazepam binding by greater than 50% fail to change [3H]etorphine, gamma-amino[3H]butyric acid, [3H]-quinuclidinyl benzilate, [3H]dihydroalprenolol, [3H]adenosine, and [3H]imipramine binding tested at their respective Kd values. DBI injected intraventricularly at doses of 5-10 nmol completely reversed the anticonflict action of diazepam on unpunished drinking and, similar to the anxiety-inducing beta-carboline derivative FG 7142 (beta-carboline-3-carboxylic acid methyl ester), facilitated the shock-induced suppression of drinking by lowering the threshold for this response. Images PMID:6304714

  6. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Shaghasi, Tarana

    The present invention relates to hybrid polypeptides having cellobiohydrolase activity. The present invention also relates to polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Duan, Junxin; Tang, Lan

    2015-09-22

    The present invention provides isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cell comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellobiohydrolase activitiy and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Duan, Junxin

    2015-12-15

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Isolation of Polypeptide Sample and Measurement of Its Concentration.

    ERIC Educational Resources Information Center

    Beanan, Maureen J.

    2000-01-01

    Introduces a laboratory experiment that isolates a bacterial polypeptide sample and measures the concentration of polypeptides in the sample. Uses Escherichia coli strain MM294 and performs a bio-rad assay to determine the concentration of polypeptides. (YDS)

  11. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-07-14

    The present invention provides isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. PPII propensity of multiple-guest amino acids in a proline-rich environment.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-07-07

    There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.

  13. Polyphosphate present in DNA preparations from fungal species of Collectotrichum inhibits restriction endonucleases and other enzymes

    USGS Publications Warehouse

    Rodriguez, R.J.

    1993-01-01

    During the development of a procedure for the isolation of total genomic DNA from filamentous fungi (Rodriguez, R. J., and Yoder, 0. C., Exp. Mycol. 15, 232-242, 1991) a cell fraction was isolated which inhibited the digestion of DNA by restriction enzymes. After elimination of DNA, RNA, proteins, and lipids, the active compound was purified by gel filtration to yield a single fraction capable of complete inhibition of restriction enzyme activity. The inhibitor did not absorb uv light above 220 nm, and was resistant to alkali and acid at 25°C and to temperatures as high as 100°C. More extensive analyses demonstrated that the inhibitor was also capable of inhibiting T4 DNA ligase and TaqI DNA polymerase, but not DNase or RNase. Chemical analyses indicated that the inhibitor was devoid of carbohydrates, proteins, lipids, and nucleic acids but rich in phosphorus. A combination of nuclear magnetic resonance, metachromatic shift of toluidine blue, and gel filtration indicated that the inhibitor was a polyphosphate (polyP) containing approximately 60 phosphate molecules. The mechanism of inhibition appeared to involve complexing of polyP to the enzymatic proteins. All species of Colletotrichum analyzed produced polyP equivalent in chain length and concentration. A modification to the original DNA extraction procedure is described which eliminates polyP and reduces the time necessary to obtain DNA of sufficient purity for restriction enzyme digestion and TaqI polymerase amplification.

  14. REBASE--a database for DNA restriction and modification: enzymes, genes and genomes.

    PubMed

    Roberts, Richard J; Vincze, Tamas; Posfai, Janos; Macelis, Dana

    2015-01-01

    REBASE is a comprehensive and fully curated database of information about the components of restriction-modification (RM) systems. It contains fully referenced information about recognition and cleavage sites for both restriction enzymes and methyltransferases as well as commercial availability, methylation sensitivity, crystal and sequence data. All genomes that are completely sequenced are analyzed for RM system components, and with the advent of PacBio sequencing, the recognition sequences of DNA methyltransferases (MTases) are appearing rapidly. Thus, Type I and Type III systems can now be characterized in terms of recognition specificity merely by DNA sequencing. The contents of REBASE may be browsed from the web http://rebase.neb.com and selected compilations can be downloaded by FTP (ftp.neb.com). Monthly updates are also available via email. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Cognitive behaviour therapy via interactive video.

    PubMed

    Manchanda, M; McLaren, P

    1998-01-01

    Interactive video has been identified as a potential delivery medium for psychotherapy. Interactive video may restrict the range of both verbal and non-verbal communication and consequently impede the development of a therapeutic relationship, thus influencing the process and outcome of therapy. A single case study explored the feasibility of the provision of congnitive behaviour therapy using interactive video with a client diagnosed as having mixed anxiety and depressive disorder. A range of outcome measures were included together with an independent psychiatric assessment prior to, and on completion of, therapy. Different levels of outcome were also examined: clinical, social, user views and administration. Outcome measures indicated a reduction in psychopathology and some modification of dysfunctional attitudes, with no apparent impairment of the working alliance.

  16. Immunoassay for wheat processing quality: utilization of a sandwich assay incorporating an immobilized single-chain fragment.

    PubMed

    Hill, A S; Giersch, T M; Loh, C S; Skerritt, J H

    1999-10-01

    A single-chain fragment (scFv) was engineered from a monoclonal antibody to high molecular weight glutenin subunits (HMW-GS), wheat flour polypeptides that play a major role in determining the mixing- and extension strength-related properties of dough and its subsequent baking performance. The scFv was expressed in a thioredoxin mutant Escherichia coli strain that allows disulfide bond formation in the cytoplasm and incorporated into a diagnostic test for wheat quality. Although the scFv lacks the more highly conserved antibody constant regions usually involved with immobilization, it was able to be directly immobilized to a polystyrene microwell solid phase without chemical or covalent modification of the protein or solid phase and utilized as a capture antibody in a double-antibody (two-site) immunoassay. In the sandwich assay, increasing HMW-GS concentrations produced increasing assay color, and highly significant correlations were obtained between optical densities obtained in the ELISA using the scFv and the content of large glutenin polymers in flours as well as measures of dough strength as measured by resistance to dough extension in rheological testing. The assay using the scFv was able to be carried out at lower flour sample extract dilutions than that required for a similar assay utilizing a monoclonal capture antibody. This research shows that engineered antibody fragments can be utilized to provide superior assay performance in two-site ELISAs over monoclonal antibodies and is the first application of an engineered antibody to the analysis of food processing quality.

  17. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ye; Tang, Lan; Duan, Junxin

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez de Leon, Alfredo; Rey, Michael

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2012-09-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2010-12-14

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Lopez de Leon, Alfredo [Davis, CA; Rey, Micheal [Davis, CA; Ding, Hanshu [Davis, CA; Vlasenko, Elena [Davis, CA

    2012-02-21

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-06-28

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2016-05-31

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-02-10

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2016-02-23

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Ding, Hanshu

    2013-04-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Hanshu, Ding

    2012-10-30

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan

    2015-11-20

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-01-27

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-21

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2015-03-10

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2017-05-02

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-03-31

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2015-07-14

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Brown, Kimberly [Elk Grove, CA; Harris, Paul [Carnation, WA; Lopez De Leon, Alfredo [Davis, CA; Merino, Sandra [West Sacremento, CA

    2007-05-22

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Harris, Paul; Tang, Lan; Wu, Wenping

    2013-11-19

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc D.; Harris, Paul

    2015-10-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOEpatents

    Liu, Ye; Tang, Lan; Harris, Paul; Wu, Wenping

    2012-10-02

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Methods for using polypeptides having cellobiohydrolase activity

    DOEpatents

    Morant, Marc D; Harris, Paul

    2016-08-23

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polynucleotides encoding polypeptides having beta-glucosidase activity

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2010-03-02

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  4. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo; Rey, Michael

    2013-06-18

    The present invention relates to isolated polypeptides having endoglucanase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    2016-12-13

    The present invention relates to isolated polypeptides having cellobiohydrolase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having xylanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj

    2014-10-14

    The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  9. Addendum to the Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the July 2003, Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications.

  10. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  11. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lan; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. Polypeptides having beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having beta-xylosidase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo [Davis, CA; Ding, Hanshu [Davis, CA; Brown, Kimberly [Elk Grove, CA

    2011-10-25

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  14. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul; Golightly, Elizabeth

    2012-11-27

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan [Beijing, CN; Liu, Ye [Beijing, CN; Duan, Junxin [Beijing, CN; Zhang, Yu [Beijing, CN; Jorgensen, Christian Isak [Bagsvaerd, DK; Kramer, Randall [Lincoln, CA

    2012-04-03

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin [Beijing, CN; Liu, Ye [Beijing, CN; Tang, Lan [Beijing, CN; Wu, Wenping [Beijing, CN; Quinlan, Jason [Albany, CA; Kramer, Randall [Lincoln, CA

    2012-03-27

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2014-09-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having xylanase activity and polynucleotides encoding the same

    DOEpatents

    Spodsberg, Nikolaj [Bagsvaed, DK

    2014-01-07

    The present invention relates to isolated polypeptides having xylanase activity and isolated polynucleotides encoding the polypeptides. The inventino also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2014-10-21

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2007-07-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Harris, Paul [Carnation, WA; Golightly, Elizabeth [Reno, NV

    2011-06-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-04-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2013-06-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Comparison of the nucleotide and amino acid sequences of the RsrI and EcoRI restriction endonucleases.

    PubMed

    Stephenson, F H; Ballard, B T; Boyer, H W; Rosenberg, J M; Greene, P J

    1989-12-21

    The RsrI endonuclease, a type-II restriction endonuclease (ENase) found in Rhodobacter sphaeroides, is an isoschizomer of the EcoRI ENase. A clone containing an 11-kb BamHI fragment was isolated from an R. sphaeroides genomic DNA library by hybridization with synthetic oligodeoxyribonucleotide probes based on the N-terminal amino acid (aa) sequence of RsrI. Extracts of E. coli containing a subclone of the 11-kb fragment display RsrI activity. Nucleotide sequence analysis reveals an 831-bp open reading frame encoding a polypeptide of 277 aa. A 50% identity exists within a 266-aa overlap between the deduced aa sequences of RsrI and EcoRI. Regions of 75-100% aa sequence identity correspond to key structural and functional regions of EcoRI. The type-II ENases have many common properties, and a common origin might have been expected. Nevertheless, this is the first demonstration of aa sequence similarity between ENases produced by different organisms.

  11. Short term effects of energy restriction and dietary fat sub-type on weight loss and disease risk factors.

    PubMed

    Tapsell, L; Batterham, M; Huang, X F; Tan, S-Y; Teuss, G; Charlton, K; Oshea, J; Warensjö, E

    2010-06-01

    Decreasing energy intake relative to energy expenditure is the indisputable tenet of weight loss. In addition to caloric restriction modification of the type of dietary fat may provide further benefits. The aim of the present study was to examine the effect of energy restriction alone and with dietary fat modification on weight loss and adiposity, as well as on risk factors for obesity related disease. One-hundred and fifty overweight men and women were randomized into a 3month controlled trial with four low fat (30% energy) dietary arms: (1) isocaloric (LF); (2) isocaloric with 10% polyunsaturated fatty acids (LF-PUFA); (3) low calorie (LF-LC) (-2MJ); (4) low calorie with 10% PUFA (LF-PUFA-LC). Primary outcomes were changes in body weight and body fat and secondary outcomes were changes in fasting levels of leptin, insulin, glucose, lipids and erythrocyte fatty acids. Changes in dietary intake were assessed using 3day food records. One-hundred and twenty-two participants entered the study and 95 completed the study. All groups lost weight and body fat (P<0.0001 time effect for both), but the LC groups lost more weight (P=0.026 for diet effect). All groups reduced total cholesterol levels (P<0.0001 time effect and P=0.017 intervention effect), but the LC and PUFA groups were better at reducing triacylglycerol levels (P=0.056 diet effect). HDL increased with LF-LC and LF-PUFA but not with LF-PUFA-LC (0.042 diet effect). The LF and LF-LC groups reported greater dietary fat reductions than the two PUFA groups (P=0.043). Energy restriction has the most potent effect on weight loss and lipids, but fat modification is also beneficial when energy restriction is more modest.

  12. Chance, destiny, and the inner workings of ClpXP.

    PubMed

    Russell, Rick; Matouschek, Andreas

    2014-07-31

    AAA+ proteases are responsible for protein degradation in all branches of life. Using single-molecule and ensemble assays, Cordova et al. investigate how the bacterial protease ClpXP steps through a substrate's polypeptide chain and construct a quantitative kinetic model that recapitulates the interplay between stochastic and deterministic behaviors of ClpXP. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Plasma functionalization of polycarbonaturethane to improve endothelialization--Effect of shear stress as a critical factor for biocompatibility control.

    PubMed

    Lukas, Karin; Thomas, Ulrich; Gessner, André; Wehner, Daniel; Schmid, Thomas; Schmid, Christof; Lehle, Karla

    2016-04-01

    Medical devices made of polycarbonaturethane (PCU) combine excellent mechanical properties and little biological degradation, but restricted hemocompatibility. Modifications of PCU might reduce platelet adhesion and promote stable endothelialization. PCU was modified using gas plasma treatment, binding of hydrogels, and coupling of cell-active molecules (modified heparin, anti-thrombin III (ATIII), argatroban, fibronectin, laminin-nonapeptide, peptides with integrin-binding arginine-glycine-aspartic acid (RGD) motif). Biocompatibility was verified with static and dynamic cell culture techniques. Blinded analysis focused on improvement in endothelial cell (EC) adhesion/proliferation, anti-thrombogenicity, reproducible manufacturing process, and shear stress tolerance of ECs. EC adhesion and antithrombogenicity were achieved with 9/35 modifications. Additionally, 6/9 stimulated EC proliferation and 3/6 modification processes were highly reproducible for endothelialization. The latter modifications comprised immobilization of ATIII (A), polyethyleneglycole-diamine-hydrogel (E) and polyethylenimine-hydrogel connected with modified heparin (IH). Under sheer stress, only the IH modification improved EC adhesion within the graft. However, ECs did not arrange in flow direction and cell anchorage was restricted. Despite large variation in surface modification chemistry and improved EC adhesion under static culture conditions, additional introduction of shear stress foiled promising preliminary data. Therefore, biocompatibility testing required not only static tests but also usage of physiological conditions such as shear stress in the case of vascular grafts. © The Author(s) 2016.

  14. BplI, a new BcgI-like restriction endonuclease, which recognizes a symmetric sequence.

    PubMed Central

    Vitkute, J; Maneliene, Z; Petrusyte, M; Janulaitis, A

    1997-01-01

    Bcg I and Bcg I-like restriction endonucleases cleave double stranded DNA specifically on both sides of their asymmetric recognition sequences which are interrupted by several ambiguous base pairs. Their heterosubunit structure, bifunctionality and stimulation by AdoMet make them different from other classified restriction enzymes. Here we report on a new Bcg I-like restriction endonuclease, Bpl I from Bacillus pumilus , which in contrast to all other Bcg I-like enzymes, recognizes a symmetric interrupted sequence, and which, like Bcg I, cleaves double stranded DNA upstream and downstream of its recognition sequence (8/13)GAGN5CTC(13/8). Like Bcg I, Bpl I is a bifunctional enzyme revealing both DNA cleavage and methyltransferase activities. There are two polypeptides in the homogeneous preparation of Bpl I with molecular masses of approximately 74 and 37 kDa. The sizes of the Bpl I subunits are close to those of Bcg I, but the proportion 1:1 in the final preparation is different from that of 2:1 in Bcg I. Low activity observed with Mg2+increases >100-fold in the presence of AdoMet. Even with AdoMet though, specific cleavage is incomplete. S -adenosylhomocysteine (AdoHcy) or sinefungin can replace AdoMet in the cleavage reaction. AdoHcy activated Bpl I yields complete cleavage of DNA. PMID:9358150

  15. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Dotson, William D.; Greenier, Jennifer; Ding, Hanshu

    2007-09-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated nucleic acids encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acids as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having beta-glucosidase activity and polynucleotides encoding the same

    DOEpatents

    Brown, Kimberly; Harris, Paul

    2013-12-17

    The present invention relates to isolated polypeptides having beta-glucosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-12-24

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Structural analysis of photosystem I polypeptides using chemical crosslinking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Odom, W. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Thylakoid membranes, obtained from leaves of 14 d soybean (Glycine max L. cv. Williams) plants, were treated with the chemical crosslinkers glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) to investigate the structural organization of photosystem I. Polypeptides were resolved using lithium dodecyl sulfate polyacrylamide gel electrophoresis, and were identified by western blot analysis using a library of polyclonal antibodies specific for photosystem I subunits. An electrophoretic examination of crosslinked thylakoids revealed numerous crosslinked products, using either glutaraldehyde or EDC. However, only a few of these could be identified by western blot analysis using subunit-specific polyclonal antibodies. Several glutaraldehyde dependent crosslinked species were identified. A single band was identified minimally composed of PsaC and PsaD, documenting the close interaction between these two subunits. The most interesting aspect of these studies was a crosslinked species composed of the PsaB subunit observed following EDC treatment of thylakoids. This is either an internally crosslinked species, which will provide structural information concerning the topology of the complex PsaB protein, a linkage with a polypeptide for which we do not yet have an immunological probe, or a masking of epitopes by the EDC linkage at critical locations in the peptide which is linked to PsaB.

  5. Characterization and expression analysis of Galnts in developing Strongylocentrotus purpuratus embryos

    PubMed Central

    Famiglietti, Amber L.; Wei, Zheng; Beres, Thomas M.; Milac, Adina L.; Tran, Duy T.; Patel, Divya; Angerer, Robert C.; Angerer, Lynne M.

    2017-01-01

    Mucin-type O-glycosylation is a ubiquitous posttranslational modification in which N-Acetylgalactosamine (GalNAc) is added to the hydroxyl group of select serine or threonine residues of a protein by the family of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferases (GalNAc-Ts; EC 2.4.1.41). Previous studies demonstrate that O-glycosylation plays essential roles in protein function, cell-cell interactions, cell polarity and differentiation in developing mouse and Drosophila embryos. Although this type of protein modification is highly conserved among higher eukaryotes, little is known about this family of enzymes in echinoderms, basal deuterostome relatives of the chordates. To investigate the potential role of GalNAc-Ts in echinoderms, we have begun the characterization of this enzyme family in the purple sea urchin, S. purpuratus. We have fully or partially cloned a total of 13 genes (SpGalnts) encoding putative sea urchin SpGalNAc-Ts, and have confirmed enzymatic activity of five recombinant proteins. Amino acid alignments revealed high sequence similarity among sea urchin and mammalian glycosyltransferases, suggesting the presence of putative orthologues. Structural models underscored these similarities and helped reconcile some of the substrate preferences observed. Temporal and spatial expression of SpGalnt transcripts, was studied by whole-mount in situ hybridization. We found that many of these genes are transcribed early in developing embryos, often with restricted expression to the endomesodermal region. Multicolor fluorescent in situ hybridization (FISH) demonstrated that transcripts encoding SpGalnt7-2 co-localized with both Endo16 (a gene expressed in the endoderm), and Gcm (a gene expressed in secondary mesenchyme cells) at the early blastula stage, 20 hours post fertilization (hpf). At late blastula stage (28 hpf), SpGalnt7-2 message co-expresses with Gcm, suggesting that it may play a role in secondary mesenchyme development. We also discovered that morpholino-mediated knockdown of SpGalnt13 transcripts, results in a deficiency of embryonic skeleton and neurons, suggesting that mucin-type O-glycans play essential roles during embryonic development in S. purpuratus. PMID:28448610

  6. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution.

    PubMed

    Kobayashi, I

    2001-09-15

    Restriction-modification (RM) systems are composed of genes that encode a restriction enzyme and a modification methylase. RM systems sometimes behave as discrete units of life, like viruses and transposons. RM complexes attack invading DNA that has not been properly modified and thus may serve as a tool of defense for bacterial cells. However, any threat to their maintenance, such as a challenge by a competing genetic element (an incompatible plasmid or an allelic homologous stretch of DNA, for example) can lead to cell death through restriction breakage in the genome. This post-segregational or post-disturbance cell killing may provide the RM complexes (and any DNA linked with them) with a competitive advantage. There is evidence that they have undergone extensive horizontal transfer between genomes, as inferred from their sequence homology, codon usage bias and GC content difference. They are often linked with mobile genetic elements such as plasmids, viruses, transposons and integrons. The comparison of closely related bacterial genomes also suggests that, at times, RM genes themselves behave as mobile elements and cause genome rearrangements. Indeed some bacterial genomes that survived post-disturbance attack by an RM gene complex in the laboratory have experienced genome rearrangements. The avoidance of some restriction sites by bacterial genomes may result from selection by past restriction attacks. Both bacteriophages and bacteria also appear to use homologous recombination to cope with the selfish behavior of RM systems. RM systems compete with each other in several ways. One is competition for recognition sequences in post-segregational killing. Another is super-infection exclusion, that is, the killing of the cell carrying an RM system when it is infected with another RM system of the same regulatory specificity but of a different sequence specificity. The capacity of RM systems to act as selfish, mobile genetic elements may underlie the structure and function of RM enzymes.

  7. Cellulases, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Blum, David; Gemsch Cuenca, Joslin; Dycaico, Mark

    2013-04-23

    This invention relates to molecular and cellular biology and biochemistry. In one aspect, the invention provides polypeptides having cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides cellulase activity, e.g., endoglucanase, cellobiohydrolase, mannanase and/or .beta.-glucosidase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts.

  8. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  9. Recombinant host cells and nucleic acid constructs encoding polypeptides having cellulolytic enhancing activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Auxin-Regulated Polypeptide Changes at Different Stages of Strawberry Fruit Development 1

    PubMed Central

    Veluthambi, K.; Poovaiah, B. W.

    1984-01-01

    The pattern of polypeptides at different stages of strawberry (Fragaria ananassa Duch. cv Ozark Beauty) fruit development was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. An 81,000-dalton polypeptide appeared between 5 and 10 days after pollination. Polypeptides with molecular weights of 76,000 and 37,000 daltons were formed after 10 days. The control exerted by auxin in the stage-specific formation of polypeptides was investigated by stopping fruit growth after removing the achenes and reinitiating fruit growth by the application of a synthetic auxin, α-naphthaleneacetic acid (NAA). When the achenes were removed from the 5- and 10-day-old fruits, the fruits failed to grow, the 81,000 dalton polypeptide was not formed between 5 and 10 days, and the 76,000- and 37,000-dalton polypeptides were not formed between 10 and 20 days. Application of NAA to fruits deprived of auxin by removal of achenes resulted in the resumption of growth and also in the appearance of these polypeptides. Removal of achenes of the 5- or 10-day-old fruits and growing them without auxin resulted in the formation of 52,000- and 57,000-dalton polypeptides. These two polypeptides were not formed when NAA was applied to fruits after removal of achenes. Supply of NAA to auxin-deprived fruits 5 days after removal of achenes resulted in resumption of growth and also in the disappearance of these two polypeptides, pointing out their possible relation to the inhibition of fruit growth. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:16663624

  11. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc

    2014-01-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase, or beta-glucosidase activity and isolated polynucleotides encoding polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  12. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase.

    PubMed

    Klema, Valerie J; Wilmot, Carrie M

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O(2) to H(2)O(2). These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer's disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography.

  13. The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    PubMed Central

    Klema, Valerie J.; Wilmot, Carrie M.

    2012-01-01

    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography. PMID:22754303

  14. Tunable elastin-like polypeptide hollow sphere as a high payload and controlled delivery gene depot.

    PubMed

    Dash, Biraja C; Mahor, Sunil; Carroll, Oliver; Mathew, Asha; Wang, Wenxin; Woodhouse, Kimberly A; Pandit, Abhay

    2011-06-30

    Self-assembly driven processes can be utilized to produce a variety of nanostructures useful for various in vitro and in vivo applications. Characteristics such as size, stability, biocompatibility, high therapeutic loading and controlled delivery of these nanostructures are particularly crucial in relation to in vivo applications. In this study, we report the fabrication of tunable monodispersed elastin-like polypeptide (ELP) hollow spheres of 100, 300, 500 and 1000 nm by exploiting the self-assembly property and net positive charge of ELP. The microbial transglutaminase (mTGase) cross-linking provided robustness and stability to the hollow spheres while maintaining surface functional groups for further modifications. The resulting hollow spheres showed a higher loading efficiency of plasmid DNA (pDNA) by using polyplex (~70 μg pDNA/mg of hollow sphere) than that of self-assembled ELP particles and demonstrated controlled release triggered by protease and elastase. Moreover, polyplex-loaded hollow spheres showed better cell viability than polyplex alone and yielded higher luciferase expression by providing protection against endosomal degradation. Overall, the monodispersed, tunable hollow spheres with a capability of post-functionalization can provide an exciting new opportunity for use in a range of therapeutic and diagnostic applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. tRNA-mediated labelling of proteins with biotin. A nonradioactive method for the detection of cell-free translation products.

    PubMed

    Kurzchalia, T V; Wiedmann, M; Breter, H; Zimmermann, W; Bauschke, E; Rapoport, T A

    1988-03-15

    We have developed a new method for the rapid and sensitive detection of cell-free translation products. Biotinylated lysine is incorporated into newly synthesized proteins by means of lysyl-tRNA that is modified in the epsilon-position. After electrophoresis in a dodecyl sulfate gel and blotting onto nitrocellulose, the translation products can be identified by probing with streptavidin and biotinylated alkaline phosphatase, followed by incubation with a chromogenic enzyme substrate. The non-radioactive labelling by biotin approaches in its sensitivity that obtained by radioactive amino acids. The products are absolutely stable and can be rapidly identified. The new method has been tested with different mRNAs in the cell-free translation systems of wheat germ and reticulocytes. Neither the interaction of secretory proteins with the signal recognition particle nor the in vitro translocation across the endoplasmic reticulum membrane or core glycosylation of nascent polypeptides are prevented by the incorporation of biotinylated lysine residues. The results indicate that both the ribosome and the endoplasmic reticulum membrane permit the passage of polypeptides carrying bulky groups attached to the amino acids (by atomic models it was estimated that the size of the side chain of lysine changes from approximately equal to 0.8 nm to approximately equal to 2 nm after modification.

  16. Noachian and Hesperian modification of the original Chryse impact basin topography

    NASA Technical Reports Server (NTRS)

    Stockman, S. A.; Frey, H.

    1995-01-01

    We prospose a new center and ring assignment for the original Chryse impact basin based upon photogeologic mapping of Noachian outcrops and re-examination of the published geology using orthographic projections. While others have centered the Chryse impact on the topographic low associated with Hesperian volcanic and fluvial deposits, we suggest that the center of the Noachian-age excavation cavity was located approximately 800 km to the north, and that the basin topography was modified significantly from the Noachian into the Hesperian. Evolution of the topographic low included structural modification by a later impact centered in Acidalia, restricted volcanic deposition and loading, localized subsidence, and restricted deposition from the circum-Chryse outlfow channels.

  17. A simple algorithm for quantifying DNA methylation levels on multiple independent CpG sites in bisulfite genomic sequencing electropherograms.

    PubMed

    Leakey, Tatiana I; Zielinski, Jerzy; Siegfried, Rachel N; Siegel, Eric R; Fan, Chun-Yang; Cooney, Craig A

    2008-06-01

    DNA methylation at cytosines is a widely studied epigenetic modification. Methylation is commonly detected using bisulfite modification of DNA followed by PCR and additional techniques such as restriction digestion or sequencing. These additional techniques are either laborious, require specialized equipment, or are not quantitative. Here we describe a simple algorithm that yields quantitative results from analysis of conventional four-dye-trace sequencing. We call this method Mquant and we compare it with the established laboratory method of combined bisulfite restriction assay (COBRA). This analysis of sequencing electropherograms provides a simple, easily applied method to quantify DNA methylation at specific CpG sites.

  18. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs

    PubMed Central

    Ellis, BL; Hirsch, ML; Porter, SN; Samulski, RJ; Porteus, MH

    2016-01-01

    An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy. PMID:22257934

  19. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting frommore » the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.« less

  20. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices

    PubMed Central

    Huang, Huang-Chiao; Yang, Yoonsun; Nanda, Alisha; Koria, Piyush; Rege, Kaushal

    2012-01-01

    Aim Resistance of cancer cells to hyperthermic temperatures and spatial limitations of nanoparticle-induced hyperthermia necessitates the identification of effective combination treatments that can enhance the efficacy of this treatment. Here we show that novel polypeptide-based degradable plasmonic matrices can be employed for simultaneous administration of hyperthermia and chemotherapeutic drugs as an effective combination treatment that can overcome cancer cell resistance to hyperthermia. Method Novel gold nanorod elastin-like polypeptide matrices were generated and characterized. The matrices were also loaded with the heat-shock protein (HSP)90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), currently in clinical trials for different malignancies, in order to deliver a combination of hyperthermia and chemotherapy. Results Laser irradiation of cells cultured over the plasmonic matrices (without 17-AAG) resulted in the death of cells directly in the path of the laser, while cells outside the laser path did not show any loss of viability. Such spatial limitations, in concert with expression of prosurvival HSPs, reduce the efficacy of hyperthermia treatment. 17-AAG–gold nanorod–polypeptide matrices demonstrated minimal leaching of the drug to surrounding media. The combination of hyperthermic temperatures and the release of 17-AAG from the matrix, both induced by laser irradiation, resulted in significant (>90%) death of cancer cells, while ‘single treatments’ (i.e., hyperthermia alone and 17-AAG alone) demonstrated minimal loss of cancer cell viability (<10%). Conclusion Simultaneous administration of hyperthermia and HSP inhibitor release from plasmonic matrices is a powerful approach for the ablation of malignant cells and can be extended to different combinations of nanoparticles and chemotherapeutic drugs for a variety of malignancies. PMID:21542685

  1. Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, M.T.; Krohne, G.; Franke, W.W.

    1991-01-01

    To gain insight into the mechanisms involved in the formation of maternally stored mRNPs during Xenopus laevis development, we searched for soluble cytoplasmic proteins of the oocyte that are able to selectively bind mRNAs, using as substrate radiolabeled mRNA. In vitro mRNP assembly in solution was followed by UV-cross-linking and RNase digestion, resulting in covalent tagging of polypeptides by nucleotide transfer. Five polypeptides of approximately 54, 56 60, 70, and 100 kD (p54, p56, p60, p70, and p100) have been found to selectively bind mRNA and assemble into mRNPs. These polypeptides, which correspond to previously described native mRNP components, occurmore » in three different particle classes of approximately 4.5S, approximately 6S, and approximately 15S, as also determined by their reactions with antibodies against p54 and p56. Whereas the approximately 4.5S class contains p42, p60, and p70, probably each in the form of individual molecules or small complexes, the approximately 6S particles appears to consist only of p54 and p56, which occur in a near-stoichiometric ratio suggestive of a heterodimer complex. The approximately 15S particles contain, in addition to p54 and p56, p60 and p100 and this is the single occurring form of RNA-binding p100. We have also observed changes in the in vitro mRNA binding properties of these polypeptides during oogenesis and early embryonic development, in relation to their phosphorylation state and to the activity of an approximately 15S particle-associated protein kinase, suggesting that these proteins are involved in the developmental translational regulation of maternal mRNAs.« less

  2. Dithiol amino acids can structurally shape and enhance the ligand-binding properties of polypeptides

    NASA Astrophysics Data System (ADS)

    Chen, Shiyu; Gopalakrishnan, Ranganath; Schaer, Tifany; Marger, Fabrice; Hovius, Ruud; Bertrand, Daniel; Pojer, Florence; Heinis, Christian

    2014-11-01

    The disulfide bonds that form between two cysteine residues are important in defining and rigidifying the structures of proteins and peptides. In polypeptides containing multiple cysteine residues, disulfide isomerization can lead to multiple products with different biological activities. Here, we describe the development of a dithiol amino acid (Dtaa) that can form two disulfide bridges at a single amino acid site. Application of Dtaas to a serine protease inhibitor and a nicotinic acetylcholine receptor inhibitor that contain disulfide constraints enhanced their inhibitory activities 40- and 7.6-fold, respectively. X-ray crystallographic and NMR structure analysis show that the peptide ligands containing Dtaas have retained their native tertiary structures. We furthermore show that replacement of two cysteines by Dtaas can avoid the formation of disulfide bond isomers. With these properties, Dtaas are likely to have broad application in the rational design or directed evolution of peptides and proteins with high activity and stability.

  3. 76 FR 36871 - Modification of Restricted Areas R-4401A, R-4401B, and R-4401C; Camp Shelby, MS

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... National Guard (ANG) published a Final Environmental Assessment (FEA) ``Modification of CRTC-Used Airspace..., 2008. The ANG prepared the FEA and associated FONSI in compliance with their obligations under the... 404d, the FAA has independently evaluated the information contained in the FEA and is adopting the...

  4. Biochemical, molecular, and phylogenetic analysis of pyruvate carboxylase in the yellow fever mosquito, Aedes aegypti.

    PubMed

    Tu, Z; Hagedorn, H H

    1997-02-01

    Pyruvate carboxylase (PC, pyruvate: carbon dioxide ligase [ADP-forming], EC 6.4.1.1) was purified from the yellow fever mosquito, Aedes aegypti. The purified PC showed two polypeptides of similar M(r) (133 and 128 k). The N-terminal sequences of both polypeptides were shown to be very similar, if not identical. A polyclonal antiserum against the 133 kDa polypeptide cross-reacted strongly with the 128 kDa polypeptide. PC was found in all tissues examined. Using a semi-quantitative Western blot assay, PC was shown to be concentrated in the indirect flight muscles and fat body preparations. The ratios of the 133 to 128 kDa polypeptides were shown to differ in various tissues and an Aedes albopictus cell line. The indirect flight muscle was the only tissue in which the 128 kDa polypeptide was more abundant, while both the midgut and the cell line showed almost exclusively the 133 kDa polypeptide. Both peptides were present in varying amounts in brain, malpighian tubule, ovary and fat body preparation. The two isoforms of PC could play different roles in the flight muscle and other tissues. Clones covering a complete cDNA of PC of A. aegypti were obtained using a directional approach. The 3952 bp nucleotide sequence, including a 3585 bp coding region, was determined from these cDNA clones. The deduced 1195 amino acid sequence has a calculated M(r) of 132,200. A putative mitochondrial targeting sequence was determined by comparing the deduced amino acid sequence to the N-terminal sequences of the mature protein. The presence of a mitochondrial targeting sequence indicates that the mosquito PC encoded by the cloned cDNA may be localized in the mitochondria. After the targeting sequence, three functional domains were identified in the following order; biotin carboxylase (BC), carboxyltransferase (CT) and biotin carboxyl carrier protein (BCCP). The mosquito PC showed very high similarity to PCs from other sources (55.1-75.2% identity). Genomic Southern analysis indicated that there could be two similar PC genes or a single PC gene with allelic polymorphism in the A. aegypti genome. The evolutionary relationship of PCs among different organisms was consistent with the accepted evolutionary relationship of their host organisms. The evolution of the domain structures of the biotin-dependent carboxylases including PC was also investigated. This analysis indicates that biotin-dependent carboxylases evolved from a common origin. The analysis also provides evidence for early gene duplication events that shaped the family of biotin-dependent carboxylases. Clear evidence for the coevolution of BC and BCCP domains is presented, although they are associated with very different CT domains and the relative position of the three functional domains varies between members of the biotin-dependent carboxylases.

  5. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin.

    PubMed

    Hou, Hu; Li, Bafang; Zhang, Zhaohui; Xue, Changhu; Yu, Guangli; Wang, Jingfeng; Bao, Yuming; Bu, Lin; Sun, Jiang; Peng, Zhe; Su, Shiwei

    2012-12-01

    Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. 78 FR 60238 - Proposed Modification and Establishment of Restricted Areas; Aberdeen Proving Ground, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ...; Aberdeen Proving Ground, MD AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed..., within the existing restricted areas R-4001A and R- 4001B, at the U.S. Army's Aberdeen Proving Ground in... nonparticipating aircraft from a hazard to navigation in the Aberdeen Proving Ground airspace. DATES: Comments must...

  7. Synthesis and studies of polypeptide materials: Enantioselective polymerization of gamma-benzyl glutamate-N-carboxyanhydride and synthesis of optically active poly(beta-peptides)

    NASA Astrophysics Data System (ADS)

    Cheng, Jianjun

    A class of zero-valent transition metal complexes have been developed by Deming et al for the controlled polymerization of alpha-aminoacid-N-carboxyanhydrides (alpha-NCAs). This discovery provided a superior starting point for the development of enantioselective polymerizations of racemic alpha-NCAs. Bidentate chiral ligands were synthesized and tested for their abilities to induce enantioselective polymerization of gamma-benzyl-glutamate NCA (Glu NCA) when they were coordinated to zero-valent nickel complexes. When optically active 2-pyridinyl oxazoline ligands were mixed with bis(1,5-cyclooctadiene)nickel in THF, chiral nickel complexes were formed that selectively polymerized one enantiomer of Glu NCA over the other. The highest selectivity was observed with the nickel complex of (S)-4-tert-butyl-2-pyridinyl oxazoline, which gave a ratio of enantiomeric polymerization rate constants (kD/kL) of 5.2. It was found that subtle modification of this ligand by incorporation of additional substituents had a substantial impact on initiator enantioselectivities. In separate efforts, methodology was developed for the general synthesis of optically active beta-aminoacid-N-carboxyanhydrides (beta-NCAs) via cyclization of Nbeta-Boc- or Nbeta-Cbz-beta-amino acids using phosphorus tribromide. The beta-NCA molecules could be polymerized in good yields using strong bases or transition metal complexes to give optically active poly(beta-peptides) bearing proteinogenic side chains. The resulting poly(beta-peptides), which have moderate molecular weights, adopt stable helical conformations in solution. Poly(beta-homoglutamate and poly(beta-homolysine), the side-chain deprotected polymers, were found to display pH dependent helix-coil conformation transitions in aqueous solution, similar to their alpha-analogs. A novel method for poly(beta-aspartate) synthesis was developed via the polymerization of L-aspartate alkyl ester beta lactams using metal-amido complexes. Poly(beta-aspartates) bearing short ethylene glycol side chains were obtained with controlled molecular weights and narrow molecular weight distributions when Sc(N(TMS)2)3 was used as initiator for the beta-lactam polymerizations. Polymer chain lengths could be controlled by both stoichiometry and monomer conversion, characteristic of a living polymerization system. Di- and tri-block copoly(beta-peptides) with desired chain lengths were also synthesized using this method. It was found that these techniques were generally applicable for the synthesis of poly(beta-peptides), bearing other proteinogetic side chains. Synthesis and studies of polypeptide materials were extended to unexplored areas by incorporation of both alpha- and beta-amino acid residues into single polymer chains. Two sequence specific polypeptides bearing alternating beta-alpha, or beta-alpha-alpha amino acid residues were synthesized. Both polymers were found to adopt unprecedented stable conformations in solution.

  8. On the likelihood of single-peaked preferences.

    PubMed

    Lackner, Marie-Louise; Lackner, Martin

    2017-01-01

    This paper contains an extensive combinatorial analysis of the single-peaked domain restriction and investigates the likelihood that an election is single-peaked. We provide a very general upper bound result for domain restrictions that can be defined by certain forbidden configurations. This upper bound implies that many domain restrictions (including the single-peaked restriction) are very unlikely to appear in a random election chosen according to the Impartial Culture assumption. For single-peaked elections, this upper bound can be refined and complemented by a lower bound that is asymptotically tight. In addition, we provide exact results for elections with few voters or candidates. Moreover, we consider the Pólya urn model and the Mallows model and obtain lower bounds showing that single-peakedness is considerably more likely to appear for certain parameterizations.

  9. Polypeptide having or assisting in carbohydrate material degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2016-02-16

    The invention relates to a polypeptide which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 76% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  10. Polypeptide having beta-glucosidase activity and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well asmore » the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.« less

  11. Polypeptide having swollenin activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elizabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica D; Damveld, Robbertus Antonius

    2015-11-04

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  12. Polypeptide having beta-glucosidase activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; De Jong, Rene Marcel; Damveld, Robbertus Antonius

    2015-09-01

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 70% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  13. Polypeptide having cellobiohydrolase activity and uses thereof

    DOEpatents

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-09-15

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 93% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  14. Polypeptide having acetyl xylan esterase activity and uses thereof

    DOEpatents

    Schoonneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 82% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  15. Polypeptide having carbohydrate degrading activity and uses thereof

    DOEpatents

    Schooneveld-Bergmans, Margot Elisabeth Francoise; Heijne, Wilbert Herman Marie; Vlasie, Monica Diana; Damveld, Robbertus Antonius

    2015-08-18

    The invention relates to a polypeptide comprising the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 73% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional polypeptide and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  16. Mosaic HIV envelope immunogenic polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korber, Bette T. M.; Gnanakaran, S.; Perkins, Simon

    Disclosed herein are mosaic HIV envelope (Env) polypeptides that can elicit an immune response to HIV (such as cytotoxic T cell (CTL), helper T cell, and/or humoral responses). Also disclosed are sets of the disclosed mosaic Env polypeptides, which include two or more (for example, three) of the polypeptides. Also disclosed herein are methods for treating or inhibiting HIV in a subject including administering one or more of the disclosed immunogenic polypeptides or compositions to a subject infected with HIV or at risk of HIV infection. In some embodiments, the methods include inducing an immune response to HIV in amore » subject comprising administering to the subject at least one (such as two, three, or more) of the immunogenic polypeptides or at least one (such as two, three, or more) nucleic acids encoding at least one of the immunogenic polypeptides disclosed herein.« less

  17. Toxicity study of isolated polypeptide from wool hydrolysate.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Yu; Liu, Xuan; Zhao, Zheng; Zhang, Jing; Han, Yanxia; Zhou, Dangxia

    2013-07-01

    The cytotoxicity of wool polypeptide has been evaluated by both cell and animal models. Wool was dissolved in sodium hydroxide solution, the pH value of the solution was adjusted to 5.55 and the precipitate was harvested as wool polypeptide. The spray-dried polypeptide was collected as powders and characterized by SEM, FTIR and TG-DSC. The cell culturing results showed that wool polypeptide had no obvious negative effect on cell viability in vitro. Both acute oral toxicity and subacute 30-day oral toxicology studies showed that wool polypeptide had no influence on body weight, feed consumption, blood chemistry, and hematology at any dose levels. There were no treatment related findings on gross or detailed necroscopy, organ weights, organ/body weight ratios and histology. Our study indicated the absence of toxicity in wool polypeptide and supported its safe use as a food ingredient or drug carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Polypeptides having beta-glucosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-10-14

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Thermal and acid tolerant beta-xylosidases, genes encoding, related organisms, and methods

    DOEpatents

    Thompson, David N [Idaho Falls, ID; Thompson, Vicki S [Idaho Falls, ID; Schaller, Kastli D [Ammon, ID; Apel, William A [Jackson, WY; Lacey, Jeffrey A [Idaho Falls, ID; Reed, David W [Idaho Falls, ID

    2011-04-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose and/or xylobiose using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.

  20. Brachytherapy Using Elastin-Like Polypeptides with (131)I Inhibit Tumor Growth in Rabbits with VX2 Liver Tumor.

    PubMed

    Liu, Xinpei; Shen, Yiming; Zhang, Xuqian; Lin, Rui; Jia, Qiang; Chang, Yixiang; Liu, Wenge; Liu, Wentian

    2016-10-01

    Brachytherapy is a targeted type of radiotherapy utilized in the treatment of cancers. Elastin-like polypeptides are a unique class of genetically engineered peptide polymers that have several attractive properties for brachytherapy. To explore the feasibility and application of brachytherapy for VX2 liver tumor using elastin-like polypeptides with (131)I so as to provide reliable experimental evidence for a new promising treatment of liver cancer. Elastin-like polypeptide as carrier was labeled with (131)I using the iodogen method. Ten eligible rabbits with VX2 liver tumor were randomly divided into the treatment group (n = 5) and control group (n = 5). The treatment group received brachytherapy using elastin-like polypeptide with (131)I, and in the control group, elastin-like polypeptide was injected into the VX2 liver tumor as a control. Periodic biochemical and imaging surveillances were required to assess treatment efficacy. The stability of elastin-like polypeptide with (131)I in vitro was maintained at over 96.8 % for 96 h. Biochemistry and imaging indicated brachytherapy using elastin-like polypeptide with (131)I for liver tumor can improve liver function and inhibit tumor growth (P < 0.05). Elastin-like polypeptide can be an ideal carrier of (131)I and have high labeling efficiency, radiochemical purity and stability. Brachytherapy using elastin-like polypeptide with (131)I for liver tumor is a useful therapy that possesses high antitumor efficacy advantages.

  1. Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating.

    PubMed

    Nishi, Naoto; Miyamoto, Takuya; Waku, Tomonori; Tanaka, Naoki; Hagiwara, Yoshimichi

    2016-01-01

    The objective of this study is to enhance the inhibition of ice growth in the aqueous solution of a polypeptide, which is inspired by winter flounder antifreeze protein. We carried out measurements on unidirectional freezing of the polypeptide solution. The thickness of the solution was 0.02 mm, and the concentration of polypeptide was varied from 0 to 2 mg/mL. We captured successive microscopic images of ice/solution interfaces, and measured the interface velocity from the locations of tips of the pectinate interface in the images. We also simultaneously measured the temperature by using a small thermocouple. The ice/solution interface temperature was defined by the temperature at the tips. It was found that the interface temperature was decreased with an increasing concentration of polypeptide. To try varying the activity of the polypeptide, we preheated the polypeptide solution and cooled it before carrying out the measurements. Preheating for 1-5 hours was found to cause a further decrease in the interface temperature. Furthermore, wider regions of solution and ice with inclined interfaces in the pectinate interface structure were observed, compared with the case where the solution was not preheated. Thus, the ice growth inhibition was enhanced by this preheating. To investigate the reason for this enhancement, we measured the conformation and aggregates of polypeptide in the solution. We also measured the local concentration of polypeptide. It was found that the polypeptide aggregates became larger as a result of preheating, although the polypeptide conformation was unchanged. These large aggregates caused both adsorption to the interface and the wide regions of supercooled solution in the pectinate interface structure.

  2. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  3. Anti-Idiotype Probes for Toxin Detection

    DTIC Science & Technology

    1991-09-13

    NMurine macrophage activation by staphylococcal exotoxins. Gordo,, Conference .)n Staphylococcal Diseases . Salve Regina Univ. Newport. RI. 16 I I...multisystem disease , toxic shock syndrome. The toxins are serologically distinct, single polypeptide chains, with sizes ranging from 22 kDa to approximately...pleotropic effects on the immune system and in the pathogenesis of disease (21,22,66). Glucocorticoids were reported to be potent inhibitors of the LPS

  4. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    PubMed

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  5. Long timestep dynamics of peptides by the dynamics driver approach.

    PubMed

    Derreumaux, P; Schlick, T

    1995-04-01

    Previous experience with the Langevin/implicit-Euler scheme for dynamics ("LI") on model systems (butane, water) has shown that LI is numerically stable for timesteps in the 5-20 fs range but quenches high-frequency modes. To explore applications to polypeptides, we apply LI to model systems (several dipeptides, a tetrapeptide, and a 13-residue oligoalanine) and also develop a new dynamics driver approach ("DA"). The DA scheme, based on LI, addresses the important issue of proper sampling, which is unlikely to be solved by small-timestep integration methods or implicit methods with intrinsic damping at room temperature, such as LI. Equilibrium averages, time-dependent molecular properties, and sampling trends at room temperature are reported for both LI and DA dynamics simulations, which are then compared to those generated by a standard explicit discretization of the Langevin equation with a 1 fs timestep. We find that LI's quenching effects are severe on both the fast and slow (due to vibrational coupling) frequency modes of all-atom polypeptides and lead to more restricted dynamics at moderate timesteps (40 fs). The DA approach empirically counteracts these damping effects by adding random atomic perturbations to the coordinates at each step (before the minimization of a dynamics function). By restricting the energetic fluctuations and controlling the kinetic energy, we are able with a 60 fs timestep to generate continuous trajectories that sample more of the relevant conformational space and also reproduce reasonably Boltzmann statistics. Although the timescale for transition may be accelerated by the DA approach, the transitional information obtained for the alanine dipeptide and the tetrapeptide is consistent with that obtained by several other theoretical approaches that focus specifically on the determination of pathways. While the trajectory for oligoalanine by the explicit scheme over the nanosecond timeframe remains in the vicinity of the full alpha R-helix starting structure, and a high-temperature (600 degrees K) MD trajectory departs slowly from the alpha helical structure, the DA-generated trajectory for the same CPU time exhibits unfolding and refolding and reveals a range of conformations with an intermediate helix content. Significantly, this range of states is more consistent with spectroscopic experiments on small peptides, as well as the cooperative two-state model for helix-coil transition. The good, near-Boltzmann statistics reported for the smaller systems above, in combination with the interesting oligoalanine results, suggest that DA is a promising tool for efficiently exploring conformational spaces of biomolecules and exploring folding/unfolding processes of polypeptides.

  6. Advances in chemical synthesis of structurally modified bioactive RNAs.

    PubMed

    Li, Ziyuan; Zhou, Haipin; Wu, Xiaoming; Yao, Hequan

    2013-01-01

    Methods for the chemical synthesis of RNA have been available for almost half century, and presently, RNA could be chemically synthesized by automated synthesizers, using protected ribonucleosides preactivated as phosphoramidites, which has already been covered by many reviews. In addition to advancement on synthetic methods, a variety of modifications have also been made on the synthesized oligonucleotides, and previous reviews on the general synthesis of RNAs have not covered this area. In this tutorial review, three types of modifications have been summarized standing at the viewpoint of medicinal chemistry: (1) modifications on nucleobase, comprising substituent introduction and replacement with pseudobase; (2) modifications on ribose, consisting of modifications on the 2', 3' or 5'-position, alternation of configuration, and conformational restriction on ribose; (3) modifications on internucleoside linkages, including amide, formacetal, sulfide, sulfone, ether, phosphorothiolate and phosphorothioate linkages. Synthetic methods achieving these modifications along with the functions or values of these modifications have also been discussed and commented on.

  7. Fine structure of OXI1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase.

    PubMed

    Weiss-Brummer, B; Guba, R; Haid, A; Schweyen, R J

    1979-12-01

    Genetic and biochemical studies have been performed with 110 mutants which are defective in cytochrome a·a3 and map in the regions on mit DNA previously designated OXI1 and OXI2. With 88 mutations allocated to OXI1 fine structure mapping was achieved by the analysis of rho (-) deletions. The order of six groups of mutational sites (A 1, A2, B 1, B2, C 1, C2) thus determined was confirmed by oxi i x oxi j recombination analysis.Analysis of mitochondrially translated polypeptides of oxil mutants by SDS-polyacrylamide electrophoresis reveals three classes of mutant patterns: i) similar to wild-tpye (19 mutants); ii) lacking SU II of cytochrome c oxidase (53 mutants); iii) lacking this subunit and exhibiting a single new polypeptide of lower Mr (16 mutants). Mutations of each of these classes are scattered over the OXI1 region without any detectable clustering; this is consistent with the assumption that all oxil mutations studied are within the same gene.New polypeptides observed in oxil mutants of class iii) vary in Mr in the range from 10,500 to 33,000. Those of Mr 17,000 to 33,000 are shown to be antigenically related to subunit II of cytochrome c oxidase. Colinearity is established between the series of new polypeptides of Mr values increasing from 10,500 to 31,500 and the order of the respective mutational sites on the map, e.g. mutations mapping in A 1 generate the smallest and mutations mapping in C2 the largest mutant fragments.From these data we conclude that i) all mutations allocated to the OXI1 region are in the same gene; ii) this gene codes for subunit II of cytochrome c oxidase; iii) the direction of translation is from CAP to 0X12. Out of 19 mutants allocated to OXI2 three exhibit a new polypeptide; these and all the other oxi2 mutants lack subunit III of cytochrome oxidase. This result provides preliminary evidence that the OXI2 region harbours the structural gene for this subunit III.

  8. Polypeptides having xylanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shaghasi, Tarana

    The present invention relates to polypeptides having xylanase activity, catalytic domains, and carbohydrate binding domains, and polynucleotides encoding the polypeptides, catalytic domains, and carbohydrate binding domains. The present invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, and carbohydrate binding domains.

  9. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj; Shagasi, Tarana

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  10. Polypeptides having endoglucanase activity and polynucleotides encoding same

    DOEpatents

    Spodsberg, Nikolaj; Shagasi, Tarana

    2015-06-30

    The present invention relates to isolated polypeptides having endoglucanase activity, catalytic domains, cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.

  11. Thermal and acid tolerant beta xylosidases, arabinofuranosidases, genes encoding, related organisms, and methods

    DOEpatents

    Thompson, David N; Thompson, Vicki S; Schaller, Kastli D; Apel, William A; Reed, David W; Lacey, Jeffrey A

    2013-04-30

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof are provided. Further provided are methods of at least partially degrading xylotriose, xylobiose, and/or arabinofuranose-substituted xylan using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius and variations thereof.

  12. Polypeptides having beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  13. Polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stringer, Mary Ann; McBrayer, Brett

    2016-11-29

    The present invention relates to isolated polypeptides having cellobiohydrolase activity, catalytic domains, and cellulose binding domains and polynucleotides encoding the polypeptides, catalytic domains, and cellulose binding domains. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains, or cellulose binding domains.

  14. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-05-06

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Polypeptides having beta-glucosidase activity and beta-xylosidase activity and polynucleotides encoding same

    DOEpatents

    Morant, Marc Dominique

    2014-04-29

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Modifications modulate anticodon loop dynamics and codon recognition of E. coli tRNA(Arg1,2).

    PubMed

    Cantara, William A; Bilbille, Yann; Kim, Jia; Kaiser, Rob; Leszczyńska, Grażyna; Malkiewicz, Andrzej; Agris, Paul F

    2012-03-02

    Three of six arginine codons are read by two tRNA(Arg) isoacceptors in Escherichia coli. The anticodon stem and loop of these isoacceptors (ASL(Arg1,2)) differs only in that the position 32 cytidine of tRNA(Arg1) is posttranscriptionally modified to 2-thiocytidine (s(2)C(32)). The tRNA(Arg1,2) are also modified at positions 34 (inosine, I(34)) and 37 (2-methyladenosine, m(2)A(37)). To investigate the roles of modifications in the structure and function, we analyzed six ASL(Arg1,2) constructs differing in their array of modifications by spectroscopy and codon binding assays. Thermal denaturation and circular dichroism spectroscopy indicated that modifications contribute thermodynamic and base stacking properties, resulting in more order but less stability. NMR-derived structures of the ASL(Arg1,2) showed that the solution structures of the ASLs were nearly identical. Surprisingly, none possessed the U-turn conformation required for effective codon binding on the ribosome. Yet, all ASL(Arg1,2) constructs efficiently bound the cognate CGU codon. Three ASLs with I(34) were able to decode CGC, whereas only the singly modified ASL(Arg1,2)(ICG) with I(34) was able to decode CGA. The dissociation constants for all codon bindings were physiologically relevant (0.4-1.4 μM). However, with the introduction of s(2)C(32) or m(2)A(37) to ASL(Arg1,2)(ICG), the maximum amount of ASL bound to CGU and CGC was significantly reduced. These results suggest that, by allowing loop flexibility, the modifications modulate the conformation of the ASL(Arg1,2), which takes one structure free in solution and two others when bound to the cognate arginyl-tRNA synthetase or to codons on the ribosome where modifications reduce or restrict binding to specific codons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    PubMed Central

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  18. Selfish restriction modification genes: resistance of a resident R/M plasmid to displacement by an incompatible plasmid mediated by host killing.

    PubMed

    Naito, Y; Naito, T; Kobayashi, I

    1998-01-01

    Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.

  19. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction.

    PubMed

    Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-02-01

    Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.

  20. Biopolymers Containing Unnatural Amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less

  1. Transport across the Blood-Brain Barrier of Pluronic Leptin

    PubMed Central

    Price, Tulin O.; Farr, Susan A.; Yi, Xiang; Vinogradov, Serguei; Batrakova, Elena; Kabanov, Alexander V.

    2010-01-01

    Leptin is a peptide hormone produced primarily by adipose tissue that acts as a major regulator of food intake and energy homeostasis. Impaired transport of leptin across the blood-brain barrier (BBB) contributes to leptin resistance, which is a cause of obesity. Leptin as a candidate for the treatment of this obesity is limited because of the short half-life in circulation and the decreased BBB transport that arises in obesity. Chemical modification of polypeptides with amphiphilic poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic) is a promising technology to improve efficiency of delivery of polypeptides to the brain. In the present study, we determined the effects of Pluronic P85 (P85) with intermediate hydrophilic-lipophilic balance conjugated with leptin via a degradable SS bond [leptin(ss)-P85] on food intake, clearance, stability, and BBB uptake. The leptin(ss)-P85 exhibited biological activity when injected intracerebroventricularly after overnight food deprivation and 125I-leptin(ss)-P85 was stable in blood, with a half-time clearance of 32.3 min (versus 5.46 min for leptin). 125I-Leptin(ss)-P85 crossed the BBB [blood-to-brain unidirectional influx rate (Ki) = 0.272 ± 0.037 μl/g · min] by a nonsaturable mechanism unrelated to the leptin transporter. Capillary depletion showed that most of the 125I-leptin(ss)-P85 taken up by the brain reached the brain parenchyma. Food intake was reduced when 3 mg of leptin(ss)-P85 was administered via tail vein in normal body weight mice [0–30 min, p < 0.0005; 0–2 h, p < 0.001]. These studies show that the structure based Pluronic modification of leptin increased metabolic stability, reduced food intake, and allowed BBB penetration by a mechanism-independent BBB leptin transporter. PMID:20053933

  2. Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process

    PubMed Central

    2012-01-01

    Background Currently the major barrier in biomass utilization is the lack of an effective pretreatment of plant cell wall so that the carbohydrates can subsequently be hydrolyzed into sugars for fermentation into fuel or chemical molecules. Termites are highly effective in degrading lignocellulosics and thus can be used as model biological systems for studying plant cell wall degradation. Results We discovered a combination of specific structural and compositional modification of the lignin framework and partial degradation of carbohydrates that occurs in softwood with physical chewing by the termite, Coptotermes formosanus, which are critical for efficient cell wall digestion. Comparative studies on the termite-chewed and native (control) softwood tissues at the same size were conducted with the aid of advanced analytical techniques such as pyrolysis gas chromatography mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy and thermogravimetry. The results strongly suggest a significant increase in the softwood cellulose enzymatic digestibility after termite chewing, accompanied with utilization of holocellulosic counterparts and an increase in the hydrolysable capacity of lignin collectively. In other words, the termite mechanical chewing process combines with specific biological pretreatment on the lignin counterpart in the plant cell wall, resulting in increased enzymatic cellulose digestibility in vitro. The specific lignin unlocking mechanism at this chewing stage comprises mainly of the cleavage of specific bonds from the lignin network and the modification and redistribution of functional groups in the resulting chewed plant tissue, which better expose the carbohydrate within the plant cell wall. Moreover, cleavage of the bond between the holocellulosic network and lignin molecule during the chewing process results in much better exposure of the biomass carbohydrate. Conclusion Collectively, these data indicate the participation of lignin-related enzyme(s) or polypeptide(s) and/or esterase(s), along with involvement of cellulases and hemicellulases in the chewing process of C. formosanus, resulting in an efficient pretreatment of biomass through a combination of mechanical and enzymatic processes. This pretreatment could be mimicked for industrial biomass conversion. PMID:22390274

  3. Biopolymers Containing Unnatural Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in proteins using a novel metal-ion binding amino acid, which may facilitate our ability to generate new protein based sensors and catalysts.« less

  4. Fusion of GFP to the M.EcoKI DNA methyltransferase produces a new probe of Type I DNA restriction and modification enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kai; Roberts, Gareth A.; Stephanou, Augoustinos S.

    2010-07-23

    Research highlights: {yields} Successful fusion of GFP to M.EcoKI DNA methyltransferase. {yields} GFP located at C-terminal of sequence specificity subunit does not later enzyme activity. {yields} FRET confirms structural model of M.EcoKI bound to DNA. -- Abstract: We describe the fusion of enhanced green fluorescent protein to the C-terminus of the HsdS DNA sequence-specificity subunit of the Type I DNA modification methyltransferase M.EcoKI. The fusion expresses well in vivo and assembles with the two HsdM modification subunits. The fusion protein functions as a sequence-specific DNA methyltransferase protecting DNA against digestion by the EcoKI restriction endonuclease. The purified enzyme shows Foerstermore » resonance energy transfer to fluorescently-labelled DNA duplexes containing the target sequence and to fluorescently-labelled ocr protein, a DNA mimic that binds to the M.EcoKI enzyme. Distances determined from the energy transfer experiments corroborate the structural model of M.EcoKI.« less

  5. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).

    PubMed

    Muthalif, M M; Rowland, L J

    1994-04-01

    The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins.

  6. Identification of dehydrin-like proteins responsive to chilling in floral buds of blueberry (Vaccinium, section Cyanococcus).

    PubMed Central

    Muthalif, M M; Rowland, L J

    1994-01-01

    The level of three major polypeptides of 65, 60, and 14 kD increased in response to chilling unit accumulation in floral buds of a woody perennial, blueberry (Vaccinium, section Cynaococcus). The level of the polypeptides increased most dramatically within 300 h of chilling and decreased to the prechilling level with the initiation of budbreak. Cold-hardiness levels were assessed for dormant buds of Vaccinium corymbosum and Vaccinium ashei after different chilling treatments until the resumption of growth. These levels coincided with the level of the chilling-responsive polypeptides. Like some other previously described cold-induced proteins in annual plants, the level of the chilling-induced polypeptides also increased in leaves in response to cold treatment; the chilling-induced polypeptides were heat stable, resisting aggregation after incubation at 95 degrees C for 15 min. By fractionating bud proteins first by isoelectric point (pI) and then by molecular mass, the pI values of the 65- and 60-kD polypeptides were found to be 7.5 to 8.0 and the pI value of the 14-kD polypeptide was judged to be 8.5. Purification of the 65- and 60-kD polypeptides, followed by digestion with endoproteinase Lys-C and sequencing of selected fragments, revealed similarities in amino acid composition between the 65- and 60-kD polypeptides and dehydrins. Indeed, antiserum to the lysine-rich consensus sequence EKKGIMDKIKEKLPG of dehydrin proteins cross-reacted to all three of the major chilling-responsive polypeptides of blueberry, identifying these as dehydrins or dehydrin-like proteins. PMID:8016270

  7. Sodium-potassium-activated adenosine triphosphatase of electrophorus electric organ. X. Immunochemical properties of the Lubrol-solubilized enzume and its constituent polypeptides.

    PubMed

    Jean, D H; Albers, R W; Koval, G J

    1975-02-10

    Detergent (Lubrol WX)-solubilized sodium-potassium-activated adenosine triphosphatase ((Na+ + K+)-ATPase) of electrophorus electric organ contains two major constituent polypeptides with molecular weights of 96,000 and 58,000 which can be readily demonstrated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. These two polypeptides can be clearly separated and can be obtained in milligram quantities by preparative sodium dodecyl sulfate gel electrophoresis. The separated polypeptides, after removal of sodium dodecyl sulfate, and Lubrol-solubilized (Na+ + K+)-ATPase activity to some degree. Moreover, the degree of inhibition is directly proportional to the increasing amounts of antisera. The inhibition is maximal 4 weeks after the first injection. Immunodiffusion in 1% agar gel indicated that only Lubrol-solubilized enzyme antiserum, but not 58,000-dalton or 96,00-dalton polypeptide antiserum, gives one major precipitin band. However, specific complex formation between each polypeptide antiserum and Lubrol-solubilized enzyme occurs. This was demonstrated indirectly. After incubating Lubrol-solubilized enzyme with increasing amounts of polypeptide antisera at 37 degrees for 15 min, they were placed in the side wells of an immunodiffusion plate with antiserum against Lubrol-solubilized enzyme in the central well. The intensity of the precipitin band decreased with increasing amounts of polypeptide antisera. Thus, the results indicate that both 96,000-dalton and 58,000-dalton polypeptides are integral subunits of (Na+ + K+)-ATPase.

  8. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morant, Marc

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Extracellular secretion of recombinant proteins

    DOEpatents

    Linger, Jeffrey G.; Darzins, Aldis

    2014-07-22

    Nucleic acids encoding secretion signals, expression vectors containing the nucleic acids, and host cells containing the expression vectors are disclosed. Also disclosed are polypeptides that contain the secretion signals and methods of producing polypeptides, including methods of directing the extracellular secretion of the polypeptides. Exemplary embodiments include cellulase proteins fused to secretion signals, methods to produce and isolate these polypeptides, and methods to degrade lignocellulosic biomass.

  10. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    DOEpatents

    Gray, Kevin A [San Diego, CA; Zhao, Lishan [Emeryville, CA; Cayouette, Michelle H [San Diego, CA

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  11. Pituitary adenylate cyclase-activating polypeptide: a novel peptide with protean implications.

    PubMed

    Pisegna, Joseph R; Oh, David S

    2007-02-01

    The purpose of this review is to highlight the importance of pituitary adenylate cyclase-activating polypeptide in physiological processes and to describe how this peptide is becoming increasingly recognized as having a major role in the body. Since its discovery in 1989, investigators have sought to determine the site of biological activity and the function of pituitary adenylate cyclase-activating polypeptide in maintaining homeostasis. Since its discovery, pituitary adenylate cyclase-activating polypeptide appears to play an important role in the regulation of processes within the central nervous system and gastrointestinal tract, as well in reproductive biology. Pituitary adenylate cyclase-activating polypeptide has been shown to regulate tumor cell growth and to regulate immune function through its effects on T lympocytes. These discoveries suggest the importance of pituitary adenylate cyclase-activating polypeptide in neuronal development, neuronal function, gastrointestinal tract function and reproduction. Future studies will examine more closely the role of pituitary adenylate cyclase-activating polypeptide in regulation of malignantly transformed cells, as well as in regulation of immune function.

  12. Unimpaired postprandial pancreatic polypeptide secretion in Parkinson's disease and REM sleep behavior disorder.

    PubMed

    Unger, Marcus M; Ekman, Rolf; Björklund, Anna-Karin; Karlsson, Gösta; Andersson, Chatarina; Mankel, Katharina; Bohne, Katharina; Tebbe, Johannes J; Stiasny-Kolster, Karin; Möller, Jens C; Mayer, Geert; Kann, Peter H; Oertel, Wolfgang H

    2013-04-01

    Pancreatic polypeptide is released immediately after food ingestion. The release is operated by vagal-abdominal projections and has therefore been suggested as a test for vagal nerve integrity. Pathoanatomical and clinical studies indicate vagal dysfunction in early Parkinson's disease (PD). We assessed the postprandial secretion of pancreatic polypeptide and motilin in healthy controls (n = 18) and patients with idiopathic rapid-eye-movement sleep behavior disorder (iRBD, n = 10), a potential premotor stage of PD, as well as in drug-naive (n = 19) and treated (n = 19) PD patients. The postprandial pancreatic polypeptide secretion showed a physiological pattern in all groups and even an enhanced response in drug-naive PD and iRBD. Motilin concentrations correlated with pancreatic polypeptide concentrations. Postprandial pancreatic polypeptide secretion is not a suitable test for vagal nerve integrity in PD. The unimpaired pancreatic polypeptide response in iRBD and PD might be explained by partially intact vagal-abdominal projections or compensatory mechanisms substituting a defective neuronal brain-gut axis. Copyright © 2012 Movement Disorders Society.

  13. A de novo designed 11 kDa polypeptide: model for amyloidogenic intrinsically disordered proteins.

    PubMed

    Topilina, Natalya I; Ermolenkov, Vladimir V; Sikirzhytski, Vitali; Higashiya, Seiichiro; Lednev, Igor K; Welch, John T

    2010-07-01

    A de novo polypeptide GH(6)[(GA)(3)GY(GA)(3)GE](8)GAH(6) (YE8) has a significant number of identical weakly interacting beta-strands with the turns and termini functionalized by charged amino acids to control polypeptide folding and aggregation. YE8 exists in a soluble, disordered form at neutral pH but is responsive to changes in pH and ionic strength. The evolution of YE8 secondary structure has been successfully quantified during all stages of polypeptide fibrillation by deep UV resonance Raman (DUVRR) spectroscopy combined with other morphological, structural, spectral, and tinctorial characterization. The YE8 folding kinetics at pH 3.5 are strongly dependent on polypeptide concentration with a lag phase that can be eliminated by seeding with a solution of folded fibrillar YE8. The lag phase of polypeptide folding is concentration dependent leading to the conclusion that beta-sheet folding of the 11-kDa amyloidogenic polypeptide is completely aggregation driven.

  14. Small-Angle X-ray Scattering and Single-Molecule FRET Spectroscopy Produce Highly Divergent Views of the Low-Denaturant Unfolded State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Tae Yeon; Meisburger, Steve P.; Hinshaw, James

    2012-10-10

    The results of more than a dozen single-molecule Foerster resonance energy transfer (smFRET) experiments suggest that chemically unfolded polypeptides invariably collapse from an expanded random coil to more compact dimensions as the denaturant concentration is reduced. In sharp contrast, small-angle X-ray scattering (SAXS) studies suggest that, at least for single-domain proteins at non-zero denaturant concentrations, such compaction may be rare. Here, we explore this discrepancy by studying protein L, a protein previously studied by SAXS (at 5 C), which suggested fixed unfolded-state dimensions from 1.4 to 5 M guanidine hydrochloride (GuHCl), and by smFRET (at 25 C), which suggested that,more » in contrast, the chain contracts by 15-30% over this same denaturant range. Repeating the earlier SAXS study under the same conditions employed in the smFRET studies, we observe little, if any, evidence that the unfolded state of protein L contracts as the concentration of GuHCl is reduced. For example, scattering profiles (and thus the shape and dimensions) collected within {approx} 4 ms after dilution to as low as 0.67 M GuHCl are effectively indistinguishable from those observed at equilibrium at higher denaturant. Our results thus argue that the disagreement between SAXS and smFRET is statistically significant and that the experimental evidence in favor of obligate polypeptide collapse at low denaturant cannot be considered conclusive yet.« less

  15. Influence of throat configuration and fish density on escapement of channel catfish from hoop nets

    USGS Publications Warehouse

    Porath, Mark T.; Pape, Larry D.; Richters, Lindsey K.

    2011-01-01

    In recent years, several state agencies have adopted the use of baited, tandemset hoop nets to assess lentic channel catfish Ictalurus punctatus populations. Some level of escapement from the net is expected because an opening exists in each throat of the net, although factors influencing rates of escapement from hoop nets have not been quantified. We conducted experiments to quantify rates of escapement and to determine the influence of throat configuration and fish density within the net on escapement rates. An initial experiment to determine the rate of escapement from each net compartment utilized individually tagged channel catfish placed within the entrance (between the two throats) and cod (within the second throat) compartments of a single hoop net for overnight sets. From this experiment, the mean rate (±SE) of channel catfish escaping was 4.2% (±1.5) from the cod (cod throat was additionally restricted from the traditionally manufactured product), and 74% (±4.2) from the entrance compartments. In a subsequent experiment, channel catfish were placed only in the cod compartment with different throat configurations (restricted or unrestricted) and at two densities (low [6 fish per net] and high [60 fish per net]) for overnight sets to determine the influence of fish density and throat configuration on escapement rates. Escapement rates between throat configurations were doubled at low fish density (13.3 ± 5.4% restricted versus 26.7 ± 5.6% unrestricted) and tripled at high fish density (14.3 ± 4.9% restricted versus 51.9 ± 5.0% unrestricted). These results suggest that retention efficiency is high from cod compartments with restricted throat entrances. However, managers and researchers need to be aware that modification to the cod throats (restrictions) is needed for hoop nets ordered from manufacturers. Managers need to be consistent in their use and reporting of cod end throat configurations when using this gear.

  16. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere

    NASA Astrophysics Data System (ADS)

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  17. Polycondensation of Asparagine-comprising Dipeptides in Aqueous Media-A Simulation of Polypeptide Formation in Primordial Earth Hydrosphere.

    PubMed

    Munegumi, Toratane; Tanikawa, Naoya

    2017-09-01

    Asparagine and aspartic acid might have mutually transformed in the primordial hydrosphere of the earth, if ammonia and aspartic acid had existed in equilibrium. These amino acids seem to contribute to polypeptides, while the simple amino acids glycine and alanine easily form cyclic dipeptides and do not achieve long peptide chains. Asparagine-comprising dipeptides contribute some kinds of activation forms of dipeptides because these can polymerize faster than asparagine only. The new finding of polypeptide formation suggests a pathway of sequential polypeptides to evolve a diversity of polypeptides.

  18. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  19. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.; Henriksen, Emily D.

    2015-06-02

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  20. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.

    2013-10-15

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  1. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from alicyclobacillus acidocaldarius and related organisms, methods

    DOEpatents

    Thompson, David N [Idaho Falls, ID; Apel, William A [Jackson, WY; Thompson, Vicki S [Idaho Falls, ID; Reed, David W [Idaho Falls, ID; Lacey, Jeffrey A [Idaho Falls, ID; Henriksen, Emily D [Idaho Falls, ID

    2012-06-19

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  2. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Reed, David W; Lacey, Jeffrey A; Henriksen, Emily D

    2013-04-23

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  3. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from alicyclobacillus acidocaldarius and related organisms, methods

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.; Henriksen, Emily D.

    2010-12-28

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  4. Thermophilic and thermoacidophilic biopolymer-degrading genes and enzymes from alicyclobacillus acidocaldarius and related organisms, methods

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Reed, David W; Lacey, Jeffrey A; Henriksen, Emily D

    2013-07-30

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  5. Thermophilic and thermoacidophilic biopolymer degrading genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David N; Apel, William A; Thompson, Vicki S

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods of at least partially degrading, cleaving, or removing polysaccharides, lignocellulose, cellulose, hemicellulose, lignin, starch, chitin, polyhydroxybutyrate, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups using isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius.

  6. Differential Contributions of Ubiquitin-Modified APOBEC3G Lysine Residues to HIV-1 Vif-Induced Degradation.

    PubMed

    Turner, Tiffany; Shao, Qiujia; Wang, Weiran; Wang, Yudi; Wang, Chenliang; Kinlock, Ballington; Liu, Bindong

    2016-08-28

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) is a host restriction factor that impedes HIV-1 replication. Viral integrity is salvaged by HIV-1 virion infectivity factor (Vif), which mediates A3G polyubiquitination and subsequent cellular depletion. Previous studies have implied that A3G polyubiquitination is essential for Vif-induced degradation. However, the contribution of polyubiquitination to the rate of A3G degradation remains unclear. Here, we show that A3G polyubiquitination is essential for degradation. Inhibition of ubiquitin-activating enzyme E1 by PYR-41 or blocking the formation of ubiquitin chains by over-expressing the lysine to arginine mutation of ubiquitin K48 (K48R) inhibited A3G degradation. Our A3G mutagenesis study showed that lysine residues 297, 301, 303, and 334 were not sufficient to render lysine-free A3G sensitive to Vif-mediated degradation. Our data also confirm that Vif could induce ubiquitin chain formation on lysine residues interspersed throughout A3G. Notably, A3G degradation relied on the lysine residues involved in polyubiquitination. Although A3G and the A3G C-terminal mutant interacted with Vif and were modified by ubiquitin chains, the latter remained more resistant to Vif-induced degradation. Furthermore, the A3G C-terminal mutant, but not the N-terminal mutant, maintained potent antiviral activity in the presence of Vif. Taken together, our results suggest that the location of A3G ubiquitin modification is a determinant for Vif-mediated degradation, implying that in addition to polyubiquitination, other factors may play a key role in the rate of A3G degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The structural genes for three Drosophila glue proteins reside at a single polytene chromosome puff locus.

    PubMed Central

    Crowley, T E; Bond, M W; Meyerowitz, E M

    1983-01-01

    The polytene chromosome puff at 68C on the Drosophila melanogaster third chromosome is thought from genetic experiments to contain the structural gene for one of the secreted salivary gland glue polypeptides, sgs-3. Previous work has demonstrated that the DNA included in this puff contains sequences that are transcribed to give three different polyadenylated RNAs that are abundant in third-larval-instar salivary glands. These have been called the group II, group III, and group IV RNAs. In the experiments reported here, we used the nucleotide sequence of the DNA coding for these RNAs to predict some of the physical and chemical properties expected of their protein products, including molecular weight, amino acid composition, and amino acid sequence. Salivary gland polypeptides with molecular weights similar to those expected for the 68C RNA translation products, and with the expected degree of incorporation of different radioactive amino acids, were purified. These proteins were shown by amino acid sequencing to correspond to the protein products of the 68C RNAs. It was further shown that each of these proteins is a part of the secreted salivary gland glue: the group IV RNA codes for the previously described sgs-3, whereas the group II and III RNAs code for the newly identified glue polypeptides sgs-8 and sgs-7. Images PMID:6406838

  8. Finite size effect on hydrogen bond cooperativity in (Ala)n polypeptides: A DFT study using numeric atom-centered orbitals

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Ireta, Joel; Scheffler, Matthias

    2007-03-01

    An accurate representation of the energetic contribution Ehb of hydrogen bonds to structure formation is paramount to understand the secondary structure stability of proteins, both qualitatively and quantitatively. However, Ehb depends strongly on its environment, and even on the surrounding peptide conformation itself. For instance, a short α-helical polypeptide (Ala)4 can not be stabilized by its single hydrogen bond, whereas an infinite α-helical chain (Ala)∞ is clearly energetically stable over a fully extended conformation. We here use all-electron density functional calculations in the PBE generalized gradient approximation by a recently developed, computationally efficient numeric atom-centered orbital based code^1 to investigate this H-bond cooperativity that is intrinsic to Alanine-based polypeptides (Ala)n (n=1-20,∞). We compare finite and infinite prototypical helical conformations (α, π, 310) on equal footing, with both neutral and ionic termination for finite (Ala)n peptides. Moderately sized NAO basis sets allow to capture Ehb with meV accuracy, revealing a clear jump in Ehb (cooperativity) when two H-bonds first appear in line, followed by slower and more continuous increase of Ehb towards n->∞. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

  9. Molecular Characterization of Tomato 3-Dehydroquinate Dehydratase-Shikimate:NADP Oxidoreductase1

    PubMed Central

    Bischoff, Markus; Schaller, Andreas; Bieri, Fabian; Kessler, Felix; Amrhein, Nikolaus; Schmid, Jürg

    2001-01-01

    Analysis of cDNAs encoding the bifunctional 3-dehydroquinate dehydratase-shikimate:NADP oxidoreductase (DHQase-SORase) from tomato (Lycopersicon esculentum) revealed two classes of cDNAs that differed by 57 bp within the coding regions, but were otherwise identical. Comparison of these cDNA sequences with the sequence of the corresponding single gene unequivocally proved that the primary transcript is differentially spliced, potentially giving rise to two polypeptides that differ by 19 amino acids. Quantitative real-time polymerase chain reaction revealed that the longer transcript constitutes at most 1% to 2% of DHQase-SORase transcripts. Expression of the respective polypeptides in Escherichia coli mutants lacking the DHQase or the SORase activity gave functional complementation only in case of the shorter polypeptide, indicating that skipping of a potential exon is a prerequisite for the production of an enzymatically active protein. The deduced amino acid sequence revealed that the DHQase-SORase is most likely synthesized as a precursor with a very short (13-amino acid) plastid-specific transit peptide. Like other genes encoding enzymes of the prechorismate pathway in tomato, this gene is elicitor-inducible. Tissue-specific expression resembles the patterns obtained for 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 2 and dehydroquinate synthase genes. This work completes our studies of the prechorismate pathway in that cDNAs for all seven enzymes (including isozymes) of the prechorismate pathway from tomato have now been characterized. PMID:11299368

  10. Mapping of the antigenic determinants of Pseudomonas aeruginosa PAK polar pili.

    PubMed Central

    Watts, T H; Sastry, P A; Hodges, R S; Paranchych, W

    1983-01-01

    The polar pili of Pseudomonas aeruginosa are flexible filaments 5.2 nm in diameter and 2.5 microns in average length. They consist of a single subunit, pilin, which is a 144-residue polypeptide containing a hydrophobic N-terminal region (residues 1 to 30) and eight hydrophilic regions distributed throughout the remainder of the molecule. To delineate the antigenic regions of pilin, we cleaved the protein at Arg30, Arg53, and Arg120 to produce peptides TCI (residues 1 to 30), TCII (31 to 53), TCIII (54 to 120), and TCIV (121 to 144). TCIII and TCIV were further cleaved into several subfragments. The purified peptides were coupled to bovine serum albumin by using the N-hydroxysuccinimide ester of 4-azidobenzoic acid and were then subjected to immunological analysis, using the enzyme-linked immunosorbent assay and immunoblot procedures with polyclonal antiserum. Four antigenic regions were identified; one in TCI was found to be common to both PAK and PAO pilin. The remaining three were found to be specific to PAK pilin. Two of these were subfragments of TCIII, whereas the third was located close to the C-terminus of the molecule, most likely between Cys129 and Cys142. Modification of these cysteines by reduction and carboxymethylation of the disulfide linkage did not abolish the antigenicity of the C-terminal type-specific antigenic determinant. Images PMID:6194112

  11. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.

    PubMed

    Vialard, J E; Gilbert, C S; Green, C M; Lowndes, N F

    1998-10-01

    The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.

  12. O-mannosylation of the Mycobacterium tuberculosis Adhesin Apa Is Crucial for T Cell Antigenicity during Infection but Is Expendable for Protection

    PubMed Central

    Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Fang, Sunan; McDonald, Melissa A.; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V.; Plikaytis, Bonnie B.; Posey, James E.; Amara, Rama Rao

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis. PMID:24130497

  13. O-mannosylation of the Mycobacterium tuberculosis adhesin Apa is crucial for T cell antigenicity during infection but is expendable for protection.

    PubMed

    Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Fang, Sunan; McDonald, Melissa A; Pohl, Jan; Birkness, Kristin; Chamcha, Venkateswarlu; Ramirez, Melissa V; Plikaytis, Bonnie B; Posey, James E; Amara, Rama Rao; Sable, Suraj B

    2013-01-01

    Glycosylation is the most abundant post-translational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. Here, using ELISPOT and polychromatic flow cytometry, we show that O-mannosylation of the adhesin, Apa, of Mycobacterium tuberculosis (Mtb) is crucial for its T cell antigenicity in humans and mice after infection. However, subunit vaccination with both mannosylated and non-mannosylated Apa induced a comparable magnitude and quality of T cell response and imparted similar levels of protection against Mtb challenge in mice. Both forms equally improved waning BCG vaccine-induced protection in elderly mice after subunit boosting. Thus, O-mannosylation of Apa is required for antigenicity but appears to be dispensable for its immunogenicity and protective efficacy in mice. These results have implications for the development of subunit vaccines using post-translationally modified proteins such as glycoproteins against infectious diseases like tuberculosis.

  14. Effects of Visible Irradiation of Protoporphyrin IX on the Self Assembly of Tubulin Heterodimers

    PubMed Central

    Sagarra, Alicia Vall; McMicken, Brady; Nonell, Santi; Brancaleon, Lorenzo

    2016-01-01

    The formation and the effects of the laser irradiation of the complex formed by protoporphyrin IX (PPIX) and tubulin was investigated. We have used tubulin as a model protein to investigate whether docked photoactive ligands can affect the structure and function of polypeptides upon exposure to visible light. We observed that laser irradiation in the Soret band prompts bleaching of the PPIX which is accompanied by a sharp decrease in the intensity and average fluorescence lifetime of the protein (dominated by the four tryptophan residues of the tubulin monomer). The kinetics indicate non-trivial effects and suggest that the photosensitization of the PPIX bound to tubulin prompts structural alterations of the protein. These modifications were also observed through changes in the energy transfer between Trp residues and PPIX. The result suggest that laser irradiation produces localized partial unfolding of tubulin and that the changes prompt modification of the formation of microtubules in vitro. Measurements of singlet oxygen formation were inconclusive in determining whether the changes are prompted by reactive oxygen species or other excited state mechanisms. PMID:27490308

  15. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study.

    PubMed

    Niketíc, V; Stojanović, S; Nikolić, A; Spasić, M; Michelson, A M

    1999-11-01

    The effect of NO treatment in vitro on structural and functional alterations of Cu/Zn, Mn, and Fe type of SODs was studied. Significant difference in response to NO of Cu/ZnSOD compared to the Mn and Fe types was demonstrated. Cu/ZnSOD was shown to be stable with respect to NO: even on prolonged exposure, NO produced negligible effect on its structure and activity. In contrast, both Mn and Fe types were found to be NO-sensitive: exposure to NO led to their fast and extensive inactivation, which was accompanied by extensive structural alterations, including (in some of the samples tested) the cleavage of enzyme polypeptide chains, presumably at His residues of the enzyme metal binding sites. The generation of nitrosonium (NO+) and nitroxyl (NO-) ions in NO treated Mn and FeSODs, which produce enzyme modifications and inactivation, was demonstrated. The physiological and biomedical significance of described findings is briefly discussed.

  16. Polypeptide Functional Surface for the Aptamer Immobilization: Electrochemical Cocaine Biosensing.

    PubMed

    Bozokalfa, Guliz; Akbulut, Huseyin; Demir, Bilal; Guler, Emine; Gumus, Z Pınar; Odaci Demirkol, Dilek; Aldemir, Ebru; Yamada, Shuhei; Endo, Takeshi; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf

    2016-04-05

    Electroanalytical technologies as a beneficial subject of modern analytical chemistry can play an important role for abused drug analysis which is crucial for both legal and social respects. This article reports a novel aptamer-based biosensing procedure for cocaine analysis by combining the advantages of aptamers as selective recognition elements with the well-known advantages of biosensor systems such as the possibility of miniaturization and automation, easy fabrication and modification, low cost, and sensitivity. In order to construct the aptasensor platform, first, polythiophene bearing polyalanine homopeptide side chains (PT-Pala) was electrochemically coated onto the surface of an electrode and then cocaine aptamer was attached to the polymer via covalent conjugation chemistry. The stepwise modification of the surface was confirmed by electrochemical characterization. The designed biosensing system was applied for the detection of cocaine and its metabolite, benzoylecgonine (BE), which exhibited a linear correlation in the range from 2.5 up to 10 nM and 0.5 up to 50 μM for cocaine and BE, respectively. In order to expand its practical application, the proposed method was successfully tested for the analysis of synthetic biological fluids.

  17. New Frontiers in NanoBiotechnology: Monitoring the Protein Function With Single Protein Resolution

    DTIC Science & Technology

    2005-03-29

    Protein (GFP) is a spontaneously fluorescent polypeptide of 27 kD from the jellyfish Aequorea victoria that absorbs UV-blue light and emits in the...will have vast applications in science. Relationship between structure and optical properties in Green Fluorescent Proteins : A quantum mechanical study...RESEARCH AND DEVELOPMENT Invited talks Folding, stability and fluorescence efficiency of the Green and Red Fluorescent Proteins Saverio Alberti Lab.

  18. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  19. Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain.

    PubMed

    Murphy, P A; Cebula, T A; Windle, B E

    1981-10-01

    Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause.

  20. Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain.

    PubMed Central

    Murphy, P A; Cebula, T A; Windle, B E

    1981-01-01

    Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause. PMID:6271680

  1. Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes.

    PubMed Central

    Trapani, J A; Klein, J L; White, P C; Dupont, B

    1988-01-01

    A cDNA clone encoding a human serine esterase gene was isolated from a library constructed from poly(A)+ RNA of allogeneically stimulated, interleukin 2-expanded peripheral blood mononuclear cells. The clone, designated HSE26.1, represents a full-length copy of a 0.9-kilobase mRNA present in human cytotoxic cells but absent from a wide variety of noncytotoxic cell lines. Clone HSE26.1 contains an 892-base-pair sequence, including a single 741-base-pair open reading frame encoding a putative 247-residue polypeptide. The first 20 amino acids of the polypeptide form a leader sequence. The mature protein is predicted to have an unglycosylated Mr of approximately equal to 26,000 and contains a single potential site for N-linked glycosylation. The nucleotide and predicted amino acid sequences of clone HSE26.1 are homologous with all murine and human serine esterases cloned thus far but are most similar to mouse granzyme B (70% nucleotide and 68% amino acid identity). HSE26.1 protein is expressed weakly in unstimulated peripheral blood mononuclear cells but is strongly induced within 6-hr incubation in medium containing phytohemagglutinin. The data suggest that the protein encoded by HSE26.1 plays a role in cell-mediated cytotoxicity. Images PMID:3261871

  2. Molecular basis of activation of endopeptidase activity of botulinum neurotoxin type E.

    PubMed

    Kukreja, Roshan V; Sharma, Shashi K; Singh, Bal Ram

    2010-03-23

    Botulinum neurotoxins (BoNTs) are a group of large proteins that are responsible for the clinical syndrome of botulism. The seven immunologically distinct serotypes of BoNTs (A-G), each produced by various strains of Clostridium botulinum, act on the neuromuscular junction by blocking the release of the neurotransmitter acetylcholine, thereby resulting in flaccid muscle paralysis. BoNTs are synthesized as single inactive polypeptide chains that are cleaved by endogenous or exogenous proteases to generate the active dichain form of the toxin. Nicking of the single chain BoNT/E to the dichain form is associated with 100-fold increase in toxicity. Here we investigated the activation mechanism of botulinum neurotoxin type E upon nicking and subsequent reduction of disulfide bond. It was observed that nicking of BoNT/E significantly enhances its endopeptidase activity and that at the physiological temperature of 37 degrees C the reduced form of nicked BoNT/E adopts a dynamically flexible conformation resulting from the exposure of hydrophobic segments and facilitating optimal cleavage of its substrate SNAP-25. Such reduction-induced increase in the flexibility of the polypeptide folding provides a rationale for the mechanism of BoNT/E endopeptidase against its intracellular substrate, SNAP-25, and complements current understanding of the mechanistics of interaction between the substrate and BoNT endopeptidase.

  3. Internal friction of single polypeptide chains at high stretch.

    PubMed

    Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B

    2008-01-01

    Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.

  4. Changes in the Polypeptide Patterns of Barley Seedlings Exposed to Jasmonic Acid and Salinity 1

    PubMed Central

    Maslenkova, Liliana Todorova; Miteva, Tania Simeonova; Popova, Losanka P.

    1992-01-01

    Soluble and thylakoid membrane proteins of jasmonic acid (JA)-treated and salt-stressed barley (Hordeum vulgare L.) seedlings were investigated using 15% sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis. High JA concentrations induced marked quantitative and qualitative changes in polypeptide profiles concerning mainly the proteins with approximately equal mobility, as in NaCl-stressed plants. The most obvious increase in thylakoid polypeptide band intensity was at 55 to 57 kilodaltons (kD). The relative share of some polypeptides with apparent molecular masses above 66 kD and of polypeptides with lower molecular masses in the region of 20.5 to 15 kD was enhanced. At the same time, one new band at 31 to 31.5 kD was well expressed at 25 and 250 micromolar JA concentrations and became discernible in the 100 micromolar NaCl-treated plants. The intensity of some polypeptides of soluble proteins (molecular masses of 60, 47, 37, 30, and 23.4 kD) increased with increasing JA concentration, whereas the intensities of other polypeptide bands (55, 21.4, and 15 kD) decreased. Enhanced levels of 60-, 47-, 34-, and 30-kD polypeptides and reduced levels of 55- and 15-kD polypeptides were present in NaCl-treated plants. The appearance of one new polypeptide, of 25.1 kD, was observed only in NaCl-treated plants. At 100 millimolar NaCl, an eightfold increase in proline content was observed while at 250 micromolar JA, the proline content was threefold over the control. It is hypothesized that exogenously applied jasmonates act as stress agents. As such, they provoke alterations in the proline content and they can modulate typical stress responses by induction of stress proteins. ImagesFigure 1Figure 4Figure 5 PMID:16668698

  5. Bioresorbable polypeptide-based comb-polymers efficiently improves the stability and pharmacokinetics of proteins in vivo.

    PubMed

    Turabee, Md Hasan; Thambi, Thavasyappan; Lym, Jae Seung; Lee, Doo Sung

    2017-03-28

    Stimuli-responsive polypeptides are a promising class of biomaterials due to their tunable physicochemical and biological properties. Herein, a series of novel pH- and thermo-responsive block copolymers based on polypeptides were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in the presence of poly(ethylene glycol)-diamine macroinitiator followed by aminolysis. The resulting polypeptide-based triblock copolymer, poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)]-poly(ethylene glycol)-b-poly[(2-(dibutylamino)ethyl-l-glutamate)-co-(γ-benzyl-l-glutamate)] (PNLG-co-PBLG-b-PEG-b-PBLG-co-PNLG), exists as a low viscous sol at low pH and temperature (≤pH 6.4, 25 °C) but it transforms to a soft gel under physiological conditions (pH 7.4 and 37 °C). The physical properties of the polypeptide gel can be tuned by controlling the ratio between hydrophobic PBLG and pH-sensitive PNLG blocks. The polypeptide-based copolymer did not show any noticeable cytotoxicity to fibroblast cells in vitro. It was found that subcutaneous injection of the polypeptide copolymer solution into the dorsal region of Sprague-Dawley (SD) rats formed a gel instantly without major inflammation. The gels were completely biodegraded in six weeks and found to be bioresorbable. Human growth hormone (hGH)-loaded polypeptide-based biodegradable copolymer sols readily formed a viscoelastic gel that inhibited an initial burst and prolonged the hGH release for one week. Overall, due to their bioresorbable and sustained release protein characteristics, polypeptide hydrogels may serve as viable platforms for therapeutic protein delivery and the surface tunable properties of polypeptide hydrogels can be exploited for other potential therapeutic proteins.

  6. Cis-existence of H3K27me3 and H3K36me2 in mouse embryonic stem cells revealed by specific ions of isobaric modification chromatogram.

    PubMed

    Mao, Hailei; Han, Gang; Xu, Longyong; Zhu, Duming; Lin, Hanqing; Cao, Xiongwen; Yu, Yi; Chen, Charlie Degui

    2015-07-21

    Histone H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 36 trimethylation (H3K36me3) are important epigenetic modifications correlated with transcription repression and activation, respectively. These two opposing modifications rarely co-exist in the same H3 polypeptide. However, a small but significant amount of H3 tails are modified with 5 methyl groups on K27 and K36 in mouse embryonic stem cells (mESCs) and it is unclear how the trimethylation is distributed on K27 or K36. A label-free, bottom-up mass spectrum method, named specific ions of isobaric modification chromatogram (SIMC), was established to quantify the relative abundance of K27me2-K36me3 and K27me3-K36me2 in the same histone H3 tail. By using this method, we demonstrated that the H3K27me3-K36me2 comprises about 85 % of the penta-methylated H3 tails at K27 and K36 in mESCs. Upon mESC differentiation, the abundance of H3K27me3-K36me2 significantly decreased, while the level of H3K27me2-K36me3 remains unchanged. Our study not only revealed the cis-existence of H3K27me3-K36me2 in mESCs, but also suggested that this combinatorial histone modification may assume a specific regulatory function during differentiation.

  7. Versatile platform for nanotechnology based on circular permutations of chaperonin protein

    NASA Technical Reports Server (NTRS)

    McMillan, R. Andrew (Inventor); Kagawa, Hiromi (Inventor); Paavola, Chad D. (Inventor); Chan, Suzanne L. (Inventor); Li, Yi-Fen (Inventor); Trent, Jonathan D. (Inventor)

    2010-01-01

    The present invention provides chaperonin polypeptides which are modified to include N-terminal and C-terminal ends that are relocated from the central pore region to various different positions in the polypeptide which are located on the exterior of the folded modified chaperonin polypeptide. In the modified chaperonin polypeptide, the naturally-occurring N-terminal and C-terminal ends are joined together directly or with an intervening linker peptide sequence. The relocated N-terminal or C-terminal ends can be covalently joined to, or bound with another molecule such as a nucleic acid molecule, a lipid, a carbohydrate, a second polypeptide, or a nanoparticle. The modified chaperonin polypeptides can assemble into double-ringed chaperonin structures. Further, the chaperonin structures can organize into higher order structures such as nanofilaments or nanoarrays which can be used to produce nanodevices and nanocoatings.

  8. Microsecond kinetics in model single- and double-stranded amylose polymers.

    PubMed

    Sattelle, Benedict M; Almond, Andrew

    2014-05-07

    Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated multi-microsecond aqueous simulations are employed to explore conformational kinetics in model single- and double-stranded amylose. The all-atom dynamics concur with prior X-ray and NMR data while surprising and previously overlooked microsecond helix-coil, glycosidic linkage and pyranose ring exchange are hypothesized. In a dodecasaccharide, single-helical collapse was correlated with linkages and rings transitioning from their expected syn and (4)C1 chair conformers. The associated microsecond exchange rates were dependent on proximity to the termini and chain length (comparing hexa- and trisaccharides), while kinetic features of dodecasaccharide linkage and ring flexing are proposed to be a good model for polymers. Similar length double-helices were stable on microsecond timescales but the parallel configuration was sturdier than the antiparallel equivalent. In both, tertiary organization restricted local chain dynamics, implying that simulations of single amylose strands cannot be extrapolated to dimers. Unbiased multi-microsecond simulations of amylose are proposed as a valuable route to probing macromolecular kinetics in water, assessing the impact of chemical modifications on helical stability and accelerating the development of new biotechnologies.

  9. The influence of the side-chain sequence on the structure-activity correlations of immunomodulatory branched polypeptides. Synthesis and conformational analysis of new model polypeptides.

    PubMed

    Mezö, G; Hudecz, F; Kajtár, J; Szókán, G; Szekerke, M

    1989-10-01

    New branched polypeptides were synthesized for a detailed study of the influence of the side-chain structure on the conformation and biological properties. The first subset of polypeptides were prepared by coupling of tetrapeptides to poly[L-Lys]. These polymers contain either DL-Ala3-X [poly[Lys-(X-DL-Ala3)n

  10. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, E.

    1998-12-15

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed. 5 figs.

  11. Use of linalool synthase in genetic engineering of scent production

    DOEpatents

    Pichersky, Eran

    1998-01-01

    A purified S-linalool synthase polypeptide from Clarkia breweri is disclosed as is the recombinant polypeptide and nucleic acid sequences encoding the polypeptide. Also disclosed are antibodies immunoreactive with the purified peptide and with recombinant versions of the polypeptide. Methods of using the nucleic acid sequences, as well as methods of enhancing the smell and the flavor of plants expressing the nucleic acid sequences are also disclosed.

  12. Pituitary adenylate cyclase activating polypeptide reduces A-type K+ currents and caspase activity in cultured adult mouse olfactory neurons.

    PubMed

    Han, P; Lucero, M T

    2005-01-01

    Pituitary adenylate cyclase activating polypeptide has been shown to reduce apoptosis in neonatal cerebellar and olfactory receptor neurons, however the underlying mechanisms have not been elucidated. In addition, the neuroprotective effects of pituitary adenylate cyclase activating polypeptide have not been examined in adult tissues. To study the effects of pituitary adenylate cyclase activating polypeptide on neurons in apoptosis, we measured caspase activation in adult olfactory receptor neurons in vitro. Interestingly, we found that the protective effects of pituitary adenylate cyclase activating polypeptide were related to the absence of a 4-aminopyridine (IC50=144 microM) sensitive rapidly inactivating potassium current often referred to as A-type current. In the presence of 40 nM pituitary adenylate cyclase activating polypeptide 38, both A-type current and activated caspases were significantly reduced. A-type current reduction by pituitary adenylate cyclase activating polypeptide was blocked by inhibiting the phospholipase C pathway, but not the adenylyl cyclase pathway. Our observation that 5 mM 4-aminopyridine mimicked the caspase inhibiting effects of pituitary adenylate cyclase activating polypeptide indicates that A-type current is involved in apoptosis. This work contributes to our growing understanding that potassium currents are involved with the activation of caspases to affect the balance between cell life and death.

  13. Rab-GDI complex dissociation factor expressed through translational frameshifting in filamentous ascomycetes.

    PubMed

    Malagnac, Fabienne; Fabret, Céline; Prigent, Magali; Rousset, Jean-Pierre; Namy, Olivier; Silar, Philippe

    2013-01-01

    In the model fungus Podospora anserina, the PaYIP3 gene encoding the orthologue of the Saccharomyces cerevisiae YIP3 Rab-GDI complex dissociation factor expresses two polypeptides, one of which, the long form, is produced through a programmed translation frameshift. Inactivation of PaYIP3 results in slightly delayed growth associated with modification in repartition of fruiting body on the thallus, along with reduced ascospore production on wood. Long and short forms of PaYIP3 are expressed in the mycelium, while only the short form appears expressed in the maturing fruiting body (perithecium). The frameshift has been conserved over the evolution of the Pezizomycotina, lasting for over 400 million years, suggesting that it has an important role in the wild.

  14. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott; Alvizo, Oscar

    2013-01-15

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  15. Chemically modified carbonic anhydrases useful in carbon capture systems

    DOEpatents

    Novick, Scott J; Alvizo, Oscar

    2013-10-29

    The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

  16. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen.

    PubMed

    Stefanovic, Branko

    2013-01-01

    Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Novozymes, Inc.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spodsberg, Nikolaj

    The present invention relates to isolated polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Ketol-acid reductoisomerase enzymes and methods of use

    DOEpatents

    Govindarajan, Sridhar; Li, Yougen; Liao, Der-Ing; O'Keefe, Daniel P.; Minshull, Jeremy Stephen; Rothman, Steven Cary; Tobias, Alexander Vincent

    2015-10-27

    Provided herein are polypeptides having ketol-aid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Origins of Genes: "Big Bang" or Continuous Creation?

    NASA Astrophysics Data System (ADS)

    Kesse, Paul K.; Gibbs, Adrian

    1992-10-01

    Many protein families are common to all cellular organisms, indicating that many genes have ancient origins. Genetic variation is mostly attributed to processes such as mutation, duplication, and rearrangement of ancient modules. Thus it is widely assumed that much of present-day genetic diversity can be traced by common ancestry to a molecular "big bang." A rarely considered alternative is that proteins may arise continuously de novo. One mechanism of generating different coding sequences is by "overprinting," in which an existing nucleotide sequence is translated de novo in a different reading frame or from noncoding open reading frames. The clearest evidence for overprinting is provided when the original gene function is retained, as in overlapping genes. Analysis of their phylogenies indicates which are the original genes and which are their informationally novel partners. We report here the phylogenetic relationships of overlapping coding sequences from steroid-related receptor genes and from tymovirus, luteovirus, and lentivirus genomes. For each pair of overlapping coding sequences, one is confined to a single lineage, whereas the other is more widespread. This suggests that the phylogenetically restricted coding sequence arose only in the progenitor of that lineage by translating an out-of-frame sequence to yield the new polypeptide. The production of novel exons by alternative splicing in thyroid receptor and lentivirus genes suggests that introns can be a valuable evolutionary source for overprinting. New genes and their products may drive major evolutionary changes.

  1. Structural and genetic analysis of a mutant of Rhodobacter sphaeroides WS8 deficient in hook length control.

    PubMed Central

    González-Pedrajo, B; Ballado, T; Campos, A; Sockett, R E; Camarena, L; Dreyfus, G

    1997-01-01

    Motility in the photosynthetic bacterium Rhodobacter sphaeroides is achieved by the unidirectional rotation of a single subpolar flagellum. In this study, transposon mutagenesis was used to obtain nonmotile flagellar mutants from this bacterium. We report here the isolation and characterization of a mutant that shows a polyhook phenotype. Morphological characterization of the mutant was done by electron microscopy. Polyhooks were obtained by shearing and were used to purify the hook protein monomer (FlgE). The apparent molecular mass of the hook protein was 50 kDa. N-terminal amino acid sequencing and comparisons with the hook proteins of other flagellated bacteria indicated that the Rhodobacter hook protein has consensus sequences common to axial flagellar components. A 25-kb fragment from an R. sphaeroides WS8 cosmid library restored wild-type flagellation and motility to the mutant. Using DNA adjacent to the inserted transposon as a probe, we identified a 4.6-kb SalI restriction fragment that contained the gene responsible for the polyhook phenotype. Nucleotide sequence analysis of this region revealed an open reading frame with a deduced amino acid sequence that was 23.4% identical to that of FliK of Salmonella typhimurium, the polypeptide responsible for hook length control in that enteric bacterium. The relevance of a gene homologous to fliK in the uniflagellated bacterium R. sphaeroides is discussed. PMID:9352903

  2. Two-site ionic labeling with pyranine: implications for structural dynamics studies of polymers and polypeptides by time-resolved fluorescence anisotropy.

    PubMed

    Sharma, Jai; Tleugabulova, Dina; Czardybon, Wojciech; Brennan, John D

    2006-04-26

    Time-resolved fluorescence anisotropy (TRFA) is widely used to study dynamic motions of biomolecules in a variety of environments. However, depolarization due to rapid side chain motions often complicates the interpretation of anisotropy decay data and interferes with the accurate observation of segmental motions. Here, we demonstrate a new method for two-point ionic labeling of polymers and biomolecules that have appropriately spaced amino groups using the fluorescent probe 8-hydroxyl-1,3,6-trisulfonated pyrene (pyranine). TRFA analysis shows that such labeling provides a more rigid attachment of the fluorophore to the macromolecule than the covalent or single-point ionic labeling of amino groups, leading to time-resolved anisotropy decays that better reflect the backbone motion of the labeled polymer segment. Optimal coupling of pyranine to biomolecule dynamics is shown to be obtained for appropriately spaced Arg groups, and in such cases the ionic binding is stable up to 150 mM ionic strength. TRFA was used to monitor the behavior of pyranine-labeled poly(allylamine) (PAM) and poly-d-lysine (PL) in sodium silicate derived sol-gel materials and revealed significant restriction of backbone motion upon entrapment for both polymers, an observation that was not readily apparent in a previous study with entrapped fluorescein-labeled PAM and PL. The implications of these findings for fluorescence studies of polymer and biomolecule dynamics are discussed.

  3. 78 FR 44189 - Petition for Modification of Single Car Air Brake Test Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ...] Petition for Modification of Single Car Air Brake Test Procedures In accordance with Part 232 of Title 49... Administration (FRA) per 49 CFR 232.307 to modify the single car air brake test procedures located in AAR Standard S-486, Code of Air Brake System Tests for Freight Equipment-- Single Car Test, and required...

  4. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    PubMed Central

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  5. Genomic characterization of a Helicobacter pylori isolate from a patient with gastric cancer in China

    PubMed Central

    2014-01-01

    Background Helicobacter pylori is well known for its relationship with the occurrence of several severe gastric diseases. The mechanisms of pathogenesis triggered by H. pylori are less well known. In this study, we report the genome sequence and genomic characterizations of H. pylori strain HLJ039 that was isolated from a patient with gastric cancer in the Chinese province of Heilongjiang, where there is a high incidence of gastric cancer. To investigate potential genomic features that may be involved in pathogenesis of carcinoma, the genome was compared to three previously sequenced genomes in this area. Result We obtained 42 contigs with a total length of 1,611,192 bp and predicted 1,687 coding sequences. Compared to strains isolated from gastritis and ulcers in this area, 10 different regions were identified as being unique for HLJ039; they mainly encoded type II restriction-modification enzyme, type II m6A methylase, DNA-cytosine methyltransferase, DNA methylase, and hypothetical proteins. A unique 547-bp fragment sharing 93% identity with a hypothetical protein of Helicobacter cinaedi ATCC BAA-847 was not present in any other previous H. pylori strains. Phylogenetic analysis based on core genome single nucleotide polymorphisms shows that HLJ039 is defined as hspEAsia subgroup, which belongs to the hpEastAsia group. Conclusion DNA methylations, variations of the genomic regions involved in restriction and modification systems, are the “hot” regions that may be related to the mechanism of H. pylori-induced gastric cancer. The genome sequence will provide useful information for the deep mining of potential mechanisms related to East Asian gastric cancer. PMID:24565107

  6. Epigenetic modification: possible approach to reduce Salmonella enterica serovar enteritidis susceptibility under stress conditions.

    PubMed

    Soleimani, A F; Zulkifli, I; Hair-Bejo, M; Ebrahimi, M; Jazayeri, S D; Hashemi, S R; Meimandipour, A; Goh, Y M

    2012-01-01

    Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.

  7. Rapid modification of the pET-28 expression vector for ligation independent cloning using homologous recombination in Saccharomyces cerevisiae

    PubMed Central

    Gay, Glen; Wagner, Drew T.; Keatinge-Clay, Adrian T.; Gay, Darren C.

    2014-01-01

    The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast. PMID:25304917

  8. Characterization of a restriction modification system from the commensal Escherichia coli strain A0 34/86 (O83:K24:H31).

    PubMed

    Weiserová, Marie; Ryu, Junichi

    2008-06-27

    Type I restriction-modification (R-M) systems are the most complex restriction enzymes discovered to date. Recent years have witnessed a renaissance of interest in R-M enzymes Type I. The massive ongoing sequencing programmes leading to discovery of, so far, more than 1 000 putative enzymes in a broad range of microorganisms including pathogenic bacteria, revealed that these enzymes are widely represented in nature. The aim of this study was characterisation of a putative R-M system EcoA0ORF42P identified in the commensal Escherichia coli A0 34/86 (O83: K24: H31) strain, which is efficiently used at Czech paediatric clinics for prophylaxis and treatment of nosocomial infections and diarrhoea of preterm and newborn infants. We have characterised a restriction-modification system EcoA0ORF42P of the commensal Escherichia coli strain A0 34/86 (O83: K24: H31). This system, designated as EcoAO83I, is a new functional member of the Type IB family, whose specificity differs from those of known Type IB enzymes, as was demonstrated by an immunological cross-reactivity and a complementation assay. Using the plasmid transformation method and the RM search computer program, we identified the DNA recognition sequence of the EcoAO83I as GGA(8N)ATGC. In consistence with the amino acids alignment data, the 3' TRD component of the recognition sequence is identical to the sequence recognized by the EcoEI enzyme. The A-T (modified adenine) distance is identical to that in the EcoAI and EcoEI recognition sites, which also indicates that this system is a Type IB member. Interestingly, the recognition sequence we determined here is identical to the previously reported prototype sequence for Eco377I and its isoschizomers. Putative restriction-modification system EcoA0ORF42P in the commensal Escherichia coli strain A0 34/86 (O83: K24: H31) was found to be a member of the Type IB family and was designated as EcoAO83I. Combination of the classical biochemical and bacterial genetics approaches with comparative genomics might contribute effectively to further classification of many other putative Type-I enzymes, especially in clinical samples.

  9. A 115 kDa calmodulin-binding protein is located in rat liver endosome fractions.

    PubMed Central

    Enrich, C; Bachs, O; Evans, W H

    1988-01-01

    The distribution of calmodulin-binding polypeptides in various rat liver subcellular fractions was investigated. Plasma-membrane, endosome, Golgi and lysosome fractions were prepared by established procedures. The calmodulin-binding polypeptides present in the subcellular fractions were identified by using an overlay technique after transfer from gels to nitrocellulose sheets. Distinctive populations of calmodulin-binding polypeptides were present in all the fractions examined except lysosomes. A major 115 kDa calmodulin-binding polypeptide of pI 4.3 was located to the endosome subfractions, and it emerges as a candidate endosome-specific protein. Partitioning of endosome fractions between aqueous and Triton X-114 phases indicated that the calmodulin-binding polypeptide was hydrophobic. Major calmodulin-binding polypeptides of 140 and 240 kDa and minor polypeptides of 40-60 kDa were present in plasma membranes. The distribution of calmodulin in the various endosome and plasma-membrane fractions was also analysed, and the results indicated that the amounts were high compared with those in the cytosol. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3214436

  10. Dock 'n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid.

    PubMed

    Zhao, Binwu; Cohen Stuart, Martien A; Hall, Carol K

    2016-04-20

    Polypeptides containing the motif ((GA)mGX)n occur in silk and have a strong tendency to self-assemble. For example, polypeptides containing (GAGAGAGX)n, where X = G or H have been observed to form filaments; similar sequences but with X = Q have been used in the design of coat proteins (capsids) for artificial viruses. The structure of the (GAGAGAGX)m filaments has been proposed to be a stack of peptides in a β roll structure with the hydrophobic side chains pointing outwards (hydrophobic shell). Another possible configuration, a β roll or β solenoid structure which has its hydrophobic side chains buried inside (hydrophobic core) was, however, overlooked. We perform ground state analysis as well as atomic-level molecular dynamics simulations, both on single molecules and on two-molecule stacks of the silk-inspired sequence (GAGAGAGQ)10, to decide whether the hydrophobic core or the hydrophobic shell configuration is the most stable one. We find that a stack of two hydrophobic core molecules is energetically more favorable than a stack of two hydrophobic shell molecules. A shell molecule initially placed in a perfect β roll structure tends to rotate its strands, breaking in-plane hydrogen bonds and forming out-of-plane hydrogen bonds, while a core molecule stays in the β roll structure. The hydrophobic shell structure has type II' β turns whereas the core configuration has type II β turns; only the latter secondary structure agrees well with solid-state NMR experiments on a similar sequence (GA)15. We also observe that the core stack has a higher number of intra-molecular hydrogen bonds and a higher number of hydrogen bonds between stack and water than the shell stack. Hence, we conclude that the hydrophobic core configuration is the most likely structure. In the stacked state, each peptide has more intra-molecular hydrogen bonds than a single folded molecule, which suggests that stacking provides the extra stability needed for molecules to reach the folded state.

  11. Analytic second derivative of the energy for density functional theory based on the three-body fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Fedorov, Dmitri G.; Zahariev, Federico; Schmidt, Michael W.; Kitaura, Kazuo; Gordon, Mark S.; Nakamura, Shinichiro

    2015-03-01

    Analytic second derivatives of the energy with respect to nuclear coordinates have been developed for spin restricted density functional theory (DFT) based on the fragment molecular orbital method (FMO). The derivations were carried out for the three-body expansion (FMO3), and the two-body expressions can be obtained by neglecting the three-body corrections. Also, the restricted Hartree-Fock (RHF) Hessian for FMO3 can be obtained by neglecting the density-functional related terms. In both the FMO-RHF and FMO-DFT Hessians, certain terms with small magnitudes are neglected for computational efficiency. The accuracy of the FMO-DFT Hessian in terms of the Gibbs free energy is evaluated for a set of polypeptides and water clusters and found to be within 1 kcal/mol of the corresponding full (non-fragmented) ab initio calculation. The FMO-DFT method is also applied to transition states in SN2 reactions and for the computation of the IR and Raman spectra of a small Trp-cage protein (PDB: 1L2Y). Some computational timing analysis is also presented.

  12. Catalytic and reactive polypeptides and methods for their preparation and use

    DOEpatents

    Schultz, Peter

    1993-01-01

    Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the bi.

  13. Isolated nucleic acids encoding antipathogenic polypeptides and uses thereof

    DOEpatents

    Altier, Daniel J.; Crane, Virginia C.; Ellanskaya, Irina; Ellanskaya, Natalia; Gilliam, Jacob T.; Hunter-Cevera, Jennie; Presnail, James K.; Schepers, Eric J.; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-04-20

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from fungal fermentation broths. Nucleic acids that encode the antipathogenic polypeptides are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention are also disclosed.

  14. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Dahlbacka, Glen; Ellanskaya, legal representative, Natalia; Herrmann, Rafael; Hunter-Cevera, Jennie; McCutchen, Billy F.; Presnail, James K.; Rice, Janet A.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser; Ellanskaya, deceased, Irina

    2007-12-11

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  15. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J.; Dahlbacka, Glen; Elleskaya, Irina; Ellanskaya, legal representative; Natalia; Herrmann, Rafael; Hunter-Cevera, Jennie; McCutchen, Billy F.; Presnail, James K.; Rice, Janet A.; Schepers, Eric; Simmons, Carl R.; Torok, Tamas; Yalpani, Nasser

    2010-08-10

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  16. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Waukee, IA; Dahlbacka, Glen [Oakland, CA; Elleskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Herrmann, Rafael [Wilmington, DE; Hunter-Cevera, Jennie [Elliott City, MD; McCutchen, Billy F [College Station, IA; Presnail, James K [Avondale, PA; Rice, Janet A [Wilmington, DE; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2011-04-12

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  17. Antifungal polypeptides

    DOEpatents

    Altier, Daniel J [Granger, IA; Dahlbacka, Glen [Oakland, CA; Ellanskaya, Irina [Kyiv, UA; Ellanskaya, legal representative, Natalia; Herrmann, Rafael [Wilmington, DE; Hunter-Cevera, Jennie [Elliott City, MD; McCutchen, Billy F [College Station, TX; Presnail, James K [Avondale, PA; Rice, Janet A [Wilmington, DE; Schepers, Eric [Port Deposit, MD; Simmons, Carl R [Des Moines, IA; Torok, Tamas [Richmond, CA; Yalpani, Nasser [Johnston, IA

    2012-04-03

    Compositions and methods for protecting a plant from a pathogen, particularly a fungal pathogen, are provided. Compositions include novel amino acid sequences, and variants and fragments thereof, for antipathogenic polypeptides that were isolated from microbial fermentation broths. Nucleic acid molecules comprising nucleotide sequences that encode the antipathogenic polypeptides of the invention are also provided. A method for inducing pathogen resistance in a plant using the nucleotide sequences disclosed herein is further provided. The method comprises introducing into a plant an expression cassette comprising a promoter operably linked to a nucleotide sequence that encodes an antipathogenic polypeptide of the invention. Compositions comprising an antipathogenic polypeptide or a transformed microorganism comprising a nucleic acid of the invention in combination with a carrier and methods of using these compositions to protect a plant from a pathogen are further provided. Transformed plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes an antipathogenic polypeptide of the invention, or variant or fragment thereof, are also disclosed.

  18. [beta]-Glucan Synthesis in the Cotton Fiber (III. Identification of UDP-Glucose-Binding Subunits of [beta]-Glucan Synthases by Photoaffinity Labeling with [[beta]-32P]5[prime]-N3-UDP-Glucose.

    PubMed Central

    Li, L.; Drake, R. R.; Clement, S.; Brown, R. M.

    1993-01-01

    Using differential product entrapment and photolabeling under specifying conditions, we identifIed a 37-kD polypeptide as the best candidate among the UDP-glucose-binding polypeptides for the catalytic subunit of cotton (Gossypium hirsutum) cellulose synthase. This polypeptide is enriched by entrapment under conditions favoring [beta]-1,4-glucan synthesis, and it is magnesium dependent and sensitive to unlabeled UDP-glucose. A 52-kD polypeptide was identified as the most likely candidate for the catalytic subunit of [beta]-1,3-glucan synthase because this polypeptide is the most abundant protein in the entrapment fraction obtained under conditions favoring [beta]-1,3-glucan synthesis, is coincident with [beta]-1,3-glucan synthase activity, and is calcium dependent. The possible involvement of other polypeptides in the synthesis of [beta]-1,3-glucan is discussed. PMID:12231766

  19. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  20. Restricted mouth opening and its definitive management: A literature review.

    PubMed

    Kumar, Bhushan; Fernandes, Aquaviva; Sandhu, Prabhdeep Kaur

    2018-01-01

    This review was intended to discuss the various possible modifications suggested in the literature for prosthetic steps and surgical corrective procedures in nonresponding or complicated cases during rehabilitation of patients with restricted mouth opening. Medline, PubMed, and Google were searched electronically for articles using keywords: microstomia and treatment options for restricted mouth opening. The various articles on prosthodontic rehabilitation in microstomia were segregated. From these, various modifications in the prosthetic steps were reviewed. Oral hygiene maintenance is difficult for patient either due to limited access or due to associated lack of manual dexterity, so dental decay and periodontal problems are more extensive in such patients; hence, tooth loss is a common finding. All prosthetic procedures require wide mouth opening to carry out various steps, starting from tray placement during impression making to the final prosthesis insertion, especially removable prosthesis. Various prosthetic modifications given by authors are included in this review for each step in prosthodontic management. A total of eight stock tray designs, 12 custom tray designs, and 17 removable prosthesis designs are discussed along with fixed (either tooth-supported or implant-supported) and maxillofacial prosthesis. However, some patients require surgical intervention also for the correction of microstomia either for function or for esthetic purpose before prosthetic rehabilitation and are also enumerated here. Among all prosthetic restorative options, removable prosthesis is most difficult for dentist to fabricate as conventional methods are either very difficult or impossible to apply. To get a more accurate final prosthesis, we need to modify these steps according to the existing case. Several modifications available are discussed here which can help while managing these patients.

  1. The effectiveness of recent water restriction policies on single-family water use in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2013-12-01

    Residential water consumption represents the largest urban water consumer category and is projected to have significant increase over the next 20 years in Los Angeles, California. Successive severe droughts have occurred in Los Angeles over the past 30 years leading to the implementation of emergency water conservation measures that include limiting the time and frequency of urban irrigation as well as applying shortage year water rates. Reliance on imported water sources dramatically increased during the past drought periods, which questions the reliability of future water supply. The objectives of the current study include quantifying the impact of past water restrictions on single-family residential water use in single-family areas in Los Angeles. Three phases of water restrictions were implemented during the 2007-2010 drought period to reduce water consumption: voluntary restrictions during fiscal year 2007-2008, mandatory outdoor use restrictions in fiscal year 2008-2009, and more stringent mandatory restrictions limiting the frequency of irrigation coupled with a water rate increase in fiscal year 2009-2010. Los Angeles Department of Water and Power (LADWP) monthly individual water use records from 2000 to 2010 were aggregated at the block level in the San Fernando Valley. The effectiveness of the three water restrictions phases was analyzed through a linear regression model developed over 2000-2007 with single-family water use as the dependent variable, climate, and economic variables as the predictors at the block level. Predicted water use during the 2007-2010 period was estimated using results from the statistical model and compared with actual water use to calculate the amount of water savings due to the restrictions. The comparison of the impact of water restrictions on single-family water use reveals that the more stringent mandatory water restrictions provided a higher and statistically significant decrease in water use. Single-family water consumption decreased by 20% on average over the study area during the 2009-2010 fiscal year, compared to a 2% increase during the voluntary restriction period and a 9% decrease during the 2008-2009 fiscal year. Mandatory restrictions proved to be more effective than voluntary restrictions as solutions to reduce water use during drought periods. Our results provide key information on potential implementation of future water policies under difficult economic conditions and help identify successful targeted conservation measures that can be permanently established.

  2. Transcripts of the NADH-dehydrogenase subunit 3 gene are differentially edited in Oenothera mitochondria.

    PubMed Central

    Schuster, W; Wissinger, B; Unseld, M; Brennicke, A

    1990-01-01

    A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531

  3. Tumor promoters alter gene expression and protein phosphorylation in avian cells in culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laszlo, A.; Radke, K.; Chin, S.

    1981-10-01

    We have investigated the effect of 12-O-tetradecanoylphorbol 13-acetate (TPA) on the synthesis and modification of polypeptides in normal avian cells and cells infected by wild-type and temperature-sensitive Rous sarcoma virus (RSV). Using two-dimensional gel electrophoresis, we have detected alterations in both the abundance of cellular polypeptides and in their phosphorylation that seem unique to TPA treatment. However, the state of phosphorylation of the major putative substrate for the action of the src gene-associated protein kinase, the 34- to 36-kilodalton protein, was not altered. Moreover, examination of the phosphorylated amino acid content of total cellular phosphoproteins revealed that the response tomore » TPA was not associated with detectable increases in their phosphotyrosine content. These results make it unlikely that TPA acts by the activation of the phosphorylating activity of the cellular proto-src gene or by the activation of other cellular phosphotyrosine-specific kinases. We have shown previously that temperature-sensitive RSV-infected cells at nonpermissive temperature demonstrate an increased sensitivity to TPA treatment (Bissell, M.J., Hatie, C. and Calfin, M. (1979) Proc. Natl. Acad. Sci. USA 76, 348-352). Our present results indicate that this is not due to reactivation of the phosphorylating activity of the defective src gene product or to its leakiness, and they lend support to the notion of multistep viral carcinogenesis.« less

  4. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  5. Heterotetrameric composition of aquaporin-4 water channels.

    PubMed

    Neely, J D; Christensen, B M; Nielsen, S; Agre, P

    1999-08-24

    Aquaporin (AQP) water channel proteins are tetrameric assemblies of individually active approximately 30 kDa subunits. AQP4 is the predominant water channel protein in brain, but immunoblotting of native tissues has previously yielded multiple poorly resolved bands. AQP4 is known to encode two distinct mRNAs with different translation initiating methionines, M1 or M23. Using SDS-PAGE urea gels and immunoblotting with anti-peptide antibodies, four polypeptides were identified in brain and multiple other rat tissues with the following levels of expression: 32 kDa > 34 kDa > 36 kDa > 38 kDa. The 34 and 38 kDa polypeptides react with an antibody specific for the N-terminus of the M1 isoform, and 32 and 36 kDa correspond to the shorter M23 isoform. Immunogold electron microscopic studies with rat cerebellum cryosections demonstrated that the 34 kDa polypeptide colocalizes in perivascular astrocyte endfeet where the 32 kDa polypeptide is abundantly expressed. Velocity sedimentation, cross-linking, and immunoprecipitation analyses of detergent-solubilized rat brain revealed that the 32 and 34 kDa polypeptides reside within heterotetramers. Immunoprecipitation of AQP4 expressed in Xenopus laevis oocytes demonstrated that heterotetramer formation reflects the relative expression levels of the 32 and 34 kDa polypeptides; however, tetramers containing different compositions of the two polypeptides exhibit similar water permeabilities. These studies demonstrate that AQP4 heterotetramers are formed from two overlapping polypeptides and indicate that the 22-amino acid sequence at the N-terminus of the 34 kDa polypeptide does not influence water permeability but may contribute to membrane trafficking or assembly of arrays.

  6. Peptidergic innervation of the human male genital tract.

    PubMed

    Gu, J; Polak, J M; Probert, L; Islam, K N; Marangos, P J; Mina, S; Adrian, T E; McGregor, G P; O'Shaughnessy, D J; Bloom, S R

    1983-08-01

    Four peptides--vasoactive intestinal polypeptide, substance P, somatostatin and a peptide-like avian pancreatic polypeptide--have been found in nerves of the human male genitalia using highly sensitive and specific methods of immunocytochemistry and radioimmunoassay. Five other peptides (met-enkephalin, leu-enkephalin, neurotensin, bombesin and cholecystokinin-8) were absent. Vasoactive intestinal polypeptide was the most abundant peptide, its highest concentration being in the proximal corpus cavernosum. Immunoelectron microscopy localized this peptide to large (97 +/- 20 nm), round, electron-dense granules of p-type nerve terminals. Vasoactive intestinal polypeptide-immunoreactive neuronal cell bodies were found in the prostate gland and the root of the corpus cavernosum. Substance P immunoreactive material was present in smaller concentration and was mainly localized in nerves around the corpuscular receptors of the glans penis. Somatostatin immunoreactive nerves were associated mainly with the smooth muscle of the seminal vesicle and the vas deferens. When antiserum to avian pancreatic polypeptide was applied, certain nerves were stained, particularly in the vas deferens, the prostate gland and the seminal vesicle. However, chromatography detected no pure avian pancreatic polypeptide suggesting the presence of a structurally related substance, possibly neuropeptide Y, which cross-reacts with the avian pancreatic polypeptide antiserum. Similar distributions between vasoactive intestinal polypeptide-immunoreactive and acetylcholinesterase-positive nerves and between avian pancreatic polypeptide-immunoreactive and adrenergic nerves were observed. A general neuronal marker, neuron-specific enolase, was used to investigate the general pattern of the organ's innervation. The abundance and distribution patterns of these peptide-immunoreactive nerves indicate that they may play important roles in the male sexual physiology.

  7. Studies on bacterial inclusion bodies.

    PubMed

    de Groot, Natalia S; Espargaró, Alba; Morell, Montserrat; Ventura, Salvador

    2008-08-01

    The field of protein misfolding and aggregation has become an extremely active area of research in recent years. Of particular interest is the deposition of polypeptides into inclusion bodies inside bacterial cells. One reason for this interest is that protein aggregation constitutes a major bottleneck in protein production and restricts the spectrum of protein-based drugs available for commercialization. Additionally, prokaryotic cells could provide a simple yet powerful system for studying the formation and prevention of toxic aggregates, such as those responsible for a number of degenerative diseases. Here, we review recent work that has challenged our understanding of the structure and physiology of inclusion bodies and provided us with a new view of intracellular protein deposition, which has important implications in microbiology, biomedicine and biotechnology.

  8. Ordered biological nanostructures formed from chaperonin polypeptides

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D. (Inventor); McMillan, R. Andrew (Inventor); Paavola, Chad D. (Inventor); Kagawa, Hiromi (Inventor)

    2010-01-01

    The following application relates to nanotemplates, nanostructures, nanoarrays and nanodevices formed from wild-type and mutated chaperonin polypeptides, methods of producing such compositions, methods of using such compositions and particular chaperonin polypeptides that can be utilized in producing such compositions.

  9. Photoaffinity labeling of protoporphyrinogen oxidase, the molecular target of diphenylether-type herbicides.

    PubMed

    Camadro, J M; Matringe, M; Thome, F; Brouillet, N; Mornet, R; Labbe, P

    1995-05-01

    Diphenylether-type herbicides are extremely potent inhibitors of protoporphyrinogen oxidase, a membrane-bound enzyme involved in the heme and chlorophyll biosynthesis pathways. Tritiated acifluorfen and a diazoketone derivative of tritiated acifluorfen were specifically bound to a single class of high-affinity binding sites on yeast mitochondrial membranes with apparent dissociation constants of 7 nM and 12.5 nM, respectively. The maximum density of specific binding sites, determined by Scatchard analysis, was 3 pmol.mg-1 protein. Protoporphyrinogen oxidase specific activity was estimated to be 2500 nmol protoporphyrinogen oxidized h-1.mol-1 enzyme. The diazoketone derivative of tritiated acifluorfen was used to specifically photolabel yeast protoporphyrinogen oxidase. The specifically labeled polypeptide in wild-type mitochondrial membranes had an apparent molecular mass of 55 kDa, identical to the molecular mass of the purified enzyme. This photolabeled polypeptide was not detected in a protoporphyrinogen-oxidase-deficient yeast strain, but the membranes contained an equivalent amount of inactive immunoreactive protoporphyrinogen oxidase protein.

  10. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selmer, B.L.; Hanecak, R.; Anderson, C.W.

    1981-01-01

    Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, ismore » produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein.« less

  11. Glucose-Dependent Insulinotropic Polypeptide Mitigates 6-OHDA-Induced Behavioral Impairments in Parkinsonian Rats

    PubMed Central

    Yu, Yu-Wen; Hsueh, Shih-Chang; Lai, Jing-Huei; Chen, Yen-Hua; Kang, Shuo-Jhen; Hsieh, Tsung-Hsun; Hoffer, Barry J.; Li, Yazhou; Greig, Nigel H.; Chiang, Yung-Hsiao

    2018-01-01

    In the present study, the effectiveness of glucose-dependent insulinotropic polypeptide (GIP) was evaluated by behavioral tests in 6-hydroxydopamine (6-OHDA) hemi-parkinsonian (PD) rats. Pharmacokinetic measurements of GIP were carried out at the same dose studied behaviorally, as well as at a lower dose used previously. GIP was delivered by subcutaneous administration (s.c.) using implanted ALZET micro-osmotic pumps. After two days of pre-treatment, male Sprague Dawley rats received a single unilateral injection of 6-OHDA into the medial forebrain bundle (MFB). The neuroprotective effects of GIP were evaluated by apomorphine-induced contralateral rotations, as well as by locomotor and anxiety-like behaviors in open-field tests. Concentrations of human active and total GIP were measured in plasma during a five-day treatment period by ELISA and were found to be within a clinically translatable range. GIP pretreatment reduced behavioral abnormalities induced by the unilateral nigrostriatal dopamine (DA) lesion produced by 6-OHDA, and thus may be a novel target for PD therapeutic development. PMID:29641447

  12. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation.

    PubMed

    Allen, William John; Corey, Robin Adam; Oatley, Peter; Sessions, Richard Barry; Baldwin, Steve A; Radford, Sheena E; Tuma, Roman; Collinson, Ian

    2016-05-16

    The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids.

  13. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  14. Pulse-chase Analysis of N-linked Sugar Chains from Glycoproteins in Mammalian Cells

    PubMed Central

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z.

    2010-01-01

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-3H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation. PMID:20424595

  15. Pulse-chase analysis of N-linked sugar chains from glycoproteins in mammalian cells.

    PubMed

    Avezov, Edward; Ron, Efrat; Izenshtein, Yana; Adan, Yosef; Lederkremer, Gerardo Z

    2010-04-27

    Attachment of the Glc3Man9GlcNAc2 precursor oligosaccharide to nascent polypeptides in the ER is a common modification for secretory proteins. Although this modification was implicated in several biological processes, additional aspects of its function are emerging, with recent evidence of its role in the production of signals for glycoprotein quality control and trafficking. Thus, phenomena related to N-linked glycans and their processing are being intensively investigated. Methods that have been recently developed for proteomic analysis have greatly improved the characterization of glycoprotein N-linked glycans. Nevertheless, they do not provide insight into the dynamics of the sugar chain processing involved. For this, labeling and pulse-chase analysis protocols are used that are usually complex and give very low yields. We describe here a simple method for the isolation and analysis of metabolically labeled N-linked oligosaccharides. The protocol is based on labeling of cells with [2-(3)H] mannose, denaturing lysis and enzymatic release of the oligosaccharides from either a specifically immunoprecipitated protein of interest or from the general glycoprotein pool by sequential treatments with endo H and N-glycosidase F, followed by molecular filtration (Amicon). In this method the isolated oligosaccharides serve as an input for HPLC analysis, which allows discrimination between various glycan structures according to the number of monosaccharide units comprising them, with a resolution of a single monosaccharide. Using this method we were able to study high mannose N-linked oligosaccharide profiles of total cell glycoproteins after pulse-chase in normal conditions and under proteasome inhibition. These profiles were compared to those obtained from an immunoprecipitated ER-associated degradation (ERAD) substrate. Our results suggest that most NIH 3T3 cellular glycoproteins are relatively stable and that most of their oligosaccharides are trimmed to Man9-8GlcNAc2. In contrast, unstable ERAD substrates are trimmed to Man6-5GlcNAc2 and glycoproteins bearing these species accumulate upon inhibition of proteasomal degradation.

  16. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition

    DOE PAGES

    Kintz, Erica; Heiss, Christian; Black, Ian; ...

    2017-02-06

    Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less

  17. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintz, Erica; Heiss, Christian; Black, Ian

    Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less

  18. Relieving Painful 'Shin Splints'.

    PubMed

    Fick, Daniel S; Albright, John P; Murray, Boyd P

    1992-12-01

    In brief Shin splints, or more precisely, medial tibial stress syndrome (MTSS), are painful and troublesome. Despite treatment or activity modification, they often recur. Distinguishing MTSS, the most common running overuse injury, from other overuse injuries can help focus treatment, which starts conservatively. Recommending activity modification, ice massage, NSAIDs, and stretching is a good first step. Patients who don't respond to treatment may need additional diagnostic workup and more restrictive activity guidelines.

  19. Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived β-Sheet Fibrils

    DOE PAGES

    Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.; ...

    2017-08-03

    Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serinemore » with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.« less

  20. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    PubMed

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

Top