Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.
1981-01-01
A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI
Pearson, William G.; Zumwalt, Ann C.
2013-01-01
Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608
Principal Component 2-D Long Short-Term Memory for Font Recognition on Single Chinese Characters.
Tao, Dapeng; Lin, Xu; Jin, Lianwen; Li, Xuelong
2016-03-01
Chinese character font recognition (CCFR) has received increasing attention as the intelligent applications based on optical character recognition becomes popular. However, traditional CCFR systems do not handle noisy data effectively. By analyzing in detail the basic strokes of Chinese characters, we propose that font recognition on a single Chinese character is a sequence classification problem, which can be effectively solved by recurrent neural networks. For robust CCFR, we integrate a principal component convolution layer with the 2-D long short-term memory (2DLSTM) and develop principal component 2DLSTM (PC-2DLSTM) algorithm. PC-2DLSTM considers two aspects: 1) the principal component layer convolution operation helps remove the noise and get a rational and complete font information and 2) simultaneously, 2DLSTM deals with the long-range contextual processing along scan directions that can contribute to capture the contrast between character trajectory and background. Experiments using the frequently used CCFR dataset suggest the effectiveness of PC-2DLSTM compared with other state-of-the-art font recognition methods.
Foch, Eric; Milner, Clare E
2014-01-03
Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.
Magneto-crystalline anisotropy of NdFe0.9Mn0.1O3 single crystal
NASA Astrophysics Data System (ADS)
Mihalik, Marián; Mihalik, Matúš; Zentková, Mária; Uhlířová, Klára; Kratochvílová, Marie; Roupcová, Pavla
2018-05-01
Our present study on oriented single crystal revealed huge magneto-crystalline anisotropy with respect to principal crystallographic axes, even several magnetic transitions were observed below TN = 748 K (c-axis) at 700 K (a-axis) as well 657 K (b-axis). The spin reorientation of magnetic moment takes place in very narrow temperature range between 135 K and 125 K and is attributed to vanishing of ferromagnetic component aligned along b-axis. Measurements of magnetic isotherms trace the development of ferromagnetic component and revealed the intermediate temperature range between 120 K and 20 K which is characterised by zero ferromagnetic components in any principal crystal direction. The ferromagnetic component develops consecutive at low temperature below 20 K along a-axis. Our study indicates completely different magnetic structure of NdFe0.9Mn0.1O3 below 135 K in comparison with NdFeO3.
Nguyen, Phuong H
2007-05-15
Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.
Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S
2015-10-09
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.
A Nonlinear Model for Gene-Based Gene-Environment Interaction.
Sa, Jian; Liu, Xu; He, Tao; Liu, Guifen; Cui, Yuehua
2016-06-04
A vast amount of literature has confirmed the role of gene-environment (G×E) interaction in the etiology of complex human diseases. Traditional methods are predominantly focused on the analysis of interaction between a single nucleotide polymorphism (SNP) and an environmental variable. Given that genes are the functional units, it is crucial to understand how gene effects (rather than single SNP effects) are influenced by an environmental variable to affect disease risk. Motivated by the increasing awareness of the power of gene-based association analysis over single variant based approach, in this work, we proposed a sparse principle component regression (sPCR) model to understand the gene-based G×E interaction effect on complex disease. We first extracted the sparse principal components for SNPs in a gene, then the effect of each principal component was modeled by a varying-coefficient (VC) model. The model can jointly model variants in a gene in which their effects are nonlinearly influenced by an environmental variable. In addition, the varying-coefficient sPCR (VC-sPCR) model has nice interpretation property since the sparsity on the principal component loadings can tell the relative importance of the corresponding SNPs in each component. We applied our method to a human birth weight dataset in Thai population. We analyzed 12,005 genes across 22 chromosomes and found one significant interaction effect using the Bonferroni correction method and one suggestive interaction. The model performance was further evaluated through simulation studies. Our model provides a system approach to evaluate gene-based G×E interaction.
Demixed principal component analysis of neural population data.
Kobak, Dmitry; Brendel, Wieland; Constantinidis, Christos; Feierstein, Claudia E; Kepecs, Adam; Mainen, Zachary F; Qi, Xue-Lian; Romo, Ranulfo; Uchida, Naoshige; Machens, Christian K
2016-04-12
Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure.
Differential principal component analysis of ChIP-seq.
Ji, Hongkai; Li, Xia; Wang, Qian-fei; Ning, Yang
2013-04-23
We propose differential principal component analysis (dPCA) for analyzing multiple ChIP-sequencing datasets to identify differential protein-DNA interactions between two biological conditions. dPCA integrates unsupervised pattern discovery, dimension reduction, and statistical inference into a single framework. It uses a small number of principal components to summarize concisely the major multiprotein synergistic differential patterns between the two conditions. For each pattern, it detects and prioritizes differential genomic loci by comparing the between-condition differences with the within-condition variation among replicate samples. dPCA provides a unique tool for efficiently analyzing large amounts of ChIP-sequencing data to study dynamic changes of gene regulation across different biological conditions. We demonstrate this approach through analyses of differential chromatin patterns at transcription factor binding sites and promoters as well as allele-specific protein-DNA interactions.
Confocal Raman imaging for cancer cell classification
NASA Astrophysics Data System (ADS)
Mathieu, Evelien; Van Dorpe, Pol; Stakenborg, Tim; Liu, Chengxun; Lagae, Liesbet
2014-05-01
We propose confocal Raman imaging as a label-free single cell characterization method that can be used as an alternative for conventional cell identification techniques that typically require labels, long incubation times and complex sample preparation. In this study it is investigated whether cancer and blood cells can be distinguished based on their Raman spectra. 2D Raman scans are recorded of 114 single cells, i.e. 60 breast (MCF-7), 5 cervix (HeLa) and 39 prostate (LNCaP) cancer cells and 10 monocytes (from healthy donors). For each cell an average spectrum is calculated and principal component analysis is performed on all average cell spectra. The main features of these principal components indicate that the information for cell identification based on Raman spectra mainly comes from the fatty acid composition in the cell. Based on the second and third principal component, blood cells could be distinguished from cancer cells; and prostate cancer cells could be distinguished from breast and cervix cancer cells. However, it was not possible to distinguish breast and cervix cancer cells. The results obtained in this study, demonstrate the potential of confocal Raman imaging for cell type classification and identification purposes.
Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch
2014-03-01
Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.
Sacks, Jason D; Ito, Kazuhiko; Wilson, William E; Neas, Lucas M
2012-10-01
With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992-September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM(2.5)), speciated PM(2.5), and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM(2.5) components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses.
USDA-ARS?s Scientific Manuscript database
Principal component analysis (PCA) with 36,621 polymorphic genome-anchored single nucleotide polymorphisms (SNPs) identified collectively for Capsicum annuum and Capsicum baccatum was used to show the distribution of these 2 important incompatible cultivated pepper species. Estimated mean nucleotide...
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
Sebro, Ronnie; Hoffman, Thomas J.; Lange, Christoph; Rogus, John J.; Risch, Neil J.
2013-01-01
Population stratification leads to a predictable phenomenon—a reduction in the number of heterozygotes compared to that calculated assuming Hardy-Weinberg Equilibrium (HWE). We show that population stratification results in another phenomenon—an excess in the proportion of spouse-pairs with the same genotypes at all ancestrally informative markers, resulting in ancestrally related positive assortative mating. We use principal components analysis to show that there is evidence of population stratification within the Framingham Heart Study, and show that the first principal component correlates with a North-South European cline. We then show that the first principal component is highly correlated between spouses (r=0.58, p=0.0013), demonstrating that there is ancestrally related positive assortative mating among the Framingham Caucasian population. We also show that the single nucleotide polymorphisms loading most heavily on the first principal component show an excess of homozygotes within the spouses, consistent with similar ancestry-related assortative mating in the previous generation. This nonrandom mating likely affects genetic structure seen more generally in the North American population of European descent today, and decreases the rate of decay of linkage disequilibrium for ancestrally informative markers. PMID:20842694
A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample
Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...
2012-01-01
Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less
Demixed principal component analysis of neural population data
Kobak, Dmitry; Brendel, Wieland; Constantinidis, Christos; Feierstein, Claudia E; Kepecs, Adam; Mainen, Zachary F; Qi, Xue-Lian; Romo, Ranulfo; Uchida, Naoshige; Machens, Christian K
2016-01-01
Neurons in higher cortical areas, such as the prefrontal cortex, are often tuned to a variety of sensory and motor variables, and are therefore said to display mixed selectivity. This complexity of single neuron responses can obscure what information these areas represent and how it is represented. Here we demonstrate the advantages of a new dimensionality reduction technique, demixed principal component analysis (dPCA), that decomposes population activity into a few components. In addition to systematically capturing the majority of the variance of the data, dPCA also exposes the dependence of the neural representation on task parameters such as stimuli, decisions, or rewards. To illustrate our method we reanalyze population data from four datasets comprising different species, different cortical areas and different experimental tasks. In each case, dPCA provides a concise way of visualizing the data that summarizes the task-dependent features of the population response in a single figure. DOI: http://dx.doi.org/10.7554/eLife.10989.001 PMID:27067378
Fast grasping of unknown objects using principal component analysis
NASA Astrophysics Data System (ADS)
Lei, Qujiang; Chen, Guangming; Wisse, Martijn
2017-09-01
Fast grasping of unknown objects has crucial impact on the efficiency of robot manipulation especially subjected to unfamiliar environments. In order to accelerate grasping speed of unknown objects, principal component analysis is utilized to direct the grasping process. In particular, a single-view partial point cloud is constructed and grasp candidates are allocated along the principal axis. Force balance optimization is employed to analyze possible graspable areas. The obtained graspable area with the minimal resultant force is the best zone for the final grasping execution. It is shown that an unknown object can be more quickly grasped provided that the component analysis principle axis is determined using single-view partial point cloud. To cope with the grasp uncertainty, robot motion is assisted to obtain a new viewpoint. Virtual exploration and experimental tests are carried out to verify this fast gasping algorithm. Both simulation and experimental tests demonstrated excellent performances based on the results of grasping a series of unknown objects. To minimize the grasping uncertainty, the merits of the robot hardware with two 3D cameras can be utilized to suffice the partial point cloud. As a result of utilizing the robot hardware, the grasping reliance is highly enhanced. Therefore, this research demonstrates practical significance for increasing grasping speed and thus increasing robot efficiency under unpredictable environments.
DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.
2013-01-01
Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165
Performance evaluation of PCA-based spike sorting algorithms.
Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George
2008-09-01
Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.
Real time gamma-ray signature identifier
Rowland, Mark [Alamo, CA; Gosnell, Tom B [Moraga, CA; Ham, Cheryl [Livermore, CA; Perkins, Dwight [Livermore, CA; Wong, James [Dublin, CA
2012-05-15
A real time gamma-ray signature/source identification method and system using principal components analysis (PCA) for transforming and substantially reducing one or more comprehensive spectral libraries of nuclear materials types and configurations into a corresponding concise representation/signature(s) representing and indexing each individual predetermined spectrum in principal component (PC) space, wherein an unknown gamma-ray signature may be compared against the representative signature to find a match or at least characterize the unknown signature from among all the entries in the library with a single regression or simple projection into the PC space, so as to substantially reduce processing time and computing resources and enable real-time characterization and/or identification.
Genetic diversity analysis of fruit characteristics of hawthorn germplasm.
Su, K; Guo, Y S; Wang, G; Zhao, Y H; Dong, W X
2015-12-07
One hundred and six accessions of hawthorn intraspecific resources, from the National Germplasm Repository at Shenyang, were subjected to genetic diversity and principal component analysis based on evaluation data of 15 fruit traits. Results showed that the genetic diversity of hawthorn fruit traits varied. Among the 15 traits, the fruit shape variable coefficient had the most obvious evaluation, followed by fruit surface state, dot color, taste, weight of single fruit, sepal posture, peduncle form, and metula traits. These are the primary traits by which hawthorn could be classified in the future. The principal component demonstrated that these traits are the most influential factors of hawthorn fruit characteristics.
NASA Astrophysics Data System (ADS)
Khodasevich, M. A.; Sinitsyn, G. V.; Skorbanova, E. A.; Rogovaya, M. V.; Kambur, E. I.; Aseev, V. A.
2016-06-01
Analysis of multiparametric data on transmission spectra of 24 divins (Moldovan cognacs) in the 190-2600 nm range allows identification of outliers and their removal from a sample under study in the following consideration. The principal component analysis and classification tree with a single-rank predictor constructed in the 2D space of principal components allow classification of divin manufacturers. It is shown that the accuracy of syringaldehyde, ethyl acetate, vanillin, and gallic acid concentrations in divins calculated with the regression to latent structures depends on the sample volume and is 3, 6, 16, and 20%, respectively, which is acceptable for the application.
Wang, Jinjia; Zhang, Yanna
2015-02-01
Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups of IV-III and IV - I. The experimental results proved that the method proposed in this paper was feasible.
Pintus, M A; Gaspa, G; Nicolazzi, E L; Vicario, D; Rossoni, A; Ajmone-Marsan, P; Nardone, A; Dimauro, C; Macciotta, N P P
2012-06-01
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L
2014-01-01
Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.
Gao, Wen; Wang, Rui; Li, Dan; Liu, Ke; Chen, Jun; Li, Hui-Jun; Xu, Xiaojun; Li, Ping; Yang, Hua
2016-01-05
The flowers of Lonicera japonica Thunb. were extensively used to treat many diseases. As the demands for L. japonica increased, some related Lonicera plants were often confused or misused. Caffeoylquinic acids were always regarded as chemical markers in the quality control of L. japonica, but they could be found in all Lonicera species. Thus, a simple and reliable method for the evaluation of different Lonicera flowers is necessary to be established. In this work a method based on single standard to determine multi-components (SSDMC) combined with principal component analysis (PCA) for control and distinguish of Lonicera species flowers have been developed. Six components including three caffeoylquinic acids and three iridoid glycosides were assayed simultaneously using chlorogenic acid as the reference standard. The credibility and feasibility of the SSDMC method were carefully validated and the results demonstrated that there were no remarkable differences compared with external standard method. Finally, a total of fifty-one batches covering five Lonicera species were analyzed and PCA was successfully applied to distinguish the Lonicera species. This strategy simplifies the processes in the quality control of multiple-componential herbal medicine which effectively adapted for improving the quality control of those herbs belonging to closely related species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Whaley, Gregory J.; Karnopp, Roger J.
2010-04-01
The goal of the Air Force Highly Integrated Photonics (HIP) program is to develop and demonstrate single photonic chip components which support a single mode fiber network architecture for use on mobile military platforms. We propose an optically transparent, broadcast and select fiber optic network as the next generation interconnect on avionics platforms. In support of this network, we have developed three principal, single-chip photonic components: a tunable laser transmitter, a 32x32 port star coupler, and a 32 port multi-channel receiver which are all compatible with demanding avionics environmental and size requirements. The performance of the developed components will be presented as well as the results of a demonstration system which integrates the components into a functional network representative of the form factor used in advanced avionics computing and signal processing applications.
Jankovic, Marko; Ogawa, Hidemitsu
2003-08-01
This paper presents one possible implementation of a transformation that performs linear mapping to a lower-dimensional subspace. Principal component subspace will be the one that will be analyzed. Idea implemented in this paper represents generalization of the recently proposed infinity OH neural method for principal component extraction. The calculations in the newly proposed method are performed locally--a feature which is usually considered as desirable from the biological point of view. Comparing to some other wellknown methods, proposed synaptic efficacy learning rule requires less information about the value of the other efficacies to make single efficacy modification. Synaptic efficacies are modified by implementation of Modulated Hebb-type (MH) learning rule. Slightly modified MH algorithm named Modulated Hebb Oja (MHO) algorithm, will be also introduced. Structural similarity of the proposed network with part of the retinal circuit will be presented, too.
Bremner, P D; Blacklock, C J; Paganga, G; Mullen, W; Rice-Evans, C A; Crozier, A
2000-06-01
After minimal sample preparation, two different HPLC methodologies, one based on a single gradient reversed-phase HPLC step, the other on multiple HPLC runs each optimised for specific components, were used to investigate the composition of flavonoids and phenolic acids in apple and tomato juices. The principal components in apple juice were identified as chlorogenic acid, phloridzin, caffeic acid and p-coumaric acid. Tomato juice was found to contain chlorogenic acid, caffeic acid, p-coumaric acid, naringenin and rutin. The quantitative estimates of the levels of these compounds, obtained with the two HPLC procedures, were very similar, demonstrating that either method can be used to analyse accurately the phenolic components of apple and tomato juices. Chlorogenic acid in tomato juice was the only component not fully resolved in the single run study and the multiple run analysis prior to enzyme treatment. The single run system of analysis is recommended for the initial investigation of plant phenolics and the multiple run approach for analyses where chromatographic resolution requires improvement.
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Dimensionality Reduction Through Classifier Ensembles
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Tumer, Kagan; Norwig, Peter (Technical Monitor)
1999-01-01
In data mining, one often needs to analyze datasets with a very large number of attributes. Performing machine learning directly on such data sets is often impractical because of extensive run times, excessive complexity of the fitted model (often leading to overfitting), and the well-known "curse of dimensionality." In practice, to avoid such problems, feature selection and/or extraction are often used to reduce data dimensionality prior to the learning step. However, existing feature selection/extraction algorithms either evaluate features by their effectiveness across the entire data set or simply disregard class information altogether (e.g., principal component analysis). Furthermore, feature extraction algorithms such as principal components analysis create new features that are often meaningless to human users. In this article, we present input decimation, a method that provides "feature subsets" that are selected for their ability to discriminate among the classes. These features are subsequently used in ensembles of classifiers, yielding results superior to single classifiers, ensembles that use the full set of features, and ensembles based on principal component analysis on both real and synthetic datasets.
Willecke, N; Szepes, A; Wunderlich, M; Remon, J P; Vervaet, C; De Beer, T
2017-04-30
The overall objective of this work is to understand how excipient characteristics influence the process and product performance for a continuous twin-screw wet granulation process. The knowledge gained through this study is intended to be used for a Quality by Design (QbD)-based formulation design approach and formulation optimization. A total of 9 preferred fillers and 9 preferred binders were selected for this study. The selected fillers and binders were extensively characterized regarding their physico-chemical and solid state properties using 21 material characterization techniques. Subsequently, principal component analysis (PCA) was performed on the data sets of filler and binder characteristics in order to reduce the variety of single characteristics to a limited number of overarching properties. Four principal components (PC) explained 98.4% of the overall variability in the fillers data set, while three principal components explained 93.4% of the overall variability in the data set of binders. Both PCA models allowed in-depth evaluation of similarities and differences in the excipient properties. Copyright © 2017. Published by Elsevier B.V.
County-level environmental quality and associations with individual - and county-level preterm birth
Human health is influenced by simultaneous exposure to stressors and amenities, but research usually considers single exposures. We constructed a county-level Environmental Quality Index (EQI) using principal components analysis with data from five domains (air, water, land, buil...
Yu, Marcia M L; Sandercock, P Mark L
2012-01-01
During the forensic examination of textile fibers, fibers are usually mounted on glass slides for visual inspection and identification under the microscope. One method that has the capability to accurately identify single textile fibers without subsequent demounting is Raman microspectroscopy. The effect of the mountant Entellan New on the Raman spectra of fibers was investigated to determine if it is suitable for fiber analysis. Raman spectra of synthetic fibers mounted in three different ways were collected and subjected to multivariate analysis. Principal component analysis score plots revealed that while spectra from different fiber classes formed distinct groups, fibers of the same class formed a single group regardless of the mounting method. The spectra of bare fibers and those mounted in Entellan New were found to be statistically indistinguishable by analysis of variance calculations. These results demonstrate that fibers mounted in Entellan New may be identified directly by Raman microspectroscopy without further sample preparation. © 2011 American Academy of Forensic Sciences.
Halai, Ajay D; Woollams, Anna M; Lambon Ralph, Matthew A
2017-01-01
Individual differences in the performance profiles of neuropsychologically-impaired patients are pervasive yet there is still no resolution on the best way to model and account for the variation in their behavioural impairments and the associated neural correlates. To date, researchers have generally taken one of three different approaches: a single-case study methodology in which each case is considered separately; a case-series design in which all individual patients from a small coherent group are examined and directly compared; or, group studies, in which a sample of cases are investigated as one group with the assumption that they are drawn from a homogenous category and that performance differences are of no interest. In recent research, we have developed a complementary alternative through the use of principal component analysis (PCA) of individual data from large patient cohorts. This data-driven approach not only generates a single unified model for the group as a whole (expressed in terms of the emergent principal components) but is also able to capture the individual differences between patients (in terms of their relative positions along the principal behavioural axes). We demonstrate the use of this approach by considering speech fluency, phonology and semantics in aphasia diagnosis and classification, as well as their unique neural correlates. PCA of the behavioural data from 31 patients with chronic post-stroke aphasia resulted in four statistically-independent behavioural components reflecting phonological, semantic, executive-cognitive and fluency abilities. Even after accounting for lesion volume, entering the four behavioural components simultaneously into a voxel-based correlational methodology (VBCM) analysis revealed that speech fluency (speech quanta) was uniquely correlated with left motor cortex and underlying white matter (including the anterior section of the arcuate fasciculus and the frontal aslant tract), phonological skills with regions in the superior temporal gyrus and pars opercularis, and semantics with the anterior temporal stem. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
A single determinant dominates the rate of yeast protein evolution.
Drummond, D Allan; Raval, Alpan; Wilke, Claus O
2006-02-01
A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.
Quality Aware Compression of Electrocardiogram Using Principal Component Analysis.
Gupta, Rajarshi
2016-05-01
Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.
Levels of taurine introgression in the current Brazilian Nelore and Gir indicine cattle populations
USDA-ARS?s Scientific Manuscript database
A high density panel of more than 777000 genome-wide single nucleotide polymorphisms (SNPs) were used to investigate the population structure of Nelore and Gir, compared to seven other populations worldwide. Principal Component Analysis and model-based ancestry estimation clearly separate the indici...
Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task
NASA Technical Reports Server (NTRS)
Madura, D. P.; Soha, J. M.; Green, W. B.; Wherry, D. B.; Lewis, S. D.
1978-01-01
Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel.
Chen, Ting; Zhang, Miao; Jabbour, Salma; Wang, Hesheng; Barbee, David; Das, Indra J; Yue, Ning
2018-04-10
Through-plane motion introduces uncertainty in three-dimensional (3D) motion monitoring when using single-slice on-board imaging (OBI) modalities such as cine MRI. We propose a principal component analysis (PCA)-based framework to determine the optimal imaging plane to minimize the through-plane motion for single-slice imaging-based motion monitoring. Four-dimensional computed tomography (4DCT) images of eight thoracic cancer patients were retrospectively analyzed. The target volumes were manually delineated at different respiratory phases of 4DCT. We performed automated image registration to establish the 4D respiratory target motion trajectories for all patients. PCA was conducted using the motion information to define the three principal components of the respiratory motion trajectories. Two imaging planes were determined perpendicular to the second and third principal component, respectively, to avoid imaging with the primary principal component of the through-plane motion. Single-slice images were reconstructed from 4DCT in the PCA-derived orthogonal imaging planes and were compared against the traditional AP/Lateral image pairs on through-plane motion, residual error in motion monitoring, absolute motion amplitude error and the similarity between target segmentations at different phases. We evaluated the significance of the proposed motion monitoring improvement using paired t test analysis. The PCA-determined imaging planes had overall less through-plane motion compared against the AP/Lateral image pairs. For all patients, the average through-plane motion was 3.6 mm (range: 1.6-5.6 mm) for the AP view and 1.7 mm (range: 0.6-2.7 mm) for the Lateral view. With PCA optimization, the average through-plane motion was 2.5 mm (range: 1.3-3.9 mm) and 0.6 mm (range: 0.2-1.5 mm) for the two imaging planes, respectively. The absolute residual error of the reconstructed max-exhale-to-inhale motion averaged 0.7 mm (range: 0.4-1.3 mm, 95% CI: 0.4-1.1 mm) using optimized imaging planes, averaged 0.5 mm (range: 0.3-1.0 mm, 95% CI: 0.2-0.8 mm) using an imaging plane perpendicular to the minimal motion component only and averaged 1.3 mm (range: 0.4-2.8 mm, 95% CI: 0.4-2.3 mm) in AP/Lateral orthogonal image pairs. The root-mean-square error of reconstructed displacement was 0.8 mm for optimized imaging planes, 0.6 mm for imaging plane perpendicular to the minimal motion component only, and 1.6 mm for AP/Lateral orthogonal image pairs. When using the optimized imaging planes for motion monitoring, there was no significant absolute amplitude error of the reconstructed motion (P = 0.0988), while AP/Lateral images had significant error (P = 0.0097) with a paired t test. The average surface distance (ASD) between overlaid two-dimensional (2D) tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.6 ± 0.2 mm in optimized imaging planes and 1.4 ± 0.8 mm in AP/Lateral images. The Dice similarity coefficient (DSC) between overlaid 2D tumor segmentation at end-of-inhale and end-of-exhale for all eight patients was 0.96 ± 0.03 in optimized imaging planes and 0.89 ± 0.05 in AP/Lateral images. Both ASD (P = 0.034) and DSC (P = 0.022) were significantly improved in the optimized imaging planes. Motion monitoring using imaging planes determined by the proposed PCA-based framework had significantly improved performance. Single-slice image-based motion tracking can be used for clinical implementations such as MR image-guided radiation therapy (MR-IGRT). © 2018 American Association of Physicists in Medicine.
Stuckey, Bronwyn G A; Opie, Nicole; Cussons, Andrea J; Watts, Gerald F; Burke, Valerie
2014-08-01
Polycystic ovary syndrome (PCOS) is a prevalent condition with heterogeneity of clinical features and cardiovascular risk factors that implies multiple aetiological factors and possible outcomes. To reduce a set of correlated variables to a smaller number of uncorrelated and interpretable factors that may delineate subgroups within PCOS or suggest pathogenetic mechanisms. We used principal component analysis (PCA) to examine the endocrine and cardiometabolic variables associated with PCOS defined by the National Institutes of Health (NIH) criteria. Data were retrieved from the database of a single clinical endocrinologist. We included women with PCOS (N = 378) who were not taking the oral contraceptive pill or other sex hormones, lipid lowering medication, metformin or other medication that could influence the variables of interest. PCA was performed retaining those factors with eigenvalues of at least 1.0. Varimax rotation was used to produce interpretable factors. We identified three principal components. In component 1, the dominant variables were homeostatic model assessment (HOMA) index, body mass index (BMI), high density lipoprotein (HDL) cholesterol and sex hormone binding globulin (SHBG); in component 2, systolic blood pressure, low density lipoprotein (LDL) cholesterol and triglycerides; in component 3, total testosterone and LH/FSH ratio. These components explained 37%, 13% and 11% of the variance in the PCOS cohort respectively. Multiple correlated variables from patients with PCOS can be reduced to three uncorrelated components characterised by insulin resistance, dyslipidaemia/hypertension or hyperandrogenaemia. Clustering of risk factors is consistent with different pathogenetic pathways within PCOS and/or differing cardiometabolic outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Roblová, Vendula; Bittová, Miroslava; Kubáň, Petr; Kubáň, Vlastimil
2016-07-01
In this work aqueous infusions from ten Mentha herbal samples (four different Mentha species and six hybrids of Mentha x piperita) and 20 different peppermint teas were screened by capillary electrophoresis with UV detection. The fingerprint separation was accomplished in a 25 mM borate background electrolyte with 10% methanol at pH 9.3. The total polyphenolic content in the extracts was determined spectrophotometrically at 765 nm by a Folin-Ciocalteu phenol assay. Total antioxidant activity was determined by scavenging of 2,2-diphenyl-1-picrylhydrazyl radical at 515 nm. The peak areas of 12 dominant peaks from CE analysis, present in all samples, and the value of total polyphenolic content and total antioxidant activity obtained by spectrophotometry was combined into a single data matrix and principal component analysis was applied. The obtained principal component analysis model resulted in distinct clusters of Mentha and peppermint tea samples distinguishing the samples according to their potential protective antioxidant effect. Principal component analysis, using a non-targeted approach with no need for compound identification, was found as a new promising tool for the screening of herbal tea products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthetic maps of human gene frequencies in Europeans.
Menozzi, P; Piazza, A; Cavalli-Sforza, L
1978-09-01
Multivarate techniques can be used to condense the information for a large number of loci and alleles into one or a few synthetic variables. The geographic distribution of synthetic variables can be plotted by the same technique used in mapping the gene frequency of a single allele. Synthetic maps were constructed for Europe and the Near East, with the use of principal components to condense the information of 38 independent alleles from ten loci. The first principal component summarizes close to 30% of the total information and shows gradients. Maps thus constructed show clines in remarkable agreement with those expected on the basis of the spread of early farming in Europe, thus supporting the hypothesis that this spread was a demic spread rather than a cultural diffusion of farming technology.
Faster tissue interface analysis from Raman microscopy images using compressed factorisation
NASA Astrophysics Data System (ADS)
Palmer, Andrew D.; Bannerman, Alistair; Grover, Liam; Styles, Iain B.
2013-06-01
The structure of an artificial ligament was examined using Raman microscopy in combination with novel data analysis. Basis approximation and compressed principal component analysis are shown to provide efficient compression of confocal Raman microscopy images, alongside powerful methods for unsupervised analysis. This scheme allows the acceleration of data mining, such as principal component analysis, as they can be performed on the compressed data representation, providing a decrease in the factorisation time of a single image from five minutes to under a second. Using this workflow the interface region between a chemically engineered ligament construct and a bone-mimic anchor was examined. Natural ligament contains a striated interface between the bone and tissue that provides improved mechanical load tolerance, a similar interface was found in the ligament construct.
Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S
2017-06-01
Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.
Modified neural networks for rapid recovery of tokamak plasma parameters for real time control
NASA Astrophysics Data System (ADS)
Sengupta, A.; Ranjan, P.
2002-07-01
Two modified neural network techniques are used for the identification of the equilibrium plasma parameters of the Superconducting Steady State Tokamak I from external magnetic measurements. This is expected to ultimately assist in a real time plasma control. As different from the conventional network structure where a single network with the optimum number of processing elements calculates the outputs, a multinetwork system connected in parallel does the calculations here in one of the methods. This network is called the double neural network. The accuracy of the recovered parameters is clearly more than the conventional network. The other type of neural network used here is based on the statistical function parametrization combined with a neural network. The principal component transformation removes linear dependences from the measurements and a dimensional reduction process reduces the dimensionality of the input space. This reduced and transformed input set, rather than the entire set, is fed into the neural network input. This is known as the principal component transformation-based neural network. The accuracy of the recovered parameters in the latter type of modified network is found to be a further improvement over the accuracy of the double neural network. This result differs from that obtained in an earlier work where the double neural network showed better performance. The conventional network and the function parametrization methods have also been used for comparison. The conventional network has been used for an optimization of the set of magnetic diagnostics. The effective set of sensors, as assessed by this network, are compared with the principal component based network. Fault tolerance of the neural networks has been tested. The double neural network showed the maximum resistance to faults in the diagnostics, while the principal component based network performed poorly. Finally the processing times of the methods have been compared. The double network and the principal component network involve the minimum computation time, although the conventional network also performs well enough to be used in real time.
Corilo, Yuri E; Podgorski, David C; McKenna, Amy M; Lemkau, Karin L; Reddy, Christopher M; Marshall, Alan G; Rodgers, Ryan P
2013-10-01
One fundamental challenge with either acute or chronic oil spills is to identify the source, especially in highly polluted areas, near natural oil seeps, when the source contains more than one petroleum product or when extensive weathering has occurred. Here we focus on heavy fuel oil that spilled (~200,000 L) from two suspected fuel tanks that were ruptured on the motor vessel (M/V) Cosco Busan when it struck the San Francisco-Oakland Bay Bridge in November 2007. We highlight the utility of principal component analysis (PCA) of elemental composition data obtained by high resolution FT-ICR mass spectrometry to correctly identify the source of environmental contamination caused by the unintended release of heavy fuel oil (HFO). Using ultrahigh resolution electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry, we uniquely assigned thousands of elemental compositions of heteroatom-containing species in neat samples from both tanks and then applied principal component analysis. The components were based on double bond equivalents for constituents of elemental composition, CcHhN1S1. To determine if the fidelity of our source identification was affected by weathering, field samples were collected at various intervals up to two years after the spill. We are able to identify a suite of polar petroleum markers that are environmentally persistent, enabling us to confidently identify that only one tank was the source of the spilled oil: in fact, a single principal component could account for 98% of the variance. Although identification is unaffected by the presence of higher polarity, petrogenic oxidation (weathering) products, future studies may require removal of such species by anion exchange chromatography prior to mass spectral analysis due to their preferential ionization by ESI.
Structural aspects of face recognition and the other-race effect.
O'Toole, A J; Deffenbacher, K A; Valentin, D; Abdi, H
1994-03-01
The other-race effect was examined in a series of experiments and simulations that looked at the relationships among observer ratings of typicality, familiarity, attractiveness, memorability, and the performance variables of d' and criterion. Experiment 1 replicated the other-race effect with our Caucasian and Japanese stimuli for both Caucasian and Asian observers. In Experiment 2, we collected ratings from Caucasian observers on the faces used in the recognition task. A Varimax-rotated principal components analysis on the rating and performance data for the Caucasian faces replicated Vokey and Read's (1992) finding that typicality is composed of two orthogonal components, dissociable via their independent relationships to: (1) attractiveness and familiarity ratings and (2) memorability ratings. For Japanese faces, however, we found that typicality was related only to memorability. Where performance measures were concerned, two additional principal components dominated by criterion and by d' emerged for Caucasian faces. For the Japanese faces, however, the performance measures of d' and criterion merged into a single component that represented a second component of typicality, one orthogonal to the memorability-dominated component. A measure of face representation quality extracted from an autoassociative neural network trained with a majority of Caucasian faces and a minority of Japanese faces was incorporated into the principal components analysis. For both Caucasian and Japanese faces, the neural network measure related both to memorability ratings and to human accuracy measures. Combined, the human data and simulation results indicate that the memorability component of typicality may be related to small, local, distinctive features, whereas the attractiveness/familiarity component may be more related to the global, shape-based properties of the face.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, Xin; Szymanski, Craig; Wang, Zhaoying
2016-01-01
Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics atmore » the molecular level.« less
The Iron Law of Hierarchy? Institutional Differentiation in UK Higher Education
ERIC Educational Resources Information Center
Croxford, Linda; Raffe, David
2015-01-01
This paper maps the main dimensions of differentiation among institutions and "faculties" (subject areas within institutions) of higher education in the United Kingdom. It does so through a principal components analysis based on the characteristics of applicants and entrants. A single status dimension accounts for a quarter of the…
The Cohort Model: Lessons Learned When Principals Collaborate
ERIC Educational Resources Information Center
Umekubo, Lisa A.; Chrispeels, Janet H.; Daly, Alan J.
2015-01-01
This study explored a formal structure, the cohort model that a decentralized district put in place over a decade ago. Schools were clustered into cohorts to facilitate professional development for leadership teams for all 44 schools within the district. Drawing upon Senge's components of organizational learning, we used a single case study design…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Chao
Sparx, a new environment for Cryo-EM image processing; Cryo-EM, Single particle reconstruction, principal component analysis; Hardware Req.: PC, MAC, Supercomputer, Mainframe, Multiplatform, Workstation. Software Req.: operating system is Unix; Compiler C++; type of files: source code, object library, executable modules, compilation instructions; sample problem input data. Location/transmission: http://sparx-em.org; User manual & paper: http://sparx-em.org;
SaaS Platform for Time Series Data Handling
NASA Astrophysics Data System (ADS)
Oplachko, Ekaterina; Rykunov, Stanislav; Ustinin, Mikhail
2018-02-01
The paper is devoted to the description of MathBrain, a cloud-based resource, which works as a "Software as a Service" model. It is designed to maximize the efficiency of the current technology and to provide a tool for time series data handling. The resource provides access to the following analysis methods: direct and inverse Fourier transforms, Principal component analysis and Independent component analysis decompositions, quantitative analysis, magnetoencephalography inverse problem solution in a single dipole model based on multichannel spectral data.
2016-01-01
We estimate models of consumer food waste awareness and attitudes using responses from a national survey of U.S. residents. Our models are interpreted through the lens of several theories that describe how pro-social behaviors relate to awareness, attitudes and opinions. Our analysis of patterns among respondents’ food waste attitudes yields a model with three principal components: one that represents perceived practical benefits households may lose if food waste were reduced, one that represents the guilt associated with food waste, and one that represents whether households feel they could be doing more to reduce food waste. We find our respondents express significant agreement that some perceived practical benefits are ascribed to throwing away uneaten food, e.g., nearly 70% of respondents agree that throwing away food after the package date has passed reduces the odds of foodborne illness, while nearly 60% agree that some food waste is necessary to ensure meals taste fresh. We identify that these attitudinal responses significantly load onto a single principal component that may represent a key attitudinal construct useful for policy guidance. Further, multivariate regression analysis reveals a significant positive association between the strength of this component and household income, suggesting that higher income households most strongly agree with statements that link throwing away uneaten food to perceived private benefits. PMID:27441687
On the Fallibility of Principal Components in Research
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Li, Tenglong
2017-01-01
The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…
Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin
Pike, R.J.
1974-01-01
Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.
SIMREL: Software for Coefficient Alpha and Its Confidence Intervals with Monte Carlo Studies
ERIC Educational Resources Information Center
Yurdugul, Halil
2009-01-01
This article describes SIMREL, a software program designed for the simulation of alpha coefficients and the estimation of its confidence intervals. SIMREL runs on two alternatives. In the first one, if SIMREL is run for a single data file, it performs descriptive statistics, principal components analysis, and variance analysis of the item scores…
Development of a Composite Measure of State-Level Malpractice Environment
Chung, Jeanette W; Sohn, Min-Woong; Merkow, Ryan P; Oh, Elissa H; Minami, Christina; Black, Bernard S; Bilimoria, Karl Y
2014-01-01
Objective To develop a composite measure of state-level malpractice environment. Data Sources Public use data from the National Practitioner Data Bank, Medical Liability Monitor, the National Conference of State Legislatures, and the American Bar Association. Study Design Principal component analysis of state-level indicators (paid claims rate, malpractice premiums, lawyers per capita, average award size, and malpractice laws), with indirect validation of the composite using receiver-operating characteristic curves to determine how accurately the composite could identify states with high-tort activity and costs. Principal Findings A single composite accounted for over 73 percent of total variance in the seven indicators and demonstrated reasonable criterion validity. Conclusion An empirical composite measure of state-level malpractice risk may offer advantages over single indicators in measuring overall risk and may facilitate cross-state comparisons of malpractice environments. PMID:24117397
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury.
Cheng, I; Zhang, L; Xu, X
2016-02-09
Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40-61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found.
Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury
Cheng, I.; Zhang, L.; Xu, X.
2016-01-01
Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40–61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found. PMID:26857835
U.S. Principals' Attitudes About and Experiences with Single-Sex Schooling.
Fabes, Richard A; Pahlke, Erin; Galligan, Kathrine; Borders, Adrienne
2015-04-01
Despite a lack of scientific evidence supporting the use of single-sex education, the number of U.S. public schools offering single-sex education has increased. However, our understanding as to why decision-makers have implemented single-sex education is lacking. To address this gap, we surveyed U.S. public-school principals and assessed their attitudes about and experiences with single-sex schooling. Sixty-seven principals from single-sex schools and 193 from coeducational schools participated. The results indicated that principals who had experience with single-sex schooling tended to have more positive attitudes about single-sex schooling, viewed it as more effective, and more often evoked gender-essentialist rationales for the use of single-sex schooling than did coeducational principals. However, both single-sex and coeducational principals noted issues with single-sex schooling. It was concluded that single-sex schooling is not a silver bullet to educational reform and that when single-sex schooling is implemented, one set of issues and problems is substituted for another.
Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate
Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.
2009-01-01
Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786
Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M
2012-05-01
Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Di Marino, Daniele; Oteri, Francesco; Morozzo Della Rocca, Blasco; Chillemi, Giovanni; Falconi, Mattia
2010-12-01
Molecular dynamics simulations of the wild type bovine ADP/ATP mitochondrial carrier, and of the single Ala113Pro and double Ala113Pro/Val180Met mutants, embedded in a lipid bilayer, have been carried out for 30ns to shed light on the structural-dynamical changes induced by the Val180Met mutation restoring the carrier function in the Ala113Pro pathologic mutant. Principal component analysis indicates that, for the three systems, the protein dynamics is mainly characterized by the motion of the matrix loops and of the odd-numbered helices having a conserved proline in their central region. Analysis of the motions shows a different behaviour of single pathological mutant with respect of the other two systems. The single mutation induces a regularization and rigidity of the H3 helix, lost upon the introduction of the second mutation. This is directly correlated to the salt bridge distribution involving residues Arg79, Asp134 and Arg234, hypothesized to interact with the substrate. In fact, in the wild type simulation two stable inter-helices salt bridges, crucial for substrate binding, are present almost over all the simulation time. In line with the impaired ADP transport, one salt interaction is lost in the single mutant trajectory but reappears in the double mutant simulation, where a salt bridge network matching the wild type is restored. Other important structural-dynamical properties, such as the trans-membrane helices mobility, analyzed via the principal component analysis, are similar for the wild type and double mutant while are different for the single mutant, providing a mechanistic explanation for their different functional properties. Copyright © 2010 Elsevier Inc. All rights reserved.
Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo
2017-01-01
This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.
Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru
2017-01-01
A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots. PMID:28714873
Imamura, Ryota; Murata, Naoki; Shimanouchi, Toshinori; Yamashita, Kaoru; Fukuzawa, Masayuki; Noda, Minoru
2017-07-15
A new fluorescent arrayed biosensor has been developed to discriminate species and concentrations of target proteins by using plural different phospholipid liposome species encapsulating fluorescent molecules, utilizing differences in permeation of the fluorescent molecules through the membrane to modulate liposome-target protein interactions. This approach proposes a basically new label-free fluorescent sensor, compared with the common technique of developed fluorescent array sensors with labeling. We have confirmed a high output intensity of fluorescence emission related to characteristics of the fluorescent molecules dependent on their concentrations when they leak from inside the liposomes through the perturbed lipid membrane. After taking an array image of the fluorescence emission from the sensor using a CMOS imager, the output intensities of the fluorescence were analyzed by a principal component analysis (PCA) statistical method. It is found from PCA plots that different protein species with several concentrations were successfully discriminated by using the different lipid membranes with high cumulative contribution ratio. We also confirmed that the accuracy of the discrimination by the array sensor with a single shot is higher than that of a single sensor with multiple shots.
Mathias, Patrick C; Turner, Emily H; Scroggins, Sheena M; Salipante, Stephen J; Hoffman, Noah G; Pritchard, Colin C; Shirts, Brian H
2016-03-01
To apply techniques for ancestry and sex computation from next-generation sequencing (NGS) data as an approach to confirm sample identity and detect sample processing errors. We combined a principal component analysis method with k-nearest neighbors classification to compute the ancestry of patients undergoing NGS testing. By combining this calculation with X chromosome copy number data, we determined the sex and ancestry of patients for comparison with self-report. We also modeled the sensitivity of this technique in detecting sample processing errors. We applied this technique to 859 patient samples with reliable self-report data. Our k-nearest neighbors ancestry screen had an accuracy of 98.7% for patients reporting a single ancestry. Visual inspection of principal component plots was consistent with self-report in 99.6% of single-ancestry and mixed-ancestry patients. Our model demonstrates that approximately two-thirds of potential sample swaps could be detected in our patient population using this technique. Patient ancestry can be estimated from NGS data incidentally sequenced in targeted panels, enabling an inexpensive quality control method when coupled with patient self-report. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Integrative sparse principal component analysis of gene expression data.
Liu, Mengque; Fan, Xinyan; Fang, Kuangnan; Zhang, Qingzhao; Ma, Shuangge
2017-12-01
In the analysis of gene expression data, dimension reduction techniques have been extensively adopted. The most popular one is perhaps the PCA (principal component analysis). To generate more reliable and more interpretable results, the SPCA (sparse PCA) technique has been developed. With the "small sample size, high dimensionality" characteristic of gene expression data, the analysis results generated from a single dataset are often unsatisfactory. Under contexts other than dimension reduction, integrative analysis techniques, which jointly analyze the raw data of multiple independent datasets, have been developed and shown to outperform "classic" meta-analysis and other multidatasets techniques and single-dataset analysis. In this study, we conduct integrative analysis by developing the iSPCA (integrative SPCA) method. iSPCA achieves the selection and estimation of sparse loadings using a group penalty. To take advantage of the similarity across datasets and generate more accurate results, we further impose contrasted penalties. Different penalties are proposed to accommodate different data conditions. Extensive simulations show that iSPCA outperforms the alternatives under a wide spectrum of settings. The analysis of breast cancer and pancreatic cancer data further shows iSPCA's satisfactory performance. © 2017 WILEY PERIODICALS, INC.
Does the Assessment of Recovery Capital scale reflect a single or multiple domains?
Arndt, Stephan; Sahker, Ethan; Hedden, Suzy
2017-01-01
The goal of this study was to determine whether the 50-item Assessment of Recovery Capital scale represents a single general measure or whether multiple domains might be psychometrically useful for research or clinical applications. Data are from a cross-sectional de-identified existing program evaluation information data set with 1,138 clients entering substance use disorder treatment. Principal components and iterated factor analysis were used on the domain scores. Multiple group factor analysis provided a quasi-confirmatory factor analysis. The solution accounted for 75.24% of the total variance, suggesting that 10 factors provide a reasonably good fit. However, Tucker's congruence coefficients between the factor structure and defining weights (0.41-0.52) suggested a poor fit to the hypothesized 10-domain structure. Principal components of the 10-domain scores yielded one factor whose eigenvalue was greater than one (5.93), accounting for 75.8% of the common variance. A few domains had perceptible but small unique variance components suggesting that a few of the domains may warrant enrichment. Our findings suggest that there is one general factor, with a caveat. Using the 10 measures inflates the chance for Type I errors. Using one general measure avoids this issue, is simple to interpret, and could reduce the number of items. However, those seeking to maximally predict later recovery success may need to use the full instrument and all 10 domains.
Internal friction and mode relaxation in a simple chain model.
Fugmann, S; Sokolov, I M
2009-12-21
We consider the equilibrium relaxation properties of the end-to-end distance and of the principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling.
Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
Smith, Zachary J; Strombom, Sven; Wachsmann-Hogiu, Sebastian
2011-08-29
A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units
NASA Astrophysics Data System (ADS)
Rietmeijer, F. J. M.
1996-03-01
Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.
U.S. Principals’ Attitudes About and Experiences with Single-Sex Schooling
Fabes, Richard A.; Pahlke, Erin; Galligan, Kathrine; Borders, Adrienne
2015-01-01
Despite a lack of scientific evidence supporting the use of single-sex education, the number of U.S. public schools offering single-sex education has increased. However, our understanding as to why decision-makers have implemented single-sex education is lacking. To address this gap, we surveyed U.S. public-school principals and assessed their attitudes about and experiences with single-sex schooling. Sixty-seven principals from single-sex schools and 193 from coeducational schools participated. The results indicated that principals who had experience with single-sex schooling tended to have more positive attitudes about single-sex schooling, viewed it as more effective, and more often evoked gender-essentialist rationales for the use of single-sex schooling than did coeducational principals. However, both single-sex and coeducational principals noted issues with single-sex schooling. It was concluded that single-sex schooling is not a silver bullet to educational reform and that when single-sex schooling is implemented, one set of issues and problems is substituted for another. PMID:26190887
Wei, Fang; Hu, Na; Lv, Xin; Dong, Xu-Yan; Chen, Hong
2015-07-24
In this investigation, off-line comprehensive two-dimensional liquid chromatography-atmospheric pressure chemical ionization mass spectrometry using a single column has been applied for the identification and quantification of triacylglycerols in edible oils. A novel mixed-mode phenyl-hexyl chromatographic column was employed in this off-line two-dimensional separation system. The phenyl-hexyl column combined the features of traditional C18 and silver-ion columns, which could provide hydrophobic interactions with triacylglycerols under acetonitrile conditions and can offer π-π interactions with triacylglycerols under methanol conditions. When compared with traditional off-line comprehensive two-dimensional liquid chromatography employing two different chromatographic columns (C18 and silver-ion column) and using elution solvents comprised of two phases (reversed-phase/normal-phase) for triacylglycerols separation, the novel off-line comprehensive two-dimensional liquid chromatography using a single column can be achieved by simply altering the mobile phase between acetonitrile and methanol, which exhibited a much higher selectivity for the separation of triacylglycerols with great efficiency and rapid speed. In addition, an approach based on the use of response factor with atmospheric pressure chemical ionization mass spectrometry has been developed for triacylglycerols quantification. Due to the differences between saturated and unsaturated acyl chains, the use of response factors significantly improves the quantitation of triacylglycerols. This two-dimensional liquid chromatography-mass spectrometry system was successfully applied for the profiling of triacylglycerols in soybean oils, peanut oils and lord oils. A total of 68 triacylglycerols including 40 triacylglycerols in soybean oils, 50 triacylglycerols in peanut oils and 44 triacylglycerols in lord oils have been identified and quantified. The liquid chromatography-mass spectrometry data were analyzed using principal component analysis. The results of the principal component analysis enabled a clear identification of different plant oils. By using this two-dimensional liquid chromatography-mass spectrometry system coupled with principal component analysis, adulterated soybean oils with 5% added lord oil and peanut oils with 5% added soybean oil can be clearly identified. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Keqin; He, Gongxiu; Qin, Jieming; Cheng, Xuexiang; He, Hanjie; Zhang, Dangquan; Peng, Wanxi
2018-05-01
There are three key medicinal components (phellodendrine, berberine and palmatine) in the extracts of Phellodendron bark, as one of the fundamental herbs of traditional Chinese medicine. Different extraction methods and solvent combinations were investigated to obtain the optimal technologies for high-efficient extraction of these medicinal components. The results showed that combined solvents have higher extracting effect of phellodendrine, berberine and palmatine than single solvent, and the effect of ultrasonic extraction is distinctly better than those of distillation and soxhlet extraction. The hydrochloric acid/methanol-ultrasonic extraction has the best effect for three medicinal components of fresh Phellodendron bark, providing an extraction yield of 103.12 mg/g berberine, 24.41 mg/g phellodendrine, 1.25 mg/g palmatine.
Source localization of temporal lobe epilepsy using PCA-LORETA analysis on ictal EEG recordings.
Stern, Yaki; Neufeld, Miriam Y; Kipervasser, Svetlana; Zilberstein, Amir; Fried, Itzhak; Teicher, Mina; Adi-Japha, Esther
2009-04-01
Localizing the source of an epileptic seizure using noninvasive EEG suffers from inaccuracies produced by other generators not related to the epileptic source. The authors isolated the ictal epileptic activity, and applied a source localization algorithm to identify its estimated location. Ten ictal EEG scalp recordings from five different patients were analyzed. The patients were known to have temporal lobe epilepsy with a single epileptic focus that had a concordant MRI lesion. The patients had become seizure-free following partial temporal lobectomy. A midinterval (approximately 5 seconds) period of ictal activity was used for Principal Component Analysis starting at ictal onset. The level of epileptic activity at each electrode (i.e., the eigenvector of the component that manifest epileptic characteristic), was used as an input for low-resolution tomography analysis for EEG inverse solution (Zilberstain et al., 2004). The algorithm accurately and robustly identified the epileptic focus in these patients. Principal component analysis and source localization methods can be used in the future to monitor the progression of an epileptic seizure and its expansion to other areas.
Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori
2016-01-01
Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211
Value assignment and uncertainty evaluation for single-element reference solutions
NASA Astrophysics Data System (ADS)
Possolo, Antonio; Bodnar, Olha; Butler, Therese A.; Molloy, John L.; Winchester, Michael R.
2018-06-01
A Bayesian statistical procedure is proposed for value assignment and uncertainty evaluation for the mass fraction of the elemental analytes in single-element solutions distributed as NIST standard reference materials. The principal novelty that we describe is the use of information about relative differences observed historically between the measured values obtained via gravimetry and via high-performance inductively coupled plasma optical emission spectrometry, to quantify the uncertainty component attributable to between-method differences. This information is encapsulated in a prior probability distribution for the between-method uncertainty component, and it is then used, together with the information provided by current measurement data, to produce a probability distribution for the value of the measurand from which an estimate and evaluation of uncertainty are extracted using established statistical procedures.
Karasawa, N; Mitsutake, A; Takano, H
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n]polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μs molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
NASA Astrophysics Data System (ADS)
Karasawa, N.; Mitsutake, A.; Takano, H.
2017-12-01
Proteins implement their functionalities when folded into specific three-dimensional structures, and their functions are related to the protein structures and dynamics. Previously, we applied a relaxation mode analysis (RMA) method to protein systems; this method approximately estimates the slow relaxation modes and times via simulation and enables investigation of the dynamic properties underlying the protein structural fluctuations. Recently, two-step RMA with multiple evolution times has been proposed and applied to a slightly complex homopolymer system, i.e., a single [n ] polycatenane. This method can be applied to more complex heteropolymer systems, i.e., protein systems, to estimate the relaxation modes and times more accurately. In two-step RMA, we first perform RMA and obtain rough estimates of the relaxation modes and times. Then, we apply RMA with multiple evolution times to a small number of the slowest relaxation modes obtained in the previous calculation. Herein, we apply this method to the results of principal component analysis (PCA). First, PCA is applied to a 2-μ s molecular dynamics simulation of hen egg-white lysozyme in aqueous solution. Then, the two-step RMA method with multiple evolution times is applied to the obtained principal components. The slow relaxation modes and corresponding relaxation times for the principal components are much improved by the second RMA.
Feasibility of Rapid Multitracer PET Tumor Imaging
NASA Astrophysics Data System (ADS)
Kadrmas, D. J.; Rust, T. C.
2005-10-01
Positron emission tomography (PET) can characterize different aspects of tumor physiology using various tracers. PET scans are usually performed using only one tracer since there is no explicit signal for distinguishing multiple tracers. We tested the feasibility of rapidly imaging multiple PET tracers using dynamic imaging techniques, where the signals from each tracer are separated based upon differences in tracer half-life, kinetics, and distribution. Time-activity curve populations for FDG, acetate, ATSM, and PTSM were simulated using appropriate compartment models, and noisy dual-tracer curves were computed by shifting and adding the single-tracer curves. Single-tracer components were then estimated from dual-tracer data using two methods: principal component analysis (PCA)-based fits of single-tracer components to multitracer data, and parallel multitracer compartment models estimating single-tracer rate parameters from multitracer time-activity curves. The PCA analysis found that there is information content present for separating multitracer data, and that tracer separability depends upon tracer kinetics, injection order and timing. Multitracer compartment modeling recovered rate parameters for individual tracers with good accuracy but somewhat higher statistical uncertainty than single-tracer results when the injection delay was >10 min. These approaches to processing rapid multitracer PET data may potentially provide a new tool for characterizing multiple aspects of tumor physiology in vivo.
Nonlinear Principal Components Analysis: Introduction and Application
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.
2007-01-01
The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
Bostanov, Vladimir; Kotchoubey, Boris
2006-12-01
This study was aimed at developing a method for extraction and assessment of event-related brain potentials (ERP) from single-trials. This method should be applicable in the assessment of single persons' ERPs and should be able to handle both single ERP components and whole waveforms. We adopted a recently developed ERP feature extraction method, the t-CWT, for the purposes of hypothesis testing in the statistical assessment of ERPs. The t-CWT is based on the continuous wavelet transform (CWT) and Student's t-statistics. The method was tested in two ERP paradigms, oddball and semantic priming, by assessing individual-participant data on a single-trial basis, and testing the significance of selected ERP components, P300 and N400, as well as of whole ERP waveforms. The t-CWT was also compared to other univariate and multivariate ERP assessment methods: peak picking, area computation, discrete wavelet transform (DWT) and principal component analysis (PCA). The t-CWT produced better results than all of the other assessment methods it was compared with. The t-CWT can be used as a reliable and powerful method for ERP-component detection and testing of statistical hypotheses concerning both single ERP components and whole waveforms extracted from either single persons' or group data. The t-CWT is the first such method based explicitly on the criteria of maximal statistical difference between two average ERPs in the time-frequency domain and is particularly suitable for ERP assessment of individual data (e.g. in clinical settings), but also for the investigation of small and/or novel ERP effects from group data.
Human Immunity and the Design of Multi-Component, Single Target Vaccines
Saul, Allan; Fay, Michael P.
2007-01-01
Background Inclusion of multiple immunogens to target a single organism is a strategy being pursued for many experimental vaccines, especially where it is difficult to generate a strongly protective response from a single immunogen. Although there are many human vaccines that contain multiple defined immunogens, in almost every case each component targets a different pathogen. As a consequence, there is little practical experience for deciding where the increased complexity of vaccines with multiple defined immunogens vaccines targeting single pathogens will be justifiable. Methodology/Principal Findings A mathematical model, with immunogenicity parameters derived from a database of human responses to established vaccines, was used to predict the increase in the efficacy and the proportion of the population protected resulting from addition of further immunogens. The gains depended on the relative protection and the range of responses in the population to each immunogen and also to the correlation of the responses between immunogens. In most scenarios modeled, the gain in overall efficacy obtained by adding more immunogens was comparable to gains obtained from a single immunogen through the use of better formulations or adjuvants. Multi-component single target vaccines were more effective at decreasing the proportion of poor responders than increasing the overall efficacy of the vaccine in a population. Conclusions/Significance Inclusion of limited number of antigens in a vaccine aimed at targeting a single organism will increase efficacy, but the gains are relatively modest and for a practical vaccine there are constraints that are likely to limit multi-component single target vaccines to a small number of key antigens. The model predicts that this type of vaccine will be most useful where the critical issue is the reduction in proportion of poor responders. PMID:17786221
NASA Astrophysics Data System (ADS)
Ketcham, Richard A.
2017-04-01
Anisotropy in three-dimensional quantities such as geometric shape and orientation is commonly quantified using principal components analysis, in which a second order tensor determines the orientations of orthogonal components and their relative magnitudes. This approach has many advantages, such as simplicity and ability to accommodate many forms of data, and resilience to data sparsity. However, when data are sufficiently plentiful and precise, they sometimes show that aspects of the principal components approach are oversimplifications that may affect how the data are interpreted or extrapolated for mathematical or physical modeling. High-resolution X-ray computed tomography (CT) can effectively extract thousands of measurements from a single sample, providing a data density sufficient to examine the ways in which anisotropy on the hand-sample scale and smaller can be quantified, and the extent to which the ways the data are simplified are faithful to the underlying distributions. Features within CT data can be considered as discrete objects or continuum fabrics; the latter can be characterized using a variety of metrics, such as the most commonly used mean intercept length, and also the more specialized star length and star volume distributions. Each method posits a different scaling among components that affects the measured degree of anisotropy. The star volume distribution is the most sensitive to anisotropy, and commonly distinguishes strong fabric components that are not orthogonal. Although these data are well-presented using a stereoplot, 3D rose diagrams are another visualization option that can often help identify these components. This talk presents examples from a number of cases, starting with trabecular bone and extending to geological features such as fractures and brittle and ductile fabrics, in which non-orthogonal principal components identified using CT provide some insight into the origin of the underlying structures, and how they should be interpreted and potentially up-scaled.
Principal components colour display of ERTS imagery
NASA Technical Reports Server (NTRS)
Taylor, M. M.
1974-01-01
In the technique presented, colours are not derived from single bands, but rather from independent linear combinations of the bands. Using a simple model of the processing done by the visual system, three informationally independent linear combinations of the four ERTS bands are mapped onto the three visual colour dimensions of brightness, redness-greenness and blueness-yellowness. The technique permits user-specific transformations which enhance particular features, but this is not usually needed, since a single transformation provides a picture which conveys much of the information implicit in the ERTS data. Examples of experimental vector images with matched individual band images are shown.
An Introductory Application of Principal Components to Cricket Data
ERIC Educational Resources Information Center
Manage, Ananda B. W.; Scariano, Stephen M.
2013-01-01
Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Identifying apple surface defects using principal components analysis and artifical neural networks
USDA-ARS?s Scientific Manuscript database
Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...
Finding Planets in K2: A New Method of Cleaning the Data
NASA Astrophysics Data System (ADS)
Currie, Miles; Mullally, Fergal; Thompson, Susan E.
2017-01-01
We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.
Terzi, V; Morcia, C; Faccioli, P; Valè, G; Tacconi, G; Malnati, M
2007-06-01
The aim of this study was to examine the effect of Melaleuca alternifolia essential oil (TTO) and its principal components on four cereal-pathogenic fungi. The antimycotic properties of TTO and of terpinen-4-ol, gamma-terpinen and 1,8-cineole (eucalyptol) were evaluated in vitro on Fusarium graminearum, Fusarium culmorum and Pyrenophora graminea. Moreover, barley leaves infected with Blumeria graminis were treated with whole TTO. All the tested fungi were susceptible to TTO and its components. TTO exerted a wide spectrum of antimycotic activity. Single TTO purified components were more active than the whole oil in reducing in vitro growth of fungal mycelium and, among the tested compounds, terpinen-4-ol was the most effective. TTO and its components can be considered potential alternative natural fungicides.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
Single-trial event-related potentials to significant stimuli.
Rushby, Jacqueline A; Barry, Robert J
2009-11-01
The stimulus-response pattern of the skin conductance response (SCR) was used as a model of the Orienting Reflex (OR) to assess the P1, N1, P2, N2 and late positive complex (LPC/P300) components of the ERP in a simple habituation paradigm, in which a single series of 12 innocuous tones were presented at a very long interstimulus interval (2 min). To maintain their waking state during this boring task, participants were instructed to alternately close or open their eyes to each stimulus. None of the baseline-to-peak ERP measures showed trials effects comparable with the marked habituation over trials shown by the SCRs. Principal Components Analysis was used to decompose the ERP, yielding factors identified as the N1, N2, P3a, P3b and Novelty P3 components. An additional factor represented later eye-movement activity. No trial effects were apparent for the N1, N2, P3a or P3b components. The Novelty P3 showed marked response decrement over trials. These results are discussed in relation to current conceptualisations of the OR.
A Principal Component Analysis of the Diffuse Interstellar Bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensor, T.; Cami, J.; Bhatt, N. H.
2017-02-20
We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less
Foong, Shaohui; Sun, Zhenglong
2016-08-12
In this paper, a novel magnetic field-based sensing system employing statistically optimized concurrent multiple sensor outputs for precise field-position association and localization is presented. This method capitalizes on the independence between simultaneous spatial field measurements at multiple locations to induce unique correspondences between field and position. This single-source-multi-sensor configuration is able to achieve accurate and precise localization and tracking of translational motion without contact over large travel distances for feedback control. Principal component analysis (PCA) is used as a pseudo-linear filter to optimally reduce the dimensions of the multi-sensor output space for computationally efficient field-position mapping with artificial neural networks (ANNs). Numerical simulations are employed to investigate the effects of geometric parameters and Gaussian noise corruption on PCA assisted ANN mapping performance. Using a 9-sensor network, the sensing accuracy and closed-loop tracking performance of the proposed optimal field-based sensing system is experimentally evaluated on a linear actuator with a significantly more expensive optical encoder as a comparison.
A Principal Component Analysis of 39 Scientific Impact Measures
Bollen, Johan; Van de Sompel, Herbert
2009-01-01
Background The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. Methodology We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. Conclusions Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution. PMID:19562078
A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.
Jankovic, M V
2003-01-01
A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.
Assessment of technological level of stem cell research using principal component analysis.
Do Cho, Sung; Hwan Hyun, Byung; Kim, Jae Kyeom
2016-01-01
In general, technological levels have been assessed based on specialist's opinion through the methods such as Delphi. But in such cases, results could be significantly biased per study design and individual expert. In this study, therefore scientific literatures and patents were selected by means of analytic indexes for statistic approach and technical assessment of stem cell fields. The analytic indexes, numbers and impact indexes of scientific literatures and patents, were weighted based on principal component analysis, and then, were summated into the single value. Technological obsolescence was calculated through the cited half-life of patents issued by the United States Patents and Trademark Office and was reflected in technological level assessment. As results, ranks of each nation's in reference to the technology level were rated by the proposed method. Furthermore we were able to evaluate strengthens and weaknesses thereof. Although our empirical research presents faithful results, in the further study, there is a need to compare the existing methods and the suggested method.
Principal component analysis for fermionic critical points
NASA Astrophysics Data System (ADS)
Costa, Natanael C.; Hu, Wenjian; Bai, Z. J.; Scalettar, Richard T.; Singh, Rajiv R. P.
2017-11-01
We use determinant quantum Monte Carlo (DQMC), in combination with the principal component analysis (PCA) approach to unsupervised learning, to extract information about phase transitions in several of the most fundamental Hamiltonians describing strongly correlated materials. We first explore the zero-temperature antiferromagnet to singlet transition in the periodic Anderson model, the Mott insulating transition in the Hubbard model on a honeycomb lattice, and the magnetic transition in the 1/6-filled Lieb lattice. We then discuss the prospects for learning finite temperature superconducting transitions in the attractive Hubbard model, for which there is no sign problem. Finally, we investigate finite temperature charge density wave (CDW) transitions in the Holstein model, where the electrons are coupled to phonon degrees of freedom, and carry out a finite size scaling analysis to determine Tc. We examine the different behaviors associated with Hubbard-Stratonovich auxiliary field configurations on both the entire space-time lattice and on a single imaginary time slice, or other quantities, such as equal-time Green's and pair-pair correlation functions.
Diversity in shortjaw cisco (Coregonus zenithicus) in North America
Todd, T.N.; Steinhilber, M.
2002-01-01
Shortjaw cisco (Coregonus zenithicus) exhibit morphological variability across their geographic range in North America and could comprise more than one distinct morph or taxon. To investigate this, principal components analysis was applied to a data set that consisted of four variables from nine localities. All data were obtained from digital images of the specimens and the excised first gill arch. Confidence ellipses (95%) about the means of bivariate distributions of the principal components revealed that some populations were distinct from the others, but a continuity of overlap clouded understanding of pattern among the variation. Most populations had more and longer gillrakers than shortjaw cisco from George Lake (Manitoba) and Basswood Lake (Ontario) that had fewer and shorter gillrakers. This analysis supports the existence of a short- and few-rakered morph and a long- and many-rakered morph. However, most populations of shortjaw cisco from the Great Lakes across Canada to the Arctic share a similar morphology and likely represent a single, widespread species.
Anomalous magnetic structure and spin dynamics in magnetoelectric LiFePO 4
Toft-Petersen, Rasmus; Reehuis, Manfred; Jensen, Thomas B. S.; ...
2015-07-06
We report significant details of the magnetic structure and spin dynamics of LiFePO 4 obtained by single-crystal neutron scattering. Our results confirm a previously reported collinear rotation of the spins away from the principal b axis, and they determine that the rotation is toward the a axis. In addition, we find a significant spin-canting component along c. Furthermore, the possible causes of these components are discussed, and their significance for the magnetoelectric effect is analyzed. Inelastic neutron scattering along the three principal directions reveals a highly anisotropic hard plane consistent with earlier susceptibility measurements. While using a spin Hamiltonian, wemore » show that the spin dimensionality is intermediate between XY- and Ising-like, with an easy b axis and a hard c axis. As a result, it is shown that both next-nearest neighbor exchange couplings in the bc plane are in competition with the strongest nearest neighbor coupling.« less
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...
40 CFR 60.2570 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
Independent EEG Sources Are Dipolar
Delorme, Arnaud; Palmer, Jason; Onton, Julie; Oostenveld, Robert; Makeig, Scott
2012-01-01
Independent component analysis (ICA) and blind source separation (BSS) methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG) and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI) in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR) effected by each decomposition, and decomposition ‘dipolarity’ defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA); best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison). PMID:22355308
Delfino, Ines; Perna, Giuseppe; Lasalvia, Maria; Capozzi, Vito; Manti, Lorenzo; Camerlingo, Carlo; Lepore, Maria
2015-03-01
A micro-Raman spectroscopy investigation has been performed in vitro on single human mammary epithelial cells after irradiation by graded x-ray doses. The analysis by principal component analysis (PCA) and interval-PCA (i-PCA) methods has allowed us to point out the small differences in the Raman spectra induced by irradiation. This experimental approach has enabled us to delineate radiation-induced changes in protein, nucleic acid, lipid, and carbohydrate content. In particular, the dose dependence of PCA and i-PCA components has been analyzed. Our results have confirmed that micro-Raman spectroscopy coupled to properly chosen data analysis methods is a very sensitive technique to detect early molecular changes at the single-cell level following exposure to ionizing radiation. This would help in developing innovative approaches to monitor radiation cancer radiotherapy outcome so as to reduce the overall radiation dose and minimize damage to the surrounding healthy cells, both aspects being of great importance in the field of radiation therapy.
Progress Towards Improved Analysis of TES X-ray Data Using Principal Component Analysis
NASA Technical Reports Server (NTRS)
Busch, S. E.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Fixsen, D. J.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.;
2015-01-01
The traditional method of applying a digital optimal filter to measure X-ray pulses from transition-edge sensor (TES) devices does not achieve the best energy resolution when the signals have a highly non-linear response to energy, or the noise is non-stationary during the pulse. We present an implementation of a method to analyze X-ray data from TESs, which is based upon principal component analysis (PCA). Our method separates the X-ray signal pulse into orthogonal components that have the largest variance. We typically recover pulse height, arrival time, differences in pulse shape, and the variation of pulse height with detector temperature. These components can then be combined to form a representation of pulse energy. An added value of this method is that by reporting information on more descriptive parameters (as opposed to a single number representing energy), we generate a much more complete picture of the pulse received. Here we report on progress in developing this technique for future implementation on X-ray telescopes. We used an 55Fe source to characterize Mo/Au TESs. On the same dataset, the PCA method recovers a spectral resolution that is better by a factor of two than achievable with digital optimal filters.
Maisuradze, Gia G; Leitner, David M
2007-05-15
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.
Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.
Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A
2012-07-20
The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. Copyright © 2012. Published by Elsevier Ltd.
Molecular reclassification of Crohn's disease: a cautionary note on population stratification.
Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel
2013-01-01
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn's disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn's disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals.
Molecular Reclassification of Crohn’s Disease: A Cautionary Note on Population Stratification
Maus, Bärbel; Jung, Camille; Mahachie John, Jestinah M.; Hugot, Jean-Pierre; Génin, Emmanuelle; Van Steen, Kristel
2013-01-01
Complex human diseases commonly differ in their phenotypic characteristics, e.g., Crohn’s disease (CD) patients are heterogeneous with regard to disease location and disease extent. The genetic susceptibility to Crohn’s disease is widely acknowledged and has been demonstrated by identification of over 100 CD associated genetic loci. However, relating CD subphenotypes to disease susceptible loci has proven to be a difficult task. In this paper we discuss the use of cluster analysis on genetic markers to identify genetic-based subgroups while taking into account possible confounding by population stratification. We show that it is highly relevant to consider the confounding nature of population stratification in order to avoid that detected clusters are strongly related to population groups instead of disease-specific groups. Therefore, we explain the use of principal components to correct for population stratification while clustering affected individuals into genetic-based subgroups. The principal components are obtained using 30 ancestry informative markers (AIM), and the first two PCs are determined to discriminate between continental origins of the affected individuals. Genotypes on 51 CD associated single nucleotide polymorphisms (SNPs) are used to perform latent class analysis, hierarchical and Partitioning Around Medoids (PAM) cluster analysis within a sample of affected individuals with and without the use of principal components to adjust for population stratification. It is seen that without correction for population stratification clusters seem to be influenced by population stratification while with correction clusters are unrelated to continental origin of individuals. PMID:24147066
Valero-Cuevas, Francisco J; Klamroth-Marganska, Verena; Winstein, Carolee J; Riener, Robert
2016-10-11
Comparing the efficacy of alternative therapeutic strategies for the rehabilitation of motor function in chronically impaired individuals is often inconclusive. For example, a recent randomized clinical trial (RCT) compared robot-assisted vs. conventional therapy in 77 patients who had had chronic motor impairment after a cerebrovascular accident. While patients assigned to robotic therapy had greater improvements in the primary outcome measure (change in score on the upper extremity section of the Fugl-Meyer assessment), the absolute difference between therapies was small, which left the clinical relevance in question. Here we revisit that study to test whether the multidimensional rehabilitative response of these patients can better distinguish between treatment outcomes. We used principal components analysis to find the correlation of changes across seven outcome measures between the start and end of 8 weeks of therapy. Permutation tests verified the robustness of the principal components found. Each therapy in fact produces different rehabilitative trends of recovery across the clinical, functional, and quality of life domains. A rehabilitative trend is a principal component that quantifies the correlations among changes in outcomes with each therapy. These findings challenge the traditional emphasis of RCTs on using a single primary outcome measure to compare rehabilitative responses that are naturally multidimensional. This alternative approach to, and interpretation of, the results of RCTs may will lead to more effective therapies targeted for the multidimensional mechanisms of recovery. ClinicalTrials.gov number NCT00719433 . Registered July 17, 2008.
Cheke, Lucy G; Clayton, Nicola S
2015-09-01
The development of episodic memory in children has been of interest to researchers for more than a century. Current behavioral tests that have been developed to assess episodic memory differ substantially in their surface features. Therefore, it is possible that these tests are assessing different memory processes. In this study, 106 children aged 3 to 6 years were tested on four putative tests of episodic memory. Covariation in performance was investigated in order to address two conflicting hypotheses: (a) that the high level of difference between the tests will result in little covariation in performance despite their being designed to assess the same ability and (b) that the conceptual similarity of these tasks will lead to high levels of covariation despite surface differences. The results indicated a gradual improvement with age on all tests. Performances on many of the tests were related, but not after controlling for age. A principal component analysis found that a single principal component was able to satisfactorily fit the observed data. This principal component produced a marginally stronger correlation with age than any test alone. As such, it might be concluded that different tests of episodic memory are too different to be used in parallel. Nevertheless, if used together, these tests may offer a robust assessment of episodic memory as a complex multifaceted process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Fast, Exact Bootstrap Principal Component Analysis for p > 1 million
Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim
2015-01-01
Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801
ERIC Educational Resources Information Center
Oplatka, Izhar
2017-01-01
Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…
The classification of LANDSAT data for the Orlando, Florida, urban fringe area
NASA Technical Reports Server (NTRS)
Walthall, C. L.; Knapp, E. M.
1978-01-01
Procedures used to map residential land cover on the Orlando, Florida, Urban fringe zone are detailed. The NASA Bureau of the Census Applications Systems Verification and Transfer project and the test site are described as well as the LANDSAT data used as the land cover information sources. Both single-date LANDSAT data processing and multitemporal principal components LANDSAT data processing are described. A summary of significant findings is included.
Solder Creep-Fatigue Interactions with Flexible Leaded Part
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.; Wen, L. C.
1994-01-01
In most electronic packaging applications it is not a single high stress event that breaks a component solder joint; rather it is repeated or prolonged load applications that result in fatigue or creep failure of the solder. The principal strain in solder joints is caused by differential expansion between the part and its mounting environment due to hanges in temperature (thermal cycles) and/or due to temperature gradients between the part and the board.
Energy efficient engine high-pressure turbine component rig performance test report
NASA Technical Reports Server (NTRS)
Leach, K. P.
1983-01-01
A rig test of the cooled high-pressure turbine component for the Energy Efficient Engine was successfully completed. The principal objective of this test was to substantiate the turbine design point performance as well as determine off-design performance with the interaction of the secondary flow system. The measured efficiency of the cooled turbine component was 88.5 percent, which surpassed the rig design goal of 86.5 percent. The secondary flow system in the turbine performed according to the design intent. Characterization studies showed that secondary flow system performance is insensitive to flow and pressure variations. Overall, this test has demonstrated that a highly-loaded, transonic, single-stage turbine can achieve a high level of operating efficiency.
Application of microprocessors in an upper atmosphere instrument package
NASA Technical Reports Server (NTRS)
Lim, T. S.; Ehrman, C. H.; Allison, S.
1981-01-01
A servo-driven magnetometer table measuring offset from magnetic north has been developed by NASA to calculate payload azimuth required to point at a celestial target. Used as an aid to the study of gamma-ray phenomena, the high-altitude balloon-borne instrument determines a geocentric reference system, and calculates a set of pointing directions with respect to the system. Principal components include the magnetometer, stepping motor, microcomputer, and gray code shaft encoder. The single-chip microcomputer is used to control the orientation of the system, and consists of a central processing unit, program memory, data memory and input/output ports. Principal advantages include a low power requirement, consuming 6 watts, as compared to 30 watts consumed by the previous system.
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Buslaev, Pavel; Gordeliy, Valentin; Grudinin, Sergei; Gushchin, Ivan
2016-03-08
Molecular dynamics simulations of lipid bilayers are ubiquitous nowadays. Usually, either global properties of the bilayer or some particular characteristics of each lipid molecule are evaluated in such simulations, but the structural properties of the molecules as a whole are rarely studied. Here, we show how a comprehensive quantitative description of conformational space and dynamics of a single lipid molecule can be achieved via the principal component analysis (PCA). We illustrate the approach by analyzing and comparing simulations of DOPC bilayers obtained using eight different force fields: all-atom generalized AMBER, CHARMM27, CHARMM36, Lipid14, and Slipids and united-atom Berger, GROMOS43A1-S3, and GROMOS54A7. Similarly to proteins, most of the structural variance of a lipid molecule can be described by only a few principal components. These major components are similar in different simulations, although there are notable distinctions between the older and newer force fields and between the all-atom and united-atom force fields. The DOPC molecules in the simulations generally equilibrate on the time scales of tens to hundreds of nanoseconds. The equilibration is the slowest in the GAFF simulation and the fastest in the Slipids simulation. Somewhat unexpectedly, the equilibration in the united-atom force fields is generally slower than in the all-atom force fields. Overall, there is a clear separation between the more variable previous generation force fields and significantly more similar new generation force fields (CHARMM36, Lipid14, Slipids). We expect that the presented approaches will be useful for quantitative analysis of conformations and dynamics of individual lipid molecules in other simulations of lipid bilayers.
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo
2016-07-12
Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
Principals' Perceptions Regarding Their Supervision and Evaluation
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann
2015-01-01
This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…
Liu, Hui-lin; Wan, Xia; Yang, Gong-huan
2013-02-01
To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.
Critical Factors Explaining the Leadership Performance of High-Performing Principals
ERIC Educational Resources Information Center
Hutton, Disraeli M.
2018-01-01
The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
Optimized principal component analysis on coronagraphic images of the fomalhaut system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.
We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less
Raman spectra of single cells with autofluorescence suppression by modulated wavelength excitation
NASA Astrophysics Data System (ADS)
Krafft, Christoph; Dochow, Sebastian; Bergner, Norbert; Clement, Joachim H.; Praveen, Bavishna B.; Mazilu, Michael; Marchington, Rob; Dholakia, Kishan; Popp, Jürgen
2012-01-01
Raman spectroscopy is a non-invasive technique offering great potential in the biomedical field for label-free discrimination between normal and tumor cells based on their biochemical composition. First, this contribution describes Raman spectra of lymphocytes after drying, in laser tweezers, and trapped in a microfluidic environment. Second, spectral differences between lymphocytes and acute myeloid leukemia cells (OCI-AML3) are compared for these three experimental conditions. Significant similarities of difference spectra are consistent with the biological relevance of the spectral features. Third, modulated wavelength Raman spectroscopy has been applied to this model system to demonstrate background suppression. Here, the laser excitation wavelength of 785 nm was modulated with a frequency of 40 mHz by 0.6 nm. 40 spectra were accumulated with an exposure time of 5 seconds each. These data were subjected to principal component analysis to calculate modulated Raman signatures. The loading of the principal component shows characteristics of first derivatives with derivative like band shapes. The derivative of this loading corresponds to a pseudo-second derivative spectrum and enables to determine band positions.
Physician performance assessment using a composite quality index.
Liu, Kaibo; Jain, Shabnam; Shi, Jianjun
2013-07-10
Assessing physician performance is important for the purposes of measuring and improving quality of service and reducing healthcare delivery costs. In recent years, physician performance scorecards have been used to provide feedback on individual measures; however, one key challenge is how to develop a composite quality index that combines multiple measures for overall physician performance evaluation. A controversy arises over establishing appropriate weights to combine indicators in multiple dimensions, and cannot be easily resolved. In this study, we proposed a generic unsupervised learning approach to develop a single composite index for physician performance assessment by using non-negative principal component analysis. We developed a new algorithm named iterative quadratic programming to solve the numerical issue in the non-negative principal component analysis approach. We conducted real case studies to demonstrate the performance of the proposed method. We provided interpretations from both statistical and clinical perspectives to evaluate the developed composite ranking score in practice. In addition, we implemented the root cause assessment techniques to explain physician performance for improvement purposes. Copyright © 2012 John Wiley & Sons, Ltd.
Liu, Tsang-Sen; Lin, Jhen-Nan; Peng, Tsung-Ren
2018-01-16
Isotopic compositions of δ 2 H, δ 18 O, δ 13 C, and δ 15 N and concentrations of 22 trace elements from garlic samples were analyzed and processed with stepwise principal component analysis (PCA) to discriminate garlic's country of origin among Asian regions including South Korea, Vietnam, Taiwan, and China. Results indicate that there is no single trace-element concentration or isotopic composition that can accomplish the study's purpose and the stepwise PCA approach proposed does allow for discrimination between countries on a regional basis. Sequentially, Step-1 PCA distinguishes garlic's country of origin among Taiwanese, South Korean, and Vietnamese samples; Step-2 PCA discriminates Chinese garlic from South Korean garlic; and Step-3 and Step-4 PCA, Chinese garlic from Vietnamese garlic. In model tests, countries of origin of all audit samples were correctly discriminated by stepwise PCA. Consequently, this study demonstrates that stepwise PCA as applied is a simple and effective approach to discriminating country of origin among Asian garlics. © 2018 American Academy of Forensic Sciences.
[A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].
Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei
2010-04-01
It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.
Nelemans, Stefanie A; van Assche, Evelien; Bijttebier, Patricia; Colpin, Hilde; van Leeuwen, Karla; Verschueren, Karine; Claes, Stephan; van den Noortgate, Wim; Goossens, Luc
2018-04-26
Guided by a developmental psychopathology framework, research has increasingly focused on the interplay of genetics and environment as a predictor of different forms of psychopathology, including social anxiety. In these efforts, the polygenic nature of complex phenotypes such as social anxiety is increasingly recognized, but studies applying polygenic approaches are still scarce. In this study, we applied Principal Covariates Regression as a novel approach to creating polygenic components for the oxytocin system, which has recently been put forward as particularly relevant to social anxiety. Participants were 978 adolescents (49.4% girls; M age T 1 = 13.8 years). Across 3 years, questionnaires were used to assess adolescent social anxiety symptoms and multi-informant reports of parental psychological control and autonomy support. All adolescents were genotyped for 223 oxytocin single nucleotide polymorphisms (SNPs) in 14 genes. Using Principal Covariates Regression, these SNPs could be reduced to five polygenic components. Four components reflected the underlying linkage disequilibrium and ancestry structure, whereas the fifth component, which consisted of small contributions of many SNPs across multiple genes, was strongly positively associated with adolescent social anxiety symptoms, pointing to an index of genetic risk. Moreover, significant interactions were found with this polygenic component and the environmental variables of interest. Specifically, adolescents who scored high on this polygenic component and experienced less adequate parenting (i.e., high psychological control or low autonomy support) showed the highest levels of social anxiety. Implications of these findings are discussed in the context of individual-by-environment models.
Principal shapes and squeezed limits in the effective field theory of large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolini, Daniele; Solon, Mikhail P., E-mail: dbertolini@lbl.gov, E-mail: mpsolon@lbl.gov
2016-11-01
We apply an orthogonalization procedure on the effective field theory of large scale structure (EFT of LSS) shapes, relevant for the angle-averaged bispectrum and non-Gaussian covariance of the matter power spectrum at one loop. Assuming natural-sized EFT parameters, this identifies a linear combination of EFT shapes—referred to as the principal shape—that gives the dominant contribution for the whole kinematic plane, with subdominant combinations suppressed by a few orders of magnitude. For the covariance, our orthogonal transformation is in excellent agreement with a principal component analysis applied to available data. Additionally we find that, for both observables, the coefficients of themore » principal shapes are well approximated by the EFT coefficients appearing in the squeezed limit, and are thus measurable from power spectrum response functions. Employing data from N-body simulations for the growth-only response, we measure the single EFT coefficient describing the angle-averaged bispectrum with Ο (10%) precision. These methods of shape orthogonalization and measurement of coefficients from response functions are valuable tools for developing the EFT of LSS framework, and can be applied to more general observables.« less
Pamwani, Lavish; Habib, Anowarul; Melandsø, Frank; Ahluwalia, Balpreet Singh; Shelke, Amit
2018-06-22
The main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor. An angularly shaped interdigital transducer (IDT) is fabricated at 0 degrees and ±20 degrees for sensing the convex shape evolution of SAWs. A precalibrated damage was introduced in the piezoelectric sensor material using a micro-indenter in the direction perpendicular to the pointing direction of the SAW. Damage detection algorithms based on empirical mode decomposition (EMD) and principal component analysis (PCA) are implemented to quantify the evolution of damage in piezoelectric sensor material. The evolution of the damage was quantified using a proposed condition indicator (CI) based on normalized Euclidean norm of the change in principal angles, corresponding to pristine and damaged states. The CI indicator provides a robust and accurate metric for detection and quantification of damage.
How multi segmental patterns deviate in spastic diplegia from typical developed.
Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela
2017-10-01
The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.
General ultrafast pulse measurement using the cross-correlation single-shot sonogram technique.
Reid, Derryck T; Garduno-Mejia, Jesus
2004-03-15
The cross-correlation single-shot sonogram technique offers exact pulse measurement and real-time pulse monitoring via an intuitive time-frequency trace whose shape and orientation directly indicate the spectral chirp of an ultrashort laser pulse. We demonstrate an algorithm that solves a fundamental limitation of the cross-correlation sonogram method, namely, that the time-gating operation is implemented using a replica of the measured pulse rather than the ideal delta-function-like pulse. Using a modified principal-components generalized projections algorithm, we experimentally show accurate pulse retrieval of an asymmetric double pulse, a case that is prone to systematic error when one is using the original sonogram retrieval algorithm.
NASA Technical Reports Server (NTRS)
Williams, D. L.; Borden, F. Y.
1977-01-01
Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.
Constrained Principal Component Analysis: Various Applications.
ERIC Educational Resources Information Center
Hunter, Michael; Takane, Yoshio
2002-01-01
Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…
Amantonico, Andrea; Urban, Pawel L; Fagerer, Stephan R; Balabin, Roman M; Zenobi, Renato
2010-09-01
Heterogeneity is a characteristic feature of all populations of living organisms. Here we make an attempt to validate a single-cell mass spectrometric method for detection of changes in metabolite levels occurring in populations of unicellular organisms. Selected metabolites involved in central metabolism (ADP, ATP, GTP, and UDP-Glucose) could readily be detected in single cells of Closterium acerosum by means of negative-mode matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The analytical capabilities of this approach were characterized using standard compounds. The method was then used to study populations of individual cells with different levels of the chosen metabolites. With principal component analysis and support vector machine algorithms, it was possible to achieve a clear separation of individual C. acerosum cells in different metabolic states. This study demonstrates the suitability of mass spectrometric analysis of metabolites in single cells to measure cell-population heterogeneity.
NASA Astrophysics Data System (ADS)
Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.
2017-03-01
This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.
Perturbational formulation of principal component analysis in molecular dynamics simulation.
Koyama, Yohei M; Kobayashi, Tetsuya J; Tomoda, Shuji; Ueda, Hiroki R
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.
Perturbational formulation of principal component analysis in molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Tomoda, Shuji; Ueda, Hiroki R.
2008-10-01
Conformational fluctuations of a molecule are important to its function since such intrinsic fluctuations enable the molecule to respond to the external environmental perturbations. For extracting large conformational fluctuations, which predict the primary conformational change by the perturbation, principal component analysis (PCA) has been used in molecular dynamics simulations. However, several versions of PCA, such as Cartesian coordinate PCA and dihedral angle PCA (dPCA), are limited to use with molecules with a single dominant state or proteins where the dihedral angle represents an important internal coordinate. Other PCAs with general applicability, such as the PCA using pairwise atomic distances, do not represent the physical meaning clearly. Therefore, a formulation that provides general applicability and clearly represents the physical meaning is yet to be developed. For developing such a formulation, we consider the conformational distribution change by the perturbation with arbitrary linearly independent perturbation functions. Within the second order approximation of the Kullback-Leibler divergence by the perturbation, the PCA can be naturally interpreted as a method for (1) decomposing a given perturbation into perturbations that independently contribute to the conformational distribution change or (2) successively finding the perturbation that induces the largest conformational distribution change. In this perturbational formulation of PCA, (i) the eigenvalue measures the Kullback-Leibler divergence from the unperturbed to perturbed distributions, (ii) the eigenvector identifies the combination of the perturbation functions, and (iii) the principal component determines the probability change induced by the perturbation. Based on this formulation, we propose a PCA using potential energy terms, and we designate it as potential energy PCA (PEPCA). The PEPCA provides both general applicability and clear physical meaning. For demonstrating its power, we apply the PEPCA to an alanine dipeptide molecule in vacuum as a minimal model of a nonsingle dominant conformational biomolecule. The first and second principal components clearly characterize two stable states and the transition state between them. Positive and negative components with larger absolute values of the first and second eigenvectors identify the electrostatic interactions, which stabilize or destabilize each stable state and the transition state. Our result therefore indicates that PCA can be applied, by carefully selecting the perturbation functions, not only to identify the molecular conformational fluctuation but also to predict the conformational distribution change by the perturbation beyond the limitation of the previous methods.
Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2018-06-01
The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.
Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.
Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko
2017-12-01
Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.
Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion
Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.
2017-01-01
Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Conclusions Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. PMID:28257739
NASA Astrophysics Data System (ADS)
Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian
2016-03-01
Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.
Differences in kinematic control of ankle joint motions in people with chronic ankle instability.
Kipp, Kristof; Palmieri-Smith, Riann M
2013-06-01
People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Morin, R.H.
1997-01-01
Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.
US Principals' Attitudes about and Experiences with Single-Sex Schooling
ERIC Educational Resources Information Center
Fabes, Richard A.; Pahlke, Erin; Borders, Adrienne Z.; Galligan, Kathrine
2015-01-01
Despite a lack of scientific evidence supporting the use of single-sex education, the number of US public schools offering single-sex education has increased. However, our understanding as to why decision-makers have implemented single-sex education is lacking. To address this gap, we surveyed US public school principals and assessed their…
Charalampidis, E G; Kevrekidis, P G; Frantzeskakis, D J; Malomed, B A
2015-01-01
We study a two-component nonlinear Schrödinger system with equal, repulsive cubic interactions and different dispersion coefficients in the two components. We consider states that have a dark solitary wave in one component. Treating it as a frozen one, we explore the possibility of the formation of bright-solitonic structures in the other component. We identify bifurcation points at which such states emerge in the bright component in the linear limit and explore their continuation into the nonlinear regime. An additional analytically tractable limit is found to be that of vanishing dispersion of the bright component. We numerically identify regimes of potential stability, not only of the single-peak ground state (the dark-bright soliton), but also of excited states with one or more zero crossings in the bright component. When the states are identified as unstable, direct numerical simulations are used to investigate the outcome of the instability development. Although our principal focus is on the homogeneous setting, we also briefly touch upon the counterintuitive impact of the potential presence of a parabolic trap on the states of interest.
Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.
Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming
2018-05-10
To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
Weighting of NMME temperature and precipitation forecasts across Europe
NASA Astrophysics Data System (ADS)
Slater, Louise J.; Villarini, Gabriele; Bradley, A. Allen
2017-09-01
Multi-model ensemble forecasts are obtained by weighting multiple General Circulation Model (GCM) outputs to heighten forecast skill and reduce uncertainties. The North American Multi-Model Ensemble (NMME) project facilitates the development of such multi-model forecasting schemes by providing publicly-available hindcasts and forecasts online. Here, temperature and precipitation forecasts are enhanced by leveraging the strengths of eight NMME GCMs (CCSM3, CCSM4, CanCM3, CanCM4, CFSv2, GEOS5, GFDL2.1, and FLORb01) across all forecast months and lead times, for four broad climatic European regions: Temperate, Mediterranean, Humid-Continental and Subarctic-Polar. We compare five different approaches to multi-model weighting based on the equally weighted eight single-model ensembles (EW-8), Bayesian updating (BU) of the eight single-model ensembles (BU-8), BU of the 94 model members (BU-94), BU of the principal components of the eight single-model ensembles (BU-PCA-8) and BU of the principal components of the 94 model members (BU-PCA-94). We assess the forecasting skill of these five multi-models and evaluate their ability to predict some of the costliest historical droughts and floods in recent decades. Results indicate that the simplest approach based on EW-8 preserves model skill, but has considerable biases. The BU and BU-PCA approaches reduce the unconditional biases and negative skill in the forecasts considerably, but they can also sometimes diminish the positive skill in the original forecasts. The BU-PCA models tend to produce lower conditional biases than the BU models and have more homogeneous skill than the other multi-models, but with some loss of skill. The use of 94 NMME model members does not present significant benefits over the use of the 8 single model ensembles. These findings may provide valuable insights for the development of skillful, operational multi-model forecasting systems.
Dascălu, Cristina Gena; Antohe, Magda Ecaterina
2009-01-01
Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
A Note on McDonald's Generalization of Principal Components Analysis
ERIC Educational Resources Information Center
Shine, Lester C., II
1972-01-01
It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
Aggarwal, Vikram; Thakor, Nitish V.; Schieber, Marc H.
2014-01-01
A few kinematic synergies identified by principal component analysis (PCA) account for most of the variance in the coordinated joint rotations of the fingers and wrist used for a wide variety of hand movements. To examine the possibility that motor cortex might control the hand through such synergies, we collected simultaneous kinematic and neurophysiological data from monkeys performing a reach-to-grasp task. We used PCA, jPCA and isomap to extract kinematic synergies from 18 joint angles in the fingers and wrist and analyzed the relationships of both single-unit and multiunit spike recordings, as well as local field potentials (LFPs), to these synergies. For most spike recordings, the maximal absolute cross-correlations of firing rates were somewhat stronger with an individual joint angle than with any principal component (PC), any jPC or any isomap dimension. In decoding analyses, where spikes and LFP power in the 100- to 170-Hz band each provided better decoding than other LFP-based signals, the first PC was decoded as well as the best decoded joint angle. But the remaining PCs and jPCs were predicted with lower accuracy than individual joint angles. Although PCs, jPCs or isomap dimensions might provide a more parsimonious description of kinematics, our findings indicate that the kinematic synergies identified with these techniques are not represented in motor cortex more strongly than the original joint angles. We suggest that the motor cortex might act to sculpt the synergies generated by subcortical centers, superimposing an ability to individuate finger movements and adapt the hand to grasp a wide variety of objects. PMID:24990564
Mapping brain activity in gradient-echo functional MRI using principal component analysis
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Singh, Manbir; Don, Manuel
1997-05-01
The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.
ASCS online fault detection and isolation based on an improved MPCA
NASA Astrophysics Data System (ADS)
Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan
2014-09-01
Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.
The Complexity of Human Walking: A Knee Osteoarthritis Study
Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.
2014-01-01
This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949
Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
Ghosh, Debasree; Chattopadhyay, Parimal
2012-06-01
The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.
Zald, David H.; Woodward, Neil D.; Cowan, Ronald L.; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Smith, Clarence E.; Hakyemez, Helene; Li, Rui; Kessler, Robert M.
2010-01-01
Individual differences in dopamine D2-like receptor availability arise across all brain regions expressing D2-like receptors. However, the inter-relationships in receptor availability across brain regions are poorly understood. To address this issue, we examined the relationship between D2-like binding potential (BPND) across striatal and extrastriatal regions in a sample of healthy participants. PET imaging was performed with the high affinity D2/D3 ligand [18F]fallypride in 45 participants. BPND images were submitted to voxel-wise principal components analysis to determine the pattern of associations across brain regions. Individual differences in D2-like BPND were explained by three distinguishable components. A single component explained almost all of the variance within the striatum, indicating that individual differences in receptor availability vary in a homogenous manner across the caudate, putamen, and ventral striatum. Cortical BPND was only modestly related to striatal BPND, and mostly loaded on a distinct component. After controlling for the general level of cortical D2-like BPND, an inverse relationship emerged between receptor availability in the striatum and the ventral temporal and ventromedial frontal cortices, suggesting possible cross-regulation of D2-like receptors in these regions. The analysis additionally revealed evidence of: 1) a distinct component involving the midbrain and limbic areas; 2) a dissociation between BPND in the medial and lateral temporal regions; and 3) a dissociation between BPND in the medial/midline and lateral thalamus. In summary, individual differences in D2-like receptor availability reflect several distinct patterns. This conclusion has significant implications for neuropsychiatric models that posit global or regionally specific relationships between dopaminergic tone and behavior. PMID:20149883
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Long, J.M.; Fisher, W.L.
2006-01-01
We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-09-01
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.
2017-01-01
Introduction This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Methods Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child’s transition, child involvement in transition, child autonomy, school ethos, professionals’ involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Results Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), ‘child inclusive ethos,’ contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43–7.18, p<0.0001). Discussion To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning. PMID:28636649
Ravenscroft, John; Wazny, Kerri; Davis, John M
2017-01-01
This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child's transition, child involvement in transition, child autonomy, school ethos, professionals' involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), 'child inclusive ethos,' contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43-7.18, p<0.0001). To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Introduction to uses and interpretation of principal component analyses in forest biology.
J. G. Isebrands; Thomas R. Crow
1975-01-01
The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.
Principal component analysis of phenolic acid spectra
USDA-ARS?s Scientific Manuscript database
Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
NASA Astrophysics Data System (ADS)
Ueki, Kenta; Iwamori, Hikaru
2017-10-01
In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.
2011-01-01
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook’s distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards. PMID:21966586
The fine-scale genetic structure and evolution of the Japanese population.
Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro
2017-01-01
The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.
Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines
NASA Astrophysics Data System (ADS)
Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.
2017-12-01
Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.
Keithley, Richard B; Wightman, R Mark
2011-06-07
Principal component regression is a multivariate data analysis approach routinely used to predict neurochemical concentrations from in vivo fast-scan cyclic voltammetry measurements. This mathematical procedure can rapidly be employed with present day computer programming languages. Here, we evaluate several methods that can be used to evaluate and improve multivariate concentration determination. The cyclic voltammetric representation of the calculated regression vector is shown to be a valuable tool in determining whether the calculated multivariate model is chemically appropriate. The use of Cook's distance successfully identified outliers contained within in vivo fast-scan cyclic voltammetry training sets. This work also presents the first direct interpretation of a residual color plot and demonstrated the effect of peak shifts on predicted dopamine concentrations. Finally, separate analyses of smaller increments of a single continuous measurement could not be concatenated without substantial error in the predicted neurochemical concentrations due to electrode drift. Taken together, these tools allow for the construction of more robust multivariate calibration models and provide the first approach to assess the predictive ability of a procedure that is inherently impossible to validate because of the lack of in vivo standards.
Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A
2014-09-15
Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multidisciplinary, interdisciplinary, or dysfunctional? Team working in mixed-methods research.
O'Cathain, Alicia; Murphy, Elizabeth; Nicholl, Jon
2008-11-01
Combining qualitative and quantitative methods in a single study-otherwise known as mixed-methods research-is common. In health research these projects can be delivered by research teams. A typical scenario, for example, involves medical sociologists delivering qualitative components and researchers from medicine or health economics delivering quantitative components. We undertook semistructured interviews with 20 researchers who had worked on mixed-methods studies in health services research to explore the facilitators of and barriers to exploiting the potential of this approach. Team working emerged as a key issue, with three models of team working apparent: multidisciplinary, interdisciplinary, and dysfunctional. Interdisciplinary research was associated with integration of data or findings from the qualitative and quantitative components in both the final reports and the peer-reviewed publications. Methodological respect between team members and a principal investigator who valued integration emerged as essential to achieving integrated research outcomes.
NPS alternate techsat satellite, design project for AE-4871
NASA Technical Reports Server (NTRS)
1993-01-01
This project was completed as part of AE-4871, Advanced Spacecraft Design. The intent of the course is to provide experience in the design of all the major components in a spacecraft system. Team members were given responsibility for the design of one of the six primary subsystems: power, structures, propulsion, attitude control, telemetry, tracking and control (TT&C), and thermal control. In addition, a single member worked on configuration control, launch vehicle integration, and a spacecraft test plan. Given an eleven week time constraint, a preliminary design of each subsystem was completed. Where possible, possible component selections were also made. Assistance for this project came principally from the Naval Research Laboratory's Spacecraft Technology Branch. Specific information on components was solicited from representatives in industry. The design project centers on a general purpose satellite bus that is currently being sought by the Strategic Defense Initiative.
Feature extraction for ultrasonic sensor based defect detection in ceramic components
NASA Astrophysics Data System (ADS)
Kesharaju, Manasa; Nagarajah, Romesh
2014-02-01
High density silicon carbide materials are commonly used as the ceramic element of hard armour inserts used in traditional body armour systems to reduce their weight, while providing improved hardness, strength and elastic response to stress. Currently, armour ceramic tiles are inspected visually offline using an X-ray technique that is time consuming and very expensive. In addition, from X-rays multiple defects are also misinterpreted as single defects. Therefore, to address these problems the ultrasonic non-destructive approach is being investigated. Ultrasound based inspection would be far more cost effective and reliable as the methodology is applicable for on-line quality control including implementation of accept/reject criteria. This paper describes a recently developed methodology to detect, locate and classify various manufacturing defects in ceramic tiles using sub band coding of ultrasonic test signals. The wavelet transform is applied to the ultrasonic signal and wavelet coefficients in the different frequency bands are extracted and used as input features to an artificial neural network (ANN) for purposes of signal classification. Two different classifiers, using artificial neural networks (supervised) and clustering (un-supervised) are supplied with features selected using Principal Component Analysis(PCA) and their classification performance compared. This investigation establishes experimentally that Principal Component Analysis(PCA) can be effectively used as a feature selection method that provides superior results for classifying various defects in the context of ultrasonic inspection in comparison with the X-ray technique.
ERIC Educational Resources Information Center
Kronenberger, William G.; Thompson, Robert J., Jr.; Morrow, Catherine
1997-01-01
A principal components analysis of the Family Environment Scale (FES) (R. Moos and B. Moos, 1994) was performed using 113 undergraduates. Research supported 3 broad components encompassing the 10 FES subscales. These results supported previous research and the generalization of the FES to college samples. (SLD)
Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class
Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...
EVALUATION OF ACID DEPOSITION MODELS USING PRINCIPAL COMPONENT SPACES
An analytical technique involving principal components analysis is proposed for use in the evaluation of acid deposition models. elationships among model predictions are compared to those among measured data, rather than the more common one-to-one comparison of predictions to mea...
Detection of counterfeit electronic components through ambient mass spectrometry and chemometrics.
Pfeuffer, Kevin P; Caldwell, Jack; Shelley, Jake T; Ray, Steven J; Hieftje, Gary M
2014-09-21
In the last several years, illicit electronic components have been discovered in the inventories of several distributors and even installed in commercial and military products. Illicit or counterfeit electronic components include a broad category of devices that can range from the correct unit with a more recent date code to lower-specification or non-working systems with altered names, manufacturers and date codes. Current methodologies for identification of counterfeit electronics rely on visual microscopy by expert users and, while effective, are very time-consuming. Here, a plasma-based ambient desorption/ionization source, the flowing atmospheric pressure afterglow (FAPA) is used to generate a mass-spectral fingerprint from the surface of a variety of discrete electronic integrated circuits (ICs). Chemometric methods, specifically principal component analysis (PCA) and the bootstrapped error-adjusted single-sample technique (BEAST), are used successfully to differentiate between genuine and counterfeit ICs. In addition, chemical and physical surface-removal techniques are explored and suggest which surface-altering techniques were utilized by counterfeiters.
Principal components analysis in clinical studies.
Zhang, Zhongheng; Castelló, Adela
2017-09-01
In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
NASA Astrophysics Data System (ADS)
Osán, J.; Kurunczi, S.; Török, S.; Van Grieken, R.
2002-03-01
A serious heavy metal pollution of the Tisza River occurred on March 10, 2000, arising from a mine-dumping site in Romania. Sediment samples were taken from the main riverbed at six sites in Hungary, on March 16, 2000. The objective of this work was to distinguish the anthropogenic and crustal erosion particles in the river sediment. The samples were investigated using both bulk X-ray fluorescence (XRF) and thin-window electron probe microanalysis (EPMA). For EPMA, a reverse Monte Carlo method calculated the quantitative elemental composition of each single sediment particle. A high abundance of pyrite type particles was observed in some of the samples, indicating the influence of the mine dumps. Backscattered electron images proved that the size of particles with a high atomic number matrix was in the range of 2 μm. In other words the pyrites and the heavy elements form either small particles or are fragments of larger agglomerates. The latter are formed during the flotation process of the mines or get trapped to the natural crustal erosion particles. The XRF analysis of pyrite-rich samples always showed much higher Cu, Zn and Pb concentrations than the rest of the samples, supporting the conclusions of the single-particle EPMA results. In the polluted samples, the concentration of Cu, Zn and Pb reached 0.1, 0.3 and 0.2 wt.%, respectively. As a new approach, the abundance of particle classes obtained from single-particle EPMA and the elemental concentration obtained by XRF were merged into one data set. The dimension of the common data set was reduced by principal component analysis. The first component was determined by the abundance of pyrite and zinc sulfide particles and the concentration of Cu, Zn and Pb. The polluted samples formed a distinct group in the principal component space. The same result was supported by powder diffraction data. These analytical data combined with Earth Observation Techniques can be further used to estimate the quantity of particles originating from mine tailings on a defined river section.
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar
2017-06-01
We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Putilov, Arcady A; Donskaya, Olga G
2016-01-01
Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.
Understanding software faults and their role in software reliability modeling
NASA Technical Reports Server (NTRS)
Munson, John C.
1994-01-01
This study is a direct result of an on-going project to model the reliability of a large real-time control avionics system. In previous modeling efforts with this system, hardware reliability models were applied in modeling the reliability behavior of this system. In an attempt to enhance the performance of the adapted reliability models, certain software attributes were introduced in these models to control for differences between programs and also sequential executions of the same program. As the basic nature of the software attributes that affect software reliability become better understood in the modeling process, this information begins to have important implications on the software development process. A significant problem arises when raw attribute measures are to be used in statistical models as predictors, for example, of measures of software quality. This is because many of the metrics are highly correlated. Consider the two attributes: lines of code, LOC, and number of program statements, Stmts. In this case, it is quite obvious that a program with a high value of LOC probably will also have a relatively high value of Stmts. In the case of low level languages, such as assembly language programs, there might be a one-to-one relationship between the statement count and the lines of code. When there is a complete absence of linear relationship among the metrics, they are said to be orthogonal or uncorrelated. Usually the lack of orthogonality is not serious enough to affect a statistical analysis. However, for the purposes of some statistical analysis such as multiple regression, the software metrics are so strongly interrelated that the regression results may be ambiguous and possibly even misleading. Typically, it is difficult to estimate the unique effects of individual software metrics in the regression equation. The estimated values of the coefficients are very sensitive to slight changes in the data and to the addition or deletion of variables in the regression equation. Since most of the existing metrics have common elements and are linear combinations of these common elements, it seems reasonable to investigate the structure of the underlying common factors or components that make up the raw metrics. The technique we have chosen to use to explore this structure is a procedure called principal components analysis. Principal components analysis is a decomposition technique that may be used to detect and analyze collinearity in software metrics. When confronted with a large number of metrics measuring a single construct, it may be desirable to represent the set by some smaller number of variables that convey all, or most, of the information in the original set. Principal components are linear transformations of a set of random variables that summarize the information contained in the variables. The transformations are chosen so that the first component accounts for the maximal amount of variation of the measures of any possible linear transform; the second component accounts for the maximal amount of residual variation; and so on. The principal components are constructed so that they represent transformed scores on dimensions that are orthogonal. Through the use of principal components analysis, it is possible to have a set of highly related software attributes mapped into a small number of uncorrelated attribute domains. This definitively solves the problem of multi-collinearity in subsequent regression analysis. There are many software metrics in the literature, but principal component analysis reveals that there are few distinct sources of variation, i.e. dimensions, in this set of metrics. It would appear perfectly reasonable to characterize the measurable attributes of a program with a simple function of a small number of orthogonal metrics each of which represents a distinct software attribute domain.
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam
2017-04-01
In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.
Balakrishnan, Poojitha; Vaidya, Dhananjay; Franceschini, Nora; Voruganti, V. Saroja; Gribble, Matthew O.; Haack, Karin; Laston, Sandra; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; North, Kari E.; Lee, Elisa; Yracheta, Joseph; Best, Lyle G.; MacCluer, Jean W.; Kent, Jack; Cole, Shelley A.; Navas-Acien, Ana
2016-01-01
Background: Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. Objectives: We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). Methods: We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography–inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Results: Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10–5). Conclusions: This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J Jr., Cole SA, Navas-Acien A. 2017. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: the Strong Heart Family Study (SHFS). Environ Health Perspect 125:15–22; http://dx.doi.org/10.1289/EHP251 PMID:27352405
Balakrishnan, Poojitha; Vaidya, Dhananjay; Franceschini, Nora; Voruganti, V Saroja; Gribble, Matthew O; Haack, Karin; Laston, Sandra; Umans, Jason G; Francesconi, Kevin A; Goessler, Walter; North, Kari E; Lee, Elisa; Yracheta, Joseph; Best, Lyle G; MacCluer, Jean W; Kent, Jack; Cole, Shelley A; Navas-Acien, Ana
2017-01-01
Metabolism of inorganic arsenic (iAs) is subject to inter-individual variability, which is explained partly by genetic determinants. We investigated the association of genetic variants with arsenic species and principal components of arsenic species in the Strong Heart Family Study (SHFS). We examined variants previously associated with cardiometabolic traits (~ 200,000 from Illumina Cardio MetaboChip) or arsenic metabolism and toxicity (670) among 2,428 American Indian participants in the SHFS. Urine arsenic species were measured by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), and percent arsenic species [iAs, monomethylarsonate (MMA), and dimethylarsinate (DMA), divided by their sum × 100] were logit transformed. We created two orthogonal principal components that summarized iAs, MMA, and DMA and were also phenotypes for genetic analyses. Linear regression was performed for each phenotype, dependent on allele dosage of the variant. Models accounted for familial relatedness and were adjusted for age, sex, total arsenic levels, and population stratification. Single nucleotide polymorphism (SNP) associations were stratified by study site and were meta-analyzed. Bonferroni correction was used to account for multiple testing. Variants at 10q24 were statistically significant for all percent arsenic species and principal components of arsenic species. The index SNP for iAs%, MMA%, and DMA% (rs12768205) and for the principal components (rs3740394, rs3740393) were located near AS3MT, whose gene product catalyzes methylation of iAs to MMA and DMA. Among the candidate arsenic variant associations, functional SNPs in AS3MT and 10q24 were most significant (p < 9.33 × 10-5). This hypothesis-driven association study supports the role of common variants in arsenic metabolism, particularly AS3MT and 10q24. Citation: Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, Laston S, Umans JG, Francesconi KA, Goessler W, North KE, Lee E, Yracheta J, Best LG, MacCluer JW, Kent J Jr., Cole SA, Navas-Acien A. 2017. Association of cardiometabolic genes with arsenic metabolism biomarkers in American Indian communities: the Strong Heart Family Study (SHFS). Environ Health Perspect 125:15-22; http://dx.doi.org/10.1289/EHP251.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Rosacea assessment by erythema index and principal component analysis segmentation maps
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Rubins, Uldis; Saknite, Inga; Spigulis, Janis
2017-12-01
RGB images of rosacea were analyzed using segmentation maps of principal component analysis (PCA) and erythema index (EI). Areas of segmented clusters were compared to Clinician's Erythema Assessment (CEA) values given by two dermatologists. The results show that visible blood vessels are segmented more precisely on maps of the erythema index and the third principal component (PC3). In many cases, a distribution of clusters on EI and PC3 maps are very similar. Mean values of clusters' areas on these maps show a decrease of the area of blood vessels and erythema and an increase of lighter skin area after the therapy for the patients with diagnosis CEA = 2 on the first visit and CEA=1 on the second visit. This study shows that EI and PC3 maps are more useful than the maps of the first (PC1) and second (PC2) principal components for indicating vascular structures and erythema on the skin of rosacea patients and therapy monitoring.
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
[Content of mineral elements of Gastrodia elata by principal components analysis].
Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei
2015-03-01
To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.
Butler, T J; Kilbreath, S L; Gorman, R B; Gandevia, S C
2005-08-15
Flexor digitorum superficialis (FDS) is an extrinsic multi-tendoned muscle which flexes the proximal interphalangeal joints of the four fingers. It comprises four digital components, each with a tendon that inserts onto its corresponding finger. To determine the degree to which these digital components can be selectively recruited by volition, we recorded the activity of a single motor unit in one component via an intramuscular electrode while the subject isometrically flexed each of the remaining fingers, one at a time. The finger on which the unit principally acted was defined as the 'test finger' and that which flexed isometrically was the 'active' finger. Activity in 79 units was recorded. Isometric finger flexion forces of 50% maximum voluntary contraction (MVC) activated less than 50% of single units in components of FDS acting on fingers that were not voluntarily flexed. With two exceptions, the median recruitment threshold for all active-test finger combinations involving the index, middle, ring and little finger test units was between 49 and 60% MVC (60% MVC being the value assigned to those not recruited). The exceptions were flexion of the little finger while recording from ring finger units (median: 40% MVC), and vice versa (median: 2% MVC). For all active-test finger combinations, only 35/181 units were activated when the active finger flexed at less than 20% MVC, and the fingers were adjacent for 28 of these. Functionally, to recruit FDS units during grasping and lifting, relatively heavy objects were required, although systematic variation occurred with the width of the object. In conclusion, FDS components can be selectively activated by volition and this may be especially important for grasping at high forces with one or more fingers.
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
The factorial reliability of the Middlesex Hospital Questionnaire in normal subjects.
Bagley, C
1980-03-01
The internal reliability of the Middlesex Hospital Questionnaire and its component subscales has been checked by means of principal components analyses of data on 256 normal subjects. The subscales (with the possible exception of Hysteria) were found to contribute to the general underlying factor of psychoneurosis. In general, the principal components analysis points to the reliability of the subscales, despite some item overlap.
ERIC Educational Resources Information Center
McCormick, Ernest J.; And Others
The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…
ERIC Educational Resources Information Center
Faginski-Stark, Erica; Casavant, Christopher; Collins, William; McCandless, Jason; Tencza, Marilyn
2012-01-01
Recent federal and state mandates have tasked school systems to move beyond principal evaluation as a bureaucratic function and to re-imagine it as a critical component to improve principal performance and compel school renewal. This qualitative study investigated the district leaders' and principals' perceptions of the performance evaluation…
Kinematic foot types in youth with equinovarus secondary to hemiplegia.
Krzak, Joseph J; Corcos, Daniel M; Damiano, Diane L; Graf, Adam; Hedeker, Donald; Smith, Peter A; Harris, Gerald F
2015-02-01
Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). Copyright © 2014 Elsevier B.V. All rights reserved.
Kinematic foot types in youth with equinovarus secondary to hemiplegia
Krzak, Joseph J.; Corcos, Daniel M.; Damiano, Diane L.; Graf, Adam; Hedeker, Donald; Smith, Peter A.; Harris, Gerald F.
2015-01-01
Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s). PMID:25467429
Wienand, Ulrich; Cinotti, Renata; Nicoli, Augusta; Bisagni, Miriam
2007-01-01
Background By means of the ICONAS project, the Healthcare Agency of an Italian Region developed, and used a standardised questionnaire to quantify the organisational climate. The aims of the project were (a) to investigate whether the healthcare institutions were interested in measuring climate, (b) to estimate the range of applicability and reliability of the instrument, (c) to analyse the dimensions of climate among healthcare personnel, (d) to assess the differences among employees with different contractual positions. Methods The anonymous questionnaire containing 50 items, each with a scale from 1 to 10, was offered to the healthcare organisations, to be compiled during ad hoc meetings. The data were sent to the central project coordinator. The differences between highly specialised staff (mostly physicians) and other employees were assessed after descriptive statistical analysis of the single items. Both Principal Component Analysis and Factor Analysis were used. Results Ten healthcare organisations agreed to partecipate. The questionnaire was completed by 8691 employees out of 13202. The mean value of organisational climate was 4.79 (range 1–10). There were significant differences among single items and between the 2 groups of employees. Multivariate methods showed: (a) one principal component explained > 40% of the variance, (b) 7 factors summarised the data. Conclusion Italian healthcare institutions are interested in assessing organisational phenomena, especially after the reforms of the nineties. The instrument was found to be applicable and suitable for measuring organisational climate. Administration of the questionnaire leads to an acceptable response rate. Climate can be discribed by means of 7 underlying dimensions. PMID:17519007
Wienand, Ulrich; Cinotti, Renata; Nicoli, Augusta; Bisagni, Miriam
2007-05-22
By means of the ICONAS project, the Healthcare Agency of an Italian Region developed, and used a standardised questionnaire to quantify the organisational climate. The aims of the project were (a) to investigate whether the healthcare institutions were interested in measuring climate, (b) to estimate the range of applicability and reliability of the instrument, (c) to analyse the dimensions of climate among healthcare personnel, (d) to assess the differences among employees with different contractual positions. The anonymous questionnaire containing 50 items, each with a scale from 1 to 10, was offered to the healthcare organisations, to be compiled during ad hoc meetings. The data were sent to the central project coordinator. The differences between highly specialised staff (mostly physicians) and other employees were assessed after descriptive statistical analysis of the single items. Both Principal Component Analysis and Factor Analysis were used. Ten healthcare organisations agreed to participate. The questionnaire was completed by 8691 employees out of 13202. The mean value of organisational climate was 4.79 (range 1-10). There were significant differences among single items and between the 2 groups of employees. Multivariate methods showed: (a) one principal component explained > 40% of the variance, (b) 7 factors summarised the data. Italian healthcare institutions are interested in assessing organisational phenomena, especially after the reforms of the nineties. The instrument was found to be applicable and suitable for measuring organisational climate. Administration of the questionnaire leads to an acceptable response rate. Climate can be described by means of 7 underlying dimensions.
2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.
Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen
2017-09-19
A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.
NASA Astrophysics Data System (ADS)
Trusiak, Maciej; Micó, Vicente; Patorski, Krzysztof; García-Monreal, Javier; Sluzewski, Lukasz; Ferreira, Carlos
2016-08-01
In this contribution we propose two Hilbert-Huang Transform based algorithms for fast and accurate single-shot and two-shot quantitative phase imaging applicable in both on-axis and off-axis configurations. In the first scheme a single fringe pattern containing information about biological phase-sample under study is adaptively pre-filtered using empirical mode decomposition based approach. Further it is phase demodulated by the Hilbert Spiral Transform aided by the Principal Component Analysis for the local fringe orientation estimation. Orientation calculation enables closed fringes efficient analysis and can be avoided using arbitrary phase-shifted two-shot Gram-Schmidt Orthonormalization scheme aided by Hilbert-Huang Transform pre-filtering. This two-shot approach is a trade-off between single-frame and temporal phase shifting demodulation. Robustness of the proposed techniques is corroborated using experimental digital holographic microscopy studies of polystyrene micro-beads and red blood cells. Both algorithms compare favorably with the temporal phase shifting scheme which is used as a reference method.
NASA Astrophysics Data System (ADS)
Alevizos, Evangelos; Snellen, Mirjam; Simons, Dick; Siemes, Kerstin; Greinert, Jens
2018-06-01
This study applies three classification methods exploiting the angular dependence of acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and the presence of a wide range of sediment types. Backscatter data were acquired using a Seabeam1180 (180 kHz) multibeam echosounder and sub-bottom profiler data were recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of seafloor soundings allowed extracting backscatter layers for five beam angles over a large part of the surveyed area. A Bayesian probability method was employed for sediment classification based on the backscatter variability at a single incidence angle, whereas Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were applied to the multi-angle layers. The Bayesian approach was used for identifying the optimum number of acoustic classes because cluster validation is carried out prior to class assignment and class outputs are ordinal categorical values. The method is based on the principle that backscatter values from a single incidence angle express a normal distribution for a particular sediment type. The resulting Bayesian classes were well correlated to median grain sizes and the percentage of coarse material. The MLC method uses angular response information from five layers of training areas extracted from the Bayesian classification map. The subsequent PCA analysis is based on the transformation of these five layers into two principal components that comprise most of the data variability. These principal components were clustered in five classes after running an external cluster validation test. In general both methods MLC and PCA, separated the various sediment types effectively, showing good agreement (kappa >0.7) with the Bayesian approach which also correlates well with ground truth data (r2 > 0.7). In addition, sub-bottom data were used in conjunction with the Bayesian classification results to characterize acoustic classes with respect to their geological and stratigraphic interpretation. The joined interpretation of seafloor and sub-seafloor data sets proved to be an efficient approach for a better understanding of seafloor backscatter patchiness and to discriminate acoustically similar classes in different geological/bathymetric settings.
Effect of noise in principal component analysis with an application to ozone pollution
NASA Astrophysics Data System (ADS)
Tsakiri, Katerina G.
This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction
Probing the Hydrogen Enhanced Near-Field Emission of ITO without a Vacuum-Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, Jacob L.; Yu, Yang; Ohodnicki, Paul R.
In-situ monitoring of the multi-component gas streams in high temperature energy conversion devices offer the promises to higher efficiency via improved understanding of the chemical environments during device operation. While conventional resistive based metal oxide semiconductor gas sensors suffer from strong cross-sensitivity, optical sensing approaches offer intrinsic advantages to achieve gas selectivity based on wavelength specific interactions. This manuscript describes a novel method to achieve multicomponent gas sensing during gas exposure of H2, CO2, CH4and CO in humid high temperature environments. A single sensor element comprised of a perovskite La0.3Sr0.7TiO3(LSTO) oxide thin film layer coated on silica optical fiber wasmore » used. The sensing responses consisted of two wavelength-specific near infrared (NIR) mechanisms, namely broadband absorption associated with the metal oxide layer, and wavelength localized thermal emission responses associated with the hydroxyl defects within the silica fiber. Principal component analysis (PCA) was applied to couple the two mechanisms to achieve selective gas identification. Successful discrimination of H2and CO2on a single fiber sensor was achieved, where the results are both stable and reversible. This design demonstrates that by coupling multiple optical mechanisms on a single oxide coated fiber sensor, simple platforms can also achieve multi-component sensing functionality without the added complexity of a sensor array. Thus, it suggests a new approach to construct simple, robust and functional sensor designs capable of gas discrimination and quantification in multi-component gas streams.« less
The factor structure of static actuarial items: its relation to prediction.
Barbaree, Howard E; Langton, Calvin M; Peacock, Edward J
2006-04-01
Principal components analysis was conducted on items contained in actuarial instruments used with adult sex offenders, including: the Rapid Assessment of Sex Offender Risk for Recidivism (RASORR), the Static-99, the Violence Risk Appraisal Guide (VRAG), the Sex Offender Risk Appraisal Guide (SORAG), and the Minnesota Sex Offender Screening Tool-Revised (MnSOST-R). In a data set that included child molesters and rapists (N = 311), six interpretable components were identified: Antisocial Behavior, Child Sexual Abuse, Persistence, Detached Predatory Behavior, Young and Single, and Male Victim(s). The RRASOR was highly correlated with Persistence, and the VRAG and SORAG were highly correlated with Antisocial Behavior. Antisocial Behavior was a significant predictor of violent recidivism, while Persistence and Child Sexual Abuse were significant predictors of sexual recidivism.
Hooper, R.P.; Peters, N.E.
1989-01-01
A principal-components analysis was performed on the major solutes in wet deposition collected from 194 stations in the United States and its territories. Approximately 90% of the components derived could be interpreted as falling into one of three categories - acid, salt, or an agricultural/soil association. The total mass, or the mass of any one solute, was apportioned among these components by multiple linear regression techniques. The use of multisolute components for determining trends or spatial distribution represents a substantial improvement over single-solute analysis in that these components are more directly related to the sources of the deposition. The geographic patterns displayed by the components in this analysis indicate a far more important role for acid deposition in the Southeast and intermountain regions of the United States than would be indicated by maps of sulfate or nitrate deposition alone. In the Northeast and Midwest, the acid component is not declining at most stations, as would be expected from trends in sulfate deposition, but is holding constant or increasing. This is due, in part, to a decline in the agriculture/soil factor throughout this region, which would help to neutralize the acidity.
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.
2017-06-01
The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Soleimani, Mohammad Ali; Yaghoobzadeh, Ameneh; Bahrami, Nasim; Sharif, Saeed Pahlevan; Sharif Nia, Hamid
2016-10-01
In this study, 398 Iranian cancer patients completed the 15-item Templer's Death Anxiety Scale (TDAS). Tests of internal consistency, principal components analysis, and confirmatory factor analysis were conducted to assess the internal consistency and factorial validity of the Persian TDAS. The construct reliability statistic and average variance extracted were also calculated to measure construct reliability, convergent validity, and discriminant validity. Principal components analysis indicated a 3-component solution, which was generally supported in the confirmatory analysis. However, acceptable cutoffs for construct reliability, convergent validity, and discriminant validity were not fulfilled for the three subscales that were derived from the principal component analysis. This study demonstrated both the advantages and potential limitations of using the TDAS with Persian-speaking cancer patients.
Principal Component Clustering Approach to Teaching Quality Discriminant Analysis
ERIC Educational Resources Information Center
Xian, Sidong; Xia, Haibo; Yin, Yubo; Zhai, Zhansheng; Shang, Yan
2016-01-01
Teaching quality is the lifeline of the higher education. Many universities have made some effective achievement about evaluating the teaching quality. In this paper, we establish the Students' evaluation of teaching (SET) discriminant analysis model and algorithm based on principal component clustering analysis. Additionally, we classify the SET…
Analysis of the principal component algorithm in phase-shifting interferometry.
Vargas, J; Quiroga, J Antonio; Belenguer, T
2011-06-15
We recently presented a new asynchronous demodulation method for phase-sampling interferometry. The method is based in the principal component analysis (PCA) technique. In the former work, the PCA method was derived heuristically. In this work, we present an in-depth analysis of the PCA demodulation method.
Psychometric Measurement Models and Artificial Neural Networks
ERIC Educational Resources Information Center
Sese, Albert; Palmer, Alfonso L.; Montano, Juan J.
2004-01-01
The study of measurement models in psychometrics by means of dimensionality reduction techniques such as Principal Components Analysis (PCA) is a very common practice. In recent times, an upsurge of interest in the study of artificial neural networks apt to computing a principal component extraction has been observed. Despite this interest, the…
Microelectrode arrays (MEAs) detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-•of-concept, the current study assessed the utility of analytical "fingerprinting" using Principal Components Analysis (P...
Incremental principal component pursuit for video background modeling
Rodriquez-Valderrama, Paul A.; Wohlberg, Brendt
2017-03-14
An incremental Principal Component Pursuit (PCP) algorithm for video background modeling that is able to process one frame at a time while adapting to changes in background, with a computational complexity that allows for real-time processing, having a low memory footprint and is robust to translational and rotational jitter.
Dynamic competitive probabilistic principal components analysis.
López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel
2009-04-01
We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
Johnson, Micah A.; Diaz, Michele T.; Madden, David J.
2014-01-01
Although age-related differences in white matter have been well documented, the degree to which regional, tract-specific effects can be distinguished from global, brain-general effects is not yet clear. Similarly, the manner in which global and regional differences in white matter integrity contribute to age-related differences in cognition has not been well established. To address these issues, we analyzed diffusion tensor imaging measures from 52 younger adults (18–28) and 64 older adults (60–85). We conducted principal component analysis on each diffusion measure, using data from eight individual tracts. Two components were observed for fractional anisotropy: The first comprised high loadings from the superior longitudinal fasciculi and corticospinal tracts, and the second comprised high loadings from the optic radiations. In contrast, variation in axial, radial, and mean diffusivities yielded a single-component solution in each case, with high loadings from most or all tracts. For fractional anisotropy, the complementary results of multiple components and variability in component loadings across tracts suggest regional variation. However, for the diffusivity indices, the single component with high loadings from most or all of the tracts suggests primarily global, brain-general variation. Further analyses indicated that age was a significant mediator of the relation between each component and perceptual-motor speed. These data suggest that individual differences in white matter integrity, and their relation to age-related differences in perceptual-motor speed, represent influences that are beyond the level of individual tracts, but the extent to which regional or global effects predominate may differ between anisotropy and diffusivity measures. PMID:24972959
Single-cell genomic profiling of acute myeloid leukemia for clinical use: A pilot study
Yan, Benedict; Hu, Yongli; Ban, Kenneth H.K.; Tiang, Zenia; Ng, Christopher; Lee, Joanne; Tan, Wilson; Chiu, Lily; Tan, Tin Wee; Seah, Elaine; Ng, Chin Hin; Chng, Wee-Joo; Foo, Roger
2017-01-01
Although bulk high-throughput genomic profiling studies have led to a significant increase in the understanding of cancer biology, there is increasing awareness that bulk profiling approaches do not completely elucidate tumor heterogeneity. Single-cell genomic profiling enables the distinction of tumor heterogeneity, and may improve clinical diagnosis through the identification and characterization of putative subclonal populations. In the present study, the challenges associated with a single-cell genomics profiling workflow for clinical diagnostics were investigated. Single-cell RNA-sequencing (RNA-seq) was performed on 20 cells from an acute myeloid leukemia bone marrow sample. Putative blasts were identified based on their gene expression profiles and principal component analysis was performed to identify outlier cells. Variant calling was performed on the single-cell RNA-seq data. The present pilot study demonstrates a proof of concept for clinical single-cell genomic profiling. The recognized limitations include significant stochastic RNA loss and the relatively low throughput of the current proposed platform. Although the results of the present study are promising, further technological advances and protocol optimization are necessary for single-cell genomic profiling to be clinically viable. PMID:28454300
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-28
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
NASA Astrophysics Data System (ADS)
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-01
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
SAS program for quantitative stratigraphic correlation by principal components
Hohn, M.E.
1985-01-01
A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.
NASA Astrophysics Data System (ADS)
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
A novel principal component analysis for spatially misaligned multivariate air pollution data.
Jandarov, Roman A; Sheppard, Lianne A; Sampson, Paul D; Szpiro, Adam A
2017-01-01
We propose novel methods for predictive (sparse) PCA with spatially misaligned data. These methods identify principal component loading vectors that explain as much variability in the observed data as possible, while also ensuring the corresponding principal component scores can be predicted accurately by means of spatial statistics at locations where air pollution measurements are not available. This will make it possible to identify important mixtures of air pollutants and to quantify their health effects in cohort studies, where currently available methods cannot be used. We demonstrate the utility of predictive (sparse) PCA in simulated data and apply the approach to annual averages of particulate matter speciation data from national Environmental Protection Agency (EPA) regulatory monitors.
Principals' Perceptions of Collegial Support as a Component of Administrative Inservice.
ERIC Educational Resources Information Center
Daresh, John C.
To address the problem of increasing professional isolation of building administrators, the Principals' Inservice Project helps establish principals' collegial support groups across the nation. The groups are typically composed of 6 to 10 principals who meet at least once each month over a 2-year period. One collegial support group of seven…
Training the Trainers: Learning to Be a Principal Supervisor
ERIC Educational Resources Information Center
Saltzman, Amy
2017-01-01
While most principal supervisors are former principals themselves, few come to the role with specific training in how to do the job effectively. For this reason, both the Washington, D.C., and Tulsa, Oklahoma, principal supervisor programs include a strong professional development component. In this article, the author takes a look inside these…
ERIC Educational Resources Information Center
Rodrigue, Christine M.
2011-01-01
This paper presents a laboratory exercise used to teach principal components analysis (PCA) as a means of surface zonation. The lab was built around abundance data for 16 oxides and elements collected by the Mars Exploration Rover Spirit in Gusev Crater between Sol 14 and Sol 470. Students used PCA to reduce 15 of these into 3 components, which,…
ERIC Educational Resources Information Center
Ackermann, Margot Elise; Morrow, Jennifer Ann
2008-01-01
The present study describes the development and initial validation of the Coping with the College Environment Scale (CWCES). Participants included 433 college students who took an online survey. Principal Components Analysis (PCA) revealed six coping strategies: planning and self-management, seeking support from institutional resources, escaping…
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.
2015-11-01
The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.
Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis
NASA Astrophysics Data System (ADS)
Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.
2013-06-01
Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Kooij, Anita J.
2007-01-01
Principal components analysis (PCA) is used to explore the structure of data sets containing linearly related numeric variables. Alternatively, nonlinear PCA can handle possibly nonlinearly related numeric as well as nonnumeric variables. For linear PCA, the stability of its solution can be established under the assumption of multivariate…
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.1580 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the model rule? 60.1580 Section 60.1580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines..., 1999 Use of Model Rule § 60.1580 What are the principal components of the model rule? The model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
Students' Perceptions of Teaching and Learning Practices: A Principal Component Approach
ERIC Educational Resources Information Center
Mukorera, Sophia; Nyatanga, Phocenah
2017-01-01
Students' attendance and engagement with teaching and learning practices is perceived as a critical element for academic performance. Even with stipulated attendance policies, students still choose not to engage. The study employed a principal component analysis to analyze first- and second-year students' perceptions of the importance of the 12…
ERIC Educational Resources Information Center
Hunley-Jenkins, Keisha Janine
2012-01-01
This qualitative study explores large, urban, mid-western principal perspectives about cyberbullying and the policy components and practices that they have found effective and ineffective at reducing its occurrence and/or negative effect on their schools' learning environments. More specifically, the researcher was interested in learning more…
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
ERIC Educational Resources Information Center
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
Learning Principal Component Analysis by Using Data from Air Quality Networks
ERIC Educational Resources Information Center
Perez-Arribas, Luis Vicente; Leon-González, María Eugenia; Rosales-Conrado, Noelia
2017-01-01
With the final objective of using computational and chemometrics tools in the chemistry studies, this paper shows the methodology and interpretation of the Principal Component Analysis (PCA) using pollution data from different cities. This paper describes how students can obtain data on air quality and process such data for additional information…
Applications of Nonlinear Principal Components Analysis to Behavioral Data.
ERIC Educational Resources Information Center
Hicks, Marilyn Maginley
1981-01-01
An empirical investigation of the statistical procedure entitled nonlinear principal components analysis was conducted on a known equation and on measurement data in order to demonstrate the procedure and examine its potential usefulness. This method was suggested by R. Gnanadesikan and based on an early paper of Karl Pearson. (Author/AL)
ERIC Educational Resources Information Center
Hendrix, Dean
2010-01-01
This study analyzed 2005-2006 Web of Science bibliometric data from institutions belonging to the Association of Research Libraries (ARL) and corresponding ARL statistics to find any associations between indicators from the two data sets. Principal components analysis on 36 variables from 103 universities revealed obvious associations between…
Principal component analysis for protein folding dynamics.
Maisuradze, Gia G; Liwo, Adam; Scheraga, Harold A
2009-01-09
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Dynamic of consumer groups and response of commodity markets by principal component analysis
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Alam, Shafiqul; Lee, Jae Woo
2017-09-01
This study investigates financial states and group dynamics by applying principal component analysis to the cross-correlation coefficients of the daily returns of commodity futures. The eigenvalues of the cross-correlation matrix in the 6-month timeframe displays similar values during 2010-2011, but decline following 2012. A sharp drop in eigenvalue implies the significant change of the market state. Three commodity sectors, energy, metals and agriculture, are projected into two dimensional spaces consisting of two principal components (PC). We observe that they form three distinct clusters in relation to various sectors. However, commodities with distinct features have intermingled with one another and scattered during severe crises, such as the European sovereign debt crises. We observe the notable change of the position of two dimensional spaces of groups during financial crises. By considering the first principal component (PC1) within the 6-month moving timeframe, we observe that commodities of the same group change states in a similar pattern, and the change of states of one group can be used as a warning for other group.
Yuan, Yuan-Yuan; Zhou, Yu-Bi; Sun, Jing; Deng, Juan; Bai, Ying; Wang, Jie; Lu, Xue-Feng
2017-06-01
The content of elements in fifteen different regions of Nitraria roborowskii samples were determined by inductively coupled plasma-atomic emission spectrometry(ICP-OES), and its elemental characteristics were analyzed by principal component analysis. The results indicated that 18 mineral elements were detected in N. roborowskii of which V cannot be detected. In addition, contents of Na, K and Ca showed high concentration. Ti showed maximum content variance, while K is minimum. Four principal components were gained from the original data. The cumulative variance contribution rate is 81.542% and the variance contribution of the first principal component was 44.997%, indicating that Cr, Fe, P and Ca were the characteristic elements of N. roborowskii.Thus, the established method was simple, precise and can be used for determination of mineral elements in N.roborowskii Kom. fruits. The elemental distribution characteristics among N.roborowskii fruits are related to geographical origins which were clearly revealed by PCA. All the results will provide good basis for comprehensive utilization of N.roborowskii. Copyright© by the Chinese Pharmaceutical Association.
Lü, Gui-Cai; Zhao, Wei-Hong; Wang, Jiang-Tao
2011-01-01
The identification techniques for 10 species of red tide algae often found in the coastal areas of China were developed by combining the three-dimensional fluorescence spectra of fluorescence dissolved organic matter (FDOM) from the cultured red tide algae with principal component analysis. Based on the results of principal component analysis, the first principal component loading spectrum of three-dimensional fluorescence spectrum was chosen as the identification characteristic spectrum for red tide algae, and the phytoplankton fluorescence characteristic spectrum band was established. Then the 10 algae species were tested using Bayesian discriminant analysis with a correct identification rate of more than 92% for Pyrrophyta on the level of species, and that of more than 75% for Bacillariophyta on the level of genus in which the correct identification rates were more than 90% for the phaeodactylum and chaetoceros. The results showed that the identification techniques for 10 species of red tide algae based on the three-dimensional fluorescence spectra of FDOM from the cultured red tide algae and principal component analysis could work well.
NASA Astrophysics Data System (ADS)
Ji, Yi; Sun, Shanlin; Xie, Hong-Bo
2017-06-01
Discrete wavelet transform (WT) followed by principal component analysis (PCA) has been a powerful approach for the analysis of biomedical signals. Wavelet coefficients at various scales and channels were usually transformed into a one-dimensional array, causing issues such as the curse of dimensionality dilemma and small sample size problem. In addition, lack of time-shift invariance of WT coefficients can be modeled as noise and degrades the classifier performance. In this study, we present a stationary wavelet-based two-directional two-dimensional principal component analysis (SW2D2PCA) method for the efficient and effective extraction of essential feature information from signals. Time-invariant multi-scale matrices are constructed in the first step. The two-directional two-dimensional principal component analysis then operates on the multi-scale matrices to reduce the dimension, rather than vectors in conventional PCA. Results are presented from an experiment to classify eight hand motions using 4-channel electromyographic (EMG) signals recorded in healthy subjects and amputees, which illustrates the efficiency and effectiveness of the proposed method for biomedical signal analysis.
Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra
NASA Astrophysics Data System (ADS)
Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.
2011-07-01
We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.
Seeing wholes: The concept of systems thinking and its implementation in school leadership
NASA Astrophysics Data System (ADS)
Shaked, Haim; Schechter, Chen
2013-12-01
Systems thinking (ST) is an approach advocating thinking about any given issue as a whole, emphasising the interrelationships between its components rather than the components themselves. This article aims to link ST and school leadership, claiming that ST may enable school principals to develop highly performing schools that can cope successfully with current challenges, which are more complex than ever before in today's era of accountability and high expectations. The article presents the concept of ST - its definition, components, history and applications. Thereafter, its connection to education and its contribution to school management are described. The article concludes by discussing practical processes including screening for ST-skilled principal candidates and developing ST skills among prospective and currently performing school principals, pinpointing three opportunities for skills acquisition: during preparatory programmes; during their first years on the job, supported by veteran school principals as mentors; and throughout their entire career. Such opportunities may not only provide school principals with ST skills but also improve their functioning throughout the aforementioned stages of professional development.
A modified procedure for mixture-model clustering of regional geochemical data
Ellefsen, Karl J.; Smith, David B.; Horton, John D.
2014-01-01
A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The key modification is the robust principal component transformation of the isometric log-ratio transforms of the element concentrations. This principal component transformation and the associated dimension reduction are applied before the data are clustered. The principal advantage of this modification is that it significantly improves the stability of the clustering. The principal disadvantage is that it requires subjective selection of the number of clusters and the number of principal components. To evaluate the efficacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of element concentrations that are derived from the mixture model and from the field samples are similar, indicating that the mixture model is a suitable representation of the transformed geochemical data. Each cluster and the associated distributions of the element concentrations are related to specific geologic and anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional geochemical data.
Temporal evolution of financial-market correlations.
Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Temporal evolution of financial-market correlations
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.
2003-04-01
A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}
Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan
2017-03-01
An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability. Copyright © 2016 Elsevier Ltd. All rights reserved.
QSAR modeling of flotation collectors using principal components extracted from topological indices.
Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R
2002-01-01
Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.
Revisiting AVHRR Tropospheric Aerosol Trends Using Principal Component Analysis
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2014-01-01
The advanced very high resolution radiometer (AVHRR) satellite instruments provide a nearly 25 year continuous record of global aerosol properties over the ocean. It offers valuable insights into the long-term change in global aerosol loading. However, the AVHRR data record is heavily influenced by two volcanic eruptions, El Chichon on March 1982 and Mount Pinatubo on June 1991. The gradual decay of volcanic aerosols may last years after the eruption, which potentially masks the estimation of aerosol trends in the lower troposphere, especially those of anthropogenic origin. In this study, we show that a principal component analysis approach effectively captures the bulk of the spatial and temporal variability of volcanic aerosols into a single mode. The spatial pattern and time series of this mode provide a good match to the global distribution and decay of volcanic aerosols. We further reconstruct the data set by removing the volcanic aerosol component and reestimate the global and regional aerosol trends. Globally, the reconstructed data set reveals an increase of aerosol optical depth from 1985 to 1990 and decreasing trend from 1994 to 2006. Regionally, in the 1980s, positive trends are observed over the North Atlantic and North Arabian Sea, while negative tendencies are present off the West African coast and North Pacific. During the 1994 to 2006 period, the Gulf of Mexico, North Atlantic close to Europe, and North Africa exhibit negative trends, while the coastal regions of East and South Asia, the Sahel region, and South America show positive trends.
NASA Astrophysics Data System (ADS)
Li, Hui; Hong, Lu-Yao; Zhou, Qing; Yu, Hai-Jie
2015-08-01
The business failure of numerous companies results in financial crises. The high social costs associated with such crises have made people to search for effective tools for business risk prediction, among which, support vector machine is very effective. Several modelling means, including single-technique modelling, hybrid modelling, and ensemble modelling, have been suggested in forecasting business risk with support vector machine. However, existing literature seldom focuses on the general modelling frame for business risk prediction, and seldom investigates performance differences among different modelling means. We reviewed researches on forecasting business risk with support vector machine, proposed the general assisted prediction modelling frame with hybridisation and ensemble (APMF-WHAE), and finally, investigated the use of principal components analysis, support vector machine, random sampling, and group decision, under the general frame in forecasting business risk. Under the APMF-WHAE frame with support vector machine as the base predictive model, four specific predictive models were produced, namely, pure support vector machine, a hybrid support vector machine involved with principal components analysis, a support vector machine ensemble involved with random sampling and group decision, and an ensemble of hybrid support vector machine using group decision to integrate various hybrid support vector machines on variables produced from principle components analysis and samples from random sampling. The experimental results indicate that hybrid support vector machine and ensemble of hybrid support vector machines were able to produce dominating performance than pure support vector machine and support vector machine ensemble.
Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Wolf, Ronald L.; Bilello, Michel; Verma, Ragini; O’Rourke, Donald M.
2014-01-01
Purpose To augment the analysis of dynamic susceptibility contrast material–enhanced magnetic resonance (MR) images to uncover unique tissue characteristics that could potentially facilitate treatment planning through a better understanding of the peritumoral region in patients with glioblastoma. Materials and Methods Institutional review board approval was obtained for this study, with waiver of informed consent for retrospective review of medical records. Dynamic susceptibility contrast-enhanced MR imaging data were obtained for 79 patients, and principal component analysis was applied to the perfusion signal intensity. The first six principal components were sufficient to characterize more than 99% of variance in the temporal dynamics of blood perfusion in all regions of interest. The principal components were subsequently used in conjunction with a support vector machine classifier to create a map of heterogeneity within the peritumoral region, and the variance of this map served as the heterogeneity score. Results The calculated principal components allowed near-perfect separability of tissue that was likely highly infiltrated with tumor and tissue that was unlikely infiltrated with tumor. The heterogeneity map created by using the principal components showed a clear relationship between voxels judged by the support vector machine to be highly infiltrated and subsequent recurrence. The results demonstrated a significant correlation (r = 0.46, P < .0001) between the heterogeneity score and patient survival. The hazard ratio was 2.23 (95% confidence interval: 1.4, 3.6; P < .01) between patients with high and low heterogeneity scores on the basis of the median heterogeneity score. Conclusion Analysis of dynamic susceptibility contrast-enhanced MR imaging data by using principal component analysis can help identify imaging variables that can be subsequently used to evaluate the peritumoral region in glioblastoma. These variables are potentially indicative of tumor infiltration and may become useful tools in guiding therapy, as well as individualized prognostication. © RSNA, 2014 PMID:24955928
Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R
2010-01-01
The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can reliably be used in the low SNR data set (set B) compared to the high SNR data set (set A). Despite the fact that no definitive threshold could be found, this method may help to determine the cutoff for the number of principal components used in discriminant analysis. Future analysis of a selection of spectral databases using this technique will allow optimum thresholds to be selected for different applications and spectral data quality levels.
Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
Gao, Hao; Zhang, Yawei; Ren, Lei; Yin, Fang-Fang
2018-01-01
This work aims to generate cine CT images (i.e., 4D images with high-temporal resolution) based on a novel principal component reconstruction (PCR) technique with motion learning from 2D fluoroscopic training images. In the proposed PCR method, the matrix factorization is utilized as an explicit low-rank regularization of 4D images that are represented as a product of spatial principal components and temporal motion coefficients. The key hypothesis of PCR is that temporal coefficients from 4D images can be reasonably approximated by temporal coefficients learned from 2D fluoroscopic training projections. For this purpose, we can acquire fluoroscopic training projections for a few breathing periods at fixed gantry angles that are free from geometric distortion due to gantry rotation, that is, fluoroscopy-based motion learning. Such training projections can provide an effective characterization of the breathing motion. The temporal coefficients can be extracted from these training projections and used as priors for PCR, even though principal components from training projections are certainly not the same for these 4D images to be reconstructed. For this purpose, training data are synchronized with reconstruction data using identical real-time breathing position intervals for projection binning. In terms of image reconstruction, with a priori temporal coefficients, the data fidelity for PCR changes from nonlinear to linear, and consequently, the PCR method is robust and can be solved efficiently. PCR is formulated as a convex optimization problem with the sum of linear data fidelity with respect to spatial principal components and spatiotemporal total variation regularization imposed on 4D image phases. The solution algorithm of PCR is developed based on alternating direction method of multipliers. The implementation is fully parallelized on GPU with NVIDIA CUDA toolbox and each reconstruction takes about a few minutes. The proposed PCR method is validated and compared with a state-of-art method, that is, PICCS, using both simulation and experimental data with the on-board cone-beam CT setting. The results demonstrated the feasibility of PCR for cine CBCT and significantly improved reconstruction quality of PCR from PICCS for cine CBCT. With a priori estimated temporal motion coefficients using fluoroscopic training projections, the PCR method can accurately reconstruct spatial principal components, and then generate cine CT images as a product of temporal motion coefficients and spatial principal components. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Paolucci, Enrico; Lunedei, Enrico; Albarello, Dario
2017-10-01
In this work, we propose a procedure based on principal component analysis on data sets consisting of many horizontal to vertical spectral ratio (HVSR or H/V) curves obtained by single-station ambient vibration acquisitions. This kind of analysis aimed at the seismic characterization of the investigated area by identifying sites characterized by similar HVSR curves. It also allows to extract the typical HVSR patterns of the explored area and to establish their relative importance, providing an estimate of the level of heterogeneity under the seismic point of view. In this way, an automatic explorative seismic characterization of the area becomes possible by only considering ambient vibration data. This also implies that the relevant outcomes can be safely compared with other available information (geological data, borehole measurements, etc.) without any conceptual trade-off. The whole algorithm is remarkably fast: on a common personal computer, the processing time takes few seconds for a data set including 100-200 HVSR measurements. The procedure has been tested in three study areas in the Central-Northern Italy characterized by different geological settings. Outcomes demonstrate that this technique is effective and well correlates with most significant seismostratigraphical heterogeneities present in each of the study areas.
Localized Principal Component Analysis based Curve Evolution: A Divide and Conquer Approach
Appia, Vikram; Ganapathy, Balaji; Yezzi, Anthony; Faber, Tracy
2014-01-01
We propose a novel localized principal component analysis (PCA) based curve evolution approach which evolves the segmenting curve semi-locally within various target regions (divisions) in an image and then combines these locally accurate segmentation curves to obtain a global segmentation. The training data for our approach consists of training shapes and associated auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly correlated variations locally which may be rather independent of the variations in the distant parts of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data set. We then use a parametric model to implicitly represent each localized segmentation curve as a combination of the local shape priors obtained by representing the training shapes and the masks as a collection of signed distance functions. We also propose a parametric model to combine the locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we combine the evolution of these semilocal and global parameters to minimize an objective energy function. The resulting algorithm thus provides a globally accurate solution, which retains the local variations in shape. We present some results to illustrate how our approach performs better than the traditional approach with fully global PCA. PMID:25520901
A silicon microwire under a three-dimensional anisotropic tensile stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Xiaoyu; Poilvert, Nicolas; Liu, Wenjun
Three-dimensional tensile stress, or triaxial tensile stress, is difficult to achieve in a material. We present the investigation of an unusual three-dimensional anisotropic tensile stress field and its influence on the electronic properties of a single crystal silicon microwire. The microwire was created by laser heating an amorphous silicon wire deposited in a 1.7 μm silica glass capillary by high pressure chemical vapor deposition. Tensile strain arises due to the thermal expansion mismatch between silicon and silica. Synchrotron X-ray micro-beam Laue diffraction (μ-Laue) microscopy reveals that the three principal strain components are +0.47% (corresponding to a tensile stress of +0.7more » GPa) along the fiber axis and nearly isotropic +0.02% (corresponding to a tensile stress of +0.3 GPa) in the cross-sectional plane. This effect was accompanied with a reduction of 30 meV in the band gap energy of silicon, as predicted by the density-functional theory calculations and in close agreement with energy-dependent photoconductivity measurements. While silicon has been explored under many stress states, this study explores a stress state where all three principal stress components are tensile. Given the technological importance of silicon, the influence of such an unusual stress state on its electronic properties is of fundamental interest.« less
Sun, Li-Qiong; Wang, Shu-Yao; Li, Yan-Jing; Wang, Yong-Xiang; Wang, Zhen-Zhong; Huang, Wen-Zhe; Wang, Yue-Sheng; Bi, Yu-An; Ding, Gang; Xiao, Wei
2016-01-01
The present study was designed to determine the relationships between the performance of ethanol precipitation and seven process parameters in the ethanol precipitation process of Re Du Ning Injections, including concentrate density, concentrate temperature, ethanol content, flow rate and stir rate in the addition of ethanol, precipitation time, and precipitation temperature. Under the experimental and simulated production conditions, a series of precipitated resultants were prepared by changing these variables one by one, and then examined by HPLC fingerprint analyses. Different from the traditional evaluation model based on single or a few constituents, the fingerprint data of every parameter fluctuation test was processed with Principal Component Analysis (PCA) to comprehensively assess the performance of ethanol precipitation. Our results showed that concentrate density, ethanol content, and precipitation time were the most important parameters that influence the recovery of active compounds in precipitation resultants. The present study would provide some reference for pharmaceutical scientists engaged in research on pharmaceutical process optimization and help pharmaceutical enterprises adapt a scientific and reasonable cost-effective approach to ensure the batch-to-batch quality consistency of the final products. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Alcántara-Salinas, Graciela; Ellen, Roy F; Valiñas-Coalla, Leopoldo; Caballero, Javier; Argueta-Villamar, Arturo
2013-12-09
We report on a comparative ethno-ornithological study of Zapotec and Cuicatec communities in Northern Oaxaca, Mexico that provided a challenge to some existing descriptions of folk classification. Our default model was the taxonomic system of ranks developed by Brent Berlin. Fieldwork was conducted in the Zapotec village of San Miguel Tiltepec and in the Cuicatec village of San Juan Teponaxtla, using a combination of ethnographic interviews and pile-sorting tests. Post-fieldwork, Principal Component Analysis using NTSYSpc V. 2.11f was applied to obtain pattern variation for the answers from different participants. Using language and pile-sorting data analysed through Principal Component Analysis, we show how both Zapotec and Cuicatec subjects place a particular emphasis on an intermediate level of classification.These categories group birds with non-birds using ecological and behavioral criteria, and violate a strict distinction between symbolic and mundane (or ‘natural’), and between ‘general-purpose’ and ‘single-purpose’ schemes. We suggest that shared classificatory knowledge embodying everyday schemes for apprehending the world of birds might be better reflected in a multidimensional model that would also provide a more realistic basis for developing culturally-informed conservation strategies.
The fine-scale genetic structure and evolution of the Japanese population
Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua
2017-01-01
The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727
NASA Astrophysics Data System (ADS)
Baglivo, Fabricio Hugo; Arini, Pedro David
2011-12-01
Electrocardiographic repolarization abnormalities can be detected by Principal Components Analysis of the T-wave. In this work we studied the efect of signal averaging on the mean value and reproducibility of the ratio of the 2nd to the 1st eigenvalue of T-wave (T21W) and the absolute and relative T-wave residuum (TrelWR and TabsWR) in the ECG during ischemia induced by Percutaneous Coronary Intervention. Also, the intra-subject and inter-subject variability of T-wave parameters have been analyzed. Results showed that TrelWR and TabsWR evaluated from the average of 10 complexes had lower values and higher reproducibility than those obtained from 1 complex. On the other hand T21W calculated from 10 complexes did not show statistical diferences versus the T21W calculated on single beats. The results of this study corroborate that, with a signal averaging technique, the 2nd and the 1st eigenvalue are not afected by noise while the 4th to 8th eigenvalues are so much afected by this, suggesting the use of the signal averaged technique before calculation of absolute and relative T-wave residuum. Finally, we have shown that T-wave morphology parameters present high intra-subject stability.
2013-01-01
Background We report on a comparative ethno-ornithological study of Zapotec and Cuicatec communities in Northern Oaxaca, Mexico that provided a challenge to some existing descriptions of folk classification. Our default model was the taxonomic system of ranks developed by Brent Berlin. Methods Fieldwork was conducted in the Zapotec village of San Miguel Tiltepec and in the Cuicatec village of San Juan Teponaxtla, using a combination of ethnographic interviews and pile-sorting tests. Post-fieldwork, Principal Component Analysis using NTSYSpc V. 2.11f was applied to obtain pattern variation for the answers from different participants. Results and conclusion Using language and pile-sorting data analysed through Principal Component Analysis, we show how both Zapotec and Cuicatec subjects place a particular emphasis on an intermediate level of classification. These categories group birds with non-birds using ecological and behavioral criteria, and violate a strict distinction between symbolic and mundane (or ‘natural’), and between ‘general-purpose’ and ‘single-purpose’ schemes. We suggest that shared classificatory knowledge embodying everyday schemes for apprehending the world of birds might be better reflected in a multidimensional model that would also provide a more realistic basis for developing culturally-informed conservation strategies. PMID:24321280
ERIC Educational Resources Information Center
Lin, Mind-Dih
2012-01-01
Improving principal leadership is a vital component to the success of educational reform initiatives that seek to improve whole-school performance, as principal leadership often exercises positive but indirect effects on student learning. Because of the importance of principals within the field of school improvement, this article focuses on…
ERIC Educational Resources Information Center
Herrmann, Mariesa; Ross, Christine
2016-01-01
States and districts across the country are implementing new principal evaluation systems that include measures of the quality of principals' school leadership practices and measures of student achievement growth. Because these evaluation systems will be used for high-stakes decisions, it is important that the component measures of the evaluation…
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann; Mette, Ian M.
2015-01-01
This study examined the perspectives of novice and late career principals concerning instructional and organizational leadership within their performance evaluations. An online survey was sent to 251 principals with a return rate of 49%. Instructional leadership components of the evaluation that were most important to all principals were:…
Fernández-Arjona, María Del Mar; Grondona, Jesús M; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.
Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.
2017-01-01
It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor. PMID:28848398
Mansfeldt, Cresten B.; Rowe, Annette R.; Heavner, Gretchen L. W.; Zinder, Stephen H.
2014-01-01
A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6 ± 0.6 μM Cl−/h)- and fast (22.9 ± 9.6 μM Cl−/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n = 53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112). PMID:25063656
ERIC Educational Resources Information Center
Chou, Yeh-Tai; Wang, Wen-Chung
2010-01-01
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
ERIC Educational Resources Information Center
Brusco, Michael J.; Singh, Renu; Steinley, Douglas
2009-01-01
The selection of a subset of variables from a pool of candidates is an important problem in several areas of multivariate statistics. Within the context of principal component analysis (PCA), a number of authors have argued that subset selection is crucial for identifying those variables that are required for correct interpretation of the…
Relaxation mode analysis of a peptide system: comparison with principal component analysis.
Mitsutake, Ayori; Iijima, Hiromitsu; Takano, Hiroshi
2011-10-28
This article reports the first attempt to apply the relaxation mode analysis method to a simulation of a biomolecular system. In biomolecular systems, the principal component analysis is a well-known method for analyzing the static properties of fluctuations of structures obtained by a simulation and classifying the structures into some groups. On the other hand, the relaxation mode analysis has been used to analyze the dynamic properties of homopolymer systems. In this article, a long Monte Carlo simulation of Met-enkephalin in gas phase has been performed. The results are analyzed by the principal component analysis and relaxation mode analysis methods. We compare the results of both methods and show the effectiveness of the relaxation mode analysis.
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.; Mueller, J. L.; Zwally, H. J.
1984-01-01
A field of measured anomalies of some physical variable relative to their time averages, is partitioned in either the space domain or the time domain. Eigenvectors and corresponding principal components of the smaller dimensioned covariance matrices associated with the partitioned data sets are calculated independently, then joined to approximate the eigenstructure of the larger covariance matrix associated with the unpartitioned data set. The accuracy of the approximation (fraction of the total variance in the field) and the magnitudes of the largest eigenvalues from the partitioned covariance matrices together determine the number of local EOF's and principal components to be joined by any particular level. The space-time distribution of Nimbus-5 ESMR sea ice measurement is analyzed.
Fast principal component analysis for stacking seismic data
NASA Astrophysics Data System (ADS)
Wu, Juan; Bai, Min
2018-04-01
Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.
Wongchai, C; Chaidee, A; Pfeiffer, W
2012-01-01
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund
2017-05-31
Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.
NASA Technical Reports Server (NTRS)
Garland, J. L.; Mills, A. L.; Young, J. S.
2001-01-01
The relative effectiveness of average-well-color-development-normalized single-point absorbance readings (AWCD) vs the kinetic parameters mu(m), lambda, A, and integral (AREA) of the modified Gompertz equation fit to the color development curve resulting from reduction of a redox sensitive dye from microbial respiration of 95 separate sole carbon sources in microplate wells was compared for a dilution series of rhizosphere samples from hydroponically grown wheat and potato ranging in inoculum densities of 1 x 10(4)-4 x 10(6) cells ml-1. Patterns generated with each parameter were analyzed using principal component analysis (PCA) and discriminant function analysis (DFA) to test relative resolving power. Samples of equivalent cell density (undiluted samples) were correctly classified by rhizosphere type for all parameters based on DFA analysis of the first five PC scores. Analysis of undiluted and 1:4 diluted samples resulted in misclassification of at least two of the wheat samples for all parameters except the AWCD normalized (0.50 abs. units) data, and analysis of undiluted, 1:4, and 1:16 diluted samples resulted in misclassification for all parameter types. Ordination of samples along the first principal component (PC) was correlated to inoculum density in analyses performed on all of the kinetic parameters, but no such influence was seen for AWCD-derived results. The carbon sources responsible for classification differed among the variable types with the exception of AREA and A, which were strongly correlated. These results indicate that the use of kinetic parameters for pattern analysis in CLPP may provide some additional information, but only if the influence of inoculum density is carefully considered. c2001 Elsevier Science Ltd. All rights reserved.
Cole, Jacqueline M; Cheng, Xie; Payne, Michael C
2016-11-07
The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, codoped with two rare-earth ions (R and R') of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of codoped REPGs presents significant challenges relative to their singly doped counterparts; specifically, R and R' are difficult to distinguish in terms of establishing relative material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown codoped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are prevalidated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. While this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials and be exploited in large-scale data-mining efforts that probe many t(r) functions.
Jha, Sunil K; Hayashi, Kenshi
2015-03-01
In present work, a novel quartz crystal microbalance (QCM) sensor array has been developed for prompt identification of primary aldehydes in human body odor. Molecularly imprinted polymers (MIP) are prepared using the polyacrylic acid (PAA) polymer matrix and three organic acids (propenoic acid, hexanoic acid and octanoic acid) as template molecules, and utilized as QCM surface coating layer. The performance of MIP films is characterized by 4-element QCM sensor array (three coated with MIP layers and one with pure PAA for reference) dynamic and static responses to target aldehydes: hexanal, heptanal, and nonanal in single, binary, and tertiary mixtures at distinct concentrations. The target aldehydes were selected subsequent to characterization of body odor samples with solid phase-micro extraction gas chromatography mass spectrometer (SPME-GC-MS). The hexanoic acid and octanoic acid imprinted PAA exhibit fast response, and better sensitivity, selectivity and reproducibility than the propenoic acid, and non-imprinted PAA in array. The response time and recovery time for hexanoic acid imprinted PAA are obtained as 5 s and 12 s respectively to typical concentrations of binary and tertiary mixtures of aldehydes using the static response. Dynamic sensor array response matrix has been processed with principal component analysis (PCA) for visual, and support vector machine (SVM) classifier for quantitative identification of target odors. Aldehyde odors were identified successfully in principal component (PC) space. SVM classifier results maximum recognition rate 79% for three classes of binary odors and 83% including single, binary, and tertiary odor classes in 3-fold cross validation. Copyright © 2014 Elsevier B.V. All rights reserved.
Surzhikov, V D; Surzhikov, D V
2014-01-01
The search and measurement of causal relationships between exposure to air pollution and health state of the population is based on the system analysis and risk assessment to improve the quality of research. With this purpose there is applied the modern statistical analysis with the use of criteria of independence, principal component analysis and discriminate function analysis. As a result of analysis out of all atmospheric pollutants there were separated four main components: for diseases of the circulatory system main principal component is implied with concentrations of suspended solids, nitrogen dioxide, carbon monoxide, hydrogen fluoride, for the respiratory diseases the main c principal component is closely associated with suspended solids, sulfur dioxide and nitrogen dioxide, charcoal black. The discriminant function was shown to be used as a measure of the level of air pollution.
Priority of VHS Development Based in Potential Area using Principal Component Analysis
NASA Astrophysics Data System (ADS)
Meirawan, D.; Ana, A.; Saripudin, S.
2018-02-01
The current condition of VHS is still inadequate in quality, quantity and relevance. The purpose of this research is to analyse the development of VHS based on the development of regional potential by using principal component analysis (PCA) in Bandung, Indonesia. This study used descriptive qualitative data analysis using the principle of secondary data reduction component. The method used is Principal Component Analysis (PCA) analysis with Minitab Statistics Software tool. The results of this study indicate the value of the lowest requirement is a priority of the construction of development VHS with a program of majors in accordance with the development of regional potential. Based on the PCA score found that the main priority in the development of VHS in Bandung is in Saguling, which has the lowest PCA value of 416.92 in area 1, Cihampelas with the lowest PCA value in region 2 and Padalarang with the lowest PCA value.
Door detection in images based on learning by components
NASA Astrophysics Data System (ADS)
Cicirelli, Grazia; D'Orazio, Tiziana; Ancona, Nicola
2001-10-01
In this paper we present a vision-based technique for detecting targets of the environment which has to be reached by an autonomous mobile robot during its navigational task. The targets the robot has to reach are the doors of our office building. Color and shape information are used as identifying features for detecting principal components of the door. In fact in images the door can appear of different dimensions depending on the attitude of the robot with respect to the door, therefore detection of the door is performed by detecting its most significant components in the image. Positive and negative examples, in form of image patterns, are manually selected from real images for training two neural classifiers in order to recognize the single components. Each classifier has been realized by a feed-forward neural network with one hidden layer and sigmoid activation function. Moreover for selecting negative examples, relevant for the problem at hand, a bootstrap technique has been used during the training process. Finally the detecting system has been applied to several test real images for evaluating its performance.
González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio
2015-03-01
A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.
Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi
2011-01-01
Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939
Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy
2014-01-01
Background The primary cell wall of fruits and vegetables is a structure mainly composed of polysaccharides (pectins, hemicelluloses, cellulose). Polysaccharides are assembled into a network and linked together. It is thought that the percentage of components and of plant cell wall has an important influence on mechanical properties of fruits and vegetables. Results In this study the Raman microspectroscopy technique was introduced to the visualization of the distribution of polysaccharides in cell wall of fruit. The methodology of the sample preparation, the measurement using Raman microscope and multivariate image analysis are discussed. Single band imaging (for preliminary analysis) and multivariate image analysis methods (principal component analysis and multivariate curve resolution) were used for the identification and localization of the components in the primary cell wall. Conclusions Raman microspectroscopy supported by multivariate image analysis methods is useful in distinguishing cellulose and pectins in the cell wall in tomatoes. It presents how the localization of biopolymers was possible with minimally prepared samples. PMID:24917885
Alignment of the Stanford Linear Collider Arcs: Concepts and results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitthan, R.; Bell, B.; Friedsam, H.
1987-02-01
The alignment of the Arcs for the Stanford Linear Collider at SLAC has posed problems in accelerator survey and alignment not encountered before. These problems come less from the tight tolerances of 0.1 mm, although reaching such a tight statistically defined accuracy in a controlled manner is difficult enough, but from the absence of a common reference plane for the Arcs. Traditional circular accelerators, including HERA and LEP, have been designed in one plane referenced to local gravity. For the SLC Arcs no such single plane exists. Methods and concepts developed to solve these and other problems, connected with themore » unique design of SLC, range from the first use of satellites for accelerator alignment, use of electronic laser theodolites for placement of components, computer control of the manual adjustment process, complete automation of the data flow incorporating the most advanced concepts of geodesy, strict separation of survey and alignment, to linear principal component analysis for the final statistical smoothing of the mechanical components.« less
Assessing the determinants of evolutionary rates in the presence of noise.
Plotkin, Joshua B; Fraser, Hunter B
2007-05-01
Although protein sequences are known to evolve at vastly different rates, little is known about what determines their rate of evolution. However, a recent study using principal component regression (PCR) has concluded that evolutionary rates in yeast are primarily governed by a single determinant related to translation frequency. Here, we demonstrate that noise in biological data can confound PCRs, leading to spurious conclusions. When equalizing noise levels across 7 predictor variables used in previous studies, we find no evidence that protein evolution is dominated by a single determinant. Our results indicate that a variety of factors--including expression level, gene dispensability, and protein-protein interactions--may independently affect evolutionary rates in yeast. More accurate measurements or more sophisticated statistical techniques will be required to determine which one, if any, of these factors dominates protein evolution.
ERIC Educational Resources Information Center
National Association of Secondary School Principals, Reston, VA.
Preparation programs for principals should have excellent academic and performance based components. In examining the nature of performance based principal preparation this report finds that school administration programs must bridge the gap between conceptual learning in the classroom and the requirements of professional practice. A number of…
Principal component greenness transformation in multitemporal agricultural Landsat data
NASA Technical Reports Server (NTRS)
Abotteen, R. A.
1978-01-01
A data compression technique for multitemporal Landsat imagery which extracts phenological growth pattern information for agricultural crops is described. The principal component greenness transformation was applied to multitemporal agricultural Landsat data for information retrieval. The transformation was favorable for applications in agricultural Landsat data analysis because of its physical interpretability and its relation to the phenological growth of crops. It was also found that the first and second greenness eigenvector components define a temporal small-grain trajectory and nonsmall-grain trajectory, respectively.
Mashing up metals with carbothermal shock
NASA Astrophysics Data System (ADS)
Skrabalak, Sara E.
2018-03-01
Different materials and the capabilities they enabled have marked the ages of civilization. For example, the malleable copper alloys of the Bronze Age provided harder and more durable tools. Most exploration of new alloys has focused on random alloys, in which the alloying metal sites have no metal preference. In binary and ternary metal systems, dissimilar elements do not mix readily at high concentrations, which has limited alloying studies to intermetallics (ordered multimetallic phases) and random alloys, in which minor components are added to a principal element. In 2004, crystalline metal alloys consisting of five or more principal elements in equal or nearly equal amounts (1, 2) were reported that were stabilized by their high configurational entropy. Unlike most random alloys, the “high-entropy” alloys (3, 4) reside in the centers of their multidimensional phase diagrams (see the figure, right). On page 1489 of this issue, Yao et al. (5) present an innovative and general route to high-entropy alloys that can mix up to eight elements into single-phase, size-controlled nanoparticles (NPs).
Sparse modeling of spatial environmental variables associated with asthma
Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.
2014-01-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437
Sparse modeling of spatial environmental variables associated with asthma.
Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W
2015-02-01
Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.
Hua, Yang; Liu, Zhanqiang
2018-05-24
Residual stresses of turned Inconel 718 surface along its axial and circumferential directions affect the fatigue performance of machined components. However, it has not been clear that the axial and circumferential directions are the principle residual stress direction. The direction of the maximum principal residual stress is crucial for the machined component service life. The present work aims to focuses on determining the direction and magnitude of principal residual stress and investigating its influence on fatigue performance of turned Inconel 718. The turning experimental results show that the principal residual stress magnitude is much higher than surface residual stress. In addition, both the principal residual stress and surface residual stress increase significantly as the feed rate increases. The fatigue test results show that the direction of the maximum principal residual stress increased by 7.4%, while the fatigue life decreased by 39.4%. The maximum principal residual stress magnitude diminished by 17.9%, whereas the fatigue life increased by 83.6%. The maximum principal residual stress has a preponderant influence on fatigue performance as compared to the surface residual stress. The maximum principal residual stress can be considered as a prime indicator for evaluation of the residual stress influence on fatigue performance of turned Inconel 718.
Principal component analysis for designed experiments.
Konishi, Tomokazu
2015-01-01
Principal component analysis is used to summarize matrix data, such as found in transcriptome, proteome or metabolome and medical examinations, into fewer dimensions by fitting the matrix to orthogonal axes. Although this methodology is frequently used in multivariate analyses, it has disadvantages when applied to experimental data. First, the identified principal components have poor generality; since the size and directions of the components are dependent on the particular data set, the components are valid only within the data set. Second, the method is sensitive to experimental noise and bias between sample groups. It cannot reflect the experimental design that is planned to manage the noise and bias; rather, it estimates the same weight and independence to all the samples in the matrix. Third, the resulting components are often difficult to interpret. To address these issues, several options were introduced to the methodology. First, the principal axes were identified using training data sets and shared across experiments. These training data reflect the design of experiments, and their preparation allows noise to be reduced and group bias to be removed. Second, the center of the rotation was determined in accordance with the experimental design. Third, the resulting components were scaled to unify their size unit. The effects of these options were observed in microarray experiments, and showed an improvement in the separation of groups and robustness to noise. The range of scaled scores was unaffected by the number of items. Additionally, unknown samples were appropriately classified using pre-arranged axes. Furthermore, these axes well reflected the characteristics of groups in the experiments. As was observed, the scaling of the components and sharing of axes enabled comparisons of the components beyond experiments. The use of training data reduced the effects of noise and bias in the data, facilitating the physical interpretation of the principal axes. Together, these introduced options result in improved generality and objectivity of the analytical results. The methodology has thus become more like a set of multiple regression analyses that find independent models that specify each of the axes.
Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Živković, I.; Pajić, D.; Ivek, T.; Berger, H.
2012-06-01
We report a detailed single-crystal investigation of a magnetoelectric ferrimagnet Cu2OSeO3 using dc magnetization and ac susceptibility along the three principal directions [100], [110], and [111]. We have observed that in small magnetic fields two magnetic transitions occur, one at Tc=57 K and the second one at TN=58 K. At Tc the nonlinear susceptibility reveals the emergence of the ferromagnetic component and below Tc the magnetization measurements show the splitting between field-cooled and zero-field-cooled regimes. Above 1000 Oe the magnetization saturates and the system is in a single domain state. The temperature dependence of the saturation below Tc can be well described by μ(T)=μ(0)[1-(T/Tc)2]β, with μ(0)=0.56μB/Cu, corresponding to the 3-up-1-down configuration. The dielectric constant measured on a thin single crystal shows a systematic deviation below the transition, indicating an intrinsic magnetoelectric effect.
Nonlinear features for classification and pose estimation of machined parts from single views
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1998-10-01
A new nonlinear feature extraction method is presented for classification and pose estimation of objects from single views. The feature extraction method is called the maximum representation and discrimination feature (MRDF) method. The nonlinear MRDF transformations to use are obtained in closed form, and offer significant advantages compared to nonlinear neural network implementations. The features extracted are useful for both object discrimination (classification) and object representation (pose estimation). We consider MRDFs on image data, provide a new 2-stage nonlinear MRDF solution, and show it specializes to well-known linear and nonlinear image processing transforms under certain conditions. We show the use of MRDF in estimating the class and pose of images of rendered solid CAD models of machine parts from single views using a feature-space trajectory neural network classifier. We show new results with better classification and pose estimation accuracy than are achieved by standard principal component analysis and Fukunaga-Koontz feature extraction methods.
B. Desta Fekedulegn; J.J. Colbert; R.R., Jr. Hicks; Michael E. Schuckers
2002-01-01
The theory and application of principal components regression, a method for coping with multicollinearity among independent variables in analyzing ecological data, is exhibited in detail. A concrete example of the complex procedures that must be carried out in developing a diagnostic growth-climate model is provided. We use tree radial increment data taken from breast...
ERIC Educational Resources Information Center
Rahayu, Sri; Sugiarto, Teguh; Madu, Ludiro; Holiawati; Subagyo, Ahmad
2017-01-01
This study aims to apply the model principal component analysis to reduce multicollinearity on variable currency exchange rate in eight countries in Asia against US Dollar including the Yen (Japan), Won (South Korea), Dollar (Hong Kong), Yuan (China), Bath (Thailand), Rupiah (Indonesia), Ringgit (Malaysia), Dollar (Singapore). It looks at yield…
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
Principal component analysis of Raman spectra for TiO2 nanoparticle characterization
NASA Astrophysics Data System (ADS)
Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion
2017-09-01
The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.
Puri, Ritika; Khamrui, Kaushik; Khetra, Yogesh; Malhotra, Ravinder; Devraja, H C
2016-02-01
Promising development and expansion in the market of cham-cham, a traditional Indian dairy product is expected in the coming future with the organized production of this milk product by some large dairies. The objective of this study was to document the extent of variation in sensory properties of market samples of cham-cham collected from four different locations known for their excellence in cham-cham production and to find out the attributes that govern much of variation in sensory scores of this product using quantitative descriptive analysis (QDA) and principal component analysis (PCA). QDA revealed significant (p < 0.05) difference in sensory attributes of cham-cham among the market samples. PCA identified four significant principal components that accounted for 72.4 % of the variation in the sensory data. Factor scores of each of the four principal components which primarily correspond to sweetness/shape/dryness of interior, surface appearance/surface dryness, rancid and firmness attributes specify the location of each market sample along each of the axes in 3-D graphs. These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring attributes of cham-cham that contribute most to its sensory acceptability.
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
Matsen IV, Frederick A.; Evans, Steven N.
2013-01-01
Principal components analysis (PCA) and hierarchical clustering are two of the most heavily used techniques for analyzing the differences between nucleic acid sequence samples taken from a given environment. They have led to many insights regarding the structure of microbial communities. We have developed two new complementary methods that leverage how this microbial community data sits on a phylogenetic tree. Edge principal components analysis enables the detection of important differences between samples that contain closely related taxa. Each principal component axis is a collection of signed weights on the edges of the phylogenetic tree, and these weights are easily visualized by a suitable thickening and coloring of the edges. Squash clustering outputs a (rooted) clustering tree in which each internal node corresponds to an appropriate “average” of the original samples at the leaves below the node. Moreover, the length of an edge is a suitably defined distance between the averaged samples associated with the two incident nodes, rather than the less interpretable average of distances produced by UPGMA, the most widely used hierarchical clustering method in this context. We present these methods and illustrate their use with data from the human microbiome. PMID:23505415
Time Management Ideas for Assistant Principals.
ERIC Educational Resources Information Center
Cronk, Jerry
1987-01-01
Prioritizing the use of time, effective communication, delegating authority, having detailed job descriptions, and good secretarial assistance are important components of time management for assistant principals. (MD)
McSherry, Wilfred
2006-07-01
The aim of this study was to generate a deeper understanding of the factors and forces that may inhibit or advance the concepts of spirituality and spiritual care within both nursing and health care. This manuscript presents a model that emerged from a qualitative study using grounded theory. Implementation and use of this model may assist all health care practitioners and organizations to advance the concepts of spirituality and spiritual care within their own sphere of practice. The model has been termed the principal components model because participants identified six components as being crucial to the advancement of spiritual health care. Grounded theory was used meaning that there was concurrent data collection and analysis. Theoretical sampling was used to develop the emerging theory. These processes, along with data analysis, open, axial and theoretical coding led to the identification of a core category and the construction of the principal components model. Fifty-three participants (24 men and 29 women) were recruited and all consented to be interviewed. The sample included nurses (n=24), chaplains (n=7), a social worker (n=1), an occupational therapist (n=1), physiotherapists (n=2), patients (n=14) and the public (n=4). The investigation was conducted in three phases to substantiate the emerging theory and the development of the model. The principal components model contained six components: individuality, inclusivity, integrated, inter/intra-disciplinary, innate and institution. A great deal has been written on the concepts of spirituality and spiritual care. However, rhetoric alone will not remove some of the intrinsic and extrinsic barriers that are inhibiting the advancement of the spiritual dimension in terms of theory and practice. An awareness of and adherence to the principal components model may assist nurses and health care professionals to engage with and overcome some of the structural, organizational, political and social variables that are impacting upon spiritual care.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
NASA Astrophysics Data System (ADS)
Haneishi, Hideaki; Sakuda, Yasunori; Honda, Toshio
2002-06-01
Spectral reflectance of most reflective objects such as natural objects and color hardcopy is relatively smooth and can be approximated by several numbers of principal components with high accuracy. Though the subspace spanned by those principal components represents a space in which reflective objects can exist, it dos not provide the bound in which the samples distribute. In this paper we propose to represent the gamut of reflective objects in more distinct form, i.e., as a polyhedron in the subspace spanned by several principal components. Concept of the polyhedral gamut representation and its application to calculation of metamer ensemble are described. Color-mismatch volume caused by different illuminant and/or observer for a metamer ensemble is also calculated and compared with theoretical one.
Evaluation of Low-Voltage Distribution Network Index Based on Improved Principal Component Analysis
NASA Astrophysics Data System (ADS)
Fan, Hanlu; Gao, Suzhou; Fan, Wenjie; Zhong, Yinfeng; Zhu, Lei
2018-01-01
In order to evaluate the development level of the low-voltage distribution network objectively and scientifically, chromatography analysis method is utilized to construct evaluation index model of low-voltage distribution network. Based on the analysis of principal component and the characteristic of logarithmic distribution of the index data, a logarithmic centralization method is adopted to improve the principal component analysis algorithm. The algorithm can decorrelate and reduce the dimensions of the evaluation model and the comprehensive score has a better dispersion degree. The clustering method is adopted to analyse the comprehensive score because the comprehensive score of the courts is concentrated. Then the stratification evaluation of the courts is realized. An example is given to verify the objectivity and scientificity of the evaluation method.
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
Jesse, Stephen; Kalinin, Sergei V
2009-02-25
An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.
The Artistic Nature of the High School Principal.
ERIC Educational Resources Information Center
Ritschel, Robert E.
The role of high school principals can be compared to that of composers of music. For instance, composers put musical components together into a coherent whole; similarly, principals organize high schools by establishing class schedules, assigning roles to subordinates, and maintaining a safe and orderly learning environment. Second, composers…
ERIC Educational Resources Information Center
Odegard-Koester, Melissa A.; Watkins, Paul
2016-01-01
The working relationship between principals and school counselors have received some attention in the literature, however, little empirical research exists that examines specifically the components that facilitate a collaborative working relationship between the principal and school counselor. This qualitative case study examined the unique…
The Retention and Attrition of Catholic School Principals
ERIC Educational Resources Information Center
Durow, W. Patrick; Brock, Barbara L.
2004-01-01
This article reports the results of a study of the retention of principals in Catholic elementary and secondary schools in one Midwestern diocese. Findings revealed that personal needs, career advancement, support from employer, and clearly defined role expectations were key factors in principals' retention decisions. A profile of components of…
The new ATLAS Fast Calorimeter Simulation
NASA Astrophysics Data System (ADS)
Schaarschmidt, J.; ATLAS Collaboration
2017-10-01
Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.
Using Neural Networks for Sensor Validation
NASA Technical Reports Server (NTRS)
Mattern, Duane L.; Jaw, Link C.; Guo, Ten-Huei; Graham, Ronald; McCoy, William
1998-01-01
This paper presents the results of applying two different types of neural networks in two different approaches to the sensor validation problem. The first approach uses a functional approximation neural network as part of a nonlinear observer in a model-based approach to analytical redundancy. The second approach uses an auto-associative neural network to perform nonlinear principal component analysis on a set of redundant sensors to provide an estimate for a single failed sensor. The approaches are demonstrated using a nonlinear simulation of a turbofan engine. The fault detection and sensor estimation results are presented and the training of the auto-associative neural network to provide sensor estimates is discussed.
Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.
Siettos, Constantinos; Starke, Jens
2016-09-01
The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Lawson, J. S.; Inglis, James
1984-01-01
A learning disability index (LDI) for the assessment of intellectual deficits on the Wechsler Intelligence Scale for Children-Revised (WISC-R) is described. The Factor II score coefficients derived from an unrotated principal components analysis of the WISC-R normative data, in combination with the individual's scaled scores, are used for this…
Perturbation analyses of intermolecular interactions
NASA Astrophysics Data System (ADS)
Koyama, Yohei M.; Kobayashi, Tetsuya J.; Ueda, Hiroki R.
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.
Perturbation analyses of intermolecular interactions.
Koyama, Yohei M; Kobayashi, Tetsuya J; Ueda, Hiroki R
2011-08-01
Conformational fluctuations of a protein molecule are important to its function, and it is known that environmental molecules, such as water molecules, ions, and ligand molecules, significantly affect the function by changing the conformational fluctuations. However, it is difficult to systematically understand the role of environmental molecules because intermolecular interactions related to the conformational fluctuations are complicated. To identify important intermolecular interactions with regard to the conformational fluctuations, we develop herein (i) distance-independent and (ii) distance-dependent perturbation analyses of the intermolecular interactions. We show that these perturbation analyses can be realized by performing (i) a principal component analysis using conditional expectations of truncated and shifted intermolecular potential energy terms and (ii) a functional principal component analysis using products of intermolecular forces and conditional cumulative densities. We refer to these analyses as intermolecular perturbation analysis (IPA) and distance-dependent intermolecular perturbation analysis (DIPA), respectively. For comparison of the IPA and the DIPA, we apply them to the alanine dipeptide isomerization in explicit water. Although the first IPA principal components discriminate two states (the α state and PPII (polyproline II) + β states) for larger cutoff length, the separation between the PPII state and the β state is unclear in the second IPA principal components. On the other hand, in the large cutoff value, DIPA eigenvalues converge faster than that for IPA and the top two DIPA principal components clearly identify the three states. By using the DIPA biplot, the contributions of the dipeptide-water interactions to each state are analyzed systematically. Since the DIPA improves the state identification and the convergence rate with retaining distance information, we conclude that the DIPA is a more practical method compared with the IPA. To test the feasibility of the DIPA for larger molecules, we apply the DIPA to the ten-residue chignolin folding in explicit water. The top three principal components identify the four states (native state, two misfolded states, and unfolded state) and their corresponding eigenfunctions identify important chignolin-water interactions to each state. Thus, the DIPA provides the practical method to identify conformational states and their corresponding important intermolecular interactions with distance information.
Inayama, T; Kashiwazaki, H; Sakamoto, M
1998-12-01
We tried to analyze synthetically teachers' view points associated with health education and roles of school lunch in primary education. For this purpose, a survey using an open-ended questionnaire consisting of eight items relating to health education in the school curriculum was carried out in 100 teachers of ten public primary schools. Subjects were asked to describe their view regarding the following eight items: 1) health and physical guidance education, 2) school lunch guidance education, 3) pupils' attitude toward their own health and nutrition, 4) health education, 5) role of school lunch in education, 6) future subjects of health education, 7) class room lesson related to school lunch, 8) guidance in case of pupil with unbalanced dieting and food avoidance. Subjects described their own opinions on an open-ended questionnaire response sheet. Keywords in individual descriptions were selected, rearranged and classified into categories according to their own meanings, and each of the selected keywords were used as the dummy variable. To assess individual opinions synthetically, a principal component analysis was then applied to the variables collected through the teachers' descriptions, and four factors were extracted. The results were as follows. 1) Four factors obtained from the repeated principal component analysis were summarized as; roles of health education and school lunch program (the first principal component), cooperation with nurse-teachers and those in charge of lunch service (the second principal component), time allocation for health education in home-room activity and lunch time (the third principal component) and contents of health education and school lunch guidance and their future plan (the fourth principal component). 2) Teachers regarded the role of school lunch in primary education as providing daily supply of nutrients, teaching of table manners and building up friendships with classmates, health education and food and nutrition education, and developing food preferences through eating lunch together with classmates. 3) Significant positive correlation was observed between "the teachers' opinion about the role of school lunch of providing opportunity to learn good behavior for food preferences through eating lunch together with classmates" and the first principal component "roles of health education and school lunch program" (r = 0.39, p < 0.01). The variable "the role of school lunch is health education and food and nutrition education" showed positive correlation with the principle component "cooperation with nurse-teachers and those in charge of lunch service" (r = 0.27, p < 0.01). Interesting relationships obtained were that teachers with longer educational experience tended to place importance in health education and food and nutrition education as the role of school lunch, and that male teachers regarded the roles of school lunch more importantly for future education in primary education than female teachers did.
Phenomenology of mixed states: a principal component analysis study.
Bertschy, G; Gervasoni, N; Favre, S; Liberek, C; Ragama-Pardos, E; Aubry, J-M; Gex-Fabry, M; Dayer, A
2007-12-01
To contribute to the definition of external and internal limits of mixed states and study the place of dysphoric symptoms in the psychopathology of mixed states. One hundred and sixty-five inpatients with major mood episodes were diagnosed as presenting with either pure depression, mixed depression (depression plus at least three manic symptoms), full mixed state (full depression and full mania), mixed mania (mania plus at least three depressive symptoms) or pure mania, using an adapted version of the Mini International Neuropsychiatric Interview (DSM-IV version). They were evaluated using a 33-item inventory of depressive, manic and mixed affective signs and symptoms. Principal component analysis without rotation yielded three components that together explained 43.6% of the variance. The first component (24.3% of the variance) contrasted typical depressive symptoms with typical euphoric, manic symptoms. The second component, labeled 'dysphoria', (13.8%) had strong positive loadings for irritability, distressing sensitivity to light and noise, impulsivity and inner tension. The third component (5.5%) included symptoms of insomnia. Median scores for the first component significantly decreased from the pure depression group to the pure mania group. For the dysphoria component, scores were highest among patients with full mixed states and decreased towards both patients with pure depression and those with pure mania. Principal component analysis revealed that dysphoria represents an important dimension of mixed states.
Principal component analysis of dynamic fluorescence images for diagnosis of diabetic vasculopathy
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Ku, Taeyun; Kang, Yujung; Ahn, Chulwoo; Choi, Chulhee
2016-04-01
Indocyanine green (ICG) fluorescence imaging has been clinically used for noninvasive visualizations of vascular structures. We have previously developed a diagnostic system based on dynamic ICG fluorescence imaging for sensitive detection of vascular disorders. However, because high-dimensional raw data were used, the analysis of the ICG dynamics proved difficult. We used principal component analysis (PCA) in this study to extract important elements without significant loss of information. We examined ICG spatiotemporal profiles and identified critical features related to vascular disorders. PCA time courses of the first three components showed a distinct pattern in diabetic patients. Among the major components, the second principal component (PC2) represented arterial-like features. The explained variance of PC2 in diabetic patients was significantly lower than in normal controls. To visualize the spatial pattern of PCs, pixels were mapped with red, green, and blue channels. The PC2 score showed an inverse pattern between normal controls and diabetic patients. We propose that PC2 can be used as a representative bioimaging marker for the screening of vascular diseases. It may also be useful in simple extractions of arterial-like features.
Gros, Daniel F
2014-12-15
Considerable attention has focused on the growing need for evidence-based psychotherapy for veterans with affective disorders within the Department of Veteran Affairs. Despite, and possibly due to, the large number of evidence-based protocols available, several obstacles remain in their widespread delivery within Veterans Affairs Medical Centers. In part as an effort to address these concerns, newer transdiagnostic approaches to psychotherapy have been developed to provide a single treatment that is capable of addressing several, related disorders. The goal of the present investigation was to develop and evaluate a transdiagnostic psychotherapy, Transdiagnostic Behavior Therapy (TBT), in veterans with affective disorders. Study 1 provided initial support for transdiagnostic presentation of evidence-based psychotherapy components in veterans with principal diagnoses of affective disorders (n=15). These findings were used to inform the development of the TBT protocol. In Study 2, an initial evaluation of TBT was completed in a second sample of veterans with principal diagnoses of affective disorders (n=29). The findings of Study 2 demonstrated significant improvements in symptoms of depression, anxiety, stress, posttraumatic stress, and related impairment across participants with various principal diagnoses. Together, the investigation provided preliminary support for effectiveness of TBT in veterans with affective disorders. Published by Elsevier Ireland Ltd.
A study of fuzzy logic ensemble system performance on face recognition problem
NASA Astrophysics Data System (ADS)
Polyakova, A.; Lipinskiy, L.
2017-02-01
Some problems are difficult to solve by using a single intelligent information technology (IIT). The ensemble of the various data mining (DM) techniques is a set of models which are able to solve the problem by itself, but the combination of which allows increasing the efficiency of the system as a whole. Using the IIT ensembles can improve the reliability and efficiency of the final decision, since it emphasizes on the diversity of its components. The new method of the intellectual informational technology ensemble design is considered in this paper. It is based on the fuzzy logic and is designed to solve the classification and regression problems. The ensemble consists of several data mining algorithms: artificial neural network, support vector machine and decision trees. These algorithms and their ensemble have been tested by solving the face recognition problems. Principal components analysis (PCA) is used for feature selection.
Ocké, Marga C
2013-05-01
This paper aims to describe different approaches for studying the overall diet with advantages and limitations. Studies of the overall diet have emerged because the relationship between dietary intake and health is very complex with all kinds of interactions. These cannot be captured well by studying single dietary components. Three main approaches to study the overall diet can be distinguished. The first method is researcher-defined scores or indices of diet quality. These are usually based on guidelines for a healthy diet or on diets known to be healthy. The second approach, using principal component or cluster analysis, is driven by the underlying dietary data. In principal component analysis, scales are derived based on the underlying relationships between food groups, whereas in cluster analysis, subgroups of the population are created with people that cluster together based on their dietary intake. A third approach includes methods that are driven by a combination of biological pathways and the underlying dietary data. Reduced rank regression defines linear combinations of food intakes that maximally explain nutrient intakes or intermediate markers of disease. Decision tree analysis identifies subgroups of a population whose members share dietary characteristics that influence (intermediate markers of) disease. It is concluded that all approaches have advantages and limitations and essentially answer different questions. The third approach is still more in an exploration phase, but seems to have great potential with complementary value. More insight into the utility of conducting studies on the overall diet can be gained if more attention is given to methodological issues.
Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude
2003-01-01
Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.
HT-FRTC: a fast radiative transfer code using kernel regression
NASA Astrophysics Data System (ADS)
Thelen, Jean-Claude; Havemann, Stephan; Lewis, Warren
2016-09-01
The HT-FRTC is a principal component based fast radiative transfer code that can be used across the electromagnetic spectrum from the microwave through to the ultraviolet to calculate transmittance, radiance and flux spectra. The principal components cover the spectrum at a very high spectral resolution, which allows very fast line-by-line, hyperspectral and broadband simulations for satellite-based, airborne and ground-based sensors. The principal components are derived during a code training phase from line-by-line simulations for a diverse set of atmosphere and surface conditions. The derived principal components are sensor independent, i.e. no extra training is required to include additional sensors. During the training phase we also derive the predictors which are required by the fast radiative transfer code to determine the principal component scores from the monochromatic radiances (or fluxes, transmittances). These predictors are calculated for each training profile at a small number of frequencies, which are selected by a k-means cluster algorithm during the training phase. Until recently the predictors were calculated using a linear regression. However, during a recent rewrite of the code the linear regression was replaced by a Gaussian Process (GP) regression which resulted in a significant increase in accuracy when compared to the linear regression. The HT-FRTC has been trained with a large variety of gases, surface properties and scatterers. Rayleigh scattering as well as scattering by frozen/liquid clouds, hydrometeors and aerosols have all been included. The scattering phase function can be fully accounted for by an integrated line-by-line version of the Edwards-Slingo spherical harmonics radiation code or approximately by a modification to the extinction (Chou scaling).
Spectral decomposition of asteroid Itokawa based on principal component analysis
NASA Astrophysics Data System (ADS)
Koga, Sumire C.; Sugita, Seiji; Kamata, Shunichi; Ishiguro, Masateru; Hiroi, Takahiro; Tatsumi, Eri; Sasaki, Sho
2018-01-01
The heliocentric stratification of asteroid spectral types may hold important information on the early evolution of the Solar System. Asteroid spectral taxonomy is based largely on principal component analysis. However, how the surface properties of asteroids, such as the composition and age, are projected in the principal-component (PC) space is not understood well. We decompose multi-band disk-resolved visible spectra of the Itokawa surface with principal component analysis (PCA) in comparison with main-belt asteroids. The obtained distribution of Itokawa spectra projected in the PC space of main-belt asteroids follows a linear trend linking the Q-type and S-type regions and is consistent with the results of space-weathering experiments on ordinary chondrites and olivine, suggesting that this trend may be a space-weathering-induced spectral evolution track for S-type asteroids. Comparison with space-weathering experiments also yield a short average surface age (< a few million years) for Itokawa, consistent with the cosmic-ray-exposure time of returned samples from Itokawa. The Itokawa PC score distribution exhibits asymmetry along the evolution track, strongly suggesting that space weathering has begun saturated on this young asteroid. The freshest spectrum found on Itokawa exhibits a clear sign for space weathering, indicating again that space weathering occurs very rapidly on this body. We also conducted PCA on Itokawa spectra alone and compared the results with space-weathering experiments. The obtained results indicate that the first principal component of Itokawa surface spectra is consistent with spectral change due to space weathering and that the spatial variation in the degree of space weathering is very large (a factor of three in surface age), which would strongly suggest the presence of strong regional/local resurfacing process(es) on this small asteroid.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi
2012-07-01
The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.
NASA Astrophysics Data System (ADS)
Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee
2015-03-01
Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.
Leadership Coaching: A Multiple-Case Study of Urban Public Charter School Principals' Experiences
ERIC Educational Resources Information Center
Lackritz, Anne D.
2017-01-01
This multi-case study seeks to understand the experiences of New York City and Washington, DC public charter school principals who have experienced leadership coaching, a component of leadership development, beyond their novice years. The research questions framing this study address how experienced public charter school principals describe the…
The View from the Principal's Office: An Observation Protocol Boosts Literacy :eadership
ERIC Educational Resources Information Center
Novak, Sandi; Houck, Bonnie
2016-01-01
The Minnesota Elementary School Principals' Association offered Minnesota principals professional learning that placed a high priority on literacy instruction and developing a collegial culture. A key component is the literacy classroom visit, an observation protocol used to gather data to determine the status of literacy teaching and student…
ERIC Educational Resources Information Center
Agnew, David W.
2011-01-01
Public school principals must meet many challenges and make decisions concerning financial obligations while providing the best learning environment for students. A major challenge to principals is implementing technological components successfully while providing teachers the 21st century instructional skills needed to enhance students'…
Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
NASA Technical Reports Server (NTRS)
Gloersen, Per (Inventor)
2004-01-01
An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.
Liang, Xuedong; Liu, Canmian; Li, Zhi
2017-01-01
In connection with the sustainable development of scenic spots, this paper, with consideration of resource conditions, economic benefits, auxiliary industry scale and ecological environment, establishes a comprehensive measurement model of the sustainable capacity of scenic spots; optimizes the index system by principal components analysis to extract principal components; assigns the weight of principal components by entropy method; analyzes the sustainable capacity of scenic spots in each province of China comprehensively in combination with TOPSIS method and finally puts forward suggestions aid decision-making. According to the study, this method provides an effective reference for the study of the sustainable development of scenic spots and is very significant for considering the sustainable development of scenic spots and auxiliary industries to establish specific and scientific countermeasures for improvement. PMID:29271947
The variance needed to accurately describe jump height from vertical ground reaction force data.
Richter, Chris; McGuinness, Kevin; O'Connor, Noel E; Moran, Kieran
2014-12-01
In functional principal component analysis (fPCA) a threshold is chosen to define the number of retained principal components, which corresponds to the amount of preserved information. A variety of thresholds have been used in previous studies and the chosen threshold is often not evaluated. The aim of this study is to identify the optimal threshold that preserves the information needed to describe a jump height accurately utilizing vertical ground reaction force (vGRF) curves. To find an optimal threshold, a neural network was used to predict jump height from vGRF curve measures generated using different fPCA thresholds. The findings indicate that a threshold from 99% to 99.9% (6-11 principal components) is optimal for describing jump height, as these thresholds generated significantly lower jump height prediction errors than other thresholds.
Liang, Xuedong; Liu, Canmian; Li, Zhi
2017-12-22
In connection with the sustainable development of scenic spots, this paper, with consideration of resource conditions, economic benefits, auxiliary industry scale and ecological environment, establishes a comprehensive measurement model of the sustainable capacity of scenic spots; optimizes the index system by principal components analysis to extract principal components; assigns the weight of principal components by entropy method; analyzes the sustainable capacity of scenic spots in each province of China comprehensively in combination with TOPSIS method and finally puts forward suggestions aid decision-making. According to the study, this method provides an effective reference for the study of the sustainable development of scenic spots and is very significant for considering the sustainable development of scenic spots and auxiliary industries to establish specific and scientific countermeasures for improvement.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
Optimal weighted combinatorial forecasting model of QT dispersion of ECGs in Chinese adults.
Wen, Zhang; Miao, Ge; Xinlei, Liu; Minyi, Cen
2016-07-01
This study aims to provide a scientific basis for unifying the reference value standard of QT dispersion of ECGs in Chinese adults. Three predictive models including regression model, principal component model, and artificial neural network model are combined to establish the optimal weighted combination model. The optimal weighted combination model and single model are verified and compared. Optimal weighted combinatorial model can reduce predicting risk of single model and improve the predicting precision. The reference value of geographical distribution of Chinese adults' QT dispersion was precisely made by using kriging methods. When geographical factors of a particular area are obtained, the reference value of QT dispersion of Chinese adults in this area can be estimated by using optimal weighted combinatorial model and reference value of the QT dispersion of Chinese adults anywhere in China can be obtained by using geographical distribution figure as well.
Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument
NASA Technical Reports Server (NTRS)
Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.
2004-01-01
Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.
Single-accelerometer-based daily physical activity classification.
Long, Xi; Yin, Bin; Aarts, Ronald M
2009-01-01
In this study, a single tri-axial accelerometer placed on the waist was used to record the acceleration data for human physical activity classification. The data collection involved 24 subjects performing daily real-life activities in a naturalistic environment without researchers' intervention. For the purpose of assessing customers' daily energy expenditure, walking, running, cycling, driving, and sports were chosen as target activities for classification. This study compared a Bayesian classification with that of a Decision Tree based approach. A Bayes classifier has the advantage to be more extensible, requiring little effort in classifier retraining and software update upon further expansion or modification of the target activities. Principal components analysis was applied to remove the correlation among features and to reduce the feature vector dimension. Experiments using leave-one-subject-out and 10-fold cross validation protocols revealed a classification accuracy of approximately 80%, which was comparable with that obtained by a Decision Tree classifier.
Salmas, Ramin Ekhteiari; Mestanoglu, Mert; Unlu, Ayhan; Yurtsever, Mine; Durdagi, Serdar
2016-11-01
Mutated form (G52E) of diphtheria toxin (DT) CRM197 is an inactive and nontoxic enzyme. Here, we provided a molecular insight using comparative molecular dynamics (MD) simulations to clarify the influence of a single point mutation on overall protein and active-site loop. Post-processing MD analysis (i.e. stability, principal component analysis, hydrogen-bond occupancy, etc.) is carried out on both wild and mutated targets to investigate and to better understand the mechanistic differences of structural and dynamical properties on an atomic scale especially at nicotinamide adenine dinucleotide (NAD) binding site when a single mutation (G52E) happens at the DT. In addition, a docking simulation is performed for wild and mutated forms. The docking scoring analysis and docking poses results revealed that mutant form is not able to properly accommodate the NAD molecule.
Stability of the wobbling motion in the triaxially deformed odd-A nucleus
NASA Astrophysics Data System (ADS)
Tanabe, Kosai; Sugawara-Tanabe, Kazuko
2017-12-01
In order to analyze the content of the exact solutions for particle-rotor models with both the rigid and the hydrodynamical moments of inertia (MoI), as a theoretical probe we apply the Holstein-Primakoff (HP) boson expansion method to the total angular momentum I and the single-particle angular momentum j. We study the competition between Coriolis force and the single-particle potential by employing the different choices of the diagonal HP boson representations for the components of I and j along a common coordinate axis, and along perpendicular axes. We do not find any wobbling level sequence associated with the rotation around the principal axis with the medium MoI. The staggering in the alignments of I about the axis with the medium MoI is found in the limited range of I, while the vector R(=I-j) is confined about the axis with the largest MoI.
Richard Tran Mills; Jitendra Kumar; Forrest M. Hoffman; William W. Hargrove; Joseph P. Spruce; Steven P. Norman
2013-01-01
We investigated the use of principal components analysis (PCA) to visualize dominant patterns and identify anomalies in a multi-year land surface phenology data set (231 m à 231 m normalized difference vegetation index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS)) used for detecting threats to forest health in the conterminous...
Multivariate analysis of light scattering spectra of liquid dairy products
NASA Astrophysics Data System (ADS)
Khodasevich, M. A.
2010-05-01
Visible light scattering spectra from the surface layer of samples of commercial liquid dairy products are recorded with a colorimeter. The principal component method is used to analyze these spectra. Vectors representing the samples of dairy products in a multidimensional space of spectral counts are projected onto a three-dimensional subspace of principal components. The magnitudes of these projections are found to depend on the type of dairy product.
James R. Wallis
1965-01-01
Written in Fortran IV and MAP, this computer program can handle up to 120 variables, and retain 40 principal components. It can perform simultaneous regression of up to 40 criterion variables upon the varimax rotated factor weight matrix. The columns and rows of all output matrices are labeled by six-character alphanumeric names. Data input can be from punch cards or...
Dihedral angle principal component analysis of molecular dynamics simulations.
Altis, Alexandros; Nguyen, Phuong H; Hegger, Rainer; Stock, Gerhard
2007-06-28
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {phi(n)} to the metric coordinate space {x(n)=cos phi(n),y(n)=sin phi(n)} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300 ns molecular dynamics simulation, a critical comparison of the various methods is given.
Dihedral angle principal component analysis of molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Altis, Alexandros; Nguyen, Phuong H.; Hegger, Rainer; Stock, Gerhard
2007-06-01
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to be essential for the construction and interpretation of the free energy landscape of a biomolecule undergoing large structural rearrangements. To account for the circular statistics of angular variables, a transformation from the space of dihedral angles {φn} to the metric coordinate space {xn=cosφn,yn=sinφn} was employed. To study the validity and the applicability of the approach, in this work the theoretical foundations underlying the dihedral angle principal component analysis (dPCA) are discussed. It is shown that the dPCA amounts to a one-to-one representation of the original angle distribution and that its principal components can readily be characterized by the corresponding conformational changes of the peptide. Furthermore, a complex version of the dPCA is introduced, in which N angular variables naturally lead to N eigenvalues and eigenvectors. Applying the methodology to the construction of the free energy landscape of decaalanine from a 300ns molecular dynamics simulation, a critical comparison of the various methods is given.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-09-20
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-01-01
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836
Fleming, Brandon J.; LaMotte, Andrew E.; Sekellick, Andrew J.
2013-01-01
Hydrogeologic regions in the fractured rock area of Maryland were classified using geographic information system tools with principal components and cluster analyses. A study area consisting of the 8-digit Hydrologic Unit Code (HUC) watersheds with rivers that flow through the fractured rock area of Maryland and bounded by the Fall Line was further subdivided into 21,431 catchments from the National Hydrography Dataset Plus. The catchments were then used as a common hydrologic unit to compile relevant climatic, topographic, and geologic variables. A principal components analysis was performed on 10 input variables, and 4 principal components that accounted for 83 percent of the variability in the original data were identified. A subsequent cluster analysis grouped the catchments based on four principal component scores into six hydrogeologic regions. Two crystalline rock hydrogeologic regions, including large parts of the Washington, D.C. and Baltimore metropolitan regions that represent over 50 percent of the fractured rock area of Maryland, are distinguished by differences in recharge, Precipitation minus Potential Evapotranspiration, sand content in soils, and groundwater contributions to streams. This classification system will provide a georeferenced digital hydrogeologic framework for future investigations of groundwater availability in the fractured rock area of Maryland.
NASA Technical Reports Server (NTRS)
Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen
2005-01-01
Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.
Relationship between regional population and healthcare delivery in Japan.
Niga, Takeo; Mori, Maiko; Kawahara, Kazuo
2016-01-01
In order to address regional inequality in healthcare delivery in Japan, healthcare districts were established in 1985. However, regional healthcare delivery has now become a national issue because of population migration and the aging population. In this study, the state of healthcare delivery at the district level is examined by analyzing population, the number of physicians, and the number of hospital beds. The results indicate a continuing disparity in healthcare delivery among districts. We find that the rate of change in population has a strong positive correlation with that in the number of physicians and a weak positive correlation with that in the number of hospital beds. In addition, principal component analysis is performed on three variables: the rate of change in population, the number of physicians per capita, and the number of hospital beds per capita. This analysis suggests that the two principal components contribute 90.1% of the information. The first principal component is thought to show the effect of the regulations on hospital beds. The second principal component is thought to show the capacity to recruit physicians. This study indicates that an adjustment to the regulations on hospital beds as well as physician allocation by public funds may be key to resolving the impending issue of regionally disproportionate healthcare delivery.
Fluorescence fingerprint as an instrumental assessment of the sensory quality of tomato juices.
Trivittayasil, Vipavee; Tsuta, Mizuki; Imamura, Yoshinori; Sato, Tsuneo; Otagiri, Yuji; Obata, Akio; Otomo, Hiroe; Kokawa, Mito; Sugiyama, Junichi; Fujita, Kaori; Yoshimura, Masatoshi
2016-03-15
Sensory analysis is an important standard for evaluating food products. However, as trained panelists and time are required for the process, the potential of using fluorescence fingerprint as a rapid instrumental method to approximate sensory characteristics was explored in this study. Thirty-five out of 44 descriptive sensory attributes were found to show a significant difference between samples (analysis of variance test). Principal component analysis revealed that principal component 1 could capture 73.84 and 75.28% variance for aroma category and combined flavor and taste category respectively. Fluorescence fingerprints of tomato juices consisted of two visible peaks at excitation/emission wavelengths of 290/350 and 315/425 nm and a long narrow emission peak at 680 nm. The 680 nm peak was only clearly observed in juices obtained from tomatoes cultivated to be eaten raw. The ability to predict overall sensory profiles was investigated by using principal component 1 as a regression target. Fluorescence fingerprint could predict principal component 1 of both aroma and combined flavor and taste with a coefficient of determination above 0.8. The results obtained in this study indicate the potential of using fluorescence fingerprint as an instrumental method for assessing sensory characteristics of tomato juices. © 2015 Society of Chemical Industry.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis
NASA Astrophysics Data System (ADS)
Liu, X.; Wu, W.; Yang, Q.
2017-12-01
Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.
Initial proposition of kinematics model for selected karate actions analysis
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Koptyra, Katarzyna; Ogiela, Marek R.
2017-03-01
The motivation for this paper is to initially propose and evaluate two new kinematics models that were developed to describe motion capture (MoCap) data of karate techniques. We decided to develop this novel proposition to create the model that is capable to handle actions description both from multimedia and professional MoCap hardware. For the evaluation purpose we have used 25-joints data with karate techniques recordings acquired with Kinect version 2. It is consisted of MoCap recordings of two professional sport (black belt) instructors and masters of Oyama Karate. We have selected following actions for initial analysis: left-handed furi-uchi punch, right leg hiza-geri kick, right leg yoko-geri kick and left-handed jodan-uke block. Basing on evaluation we made we can conclude that both proposed kinematics models seems to be convenient method for karate actions description. From two proposed variables models it seems that global might be more useful for further usage. We think that because in case of considered punches variables seems to be less correlated and they might also be easier to interpret because of single reference coordinate system. Also principal components analysis proved to be reliable way to examine the quality of kinematics models and with the plot of the variable in principal components space we can nicely present the dependences between variables.
Gallina, Alessio; Garland, S Jayne; Wakeling, James M
2018-05-22
In this study, we investigated whether principal component analysis (PCA) and non-negative matrix factorization (NMF) perform similarly for the identification of regional activation within the human vastus medialis. EMG signals from 64 locations over the VM were collected from twelve participants while performing a low-force isometric knee extension. The envelope of the EMG signal of each channel was calculated by low-pass filtering (8 Hz) the monopolar EMG signal after rectification. The data matrix was factorized using PCA and NMF, and up to 5 factors were considered for each algorithm. Association between explained variance, spatial weights and temporal scores between the two algorithms were compared using Pearson correlation. For both PCA and NMF, a single factor explained approximately 70% of the variance of the signal, while two and three factors explained just over 85% or 90%. The variance explained by PCA and NMF was highly comparable (R > 0.99). Spatial weights and temporal scores extracted with non-negative reconstruction of PCA and NMF were highly associated (all p < 0.001, mean R > 0.97). Regional VM activation can be identified using high-density surface EMG and factorization algorithms. Regional activation explains up to 30% of the variance of the signal, as identified through both PCA and NMF. Copyright © 2018 Elsevier Ltd. All rights reserved.
Statistical process control of cocrystallization processes: A comparison between OPLS and PLS.
Silva, Ana F T; Sarraguça, Mafalda Cruz; Ribeiro, Paulo R; Santos, Adenilson O; De Beer, Thomas; Lopes, João Almeida
2017-03-30
Orthogonal partial least squares regression (OPLS) is being increasingly adopted as an alternative to partial least squares (PLS) regression due to the better generalization that can be achieved. Particularly in multivariate batch statistical process control (BSPC), the use of OPLS for estimating nominal trajectories is advantageous. In OPLS, the nominal process trajectories are expected to be captured in a single predictive principal component while uncorrelated variations are filtered out to orthogonal principal components. In theory, OPLS will yield a better estimation of the Hotelling's T 2 statistic and corresponding control limits thus lowering the number of false positives and false negatives when assessing the process disturbances. Although OPLS advantages have been demonstrated in the context of regression, its use on BSPC was seldom reported. This study proposes an OPLS-based approach for BSPC of a cocrystallization process between hydrochlorothiazide and p-aminobenzoic acid monitored on-line with near infrared spectroscopy and compares the fault detection performance with the same approach based on PLS. A series of cocrystallization batches with imposed disturbances were used to test the ability to detect abnormal situations by OPLS and PLS-based BSPC methods. Results demonstrated that OPLS was generally superior in terms of sensibility and specificity in most situations. In some abnormal batches, it was found that the imposed disturbances were only detected with OPLS. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.
2015-01-01
Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731
Taguchi, Y-H
2016-05-10
MicroRNA(miRNA)-mRNA interactions are important for understanding many biological processes, including development, differentiation and disease progression, but their identification is highly context-dependent. When computationally derived from sequence information alone, the identification should be verified by integrated analyses of mRNA and miRNA expression. The drawback of this strategy is the vast number of identified interactions, which prevents an experimental or detailed investigation of each pair. In this paper, we overcome this difficulty by the recently proposed principal component analysis (PCA)-based unsupervised feature extraction (FE), which reduces the number of identified miRNA-mRNA interactions that properly discriminate between patients and healthy controls without losing biological feasibility. The approach is applied to six cancers: hepatocellular carcinoma, non-small cell lung cancer, esophageal squamous cell carcinoma, prostate cancer, colorectal/colon cancer and breast cancer. In PCA-based unsupervised FE, the significance does not depend on the number of samples (as in the standard case) but on the number of features, which approximates the number of miRNAs/mRNAs. To our knowledge, we have newly identified miRNA-mRNA interactions in multiple cancers based on a single common (universal) criterion. Moreover, the number of identified interactions was sufficiently small to be sequentially curated by literature searches.
NASA Astrophysics Data System (ADS)
Singh, Dharmendra; Kumar, Harish
Earth observation satellites provide data that covers different portions of the electromagnetic spectrum at different spatial and spectral resolutions. The increasing availability of information products generated from satellite images are extending the ability to understand the patterns and dynamics of the earth resource systems at all scales of inquiry. In which one of the most important application is the generation of land cover classification from satellite images for understanding the actual status of various land cover classes. The prospect for the use of satel-lite images in land cover classification is an extremely promising one. The quality of satellite images available for land-use mapping is improving rapidly by development of advanced sensor technology. Particularly noteworthy in this regard is the improved spatial and spectral reso-lution of the images captured by new satellite sensors like MODIS, ASTER, Landsat 7, and SPOT 5. For the full exploitation of increasingly sophisticated multisource data, fusion tech-niques are being developed. Fused images may enhance the interpretation capabilities. The images used for fusion have different temporal, and spatial resolution. Therefore, the fused image provides a more complete view of the observed objects. It is one of the main aim of image fusion to integrate different data in order to obtain more information that can be de-rived from each of the single sensor data alone. A good example of this is the fusion of images acquired by different sensors having a different spatial resolution and of different spectral res-olution. Researchers are applying the fusion technique since from three decades and propose various useful methods and techniques. The importance of high-quality synthesis of spectral information is well suited and implemented for land cover classification. More recently, an underlying multiresolution analysis employing the discrete wavelet transform has been used in image fusion. It was found that multisensor image fusion is a tradeoff between the spectral information from a low resolution multi-spectral images and the spatial information from a high resolution multi-spectral images. With the wavelet transform based fusion method, it is easy to control this tradeoff. A new transform, the curvelet transform was used in recent years by Starck. A ridgelet transform is applied to square blocks of detail frames of undecimated wavelet decomposition, consequently the curvelet transform is obtained. Since the ridgelet transform possesses basis functions matching directional straight lines therefore, the curvelet transform is capable of representing piecewise linear contours on multiple scales through few significant coefficients. This property leads to a better separation between geometric details and background noise, which may be easily reduced by thresholding curvelet coefficients before they are used for fusion. The Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands ranging in wavelength from 0.4 m to 14.4 m and also it is freely available. Two bands are imaged at a nominal resolution of 250 m at nadir, with five bands at 500 m, and the remaining 29 bands at 1 km. In this paper, the band 1 of spatial resolution 250 m and bandwidth 620-670 nm, and band 2, of spatial resolution of 250m and bandwidth 842-876 nm is considered as these bands has special features to identify the agriculture and other land covers. In January 2006, the Advanced Land Observing Satellite (ALOS) was successfully launched by the Japan Aerospace Exploration Agency (JAXA). The Phased Arraytype L-band SAR (PALSAR) sensor onboard the satellite acquires SAR imagery at a wavelength of 23.5 cm (frequency 1.27 GHz) with capabilities of multimode and multipolarization observation. PALSAR can operate in several modes: the fine-beam single (FBS) polarization mode (HH), fine-beam dual (FBD) polariza-tion mode (HH/HV or VV/VH), polarimetric (PLR) mode (HH/HV/VH/VV), and ScanSAR (WB) mode (HH/VV) [15]. These makes PALSAR imagery very attractive for spatially and temporally consistent monitoring system. The Overview of Principal Component Analysis is that the most of the information within all the bands can be compressed into a much smaller number of bands with little loss of information. It allows us to extract the low-dimensional subspaces that capture the main linear correlation among the high-dimensional image data. This facilitates viewing the explained variance or signal in the available imagery, allowing both gross and more subtle features in the imagery to be seen. In this paper we have explored the fusion technique for enhancing the land cover classification of low resolution satellite data espe-cially freely available satellite data. For this purpose, we have considered to fuse the PALSAR principal component data with MODIS principal component data. Initially, the MODIS band 1 and band 2 is considered, its principal component is computed. Similarly the PALSAR HH, HV and VV polarized data are considered, and there principal component is also computed. con-sequently, the PALSAR principal component image is fused with MODIS principal component image. The aim of this paper is to analyze the effect of classification accuracy on major type of land cover types like agriculture, water and urban bodies with fusion of PALSAR data to MODIS data. Curvelet transformation has been applied for fusion of these two satellite images and Minimum Distance classification technique has been applied for the resultant fused image. It is qualitatively and visually observed that the overall classification accuracy of MODIS image after fusion is enhanced. This type of fusion technique may be quite helpful in near future to use freely available satellite data to develop monitoring system for different land cover classes on the earth.
Code of Federal Regulations, 2010 CFR
2010-01-01
... meeting at a single point. Colorado, for example, is contiguous with New Mexico, but not with Arizona. (d... original principal balance of the defaulted loans in the group to the aggregate original principal balance... average of the Enterprises' short-term funding rates, and (3) The unpaid principal balance at the time of...
Enacting Social Justice Leadership through Teacher Hiring
ERIC Educational Resources Information Center
Laura, Crystal T.
2018-01-01
Drawn from a compendium of multiple cases, this single-subject qualitative study offers a nuanced depiction of the ways school principals advocate for social justice through teacher hiring. The hiring experiences of one Hispanic female high school principal was used to explore: (a) the principal's approach to school personnel administration to…
ERIC Educational Resources Information Center
Watson, Pat; And Others
Survey responses from over half of Oklahoma City's 2,500 teachers indicated their views of the effectiveness and leadership of the city's 94 school principals. The survey's 82 items were selected from ideas suggested in the principal effectiveness literature and from the leadership component of Oklahoma City's prinipal evaluation forms. The…
ERIC Educational Resources Information Center
Klinker, JoAnn Franklin; Hackmann, Donald G.
High school principals confront ethical dilemmas daily. This report describes a study that examined how MetLife/NASSP secondary principals of the year made ethical decisions conforming to three dispositions from Standard 5 of the ISLLC standards and whether they could identify processes used to reach those decisions through Rest's Four Component…
The Middle Management Paradox of the Urban High School Assistant Principal: Making It Happen
ERIC Educational Resources Information Center
Jubilee, Sabriya Kaleen
2013-01-01
Scholars of transformational leadership literature assert that school-based management teams are a vital component in transforming schools. Many of these works focus heavily on the roles of principals and teachers, ignoring the contribution of Assistant Principals (APs). More attention is now being given to the unique role that Assistant…
E-Mentoring for New Principals: A Case Study of a Mentoring Program
ERIC Educational Resources Information Center
Russo, Erin D.
2013-01-01
This descriptive case study includes both new principals and their mentor principals engaged in e-mentoring activities. This study examines the components of a school district's mentoring program in order to make sense of e-mentoring technology. The literature review highlights mentoring practices in education, and also draws upon e-mentoring…
Salvatore, Stefania; Røislien, Jo; Baz-Lomba, Jose A; Bramness, Jørgen G
2017-03-01
Wastewater-based epidemiology is an alternative method for estimating the collective drug use in a community. We applied functional data analysis, a statistical framework developed for analysing curve data, to investigate weekly temporal patterns in wastewater measurements of three prescription drugs with known abuse potential: methadone, oxazepam and methylphenidate, comparing them to positive and negative control drugs. Sewage samples were collected in February 2014 from a wastewater treatment plant in Oslo, Norway. The weekly pattern of each drug was extracted by fitting of generalized additive models, using trigonometric functions to model the cyclic behaviour. From the weekly component, the main temporal features were then extracted using functional principal component analysis. Results are presented through the functional principal components (FPCs) and corresponding FPC scores. Clinically, the most important weekly feature of the wastewater-based epidemiology data was the second FPC, representing the difference between average midweek level and a peak during the weekend, representing possible recreational use of a drug in the weekend. Estimated scores on this FPC indicated recreational use of methylphenidate, with a high weekend peak, but not for methadone and oxazepam. The functional principal component analysis uncovered clinically important temporal features of the weekly patterns of the use of prescription drugs detected from wastewater analysis. This may be used as a post-marketing surveillance method to monitor prescription drugs with abuse potential. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Espeland, Mark A; Bray, George A; Neiberg, Rebecca; Rejeski, W Jack; Knowler, William C; Lang, Wei; Cheskin, Lawrence J; Williamson, Don; Lewis, C Beth; Wing, Rena
2009-10-01
To demonstrate how principal components analysis can be used to describe patterns of weight changes in response to an intensive lifestyle intervention. Principal components analysis was applied to monthly percent weight changes measured on 2,485 individuals enrolled in the lifestyle arm of the Action for Health in Diabetes (Look AHEAD) clinical trial. These individuals were 45 to 75 years of age, with type 2 diabetes and body mass indices greater than 25 kg/m(2). Associations between baseline characteristics and weight loss patterns were described using analyses of variance. Three components collectively accounted for 97.0% of total intrasubject variance: a gradually decelerating weight loss (88.8%), early versus late weight loss (6.6%), and a mid-year trough (1.6%). In agreement with previous reports, each of the baseline characteristics we examined had statistically significant relationships with weight loss patterns. As examples, males tended to have a steeper trajectory of percent weight loss and to lose weight more quickly than women. Individuals with higher hemoglobin A(1c) (glycosylated hemoglobin; HbA(1c)) tended to have a flatter trajectory of percent weight loss and to have mid-year troughs in weight loss compared to those with lower HbA(1c). Principal components analysis provided a coherent description of characteristic patterns of weight changes and is a useful vehicle for identifying their correlates and potentially for predicting weight control outcomes.
Research on distributed heterogeneous data PCA algorithm based on cloud platform
NASA Astrophysics Data System (ADS)
Zhang, Jin; Huang, Gang
2018-05-01
Principal component analysis (PCA) of heterogeneous data sets can solve the problem that centralized data scalability is limited. In order to reduce the generation of intermediate data and error components of distributed heterogeneous data sets, a principal component analysis algorithm based on heterogeneous data sets under cloud platform is proposed. The algorithm performs eigenvalue processing by using Householder tridiagonalization and QR factorization to calculate the error component of the heterogeneous database associated with the public key to obtain the intermediate data set and the lost information. Experiments on distributed DBM heterogeneous datasets show that the model method has the feasibility and reliability in terms of execution time and accuracy.
Page segmentation using script identification vectors: A first look
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, J.; Cannon, M.; Kelly, P.
1997-07-01
Document images in which different scripts, such as Chinese and Roman, appear on a single page pose a problem for optical character recognition (OCR) systems. This paper explores the use of script identification vectors in the analysis of multilingual document images. A script identification vector is calculated for each connected component in a document. The vector expresses the closest distance between the component and templates developed for each of thirteen scripts, including Arabic, Chinese, Cyrillic, and Roman. The authors calculate the first three principal components within the resulting thirteen-dimensional space for each image. By mapping these components to red, green,more » and blue, they can visualize the information contained in the script identification vectors. The visualization of several multilingual images suggests that the script identification vectors can be used to segment images into script-specific regions as large as several paragraphs or as small as a few characters. The visualized vectors also reveal distinctions within scripts, such as font in Roman documents, and kanji vs. kana in Japanese. Results are best for documents containing highly dissimilar scripts such as Roman and Japanese. Documents containing similar scripts, such as Roman and Cyrillic will require further investigation.« less
Sullivan, Karen A; Lurie, Janine K
2017-01-01
The study examined the component structure of the Neurobehavioral Symptom Inventory (NSI) under five different models. The evaluated models comprised the full NSI (NSI-22) and the NSI-20 (NSI minus two orphan items). A civilian nonclinical sample was used. The 575 volunteers were predominantly university students who screened negative for mild TBI. The study design was cross-sectional, with questionnaires administered online. The main measure was the Neurobehavioral Symptom Inventory. Subscale, total and embedded validity scores were derived (the Validity-10, the LOW6, and the NIM5). In both models, the principal components analysis yielded two intercorrelated components (psychological and somatic/sensory) with acceptable internal consistency (alphas > 0.80). In this civilian nonclinical sample, the NSI had two underlying components. These components represent psychological and somatic/sensory neurobehavioral symptoms.
NASA Astrophysics Data System (ADS)
Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol
2008-12-01
Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.
Exploring patterns enriched in a dataset with contrastive principal component analysis.
Abid, Abubakar; Zhang, Martin J; Bagaria, Vivek K; Zou, James
2018-05-30
Visualization and exploration of high-dimensional data is a ubiquitous challenge across disciplines. Widely used techniques such as principal component analysis (PCA) aim to identify dominant trends in one dataset. However, in many settings we have datasets collected under different conditions, e.g., a treatment and a control experiment, and we are interested in visualizing and exploring patterns that are specific to one dataset. This paper proposes a method, contrastive principal component analysis (cPCA), which identifies low-dimensional structures that are enriched in a dataset relative to comparison data. In a wide variety of experiments, we demonstrate that cPCA with a background dataset enables us to visualize dataset-specific patterns missed by PCA and other standard methods. We further provide a geometric interpretation of cPCA and strong mathematical guarantees. An implementation of cPCA is publicly available, and can be used for exploratory data analysis in many applications where PCA is currently used.
Variability search in M 31 using principal component analysis and the Hubble Source Catalogue
NASA Astrophysics Data System (ADS)
Moretti, M. I.; Hatzidimitriou, D.; Karampelas, A.; Sokolovsky, K. V.; Bonanos, A. Z.; Gavras, P.; Yang, M.
2018-06-01
Principal component analysis (PCA) is being extensively used in Astronomy but not yet exhaustively exploited for variability search. The aim of this work is to investigate the effectiveness of using the PCA as a method to search for variable stars in large photometric data sets. We apply PCA to variability indices computed for light curves of 18 152 stars in three fields in M 31 extracted from the Hubble Source Catalogue. The projection of the data into the principal components is used as a stellar variability detection and classification tool, capable of distinguishing between RR Lyrae stars, long-period variables (LPVs) and non-variables. This projection recovered more than 90 per cent of the known variables and revealed 38 previously unknown variable stars (about 30 per cent more), all LPVs except for one object of uncertain variability type. We conclude that this methodology can indeed successfully identify candidate variable stars.
A Genealogical Interpretation of Principal Components Analysis
McVean, Gil
2009-01-01
Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in the distribution of genetic variation across geographical location and ethnic background. However, while the method is often used to inform about historical demographic processes, little is known about the relationship between fundamental demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection of samples onto the principal components can be obtained directly from considering the average coalescent times between pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright's fst and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using examples from human genetics, I discuss the application of these results to empirical data and the implications for inference. PMID:19834557
Classical Testing in Functional Linear Models.
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications.
Classical Testing in Functional Linear Models
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab
2016-01-01
We extend four tests common in classical regression - Wald, score, likelihood ratio and F tests - to functional linear regression, for testing the null hypothesis, that there is no association between a scalar response and a functional covariate. Using functional principal component analysis, we re-express the functional linear model as a standard linear model, where the effect of the functional covariate can be approximated by a finite linear combination of the functional principal component scores. In this setting, we consider application of the four traditional tests. The proposed testing procedures are investigated theoretically for densely observed functional covariates when the number of principal components diverges. Using the theoretical distribution of the tests under the alternative hypothesis, we develop a procedure for sample size calculation in the context of functional linear regression. The four tests are further compared numerically for both densely and sparsely observed noisy functional data in simulation experiments and using two real data applications. PMID:28955155
Spatial and temporal variability of hyperspectral signatures of terrain
NASA Astrophysics Data System (ADS)
Jones, K. F.; Perovich, D. K.; Koenig, G. G.
2008-04-01
Electromagnetic signatures of terrain exhibit significant spatial heterogeneity on a range of scales as well as considerable temporal variability. A statistical characterization of the spatial heterogeneity and spatial scaling algorithms of terrain electromagnetic signatures are required to extrapolate measurements to larger scales. Basic terrain elements including bare soil, grass, deciduous, and coniferous trees were studied in a quasi-laboratory setting using instrumented test sites in Hanover, NH and Yuma, AZ. Observations were made using a visible and near infrared spectroradiometer (350 - 2500 nm) and hyperspectral camera (400 - 1100 nm). Results are reported illustrating: i) several difference scenes; ii) a terrain scene time series sampled over an annual cycle; and iii) the detection of artifacts in scenes. A principal component analysis indicated that the first three principal components typically explained between 90 and 99% of the variance of the 30 to 40-channel hyperspectral images. Higher order principal components of hyperspectral images are useful for detecting artifacts in scenes.
2011-01-01
Background Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (F = 446.452, P < 0.001, adjusted R2 = 0.75) than in the general multiple regression model (F = 223.670, P < 0.000, adjusted R2 = 0.51). Conclusion The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang. PMID:22133347
Characterizing Early Maternal Style in a Population of Guide Dogs
Bray, Emily E.; Sammel, Mary D.; Cheney, Dorothy L.; Serpell, James A.; Seyfarth, Robert M.
2017-01-01
In both humans and non-humans, differences in maternal style during the first few weeks of life can be reliably characterized, and these differences affect offspring's temperament and cognition in later life. Drawing on the breeding population of dogs at The Seeing Eye, a guide dog school in Morristown, New Jersey, we conducted videotaped focal follows on 21 mothers and their litters (n = 138 puppies) over the first 3 weeks of the puppies' lives in an effort to characterize maternal style. We found that a mother's attitude and actions toward her offspring varied naturally between individuals, and that these variations could be summarized by a single principal component, which we described as Maternal behavior. This component was stable across weeks, associated with breed, litter size, and parity, but not redundant with these attributes. Furthermore, this component was significantly associated with an independent experimental measure of maternal behavior, and with maternal stress as measured by salivary cortisol. In summary, Maternal behavior captured a significant proportion of the variation in maternal style; was stable over time; and had both discriminant and predictive validity. PMID:28239365
Using Crowdsourcing to Examine Relations Between Delay and Probability Discounting
Jarmolowicz, David P.; Bickel, Warren K.; Carter, Anne E.; Franck, Christopher T.; Mueller, E. Terry
2016-01-01
Although the extensive lines of research on delay and/or probability discounting have greatly expanded our understanding of human decision-making processes, the relation between these two phenomena remains unclear. For example, some studies have reported robust associations between delay and probability discounting, whereas others have failed to demonstrate a consistent relation between the two. The current study sought to clarify this relation by examining the relation between delay and probability discounting in a large sample of internet users (n= 904) using the Amazon Mechanical Turk (AMT) crowdsourcing service. Because AMT is a novel data collection platform, the findings were validated through the replication of a number of previously established relations (e.g., relations between delay discounting and cigarette smoking status). A small but highly significant positive correlation between delay and probability discounting rates was obtained, and principal component analysis suggested that two (rather than one) components were preferable to account for the variance in both delay and probability discounting. Taken together, these findings suggest that delay and probability discounting may be related, but are not manifestations of a single component (e.g., impulsivity). PMID:22982370
Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying
2012-11-01
Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.
Kesel, Sara; Mader, Andreas; Höfler, Carolin; Mascher, Thorsten; Leisner, Madeleine
2013-01-01
Background Two-component signal transduction systems are one means of bacteria to respond to external stimuli. The LiaFSR two-component system of Bacillus subtilis consists of a regular two-component system LiaRS comprising the core Histidine Kinase (HK) LiaS and the Response Regulator (RR) LiaR and additionally the accessory protein LiaF, which acts as a negative regulator of LiaRS-dependent signal transduction. The complete LiaFSR system was shown to respond to various peptide antibiotics interfering with cell wall biosynthesis, including bacitracin. Methodology and Principal Findings Here we study the response of the LiaFSR system to various concentrations of the peptide antibiotic bacitracin. Using quantitative fluorescence microscopy, we performed a whole population study analyzed on the single cell level. We investigated switching from the non-induced ‘OFF’ state into the bacitracin-induced ‘ON’ state by monitoring gene expression of a fluorescent reporter from the RR-regulated liaI promoter. We found that switching into the ‘ON’ state occurred within less than 20 min in a well-defined switching window, independent of the bacitracin concentration. The switching rate and the basal expression rate decreased at low bacitracin concentrations, establishing clear heterogeneity 60 min after bacitracin induction. Finally, we performed time-lapse microscopy of single cells confirming the quantitative response as obtained in the whole population analysis for high bacitracin concentrations. Conclusion The LiaFSR system exhibits an immediate, heterogeneous and graded response to the inducer bacitracin in the exponential growth phase. PMID:23326432
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.
Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run
Armeanu, Daniel; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100
Urban Elementary School Principals' Attitudes towards the Inclusive Environment
ERIC Educational Resources Information Center
Galano, Joseph A.
2012-01-01
The principal is the single most influential person in shaping a school's climate, culture, positive teacher attitude towards students and school practices (Washington III, 2006; DiPaola & Walther-Thomas, 2003; Praisner, 2000). Based on this premise, the principal's attitude is the key to reshaping of the school. The purpose of this study was…
Population connectivity of the plating coral Agaricia lamarcki from southwest Puerto Rico
NASA Astrophysics Data System (ADS)
Hammerman, Nicholas M.; Rivera-Vicens, Ramon E.; Galaska, Matthew P.; Weil, Ernesto; Appledoorn, Richard S.; Alfaro, Monica; Schizas, Nikolaos V.
2018-03-01
Identifying genetic connectivity and discrete population boundaries is an important objective for management of declining Caribbean reef-building corals. A double digest restriction-associated DNA sequencing protocol was utilized to generate 321 single nucleotide polymorphisms to estimate patterns of horizontal and vertical gene flow in the brooding Caribbean plate coral, Agaricia lamarcki. Individual colonies ( n = 59) were sampled from eight locations throughout southwestern Puerto Rico from six shallow ( 10-20 m) and two mesophotic habitats ( 30-40 m). Descriptive summary statistics (fixation index, F ST), analysis of molecular variance, and analysis through landscape and ecological associations and discriminant analysis of principal components estimated high population connectivity with subtle subpopulation structure among all sampling localities.
In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy
Liao, Chien-Sheng; Cheng, Ji-Xin
2017-01-01
Coherent Raman scattering (CRS) microscopy is a high-speed vibrational imaging platform with the ability to visualize the chemical content of a living specimen by using molecular vibrational fingerprints. We review technical advances and biological applications of CRS microscopy. The basic theory of CRS and the state-of-the-art instrumentation of a CRS microscope are presented. We further summarize and compare the algorithms that are used to separate the Raman signal from the nonresonant background, to denoise a CRS image, and to decompose a hyperspectral CRS image into concentration maps of principal components. Important applications of single-frequency and hyperspectral CRS microscopy are highlighted. Potential directions of CRS microscopy are discussed. PMID:27306307
Maximally reliable spatial filtering of steady state visual evoked potentials.
Dmochowski, Jacek P; Greaves, Alex S; Norcia, Anthony M
2015-04-01
Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis". Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Greenhalgh, Phillip O.
2004-01-01
In the production of each Space Shuttle Reusable Solid Rocket Motor (RSRM), over 100,000 inspections are performed. ATK Thiokol Inc. reviewed these inspections to ensure a robust inspection system is maintained. The principal effort within this endeavor was the systematic identification and evaluation of inspections considered to be single-point. Single-point inspections are those accomplished on components, materials, and tooling by only one person, involving no other check. The purpose was to more accurately characterize risk and ultimately address and/or mitigate risk associated with single-point inspections. After the initial review of all inspections and identification/assessment of single-point inspections, review teams applied risk prioritization methodology similar to that used in a Process Failure Modes Effects Analysis to derive a Risk Prioritization Number for each single-point inspection. After the prioritization of risk, all single-point inspection points determined to have significant risk were provided either with risk-mitigating actions or rationale for acceptance. This effort gave confidence to the RSRM program that the correct inspections are being accomplished, that there is appropriate justification for those that remain as single-point inspections, and that risk mitigation was applied to further reduce risk of higher risk single-point inspections. This paper examines the process, results, and lessons learned in identifying, assessing, and mitigating risk associated with single-point inspections accomplished in the production of the Space Shuttle RSRM.
Xiao, Hong; Tian, Huai-Yu; Gao, Li-Dong; Liu, Hai-Ning; Duan, Liang-Song; Basta, Nicole; Cazelles, Bernard; Li, Xiu-Jun; Lin, Xiao-Ling; Wu, Hong-Wei; Chen, Bi-Yun; Yang, Hui-Suo; Xu, Bing; Grenfell, Bryan
2014-01-01
China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS. Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = -0.289, P<0.05), 5 months (r = -0.523, P<0.001), and 0 months (r = -0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS. The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.
Multivariate classification of small order watersheds in the Quabbin Reservoir Basin, Massachusetts
Lent, R.M.; Waldron, M.C.; Rader, J.C.
1998-01-01
A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.A multivariate approach was used to analyze hydrologic, geologic, geographic, and water-chemistry data from small order watersheds in the Quabbin Reservoir Basin in central Massachusetts. Eighty three small order watersheds were delineated and landscape attributes defining hydrologic, geologic, and geographic features of the watersheds were compiled from geographic information system data layers. Principal components analysis was used to evaluate 11 chemical constituents collected bi-weekly for 1 year at 15 surface-water stations in order to subdivide the basin into subbasins comprised of watersheds with similar water quality characteristics. Three principal components accounted for about 90 percent of the variance in water chemistry data. The principal components were defined as a biogeochemical variable related to wetland density, an acid-neutralization variable, and a road-salt variable related to density of primary roads. Three subbasins were identified. Analysis of variance and multiple comparisons of means were used to identify significant differences in stream water chemistry and landscape attributes among subbasins. All stream water constituents were significantly different among subbasins. Multiple regression techniques were used to relate stream water chemistry to landscape attributes. Important differences in landscape attributes were related to wetlands, slope, and soil type.
Influential Observations in Principal Factor Analysis.
ERIC Educational Resources Information Center
Tanaka, Yutaka; Odaka, Yoshimasa
1989-01-01
A method is proposed for detecting influential observations in iterative principal factor analysis. Theoretical influence functions are derived for two components of the common variance decomposition. The major mathematical tool is the influence function derived by Tanaka (1988). (SLD)
ERIC Educational Resources Information Center
Steinley, Douglas; Brusco, Michael J.; Henson, Robert
2012-01-01
A measure of "clusterability" serves as the basis of a new methodology designed to preserve cluster structure in a reduced dimensional space. Similar to principal component analysis, which finds the direction of maximal variance in multivariate space, principal cluster axes find the direction of maximum clusterability in multivariate space.…
ERIC Educational Resources Information Center
Yan, Zi; Sin, Kuen-fung
2015-01-01
This study aimed at providing explanation and prediction of principals' inclusive education intentions and practices under the framework of the Theory of Planned Behaviour (TPB). A sample of 209 principals from Hong Kong schools was surveyed using five scales that were developed to assess the five components of TPB: attitude, subjective norm,…
Lisón, Juan F; Cebolla, Ausias; Guixeres, Jaime; Álvarez-Pitti, Julio; Escobar, Patricia; Bruñó, Alejandro; Lurbe, Empar; Alcañiz, Mariano; Baños, Rosa
2015-10-01
Recent strategies to reduce sedentary behaviour in children include replacing sedentary screen time for active video games. Active video game studies have focused principally on the metabolic consumption of a single player, with physiological and psychological responses of opponent-based multiplayer games to be further evaluated. To determine whether adding a competitive component to playing active video games impacts physiological and psychological responses in players. Sixty-two healthy Caucasian children and adolescents, nine to 14 years years of age, completed three conditions (8 min each) in random order: treadmill walking, and single and opponent-based Kinect active video games. Affect, arousal, rate of perceived exertion, heart rate and percentage of heart rate reserve were measured for each participant and condition. Kinect conditions revealed significantly higher heart rate, percentage of heart rate reserve, rate of perceived exertion and arousal when compared with treadmill walking (P<0.001). Opponent-based condition revealed lower values for the rate of perceived exertion (P=0.02) and higher affect (P=0.022) when compared with single play. Competitive active video games improved children's psychological responses (affect and rate of perceived exertion) compared with single play, providing a solution that may contribute toward improved adherence to physical activity.
Savage, J.C.; Langbein, J.
2008-01-01
An unusually complete set of measurements (including rapid rate GPS over the first 10 days) of postseismic deformation is available at 12 continuous GPS stations located close to the epicenter of the 2004 M6.0 Parkfield earthquake. The principal component modes for the relaxation of the ensemble of those 12 GPS stations were determined. The first mode alone furnishes an adequate approximation to the data. Thus, the relaxation at all stations can be represented by the product of a common temporal function and distinct amplitudes for each component (north or east) of relaxation at each station. The distribution in space of the amplitudes indicates that the relaxation is dominantly strike slip. The temporal function, which spans times from about 5 min to 900 days postearthquake, can be fit by a superposition of three creep terms, each of the form ??l loge(1 + t/??l), with characteristic times ??, = 4.06, 0.11, and 0.0001 days. It seems likely that what is actually involved is a broad spectrum of characteristic times, the individual components of which arise from afterslip on different fault patches. Perfettini and Avouac (2004) have shown that an individual creep term can be explained by the spring-slider model with rate-dependent (no state variable) friction. The observed temporal function can also be explained using a single spring-slider model (i.e., single fault patch) that includes rate-and-state-dependent friction, a single-state variable, and either of the two commonly used (aging and slip) state evolution laws. In the latter fits, the rate-and-state friction parameter b is negative.
The risk of misclassifying subjects within principal component based asset index
2014-01-01
The asset index is often used as a measure of socioeconomic status in empirical research as an explanatory variable or to control confounding. Principal component analysis (PCA) is frequently used to create the asset index. We conducted a simulation study to explore how accurately the principal component based asset index reflects the study subjects’ actual poverty level, when the actual poverty level is generated by a simple factor analytic model. In the simulation study using the PC-based asset index, only 1% to 4% of subjects preserved their real position in a quintile scale of assets; between 44% to 82% of subjects were misclassified into the wrong asset quintile. If the PC-based asset index explained less than 30% of the total variance in the component variables, then we consistently observed more than 50% misclassification across quintiles of the index. The frequency of misclassification suggests that the PC-based asset index may not provide a valid measure of poverty level and should be used cautiously as a measure of socioeconomic status. PMID:24987446
Machine learning of frustrated classical spin models. I. Principal component analysis
NASA Astrophysics Data System (ADS)
Wang, Ce; Zhai, Hui
2017-10-01
This work aims at determining whether artificial intelligence can recognize a phase transition without prior human knowledge. If this were successful, it could be applied to, for instance, analyzing data from the quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark for this approach. In this work, we feed the computer data generated by the classical Monte Carlo simulation for the X Y model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principal component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principal component analysis with kernel tricks and the neural network method.
Dong, Fengxia; Mitchell, Paul D; Colquhoun, Jed
2015-01-01
Measuring farm sustainability performance is a crucial component for improving agricultural sustainability. While extensive assessments and indicators exist that reflect the different facets of agricultural sustainability, because of the relatively large number of measures and interactions among them, a composite indicator that integrates and aggregates over all variables is particularly useful. This paper describes and empirically evaluates a method for constructing a composite sustainability indicator that individually scores and ranks farm sustainability performance. The method first uses non-negative polychoric principal component analysis to reduce the number of variables, to remove correlation among variables and to transform categorical variables to continuous variables. Next the method applies common-weight data envelope analysis to these principal components to individually score each farm. The method solves weights endogenously and allows identifying important practices in sustainability evaluation. An empirical application to Wisconsin cranberry farms finds heterogeneity in sustainability practice adoption, implying that some farms could adopt relevant practices to improve the overall sustainability performance of the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.
Guo, Zhiqiang; Wang, Huaiqing; Yang, Jie; Miller, David J.
2015-01-01
In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron. PMID:25849483
Comparison of AIS Versus TMS Data Collected over the Virginia Piedmont
NASA Technical Reports Server (NTRS)
Bell, R.; Evans, C. S.
1985-01-01
The Airborne Imaging Spectrometer (AIS, NS001 Thematic Mapper Simlulator (TMS), and Zeiss camera collected remotely sensed data simultaneously on October 27, 1983, at an altitude of 6860 meters (22,500 feet). AIS data were collected in 32 channels covering 1200 to 1500 nm. A simple atmospheric correction was applied to the AIS data, after which spectra for four cover types were plotted. Spectra for these ground cover classes showed a telescoping effect for the wavelength endpoints. Principal components were extracted from the shortwave region of the AIS (1200 to 1280 nm), full spectrum AIS (1200 to 1500 nm) and TMS (450 to 12,500 nm) to create three separate three-component color image composites. A comparison of the TMS band 5 (1000 to 1300 nm) to the six principal components from the shortwave AIS region (1200 to 1280 nm) showed improved visual discrimination of ground cover types. Contrast of color image composites created from principal components showed the AIS composites to exhibit a clearer demarcation between certain ground cover types but subtle differences within other regions of the imagery were not as readily seen.
Research on Air Quality Evaluation based on Principal Component Analysis
NASA Astrophysics Data System (ADS)
Wang, Xing; Wang, Zilin; Guo, Min; Chen, Wei; Zhang, Huan
2018-01-01
Economic growth has led to environmental capacity decline and the deterioration of air quality. Air quality evaluation as a fundamental of environmental monitoring and air pollution control has become increasingly important. Based on the principal component analysis (PCA), this paper evaluates the air quality of a large city in Beijing-Tianjin-Hebei Area in recent 10 years and identifies influencing factors, in order to provide reference to air quality management and air pollution control.
Principal components analysis of the photoresponse nonuniformity of a matrix detector.
Ferrero, Alejandro; Alda, Javier; Campos, Joaquín; López-Alonso, Jose Manuel; Pons, Alicia
2007-01-01
The principal component analysis is used to identify and quantify spatial distributions of relative photoresponse as a function of the exposure time for a visible CCD array. The analysis shows a simple way to define an invariant photoresponse nonuniformity and compare it with the definition of this invariant pattern as the one obtained for long exposure times. Experimental data of radiant exposure from levels of irradiance obtained in a stable and well-controlled environment are used.
Catanuto, Giuseppe; Taher, Wafa; Rocco, Nicola; Catalano, Francesca; Allegra, Dario; Milotta, Filippo Luigi Maria; Stanco, Filippo; Gallo, Giovanni; Nava, Maurizio Bruno
2018-03-20
Breast shape is defined utilizing mainly qualitative assessment (full, flat, ptotic) or estimates, such as volume or distances between reference points, that cannot describe it reliably. We will quantitatively describe breast shape with two parameters derived from a statistical methodology denominated principal component analysis (PCA). We created a heterogeneous dataset of breast shapes acquired with a commercial infrared 3-dimensional scanner on which PCA was performed. We plotted on a Cartesian plane the two highest values of PCA for each breast (principal components 1 and 2). Testing of the methodology on a preoperative and postoperative surgical case and test-retest was performed by two operators. The first two principal components derived from PCA are able to characterize the shape of the breast included in the dataset. The test-retest demonstrated that different operators are able to obtain very similar values of PCA. The system is also able to identify major changes in the preoperative and postoperative stages of a two-stage reconstruction. Even minor changes were correctly detected by the system. This methodology can reliably describe the shape of a breast. An expert operator and a newly trained operator can reach similar results in a test/re-testing validation. Once developed and after further validation, this methodology could be employed as a good tool for outcome evaluation, auditing, and benchmarking.
Nesakumar, Noel; Baskar, Chanthini; Kesavan, Srinivasan; Rayappan, John Bosco Balaguru; Alwarappan, Subbiah
2018-05-22
The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm -1 with a spectral resolution of 8 cm -1 . In order to estimate the transmittance peak height (T p ) and area under the transmittance curve [Formula: see text] over the spectral ranges of 2614-4000 and 1465-1853 cm -1 , Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614-4000 and 1465-1853 cm -1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.
Fine structure of the low-frequency spectra of heart rate and blood pressure
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-01-01
Background The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R–R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time–frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order – the most crucial factor when using this method – with the help of FFT and WVD methods. Results Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 ± 0.003 (mean ± SD) Hz, 0.076 ± 0.012 Hz, and 0.117 ± 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP–RRI phase relationship was found. Conclusion The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04–0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain. PMID:14552660
Fine structure of the low-frequency spectra of heart rate and blood pressure.
Kuusela, Tom A; Kaila, Timo J; Kähönen, Mika
2003-10-13
The aim of this study was to explore the principal frequency components of the heart rate and blood pressure variability in the low frequency (LF) and very low frequency (VLF) band. The spectral composition of the R-R interval (RRI) and systolic arterial blood pressure (SAP) in the frequency range below 0.15 Hz were carefully analyzed using three different spectral methods: Fast Fourier transform (FFT), Wigner-Ville distribution (WVD), and autoregression (AR). All spectral methods were used to create time-frequency plots to uncover the principal spectral components that are least dependent on time. The accurate frequencies of these components were calculated from the pole decomposition of the AR spectral density after determining the optimal model order--the most crucial factor when using this method--with the help of FFT and WVD methods. Spectral analysis of the RRI and SAP of 12 healthy subjects revealed that there are always at least three spectral components below 0.15 Hz. The three principal frequency components are 0.026 +/- 0.003 (mean +/- SD) Hz, 0.076 +/- 0.012 Hz, and 0.117 +/- 0.016 Hz. These principal components vary only slightly over time. FFT-based coherence and phase-function analysis suggests that the second and third components are related to the baroreflex control of blood pressure, since the phase difference between SAP and RRI was negative and almost constant, whereas the origin of the first component is different since no clear SAP-RRI phase relationship was found. The above data indicate that spontaneous fluctuations in heart rate and blood pressure within the standard low-frequency range of 0.04-0.15 Hz typically occur at two frequency components rather than only at one as widely believed, and these components are not harmonically related. This new observation in humans can help explain divergent results in the literature concerning spontaneous low-frequency oscillations. It also raises methodological and computational questions regarding the usability and validity of the low-frequency spectral band when estimating sympathetic activity and baroreflex gain.
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Principal component analysis on a torus: Theory and application to protein dynamics.
Sittel, Florian; Filk, Thomas; Stock, Gerhard
2017-12-28
A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib 9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.
Principal component analysis on a torus: Theory and application to protein dynamics
NASA Astrophysics Data System (ADS)
Sittel, Florian; Filk, Thomas; Stock, Gerhard
2017-12-01
A dimensionality reduction method for high-dimensional circular data is developed, which is based on a principal component analysis (PCA) of data points on a torus. Adopting a geometrical view of PCA, various distance measures on a torus are introduced and the associated problem of projecting data onto the principal subspaces is discussed. The main idea is that the (periodicity-induced) projection error can be minimized by transforming the data such that the maximal gap of the sampling is shifted to the periodic boundary. In a second step, the covariance matrix and its eigendecomposition can be computed in a standard manner. Adopting molecular dynamics simulations of two well-established biomolecular systems (Aib9 and villin headpiece), the potential of the method to analyze the dynamics of backbone dihedral angles is demonstrated. The new approach allows for a robust and well-defined construction of metastable states and provides low-dimensional reaction coordinates that accurately describe the free energy landscape. Moreover, it offers a direct interpretation of covariances and principal components in terms of the angular variables. Apart from its application to PCA, the method of maximal gap shifting is general and can be applied to any other dimensionality reduction method for circular data.
Performance-based measures associate with frailty in patients with end-stage liver disease
Lai, Jennifer C.; Volk, Michael L; Strasburg, Debra; Alexander, Neil
2016-01-01
Background Physical frailty, as measured by the Fried Frailty Index, is increasingly recognized as a critical determinant of outcomes in cirrhotics. However, its utility is limited by the inclusion of self-reported components. We aimed to identify performance-based measures associated with frailty in patients with cirrhosis. Methods Cirrhotics ≥50 years underwent: 6-minute walk test (6MWT, cardiopulmonary endurance), chair stands in 30 seconds (muscle endurance), isometric knee extension (lower extremity strength), unipedal stance time (static balance), and maximal step length (dynamic balance/coordination). Linear regression associated each physical performance test with frailty. Principal components exploratory factor analysis evaluated the inter-relatedness of frailty and the 5 physical performance tests. Results Of forty cirrhotics, with a median age of 64 years and Model for End-stage Liver Disease (MELD) MELD of 12,10 (25%) were frail by Fried Frailty Index ≥3. Frail cirrhotics had poorer performance in 6MWT distance (231 vs. 338 meters), 30 second chair stands (7 vs. 10), isometric knee extension (86 vs. 122 Newton meters), and maximal step length (22 vs. 27 inches) [p≤0.02 for each]. Each physical performance test was significantly associated with frailty (p<0.01), even after adjustment for MELD or hepatic encephalopathy. Principal component factor analysis demonstrated substantial, but unique, clustering of each physical performance test to a single factor – frailty. Conclusion Frailty in cirrhosis is a multi-dimensional construct that is distinct from liver dysfunction and incorporates endurance, strength, and balance. Our data provide specific targets for prehabilitation interventions aimed at reducing frailty in cirrhotics in preparation for liver transplantation. PMID:27495749
Performance-Based Measures Associate With Frailty in Patients With End-Stage Liver Disease.
Lai, Jennifer C; Volk, Michael L; Strasburg, Debra; Alexander, Neil
2016-12-01
Physical frailty, as measured by the Fried Frailty Index, is increasingly recognized as a critical determinant of outcomes in patients with cirrhosis. However, its utility is limited by the inclusion of self-reported components. We aimed to identify performance-based measures associated with frailty in patients with cirrhosis. Patients with cirrhosis, aged 50 years or older, underwent: 6-minute walk test (cardiopulmonary endurance), chair stands in 30 seconds (muscle endurance), isometric knee extension (lower extremity strength), unipedal stance time (static balance), and maximal step length (dynamic balance/coordination). Linear regression associated each physical performance test with frailty. Principal components exploratory factor analysis evaluated the interrelatedness of frailty and the 5 physical performance tests. Of 40 patients with cirrhosis, with a median age of 64 years and Model for End-stage Liver Disease (MELD) MELD of 12.10 (25%) were frail by Fried Frailty Index ≥3. Frail patients with cirrhosis had poorer performance in 6-minute walk test distance (231 vs 338 m), 30-second chair stands (7 vs 10), isometric knee extension (86 vs 122 Newton meters), and maximal step length (22 vs 27 in. (P ≤ 0.02 for each). Each physical performance test was significantly associated with frailty (P < 0.01), even after adjustment for MELD or hepatic encephalopathy. Principal component factor analysis demonstrated substantial, but unique, clustering of each physical performance test to a single factor-frailty. Frailty in cirrhosis is a multidimensional construct that is distinct from liver dysfunction and incorporates endurance, strength, and balance. Our data provide specific targets for prehabilitation interventions aimed at reducing frailty in patients with cirrhosis in preparation for liver transplantation.
Weinsheimer, Shantel; Kim, Helen; Pawlikowska, Ludmila; Chen, Yongmei; Lawton, Michael T.; Sidney, Stephen; Kwok, Pui-Yan; McCulloch, Charles E.; Young, William L.
2009-01-01
Background Brain arteriovenous malformations (BAVM) are a tangle of abnormal vessels directly shunting blood from the arterial to venous circulation and an important cause of intracranial hemorrhage (ICH). EphB4 is involved in arterial-venous determination during embryogenesis; altered signaling could lead to vascular instability resulting in ICH. We investigated the association of single-nucleotide polymorphisms (SNPs) and haplotypes in EPHB4 with risk of ICH at clinical presentation in BAVM patients. Methods and Results Eight haplotype-tagging SNPs spanning ∼29 kb were tested for association with ICH presentation in 146 Caucasian BAVM patients (phase I: 56 ICH, 90 non-ICH) using allelic, haplotypic, and principal components analysis. Associated SNPs were then genotyped in 102 additional cases (phase II: 37 ICH, 65 non-ICH) and data combined for multivariable logistic regression. Minor alleles of 2 SNPs were associated with reduced risk of ICH presentation (rs314313 C, P=0.005; rs314308 T, P=0.0004). Overall, haplotypes were also significantly associated with ICH presentation (χ2=17.24, 6 df, P=0.008); 2 haplotypes containing the rs314308 T allele (GCCTGGGT, P=0.003; GTCTGGGC, P=0.036) were associated with reduced risk. In principal components analysis, 2 components explained 91% of the variance, and complemented haplotype results by implicating 4 SNPs at the 5′ end, including rs314308 and rs314313. These 2 SNPs were replicated in the phase II cohort, and combined data resulted in greater significance (rs314313, P=0.0007; rs314308, P=0.00008). SNP association with ICH presentation persisted after adjusting for age, sex, BAVM size, and deep venous drainage. Conclusions EPHB4 polymorphisms are associated with risk of ICH presentation in BAVM patients, warranting further study. PMID:20031623
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
ECOPASS - a multivariate model used as an index of growth performance of poplar clones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceulemans, R.; Impens, I.
The model (ECOlogical PASSport) reported was constructed by principal component analysis from a combination of biochemical, anatomical/morphological and ecophysiological gas exchange parameters measured on 5 fast growing poplar clones. Productivity data were 10 selected trees in 3 plantations in Belgium and given as m.a.i.(b.a.). The model is shown to be able to reflect not only genetic origin and the relative effects of the different parameters of the clones, but also their production potential. Multiple regression analysis of the 4 principal components showed a high cumulative correlation (96%) between the 3 components related to ecophysiological, biochemical and morphological parameters, and productivity;more » the ecophysiological component alone correlated 85% with productivity.« less
ERIC Educational Resources Information Center
Munguia, Celia
2017-01-01
The purpose of the study was to examine the systems of support that principals establish at their school sites to support teachers with the academic achievement of the English learner population. Two schools from a single district were selected. Specific strategies, structures, and processes that support teachers and principals of English learners…
76 FR 66860 - Single Family Housing Guaranteed Loan Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... percent of the outstanding principal balance of the loan for the life of the loan. The intent of the... of 0.3 percent of the outstanding principal balance will be required in order that the SFHGLP may... to charge an annual fee of 0.3 percent of the outstanding principal balance of the loan for the life...
ERIC Educational Resources Information Center
Naradko, Anthony M.
2017-01-01
The purpose of this qualitative single-subject case study was to identify the elements critical to crisis management professional development for school principals; the factors influencing the implementation of the National Incident Management System Phases of Emergency Management (2010) for principals; and the necessary elements for fostering…
ERIC Educational Resources Information Center
Rosine, Dale
2013-01-01
This qualitative study of ten elementary veteran teachers used Hargrove's single, double, and triple-loop thinking to understand their perceptions regarding knowledge new principals need to be social justice leaders working in impoverished schools. Findings in three categories revealed the importance of principals learning to identify their…
The School Principal as Change Agent: An Explanatory Case Study.
ERIC Educational Resources Information Center
McLaughlin, Lisa; Hyle, Adrienne E.
This single-site case study was designed to investigate ways in which a principal considers the individual needs of faculty members when promoting a particular change, as perceived by faculty and staff. Four research questions were addressed: (1) How does a principal create a context for change? (2) Is school culture acknowledged as an integral…
Linkage Analysis of Urine Arsenic Species Patterns in the Strong Heart Family Study
Gribble, Matthew O.; Voruganti, Venkata Saroja; Cole, Shelley A.; Haack, Karin; Balakrishnan, Poojitha; Laston, Sandra L.; Tellez-Plaza, Maria; Francesconi, Kevin A.; Goessler, Walter; Umans, Jason G.; Thomas, Duncan C.; Gilliland, Frank; North, Kari E.; Franceschini, Nora; Navas-Acien, Ana
2015-01-01
Arsenic toxicokinetics are important for disease risks in exposed populations, but genetic determinants are not fully understood. We examined urine arsenic species patterns measured by HPLC-ICPMS among 2189 Strong Heart Study participants 18 years of age and older with data on ∼400 genome-wide microsatellite markers spaced ∼10 cM and arsenic speciation (683 participants from Arizona, 684 from Oklahoma, and 822 from North and South Dakota). We logit-transformed % arsenic species (% inorganic arsenic, %MMA, and %DMA) and also conducted principal component analyses of the logit % arsenic species. We used inverse-normalized residuals from multivariable-adjusted polygenic heritability analysis for multipoint variance components linkage analysis. We also examined the contribution of polymorphisms in the arsenic metabolism gene AS3MT via conditional linkage analysis. We localized a quantitative trait locus (QTL) on chromosome 10 (LOD 4.12 for %MMA, 4.65 for %DMA, and 4.84 for the first principal component of logit % arsenic species). This peak was partially but not fully explained by measured AS3MT variants. We also localized a QTL for the second principal component of logit % arsenic species on chromosome 5 (LOD 4.21) that was not evident from considering % arsenic species individually. Some other loci were suggestive or significant for 1 geographical area but not overall across all areas, indicating possible locus heterogeneity. This genome-wide linkage scan suggests genetic determinants of arsenic toxicokinetics to be identified by future fine-mapping, and illustrates the utility of principal component analysis as a novel approach that considers % arsenic species jointly. PMID:26209557
Strale, Mathieu; Krysinska, Karolina; Overmeiren, Gaëtan Van; Andriessen, Karl
2017-06-01
This study investigated the geographic distribution of suicide and railway suicide in Belgium over 2008--2013 on local (i.e., district or arrondissement) level. There were differences in the regional distribution of suicide and railway suicides in Belgium over the study period. Principal component analysis identified three groups of correlations among population variables and socio-economic indicators, such as population density, unemployment, and age group distribution, on two components that helped explaining the variance of railway suicide at a local (arrondissement) level. This information is of particular importance to prevent suicides in high-risk areas on the Belgian railway network.
ERIC Educational Resources Information Center
Rosa, Victor M.
2013-01-01
Purpose: The purpose of this study was to determine the extent to which California public high school principals perceive the WASC Self-Study Process as a valuable tool for bringing about school improvement. The study specifically examines the principals' perceptions of five components within the Self-Study Process: (1) The creation of the…
Cole, Jacqueline M.; Cheng, Xie; Payne, Michael C.
2016-10-18
The use of principal component analysis (PCA) to statistically infer features of local structure from experimental pair distribution function (PDF) data is assessed on a case study of rare-earth phosphate glasses (REPGs). Such glasses, co-doped with two rare-earth ions (R and R’) of different sizes and optical properties, are of interest to the laser industry. The determination of structure-property relationships in these materials is an important aspect of their technological development. Yet, realizing the local structure of co-doped REPGs presents significant challenges relative to their singly-doped counterparts; specifically, R and R’ are difficult to distinguish in terms of establishing relativemore » material compositions, identifying atomic pairwise correlation profiles in a PDF that are associated with each ion, and resolving peak overlap of such profiles in PDFs. This study demonstrates that PCA can be employed to help overcome these structural complications, by statistically inferring trends in PDFs that exist for a restricted set of experimental data on REPGs, and using these as training data to predict material compositions and PDF profiles in unknown co-doped REPGs. The application of these PCA methods to resolve individual atomic pairwise correlations in t(r) signatures is also presented. The training methods developed for these structural predictions are pre-validated by testing their ability to reproduce known physical phenomena, such as the lanthanide contraction, on PDF signatures of the structurally simpler singly-doped REPGs. The intrinsic limitations of applying PCA to analyze PDFs relative to the quality control of source data, data processing, and sample definition, are also considered. Furthermore, while this case study is limited to lanthanide-doped REPGs, this type of statistical inference may easily be extended to other inorganic solid-state materials, and be exploited in large-scale data-mining efforts that probe many t(r) functions.« less
NASA Astrophysics Data System (ADS)
Dodson, J. B.; Taylor, P. C.
2016-12-01
The diurnal cycle of convection (CDC) greatly influences the water, radiative, and energy budgets in convectively active regions. For example, previous research of the Amazonian CDC has identified significant monthly covariability between the satellite-observed radiative and precipitation diurnal and multiple reanalysis-derived atmospheric state variables (ASVs) representing convective instability. However, disagreements between retrospective analysis products (reanalyses) over monthly ASV anomalies create significant uncertainty in the resulting covariability. Satellite observations of convective clouds can be used to characterize monthly anomalies in convective activity. CloudSat observes multiple properties of both deep convective cores and the associated anvils, and so is useful as an alternative to the use of reanalyses. CloudSat cannot observe the full diurnal cycle, but it can detect differences between daytime and nighttime convection. Initial efforts to use CloudSat data to characterize convective activity showed that the results are highly dependent on the choice of variable used to characterize the cloud. This is caused by a series of inverse relationships between convective frequency, cloud top height, radar reflectivity vertical profile, and other variables. A single, multi-variable index for convective activity based on CloudSat data may be useful to clarify the results. Principal component analysis (PCA) provides a method to create a multivariable index, where the first principal component (PC1) corresponds with convective instability. The time series of PC1 can then be used as a proxy for monthly variability in convective activity. The primary challenge presented involves determining the utility of PCA for creating a robust index for convective activity that accounts for the complex relationships of multiple convective cloud variables, and yields information about the interactions between convection, the convective environment, and radiation beyond the previous single-variable approaches. The choice of variables used to calculate PC1 may influence any results based on PC1, so it is necessary to test the sensitivity of the results to different variable combinations.
From measurements to metrics: PCA-based indicators of cyber anomaly
NASA Astrophysics Data System (ADS)
Ahmed, Farid; Johnson, Tommy; Tsui, Sonia
2012-06-01
We present a framework of the application of Principal Component Analysis (PCA) to automatically obtain meaningful metrics from intrusion detection measurements. In particular, we report the progress made in applying PCA to analyze the behavioral measurements of malware and provide some preliminary results in selecting dominant attributes from an arbitrary number of malware attributes. The results will be useful in formulating an optimal detection threshold in the principal component space, which can both validate and augment existing malware classifiers.
NASA Astrophysics Data System (ADS)
Jakovels, Dainis; Lihacova, Ilze; Kuzmina, Ilona; Spigulis, Janis
2013-11-01
Non-invasive and fast primary diagnostics of pigmented skin lesions is required due to frequent incidence of skin cancer - melanoma. Diagnostic potential of principal component analysis (PCA) for distant skin melanoma recognition is discussed. Processing of the measured clinical multi-spectral images (31 melanomas and 94 nonmalignant pigmented lesions) in the wavelength range of 450-950 nm by means of PCA resulted in 87 % sensitivity and 78 % specificity for separation between malignant melanomas and pigmented nevi.
Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral Imagery
2014-03-27
2003), and (Jackson D. A., 1993). In 1933, Hotelling ( Hotelling , 1933), who coined the term ‘principal components,’ surmised that there was a...goodness of fit and multivariate quality control with the statistic Qi = (Xi(1×p) − X̂i(1×p) )(Xi(1×p) − X̂i(1×p) ) T (20) where, under the...sparsely targeted scenes through SNR or other methods. 5) Customize sorting and histogram construction methods in Multiple PCA to avoid redundancy
NASA Astrophysics Data System (ADS)
Penttilä, Antti; Martikainen, Julia; Gritsevich, Maria; Muinonen, Karri
2018-02-01
Meteorite samples are measured with the University of Helsinki integrating-sphere UV-vis-NIR spectrometer. The resulting spectra of 30 meteorites are compared with selected spectra from the NASA Planetary Data System meteorite spectra database. The spectral measurements are transformed with the principal component analysis, and it is shown that different meteorite types can be distinguished from the transformed data. The motivation is to improve the link between asteroid spectral observations and meteorite spectral measurements.
Kluess, Daniel; Mittelmeier, Wolfram; Bader, Rainer
2010-12-01
In connection with technological advances in the manufacturing of medical ceramics, a newly developed ceramic femoral component was introduced in total knee arthroplasty. We generated an explicit finite-element-model to calculate the stresses developed under the highly dynamic intraoperative impaction with regard to cobalt-chromium and ceramic implant material as well as application of a silicone cover in order to reduce stress. The impaction was calculated with the hammer hitting the backside of the impactor at previously measured initial velocities. Subsequently the impactor, consisting of a steel handhold and a polyoxymethylene head, hit the femoral component. Instead of modelling femoral bone, the implant was mounted on four spring elements with spring constants previously determined in an experimental impaction model. The maximum principal stresses in the implants were evaluated at 8000 increments during the first 4 ms of impact. The ceramic implant showed principal stresses 10% to 48% higher than the cobalt chromium femoral component. The simulation of a 5mm thick silicone layer between the impactor and the femoral component showed a strong decrease of vibration resulting in a reduction of 54% to 68% of the maximum stress amounts. The calculated amounts of principal stress were beneath the ultimate bending strengths of each material. Based on the results, intraoperative fracture of femoral components in total knee replacement may not be caused solely by impaction, but also by contributing geometrical factors such as inadequate preparation of the distal femur. In order to minimize the influence of impaction related stress peaks we recommend limiting the velocity as well as the weight of the impaction hammer when inserting femoral components. The silicone cover seems to deliver a strong decrease of implant stress and should be considered in surgery technique in the future. Copyright © 2010 Elsevier Ltd. All rights reserved.
The Global Oscillation Network Group site survey, 2: Results
NASA Technical Reports Server (NTRS)
Hill, Frank; Fischer, George; Forgach, Suzanne; Grier, Jennifer; Leibacher, John W.; Jones, Harrison P.; Jones, Patricia B.; Kupke, Renate; Stebbins, Robin T.; Clay, Donald W.
1994-01-01
The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile. Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable networks assembled from the individual site records is compared using a statistical principal components analysis. An accompanying paper descibes the analysis methods in detail; here we present the results of both the network and individual site analyses. The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 x 10(exp -4) with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum.
Ramli, Saifullah; Ismail, Noryati; Alkarkhi, Abbas Fadhl Mubarek; Easa, Azhar Mat
2010-08-01
Banana peel flour (BPF) prepared from green or ripe Cavendish and Dream banana fruits were assessed for their total starch (TS), digestible starch (DS), resistant starch (RS), total dietary fibre (TDF), soluble dietary fibre (SDF) and insoluble dietary fibre (IDF). Principal component analysis (PCA) identified that only 1 component was responsible for 93.74% of the total variance in the starch and dietary fibre components that differentiated ripe and green banana flours. Cluster analysis (CA) applied to similar data obtained two statistically significant clusters (green and ripe bananas) to indicate difference in behaviours according to the stages of ripeness based on starch and dietary fibre components. We concluded that the starch and dietary fibre components could be used to discriminate between flours prepared from peels obtained from fruits of different ripeness. The results were also suggestive of the potential of green and ripe BPF as functional ingredients in food.
Ramli, Saifullah; Ismail, Noryati; Alkarkhi, Abbas Fadhl Mubarek; Easa, Azhar Mat
2010-01-01
Banana peel flour (BPF) prepared from green or ripe Cavendish and Dream banana fruits were assessed for their total starch (TS), digestible starch (DS), resistant starch (RS), total dietary fibre (TDF), soluble dietary fibre (SDF) and insoluble dietary fibre (IDF). Principal component analysis (PCA) identified that only 1 component was responsible for 93.74% of the total variance in the starch and dietary fibre components that differentiated ripe and green banana flours. Cluster analysis (CA) applied to similar data obtained two statistically significant clusters (green and ripe bananas) to indicate difference in behaviours according to the stages of ripeness based on starch and dietary fibre components. We concluded that the starch and dietary fibre components could be used to discriminate between flours prepared from peels obtained from fruits of different ripeness. The results were also suggestive of the potential of green and ripe BPF as functional ingredients in food. PMID:24575193
Determining the Number of Components from the Matrix of Partial Correlations
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
A method is presented for determining the number of components to retain in a principal components or image components analysis which utilizes a matrix of partial correlations. Advantages and uses of the method are discussed and a comparison of the proposed method with existing methods is presented. (JKS)
Figures of merit for present and future dark energy probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortonson, Michael J.; Huterer, Dragan; Hu, Wayne
2010-09-15
We compare current and forecasted constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a factor of {approx}10 relative to current constraints by future space-based supernova data and CMB measurements from the Planck satellite. If the dark energy equation of state is described by a more general basis ofmore » principal components, the expected improvement in volume-based figures of merit is much greater. While the forecasted precision for any single parameter is only a factor of 2-5 smaller than current uncertainties, the constraints on dark energy models bounded by -1{<=}w{<=}1 improve for approximately 6 independent dark energy parameters resulting in a reduction of the total allowed volume of principal component parameter space by a factor of {approx}100. Typical quintessence models can be adequately described by just 2-3 of these parameters even given the precision of future data, leading to a more modest but still significant improvement. In addition to advances in supernova and CMB data, percent-level measurement of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain robust to variations in spatial curvature.« less
Seierstad, Therese; Røe, Kathrine; Sitter, Beathe; Halgunset, Jostein; Flatmark, Kjersti; Ree, Anne H; Olsen, Dag Rune; Gribbestad, Ingrid S; Bathen, Tone F
2008-01-01
Background This study was conducted in order to elucidate metabolic differences between human rectal cancer biopsies and colorectal HT29, HCT116 and SW620 xenografts by using high-resolution magnetic angle spinning (MAS) magnetic resonance spectroscopy (MRS) and for determination of the most appropriate human rectal xenograft model for preclinical MR spectroscopy studies. A further aim was to investigate metabolic changes following irradiation of HT29 xenografts. Methods HR MAS MRS of tissue samples from xenografts and rectal biopsies were obtained with a Bruker Avance DRX600 spectrometer and analyzed using principal component analysis (PCA) and partial least square (PLS) regression analysis. Results and conclusion HR MAS MRS enabled assignment of 27 metabolites. Score plots from PCA of spin-echo and single-pulse spectra revealed separate clusters of the different xenografts and rectal biopsies, reflecting underlying differences in metabolite composition. The loading profile indicated that clustering was mainly based on differences in relative amounts of lipids, lactate and choline-containing compounds, with HT29 exhibiting the metabolic profile most similar to human rectal cancers tissue. Due to high necrotic fractions in the HT29 xenografts, radiation-induced changes were not detected when comparing spectra from untreated and irradiated HT29 xenografts. However, PLS calibration relating spectral data to the necrotic fraction revealed a significant correlation, indicating that necrotic fraction can be assessed from the MR spectra. PMID:18439252
Yahya, Padillah; Sulong, Sarina; Harun, Azian; Wan Isa, Hatin; Ab Rajab, Nur-Shafawati; Wangkumhang, Pongsakorn; Wilantho, Alisa; Ngamphiw, Chumpol; Tongsima, Sissades; Zilfalil, Bin Alwi
2017-09-01
Malay, the main ethnic group in Peninsular Malaysia, is represented by various sub-ethnic groups such as Melayu Banjar, Melayu Bugis, Melayu Champa, Melayu Java, Melayu Kedah Melayu Kelantan, Melayu Minang and Melayu Patani. Using data retrieved from the MyHVP (Malaysian Human Variome Project) database, a total of 135 individuals from these sub-ethnic groups were profiled using the Affymetrix GeneChip Mapping Xba 50-K single nucleotide polymorphism (SNP) array to identify SNPs that were ancestry-informative markers (AIMs) for Malays of Peninsular Malaysia. Prior to selecting the AIMs, the genetic structure of Malays was explored with reference to 11 other populations obtained from the Pan-Asian SNP Consortium database using principal component analysis (PCA) and ADMIXTURE. Iterative pruning principal component analysis (ipPCA) was further used to identify sub-groups of Malays. Subsequently, we constructed an AIMs panel for Malays using the informativeness for assignment (I n ) of genetic markers, and the K-nearest neighbor classifier (KNN) was used to teach the classification models. A model of 250 SNPs ranked by I n , correctly classified Malay individuals with an accuracy of up to 90%. The identified panel of SNPs could be utilized as a panel of AIMs to ascertain the specific ancestry of Malays, which may be useful in disease association studies, biomedical research or forensic investigation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.
Statistical shape modeling of human cochlea: alignment and principal component analysis
NASA Astrophysics Data System (ADS)
Poznyakovskiy, Anton A.; Zahnert, Thomas; Fischer, Björn; Lasurashvili, Nikoloz; Kalaidzidis, Yannis; Mürbe, Dirk
2013-02-01
The modeling of the cochlear labyrinth in living subjects is hampered by insufficient resolution of available clinical imaging methods. These methods usually provide resolutions higher than 125 μm. This is too crude to record the position of basilar membrane and, as a result, keep apart even the scala tympani from other scalae. This problem could be avoided by the means of atlas-based segmentation. The specimens can endure higher radiation loads and, conversely, provide better-resolved images. The resulting surface can be used as the seed for atlas-based segmentation. To serve this purpose, we have developed a statistical shape model (SSM) of human scala tympani based on segmentations obtained from 10 μCT image stacks. After segmentation, we aligned the resulting surfaces using Procrustes alignment. This algorithm was slightly modified to accommodate single models with nodes which do not necessarily correspond to salient features and vary in number between models. We have established correspondence by mutual proximity between nodes. Rather than using the standard Euclidean norm, we have applied an alternative logarithmic norm to improve outlier treatment. The minimization was done using BFGS method. We have also split the surface nodes along an octree to reduce computation cost. Subsequently, we have performed the principal component analysis of the training set with Jacobi eigenvalue algorithm. We expect the resulting method to help acquiring not only better understanding in interindividual variations of cochlear anatomy, but also a step towards individual models for pre-operative diagnostics prior to cochlear implant insertions.
Sufficient Forecasting Using Factor Models
Fan, Jianqing; Xue, Lingzhou; Yao, Jiawei
2017-01-01
We consider forecasting a single time series when there is a large number of predictors and a possible nonlinear effect. The dimensionality was first reduced via a high-dimensional (approximate) factor model implemented by the principal component analysis. Using the extracted factors, we develop a novel forecasting method called the sufficient forecasting, which provides a set of sufficient predictive indices, inferred from high-dimensional predictors, to deliver additional predictive power. The projected principal component analysis will be employed to enhance the accuracy of inferred factors when a semi-parametric (approximate) factor model is assumed. Our method is also applicable to cross-sectional sufficient regression using extracted factors. The connection between the sufficient forecasting and the deep learning architecture is explicitly stated. The sufficient forecasting correctly estimates projection indices of the underlying factors even in the presence of a nonparametric forecasting function. The proposed method extends the sufficient dimension reduction to high-dimensional regimes by condensing the cross-sectional information through factor models. We derive asymptotic properties for the estimate of the central subspace spanned by these projection directions as well as the estimates of the sufficient predictive indices. We further show that the natural method of running multiple regression of target on estimated factors yields a linear estimate that actually falls into this central subspace. Our method and theory allow the number of predictors to be larger than the number of observations. We finally demonstrate that the sufficient forecasting improves upon the linear forecasting in both simulation studies and an empirical study of forecasting macroeconomic variables. PMID:29731537
Farmers without borders—genetic structuring in century old barley (Hordeum vulgare)
Forsberg, N E G; Russell, J; Macaulay, M; Leino, M W; Hagenblad, J
2015-01-01
The geographic distribution of genetic diversity can reveal the evolutionary history of a species. For crop plants, phylogeographic patterns also indicate how seed has been exchanged and spread in agrarian communities. Such patterns are, however, easily blurred by the intense seed trade, plant improvement and even genebank conservation during the twentieth century, and discerning fine-scale phylogeographic patterns is thus particularly challenging. Using historical crop specimens, these problems are circumvented and we show here how high-throughput genotyping of historical nineteenth century crop specimens can reveal detailed geographic population structure. Thirty-one historical and nine extant accessions of North European landrace barley (Hordeum vulgare L.), in total 231 individuals, were genotyped on a 384 single nucleotide polymorphism assay. The historical material shows constant high levels of within-accession diversity, whereas the extant accessions show more varying levels of diversity and a higher degree of total genotype sharing. Structure, discriminant analysis of principal components and principal component analysis cluster the accessions in latitudinal groups across country borders in Finland, Norway and Sweden. FST statistics indicate strong differentiation between accessions from southern Fennoscandia and accessions from central or northern Fennoscandia, and less differentiation between central and northern accessions. These findings are discussed in the context of contrasting historical records on intense within-country south to north seed movement. Our results suggest that although seeds were traded long distances, long-term cultivation has instead been of locally available, possibly better adapted, genotypes. PMID:25227257
Effects of mutation, truncation and temperature on the folding kinetics of a WW domain
Maisuradze, Gia G.; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A.
2013-01-01
The purpose of this work is to show how mutation, truncation and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis (PCA) of molecular dynamics (MD)-generated folding trajectories of the triple β-strand WW domain from the Formin binding protein 28 (FBP) [PDB: 1E0L] and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement, (MSD), and PCA eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992
Arboleda, Mark; Reichardt, Wolfgang
2009-01-01
In search for microbiological indicators of coral health and coral diseases, community profiles of coral-associated epizoic prokaryotes were investigated because of their dual potential as a source of coral pathogens and their antagonists. In pairwise samples of visually healthy and diseased coral specimens from Bolinao Bay (Pangasinan, Philippines), mixed biofilm communities of ectoderm- and mucus-colonizing epizoic prokaryotes were compared using fluorescent in situ hybridization (FISH). Oligonucleotide probes targeted 13 phylotypes representing the main taxonomic groups of marine prokaryotes. Coral taxa tended to show specific community profiles. An attempt to separate the profiles of healthy and diseased specimens by applying principal component analysis (PCA) to a (nonselective) collection of corals (affected by various diseases) proved unsuccessful. On the other hand, separate PCA clusters were obtained from healthy and diseased corals belonging to a single species (Pocillopora damicornis) only. This cluster formation was dominated by principal component 1 with the genus Vibrio accounting for 18%. At the same time, reef-site-specific clusters were formed as well. At a reef site exposed to pollution from intensive fish cage (Chanos chanos) farming, healthy P. damicornis were mainly (93%) colonized by unicellular cyanobacteria. The formal calculation of diversity parameters suggested that evenness in particular was driven by both health status and reef site location. Despite the low resolution of taxonomic levels achieved with FISH probes targeting only large phylotype groups, significant differences between healthy and diseased corals and also between polluted and nonpolluted reef sites were observed.
Farmers without borders-genetic structuring in century old barley (Hordeum vulgare).
Forsberg, N E G; Russell, J; Macaulay, M; Leino, M W; Hagenblad, J
2015-02-01
The geographic distribution of genetic diversity can reveal the evolutionary history of a species. For crop plants, phylogeographic patterns also indicate how seed has been exchanged and spread in agrarian communities. Such patterns are, however, easily blurred by the intense seed trade, plant improvement and even genebank conservation during the twentieth century, and discerning fine-scale phylogeographic patterns is thus particularly challenging. Using historical crop specimens, these problems are circumvented and we show here how high-throughput genotyping of historical nineteenth century crop specimens can reveal detailed geographic population structure. Thirty-one historical and nine extant accessions of North European landrace barley (Hordeum vulgare L.), in total 231 individuals, were genotyped on a 384 single nucleotide polymorphism assay. The historical material shows constant high levels of within-accession diversity, whereas the extant accessions show more varying levels of diversity and a higher degree of total genotype sharing. Structure, discriminant analysis of principal components and principal component analysis cluster the accessions in latitudinal groups across country borders in Finland, Norway and Sweden. FST statistics indicate strong differentiation between accessions from southern Fennoscandia and accessions from central or northern Fennoscandia, and less differentiation between central and northern accessions. These findings are discussed in the context of contrasting historical records on intense within-country south to north seed movement. Our results suggest that although seeds were traded long distances, long-term cultivation has instead been of locally available, possibly better adapted, genotypes.
NASA Astrophysics Data System (ADS)
Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu
2017-04-01
Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.
Chen, Derek E; Willick, Darryl L; Ruckel, Joseph B; Floriano, Wely B
2015-01-01
Directed evolution is a technique that enables the identification of mutants of a particular protein that carry a desired property by successive rounds of random mutagenesis, screening, and selection. This technique has many applications, including the development of G protein-coupled receptor-based biosensors and designer drugs for personalized medicine. Although effective, directed evolution is not without challenges and can greatly benefit from the development of computational techniques to predict the functional outcome of single-point amino acid substitutions. In this article, we describe a molecular dynamics-based approach to predict the effects of single amino acid substitutions on agonist binding (salicin) to a human bitter taste receptor (hT2R16). An experimentally determined functional map of single-point amino acid substitutions was used to validate the whole-protein molecular dynamics-based predictive functions. Molecular docking was used to construct a wild-type agonist-receptor complex, providing a starting structure for single-point substitution simulations. The effects of each single amino acid substitution in the functional response of the receptor to its agonist were estimated using three binding energy schemes with increasing inclusion of solvation effects. We show that molecular docking combined with molecular mechanics simulations of single-point mutants of the agonist-receptor complex accurately predicts the functional outcome of single amino acid substitutions in a human bitter taste receptor.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.
2004-10-01
In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
[Studies on the brand traceability of milk powder based on NIR spectroscopy technology].
Guan, Xiao; Gu, Fang-Qing; Liu, Jing; Yang, Yong-Jian
2013-10-01
Brand traceability of several different kinds of milk powder was studied by combining near infrared spectroscopy diffuse reflectance mode with soft independent modeling of class analogy (SIMCA) in the present paper. The near infrared spectrum of 138 samples, including 54 Guangming milk powder samples, 43 Netherlands samples, and 33 Nestle samples and 8 Yili samples, were collected. After pretreatment of full spectrum data variables in training set, principal component analysis was performed, and the contribution rate of the cumulative variance of the first three principal components was about 99.07%. Milk powder principal component regression model based on SIMCA was established, and used to classify the milk powder samples in prediction sets. The results showed that the recognition rate of Guangming milk powder, Netherlands milk powder and Nestle milk powder was 78%, 75% and 100%, the rejection rate was 100%, 87%, and 88%, respectively. Therefore, the near infrared spectroscopy combined with SIMCA model can classify milk powder with high accuracy, and is a promising identification method of milk powder variety.
Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S
2018-05-31
Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.
Study on nondestructive discrimination of genuine and counterfeit wild ginsengs using NIRS
NASA Astrophysics Data System (ADS)
Lu, Q.; Fan, Y.; Peng, Z.; Ding, H.; Gao, H.
2012-07-01
A new approach for the nondestructive discrimination between genuine wild ginsengs and the counterfeit ones by near infrared spectroscopy (NIRS) was developed. Both discriminant analysis and back propagation artificial neural network (BP-ANN) were applied to the model establishment for discrimination. Optimal modeling wavelengths were determined based on the anomalous spectral information of counterfeit samples. Through principal component analysis (PCA) of various wild ginseng samples, genuine and counterfeit, the cumulative percentages of variance of the principal components were obtained, serving as a reference for principal component (PC) factor determination. Discriminant analysis achieved an identification ratio of 88.46%. With sample' truth values as its outputs, a three-layer BP-ANN model was built, which yielded a higher discrimination accuracy of 100%. The overall results sufficiently demonstrate that NIRS combined with BP-ANN classification algorithm performs better on ginseng discrimination than discriminant analysis, and can be used as a rapid and nondestructive method for the detection of counterfeit wild ginsengs in food and pharmaceutical industry.
NASA Technical Reports Server (NTRS)
Li, Can; Joiner, Joanna; Krotkov, A.; Bhartia, Pawan K.
2013-01-01
We describe a new algorithm to retrieve SO2 from satellite-measured hyperspectral radiances. We employ the principal component analysis technique in regions with no significant SO2 to capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering and ozone absorption) and measurement artifacts. We use the resulting principal components and SO2 Jacobians calculated with a radiative transfer model to directly estimate SO2 vertical column density in one step. Application to the Ozone Monitoring Instrument (OMI) radiance spectra in 310.5-340 nm demonstrates that this approach can greatly reduce biases in the operational OMI product and decrease the noise by a factor of 2, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing longterm, consistent SO2 records for air quality and climate research.
Coastal modification of a scene employing multispectral images and vector operators.
Lira, Jorge
2017-05-01
Changes in sea level, wind patterns, sea current patterns, and tide patterns have produced morphologic transformations in the coastline area of Tamaulipas Sate in North East Mexico. Such changes generated a modification of the coastline and variations of the texture-relief and texture of the continental area of Tamaulipas. Two high-resolution multispectral satellite Satellites Pour l'Observation de la Terre images were employed to quantify the morphologic change of such continental area. The images cover a time span close to 10 years. A variant of the principal component analysis was used to delineate the modification of the land-water line. To quantify changes in texture-relief and texture, principal component analysis was applied to the multispectral images. The first principal components of each image were modeled as a discrete bidimensional vector field. The divergence and Laplacian vector operators were applied to the discrete vector field. The divergence provided the change of texture, while the Laplacian produced the change of texture-relief in the area of study.
NASA Astrophysics Data System (ADS)
Lin, Jyh-Woei
2012-09-01
This paper uses Nonlinear Principal Component Analysis (NLPCA) and Principal Component Analysis (PCA) to determine Total Electron Content (TEC) anomalies in the ionosphere for the Nakri Typhoon on 29 May, 2008 (UTC). NLPCA, PCA and image processing are applied to the global ionospheric map (GIM) with transforms conducted for the time period 12:00-14:00 UT on 29 May 2008 when the wind was most intense. Results show that at a height of approximately 150-200 km the TEC anomaly using NLPCA is more localized; however its intensity increases with height and becomes more widespread. The TEC anomalies are not found by PCA. Potential causes of the results are discussed with emphasis given to vertical acoustic gravity waves. The approximate position of the typhoon's eye can be detected if the GIM is divided into fine enough maps with adequate spatial-resolution at GPS-TEC receivers. This implies that the trace of the typhoon in the regional GIM is caught using NLPCA.
Component Structure of Individual Differences in True and False Recognition of Faces
ERIC Educational Resources Information Center
Bartlett, James C.; Shastri, Kalyan K.; Abdi, Herve; Neville-Smith, Marsha
2009-01-01
Principal-component analyses of 4 face-recognition studies uncovered 2 independent components. The first component was strongly related to false-alarm errors with new faces as well as to facial "conjunctions" that recombine features of previously studied faces. The second component was strongly related to hits as well as to the conjunction/new…
Combination of PCA and LORETA for sources analysis of ERP data: an emotional processing study
NASA Astrophysics Data System (ADS)
Hu, Jin; Tian, Jie; Yang, Lei; Pan, Xiaohong; Liu, Jiangang
2006-03-01
The purpose of this paper is to study spatiotemporal patterns of neuronal activity in emotional processing by analysis of ERP data. 108 pictures (categorized as positive, negative and neutral) were presented to 24 healthy, right-handed subjects while 128-channel EEG data were recorded. An analysis of two steps was applied to the ERP data. First, principal component analysis was performed to obtain significant ERP components. Then LORETA was applied to each component to localize their brain sources. The first six principal components were extracted, each of which showed different spatiotemporal patterns of neuronal activity. The results agree with other emotional study by fMRI or PET. The combination of PCA and LORETA can be used to analyze spatiotemporal patterns of ERP data in emotional processing.
NASA Astrophysics Data System (ADS)
Xu, Roger; Stevenson, Mark W.; Kwan, Chi-Man; Haynes, Leonard S.
2001-07-01
At Ford Motor Company, thrust bearing in drill motors is often damaged by metal chips. Since the vibration frequency is several Hz only, it is very difficult to use accelerometers to pick up the vibration signals. Under the support of Ford and NASA, we propose to use a piezo film as a sensor to pick up the slow vibrations of the bearing. Then a neural net based fault detection algorithm is applied to differentiate normal bearing from bad bearing. The first step involves a Fast Fourier Transform which essentially extracts the significant frequency components in the sensor. Then Principal Component Analysis is used to further reduce the dimension of the frequency components by extracting the principal features inside the frequency components. The features can then be used to indicate the status of bearing. Experimental results are very encouraging.
Typed Multiset Rewriting Specifications of Security Protocols
2011-10-01
to define the type of a tuple as the sequence of the types of its components. Therefore, if A is a principal name and kA is a public key for A, the...tuple (A, kA ) would have type “principal × pubK A” (the Cartesian product symbol “×” is the standard constructor for tuple types). This construction...allows us to associate a generic principal with A’s public key: if B is another principal, then (B, kA ) will have this type as well. We will often need