Sample records for single processing circuit

  1. Single Event Effects mitigation with TMRG tool

    NASA Astrophysics Data System (ADS)

    Kulis, S.

    2017-01-01

    Single Event Effects (SEE) are a major concern for integrated circuits exposed to radiation. There have been several techniques proposed to protect circuits against radiation-induced upsets. Among the others, the Triple Modular Redundancy (TMR) technique is one of the most popular. The purpose of the Triple Modular Redundancy Generator (TMRG) tool is to automatize the process of triplicating digital circuits freeing the designer from introducing the TMR code manually at the implementation stage. It helps to ensure that triplicated logic is maintained through the design process. Finally, the tool streamlines the process of introducing SEE in gate level simulations for final verification.

  2. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip.

    PubMed

    Schuck, C; Guo, X; Fan, L; Ma, X; Poot, M; Tang, H X

    2016-01-21

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips.

  3. An on-chip coupled resonator optical waveguide single-photon buffer

    PubMed Central

    Takesue, Hiroki; Matsuda, Nobuyuki; Kuramochi, Eiichi; Munro, William J.; Notomi, Masaya

    2013-01-01

    Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor. PMID:24217422

  4. Microwave photonics with superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-11-01

    In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

  5. A Novel Offset Cancellation Based on Parasitic-Insensitive Switched-Capacitor Sensing Circuit for the Out-of-Plane Single-Gimbaled Decoupled CMOS-MEMS Gyroscope

    PubMed Central

    Chang, Ming-Hui; Huang, Han-Pang

    2013-01-01

    This paper presents a novel parasitic-insensitive switched-capacitor (PISC) sensing circuit design in order to obtain high sensitivity and ultra linearity and reduce the parasitic effect for the out-of-plane single-gimbaled decoupled CMOS-MEMS gyroscope (SGDG). According to the simulation results, the proposed PISC circuit has better sensitivity and high linearity in a wide dynamic range. Experimental results also show a better performance. In addition, the PISC circuit can use signal processing to cancel the offset and noise. Thus, this circuit is very suitable for gyroscope measurement. PMID:23493122

  6. Modal and polarization qubits in Ti:LiNbO3 photonic circuits for a universal quantum logic gate.

    PubMed

    Saleh, Mohammed F; Di Giuseppe, Giovanni; Saleh, Bahaa E A; Teich, Malvin Carl

    2010-09-13

    Lithium niobate photonic circuits have the salutary property of permitting the generation, transmission, and processing of photons to be accommodated on a single chip. Compact photonic circuits such as these, with multiple components integrated on a single chip, are crucial for efficiently implementing quantum information processing schemes.We present a set of basic transformations that are useful for manipulating modal qubits in Ti:LiNbO(3) photonic quantum circuits. These include the mode analyzer, a device that separates the even and odd components of a state into two separate spatial paths; the mode rotator, which rotates the state by an angle in mode space; and modal Pauli spin operators that effect related operations. We also describe the design of a deterministic, two-qubit, single-photon, CNOT gate, a key element in certain sets of universal quantum logic gates. It is implemented as a Ti:LiNbO(3) photonic quantum circuit in which the polarization and mode number of a single photon serve as the control and target qubits, respectively. It is shown that the effects of dispersion in the CNOT circuit can be mitigated by augmenting it with an additional path. The performance of all of these components are confirmed by numerical simulations. The implementation of these transformations relies on selective and controllable power coupling among single- and two-mode waveguides, as well as the polarization sensitivity of the Pockels coefficients in LiNbO(3).

  7. Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip

    PubMed Central

    Schuck, C.; Guo, X.; Fan, L.; Ma, X.; Poot, M.; Tang, H. X.

    2016-01-01

    Quantum information processing holds great promise for communicating and computing data efficiently. However, scaling current photonic implementation approaches to larger system size remains an outstanding challenge for realizing disruptive quantum technology. Two main ingredients of quantum information processors are quantum interference and single-photon detectors. Here we develop a hybrid superconducting-photonic circuit system to show how these elements can be combined in a scalable fashion on a silicon chip. We demonstrate the suitability of this approach for integrated quantum optics by interfering and detecting photon pairs directly on the chip with waveguide-coupled single-photon detectors. Using a directional coupler implemented with silicon nitride nanophotonic waveguides, we observe 97% interference visibility when measuring photon statistics with two monolithically integrated superconducting single-photon detectors. The photonic circuit and detector fabrication processes are compatible with standard semiconductor thin-film technology, making it possible to implement more complex and larger scale quantum photonic circuits on silicon chips. PMID:26792424

  8. A Point-process Response Model for Spike Trains from Single Neurons in Neural Circuits under Optogenetic Stimulation

    PubMed Central

    Luo, X.; Gee, S.; Sohal, V.; Small, D.

    2015-01-01

    Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. We study recordings from single neurons within neural circuits under optogenetic stimulation. The data from these experiments present a statistical challenge of modeling a high frequency point process (neuronal spikes) while the input is another high frequency point process (light flashes). We further develop a generalized linear model approach to model the relationships between two point processes, employing additive point-process response functions. The resulting model, Point-process Responses for Optogenetics (PRO), provides explicit nonlinear transformations to link the input point process with the output one. Such response functions may provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation. We validate and compare the PRO model using a real dataset and simulations, and our model yields a superior area-under-the- curve value as high as 93% for predicting every future spike. For our experiment on the recurrent layer V circuit in the prefrontal cortex, the PRO model provides evidence that neurons integrate their inputs in a sophisticated manner. Another use of the model is that it enables understanding how neural circuits are altered under various disease conditions and/or experimental conditions by comparing the PRO parameters. PMID:26411923

  9. High-Power, High-Frequency Si-Based (SiGe) Transistors Developed

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    2002-01-01

    Future NASA, DOD, and commercial products will require electronic circuits that have greater functionality and versatility but occupy less space and cost less money to build and integrate than current products. System on a Chip (SOAC), a single semiconductor substrate containing circuits that perform many functions or containing an entire system, is widely recognized as the best technology for achieving low-cost, small-sized systems. Thus, a circuit technology is required that can gather, process, store, and transmit data or communications. Since silicon-integrated circuits are already used for data processing and storage and the infrastructure that supports silicon circuit fabrication is very large, it is sensible to develop communication circuits on silicon so that all the system functions can be integrated onto a single wafer. Until recently, silicon integrated circuits did not function well at the frequencies required for wireless or microwave communications, but with the introduction of small amounts of germanium into the silicon to make silicon-germanium (SiGe) transistors, silicon-based communication circuits are possible. Although microwavefrequency SiGe circuits have been demonstrated, there has been difficulty in obtaining the high power from their transistors that is required for the amplifiers of a transmitter, and many researchers have thought that this could not be done. The NASA Glenn Research Center and collaborators at the University of Michigan have developed SiGe transistors and amplifiers with state-of-the-art output power at microwave frequencies from 8 to 20 GHz. These transistors are fabricated using standard silicon processing and may be integrated with CMOS integrated circuits on a single chip. A scanning electron microscope image of a typical SiGe heterojunction bipolar transistor is shown in the preceding photomicrograph. This transistor achieved a record output power of 550 mW and an associated power-added efficiency of 33 percent at 8.4 GHz, as shown. Record performance was also demonstrated at 12.6 and 18 GHz. Developers have combined these state-of-the-art transistors with transmission lines and micromachined passive circuit components, such as inductors and capacitors, to build multistage amplifiers. Currently, a 1-W, 8.4-GHz power amplifier is being built for NASA deep space communication architectures.

  10. Free-world microelectronic manufacturing equipment

    NASA Astrophysics Data System (ADS)

    Kilby, J. S.; Arnold, W. H.; Booth, W. T.; Cunningham, J. A.; Hutcheson, J. D.; Owen, R. W.; Runyan, W. R.; McKenney, Barbara L.; McGrain, Moira; Taub, Renee G.

    1988-12-01

    Equipment is examined and evaluated for the manufacture of microelectronic integrated circuit devices and sources for that equipment within the Free World. Equipment suitable for the following are examined: single-crystal silicon slice manufacturing and processing; required lithographic processes; wafer processing; device packaging; and test of digital integrated circuits. Availability of the equipment is also discussed, now and in the near future. Very adequate equipment for most stages of the integrated circuit manufacturing process is available from several sources, in different countries, although the best and most widely used versions of most manufacturing equipment are made in the United States or Japan. There is also an active market in used equipment, suitable for manufacture of capable integrated circuits with performance somewhat short of the present state of the art.

  11. Heavy-ion induced single-event upset in integrated circuits

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1991-01-01

    The cosmic ray environment in space can affect the operation of Integrated Circuit (IC) devices via the phenomenon of Single Event Upset (SEU). In particular, heavy ions passing through an IC can induce sufficient integrated current (charge) to alter the state of a bistable circuit, for example a memory cell. The SEU effect is studied in great detail in both static and dynamic memory devices, as well as microprocessors fabricated from bipolar, Complementary Metal Oxide Semiconductor (CMOS) and N channel Metal Oxide Semiconductor (NMOS) technologies. Each device/process reflects its individual characteristics (minimum scale geometry/process parameters) via a unique response to the direct ionization of electron hole pairs by heavy ion tracks. A summary of these analytical and experimental SEU investigations is presented.

  12. Characterization of CNRS Fizeau wedge laser tuner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom-fabricated circuit board which contains a high-speed fringe detection and locating circuit. This board includes a dc level-discriminator-type fringe detector, a counter circuit to determine fringe center, a pulsed lasermore » triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data-collection process and interprets the results.« less

  13. Characterization of CNRS Fizeau wedge laser tuner

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  14. Comparing SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Stephen; Mounce, Andrew; Jock, Ryan; Sharma, Peter; Bureau-Oxton, Chloe; Rudolph, Martin; Hardin, Terry; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will compare two amplifiers based on single-transistor circuits implemented with silicon germanium heterojunction bipolar transistors. Both amplifiers provide gain at low power levels, but the dynamics of each circuit vary significantly. We will explore the gain mechanisms, linearity, and noise of each circuit and explain the situations in which each amplifier is best used. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  15. Feedback loop compensates for rectifier nonlinearity

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  16. [Design of blood-pressure parameter auto-acquisition circuit].

    PubMed

    Chen, Y P; Zhang, D L; Bai, H W; Zhang, D A

    2000-02-01

    This paper presents the realization and design of a kind of blood-pressure parameter auto-acquisition circuit. The auto-acquisition of blood-pressure parameter controlled by 89C2051 single chip microcomputer is accomplished by collecting and processing the driving signal of LCD. The circuit that is successfully applied in the home unit of telemedicine system has the simple and reliable properties.

  17. All-Printed Flexible and Stretchable Electronics.

    PubMed

    Mohammed, Mohammed G; Kramer, Rebecca

    2017-05-01

    A fully automated additive manufacturing process that produces all-printed flexible and stretchable electronics is demonstrated. The printing process combines soft silicone elastomer printing and liquid metal processing on a single high-precision 3D stage. The platform is capable of fabricating extremely complex conductive circuits, strain and pressure sensors, stretchable wires, and wearable circuits with high yield and repeatability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fully Solution-Processable Fabrication of Multi-Layered Circuits on a Flexible Substrate Using Laser Processing

    PubMed Central

    Ji, Seok Young; Choi, Wonsuk; Jeon, Jin-Woo; Chang, Won Seok

    2018-01-01

    The development of printing technologies has enabled the realization of electric circuit fabrication on a flexible substrate. However, the current technique remains restricted to single-layer patterning. In this paper, we demonstrate a fully solution-processable patterning approach for multi-layer circuits using a combined method of laser sintering and ablation. Selective laser sintering of silver (Ag) nanoparticle-based ink is applied to make conductive patterns on a heat-sensitive substrate and insulating layer. The laser beam path and irradiation fluence are controlled to create circuit patterns for flexible electronics. Microvia drilling using femtosecond laser through the polyvinylphenol-film insulating layer by laser ablation, as well as sequential coating of Ag ink and laser sintering, achieves an interlayer interconnection between multi-layer circuits. The dimension of microvia is determined by a sophisticated adjustment of the laser focal position and intensity. Based on these methods, a flexible electronic circuit with chip-size-package light-emitting diodes was successfully fabricated and demonstrated to have functional operations. PMID:29425144

  19. Carbon nanotube-based three-dimensional monolithic optoelectronic integrated system

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Wang, Sheng; Liu, Huaping; Peng, Lian-Mao

    2017-06-01

    Single material-based monolithic optoelectronic integration with complementary metal oxide semiconductor-compatible signal processing circuits is one of the most pursued approaches in the post-Moore era to realize rapid data communication and functional diversification in a limited three-dimensional space. Here, we report an electrically driven carbon nanotube-based on-chip three-dimensional optoelectronic integrated circuit. We demonstrate that photovoltaic receivers, electrically driven transmitters and on-chip electronic circuits can all be fabricated using carbon nanotubes via a complementary metal oxide semiconductor-compatible low-temperature process, providing a seamless integration platform for realizing monolithic three-dimensional optoelectronic integrated circuits with diversified functionality such as the heterogeneous AND gates. These circuits can be vertically scaled down to sub-30 nm and operates in photovoltaic mode at room temperature. Parallel optical communication between functional layers, for example, bottom-layer digital circuits and top-layer memory, has been demonstrated by mapping data using a 2 × 2 transmitter/receiver array, which could be extended as the next generation energy-efficient signal processing paradigm.

  20. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-02-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design.

  1. Low-sensitivity, frequency-selective amplifier circuits for hybrid and bipolar fabrication.

    NASA Technical Reports Server (NTRS)

    Pi, C.; Dunn, W. R., Jr.

    1972-01-01

    A network is described which is suitable for realizing a low-sensitivity high-Q second-order frequency-selective amplifier for high-frequency operation. Circuits are obtained from this network which are well suited for realizing monolithic integrated circuits and which do not require any process steps more critical than those used for conventional monolithic operational and video amplifiers. A single chip version using compatible thin-film techniques for the frequency determination elements is then feasible. Center frequency and bandwidth can be set independently by trimming two resistors. The frequency selective circuits have a low sensitivity to the process variables, and the sensitivity of the center frequency and bandwidth to changes in temperature is very low.

  2. Broad Beam and Ion Microprobe Studies of Single-Event Upsets in High Speed 0.18micron Silicon Germanium Heterojunction Bipolar Transistors and Circuits

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Marshall, Paul W.; Pickel, Jim; Carts, Martin A.; Irwin, TIm; Niu, Guofu; Cressler, John; Krithivasan, Ramkumar; Fritz, Karl; Riggs, Pam

    2003-01-01

    SiGe based technology is widely recognized for its tremendous potential to impact the high speed microelectronic industry, and therefore the space industry, by monolithic incorporation of low power complementary logic with extremely high speed SiGe Heterojunction Bipolar Transistor (HBT) logic. A variety of studies have examined the ionizing dose, displacement damage and single event characteristics, and are reported. Accessibility to SiGe through an increasing number of manufacturers adds to the importance of understanding its intrinsic radiation characteristics, and in particular the single event effect (SEE) characteristics of the high bandwidth HBT based circuits. IBM is now manufacturing in its 3rd generation of their commercial SiGe processes, and access is currently available to the first two generations (known as and 6HP) through the MOSIS shared mask services with anticipated future release of the latest (7HP) process. The 5 HP process is described and is characterized by a emitter spacing of 0.5 micron and a cutoff frequency ff of 50 GHz, whereas the fully scaled 7HP HBT employs a 0.18 micron emitter and has an fT of 120 GHz. Previous investigations have the examined SEE response of 5 HP HBT circuits through both circuit testing and modeling. Charge collection modeling studies in the 5 H P process have also been conducted, but to date no measurements have been reported of charge collection in any SiGe HBT structures. Nor have circuit models for charge collection been developed in any version other than the 5 HP HBT structure. Our investigation reports the first indications of both charge collection and circuit response in IBM s 7HP-based SiGe process. We compare broad beam heavy ion SEU test results in a fully function Pseudo-Random Number (PRN) sequence generator up to frequencies of 12 Gbps versus effective LET, and also report proton test results in the same circuit. In addition, we examine the charge collection characteristics of individual 7HP HBT structures and map out the spatial sensitivities using the Sandia Focused Heavy Ion Microprobe Facility s Ion Beam Induced Charge Collection (IBICC) technique. Combining the two data sets offers insights into the charge collection mechanisms responsible for circuit level response and provides the first insights into the SEE characteristics of this latest version of IBM s commercial SiGe process.

  3. Interconnect-free parallel logic circuits in a single mechanical resonator

    PubMed Central

    Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.

    2011-01-01

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator. PMID:21326230

  4. Interconnect-free parallel logic circuits in a single mechanical resonator.

    PubMed

    Mahboob, I; Flurin, E; Nishiguchi, K; Fujiwara, A; Yamaguchi, H

    2011-02-15

    In conventional computers, wiring between transistors is required to enable the execution of Boolean logic functions. This has resulted in processors in which billions of transistors are physically interconnected, which limits integration densities, gives rise to huge power consumption and restricts processing speeds. A method to eliminate wiring amongst transistors by condensing Boolean logic into a single active element is thus highly desirable. Here, we demonstrate a novel logic architecture using only a single electromechanical parametric resonator into which multiple channels of binary information are encoded as mechanical oscillations at different frequencies. The parametric resonator can mix these channels, resulting in new mechanical oscillation states that enable the construction of AND, OR and XOR logic gates as well as multibit logic circuits. Moreover, the mechanical logic gates and circuits can be executed simultaneously, giving rise to the prospect of a parallel logic processor in just a single mechanical resonator.

  5. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wohlgemuth, J. H.

    1982-01-01

    Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.

  6. Scalable, Lightweight, Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissection.

    PubMed

    Liang, Li; Oline, Stefan N; Kirk, Justin C; Schmitt, Lukas Ian; Komorowski, Robert W; Remondes, Miguel; Halassa, Michael M

    2017-01-01

    Independently adjustable multielectrode arrays are routinely used to interrogate neuronal circuit function, enabling chronic in vivo monitoring of neuronal ensembles in freely behaving animals at a single-cell, single spike resolution. Despite the importance of this approach, its widespread use is limited by highly specialized design and fabrication methods. To address this, we have developed a Scalable, Lightweight, Integrated and Quick-to-assemble multielectrode array platform. This platform additionally integrates optical fibers with independently adjustable electrodes to allow simultaneous single unit recordings and circuit-specific optogenetic targeting and/or manipulation. In current designs, the fully assembled platforms are scalable from 2 to 32 microdrives, and yet range 1-3 g, light enough for small animals. Here, we describe the design process starting from intent in computer-aided design, parameter testing through finite element analysis and experimental means, and implementation of various applications across mice and rats. Combined, our methods may expand the utility of multielectrode recordings and their continued integration with other tools enabling functional dissection of intact neural circuits.

  7. Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory.

    PubMed

    Kwapis, Janine L; Jarome, Timothy J; Ferrara, Nicole C; Helmstetter, Fred J

    2017-07-01

    Established memories undergo a period of vulnerability following retrieval, a process termed 'reconsolidation.' Recent work has shown that the hypothetical process of reconsolidation is only triggered when new information is presented during retrieval, suggesting that this process may allow existing memories to be modified. Reconsolidation has received increasing attention as a possible therapeutic target for treating disorders that stem from traumatic memories, yet little is known about how this process changes the original memory. In particular, it is unknown whether reconsolidation can reorganize the neural circuit supporting an existing memory after that memory is modified with new information. Here, we show that trace fear memory undergoes a protein synthesis-dependent reconsolidation process following exposure to a single updating trial of delay conditioning. Further, this reconsolidation-dependent updating process appears to reorganize the neural circuit supporting the trace-trained memory, so that it better reflects the circuit supporting delay fear. Specifically, after a trace-to-delay update session, the amygdala is now required for extinction of the updated memory but the retrosplenial cortex is no longer required for retrieval. These results suggest that updating procedures could be used to force a complex, poorly defined memory circuit to rely on a better-defined neural circuit that may be more amenable to behavioral or pharmacological manipulation. This is the first evidence that exposure to new information can fundamentally reorganize the neural circuit supporting an existing memory.

  8. Genetic programs constructed from layered logic gates in single cells

    PubMed Central

    Moon, Tae Seok; Lou, Chunbo; Tamsir, Alvin; Stanton, Brynne C.; Voigt, Christopher A.

    2014-01-01

    Genetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics1. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits2–6, and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits1,7. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator–chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells. PMID:23041931

  9. Single-photon-driven high-order sideband transitions in an ultrastrongly coupled circuit-quantum-electrodynamics system

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Wang, Yimin; Li, Tiefu; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, J. S.; You, J. Q.

    2017-07-01

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10% of the resonator's fundamental frequency, we obtain clear signatures of higher order red-sideband and first-order blue-sideband transitions, which are mainly due to the ultrastrong Rabi coupling. Our observation advances the understanding of ultrastrongly coupled systems and paves the way to study high-order processes in the quantum Rabi model at the single-photon level.

  10. Fast 4-2 Compressor of Booth Multiplier Circuits for High-Speed RISC Processor

    NASA Astrophysics Data System (ADS)

    Yuan, S. C.

    2008-11-01

    We use different XOR circuits to optimize the XOR structure 4-2 compressor, and design the transmission gates(TG) 4-2 compressor use single to dual rail circuit configurations. The maximum propagation delay, the power consumption and the layout area of the designed 4-2 compressors are simulated with 0.35μm and 0.25μm CMOS process parameters and compared with results of the synthesized 4-2 circuits, and show that the designed 4-2 compressors are faster and area smaller than the synthesized one.

  11. Inkjet printed circuits based on ambipolar and p-type carbon nanotube thin-film transistors

    PubMed Central

    Kim, Bongjun; Geier, Michael L.; Hersam, Mark C.; Dodabalapur, Ananth

    2017-01-01

    Ambipolar and p-type single-walled carbon nanotube (SWCNT) thin-film transistors (TFTs) are reliably integrated into various complementary-like circuits on the same substrate by inkjet printing. We describe the fabrication and characteristics of inverters, ring oscillators, and NAND gates based on complementary-like circuits fabricated with such TFTs as building blocks. We also show that complementary-like circuits have potential use as chemical sensors in ambient conditions since changes to the TFT characteristics of the p-channel TFTs in the circuit alter the overall operating characteristics of the circuit. The use of circuits rather than individual devices as sensors integrates sensing and signal processing functions, thereby simplifying overall system design. PMID:28145438

  12. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    PubMed

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  13. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator

    PubMed Central

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-01-01

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing. PMID:24993440

  14. Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-10-01

    Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.

  15. Circuit model for single-energy-level trap centers in FETs

    NASA Astrophysics Data System (ADS)

    Albahrani, Sayed Ali; Parker, Anthony; Heimlich, Michael

    2016-12-01

    A circuit implementation of a single-energy-level trap center in an FET is presented. When included in transistor models it explains the temperature-potential-dependent time constants seen in the circuit manifestations of charge trapping, being gate lag and drain overshoot. The implementation is suitable for both time-domain and harmonic-balance simulations. The proposed model is based on the Shockley-Read-Hall (SRH) statistics of the trapping process. The results of isothermal pulse measurements performed on a GaN HEMT are presented. These measurement allow characterizing charge trapping in isolation from the effect of self-heating. These results are used to obtain the parameters of the proposed model.

  16. A terahertz performance of hybrid single walled CNT based amplifier with analytical approach

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Song, Hanjung

    2018-01-01

    This work is focuses on terahertz performance of hybrid single walled carbon nanotube (CNT) based amplifier and proposed for measurement of soil parameters application. The proposed circuit topology provides hybrid structure which achieves wide impedance bandwidth of 0.33 THz within range of 1.07-THz to 1.42-THz with fractional amount of 28%. The single walled RF CNT network executes proposed ambition and proves its ability to resonant at 1.25-THz with analytical approach. Moreover, a RF based microstrip transmission line radiator used as compensator in the circuit topology which achieves more than 30 dB of gain. A proper methodology is chosen for achieves stability at circuit level in order to obtain desired optimal conditions. The fundamental approach optimizes matched impedance condition at (50+j0) Ω and noise variation with impact of series resistances for the proposed hybrid circuit topology and demonstrates the accuracy of performance parameters at the circuit level. The chip fabrication of the proposed circuit by using RF based commercial CMOS process of 45 nm which reveals promising results with simulation one. Additionally, power measurement analysis achieves highest output power of 26 dBm with power added efficiency of 78%. The succeed minimum noise figure from 0.6 dB to 0.4 dB is outstanding achievement for circuit topology at terahertz range. The chip area of hybrid circuit is 0.65 mm2 and power consumption of 9.6 mW.

  17. Resolving photon number states in a superconducting circuit.

    PubMed

    Schuster, D I; Houck, A A; Schreier, J A; Wallraff, A; Gambetta, J M; Blais, A; Frunzio, L; Majer, J; Johnson, B; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-02-01

    Electromagnetic signals are always composed of photons, although in the circuit domain those signals are carried as voltages and currents on wires, and the discreteness of the photon's energy is usually not evident. However, by coupling a superconducting quantum bit (qubit) to signals on a microwave transmission line, it is possible to construct an integrated circuit in which the presence or absence of even a single photon can have a dramatic effect. Such a system can be described by circuit quantum electrodynamics (QED)-the circuit equivalent of cavity QED, where photons interact with atoms or quantum dots. Previously, circuit QED devices were shown to reach the resonant strong coupling regime, where a single qubit could absorb and re-emit a single photon many times. Here we report a circuit QED experiment in the strong dispersive limit, a new regime where a single photon has a large effect on the qubit without ever being absorbed. The hallmark of this strong dispersive regime is that the qubit transition energy can be resolved into a separate spectral line for each photon number state of the microwave field. The strength of each line is a measure of the probability of finding the corresponding photon number in the cavity. This effect is used to distinguish between coherent and thermal fields, and could be used to create a photon statistics analyser. As no photons are absorbed by this process, it should be possible to generate non-classical states of light by measurement and perform qubit-photon conditional logic, the basis of a logic bus for a quantum computer.

  18. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  19. A Single Chip Automotive Control LSI Using SOI Bipolar Complimentary MOS Double-Diffused MOS

    NASA Astrophysics Data System (ADS)

    Kawamoto, Kazunori; Mizuno, Shoji; Abe, Hirofumi; Higuchi, Yasushi; Ishihara, Hideaki; Fukumoto, Harutsugu; Watanabe, Takamoto; Fujino, Seiji; Shirakawa, Isao

    2001-04-01

    Using the example of an air bag controller, a single chip solution for automotive sub-control systems is investigated, by using a technological combination of improved circuits, bipolar complimentary metal oxide silicon double-diffused metal oxide silicon (BiCDMOS) and thick silicon on insulator (SOI). For circuits, an automotive specific reduced instruction set computer (RISC) center processing unit (CPU), and a novel, all integrated system clock generator, dividing digital phase-locked loop (DDPLL) are proposed. For the device technologies, the authors use SOI-BiCDMOS with trench dielectric-isolation (TD) which enables integration of various devices in an integrated circuit (IC) while avoiding parasitic miss operations by ideal isolation. The structures of the SOI layer and TD, are optimized for obtaining desired device characteristics and high electromagnetic interference (EMI) immunity. While performing all the air bag system functions over a wide range of supply voltage, and ambient temperature, the resulting single chip reduces the electronic parts to about a half of those in the conventional air bags. The combination of single chip oriented circuits and thick SOI-BiCDMOS technologies offered in this work is valuable for size reduction and improved reliability of automotive electronic control units (ECUs).

  20. Principle and design of small-sized and high-definition x-ray machine

    NASA Astrophysics Data System (ADS)

    Zhao, Anqing

    2010-10-01

    The paper discusses the circuit design and working principles of VMOS PWM type 75KV10mA high frequency X-ray machine. The system mainly consists of silicon controlled rectifier, VMOS tube PWM type high-frequency and highvoltage inverter circuit, filament inverter circuit, high-voltage rectifier filter circuit and as X-ray tube. The working process can be carried out under the control of a single-chip microcomputer. Due to the small size and high resolution in imaging, the X-ray machine is mostly adopted for emergent medical diagnosis and specific circumstances where nondestructive tests are conducted.

  1. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-06-01

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03169b

  2. On-chip detection of non-classical light by scalable integration of single-photon detectors

    PubMed Central

    Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk

    2015-01-01

    Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346

  3. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  4. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  5. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  6. From circuits to behaviour in the amygdala

    PubMed Central

    Janak, Patricia H.; Tye, Kay M.

    2015-01-01

    The amygdala has long been associated with emotion and motivation, playing an essential part in processing both fearful and rewarding environmental stimuli. How can a single structure be crucial for such different functions? With recent technological advances that allow for causal investigations of specific neural circuit elements, we can now begin to map the complex anatomical connections of the amygdala onto behavioural function. Understanding how the amygdala contributes to a wide array of behaviours requires the study of distinct amygdala circuits. PMID:25592533

  7. Transparent megahertz circuits from solution-processed composite thin films.

    PubMed

    Liu, Xingqiang; Wan, Da; Wu, Yun; Xiao, Xiangheng; Guo, Shishang; Jiang, Changzhong; Li, Jinchai; Chen, Tangsheng; Duan, Xiangfeng; Fan, Zhiyong; Liao, Lei

    2016-04-21

    Solution-processed amorphous oxide semiconductors have attracted considerable interest in large-area transparent electronics. However, due to its relative low carrier mobility (∼10 cm(2) V(-1) s(-1)), the demonstrated circuit performance has been limited to 800 kHz or less. Herein, we report solution-processed high-speed thin-film transistors (TFTs) and integrated circuits with an operation frequency beyond the megahertz region on 4 inch glass. The TFTs can be fabricated from an amorphous indium gallium zinc oxide/single-walled carbon nanotube (a-IGZO/SWNT) composite thin film with high yield and high carrier mobility of >70 cm(2) V(-1) s(-1). On-chip microwave measurements demonstrate that these TFTs can deliver an unprecedented operation frequency in solution-processed semiconductors, including an extrinsic cut-off frequency (f(T) = 102 MHz) and a maximum oscillation frequency (f(max) = 122 MHz). Ring oscillators further demonstrated an oscillation frequency of 4.13 MHz, for the first time, realizing megahertz circuit operation from solution-processed semiconductors. Our studies represent an important step toward high-speed solution-processed thin film electronics.

  8. Thread-Like CMOS Logic Circuits Enabled by Reel-Processed Single-Walled Carbon Nanotube Transistors via Selective Doping.

    PubMed

    Heo, Jae Sang; Kim, Taehoon; Ban, Seok-Gyu; Kim, Daesik; Lee, Jun Ho; Jur, Jesse S; Kim, Myung-Gil; Kim, Yong-Hoon; Hong, Yongtaek; Park, Sung Kyu

    2017-08-01

    The realization of large-area electronics with full integration of 1D thread-like devices may open up a new era for ultraflexible and human adaptable electronic systems because of their potential advantages in demonstrating scalable complex circuitry by a simply integrated weaving technology. More importantly, the thread-like fiber electronic devices can be achieved using a simple reel-to-reel process, which is strongly required for low-cost and scalable manufacturing technology. Here, high-performance reel-processed complementary metal-oxide-semiconductor (CMOS) integrated circuits are reported on 1D fiber substrates by using selectively chemical-doped single-walled carbon nanotube (SWCNT) transistors. With the introduction of selective n-type doping and a nonrelief photochemical patterning process, p- and n-type SWCNT transistors are successfully implemented on cylindrical fiber substrates under air ambient, enabling high-performance and reliable thread-like CMOS inverter circuits. In addition, it is noteworthy that the optimized reel-coating process can facilitate improvement in the arrangement of SWCNTs, building uniformly well-aligned SWCNT channels, and enhancement of the electrical performance of the devices. The p- and n-type SWCNT transistors exhibit field-effect mobility of 4.03 and 2.15 cm 2 V -1 s -1 , respectively, with relatively narrow distribution. Moreover, the SWCNT CMOS inverter circuits demonstrate a gain of 6.76 and relatively good dynamic operation at a supply voltage of 5.0 V. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Measurement, modeling, and simulation of cryogenic SiGe HBT amplifier circuits for fast single spin readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Curry, Matthew; Carr, Steve; Swartzentruber, Brian; Lilly, Michael; Bishop, Nathan; Carrol, Malcolm

    2015-03-01

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance typical of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will discuss calibration data, as well as modeling and simulation of cryogenic silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) circuits connected to a silicon SET and operating at 4 K. We find a continuum of solutions from simple, single-HBT amplifiers to more complex, multi-HBT circuits suitable for integration, with varying noise levels and power vs. bandwidth tradeoffs. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  10. Circuit engineering principles for construction of bipolar large-scale integrated circuit storage devices and very large-scale main memory

    NASA Astrophysics Data System (ADS)

    Neklyudov, A. A.; Savenkov, V. N.; Sergeyez, A. G.

    1984-06-01

    Memories are improved by increasing speed or the memory volume on a single chip. The most effective means for increasing speeds in bipolar memories are current control circuits with the lowest extraction times for a specific power consumption (1/4 pJ/bit). The control current circuitry involves multistage current switches and circuits accelerating transient processes in storage elements and links. Circuit principles for the design of bipolar memories with maximum speeds for an assigned minimum of circuit topology are analyzed. Two main classes of storage with current control are considered: the ECL type and super-integrated injection type storage with data capacities of N = 1/4 and N 4/16, respectively. The circuits reduce logic voltage differentials and the volumes of lexical and discharge buses and control circuit buses. The limiting speed is determined by the antiinterference requirements of the memory in storage and extraction modes.

  11. An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

    NASA Astrophysics Data System (ADS)

    Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.

    2017-08-01

    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

  12. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.

    PubMed

    Ghavami, Behnam; Raji, Mohsen; Pedram, Hossein

    2011-08-26

    Carbon nanotube field-effect transistors (CNFETs) show great promise as building blocks of future integrated circuits. However, synthesizing single-walled carbon nanotubes (CNTs) with accurate chirality and exact positioning control has been widely acknowledged as an exceedingly complex task. Indeed, density and chirality variations in CNT growth can compromise the reliability of CNFET-based circuits. In this paper, we present a novel statistical compact model to estimate the failure probability of CNFETs to provide some material and process guidelines for the design of CNFETs in gigascale integrated circuits. We use measured CNT spacing distributions within the framework of detailed failure analysis to demonstrate that both the CNT density and the ratio of metallic to semiconducting CNTs play dominant roles in defining the failure probability of CNFETs. Besides, it is argued that the large-scale integration of these devices within an integrated circuit will be feasible only if a specific range of CNT density with an acceptable ratio of semiconducting to metallic CNTs can be adjusted in a typical synthesis process.

  13. Heralded entangling quantum gate via cavity-assisted photon scattering

    NASA Astrophysics Data System (ADS)

    Borges, Halyne S.; Rossatto, Daniel Z.; Luiz, Fabrício S.; Villas-Boas, Celso J.

    2018-01-01

    We theoretically investigate the generation of heralded entanglement between two identical atoms via cavity-assisted photon scattering in two different configurations, namely, either both atoms confined in the same cavity or trapped into locally separated ones. Our protocols are given by a very simple and elegant single-step process, the key mechanism of which is a controlled-phase-flip gate implemented by impinging a single photon on single-sided cavities. In particular, when the atoms are localized in remote cavities, we introduce a single-step parallel quantum circuit instead of the serial process extensively adopted in the literature. We also show that such parallel circuit can be straightforwardly applied to entangle two macroscopic clouds of atoms. Both protocols proposed here predict a high entanglement degree with a success probability close to unity for state-of-the-art parameters. Among other applications, our proposal and its extension to multiple atom-cavity systems step toward a suitable route for quantum networking, in particular for quantum state transfer, quantum teleportation, and nonlocal quantum memory.

  14. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip.

    PubMed

    Shulaker, Max M; Hills, Gage; Park, Rebecca S; Howe, Roger T; Saraswat, Krishna; Wong, H-S Philip; Mitra, Subhasish

    2017-07-05

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors-promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage-fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce 'highly processed' information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  15. Thermal Radiometer Signal Processing Using Radiation Hard CMOS Application Specific Integrated Circuits for Use in Harsh Planetary Environments

    NASA Technical Reports Server (NTRS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-01-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-sq cm/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  16. Thermal Radiometer Signal Processing using Radiation Hard CMOS Application Specific Integrated Circuits for use in Harsh Planetary Environments

    NASA Astrophysics Data System (ADS)

    Quilligan, G.; DuMonthier, J.; Aslam, S.; Lakew, B.; Kleyner, I.; Katz, R.

    2015-10-01

    Thermal radiometers such as proposed for the Europa Clipper flyby mission [1] require low noise signal processing for thermal imaging with immunity to Total Ionizing Dose (TID) and Single Event Latchup (SEL). Described is a second generation Multi- Channel Digitizer (MCD2G) Application Specific Integrated Circuit (ASIC) that accurately digitizes up to 40 thermopile pixels with greater than 50 Mrad (Si) immunity TID and 174 MeV-cm2/mg SEL. The MCD2G ASIC uses Radiation Hardened By Design (RHBD) techniques with a 180 nm CMOS process node.

  17. A novel prediction method about single components of analog circuits based on complex field modeling.

    PubMed

    Zhou, Jingyu; Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments.

  18. A Robust High-Performance GPS L1 Receiver with Single-stage Quadrature Redio-Frequency Circuit

    NASA Astrophysics Data System (ADS)

    Liu, Jianghua; Xu, Weilin; Wan, Qinq; Liu, Tianci

    2018-03-01

    A low power current reuse single-stage quadrature raido-frequency part (SQRF) is proposed for GPS L1 receiver in 180nm CMOS process. The proposed circuit consists of LNA, Mixer, QVCO, is called the QLMV cell. A two blocks stacked topology is adopted in this design. The parallel QVCO and mixer placed on the top forms the upper stacked block, and the LNA placed on the bottom forms the other stacked block. The two blocks share the current and achieve low power performance. To improve the stability, a float current source is proposed. The float current isolated the local oscillation signal and the input RF signal, which bring the whole circuit robust high-performance. The result shows conversion gain is 34 dB, noise figure is three dB, the phase noise is -110 dBc/Hz at 1MHz and IIP3 is -20 dBm. The proposed circuit dissipated 1.7mW with 1 V supply voltage.

  19. Realisation of all 16 Boolean logic functions in a single magnetoresistance memory cell.

    PubMed

    Gao, Shuang; Yang, Guang; Cui, Bin; Wang, Shouguo; Zeng, Fei; Song, Cheng; Pan, Feng

    2016-07-07

    Stateful logic circuits based on next-generation nonvolatile memories, such as magnetoresistance random access memory (MRAM), promise to break the long-standing von Neumann bottleneck in state-of-the-art data processing devices. For the successful commercialisation of stateful logic circuits, a critical step is realizing the best use of a single memory cell to perform logic functions. In this work, we propose a method for implementing all 16 Boolean logic functions in a single MRAM cell, namely a magnetoresistance (MR) unit. Based on our experimental results, we conclude that this method is applicable to any MR unit with a double-hump-like hysteresis loop, especially pseudo-spin-valve magnetic tunnel junctions with a high MR ratio. Moreover, after simply reversing the correspondence between voltage signals and output logic values, this method could also be applicable to any MR unit with a double-pit-like hysteresis loop. These results may provide a helpful solution for the final commercialisation of MRAM-based stateful logic circuits in the near future.

  20. Temporal Interactions between Cortical Rhythms

    PubMed Central

    Roopun, Anita K.; Kramer, Mark A.; Carracedo, Lucy M.; Kaiser, Marcus; Davies, Ceri H.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.

    2008-01-01

    Multiple local neuronal circuits support different, discrete frequencies of network rhythm in neocortex. Relationships between different frequencies correspond to mechanisms designed to minimise interference, couple activity via stable phase interactions, and control the amplitude of one frequency relative to the phase of another. These mechanisms are proposed to form a framework for spectral information processing. Individual local circuits can also transform their frequency through changes in intrinsic neuronal properties and interactions with other oscillating microcircuits. Here we discuss a frequency transformation in which activity in two co-active local circuits may combine sequentially to generate a third frequency whose period is the concatenation sum of the original two. With such an interaction, the intrinsic periodicity in each component local circuit is preserved – alternate, single periods of each original rhythm form one period of a new frequency – suggesting a robust mechanism for combining information processed on multiple concurrent spatiotemporal scales. PMID:19225587

  1. Variable self-powered light detection CMOS chip with real-time adaptive tracking digital output based on a novel on-chip sensor.

    PubMed

    Wang, HongYi; Fan, Youyou; Lu, Zhijian; Luo, Tao; Fu, Houqiang; Song, Hongjiang; Zhao, Yuji; Christen, Jennifer Blain

    2017-10-02

    This paper provides a solution for a self-powered light direction detection with digitized output. Light direction sensors, energy harvesting photodiodes, real-time adaptive tracking digital output unit and other necessary circuits are integrated on a single chip based on a standard 0.18 µm CMOS process. Light direction sensors proposed have an accuracy of 1.8 degree over a 120 degree range. In order to improve the accuracy, a compensation circuit is presented for photodiodes' forward currents. The actual measurement precision of output is approximately 7 ENOB. Besides that, an adaptive under voltage protection circuit is designed for variable supply power which may undulate with temperature and process.

  2. DAMT - DISTRIBUTED APPLICATION MONITOR TOOL (HP9000 VERSION)

    NASA Technical Reports Server (NTRS)

    Keith, B.

    1994-01-01

    Typical network monitors measure status of host computers and data traffic among hosts. A monitor to collect statistics about individual processes must be unobtrusive and possess the ability to locate and monitor processes, locate and monitor circuits between processes, and report traffic back to the user through a single application program interface (API). DAMT, Distributed Application Monitor Tool, is a distributed application program that will collect network statistics and make them available to the user. This distributed application has one component (i.e., process) on each host the user wishes to monitor as well as a set of components at a centralized location. DAMT provides the first known implementation of a network monitor at the application layer of abstraction. Potential users only need to know the process names of the distributed application they wish to monitor. The tool locates the processes and the circuit between them, and reports any traffic between them at a user-defined rate. The tool operates without the cooperation of the processes it monitors. Application processes require no changes to be monitored by this tool. Neither does DAMT require the UNIX kernel to be recompiled. The tool obtains process and circuit information by accessing the operating system's existing process database. This database contains all information available about currently executing processes. Expanding the information monitored by the tool can be done by utilizing more information from the process database. Traffic on a circuit between processes is monitored by a low-level LAN analyzer that has access to the raw network data. The tool also provides features such as dynamic event reporting and virtual path routing. A reusable object approach was used in the design of DAMT. The tool has four main components; the Virtual Path Switcher, the Central Monitor Complex, the Remote Monitor, and the LAN Analyzer. All of DAMT's components are independent, asynchronously executing processes. The independent processes communicate with each other via UNIX sockets through a Virtual Path router, or Switcher. The Switcher maintains a routing table showing the host of each component process of the tool, eliminating the need for each process to do so. The Central Monitor Complex provides the single application program interface (API) to the user and coordinates the activities of DAMT. The Central Monitor Complex is itself divided into independent objects that perform its functions. The component objects are the Central Monitor, the Process Locator, the Circuit Locator, and the Traffic Reporter. Each of these objects is an independent, asynchronously executing process. User requests to the tool are interpreted by the Central Monitor. The Process Locator identifies whether a named process is running on a monitored host and which host that is. The circuit between any two processes in the distributed application is identified using the Circuit Locator. The Traffic Reporter handles communication with the LAN Analyzer and accumulates traffic updates until it must send a traffic report to the user. The Remote Monitor process is replicated on each monitored host. It serves the Central Monitor Complex processes with application process information. The Remote Monitor process provides access to operating systems information about currently executing processes. It allows the Process Locator to find processes and the Circuit Locator to identify circuits between processes. It also provides lifetime information about currently monitored processes. The LAN Analyzer consists of two processes. Low-level monitoring is handled by the Sniffer. The Sniffer analyzes the raw data on a single, physical LAN. It responds to commands from the Analyzer process, which maintains the interface to the Traffic Reporter and keeps track of which circuits to monitor. DAMT is written in C-language for HP-9000 series computers running HP-UX and Sun 3 and 4 series computers running SunOS. DAMT requires 1Mb of disk space and 4Mb of RAM for execution. This package requires MIT's X Window System, Version 11 Revision 4, with OSF/Motif 1.1. The HP-9000 version (GSC-13589) includes sample HP-9000/375 and HP-9000/730 executables which were compiled under HP-UX, and the Sun version (GSC-13559) includes sample Sun3 and Sun4 executables compiled under SunOS. The standard distribution medium for the HP version of DAMT is a .25 inch HP pre-formatted streaming magnetic tape cartridge in UNIX tar format. It is also available on a 4mm magnetic tape in UNIX tar format. The standard distribution medium for the Sun version of DAMT is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. DAMT was developed in 1992.

  3. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, A.M.

    1997-10-07

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.

  4. Silicon on insulator achieved using electrochemical etching

    DOEpatents

    McCarthy, Anthony M.

    1997-01-01

    Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.

  5. DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS

    DTIC Science & Technology

    2017-10-01

    DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS UNIVERSITY OF SOUTHERN CALIFORNIA OCTOBER 2017 FINAL...SUBTITLE DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS 5a. CONTRACT NUMBER FA8750-15-C-0203 5b. GRANT NUMBER N/A 5c. PROGRAM...of this project was to investigate the state-of-the-art in design and optimization of single-flux quantum (SFQ) logic circuits, e.g., RSFQ and ERSFQ

  6. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  7. Single-Event Effects in High-Frequency Linear Amplifiers: Experiment and Analysis

    NASA Astrophysics Data System (ADS)

    Zeinolabedinzadeh, Saeed; Ying, Hanbin; Fleetwood, Zachary E.; Roche, Nicolas J.-H.; Khachatrian, Ani; McMorrow, Dale; Buchner, Stephen P.; Warner, Jeffrey H.; Paki-Amouzou, Pauline; Cressler, John D.

    2017-01-01

    The single-event transient (SET) response of two different silicon-germanium (SiGe) X-band (8-12 GHz) low noise amplifier (LNA) topologies is fully investigated in this paper. The two LNAs were designed and implemented in 130nm SiGe HBT BiCMOS process technology. Two-photon absorption (TPA) laser pulses were utilized to induce transients within various devices in these LNAs. Impulse response theory is identified as a useful tool for predicting the settling behavior of the LNAs subjected to heavy ion strikes. Comprehensive device and circuit level modeling and simulations were performed to accurately simulate the behavior of the circuits under ion strikes. The simulations agree well with TPA measurements. The simulation, modeling and analysis presented in this paper can be applied for any other circuit topologies for SET modeling and prediction.

  8. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  9. The effect of reinforcement on the tear properties of flexible circuits

    NASA Astrophysics Data System (ADS)

    Acton, A. E.

    The tear properties of Kapton flexible circuitry are very poor. To better understand the properties of flex circuits and how to reinforce them, four different reinforcing materials were applied to a typical flex circuit and the tear properties were measured. Teflon film, nylon fabric, glass fabric and Kevlar fabric were all laminated to a flex circuit with Pyralux (a Dupont tradename) adhesive. The fabrics were laminated in both a 0/90 and a + or - 45 configuration. Five tests wereperformed, Graves, crescent, trousers, tensile and single edge notch (SEN). Of the four materials used for reinforcement, Kevlar clearly showed the greatest overall improvement in tear properties. However, Kevlar also provided the greatest processing difficulties. All of the reinforced circuits had an increase in thickness which resulted in an unacceptable loss of flexibility.

  10. A Novel Prediction Method about Single Components of Analog Circuits Based on Complex Field Modeling

    PubMed Central

    Tian, Shulin; Yang, Chenglin

    2014-01-01

    Few researches pay attention to prediction about analog circuits. The few methods lack the correlation with circuit analysis during extracting and calculating features so that FI (fault indicator) calculation often lack rationality, thus affecting prognostic performance. To solve the above problem, this paper proposes a novel prediction method about single components of analog circuits based on complex field modeling. Aiming at the feature that faults of single components hold the largest number in analog circuits, the method starts with circuit structure, analyzes transfer function of circuits, and implements complex field modeling. Then, by an established parameter scanning model related to complex field, it analyzes the relationship between parameter variation and degeneration of single components in the model in order to obtain a more reasonable FI feature set via calculation. According to the obtained FI feature set, it establishes a novel model about degeneration trend of analog circuits' single components. At last, it uses particle filter (PF) to update parameters for the model and predicts remaining useful performance (RUP) of analog circuits' single components. Since calculation about the FI feature set is more reasonable, accuracy of prediction is improved to some extent. Finally, the foregoing conclusions are verified by experiments. PMID:25147853

  11. Slow Computing Simulation of Bio-plausible Control

    DTIC Science & Technology

    2012-03-01

    information networks, neuromorphic chips would become necessary. Small unstable flying platforms currently require RTK, GPS, or Vicon closed-circuit...Visual, and IR Sensing FPGA ASIC Neuromorphic Chip Simulation Quad Rotor Robotic Insect Uniform Independent Network Single Modality Neural Network... neuromorphic Processing across parallel computational elements =0.54 N u m b e r o f c o m p u ta tio n s - No info 14 integrated circuit

  12. Optimization Methods for Spiking Neurons and Networks

    PubMed Central

    Russell, Alexander; Orchard, Garrick; Dong, Yi; Mihalaş, Ştefan; Niebur, Ernst; Tapson, Jonathan; Etienne-Cummings, Ralph

    2011-01-01

    Spiking neurons and spiking neural circuits are finding uses in a multitude of tasks such as robotic locomotion control, neuroprosthetics, visual sensory processing, and audition. The desired neural output is achieved through the use of complex neuron models, or by combining multiple simple neurons into a network. In either case, a means for configuring the neuron or neural circuit is required. Manual manipulation of parameters is both time consuming and non-intuitive due to the nonlinear relationship between parameters and the neuron’s output. The complexity rises even further as the neurons are networked and the systems often become mathematically intractable. In large circuits, the desired behavior and timing of action potential trains may be known but the timing of the individual action potentials is unknown and unimportant, whereas in single neuron systems the timing of individual action potentials is critical. In this paper, we automate the process of finding parameters. To configure a single neuron we derive a maximum likelihood method for configuring a neuron model, specifically the Mihalas–Niebur Neuron. Similarly, to configure neural circuits, we show how we use genetic algorithms (GAs) to configure parameters for a network of simple integrate and fire with adaptation neurons. The GA approach is demonstrated both in software simulation and hardware implementation on a reconfigurable custom very large scale integration chip. PMID:20959265

  13. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution.

    PubMed

    Chiang, Ann-Shyn; Lin, Chih-Yung; Chuang, Chao-Chun; Chang, Hsiu-Ming; Hsieh, Chang-Huain; Yeh, Chang-Wei; Shih, Chi-Tin; Wu, Jian-Jheng; Wang, Guo-Tzau; Chen, Yung-Chang; Wu, Cheng-Chi; Chen, Guan-Yu; Ching, Yu-Tai; Lee, Ping-Chang; Lin, Chih-Yang; Lin, Hui-Hao; Wu, Chia-Chou; Hsu, Hao-Wei; Huang, Yun-Ann; Chen, Jing-Yi; Chiang, Hsin-Jung; Lu, Chun-Fang; Ni, Ru-Fen; Yeh, Chao-Yuan; Hwang, Jenn-Kang

    2011-01-11

    Animal behavior is governed by the activity of interconnected brain circuits. Comprehensive brain wiring maps are thus needed in order to formulate hypotheses about information flow and also to guide genetic manipulations aimed at understanding how genes and circuits orchestrate complex behaviors. To assemble this map, we deconstructed the adult Drosophila brain into approximately 16,000 single neurons and reconstructed them into a common standardized framework to produce a virtual fly brain. We have constructed a mesoscopic map and found that it consists of 41 local processing units (LPUs), six hubs, and 58 tracts covering the whole Drosophila brain. Despite individual local variation, the architecture of the Drosophila brain shows invariance for both the aggregation of local neurons (LNs) within specific LPUs and for the connectivity of projection neurons (PNs) between the same set of LPUs. An open-access image database, named FlyCircuit, has been constructed for online data archiving, mining, analysis, and three-dimensional visualization of all single neurons, brain-wide LPUs, their wiring diagrams, and neural tracts. We found that the Drosophila brain is assembled from families of multiple LPUs and their interconnections. This provides an essential first step in the analysis of information processing within and between neurons in a complete brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.

    PubMed

    Badel, Adrien; Benayad, Abdelmjid; Lefeuvre, Elie; Lebrun, Laurent; Richard, Claude; Guyomar, Daniel

    2006-04-01

    This paper compares the performances of vibration-powered electrical generators using a piezoelectric ceramic and a piezoelectric single crystal associated to several power conditioning circuits. A new approach of the piezoelectric power conversion based on a nonlinear voltage processing is presented, leading to three novel high performance power conditioning interfaces. Theoretical predictions and experimental results show that the nonlinear processing technique may increase the power harvested by a factor of 8 compared to standard techniques. Moreover, it is shown that, for a given energy harvesting technique, generators using single crystals deliver 20 times more power than generators using piezoelectric ceramics.

  15. Fabricating a Microcomputer on a Single Silicon Wafer

    NASA Technical Reports Server (NTRS)

    Evanchuk, V. L.

    1983-01-01

    Concept for "microcomputer on a slice" reduces microcomputer costs by eliminating scribing, wiring, and packaging of individual circuit chips. Low-cost microcomputer on silicon slice contains redundant components. All components-central processing unit, input/output circuitry, read-only memory, and random-access memory (CPU, I/O, ROM, and RAM) on placed on single silicon wafer.

  16. Compensation for Lithography Induced Process Variations during Physical Design

    NASA Astrophysics Data System (ADS)

    Chin, Eric Yiow-Bing

    This dissertation addresses the challenge of designing robust integrated circuits in the deep sub micron regime in the presence of lithography process variability. By extending and combining existing process and circuit analysis techniques, flexible software frameworks are developed to provide detailed studies of circuit performance in the presence of lithography variations such as focus and exposure. Applications of these software frameworks to select circuits demonstrate the electrical impact of these variations and provide insight into variability aware compact models that capture the process dependent circuit behavior. These variability aware timing models abstract lithography variability from the process level to the circuit level and are used to estimate path level circuit performance with high accuracy with very little overhead in runtime. The Interconnect Variability Characterization (IVC) framework maps lithography induced geometrical variations at the interconnect level to electrical delay variations. This framework is applied to one dimensional repeater circuits patterned with both 90nm single patterning and 32nm double patterning technologies, under the presence of focus, exposure, and overlay variability. Studies indicate that single and double patterning layouts generally exhibit small variations in delay (between 1--3%) due to self compensating RC effects associated with dense layouts and overlay errors for layouts without self-compensating RC effects. The delay response of each double patterned interconnect structure is fit with a second order polynomial model with focus, exposure, and misalignment parameters with 12 coefficients and residuals of less than 0.1ps. The IVC framework is also applied to a repeater circuit with cascaded interconnect structures to emulate more complex layout scenarios, and it is observed that the variations on each segment average out to reduce the overall delay variation. The Standard Cell Variability Characterization (SCVC) framework advances existing layout-level lithography aware circuit analysis by extending it to cell-level applications utilizing a physically accurate approach that integrates process simulation, compact transistor models, and circuit simulation to characterize electrical cell behavior. This framework is applied to combinational and sequential cells in the Nangate 45nm Open Cell Library, and the timing response of these cells to lithography focus and exposure variations demonstrate Bossung like behavior. This behavior permits the process parameter dependent response to be captured in a nine term variability aware compact model based on Bossung fitting equations. For a two input NAND gate, the variability aware compact model captures the simulated response to an accuracy of 0.3%. The SCVC framework is also applied to investigate advanced process effects including misalignment and layout proximity. The abstraction of process variability from the layout level to the cell level opens up an entire new realm of circuit analysis and optimization and provides a foundation for path level variability analysis without the computationally expensive costs associated with joint process and circuit simulation. The SCVC framework is used with slight modification to illustrate the speedup and accuracy tradeoffs of using compact models. With variability aware compact models, the process dependent performance of a three stage logic circuit can be estimated to an accuracy of 0.7% with a speedup of over 50,000. Path level variability analysis also provides an accurate estimate (within 1%) of ring oscillator period in well under a second. Another significant advantage of variability aware compact models is that they can be easily incorporated into existing design methodologies for design optimization. This is demonstrated by applying cell swapping on a logic circuit to reduce the overall delay variability along a circuit path. By including these variability aware compact models in cell characterization libraries, design metrics such as circuit timing, power, area, and delay variability can be quickly assessed to optimize for the correct balance of all design metrics, including delay variability. Deterministic lithography variations can be easily captured using the variability aware compact models described in this dissertation. However, another prominent source of variability is random dopant fluctuations, which affect transistor threshold voltage and in turn circuit performance. The SCVC framework is utilized to investigate the interactions between deterministic lithography variations and random dopant fluctuations. Monte Carlo studies show that the output delay distribution in the presence of random dopant fluctuations is dependent on lithography focus and exposure conditions, with a 3.6 ps change in standard deviation across the focus exposure process window. This indicates that the electrical impact of random variations is dependent on systematic lithography variations, and this dependency should be included for precise analysis.

  17. Comparison of extrinsic and intrinsic neuromodulation in two central pattern generator circuits in invertebrates.

    PubMed

    Katz, P S

    1998-05-01

    There are many sources of modulatory input to CPGs and other types of neuronal circuits. These inputs can change the properties of cells and synapses and dramatically alter the production of motor patterns. Sometimes this enables the production of motor patterns by the circuit. At other times, the modulation allows alternate motor patterns to be produced by a single circuit. Modulatory neurones have fast as well as slow actions. In some cases, such as with GPR, the two types of effects are due to the release of co-transmitters. In other cases, such as with the DSIs, a single substance can act at different receptors to cause fast and slow postsynaptic actions. The effect of a neuromodulatory neurone is determined by the type of receptor on the target neurone. Thus a single modulatory neurone evokes a suite of actions in a circuit and thereby produces a co-ordinated output. Extrinsic and intrinsic sources of neuromodulation have different sets of constraints acting upon them. For example, extrinsic neuromodulation can easily be used for motor pattern selection; a different pattern is produced depending upon which modulatory inputs are active. However, intrinsic neuromodulation is not well suited to that task. Instead, it is useful for self-organizing properties and experience-dependent effects. One clear conclusion from this work and other work in the field is that neuromodulation by neurones intrinsic and extrinsic to CPGs is not uncommon (Katz, 1995; Katz & Frost, 1996). It is part of the normal process of motor pattern generation. As such, it needs to be considered when discussing mechanisms for neuronal circuit actions.

  18. Energy and Timing Measurement with Time-Based Detector Readout for PET Applications: Principle and Validation with Discrete Circuit Components

    PubMed Central

    Sun, Xishan; Lan, Allan K.; Bircher, Chad; Deng, Zhi; Liu, Yinong; Shao, Yiping

    2011-01-01

    A new signal processing method for PET application has been developed, with discrete circuit components to measure energy and timing of a gamma interaction based solely on digital timing processing without using an amplitude-to-digital convertor (ADC) or a constant fraction discriminator (CFD). A single channel discrete component time-based readout (TBR) circuit was implemented in a PC board. Initial circuit functionality and performance evaluations have been conducted. Accuracy and linearity of signal amplitude measurement were excellent, as measured with test pulses. The measured timing accuracy from test pulses reached to less than 300 ps, a value limited mainly by the timing jitter of the prototype electronics circuit. Both suitable energy and coincidence timing resolutions (~18% and ~1.0 ns) have been achieved with 3 × 3 × 20 mm3 LYSO scintillator and photomultiplier tube-based detectors. With its relatively simple circuit and low cost, TBR is expected to be a suitable front-end signal readout electronics for compact PET or other radiation detectors requiring the reading of a large number of detector channels and demanding high performance for energy and timing measurement. PMID:21743761

  19. High-voltage solar-cell chip

    NASA Technical Reports Server (NTRS)

    Kapoor, V. J.; Valco, G. J.; Skebe, G. G.; Evans, J. C., Jr.

    1985-01-01

    Integrated circuit technology has been successfully applied to the design and fabrication of 0.5 x 0.5-cm planar multijunction solar-cell chips. Each of these solar cells consisted of six voltage-generating unit cells monolithically connected in series and fabricated on a 75-micron-thick, p-type, single crystal, silicon substrate. A contact photolithic process employing five photomask levels together with a standard microelectronics batch-processing technique were used to construct the solar-cell chip. The open-circuit voltage increased rapidly with increasing illumination up to 5 AM1 suns where it began to saturate at the sum of the individual unit-cell voltages at a maximum of 3.0 V. A short-circuit current density per unit cell of 240 mA/sq cm was observed at 10 AM1 suns.

  20. Prototype Parts of a Digital Beam-Forming Wide-Band Receiver

    NASA Technical Reports Server (NTRS)

    Kaplan, Steven B.; Pylov, Sergey V.; Pambianchi, Michael

    2003-01-01

    Some prototype parts of a digital beamforming (DBF) receiver that would operate at multigigahertz carrier frequencies have been developed. The beam-forming algorithm in a DBF receiver processes signals from multiple antenna elements with appropriate time delays and weighting factors chosen to enhance the reception of signals from a specific direction while suppressing signals from other directions. Such a receiver would be used in the directional reception of weak wideband signals -- for example, spread-spectrum signals from a low-power transmitter on an Earth-orbiting spacecraft or other distant source. The prototype parts include superconducting components on integrated-circuit chips, and a multichip module (MCM), within which the chips are to be packaged and connected via special inter-chip-communication circuits. The design and the underlying principle of operation are based on the use of the rapid single-flux quantum (RSFQ) family of logic circuits to obtain the required processing speed and signal-to-noise ratio. RSFQ circuits are superconducting circuits that exploit the Josephson effect. They are well suited for this application, having been proven to perform well in some circuits at frequencies above 100 GHz. In order to maintain the superconductivity needed for proper functioning of the RSFQ circuits, the MCM must be kept in a cryogenic environment during operation.

  1. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circuit, except circuits which include any track rail and except the common return wires of single-wire, single-break, signal control circuits using a grounded common, and alternating current power distribution...

  2. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circuit, except circuits which include any track rail and except the common return wires of single-wire, single-break, signal control circuits using a grounded common, and alternating current power distribution...

  3. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circuit, except circuits which include any track rail and except the common return wires of single-wire, single-break, signal control circuits using a grounded common, and alternating current power distribution...

  4. Quantum optical circulator controlled by a single chirally coupled atom

    NASA Astrophysics Data System (ADS)

    Scheucher, Michael; Hilico, Adèle; Will, Elisa; Volz, Jürgen; Rauschenbeutel, Arno

    2016-12-01

    Integrated nonreciprocal optical components, which have an inherent asymmetry between their forward and backward propagation direction, are key for routing signals in photonic circuits. Here, we demonstrate a fiber-integrated quantum optical circulator operated by a single atom. Its nonreciprocal behavior arises from the chiral interaction between the atom and the transversally confined light. We demonstrate that the internal quantum state of the atom controls the operation direction of the circulator and that it features a strongly nonlinear response at the single-photon level. This enables, for example, photon number-dependent routing and novel quantum simulation protocols. Furthermore, such a circulator can in principle be prepared in a coherent superposition of its operational states and may become a key element for quantum information processing in scalable integrated optical circuits.

  5. Efficient fuzzy C-means architecture for image segmentation.

    PubMed

    Li, Hui-Ya; Hwang, Wen-Jyi; Chang, Chia-Yen

    2011-01-01

    This paper presents a novel VLSI architecture for image segmentation. The architecture is based on the fuzzy c-means algorithm with spatial constraint for reducing the misclassification rate. In the architecture, the usual iterative operations for updating the membership matrix and cluster centroid are merged into one single updating process to evade the large storage requirement. In addition, an efficient pipelined circuit is used for the updating process for accelerating the computational speed. Experimental results show that the the proposed circuit is an effective alternative for real-time image segmentation with low area cost and low misclassification rate.

  6. Rhythmic coordination of hippocampal neurons during associative memory processing

    PubMed Central

    Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard

    2016-01-01

    Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780

  7. A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations.

    PubMed

    Tsai, Tsung-Heng; Tsai, Hao-Cheng; Wu, Tien-Keng

    2014-10-01

    This paper presents a capacitive tactile sensor fabricated in a standard CMOS process. Both of the sensor and readout circuits are integrated on a single chip by a TSMC 0.35 μm CMOS MEMS technology. In order to improve the sensitivity, a T-shaped protrusion is proposed and implemented. This sensor comprises the metal layer and the dielectric layer without extra thin film deposition, and can be completed with few post-processing steps. By a nano-indenter, the measured spring constant of the T-shaped structure is 2.19 kNewton/m. Fully differential correlated double sampling capacitor-to-voltage converter (CDS-CVC) and reference capacitor correction are utilized to compensate process variations and improve the accuracy of the readout circuits. The measured displacement-to-voltage transductance is 7.15 mV/nm, and the sensitivity is 3.26 mV/μNewton. The overall power dissipation is 132.8 μW.

  8. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  9. Using Movies to Analyse Gene Circuit Dynamics in Single Cells

    PubMed Central

    Locke, James CW; Elowitz, Michael B

    2010-01-01

    Preface Many bacterial systems rely on dynamic genetic circuits to control critical processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages wash out critical dynamics that are either unsynchronized between cells or driven by fluctuations, or ‘noise,’ in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis, and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems. PMID:19369953

  10. Brains are not just neurons. Comment on “Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition” by Fitch

    NASA Astrophysics Data System (ADS)

    Huber, Ludwig

    2014-09-01

    This comment addresses the first component of Fitch's framework: the computational power of single neurons [3]. Although I agree that traditional models of neural computation have vastly underestimated the computational power of single neurons, I am hesitant to follow him completely. The exclusive focus on neurons is likely to underestimate the importance of other cells in the brain. In the last years, two such cell types have received appropriate attention by neuroscientists: interneurons and glia. Interneurons are small, tightly packed cells involved in the control of information processing in learning and memory. Rather than transmitting externally (like motor or sensory neurons), these neurons process information within internal circuits of the brain (therefore also called 'relay neurons'). Some specialized interneuron subtypes temporally regulate the flow of information in a given cortical circuit during relevant behavioral events [4]. In the human brain approx. 100 billion interneurons control information processing and are implicated in disorders such as epilepsy and Parkinson's.

  11. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium.

    PubMed

    Fern, Joshua; Schulman, Rebecca

    2017-09-15

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, in particular DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as the use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Together, these results provide a basic route to increased DNA circuit stability in cell culture environments.

  12. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium

    DOE PAGES

    Fern, Joshua; Schulman, Rebecca

    2017-05-30

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less

  13. Design and Characterization of DNA Strand-Displacement Circuits in Serum-Supplemented Cell Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fern, Joshua; Schulman, Rebecca

    The functional stability and lifetimes of synthetic molecular circuits in biological environments are important for long-term, stable sensors or controllers of cell or tissue behavior. DNA-based molecular circuits, particularly DNA strand-displacement circuits, provide simple and effective biocompatible control mechanisms and sensors, but are vulnerable to digestion by nucleases present in living tissues and serum-supplemented cell culture. The stability of double-stranded and single-stranded DNA circuit components in serum-supplemented cell medium and the corresponding effect of nuclease-mediated degradation on circuit performance were characterized to determine the major routes of degradation and DNA strand-displacement circuit failure. Simple circuit design choices, such as themore » use of 5' toeholds within the DNA complexes used as reactants in the strand-displacement reactions and the termination of single-stranded components with DNA hairpin domains at the 3' termini, significantly increase the functional lifetime of the circuit components in the presence of nucleases. Furthermore, simulations of multireaction circuits, guided by the experimentally measured operation of single-reaction circuits, enable predictive realization of multilayer and competitive-reaction circuit behavior. Altogether, these results provide a basic route to increased DNA circuit stability in cell culture environments.« less

  14. Effects of /spl gamma/-rays on JFET devices and circuits fabricated in a detector-compatible Process

    NASA Astrophysics Data System (ADS)

    Betta, G. F. D.; Manghisoni, M.; Ratti, L.; Re, V.; Speziali, V.; Traversi, G.

    2003-12-01

    This work is concerned with the effects of /spl gamma/-rays on the static, signal and noise characteristics of JFET-based circuits belonging to a fabrication technology made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST), Trento, Italy. Such a process has been tuned with the aim of monolithically integrating the readout electronics on the same highly resistive substrate as multielectrode silicon detectors. The radiation tolerance of some test structures, including single devices and charge sensitive amplifiers, was studied in view of low-noise applications in industrial and medical imaging, X- and /spl gamma/-ray astronomy and high energy physics experiments. This paper intends to fill the gap in the study of gamma radiation effects on JFET devices and circuits belonging to detector-compatible technologies.

  15. A ‘tool box’ for deciphering neuronal circuits in the developing chick spinal cord

    PubMed Central

    Hadas, Yoav; Etlin, Alex; Falk, Haya; Avraham, Oshri; Kobiler, Oren; Panet, Amos; Lev-Tov, Aharon; Klar, Avihu

    2014-01-01

    The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering ‘tool box’ for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation. PMID:25147209

  16. Coherent control of single electrons: a review of current progress

    NASA Astrophysics Data System (ADS)

    Bäuerle, Christopher; Glattli, D. Christian; Meunier, Tristan; Portier, Fabien; Roche, Patrice; Roulleau, Preden; Takada, Shintaro; Waintal, Xavier

    2018-05-01

    In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.

  17. FPGA-based gating and logic for multichannel single photon counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C; Earl, Dennis Duncan; Evans, Philip G

    2012-01-01

    We present results characterizing multichannel InGaAs single photon detectors utilizing gated passive quenching circuits (GPQC), self-differencing techniques, and field programmable gate array (FPGA)-based logic for both diode gating and coincidence counting. Utilizing FPGAs for the diode gating frontend and the logic counting backend has the advantage of low cost compared to custom built logic circuits and current off-the-shelf detector technology. Further, FPGA logic counters have been shown to work well in quantum key distribution (QKD) test beds. Our setup combines multiple independent detector channels in a reconfigurable manner via an FPGA backend and post processing in order to perform coincidencemore » measurements between any two or more detector channels simultaneously. Using this method, states from a multi-photon polarization entangled source are detected and characterized via coincidence counting on the FPGA. Photons detection events are also processed by the quantum information toolkit for application testing (QITKAT)« less

  18. Plasmonic Circuit Theory for Multiresonant Light Funneling to a Single Spatial Hot Spot.

    PubMed

    Hughes, Tyler W; Fan, Shanhui

    2016-09-14

    We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

  19. Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler.

    PubMed

    Yamashita, Taro; Miki, Shigehito; Terai, Hirotaka; Makise, Kazumasa; Wang, Zhen

    2012-07-15

    We demonstrate the successful operation of a multielement superconducting nanowire single-photon detector (SSPD) array integrated with a single-flux-quantum (SFQ) readout circuit in a compact 0.1 W Gifford-McMahon cryocooler. A time-resolved readout technique, where output signals from each element enter the SFQ readout circuit with finite time intervals, revealed crosstalk-free operation of the four-element SSPD array connected with the SFQ readout circuit. The timing jitter and the system detection efficiency were measured to be 50 ps and 11.4%, respectively, which were comparable to the performance of practical single-pixel SSPD systems.

  20. Other origins for the fluorescence modulation of single dye molecules in open-circuit and short-circuit devices.

    PubMed

    Teguh, Jefri S; Kurniawan, Michael; Wu, Xiangyang; Sum, Tze Chien; Yeow, Edwin K L

    2013-01-07

    Fluorescence intensity modulation of single Atto647N dye molecules in a short-circuit device and a defective device, caused by damaging an open-circuit device, is due to a variation in the excitation light focus as a result of the formation of an alternating electric current.

  1. An automated approach for single-cell tracking in epifluorescence microscopy applied to E. coli growth analysis on microfluidics biochips

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Kirov, Boris; Jaramillo, Alfonso; Lefevre, Christophe

    2012-03-01

    With the accumulation of knowledge for the intimate molecular mechanisms governing the processes inside the living cells in the later years, the ability to characterize the performance of elementary genetic circuits and parts at the single-cell level is becoming of crucial importance. Biological science is arriving to the point where it can develop hypothesis for the action of each molecule participating in the biochemical reactions and need proper techniques to test those hypothesis. Microfluidics is emerging as the technology that combined with high-magnification microscopy will allow for the long-term single-cell level observation of bacterial physiology. In this study we design, build and characterize the gene dynamics of genetic circuits as one of the basic parts governing programmed cell behavior. We use E. coli as model organism and grow it in microfluidics chips, which we observe with epifluorescence microscopy. One of the most invaluable segments of this technology is the consequent image processing, since it allows for the automated analysis of vast amount of single-cell observation and the fast and easy derivation of conclusions based on that data. Specifically, we are interested in promoter activity as function of time. We expect it to be oscillatory and for that we use GFP (green fluorescent protein) as a reporter in our genetic circuits. In this paper, an automated framework for single-cell tracking in phase-contrast microscopy is developed, combining 2D segmentation of cell time frames and graph-based reconstruction of their spatiotemporal evolution with fast tracking of the associated fluorescence signal. The results obtained on the investigated biological database are presented and discussed.

  2. The Role of Atomic Repertoires in Complex Behavior

    ERIC Educational Resources Information Center

    Palmer, David C.

    2012-01-01

    Evolution and reinforcement shape adaptive forms and adaptive behavior through many cycles of blind variation and selection, and therein lie their parsimony and power. Human behavior is distinctive in that this shaping process is commonly "short circuited": Critical variations are induced in a single trial. The processes by which this economy is…

  3. Total Dose Effects on Single Event Transients in Digital CMOS and Linear Bipolar Circuits

    NASA Technical Reports Server (NTRS)

    Buchner, S.; McMorrow, D.; Sibley, M.; Eaton, P.; Mavis, D.; Dusseau, L.; Roche, N. J-H.; Bernard, M.

    2009-01-01

    This presentation discusses the effects of ionizing radiation on single event transients (SETs) in circuits. The exposure of integrated circuits to ionizing radiation changes electrical parameters. The total ionizing dose effect is observed in both complementary metal-oxide-semiconductor (CMOS) and bipolar circuits. In bipolar circuits, transistors exhibit grain degradation, while in CMOS circuits, transistors exhibit threshold voltage shifts. Changes in electrical parameters can cause changes in single event upset(SEU)/SET rates. Depending on the effect, the rates may increase or decrease. Therefore, measures taken for SEU/SET mitigation might work at the beginning of a mission but not at the end following TID exposure. The effect of TID on SET rates should be considered if SETs cannot be tolerated.

  4. Composition-graded nanowire solar cells fabricated in a single process for spectrum-splitting photovoltaic systems.

    PubMed

    Caselli, Derek; Liu, Zhicheng; Shelhammer, David; Ning, Cun-Zheng

    2014-10-08

    Nanomaterials such as semiconductor nanowires have unique features that could enable novel optoelectronic applications such as novel solar cells. This paper aims to demonstrate one such recently proposed concept: Monolithically Integrated Laterally Arrayed Multiple Band gap (MILAMB) solar cells for spectrum-splitting photovoltaic systems. Two cells with different band gaps were fabricated simultaneously in the same process on a single substrate using spatially composition-graded CdSSe alloy nanowires grown by the Dual-Gradient Method in a chemical vapor deposition system. CdSSe nanowire ensemble devices tested under 1 sun AM1.5G illumination achieved open-circuit voltages up to 307 and 173 mV and short-circuit current densities as high as 0.091 and 0.974 mA/cm(2) for the CdS- and CdSe-rich cells, respectively. The open-circuit voltages were roughly three times those of similar CdSSe film cells fabricated for comparison due to the superior optical quality of the nanowires. I-V measurements were also performed using optical filters to simulate spectrum-splitting. The open-circuit voltages and fill factors of the CdS-rich subcells were uniformly larger than the corresponding CdSe-rich cells for similar photon flux, as expected. This suggests that if all wires can be contacted, the wide-gap cell is expected to have greater output power than the narrow-gap cell, which is the key to achieving high efficiencies with spectrum-splitting. This paper thus provides the first proof-of-concept demonstration of simultaneous fabrication of MILAMB solar cells. This approach to solar cell fabrication using single-crystal nanowires for spectrum-splitting photovoltaics could provide a future low-cost high-efficiency alternative to the conventional high-cost high-efficiency tandem cells.

  5. Method and apparatus for measuring spatial uniformity of radiation

    DOEpatents

    Field, Halden

    2002-01-01

    A method and apparatus for measuring the spatial uniformity of the intensity of a radiation beam from a radiation source based on a single sampling time and/or a single pulse of radiation. The measuring apparatus includes a plurality of radiation detectors positioned on planar mounting plate to form a radiation receiving area that has a shape and size approximating the size and shape of the cross section of the radiation beam. The detectors concurrently receive portions of the radiation beam and transmit electrical signals representative of the intensity of impinging radiation to a signal processor circuit connected to each of the detectors and adapted to concurrently receive the electrical signals from the detectors and process with a central processing unit (CPU) the signals to determine intensities of the radiation impinging at each detector location. The CPU displays the determined intensities and relative intensity values corresponding to each detector location to an operator of the measuring apparatus on an included data display device. Concurrent sampling of each detector is achieved by connecting to each detector a sample and hold circuit that is configured to track the signal and store it upon receipt of a "capture" signal. A switching device then selectively retrieves the signals and transmits the signals to the CPU through a single analog to digital (A/D) converter. The "capture" signal. is then removed from the sample-and-hold circuits. Alternatively, concurrent sampling is achieved by providing an A/D converter for each detector, each of which transmits a corresponding digital signal to the CPU. The sampling or reading of the detector signals can be controlled by the CPU or level-detection and timing circuit.

  6. Fluorescence Resonance Energy Transfer-Based Photonic Circuits Using Single-Stranded Tile Self-Assembly and DNA Strand Displacement.

    PubMed

    Zhang, Xuncai; Ying, Niu; Shen, Chaonan; Cui, Guangzhao

    2017-02-01

    Structural DNA nanotechnology has great potential in the fabrication of complicated nanostructures and devices capable of bio-sensing and logic function. A variety of nanostructures with desired shapes have been created in the past few decades. But the application of nanostructures remains to be fully studied. Here, we present a novel biological information processing system constructed on a self-assembled, spatially addressable single-stranded tile (SST) nanostructure as DNA nano-manipulation platform that created by SST self-assembly technology. Utilizing DNA strand displacement technology, the fluorescent dye that is pre-assembled in the nano-manipulation platform is transferred from the original position to the destination, which can achieve photonic logic circuits by FRET signal cascades, including logic AND, OR, and NOT gates. And this transfer process is successfully validated by visual DSD software. The transfer process proposed in this study may provide a novel method to design complicated biological information processing system constructed on a SST nanostructure, and can be further used to develop intelligent delivery of drug molecules in vivo.

  7. Design, Modeling, and Fabrication of Chemical Vapor Deposition Grown MoS2 Circuits with E-Mode FETs for Large-Area Electronics.

    PubMed

    Yu, Lili; El-Damak, Dina; Radhakrishna, Ujwal; Ling, Xi; Zubair, Ahmad; Lin, Yuxuan; Zhang, Yuhao; Chuang, Meng-Hsi; Lee, Yi-Hsien; Antoniadis, Dimitri; Kong, Jing; Chandrakasan, Anantha; Palacios, Tomas

    2016-10-12

    Two-dimensional electronics based on single-layer (SL) MoS 2 offers significant advantages for realizing large-scale flexible systems owing to its ultrathin nature, good transport properties, and stable crystalline structure. In this work, we utilize a gate first process technology for the fabrication of highly uniform enhancement mode FETs with large mobility and excellent subthreshold swing. To enable large-scale MoS 2 circuit, we also develop Verilog-A compact models that accurately predict the performance of the fabricated MoS 2 FETs as well as a parametrized layout cell for the FET to facilitate the design and layout process using computer-aided design (CAD) tools. Using this CAD flow, we designed combinational logic gates and sequential circuits (AND, OR, NAND, NOR, XNOR, latch, edge-triggered register) as well as switched capacitor dc-dc converter, which were then fabricated using the proposed flow showing excellent performance. The fabricated integrated circuits constitute the basis of a standard cell digital library that is crucial for electronic circuit design using hardware description languages. The proposed design flow provides a platform for the co-optimization of the device fabrication technology and circuits design for future ubiquitous flexible and transparent electronics using two-dimensional materials.

  8. Pulse X-ray device for stereo imaging and few-projection tomography of explosive and fast processes

    NASA Astrophysics Data System (ADS)

    Palchikov, E. I.; Dolgikh, A. V.; Klypin, V. V.; Krasnikov, I. Y.; Ryabchun, A. M.

    2017-10-01

    This paper describes the operation principles and design features of the device for single pulse X-raying of explosive and high-speed processes, developed on the basis of a Tesla transformer with lumped secondary capacitor bank. The circuit with the lumped capacitor bank allows transferring a greater amount of energy to the discharge circuit as compared with the Marks-surge generator for more effective operation with remote X-ray tubes connected by coaxial cables. The device equipped with multiple X-ray tubes provides simultaneous X-raying of extended or spaced objects, stereo imaging, or few-projection tomography.

  9. A graph-theoretical representation of multiphoton resonance processes in superconducting quantum circuits

    DOE PAGES

    Jooya, Hossein Z.; Reihani, Kamran; Chu, Shih-I

    2016-11-21

    We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. In conclusion, the intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.

  10. A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals

    PubMed Central

    2010-01-01

    Solution-processed semiconductors are seen as a promising route to reducing the cost of the photovoltaic device manufacture. We are reporting a single-layer Schottky photovoltaic device that was fabricated by spin-coating intrinsic silicon nanocrystals (Si NCs) from colloidal suspension. The thin-film formation process was based on Si NCs without any ligand attachment, exchange, or removal reactions. The Schottky junction device showed a photovoltaic response with a power conversion efficiency of 0.02%, a fill factor of 0.26, short circuit-current density of 0.148 mA/cm2, and open-circuit voltage of 0.51 V. PMID:20676200

  11. Photonic Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  12. Device for limiting single phase ground fault of mining machines

    NASA Astrophysics Data System (ADS)

    Fediuk, R. S.; Stoyushko, N. Yu; Yevdokimova, Yu G.; Smoliakov, A. K.; Batarshin, V. O.; Timokhin, R. A.

    2017-10-01

    The paper shows the reasons and consequences of the single-phase ground fault. With all the variety of devices for limiting the current single-phase ground fault, it was found that the most effective are Peterson coils having different switching circuits. Measuring of the capacity of the network is of great importance in this case, a number of options capacitance measurement are presented. A closer look is taken at the device for limiting the current of single-phase short circuit, developed in the Far Eastern Federal University under the direction of Dr. G.E. Kuvshinov. The calculation of single-phase short-circuit currents in the electrical network, without compensation and with compensation of capacitive current is carried out. Simulation of a single-phase circuit in a network with the proposed device is conducted.

  13. Signals and circuits in the purkinje neuron.

    PubMed

    Abrams, Zéev R; Zhang, Xiang

    2011-01-01

    Purkinje neurons (PN) in the cerebellum have over 100,000 inputs organized in an orthogonal geometry, and a single output channel. As the sole output of the cerebellar cortex layer, their complex firing pattern has been associated with motor control and learning. As such they have been extensively modeled and measured using tools ranging from electrophysiology and neuroanatomy, to dynamic systems and artificial intelligence methods. However, there is an alternative approach to analyze and describe the neuronal output of these cells using concepts from electrical engineering, particularly signal processing and digital/analog circuits. By viewing the PN as an unknown circuit to be reverse-engineered, we can use the tools that provide the foundations of today's integrated circuits and communication systems to analyze the Purkinje system at the circuit level. We use Fourier transforms to analyze and isolate the inherent frequency modes in the PN and define three unique frequency ranges associated with the cells' output. Comparing the PN to a signal generator that can be externally modulated adds an entire level of complexity to the functional role of these neurons both in terms of data analysis and information processing, relying on Fourier analysis methods in place of statistical ones. We also re-describe some of the recent literature in the field, using the nomenclature of signal processing. Furthermore, by comparing the experimental data of the past decade with basic electronic circuitry, we can resolve the outstanding controversy in the field, by recognizing that the PN can act as a multivibrator circuit.

  14. Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan

    2014-06-21

    Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.

  15. Frequency Domain Multiplexing for Use With NaI[Tl] Detectors

    NASA Astrophysics Data System (ADS)

    Belling, Samuel; Coherent Collaboration

    2017-09-01

    A process used in many forms of signal communication known as multiplexing is adapted for the purpose of combining signals from NaI[Tl] detectors so that fewer digitizer channels can be used to process the signal information from large experiments within the COHERENT collaboration. Each signal is passed through a ringing circuit to modulate it with a characteristic frequency. Information about the signal can be extracted from its amplitude, frequency, and phase. Simulations in LTSpice show that an operational amplifier circuit with a parallel LRC feedback loop can serve as the modulating circuit. Several such circuits can be constructed and housed compactly in a unit, and fed to an inverting, summing amplifier with tunable gain, such that the signals are carried by one cable. The signals are analyzed based on a Fourier transform after being digitized. The results show that the energy, channel, and time of the original interaction can be recovered by this process. In some cases it is possible through filtering and deconvolution to recover the shape of the original signal. The effort is ongoing, but with the design presented it is possible to multiplex 10 detectors into a single digitizer channel. NSF REU Program at Duke University.

  16. Conformation-based signal transfer and processing at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Li, Chao; Wang, Zhongping; Lu, Yan; Liu, Xiaoqing; Wang, Li

    2017-11-01

    Building electronic components made of individual molecules is a promising strategy for the miniaturization and integration of electronic devices. However, the practical realization of molecular devices and circuits for signal transmission and processing at room temperature has proven challenging. Here, we present room-temperature intermolecular signal transfer and processing using SnCl2Pc molecules on a Cu(100) surface. The in-plane orientations of the molecules are effectively coupled via intermolecular interaction and serve as the information carrier. In the coupled molecular arrays, the signal can be transferred from one molecule to another in the in-plane direction along predesigned routes and processed to realize logical operations. These phenomena enable the use of molecules displaying intrinsic bistable states as complex molecular devices and circuits with novel functions.

  17. Circuit-Host Coupling Induces Multifaceted Behavioral Modulations of a Gene Switch.

    PubMed

    Blanchard, Andrew E; Liao, Chen; Lu, Ting

    2018-02-06

    Quantitative modeling of gene circuits is fundamentally important to synthetic biology, as it offers the potential to transform circuit engineering from trial-and-error construction to rational design and, hence, facilitates the advance of the field. Currently, typical models regard gene circuits as isolated entities and focus only on the biochemical processes within the circuits. However, such a standard paradigm is getting challenged by increasing experimental evidence suggesting that circuits and their host are intimately connected, and their interactions can potentially impact circuit behaviors. Here we systematically examined the roles of circuit-host coupling in shaping circuit dynamics by using a self-activating gene switch as a model circuit. Through a combination of deterministic modeling, stochastic simulation, and Fokker-Planck equation formalism, we found that circuit-host coupling alters switch behaviors across multiple scales. At the single-cell level, it slows the switch dynamics in the high protein production regime and enlarges the difference between stable steady-state values. At the population level, it favors cells with low protein production through differential growth amplification. Together, the two-level coupling effects induce both quantitative and qualitative modulations of the switch, with the primary component of the effects determined by the circuit's architectural parameters. This study illustrates the complexity and importance of circuit-host coupling in modulating circuit behaviors, demonstrating the need for a new paradigm-integrated modeling of the circuit-host system-for quantitative understanding of engineered gene networks. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1995-03-21

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  19. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    NASA Astrophysics Data System (ADS)

    Balali, Moslem; Rezai, Abdalhossein

    2018-07-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  20. Design of Low-Complexity and High-Speed Coplanar Four-Bit Ripple Carry Adder in QCA Technology

    NASA Astrophysics Data System (ADS)

    Balali, Moslem; Rezai, Abdalhossein

    2018-03-01

    Quantum-dot Cellular Automata (QCA) technology is a suitable technology to replace CMOS technology due to low-power consumption, high-speed and high-density devices. Full adder has an important role in the digital circuit design. This paper presents and evaluates a novel single-layer four-bit QCA Ripple Carry Adder (RCA) circuit. The developed four-bit QCA RCA circuit is based on novel QCA full adder circuit. The developed circuits are simulated using QCADesigner tool version 2.0.3. The simulation results show that the developed circuits have advantages in comparison with existing single-layer and multilayer circuits in terms of cell count, area occupation and circuit latency.

  1. Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal-amygdala 'aversive amplification' circuit in unmedicated generalized and social anxiety disorders.

    PubMed

    Robinson, Oliver J; Krimsky, Marissa; Lieberman, Lynne; Allen, Phillip; Vytal, Katherine; Grillon, Christian

    2014-09-01

    We have delineated, across four prior studies, the role of positive dorsal medial prefrontal/anterior cingulate cortex (dmPFC/ACC)-amygdala circuit coupling during aversive processing in healthy individuals under stress. This translational circuit, termed the 'aversive amplification circuit', is thought to drive adaptive, harm-avoidant behavior in threatening environments. Here, in a natural progression of this prior work, we confirm that this circuit also plays a role in the pathological manifestation of anxiety disorders. Forty-five unmedicated participants (N=22 generalized and social anxiety disorder/N=23 controls) recruited from Washington DC metropolitan area completed a simple emotion identification task during functional magnetic resonance imaging at the National Institutes of Health, Bethesda, MD, USA. As predicted, a diagnosis by valence interaction was seen in whole-brain amygdala connectivity within the dmPFC/ACC clusters identified in our prior study; driven by significantly greater circuit coupling during fearful versus happy face processing in anxious, but not healthy, participants. Critically, and in accordance with contemporary theoretical approaches to psychiatry, circuit coupling correlated positively with self-reported anxious symptoms, providing evidence of a continuous circuit-subjective symptomatology relationship. We track the functional role of a single neural circuit from its involvement in adaptive threat-biases under stress, to its chronic engagement in anxiety disorders in the absence of experimentally induced stress. Thus, we uniquely map a mood and anxiety related circuit across its adaptive and maladaptive stages. Clinically, this may provide a step towards a more mechanistic spectrum-based approach to anxiety disorder diagnosis and may ultimately lead to more targeted treatments.

  2. Modeling integrated photovoltaic–electrochemical devices using steady-state equivalent circuits

    PubMed Central

    Winkler, Mark T.; Cox, Casandra R.; Nocera, Daniel G.; Buonassisi, Tonio

    2013-01-01

    We describe a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. We identify the fundamental efficiency limitations that arise from using solar cells with a single band gap, an arrangement that describes the use of currently economic solar cell technologies such as Si or CdTe. Steady-state equivalent circuit analysis permits modeling of practical systems. For the water-splitting reaction, modeling defines parameters that enable a solar-to-fuels efficiency exceeding 18% using laboratory GaAs cells and 16% using all earth-abundant components, including commercial Si solar cells and Co- or Ni-based oxygen evolving catalysts. Circuit analysis also provides a predictive tool: given the performance of the separate photovoltaic and electrochemical systems, the behavior of the coupled photovoltaic–electrochemical system can be anticipated. This predictive utility is demonstrated in the case of water oxidation at the surface of a Si solar cell, using a Co–borate catalyst.

  3. Survey Of High Speed Test Techniques

    NASA Astrophysics Data System (ADS)

    Gheewala, Tushar

    1988-02-01

    The emerging technologies for the characterization and production testing of high-speed devices and integrated circuits are reviewed. The continuing progress in the field of semiconductor technologies will, in the near future, demand test techniques to test 10ps to lOOps gate delays, 10 GHz to 100 GHz analog functions and 10,000 to 100,000 gates on a single chip. Clearly, no single test technique would provide a cost-effective answer to all the above demands. A divide-and-conquer approach based on a judicial selection of parametric, functional and high-speed tests will be required. In addition, design-for-test methods need to be pursued which will include on-chip test electronics as well as circuit techniques that minimize the circuit performance sensitivity to allowable process variations. The electron and laser beam based test technologies look very promising and may provide the much needed solutions to not only the high-speed test problem but also to the need for high levels of fault coverage during functional testing.

  4. Single-photon driven high-order sideband transitions in an ultrastrongly coupled circuit quantum electrodynamics system

    NASA Astrophysics Data System (ADS)

    Li, Tiefu; Chen, Zhen; Wang, Yimin; Tian, Lin; Qiu, Yueyin; Inomata, Kunihiro; Yoshihara, Fumiki; Han, Siyuan; Nori, Franco; Tsai, Jaw-Shen; You, J. Q.

    We report the experimental observation of high-order sideband transitions at the single-photon level in a quantum circuit system of a flux qubit ultrastrongly coupled to a coplanar waveguide resonator. With the coupling strength reaching 10 % of the resonator's fundamental frequency, we obtain clear signatures of higher-order red- and first-order blue-sideband transitions. These transitions are owing to the ultrastrong Rabi coupling, instead of the driving power. Our observation advances the understanding of ultrastrongly-coupled systems and paves the way to study high-order processes in the quantum Rabi model. This work is supported by the National Basic Research Program of China and the National Natural Science Foundation of China.

  5. Cheaper Synthesis Of Multipole-Brushless-dc-Motor Current

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.

    1994-01-01

    Circuit converts output of single two-phase shaft-angle resolver to that of multi-speed three-phase shaft-angle resolver. Converter circuit applicable to generation of multispeed, multiphase shaft-angle-resolver signals from single two-phase shaft-angle resolver. Combination of converter circuit and single two-phase shaft-angle resolver offer advantages in cost, weight, size, and complexity. Design readily adaptable to two-phase motor.

  6. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array—Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    PubMed Central

    Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-01-01

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array—application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384. PMID:28672813

  7. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    PubMed

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  8. Quantum Optics with Superconducting Circuits: From Single Photons to Schrodinger Cats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoelkopf, Rob

    Over the last decade and a half, superconducting circuits have advanced to the point where we can generate and detect highly-entangled states, and perform universal quantum gates. Meanwhile, the coherence properties of these systems have improved more than 10,000-fold. I will describe recent experiments, such as the latest advance in coherence using a three-dimensional implementation of qubits interacting with microwave cavities, called “3D circuit QED.” The control and strong interactions possible in superconducting circuits make it possible to generate non-classical states of light, including large superpositions known as “Schrodinger cat” states. This field has many interesting prospects both for applicationsmore » in quantum information processing, and fundamental investigations of the boundary between the macroscopic classical world and the microscopic world of the quantum.« less

  9. Programmable autonomous synthesis of single-stranded DNA

    NASA Astrophysics Data System (ADS)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  10. Programmable autonomous synthesis of single-stranded DNA.

    PubMed

    Kishi, Jocelyn Y; Schaus, Thomas E; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  11. A Rhizobium radiobacter Histidine Kinase Can Employ Both Boolean AND and OR Logic Gates to Initiate Pathogenesis.

    PubMed

    Fang, Fang; Lin, Yi-Han; Pierce, B Daniel; Lynn, David G

    2015-10-12

    The molecular logic gates that regulate gene circuits are necessarily intricate and highly regulated, particularly in the critical commitments necessary for pathogenesis. We now report simple AND and OR logic gates to be accessible within a single protein receptor. Pathogenesis by the bacterium Rhizobium radiobacter is mediated by a single histidine kinase, VirA, which processes multiple small molecule host signals (phenol and sugar). Mutagenesis analyses converged on a single signal integration node, and finer functional analyses revealed that a single residue could switch VirA from a functional AND logic gate to an OR gate where each of two signals activate independently. Host range preferences among natural strains of R. radiobacter correlate with these gate logic strategies. Although the precise mechanism for the signal integration node requires further analyses, long-range signal transmission through this histidine kinase can now be exploited for synthetic signaling circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers

    PubMed Central

    Bhadra, Sanchita; Ellington, Andrew D.

    2014-01-01

    Nucleic acid circuits are finding increasing real-life applications in diagnostics and synthetic biology. Although DNA has been the main operator in most nucleic acid circuits, transcriptionally produced RNA circuits could provide powerful alternatives for reagent production and their use in cells. Towards these goals, we have implemented a particular nucleic acid circuit, catalytic hairpin assembly, using RNA for both information storage and processing. Our results demonstrated that the design principles developed for DNA circuits could be readily translated to engineering RNA circuits that operated with similar kinetics and sensitivities of detection. Not only could purified RNA hairpins perform amplification reactions but RNA hairpins transcribed in vitro also mediated amplification, even without purification. Moreover, we could read the results of the non-enzymatic amplification reactions using a fluorescent RNA aptamer ‘Spinach’ that was engineered to undergo sequence-specific conformational changes. These advances were applied to the end-point and real-time detection of the isothermal strand displacement amplification reaction that produces single-stranded DNAs as part of its amplification cycle. We were also able to readily engineer gate structures with RNA similar to those that have previously formed the basis of DNA circuit computations. Taken together, these results validate an entirely new chemistry for the implementation of nucleic acid circuits. PMID:24493736

  13. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  14. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip

    NASA Astrophysics Data System (ADS)

    Shulaker, Max M.; Hills, Gage; Park, Rebecca S.; Howe, Roger T.; Saraswat, Krishna; Wong, H.-S. Philip; Mitra, Subhasish

    2017-07-01

    The computing demands of future data-intensive applications will greatly exceed the capabilities of current electronics, and are unlikely to be met by isolated improvements in transistors, data storage technologies or integrated circuit architectures alone. Instead, transformative nanosystems, which use new nanotechnologies to simultaneously realize improved devices and new integrated circuit architectures, are required. Here we present a prototype of such a transformative nanosystem. It consists of more than one million resistive random-access memory cells and more than two million carbon-nanotube field-effect transistors—promising new nanotechnologies for use in energy-efficient digital logic circuits and for dense data storage—fabricated on vertically stacked layers in a single chip. Unlike conventional integrated circuit architectures, the layered fabrication realizes a three-dimensional integrated circuit architecture with fine-grained and dense vertical connectivity between layers of computing, data storage, and input and output (in this instance, sensing). As a result, our nanosystem can capture massive amounts of data every second, store it directly on-chip, perform in situ processing of the captured data, and produce ‘highly processed’ information. As a working prototype, our nanosystem senses and classifies ambient gases. Furthermore, because the layers are fabricated on top of silicon logic circuitry, our nanosystem is compatible with existing infrastructure for silicon-based technologies. Such complex nano-electronic systems will be essential for future high-performance and highly energy-efficient electronic systems.

  15. Magnetophoretic circuits for digital control of single particles and cells

    NASA Astrophysics Data System (ADS)

    Lim, Byeonghwa; Reddy, Venu; Hu, Xinghao; Kim, Kunwoo; Jadhav, Mital; Abedini-Nassab, Roozbeh; Noh, Young-Woock; Lim, Yong Taik; Yellen, Benjamin B.; Kim, Cheolgi

    2014-05-01

    The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.

  16. Creating single-copy genetic circuits

    PubMed Central

    Lee, Jeong Wook; Gyorgy, Andras; Cameron, D. Ewen; Pyenson, Nora; Choi, Kyeong Rok; Way, Jeffrey C.; Silver, Pamela A.; Del Vecchio, Domitilla; Collins, James J.

    2017-01-01

    SUMMARY Synthetic biology is increasingly used to develop sophisticated living devices for basic and applied research. Many of these genetic devices are engineered using multi-copy plasmids, but as the field progresses from proof-of-principle demonstrations to practical applications, it is important to develop single-copy synthetic modules that minimize consumption of cellular resources and can be stably maintained as genomic integrants. Here we use empirical design, mathematical modeling and iterative construction and testing to build single-copy, bistable toggle switches with improved performance and reduced metabolic load that can be stably integrated into the host genome. Deterministic and stochastic models led us to focus on basal transcription to optimize circuit performance and helped to explain the resulting circuit robustness across a large range of component expression levels. The design parameters developed here provide important guidance for future efforts to convert functional multi-copy gene circuits into optimized single-copy circuits for practical, real-world use. PMID:27425413

  17. Fully Integrated Linear Single Photon Avalanche Diode (SPAD) Array with Parallel Readout Circuit in a Standard 180 nm CMOS Process

    NASA Astrophysics Data System (ADS)

    Isaak, S.; Bull, S.; Pitter, M. C.; Harrison, Ian.

    2011-05-01

    This paper reports on the development of a SPAD device and its subsequent use in an actively quenched single photon counting imaging system, and was fabricated in a UMC 0.18 μm CMOS process. A low-doped p- guard ring (t-well layer) encircling the active area to prevent the premature reverse breakdown. The array is a 16×1 parallel output SPAD array, which comprises of an active quenched SPAD circuit in each pixel with the current value being set by an external resistor RRef = 300 kΩ. The SPAD I-V response, ID was found to slowly increase until VBD was reached at excess bias voltage, Ve = 11.03 V, and then rapidly increase due to avalanche multiplication. Digital circuitry to control the SPAD array and perform the necessary data processing was designed in VHDL and implemented on a FPGA chip. At room temperature, the dark count was found to be approximately 13 KHz for most of the 16 SPAD pixels and the dead time was estimated to be 40 ns.

  18. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  19. Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal-amygdala ‘aversive amplification’ circuit in unmedicated generalized and social anxiety disorders

    PubMed Central

    Robinson, Oliver J; Krimsky, Marissa; Lieberman, Lynne; Allen, Phillip; Vytal, Katherine; Grillon, Christian

    2014-01-01

    Background We have delineated, across four prior studies, the role of positive dorsal medial prefrontal/anterior cingulate cortex (dmPFC/ACC)-amygdala circuit coupling during aversive processing in healthy individuals under stress. This translational circuit, termed the ‘aversive amplification circuit’, is thought to drive adaptive, harm-avoidant behavior in threatening environments. Here, in a natural progression of this prior work, we confirm that this circuit also plays a role in the pathological manifestation of anxiety disorders. Methods Forty-five unmedicated participants (N=22 generalized and social anxiety disorder/N=23 controls) recruited from Washington DC metropolitan area completed a simple emotion identification task during functional magnetic resonance imaging at the National Institutes of Health, Bethesda, MD, USA. Findings As predicted, a diagnosis by valence interaction was seen in whole-brain amygdala connectivity within the dmPFC/ACC clusters identified in our prior study; driven by significantly greater circuit coupling during fearful versus happy face processing in anxious, but not healthy, participants. Critically, and in accordance with contemporary theoretical approaches to psychiatry, circuit coupling correlated positively with self-reported anxious symptoms, providing evidence of a continuous circuit-subjective symptomatology relationship. Interpretation We track the functional role of a single neural circuit from its involvement in adaptive threat-biases under stress, to its chronic engagement in anxiety disorders in the absence of experimentally induced stress. Thus, we uniquely map a mood and anxiety related circuit across its adaptive and maladaptive stages. Clinically, this may provide a step towards a more mechanistic spectrum-based approach to anxiety disorder diagnosis and may ultimately lead to more targeted treatments. PMID:25722962

  20. Design of a front-end integrated circuit for 3D acoustic imaging using 2D CMUT arrays.

    PubMed

    Ciçek, Ihsan; Bozkurt, Ayhan; Karaman, Mustafa

    2005-12-01

    Integration of front-end electronics with 2D capacitive micromachined ultrasonic transducer (CMUT) arrays has been a challenging issue due to the small element size and large channel count. We present design and verification of a front-end drive-readout integrated circuit for 3D ultrasonic imaging using 2D CMUT arrays. The circuit cell dedicated to a single CMUT array element consists of a high-voltage pulser and a low-noise readout amplifier. To analyze the circuit cell together with the CMUT element, we developed an electrical CMUT model with parameters derived through finite element analysis, and performed both the pre- and postlayout verification. An experimental chip consisting of 4 X 4 array of the designed circuit cells, each cell occupying a 200 X 200 microm2 area, was formed for the initial test studies and scheduled for fabrication in 0.8 microm, 50 V CMOS technology. The designed circuit is suitable for integration with CMUT arrays through flip-chip bonding and the CMUT-on-CMOS process.

  1. Large-Constraint-Length, Fast Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.

    1990-01-01

    Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.

  2. A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas

    2017-04-01

    Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.

  3. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  4. Mechanisms limiting the performance of large grain polycrystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Alexander, P.; Dumas, K. A.; Wohlgemuth, J. W.

    1984-01-01

    The open-circuit voltage and short-circuit current of large-grain (1 to 10 mm grain diameter) polycrystalline silicon solar cells is determined by the minority-carrier diffusion length within the bulk of the grains. This was demonstrated by irradiating polycrystalline and single-crystal (Czochralski) silicon solar cells with 1 MeV electrons to reduce their bulk lifetime. The variation of short-circuit current with minority-carrier diffusion length for the polycrystalline solar cells is identical to that of the single-crystal solar cells. The open-circuit voltage versus short-circuit current characteristic of the polycrystalline solar cells for reduced diffusion lengths is also identical to that of the single-crystal solar cells. The open-circuit voltage of the polycrystalline solar cells is a strong function of quasi-neutral (bulk) recombination, and is reduced only slightly, if at all, by grain-boundary recombination.

  5. Three-Function Logic Gate Controlled by Analog Voltage

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo; Stoica, Adrian

    2006-01-01

    The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that performs one of three different logic functions, depending on the level of an externally applied control voltage, V(sub sel). Specifically, the circuit acts as A NAND gate at V(sub sel) = 0.0 V, A wire (the output equals one of the inputs) at V(sub sel) = 1.0 V, or An AND gate at V(sub sel) = -1.8 V. [The nominal power-supply potential (VDD) and logic "1" potential of this circuit is 1.8 V.] Like other multifunctional circuits described in several prior NASA Tech Briefs articles, this circuit was synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. An evolved circuit can be tested by computational simulation and/or tested in real hardware, and the results of the test can provide guidance for refining the design through further iteration. The evolutionary synthesis of electronic circuits can now be implemented by means of a software package Genetic Algorithms for Circuit Synthesis (GACS) that was developed specifically for this purpose. GACS was used to synthesize the present trifunctional circuit. As in the cases of other multifunctional circuits described in several prior NASA Tech Briefs articles, the multiple functionality of this circuit, the use of a single control voltage to select the function, and the automated evolutionary approach to synthesis all contribute synergistically to a combination of features that are potentially advantageous for the further development of robust, multiple-function logic circuits, including, especially, field-programmable gate arrays (FPGAs). These advantages include the following: This circuit contains only 9 transistors about half the number of transistors that would be needed to obtain equivalent NAND/wire/AND functionality by use of components from a standard digital design library. If multifunctional gates like this circuit were used in the place of the configurable logic blocks of present commercial FPGAs, it would be possible to change the functions of the resulting digital systems within shorter times. For example, by changing a single control voltage, one could change the function of thousands of FPGA cells within nanoseconds. In contrast, typically, the reconfiguration in a conventional FPGA by use of bits downloaded from look-up tables via a digital bus takes microseconds.

  6. Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression

    NASA Astrophysics Data System (ADS)

    Varshnay, N. K.; Singh, A.; Benerji, N. S.

    2017-02-01

    Performance characteristics of an excimer laser (XeCl) with single-stage magnetic pulse compression suitable for material processing applications are presented here. The laser incorporates in-built compact gas circulation and gas cooling to ensure fresh gas mixture between the electrodes for repetitive operation. A magnetically coupled tangential blower is used for gas circulation inside the laser chamber for repetitive operation. The exciter consists of C-C energy transfer circuit and thyratron is used as a high-voltage main switch with single-stage magnetic pulse compression (MPC) between thyratron and the laser electrodes. Low inductance of the laser head and uniform and intense pre-ionization are the main features of the electric circuit used in the laser. A 250 ns rise time voltage pulse was compressed to 100 ns duration with a single-stage magnetic pulse compressor using Ni-Zn ferrite cores. The laser can generate about 150 mJ at ˜100 Hz rep-rate reliably from a discharge volume of 100 cm 3. 2D spatial laser beam profile generated is presented here. The profile shows that the laser beam is completely filled with flat-top which is suitable for material processing applications. The SEM image of the microhole generated on copper target is presented here.

  7. An extensible circuit QED architecture for quantum computation

    NASA Astrophysics Data System (ADS)

    Dicarlo, Leo

    Realizing a logical qubit robust to single errors in its constituent physical elements is an immediate challenge for quantum information processing platforms. A longer-term challenge will be achieving quantum fault tolerance, i.e., improving logical qubit resilience by increasing redundancy in the underlying quantum error correction code (QEC). In QuTech, we target these challenges in collaboration with industrial and academic partners. I will present the circuit QED quantum hardware, room-temperature control electronics, and software components of the complete architecture. I will show the extensibility of each component to the Surface-17 and -49 circuits needed to reach the objectives with surface-code QEC, and provide an overview of latest developments. Research funded by IARPA and Intel Corporation.

  8. Semiconductor electrolyte photovoltaic energy converter

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.

  9. Advanced 3-V semiconductor technology assessment

    NASA Technical Reports Server (NTRS)

    Nowogrodzki, M.

    1983-01-01

    Components required for extensions of currently planned space communications systems are discussed for large antennas, crosslink systems, single sideband systems, Aerostat systems, and digital signal processing. Systems using advanced modulation concepts and new concepts in communications satellites are included. The current status and trends in materials technology are examined with emphasis on bulk growth of semi-insulating GaAs and InP, epitaxial growth, and ion implantation. Microwave solid state discrete active devices, multigigabit rate GaAs digital integrated circuits, microwave integrated circuits, and the exploratory development of GaInAs devices, heterojunction devices, and quasi-ballistic devices is considered. Competing technologies such as RF power generation, filter structures, and microwave circuit fabrication are discussed. The fundamental limits of semiconductor devices and problems in implementation are explored.

  10. Boosting functionality of synthetic DNA circuits with tailored deactivation

    PubMed Central

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-01-01

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology. PMID:27845324

  11. Hybrid Circuits with Nanofluidic Diodes and Load Capacitors

    NASA Astrophysics Data System (ADS)

    Ramirez, P.; Garcia-Morales, V.; Gomez, V.; Ali, M.; Nasir, S.; Ensinger, W.; Mafe, S.

    2017-06-01

    The chemical and physical input signals characteristic of micro- and nanofluidic devices operating in ionic solutions should eventually be translated into output electric currents and potentials that are monitored with solid-state components. This crucial step requires the design of hybrid circuits showing robust electrical coupling between ionic solutions and electronic elements. We study experimentally and theoretically the connectivity of the nanofluidic diodes in single-pore and multipore membranes with conventional capacitor systems for the cases of constant, periodic, and white-noise input potentials. The experiments demonstrate the reliable operation of these hybrid circuits over a wide range of membrane resistances, electrical capacitances, and solution p H values. The model simulations are based on empirical equations that have a solid physical basis and provide a convenient description of the electrical circuit operation. The results should contribute to advance signal transduction and processing using nanopore-based biosensors and bioelectronic interfaces.

  12. Waveguide metatronics: Lumped circuitry based on structural dispersion.

    PubMed

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-06-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of "waveguide metatronics," an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all "lumped" circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry.

  13. Cortico-striatal language pathways dynamically adjust for syntactic complexity: A computational study.

    PubMed

    Szalisznyó, Krisztina; Silverstein, David; Teichmann, Marc; Duffau, Hugues; Smits, Anja

    2017-01-01

    A growing body of literature supports a key role of fronto-striatal circuits in language perception. It is now known that the striatum plays a role in engaging attentional resources and linguistic rule computation while also serving phonological short-term memory capabilities. The ventral semantic and the dorsal phonological stream dichotomy assumed for spoken language processing also seems to play a role in cortico-striatal perception. Based on recent studies that correlate deep Broca-striatal pathways with complex syntax performance, we used a previously developed computational model of frontal-striatal syntax circuits and hypothesized that different parallel language pathways may contribute to canonical and non-canonical sentence comprehension separately. We modified and further analyzed a thematic role assignment task and corresponding reservoir computing model of language circuits, as previously developed by Dominey and coworkers. We examined the models performance under various parameter regimes, by influencing how fast the presented language input decays and altering the temporal dynamics of activated word representations. This enabled us to quantify canonical and non-canonical sentence comprehension abilities. The modeling results suggest that separate cortico-cortical and cortico-striatal circuits may be recruited differently for processing syntactically more difficult and less complicated sentences. Alternatively, a single circuit would need to dynamically and adaptively adjust to syntactic complexity. Copyright © 2016. Published by Elsevier Inc.

  14. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be created with clearly defined circuitry and a one-to-one neuron-electrode ratio. The techniques and processes described here may be used in future research to create defined neuronal circuits to model in vivo circuits and study neuronal network processing.

  15. Resolving Single Molecule Lysozyme Dynamics with a Carbon Nanotube Electronic Circuit

    NASA Astrophysics Data System (ADS)

    Choi, Yongki; Moody, Issa S.; Perez, Israel; Sheps, Tatyana; Weiss, Gregory A.; Collins, Philip G.

    2011-03-01

    High resolution, real-time monitoring of a single lysozyme molecule is demonstrated by fabricating nanoscale electronic devices based on single-walled carbon nanotubes (SWCNT). In this sensor platform, a biomolecule of interest is attached to a single SWCNT device. The electrical conductance transduces chemical events with single molecule sensitivity and 10 microsecond resolution. In this work, enzymatic turnover by lysozyme is investigated, because the mechanistic details for its processivity and dynamics remain incompletely understood. Stochastically distributed binding events between a lysozyme and its binding substrate, peptidoglycan, are monitored via the sensor conductance. Furthermore, the magnitude and repetition rate of these events varies with pH and the presence of inhibitors or denaturation agents. Changes in the conductance signal are analyzed in terms of lysozyme's internal hinge motion, binding events, and enzymatic processing.

  16. Reliable measurement of E. coli single cell fluorescence distribution using a standard microscope set-up.

    PubMed

    Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele

    2017-01-01

    Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).

  17. Design and implementation of a programming circuit in radiation-hardened FPGA

    NASA Astrophysics Data System (ADS)

    Lihua, Wu; Xiaowei, Han; Yan, Zhao; Zhongli, Liu; Fang, Yu; Chen, Stanley L.

    2011-08-01

    We present a novel programming circuit used in our radiation-hardened field programmable gate array (FPGA) chip. This circuit provides the ability to write user-defined configuration data into an FPGA and then read it back. The proposed circuit adopts the direct-access programming point scheme instead of the typical long token shift register chain. It not only saves area but also provides more flexible configuration operations. By configuring the proposed partial configuration control register, our smallest configuration section can be conveniently configured as a single data and a flexible partial configuration can be easily implemented. The hierarchical simulation scheme, optimization of the critical path and the elaborate layout plan make this circuit work well. Also, the radiation hardened by design programming point is introduced. This circuit has been implemented in a static random access memory (SRAM)-based FPGA fabricated by a 0.5 μm partial-depletion silicon-on-insulator CMOS process. The function test results of the fabricated chip indicate that this programming circuit successfully realizes the desired functions in the configuration and read-back. Moreover, the radiation test results indicate that the programming circuit has total dose tolerance of 1 × 105 rad(Si), dose rate survivability of 1.5 × 1011 rad(Si)/s and neutron fluence immunity of 1 × 1014 n/cm2.

  18. Toward a generalized and high-throughput enzyme screening system based on artificial genetic circuits.

    PubMed

    Choi, Su-Lim; Rha, Eugene; Lee, Sang Jun; Kim, Haseong; Kwon, Kilkoang; Jeong, Young-Su; Rhee, Young Ha; Song, Jae Jun; Kim, Hak-Sung; Lee, Seung-Goo

    2014-03-21

    Large-scale screening of enzyme libraries is essential for the development of cost-effective biological processes, which will be indispensable for the production of sustainable biobased chemicals. Here, we introduce a genetic circuit termed the Genetic Enzyme Screening System that is highly useful for high-throughput enzyme screening from diverse microbial metagenomes. The circuit consists of two AND logics. The first AND logic, the two inputs of which are the target enzyme and its substrate, is responsible for the accumulation of a phenol compound in cell. Then, the phenol compound and its inducible transcription factor, whose activation turns on the expression of a reporter gene, interact in the other logic gate. We confirmed that an individual cell harboring this genetic circuit can present approximately a 100-fold higher cellular fluorescence than the negative control and can be easily quantified by flow cytometry depending on the amounts of phenolic derivatives. The high sensitivity of the genetic circuit enables the rapid discovery of novel enzymes from metagenomic libraries, even for genes that show marginal activities in a host system. The crucial feature of this approach is that this single system can be used to screen a variety of enzymes that produce a phenol compound from respective synthetic phenyl-substrates, including cellulase, lipase, alkaline phosphatase, tyrosine phenol-lyase, and methyl parathion hydrolase. Consequently, the highly sensitive and quantitative nature of this genetic circuit along with flow cytometry techniques could provide a widely applicable toolkit for discovering and engineering novel enzymes at a single cell level.

  19. Printed Circuit Board Design (PCB) with HDL Designer

    NASA Technical Reports Server (NTRS)

    Winkert, Thomas K.; LaFourcade, Teresa

    2004-01-01

    Contents include the following: PCB design with HDL designer, design process and schematic capture - symbols and diagrams: 1. Motivation: time savings, money savings, simplicity. 2. Approach: use single tool PCB for FPGA design, more FPGA designs than PCB designers. 3. Use HDL designer for schematic capture.

  20. SIMULATION RESULTS OF SINGLE REFRIGERANTS FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER

    EPA Science Inventory

    The paper reviews the refrigerant/freezer (RF) design and refrigerant selection process that is necessary to design an energy efficient RF that does not use fully halogenated chlorofluorocarbons (CFCs). EPA is interested in phasing out CFCs in RFs to minimize stratospheric ozone ...

  1. Versatile current-mode universal biquadratic filter using DO-CCIIs

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Pin

    2013-07-01

    In this article, a new three-input and three-output versatile current-mode universal biquadratic filter is proposed. The circuit employs three dual-output current conveyors (DO-CCIIs) as active elements together with three grounded resistors and two grounded capacitors. The proposed configuration exhibits low-input impedance and high-output impedance which is important for easy cascading in the current-mode operations. It can be used as either a single-input and three-output or three-input and two-output circuit. In the operation of single-input and three-output circuit, the lowpass, bandpass and bandreject can be realised simultaneously, while the highpass filtering response can be easily obtained by connecting appropriated output current directly without using addition stages. In the operation of three-input and two-output circuit, all five generic filtering functions can be easily realised by selecting different three input current signals. The filter permits orthogonal controllability of the quality factor and resonance angular frequency, and no component matching conditions or inverting-type input current signals are imposed. All the passive and active sensitivities are low. HSPICE simulation results based on using TSMC 0.18 µm 1P6M CMOS process technology and supply voltages ±0.9 V to verify the theoretical analysis.

  2. Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on/off current ratio, device-to-device uniformity etc. Two-dimensional device simulations show that PaTH TFTs are comparable to silicon-on-insulator (SOI) devices, making it a promising candidate for the fabrication of future high performance, low-power 3D integrated circuits. Finally, an ultrafast nanolithography technique, laser-assisted direct imprint (LADI) is introduced. LADI shows the ability of patterning nanostructures directly in silicon in nanoseconds with sub-10 nm resolution. The process has potential applications in multiple disciplines, and could be extended to other materials and processes.

  3. Single Molecule Enzymology via Nanoelectronic Circuits

    NASA Astrophysics Data System (ADS)

    Collins, Philip

    Traditional single-molecule techniques rely on fluorescence or force transduction to monitor conformational changes and biochemical activity. Recent demonstrations of single-molecule monitoring with electronic transistors are poised to add to the single-molecule research toolkit. The transistor-based technique is sensitive to the motion of single charged side chain residues and can transduce those motions with microsecond resolution, opening the doors to single-molecule enzymology with unprecedented resolution. Furthermore, the solid-state platform provides opportunities for parallelization in arrays and long-duration monitoring of one molecule's activity or processivity, all without the limitations caused by photo-oxidation or mutagenic fluorophore incorporation. This presentation will review some of these advantages and their particular application to DNA polymerase I processing single-stranded DNA templates. This research was supported financially by the NIH NCI (R01 CA133592-01), the NIH NIGMS (1R01GM106957-01) and the NSF (DMR-1104629 and ECCS-1231910).

  4. Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.

  5. All-IP-Ethernet architecture for real-time sensor-fusion processing

    NASA Astrophysics Data System (ADS)

    Hiraki, Kei; Inaba, Mary; Tezuka, Hiroshi; Tomari, Hisanobu; Koizumi, Kenichi; Kondo, Shuya

    2016-03-01

    Serendipter is a device that distinguishes and selects very rare particles and cells from huge amount of population. We are currently designing and constructing information processing system for a Serendipter. The information processing system for Serendipter is a kind of sensor-fusion system but with much more difficulties: To fulfill these requirements, we adopt All IP based architecture: All IP-Ethernet based data processing system consists of (1) sensor/detector directly output data as IP-Ethernet packet stream, (2) single Ethernet/TCP/IP streams by a L2 100Gbps Ethernet switch, (3) An FPGA board with 100Gbps Ethernet I/F connected to the switch and a Xeon based server. Circuits in the FPGA include 100Gbps Ethernet MAC, buffers and preprocessing, and real-time Deep learning circuits using multi-layer neural networks. Proposed All-IP architecture solves existing problem to construct large-scale sensor-fusion systems.

  6. Single-Event Transients in Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Johnston, Allan H.; Miyahira, Tetsuo F.; Irom, F.; Laird, Jamie S.

    2006-01-01

    Single-event transients are investigated for two voltage regulator circuits that are widely used in space. A circuit-level model is developed that can be used to determine how transients are affected by different circuit application conditions. Internal protection circuits-which are affected by load as well as internal thermal effects-can also be triggered from heavy ions, causing dropouts or shutdown ranging from milliseconds to seconds. Although conventional output transients can be reduced by adding load capacitance, that approach is ineffective for dropouts from protection circuitry.

  7. Measurement of Quantum Interference in a Silicon Ring Resonator Photon Source.

    PubMed

    Steidle, Jeffrey A; Fanto, Michael L; Preble, Stefan F; Tison, Christopher C; Howland, Gregory A; Wang, Zihao; Alsing, Paul M

    2017-04-04

    Silicon photonic chips have the potential to realize complex integrated quantum information processing circuits, including photon sources, qubit manipulation, and integrated single-photon detectors. Here, we present the key aspects of preparing and testing a silicon photonic quantum chip with an integrated photon source and two-photon interferometer. The most important aspect of an integrated quantum circuit is minimizing loss so that all of the generated photons are detected with the highest possible fidelity. Here, we describe how to perform low-loss edge coupling by using an ultra-high numerical aperture fiber to closely match the mode of the silicon waveguides. By using an optimized fusion splicing recipe, the UHNA fiber is seamlessly interfaced with a standard single-mode fiber. This low-loss coupling allows the measurement of high-fidelity photon production in an integrated silicon ring resonator and the subsequent two-photon interference of the produced photons in a closely integrated Mach-Zehnder interferometer. This paper describes the essential procedures for the preparation and characterization of high-performance and scalable silicon quantum photonic circuits.

  8. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout

    NASA Astrophysics Data System (ADS)

    England, Troy; Lilly, Michael; Curry, Matthew; Carr, Stephen; Carroll, Malcolm

    Fast, low-power quantum state readout is one of many challenges facing quantum information processing. Single electron transistors (SETs) are potentially fast, sensitive detectors for performing spin readout of electrons bound to Si:P donors. From a circuit perspective, however, their output impedance and nonlinear conductance are ill suited to drive the parasitic capacitance of coaxial conductors used in cryogenic environments, necessitating a cryogenic amplification stage. We will introduce two new amplifier topologies that provide excellent gain versus power tradeoffs using silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). The AC HBT allows in-situ adjustment of power dissipation during an experiment and can provide gain in the millikelvin temperature regime while dissipating less than 500 nW. The AC Current Amplifier maximizes gain at nearly 800 A/A. We will also show results of using these amplifiers with SETs at 4 K. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. Flexible Low-power SiGe HBT Amplifier Circuits for Fast Single-shot Spin Readout.

  9. Rotating magnetizations in electrical machines: Measurements and modeling

    NASA Astrophysics Data System (ADS)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  10. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  11. Implementing QML for radiation hardness assurance

    NASA Astrophysics Data System (ADS)

    Winokur, P. S.; Sexton, F. W.; Fleetwood, D. M.; Terry, M. D.; Shaneyfelt, M. R.

    1990-12-01

    The US government has proposed a qualified manufacturers list (QML) methodology to qualify integrated circuits for high reliability and radiation hardness. An approach to implementing QML for single-event upset (SEU) immunity on 16k SRAMs that involves relating values of feedback resistance to system error rates is demonstrated. It is seen that the process capability indices, Cp and Cpk, for the manufacture of 400-k-ohm feedback resistors required to provide SEU tolerance do not conform to 6 sigma quality standards. For total-dose, interface trap charge, Delta Vit, shifts measured on transistors are correlated with circuit response in the space environment. Statistical process control (SPC) is illustrated for Delta Vit, and violations of SPC rules are interpreted in terms of continuous improvement. Design validation for SEU and quality conformance inspections for total-dose are identified as major obstacles to cost-effective QML implementation. Techniques and tools that will help QML provide real cost savings are identified as physical models, 3-D device-plus-circuit codes, and improved design simulators.

  12. Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits.

    PubMed

    Wei, Chia-Ling; Lin, Yu-Chen; Chen, Tse-An; Lin, Ren-Yi; Liu, Tin-Hao

    2015-02-01

    An airflow sensing chip, which integrates MEMS sensors with their CMOS signal processing circuits into a single chip, is proposed for respiration detection. Three micro-cantilever-based airflow sensors were designed and fabricated using a 0.35 μm CMOS/MEMS 2P4M mixed-signal polycide process. Two main differences were present among these three designs: they were either metal-covered or metal-free structures, and had either bridge-type or fixed-type reference resistors. The performances of these sensors were measured and compared, including temperature sensitivity and airflow sensitivity. Based on the measured results, the metal-free structure with fixed-type reference resistors is recommended for use, because it has the highest airflow sensitivity and also can effectively reduce the output voltage drift caused by temperature change.

  13. Homogeneous Catalysis by Transition Metal Compounds.

    ERIC Educational Resources Information Center

    Mawby, Roger

    1988-01-01

    Examines four processes involving homogeneous catalysis which highlight the contrast between the simplicity of the overall reaction and the complexity of the catalytic cycle. Describes how catalysts provide circuitous routes in which all energy barriers are relatively low rather than lowering the activation energy for a single step reaction.…

  14. Dual-function photonic integrated circuit for frequency octo-tupling or single-side-band modulation.

    PubMed

    Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J

    2015-06-01

    A dual-function photonic integrated circuit for microwave photonic applications is proposed. The circuit consists of four linear electro-optic phase modulators connected optically in parallel within a generalized Mach-Zehnder interferometer architecture. The photonic circuit is arranged to have two separate output ports. A first port provides frequency up-conversion of a microwave signal from the electrical to the optical domain; equivalently single-side-band modulation. A second port provides tunable millimeter wave carriers by frequency octo-tupling of an appropriate amplitude RF carrier. The circuit exploits the intrinsic relative phases between the ports of multi-mode interference couplers to provide substantially all the static optical phases needed. The operation of the proposed dual-function photonic integrated circuit is verified by computer simulations. The performance of the frequency octo-tupling and up-conversion functions is analyzed in terms of the electrical signal to harmonic distortion ratio and the optical single side band to unwanted harmonics ratio, respectively.

  15. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    PubMed

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  16. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    PubMed Central

    He, Diwei; Morgan, Stephen P.; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R.

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring. PMID:26184225

  17. Behavioural and physiological limits to vision in mammals

    PubMed Central

    Field, Greg D.

    2017-01-01

    Human vision is exquisitely sensitive—a dark-adapted observer is capable of reliably detecting the absorption of a few quanta of light. Such sensitivity requires that the sensory receptors of the retina, rod photoreceptors, generate a reliable signal when single photons are absorbed. In addition, the retina must be able to extract this information and relay it to higher visual centres under conditions where very few rods signal single-photon responses while the majority generate only noise. Critical to signal transmission are mechanistic optimizations within rods and their dedicated retinal circuits that enhance the discriminability of single-photon responses by mitigating photoreceptor and synaptic noise. We describe behavioural experiments over the past century that have led to the appreciation of high sensitivity near absolute visual threshold. We further consider mechanisms within rod photoreceptors and dedicated rod circuits that act to extract single-photon responses from cellular noise. We highlight how these studies have shaped our understanding of brain function and point out several unresolved questions in the processing of light near the visual threshold. This article is part of the themed issue ‘Vision in dim light’. PMID:28193817

  18. Multiple network interface core apparatus and method

    DOEpatents

    Underwood, Keith D [Albuquerque, NM; Hemmert, Karl Scott [Albuquerque, NM

    2011-04-26

    A network interface controller and network interface control method comprising providing a single integrated circuit as a network interface controller and employing a plurality of network interface cores on the single integrated circuit.

  19. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  20. Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts

    NASA Astrophysics Data System (ADS)

    Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.

    2007-04-01

    In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.

  1. Low-latency optical parallel adder based on a binary decision diagram with wavelength division multiplexing scheme

    NASA Astrophysics Data System (ADS)

    Shinya, A.; Ishihara, T.; Inoue, K.; Nozaki, K.; Kita, S.; Notomi, M.

    2018-02-01

    We propose an optical parallel adder based on a binary decision diagram that can calculate simply by propagating light through electrically controlled optical pass gates. The CARRY and CARRY operations are multiplexed in one circuit by a wavelength division multiplexing scheme to reduce the number of optical elements, and only a single gate constitutes the critical path for one digit calculation. The processing time reaches picoseconds per digit when we use a 100-μm-long optical path gates, which is ten times faster than a CMOS circuit.

  2. Solar cell circuit and method for manufacturing solar cells

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  3. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules

    PubMed Central

    Ang, Yan Shan; Yung, Lin-Yue Lanry

    2014-01-01

    Biomolecular interactions have important cellular implications, however, a simple method for the sensing of such proximal events is lacking in the current molecular toolbox. We designed a dynamic DNA circuit capable of recognizing targets in close proximity to initiate a pre-programmed signal transduction process resulting in localized signal amplification. The entire circuit was engineered to be self-contained, i.e. it can self-assemble onto individual target molecules autonomously and form localized signal with minimal cross-talk. α-thrombin was used as a model protein to evaluate the performance of the individual modules and the overall circuit for proximity interaction under physiologically relevant buffer condition. The circuit achieved good selectivity in presence of non-specific protein and interfering serum matrix and successfully detected for physiologically relevant α-thrombin concentration (50 nM–5 μM) in a single mixing step without any further washing. The formation of localized signal at the interaction site can be enhanced kinetically through the control of temperature and probe concentration. This work provides a basic general framework from which other circuit modules can be adapted for the sensing of other biomolecular or cellular interaction of interest. PMID:25056307

  4. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    PubMed

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  5. Fundamental energy limits of SET-based Brownian NAND and half-adder circuits. Preliminary findings from a physical-information-theoretic methodology

    NASA Astrophysics Data System (ADS)

    Ercan, İlke; Suyabatmaz, Enes

    2018-06-01

    The saturation in the efficiency and performance scaling of conventional electronic technologies brings about the development of novel computational paradigms. Brownian circuits are among the promising alternatives that can exploit fluctuations to increase the efficiency of information processing in nanocomputing. A Brownian cellular automaton, where signals propagate randomly and are driven by local transition rules, can be made computationally universal by embedding arbitrary asynchronous circuits on it. One of the potential realizations of such circuits is via single electron tunneling (SET) devices since SET technology enable simulation of noise and fluctuations in a fashion similar to Brownian search. In this paper, we perform a physical-information-theoretic analysis on the efficiency limitations in a Brownian NAND and half-adder circuits implemented using SET technology. The method we employed here establishes a solid ground that enables studying computational and physical features of this emerging technology on an equal footing, and yield fundamental lower bounds that provide valuable insights into how far its efficiency can be improved in principle. In order to provide a basis for comparison, we also analyze a NAND gate and half-adder circuit implemented in complementary metal oxide semiconductor technology to show how the fundamental bound of the Brownian circuit compares against a conventional paradigm.

  6. CMOL: A New Concept for Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Likharev, Konstantin

    2005-03-01

    I will review the recent work on devices and architectures for future hybrid semiconductor/molecular integrated circuits, in particular those of ``CMOL'' variety [1]. Such circuits would combine an advanced CMOS subsystem fabricated by the usual lithographic patterning, two layers of parallel metallic nanowires formed, e.g., by nanoimprint, and two-terminal molecular devices self-assembled on the nanowire crosspoints. Estimates show that this powerful combination may allow CMOL circuits to reach an unparalleled density (up to 10^12 functions per cm^2) and ultrahigh rate of information processing (up to 10^20 operations per second on a single chip), at acceptable power dissipation. The main challenges on the way toward practical CMOL technology are: (i) reliable chemically-directed self-assembly of mid-size organic molecules, and (ii) the development of efficient defect-tolerant architectures for CMOL circuits. Our recent work has shown that such architectures may be developed not only for terabit-scale memories and naturally defect-tolerant mixed-signal neuromorphic networks, but (rather unexpectedly) also for FPGA-style digital Boolean circuits. [1] For details, see http://rsfq1.physics.sunysb.edu/˜likharev/nano/Springer04.pdf

  7. Integrated logic circuits using single-atom transistors

    PubMed Central

    Mol, J. A.; Verduijn, J.; Levine, R. D.; Remacle, F.

    2011-01-01

    Scaling down the size of computing circuits is about to reach the limitations imposed by the discrete atomic structure of matter. Reducing the power requirements and thereby dissipation of integrated circuits is also essential. New paradigms are needed to sustain the rate of progress that society has become used to. Single-atom transistors, SATs, cascaded in a circuit are proposed as a promising route that is compatible with existing technology. We demonstrate the use of quantum degrees of freedom to perform logic operations in a complementary-metal–oxide–semiconductor device. Each SAT performs multilevel logic by electrically addressing the electronic states of a dopant atom. A single electron transistor decodes the physical multivalued output into the conventional binary output. A robust scalable circuit of two concatenated full adders is reported, where by utilizing charge and quantum degrees of freedom, the functionality of the transistor is pushed far beyond that of a simple switch. PMID:21808050

  8. Probabilistic switching circuits in DNA

    PubMed Central

    Wilhelm, Daniel; Bruck, Jehoshua

    2018-01-01

    A natural feature of molecular systems is their inherent stochastic behavior. A fundamental challenge related to the programming of molecular information processing systems is to develop a circuit architecture that controls the stochastic states of individual molecular events. Here we present a systematic implementation of probabilistic switching circuits, using DNA strand displacement reactions. Exploiting the intrinsic stochasticity of molecular interactions, we developed a simple, unbiased DNA switch: An input signal strand binds to the switch and releases an output signal strand with probability one-half. Using this unbiased switch as a molecular building block, we designed DNA circuits that convert an input signal to an output signal with any desired probability. Further, this probability can be switched between 2n different values by simply varying the presence or absence of n distinct DNA molecules. We demonstrated several DNA circuits that have multiple layers and feedback, including a circuit that converts an input strand to an output strand with eight different probabilities, controlled by the combination of three DNA molecules. These circuits combine the advantages of digital and analog computation: They allow a small number of distinct input molecules to control a diverse signal range of output molecules, while keeping the inputs robust to noise and the outputs at precise values. Moreover, arbitrarily complex circuit behaviors can be implemented with just a single type of molecular building block. PMID:29339484

  9. Single Wall Carbon Nanotube Alignment Mechanisms for Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Hong, Seunghun

    2002-01-01

    As proposed in our original proposal, we developed a new innovative method to assemble millions of single wall carbon nanotube (SWCNT)-based circuit components as fast as conventional microfabrication processes. This method is based on surface template assembly strategy. The new method solves one of the major bottlenecks in carbon nanotube based electrical applications and, potentially, may allow us to mass produce a large number of SWCNT-based integrated devices of critical interests to NASA.

  10. Materials Integration and Doping of Carbon Nanotube-based Logic Circuits

    NASA Astrophysics Data System (ADS)

    Geier, Michael

    Over the last 20 years, extensive research into the structure and properties of single- walled carbon nanotube (SWCNT) has elucidated many of the exceptional qualities possessed by SWCNTs, including record-setting tensile strength, excellent chemical stability, distinctive optoelectronic features, and outstanding electronic transport characteristics. In order to exploit these remarkable qualities, many application-specific hurdles must be overcome before the material can be implemented in commercial products. For electronic applications, recent advances in sorting SWCNTs by electronic type have enabled significant progress towards SWCNT-based integrated circuits. Despite these advances, demonstrations of SWCNT-based devices with suitable characteristics for large-scale integrated circuits have been limited. The processing methodologies, materials integration, and mechanistic understanding of electronic properties developed in this dissertation have enabled unprecedented scales of SWCNT-based transistor fabrication and integrated circuit demonstrations. Innovative materials selection and processing methods are at the core of this work and these advances have led to transistors with the necessary transport properties required for modern circuit integration. First, extensive collaborations with other research groups allowed for the exploration of SWCNT thin-film transistors (TFTs) using a wide variety of materials and processing methods such as new dielectric materials, hybrid semiconductor materials systems, and solution-based printing of SWCNT TFTs. These materials were integrated into circuit demonstrations such as NOR and NAND logic gates, voltage-controlled ring oscillators, and D-flip-flops using both rigid and flexible substrates. This dissertation explores strategies for implementing complementary SWCNT-based circuits, which were developed by using local metal gate structures that achieve enhancement-mode p-type and n-type SWCNT TFTs with widely separated and symmetric threshold voltages. Additionally, a novel n-type doping procedure for SWCNT TFTs was also developed utilizing a solution-processed organometallic small molecule to demonstrate the first network top-gated n-type SWCNT TFTs. Lastly, new doping and encapsulation layers were incorporated to stabilize both p-type and n-type SWCNT TFT electronic properties, which enabled the fabrication of large-scale memory circuits. Employing these materials and processing advances has addressed many application specific barriers to commercialization. For instance, the first thin-film SWCNT complementary metal-oxide-semi-conductor (CMOS) logic devices are demonstrated with sub-nanowatt static power consumption and full rail-to-rail voltage transfer characteristics. With the introduction of a new n-type Rh-based molecular dopant, the first SWCNT TFTs are fabricated in top-gate geometries over large areas with high yield. Then by utilizing robust encapsulation methods, stable and uniform electronic performance of both p-type and n-type SWCNT TFTs has been achieved. Based on these complementary SWCNT TFTs, it is possible to simulate, design, and fabricate arrays of low-power static random access memory (SRAM) circuits, achieving large-scale integration for the first time based on solution-processed semiconductors. Together, this work provides a direct pathway for solution processable, large scale, power-efficient advanced integrated logic circuits and systems.

  11. Integrated circuits and logic operations based on single-layer MoS2.

    PubMed

    Radisavljevic, Branimir; Whitwick, Michael Brian; Kis, Andras

    2011-12-27

    Logic circuits and the ability to amplify electrical signals form the functional backbone of electronics along with the possibility to integrate multiple elements on the same chip. The miniaturization of electronic circuits is expected to reach fundamental limits in the near future. Two-dimensional materials such as single-layer MoS(2) represent the ultimate limit of miniaturization in the vertical dimension, are interesting as building blocks of low-power nanoelectronic devices, and are suitable for integration due to their planar geometry. Because they are less than 1 nm thin, 2D materials in transistors could also lead to reduced short channel effects and result in fabrication of smaller and more power-efficient transistors. Here, we report on the first integrated circuit based on a two-dimensional semiconductor MoS(2). Our integrated circuits are capable of operating as inverters, converting logical "1" into logical "0", with room-temperature voltage gain higher than 1, making them suitable for incorporation into digital circuits. We also show that electrical circuits composed of single-layer MoS(2) transistors are capable of performing the NOR logic operation, the basis from which all logical operations and full digital functionality can be deduced.

  12. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.

    PubMed

    Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G

    2014-05-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed.

  13. Profiling Mild Steel Welding Processes to Reduce Fume Emissions and Costs in the Workplace

    PubMed Central

    Keane, Michael J.; Siert, Arlen; Chen, Bean T.; Stone, Samuel G.

    2015-01-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g−1 electrode) and lowest for GMAW processes such as pulsed spray (~1.5 mg g−1) and CMT (~1 mg g−1). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g−1 (SMAW) to 0.08 mg g−1 (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g−1 (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g−1 (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides information to aid in those choices. Suggestions for overcoming barriers to utilizing new and less hazardous welding processes are also discussed. PMID:24515891

  14. Waveguide metatronics: Lumped circuitry based on structural dispersion

    PubMed Central

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-01-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of “waveguide metatronics,” an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all “lumped” circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry. PMID:27386566

  15. Evolution of Acid-Sensing Olfactory Circuits in Drosophilids.

    PubMed

    Prieto-Godino, Lucia L; Rytz, Raphael; Cruchet, Steeve; Bargeton, Benoîte; Abuin, Liliane; Silbering, Ana F; Ruta, Vanessa; Dal Peraro, Matteo; Benton, Richard

    2017-02-08

    Animals adapt their behaviors to specific ecological niches, but the genetic and cellular basis of nervous system evolution is poorly understood. We have compared the olfactory circuits of the specialist Drosophila sechellia-which feeds exclusively on Morinda citrifolia fruit-with its generalist cousins D. melanogaster and D. simulans. We show that D. sechellia exhibits derived odor-evoked attraction and physiological sensitivity to the abundant Morinda volatile hexanoic acid and characterize how the responsible sensory receptor (the variant ionotropic glutamate receptor IR75b) and attraction-mediating circuit have evolved. A single amino acid change in IR75b is sufficient to recode it as a hexanoic acid detector. Expanded representation of this sensory pathway in the brain relies on additional changes in the IR75b promoter and trans-acting loci. By contrast, higher-order circuit adaptations are not apparent, suggesting conserved central processing. Our work links olfactory ecology to structural and regulatory genetic changes influencing nervous system anatomy and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Altered Neuronal and Circuit Excitability in Fragile X Syndrome.

    PubMed

    Contractor, Anis; Klyachko, Vitaly A; Portera-Cailliau, Carlos

    2015-08-19

    Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Sequencing the Connectome

    PubMed Central

    Zador, Anthony M.; Dubnau, Joshua; Oyibo, Hassana K.; Zhan, Huiqing; Cao, Gang; Peikon, Ian D.

    2012-01-01

    Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC (“barcoding of individual neuronal connections”), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale—sequencing billions of nucleotides per day is now routine—is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research. PMID:23109909

  18. An Analysis of Heavy-Ion Single Event Effects for a Variety of Finite State-Machine Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Berg, Melanie D.; Label, Kenneth A.; Kim, Hak; Phan, Anthony; Seidleck, Christina

    2014-01-01

    Finite state-machines (FSMs) are used to control operational flow in application specific integrated circuits (ASICs) and field programmable gate array (FPGA) devices. Because of their ease of interpretation, FSMs simplify the design and verification process and consequently are significant components in a synchronous design.

  19. Design of single phase inverter using microcontroller assisted by data processing applications software

    NASA Astrophysics Data System (ADS)

    Ismail, K.; Muharam, A.; Amin; Widodo Budi, S.

    2015-12-01

    Inverter is widely used for industrial, office, and residential purposes. Inverter supports the development of alternative energy such as solar cells, wind turbines and fuel cells by converting dc voltage to ac voltage. Inverter has been made with a variety of hardware and software combinations, such as the use of pure analog circuit and various types of microcontroller as controller. When using pure analog circuit, modification would be difficult because it will change the entire hardware components. In inverter with microcontroller based design (with software), calculations to generate AC modulation is done in the microcontroller. This increases programming complexity and amount of coding downloaded to the microcontroller chip (capacity flash memory in the microcontroller is limited). This paper discusses the design of a single phase inverter using unipolar modulation of sine wave and triangular wave, which is done outside the microcontroller using data processing software application (Microsoft Excel), result shows that complexity programming was reduce and resolution sampling data is very influence to THD. Resolution sampling must taking ½ A degree to get best THD (15.8%).

  20. Digital coincidence counting

    NASA Astrophysics Data System (ADS)

    Buckman, S. M.; Ius, D.

    1996-02-01

    This paper reports on the development of a digital coincidence-counting system which comprises a custom-built data acquisition card and associated PC software. The system has been designed to digitise the pulse-trains from two radiation detectors at a rate of 20 MSamples/s with 12-bit resolution. Through hardware compression of the data, the system can continuously record both individual pulse-shapes and the time intervals between pulses. Software-based circuits are used to process the stored pulse trains. These circuits are constructed simply by linking together icons representing various components such as coincidence mixers, time delays, single-channel analysers, deadtimes and scalers. This system enables a pair of pulse trains to be processed repeatedly using any number of different methods. Some preliminary results are presented in order to demonstrate the versatility and efficiency of this new method.

  1. Integrated-circuit balanced parametric amplifier

    NASA Technical Reports Server (NTRS)

    Dickens, L. E.

    1975-01-01

    Amplifier, fabricated on single dielectric substrate, has pair of Schottky barrier varactor diodes mounted on single semiconductor chip. Circuit includes microstrip transmission line and slot line section to conduct signals. Main features of amplifier are reduced noise output and low production cost.

  2. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.

    PubMed

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-02-23

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies.

  3. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring

    PubMed Central

    Chung, Tien-Kan; Yeh, Po-Chen; Lee, Hao; Lin, Cheng-Mao; Tseng, Chia-Yung; Lo, Wen-Tuan; Wang, Chieh-Min; Wang, Wen-Chin; Tu, Chi-Jen; Tasi, Pei-Yuan; Chang, Jui-Wen

    2016-01-01

    An attachable electromagnetic-energy-harvester driven wireless vibration-sensing system for monitoring milling-processes and cutter-wear/breakage-conditions is demonstrated. The system includes an electromagnetic energy harvester, three single-axis Micro Electro-Mechanical Systems (MEMS) accelerometers, a wireless chip module, and corresponding circuits. The harvester consisting of magnets with a coil uses electromagnetic induction to harness mechanical energy produced by the rotating spindle in milling processes and consequently convert the harnessed energy to electrical output. The electrical output is rectified by the rectification circuit to power the accelerometers and wireless chip module. The harvester, circuits, accelerometer, and wireless chip are integrated as an energy-harvester driven wireless vibration-sensing system. Therefore, this completes a self-powered wireless vibration sensing system. For system testing, a numerical-controlled machining tool with various milling processes is used. According to the test results, the system is fully self-powered and able to successfully sense vibration in the milling processes. Furthermore, by analyzing the vibration signals (i.e., through analyzing the electrical outputs of the accelerometers), criteria are successfully established for the system for real-time accurate simulations of the milling-processes and cutter-conditions (such as cutter-wear conditions and cutter-breaking occurrence). Due to these results, our approach can be applied to most milling and other machining machines in factories to realize more smart machining technologies. PMID:26907297

  4. Thin silicon solar cell performance characteristics

    NASA Technical Reports Server (NTRS)

    Gay, C. F.

    1978-01-01

    Refined techniques for surface texturizing, back surface field and back surface reflector formation were evaluated for use with shallow junction, single-crystal silicon solar cells. Each process was characterized individually and collectively as a function of device thickness and bulk resistivity. Among the variables measured and reported are open circuit voltage, short circuit current and spectral response. Substantial improvements were obtained by the utilization of a low cost aluminum paste process to simultaneously remove the unwanted n(+) diffused region, form the back surface field and produce an ohmic contact metallization. The highly effective BSF which results from applying this process has allowed fabrication of cells 0.05 mm thick with initial outputs as high as 79.5 mW/4 sq cm (28 C, AM0) and superior electron radiation tolerance. Cells of 0.02 mm to 0.04 mm thickness have been fabricated with power to mass ratios well in excess of 2 watts per gram.

  5. Biosensor system-on-a-chip including CMOS-based signal processing circuits and 64 carbon nanotube-based sensors for the detection of a neurotransmitter.

    PubMed

    Lee, Byung Yang; Seo, Sung Min; Lee, Dong Joon; Lee, Minbaek; Lee, Joohyung; Cheon, Jun-Ho; Cho, Eunju; Lee, Hyunjoong; Chung, In-Young; Park, Young June; Kim, Suhwan; Hong, Seunghun

    2010-04-07

    We developed a carbon nanotube (CNT)-based biosensor system-on-a-chip (SoC) for the detection of a neurotransmitter. Here, 64 CNT-based sensors were integrated with silicon-based signal processing circuits in a single chip, which was made possible by combining several technological breakthroughs such as efficient signal processing, uniform CNT networks, and biocompatible functionalization of CNT-based sensors. The chip was utilized to detect glutamate, a neurotransmitter, where ammonia, a byproduct of the enzymatic reaction of glutamate and glutamate oxidase on CNT-based sensors, modulated the conductance signals to the CNT-based sensors. This is a major technological advancement in the integration of CNT-based sensors with microelectronics, and this chip can be readily integrated with larger scale lab-on-a-chip (LoC) systems for various applications such as LoC systems for neural networks.

  6. Surface-micromachined and high-aspect ratio electrostatic actuators for aeronautic and space applications: design and lifetime considerations

    NASA Astrophysics Data System (ADS)

    Vescovo, P.; Joseph, E.; Bourbon, G.; Le Moal, P.; Minotti, P.; Hibert, C.; Pont, G.

    2003-09-01

    This paper focuses on recent advances in the field of MEMS-based actuators and distributed microelectromechanical systems (MEMS). IC-processed actuators (e.g. actuators that are machined using integrated circuit batch processes) are expected to open a wide range of industrial applications on the near term. The most promising investigations deal with high-aspect ratio electric field driven microactuators suitable for use in numerous technical fields such as aeronautics and space industry. Because the silicon micromachining technology have the potential to integrate both mechanical components and control circuits within a single process, MEMS-based active control of microscopic and macroscopic structures appears to be one of the most promising challenges for the next decade. As a first step towards new generations of MEMS-based smart structures, recent investigations dealing with silicon mechanisms involving MEMS-based actuators are briefly discussed in this paper.

  7. 47 CFR 2.925 - Identification of equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sections assembled in a common enclosure, on a common chassis or circuit board, and with common frequency controlling circuits. Devices to which a single FCC Identifier has been assigned shall be identified pursuant... circuit boards with independent frequency controlling circuits. The FCC Identifier assigned to any...

  8. High stability amplifier

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1983-01-01

    An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.

  9. Front-end Design and Characterization for the ν-Angra Nuclear Reactor Monitoring Detector

    NASA Astrophysics Data System (ADS)

    Dornelas, T. I.; Araújo, F. T. H.; Cerqueira, A. S.; Costa, J. A.; Nóbrega, R. A.

    2016-07-01

    The Neutrinos Angra (ν-Angra) Experiment aims to construct an antineutrinos detection device capable of monitoring the Angra dos Reis nuclear reactor activity. Nuclear reactors are intense sources of antineutrinos, and the thermal power released in the fission process is directly related to the flow rate of these particles. The antineutrinos energy spectrum also provides valuable information on the nuclear source isotopic composition. The proposed detector will be equipped with photomultipliers tubes (PMT) which will be readout by a custom Amplifier-Shaper-Discriminator circuit designed to condition its output signals to the acquisition modules to be digitized and processed by an FPGA. The readout circuit should be sensitive to single photoelectron signals, process fast signals, with a full-width-half-amplitude of about 5 ns, have a narrow enough output pulse width to detect both particles coming out from the inverse beta decay (bar nue+p → n + e+), and its output amplitude should be linear to the number of photoelectrons generated inside the PMT, used for energy estimation. In this work, some of the main PMT characteristics are measured and a new readout circuit is proposed, described and characterized.

  10. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  11. Single chip camera device having double sampling operation

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)

    2002-01-01

    A single chip camera device is formed on a single substrate including an image acquisition portion for control portion and the timing circuit formed on the substrate. The timing circuit also controls the photoreceptors in a double sampling mode in which are reset level is first read and then after an integration time a charged level is read.

  12. George E. Pake Prize: A Few Challenges in the Evolution of Semiconductor Device/Manufacturing Technology

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    In the early 1980s, the semiconductor industry faced the related challenges of ``scaling through the one-micron barrier'' and converting single-level-metal NMOS integrated circuits to multi-level-metal CMOS. Multiple advances in lithography technology and device materials/process integration led the way toward the deep-sub-micron transistors and interconnects that characterize today's electronic chips. In the 1990s, CMOS scaling advanced at an accelerated pace enabled by rapid advances in many aspects of optical lithography. However, the industry also needed to continue the progress in manufacturing on ever-larger silicon wafers to maintain economy-of-scale trends. Simultaneously, the increasing complexity and absolute-precision requirements of manufacturing compounded the necessity for new processes, tools, and control methodologies. This talk presents a personal perspective on some of the approaches that addressed the aforementioned challenges. In particular, early work on integrating silicides, lightly-doped-drain FETs, shallow recessed isolation, and double-level metal will be discussed. In addition, some pioneering efforts in deep-UV lithography and single-wafer processing will be covered. The latter will be mainly based on results from the MMST Program - a 100 M +, 5-year R&D effort, funded by DARPA, the U.S. Air Force, and Texas Instruments, that developed a wide range of new technologies for advanced semiconductor manufacturing. The major highlight of the program was the demonstration of sub-3-day cycle time for manufacturing 350-nm CMOS integrated circuits in 1993. This was principally enabled by the development of: (1) 100% single-wafer processing, including rapid-thermal processing (RTP), and (2) computer-integrated-manufacturing (CIM), including real-time, in-situ process control.

  13. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  14. Label-Free Direct Electronic Detection of Biomolecules with Amorphous Silicon Nanostructures

    PubMed Central

    Lund, John; Mehta, Ranjana; Parviz, Babak A.

    2007-01-01

    We present the fabrication and characterization of a nano-scale sensor made of amorphous silicon for the label-free, electronic detection of three classes of biologically important molecules: ions, oligonucleotides, and proteins. The sensor structure has an active element which is a 50 nm wide amorphous silicon semicircle and has a total footprint of less than 4 μm2. We demonstrate the functionalization of the sensor with receptor molecules and the electronic detection of three targets: H+ ions, short single-stranded DNAs, and streptavidin. The sensor is able to reliably distinguish single base-pair mismatches in 12 base long strands of DNA and monitor the introduction and identification of straptavidin in real-time. The versatile sensor structure can be readily functionalized with a wide range of receptor molecules and is suitable for integration with high-speed electronic circuits as a post-process on an integrated circuit chip. PMID:17292148

  15. Narrow-band microwave radiation from a biased single-Cooper-pair transistor.

    PubMed

    Naaman, O; Aumentado, J

    2007-06-01

    We show that a single-Cooper-pair transistor (SCPT) electrometer emits narrow-band microwave radiation when biased in its subgap region. Photoexcitation of quasiparticle tunneling in a nearby SCPT is used to spectroscopically detect this radiation in a configuration that closely mimics a qubit-electrometer integrated circuit. We identify emission lines due to Josephson radiation and radiative transport processes in the electrometer and argue that a dissipative superconducting electrometer can severely disrupt the system it attempts to measure.

  16. Empirical modeling of Single-Event Upset (SEU) in NMOS depletion-mode-load static RAM (SRAM) chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Smith, S. L.; Atwood, G. E.

    1986-01-01

    A detailed experimental investigation of single-event upset (SEU) in static RAM (SRAM) chips fabricated using a family of high-performance NMOS (HMOS) depletion-mode-load process technologies, has been done. Empirical SEU models have been developed with the aid of heavy-ion data obtained with a three-stage tandem van de Graaff accelerator. The results of this work demonstrate a method by which SEU may be empirically modeled in NMOS integrated circuits.

  17. A three-limb amorphous magnetic circuit for three-phase 200 kVA distribution transformers

    NASA Astrophysics Data System (ADS)

    Kolano, R.; Wójcik, N.; Gawior, W.

    1996-07-01

    This paper describes the construction and method of preparation of a three-limb amorphous magnetic circuit. The circuit consists of three single cores: two smaller cores of the same size, surrounded by a third larger one with appropriate window dimensions. The no-load loss and exciting power of the single cores have been investigated as a function of the magnetic induction and stresses applied to the third core.

  18. A silicon technology for millimeter-wave monolithic circuits

    NASA Astrophysics Data System (ADS)

    Stabile, P. J.; Rosen, A.

    1984-12-01

    A silicon millimeter-wave integrated-circuit (SIMMWIC) technology that includes high-energy ion implantation and pulsed-laser annealing, secondary ion mass spectrometry (SIMS) profile diagnostics, and novel wafer thinning has been developed. This technology has been applied to a SIMMWIC single-pole single-throw (SPST) switch and to IMPATT and p-i-n diode fabrication schemes. Thus, the SIMMWIC technology is a proven base for monolithic millimeter-wave sources and control circuit applications.

  19. Harmonics Generation by Surface Plasmon Polaritons on Single Nanowires.

    PubMed

    de Hoogh, Anouk; Opheij, Aron; Wulf, Matthias; Rotenberg, Nir; Kuipers, L

    2016-08-17

    We present experimental observations of visible wavelength second- and third-harmonic generation on single plasmonic nanowires of variable widths. We identify that near-infrared surface plasmon polaritons, which are guided along the nanowire, act as the source of the harmonics generation. We discuss the underlying mechanism of this nonlinear process, using a combination of spatially resolved measurements and numerical simulations to show that the visible harmonics are generated via a combination of both local and propagating plasmonic modes. Our results provide the first demonstration of nanoscale nonlinear optics with guided, propagating plasmonic modes on a lithographically defined chip, opening up new routes toward integrated optical circuits for information processing.

  20. Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells

    DTIC Science & Technology

    2011-04-01

    nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal ...177 mV and a short-circuit current of 19.2 nA. Schottky and ohmic contacts between a single GeNW and different metal electrodes were systematically...containing solution was spread out onto asymmetric metal electrodes to produce a rectifying current flow. Under one-sun illumination, the GeNW

  1. Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaioni, L.; Braga, D.; Christian, D.

    This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided

  2. The 25 kW resonant dc/dc power converter

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1983-01-01

    The feasibility of processing 25-kW of power with a single, transistorized, series resonant converter stage was demonstrated by the successful design, development, fabrication, and testing of such a device which employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350 Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Full circuit details of the converter are presented along with the test data.

  3. Evolutionary Multiobjective Design Targeting a Field Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Aguirre, Arturo Hernandez; Zebulum, Ricardo S.; Coello, Carlos Coello

    2004-01-01

    This paper introduces the ISPAES algorithm for circuit design targeting a Field Programmable Transistor Array (FPTA). The use of evolutionary algorithms is common in circuit design problems, where a single fitness function drives the evolution process. Frequently, the design problem is subject to several goals or operating constraints, thus, designing a suitable fitness function catching all requirements becomes an issue. Such a problem is amenable for multi-objective optimization, however, evolutionary algorithms lack an inherent mechanism for constraint handling. This paper introduces ISPAES, an evolutionary optimization algorithm enhanced with a constraint handling technique. Several design problems targeting a FPTA show the potential of our approach.

  4. Improvements of low-detection-limit filter-free fluorescence sensor developed by charge accumulation operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki

    2017-04-01

    We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.

  5. Complex capacitance in the representation of modulus of the lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Alim, Mohammad A.; Batra, A. K.; Bhattacharjee, Sudip; Aggarwal, M. D.

    2011-03-01

    The lithium niobate (LiNbO 3 or LN) single crystal is grown in-house. The ac small-signal electrical characterization is conducted over a temperature range 35 ≤T≤150 °C as a function of measurement frequency (10 ≤f≤10 6 Hz). Meaningful observation is noted only in a narrow temperature range 59 ≤T≤73 °C. These electrical data when analyzed via complex plane formalisms revealed single semicircular relaxation both in the complex capacitance ( C*) and in the modulus ( M*) planes. The physical meaning of this kind of observation is obtained on identifying the relaxation type, and then incorporating respective equivalent circuit model. The simplistic non-blocking nature of the equivalent circuit model obtained via M*-plane is established as the lumped relaxation is identified in the C*-plane. The feature of the eventual equivalent circuit model allows non-blocking aspect for the LN crystal attributing to the presence of the operative dc conduction process. Identification of this leakage dc conduction via C*-plane is portrayed in the M*-plane where the blocking nature is removed. The interacting interpretation between these two complex planes is successfully presented.

  6. Deterministic quantum teleportation with feed-forward in a solid state system.

    PubMed

    Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A

    2013-08-15

    Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.

  7. GaAs VLSI for aerospace electronics

    NASA Technical Reports Server (NTRS)

    Larue, G.; Chan, P.

    1990-01-01

    Advanced aerospace electronics systems require high-speed, low-power, radiation-hard, digital components for signal processing, control, and communication applications. GaAs VLSI devices provide a number of advantages over silicon devices including higher carrier velocities, ability to integrate with high performance optical devices, and high-resistivity substrates that provide very short gate delays, good isolation, and tolerance to many forms of radiation. However, III-V technologies also have disadvantages, such as lower yield compared to silicon MOS technology. Achieving very large scale integration (VLSI) is particularly important for fast complex systems. At very short gate delays (less than 100 ps), chip-to-chip interconnects severely degrade circuit clock rates. Complex systems, therefore, benefit greatly when as many gates as possible are placed on a single chip. To fully exploit the advantages of GaAs circuits, attention must be focused on achieving high integration levels by reducing power dissipation, reducing the number of devices per logic function, and providing circuit designs that are more tolerant to process and environmental variations. In addition, adequate noise margin must be maintained to ensure a practical yield.

  8. Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits

    PubMed Central

    Lee, Alice J.; Wang, Guangfu; Jiang, Xiaolong; Johnson, Seraphina M.; Hoang, Elizabeth T.; Lanté, Fabien; Stornetta, Ruth L.; Beenhakker, Mark P.; Shen, Ying; Julius Zhu, J.

    2015-01-01

    Interneurons play a key role in cortical function and dysfunction, yet organization of cortical interneuronal circuitry remains poorly understood. Cortical Layer 1 (L1) contains 2 general GABAergic interneuron groups, namely single bouquet cells (SBCs) and elongated neurogliaform cells (ENGCs). SBCs predominantly make unidirectional inhibitory connections (SBC→) with L2/3 interneurons, whereas ENGCs frequently form reciprocal inhibitory and electric connections (ENGC↔) with L2/3 interneurons. Here, we describe a systematic investigation of the pyramidal neuron targets of L1 neuron-led interneuronal circuits in the rat barrel cortex with simultaneous octuple whole-cell recordings and report a simple organizational scheme of the interneuronal circuits. Both SBCs→ and ENGC ↔ L2/3 interneuronal circuits connect to L2/3 and L5, but not L6, pyramidal neurons. SBC → L2/3 interneuronal circuits primarily inhibit the entire dendritic–somato–axonal axis of a few L2/3 and L5 pyramidal neurons located within the same column. In contrast, ENGC ↔ L2/3 interneuronal circuits generally inhibit the distal apical dendrite of many L2/3 and L5 pyramidal neurons across multiple columns. Finally, L1 interneuron-led circuits target distinct subcellular compartments of L2/3 and L5 pyramidal neurons in a L2/3 interneuron type-dependent manner. These results suggest that L1 neurons form canonical interneuronal circuits to control information processes in both supra- and infragranular cortical layers. PMID:24554728

  9. A single supply biopotential amplifier.

    PubMed

    Spinelli, E M; Martinez, N H; Mayosky, M A

    2001-04-01

    A biopotential amplifier for single supply operation is presented. It uses a Driven Right Leg Circuit (DRL) to drive the patient's body to a DC common mode voltage, centering biopotential signals with respect to the amplifier's input voltage range. This scheme ensures proper range operation when a single power supply is used. The circuit described is especially suited for low consumption, battery-powered applications, requiring a single battery and avoiding switching voltage inverters to achieve dual supplies. The generic circuit is described and, as an example, a biopotential amplifier with a gain of 60 dB and a DC input range of +/-200 mV was implemented using low power operational amplifiers. A Common Mode Rejection Ratio (CMRR) of 126 dB at 50 Hz was achieved without trimming.

  10. Molecular-Beam-Epitaxy Program

    NASA Technical Reports Server (NTRS)

    Sparks, Patricia D.

    1988-01-01

    Molecular Beam Epitaxy (MBE) computer program developed to aid in design of single- and double-junction cascade cells made of silicon. Cascade cell has efficiency 1 or 2 percent higher than single cell, with twice the open-circuit voltage. Input parameters include doping density, diffusion lengths, thicknesses of regions, solar spectrum, absorption coefficients of silicon (data included for 101 wavelengths), and surface recombination velocities. Results include maximum power, short-circuit current, and open-circuit voltage. Program written in FORTRAN IV.

  11. Bus-Programmable Slave Card

    NASA Technical Reports Server (NTRS)

    Hall, William A.

    1990-01-01

    Slave microprocessors in multimicroprocessor computing system contains modified circuit cards programmed via bus connecting master processor with slave microprocessors. Enables interactive, microprocessor-based, single-loop control. Confers ability to load and run program from master/slave bus, without need for microprocessor development station. Tristate buffers latch all data and information on status. Slave central processing unit never connected directly to bus.

  12. A design of energy detector for ArF excimer lasers

    NASA Astrophysics Data System (ADS)

    Feng, Zebin; Han, Xiaoquan; Zhou, Yi; Bai, Lujun

    2017-08-01

    ArF excimer lasers with short wavelength and high photon energy are widely applied in the field of integrated circuit lithography, material processing, laser medicine, and so on. Excimer laser single pulse energy is a very important parameter in the application. In order to detect the single pulse energy on-line, one energy detector based on photodiode was designed. The signal processing circuit connected to the photodiode was designed so that the signal obtained by the photodiode was amplified and the pulse width was broadened. The amplified signal was acquired by a data acquisition card and stored in the computer for subsequent data processing. The peak of the pulse signal is used to characterize the single pulse energy of ArF excimer laser. In every condition of deferent pulse energy value levels, a series of data about laser pulses energy were acquired synchronously using the Ophir energy meter and the energy detector. A data set about the relationship between laser pulse energy and the peak of the pulse signal was acquired. Then, by using the data acquired, a model characterizing the functional relationship between the energy value and the peak value of the pulse was trained based on an algorithm of machine learning, Support Vector Regression (SVR). By using the model, the energy value can be obtained directly from the energy detector designed in this project. The result shows that the relative error between the energy obtained by the energy detector and by the Ophir energy meter is less than 2%.

  13. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer’s Disease

    PubMed Central

    Dulla, Chris G.; Coulter, Douglas A.; Ziburkus, Jokubas

    2015-01-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer’s disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. PMID:25948650

  14. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease.

    PubMed

    Dulla, Chris G; Coulter, Douglas A; Ziburkus, Jokubas

    2016-06-01

    Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction. © The Author(s) 2015.

  15. Parallel reduced-instruction-set-computer architecture for real-time symbolic pattern matching

    NASA Astrophysics Data System (ADS)

    Parson, Dale E.

    1991-03-01

    This report discusses ongoing work on a parallel reduced-instruction- set-computer (RISC) architecture for automatic production matching. The PRIOPS compiler takes advantage of the memoryless character of automatic processing by translating a program's collection of automatic production tests into an equivalent combinational circuit-a digital circuit without memory, whose outputs are immediate functions of its inputs. The circuit provides a highly parallel, fine-grain model of automatic matching. The compiler then maps the combinational circuit onto RISC hardware. The heart of the processor is an array of comparators capable of testing production conditions in parallel, Each comparator attaches to private memory that contains virtual circuit nodes-records of the current state of nodes and busses in the combinational circuit. All comparator memories hold identical information, allowing simultaneous update for a single changing circuit node and simultaneous retrieval of different circuit nodes by different comparators. Along with the comparator-based logic unit is a sequencer that determines the current combination of production-derived comparisons to try, based on the combined success and failure of previous combinations of comparisons. The memoryless nature of automatic matching allows the compiler to designate invariant memory addresses for virtual circuit nodes, and to generate the most effective sequences of comparison test combinations. The result is maximal utilization of parallel hardware, indicating speed increases and scalability beyond that found for course-grain, multiprocessor approaches to concurrent Rete matching. Future work will consider application of this RISC architecture to the standard (controlled) Rete algorithm, where search through memory dominates portions of matching.

  16. A Close Loop Low-Power and High Speed 130 nm CMOS Sample and Hold Circuit Based on Switched Capacitor for ADC Module

    NASA Astrophysics Data System (ADS)

    Nasir, Z.; Ruslan, S. H.

    2017-08-01

    A sample and hold (S/H) block is typically used as an analogue to digital interface in the analogue to digital converter (ADC) system. Since ADC is widely used in processing signals, the power consumption of the ADC must be lowered to conserve energy. Therefore the S/H circuit must be of a low powered too. Sampling phase and hold phase are the two phases of the operation cycle of the S/H circuit. Switched capacitor (SC) techniques have been developed in order to allow the integration on a single silicon chip of both digital and analogue functions. By controlling switches around the SC, the SC circuit works by passing charge into and out of a capacitor. SC circuits are suitable for on chip implementations because they replace a resistor with switches and capacitors. In this research, a closed-loop sample and hold circuit based on SC is designed and simulated with Cadence EDA tools. The schematic, layout, and simulation of the circuit is done using generic Silterra 130 nm technology file. All the analysis is done using Virtuoso Analog Design Environment. Layout and schematic are drawn using Virtuoso Schematic Editor and Virtuoso Layout Editor, Calibre is used for post layout simulation. The closed loop S/H circuit based on SC is successfully designed and able to sample and hold the analogue input waveform. The power consumption of the circuit is 0.919 mW and the propagation delay is 64.96 ps.

  17. Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata.

    PubMed

    Bahar, Ali Newaz; Waheed, Sajjad

    2016-01-01

    The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.

  18. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    PubMed Central

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  19. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy

    PubMed Central

    Sekitani, Tsuyoshi; Noguchi, Yoshiaki; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2008-01-01

    A major obstacle to the development of organic transistors for large-area sensor, display, and circuit applications is the fundamental compromise between manufacturing efficiency, transistor performance, and power consumption. In the past, improving the manufacturing efficiency through the use of printing techniques has inevitably resulted in significantly lower performance and increased power consumption, while attempts to improve performance or reduce power have led to higher process temperatures and increased manufacturing cost. Here, we lift this fundamental limitation by demonstrating subfemtoliter inkjet printing to define metal contacts with single-micrometer resolution on the surface of high-mobility organic semiconductors to create high-performance p-channel and n-channel transistors and low-power complementary circuits. The transistors employ an ultrathin low-temperature gate dielectric based on a self-assembled monolayer that allows transistors and circuits on rigid and flexible substrates to operate with very low voltages. PMID:18362348

  20. Thermally-restorable optical degradation and the mechanism of current transport in Cu2S-CdS photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Fahrenbruch, A. L.; Bube, R. H.

    1974-01-01

    The photovoltaic properties of single-crystal Cu2S-CdS heterojunctions have been investigated as a function of heat treatment by detailed measurements of the dependence of short-circuit current on photon energy, temperature, and the state of optical degradation or enhancement. A coherent picture is formulated for the relationship between enhancement and optical degradation, and their effect on the transport of short-circuit photoexcited current and dark, forward-bias current in the cell. Optical degradation in the Cu2S-CdS cell is shown to be closely identical to optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal, indicating that the CdS:Cu layer near the junction interface controls carrier transport in the cell. It is proposed that both the photoexcited short-circuit current and the dark, forward-bias current are controlled by a tunneling-recombination process through interface states.

  1. Room temperature single photon source using fiber-integrated hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vogl, Tobias; Lu, Yuerui; Lam, Ping Koy

    2017-07-01

    Single photons are a key resource for quantum optics and optical quantum information processing. The integration of scalable room temperature quantum emitters into photonic circuits remains to be a technical challenge. Here we utilize a defect center in hexagonal boron nitride (hBN) attached by Van der Waals force onto a multimode fiber as a single photon source. We perform an optical characterization of the source in terms of spectrum, state lifetime, power saturation and photostability. A special feature of our source is that it allows for easy switching between fiber-coupled and free space single photon generation modes. In order to prove the quantum nature of the emission we measure the second-order correlation function {{g}(2)}≤ft(τ \\right) . For both fiber-coupled and free space emission, the {{g}(2)}≤ft(τ \\right) dips below 0.5 indicating operation in the single photon regime. The results so far demonstrate the feasibility of 2D material single photon sources for scalable photonic quantum information processing.

  2. Maxwell's demons realized in electronic circuits

    NASA Astrophysics Data System (ADS)

    Koski, Jonne V.; Pekola, Jukka P.

    2016-12-01

    We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.

  3. Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.

    PubMed

    Gong, Haibiao; Do, Devin; Ramakrishnan, Ramesh

    2018-01-01

    Single-cell mRNA-seq is a valuable tool to dissect expression profiles and to understand the regulatory network of genes. Microfluidics is well suited for single-cell analysis owing both to the small volume of the reaction chambers and easiness of automation. Here we describe the workflow of single-cell mRNA-seq using C1 IFC, which can isolate and process up to 96 cells. Both on-chip procedure (lysis, reverse transcription, and preamplification PCR) and off-chip sequencing library preparation protocols are described. The workflow generates full-length mRNA information, which is more valuable compared to 3' end counting method for many applications.

  4. Capacitance discharge system for ignition of Single Bridge Apollo Standard Initiators (SBASI)

    NASA Technical Reports Server (NTRS)

    Ward, R. D.

    1974-01-01

    The design support data developed during the single bridge Apollo standard initiator (SBASI) program are presented. A circuit was designed and bread-board tested to verify operational capabilities of the circuit. Test data, design criteria, weight, and reliability trade-off considerations, and final design recommendations are reported.

  5. Microphotonic devices for compact planar lightwave circuits and sensor systems

    NASA Astrophysics Data System (ADS)

    Cardenas Gonzalez, Jaime

    2005-07-01

    Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are presented.

  6. Application of drive circuit based on L298N in direct current motor speed control system

    NASA Astrophysics Data System (ADS)

    Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao

    2016-10-01

    In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.

  7. Flexible one-structure arched triboelectric nanogenerator based on common electrode for high efficiency energy harvesting and self-powered motion sensing

    NASA Astrophysics Data System (ADS)

    Chen, Xi; He, Jian; Song, Linlin; Zhang, Zengxing; Tian, Zhumei; Wen, Tao; Zhai, Cong; Chen, Yi; Cho, Jundong; Chou, Xiujian; Xue, Chenyang

    2018-04-01

    Triboelectric nanogenerators are widely used because of low cost, simple manufacturing process and high output performance. In this work, a flexible one-structure arched triboelectric nanogenerator (FOAT), based on common electrode to combine the single-electrode mode and contact-separation, was designed using silicone rubber, epoxy resin and flexible electrode. The peak-to-peak short circuit current of 18μ A and the peak-to-peak open circuit voltage of 570V can be obtained from the FOAT with the size of 5×7 cm2 under the frequency of 3Hz and the pressure of 300N. The peak-to-peak short circuit current of FOAT is increased by 29% and 80%, and the peak-to-peak open circuit voltage is increased by 33% and 54% compared with single-electrode mode and contact-separation mode, respectively. FOAT realizes the combination of two generation modes, which improves the output performance of triboelectric nanogenerator (TENG). 62 light-emitting-diodes (LEDs) can be completely lit up and 2.2μ F capacitor can be easily charged to 1.2V in 9s. When the FOAT is placed at different parts of the human body, the human motion energy can be harvested and be the sensing signal for motion monitoring sensor. Based on the above characteristics, FOAT exhibits great potential in illumination, power supplies for wearable electronic devices and self-powered motion monitoring sensor via harvesting the energy of human motion.

  8. Single Day Construction of Multigene Circuits with 3G Assembly.

    PubMed

    Halleran, Andrew D; Swaminathan, Anandh; Murray, Richard M

    2018-05-18

    The ability to rapidly design, build, and test prototypes is of key importance to every engineering discipline. DNA assembly often serves as a rate limiting step of the prototyping cycle for synthetic biology. Recently developed DNA assembly methods such as isothermal assembly and type IIS restriction enzyme systems take different approaches to accelerate DNA construction. We introduce a hybrid method, Golden Gate-Gibson (3G), that takes advantage of modular part libraries introduced by type IIS restriction enzyme systems and isothermal assembly's ability to build large DNA constructs in single pot reactions. Our method is highly efficient and rapid, facilitating construction of entire multigene circuits in a single day. Additionally, 3G allows generation of variant libraries enabling efficient screening of different possible circuit constructions. We characterize the efficiency and accuracy of 3G assembly for various construct sizes, and demonstrate 3G by characterizing variants of an inducible cell-lysis circuit.

  9. Plasticity in single neuron and circuit computations

    NASA Astrophysics Data System (ADS)

    Destexhe, Alain; Marder, Eve

    2004-10-01

    Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.

  10. A microarchitecture for resource-limited superscalar microprocessors

    NASA Astrophysics Data System (ADS)

    Basso, Todd David

    1999-11-01

    Microelectronic components in space and satellite systems must be resistant to total dose radiation, single-even upset, and latchup in order to accomplish their missions. The demand for inexpensive, high-volume, radiation hardened (rad-hard) integrated circuits (ICs) is expected to increase dramatically as the communication market continues to expand. Motorola's Complementary Gallium Arsenide (CGaAsTM) technology offers superior radiation tolerance compared to traditional CMOS processes, while being more economical than dedicated rad-hard CMOS processes. The goals of this dissertation are to optimize a superscalar microarchitecture suitable for CGaAsTM microprocessors, develop circuit techniques for such applications, and evaluate the potential of CGaAsTM for the development of digital VLSI circuits. Motorola's 0.5 mum CGaAsTM process is summarized and circuit techniques applicable to digital CGaAsTM are developed. Direct coupled FET, complementary, and domino logic circuits are compared based on speed, power, area, and noise margins. These circuit techniques are employed in the design of a 600 MHz PowerPCTM arithmetic logic unit. The dissertation emphasizes CGaASTM-specific design considerations, specifically, low integration level. A baseline superscalar microarchitecture is defined and SPEC95 integer benchmark simulations are used to evaluate the applicability of advanced architectural features to microprocessors having low integration levels. The performance simulations center around the optimization of a simple superscalar core, small-scale branch prediction, instruction prefetching, and an off-chip primary data cache. The simulation results are used to develop a superscalar microarchitecture capable of outperforming a comparable sequential pipeline, while using only 500,000 transistors. The architecture, running at 200 MHz, is capable of achieving an estimated 153 MIPS, translating to a 27% performance increase over a comparable traditional pipelined microprocessor. The proposed microarchitecture is process independent and can be applied to low-cost, or transistor-limited applications. The proposed microarchitecture is implemented in the design of a 0.35 mum CMOS microprocessor, and the design of a 0.5 mum CGaAsTM micro-processor. The two technologies and designs are compared to ascertain the state of CGaAsTM for digital VLSI applications.

  11. Chip-integrated optical power limiter based on an all-passive micro-ring resonator

    NASA Astrophysics Data System (ADS)

    Yan, Siqi; Dong, Jianji; Zheng, Aoling; Zhang, Xinliang

    2014-10-01

    Recent progress in silicon nanophotonics has dramatically advanced the possible realization of large-scale on-chip optical interconnects integration. Adopting photons as information carriers can break the performance bottleneck of electronic integrated circuit such as serious thermal losses and poor process rates. However, in integrated photonics circuits, few reported work can impose an upper limit of optical power therefore prevent the optical device from harm caused by high power. In this study, we experimentally demonstrate a feasible integrated scheme based on a single all-passive micro-ring resonator to realize the optical power limitation which has a similar function of current limiting circuit in electronics. Besides, we analyze the performance of optical power limiter at various signal bit rates. The results show that the proposed device can limit the signal power effectively at a bit rate up to 20 Gbit/s without deteriorating the signal. Meanwhile, this ultra-compact silicon device can be completely compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may pave the way of very large scale integrated photonic circuits for all-optical information processors and artificial intelligence systems.

  12. Series resonance inverter with triggered vacuum gaps

    NASA Astrophysics Data System (ADS)

    Damstra, Geert C.; Zhang, X.

    1994-05-01

    Series resonance inverters based on semi-conductor switching elements are well-known and have a wide range of application, mainly for lower voltages. For high voltage application many switching elements have to be put in series to obtain sufficient blocking voltage. Voltage grinding and multiple gate control elements are needed. There is much experience with the triggered vacuum gaps as high voltage/high current single shot elements, for example in reignition circuits for synthetic circuit breaker tests. These elements have a blocking voltage of 50 - 100 kV and are triggerable by a light fiber control device. A prototype inverter has been developed that generates 0.1 Hz, 30 kV AC voltages with a flat top for tests on cables and capacitors of many micro farads fed from a low voltage supply of about 600 V. Only two TVG elements are needed to switch the resonant circuit alternatively on the positive or negative supply. The resonant circuit itself consists of the capacitance of the testobject and a high quality inductor that determines the frequency and the peak current of the voltage reversing process.

  13. Graphene Ambipolar Nanoelectronics for High Noise Rejection Amplification.

    PubMed

    Liu, Che-Hung; Chen, Qi; Liu, Chang-Hua; Zhong, Zhaohui

    2016-02-10

    In a modern wireless communication system, signal amplification is critical for overcoming losses during multiple data transformations/processes and long-distance transmission. Common mode and differential mode are two fundamental amplification mechanisms, and they utilize totally different circuit configurations. In this paper, we report a new type of dual-gate graphene ambipolar device with capability of operating under both common and differential modes to realize signal amplification. The signal goes through two stages of modulation where the phase of signal can be individually modulated to be either in-phase or out-of-phase at two stages by exploiting the ambipolarity of graphene. As a result, both common and differential mode amplifications can be achieved within one single device, which is not possible in the conventional circuit configuration. In addition, a common-mode rejection ratio as high as 80 dB can be achieved, making it possible for low noise circuit application. These results open up new directions of graphene-based ambipolar electronics that greatly simplify the RF circuit complexity and the design of multifunction device operation.

  14. Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1999-08-24

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  15. Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.

    DOEpatents

    Li, Yaun-Min; Bennett, Murray S.; Yang, Liyou

    1997-07-08

    High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

  16. Technological innovations for a sustainable business model in the semiconductor industry

    NASA Astrophysics Data System (ADS)

    Levinson, Harry J.

    2014-09-01

    Increasing costs of wafer processing, particularly for lithographic processes, have made it increasingly difficult to achieve simultaneous reductions in cost-per-function and area per device. Multiple patterning techniques have made possible the fabrication of circuit layouts below the resolution limit of single optical exposures but have led to significant increases in the costs of patterning. Innovative techniques, such as self-aligned double patterning (SADP) have enabled good device performance when using less expensive patterning equipment. Other innovations have directly reduced the cost of manufacturing. A number of technical challenges must be overcome to enable a return to single-exposure patterning using short wavelength optical techniques, such as EUV patterning.

  17. Infrared-enhanced TV for fire detection

    NASA Technical Reports Server (NTRS)

    Hall, J. R.

    1978-01-01

    Closed-circuit television is superior to conventional smoke or heat sensors for detecting fires in large open spaces. Single TV camera scans entire area, whereas many conventional sensors and maze of interconnecting wiring might be required to get same coverage. Camera is monitored by person who would trip alarm if fire were detected, or electronic circuitry could process camera signal for fully-automatic alarm system.

  18. Technology, design, simulation, and evaluation for SEP-hardened circuits

    NASA Technical Reports Server (NTRS)

    Adams, J. R.; Allred, D.; Barry, M.; Rudeck, P.; Woodruff, R.; Hoekstra, J.; Gardner, H.

    1991-01-01

    This paper describes the technology, design, simulation, and evaluation for improvement of the Single Event Phenomena (SEP) hardness of gate-array and SRAM cells. Through the use of design and processing techniques, it is possible to achieve an SEP error rate less than 1.0 x 10(exp -10) errors/bit-day for a 9O percent worst-case geosynchronous orbit environment.

  19. Conductance in a bis-terpyridine based single molecular breadboard circuit† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc03204d Click here for additional data file.

    PubMed Central

    Seth, Charu; Suravarapu, Sankarrao; Reber, David; Hong, Wenjing; Wandlowski, Thomas; Lafolet, Frédéric; Broekmann, Peter

    2017-01-01

    Controlling charge flow in single molecule circuits with multiple electrical contacts and conductance pathways is a much sought after goal in molecular electronics. In this joint experimental and theoretical study, we advance the possibility of creating single molecule breadboard circuits through an analysis of the conductance of a bis-terpyridine based molecule (TP1). The TP1 molecule can adopt multiple conformations through relative rotations of 7 aromatic rings and can attach to electrodes in 61 possible single and multi-terminal configurations through 6 pyridyl groups. Despite this complexity, we show that it is possible to extract well defined conductance features for the TP1 breadboard and assign them rigorously to the underlying constituent circuits. Mechanically controllable break-junction (MCBJ) experiments on the TP1 molecular breadboard show an unprecedented 4 conductance states spanning a range 10 –2 G 0 to 10 –7 G 0. Quantitative theoretical examination of the conductance of TP1 reveals that combinations of 5 types of single terminal 2–5 ring subcircuits are accessed as a function of electrode separation to produce the distinct conductance steps observed in the MCBJ experiments. We estimate the absolute conductance for each single terminal subcircuit and its percentage contribution to the 4 experimentally observed conductance states. We also provide a detailed analysis of the role of quantum interference and thermal fluctuations in modulating conductance within the subcircuits of the TP1 molecular breadboard. Finally, we discuss the possible development of molecular circuit theory and experimental advances necessary for mapping conductance through complex single molecular breadboard circuits in terms of their constituent subcircuits. PMID:28451287

  20. Study of a Single-Power Two-Circuit ESR Process with Current-Carrying Mold: Mathematical Simulation of the Process and Experimental Verification

    NASA Astrophysics Data System (ADS)

    Dong, Yanwu; Hou, Zhiwen; Jiang, Zhouhua; Cao, Haibo; Feng, Qianlong; Cao, Yulong

    2018-02-01

    A novel single-power two-circuit ESR process (ESR-STCCM) with current-carrying mold has been investigated via numerical simulation and experimental research in this paper. A 2D quasi-steady-state mathematical model is developed to describe ESR-STCCM. The electromagnetic field, flow field, slag pool temperature distribution, and the shape of a molten steel pool in ESR-STCCM have been investigated by FLUENT software as well as user-defined functions (UDF). The results indicate that ESR-STCCM is different from the conventional ESR process. The maximum electromagnetic force, current density, Joule heat, and slag pool flow velocity are located in the lower part of the conductor in the ESR-STCCM process. The direction of the maximum electromagnetic force inclines upward. There are two distinct vortices in the slag pool. The larger swirl rotates counterclockwise near the conductor, with a value of 0.0263 m s-1 due to the interaction of the electromagnetic force and gravity. The maximum temperature of the slag pool is 2070 K (1797 °C) and is located in the center of the swirl with a filling ratio of 0.6 and a 20 mm electrode immersion depth. The depth of a molten steel pool is shallower, which is conducive to improving solidification quality. In addition, the filling ratio of 0.6 is conducive to controlling steel solidification quality. Some experiments have been done, and the numerical model is confirmed by experimental results.

  1. Cathode surface effects and H.F.-behaviour of vacuum arcs

    NASA Astrophysics Data System (ADS)

    Fu, Yan Hong

    To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.

  2. Designing a 25-kilowatt high frequency series resonant

    NASA Technical Reports Server (NTRS)

    Robson, R. R.

    1984-01-01

    The feasibility of processing 25 kW of power with a single, transistorized, 20 kHz, series resonant converter stage has been demonstrated by the successful design, development, fabrication, and testing of such a device. It employs four Westinghouse D7ST transistors in a full-bridge configuration and operates from a 250-to-350-Vdc input bus. The unit has an overall worst-case efficiency of 93.5% at its full rated output of 1000 V and 25 A dc. A solid-state dc input circuit breaker and output-transient-current limiters are included in and integrated into the design. Circuit details of the converter are presented along with test data.

  3. Reconfigurable optomechanical circulator and directional amplifier.

    PubMed

    Shen, Zhen; Zhang, Yan-Lei; Chen, Yuan; Sun, Fang-Wen; Zou, Xu-Bo; Guo, Guang-Can; Zou, Chang-Ling; Dong, Chun-Hua

    2018-05-04

    Non-reciprocal devices, which allow non-reciprocal signal routing, serve as fundamental elements in photonic and microwave circuits and are crucial in both classical and quantum information processing. The radiation-pressure-induced coupling between light and mechanical motion in travelling-wave resonators has been exploited to break the Lorentz reciprocity, enabling non-reciprocal devices without magnetic materials. Here, we experimentally demonstrate a reconfigurable non-reciprocal device with alternative functions as either a circulator or a directional amplifier via optomechanically induced coherent photon-phonon conversion or gain. The demonstrated device exhibits considerable flexibility and offers exciting opportunities for combining reconfigurability, non-reciprocity and active properties in single photonic devices, which can also be generalized to microwave and acoustic circuits.

  4. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers

    PubMed Central

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Abstract Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlOx), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers. PMID:28634499

  5. Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.

    PubMed

    Majima, Yutaka; Hackenberger, Guillaume; Azuma, Yasuo; Kano, Shinya; Matsuzaki, Kosuke; Susaki, Tomofumi; Sakamoto, Masanori; Teranishi, Toshiharu

    2017-01-01

    Single-electron transistors (SETs) are sub-10-nm scale electronic devices based on conductive Coulomb islands sandwiched between double-barrier tunneling barriers. Chemically assembled SETs with alkanethiol-protected Au nanoparticles show highly stable Coulomb diamonds and two-input logic operations. The combination of bottom-up and top-down processes used to form the passivation layer is vital for realizing multi-gate chemically assembled SET circuits, as this combination enables us to connect conventional complementary metal oxide semiconductor (CMOS) technologies via planar processes. Here, three-input gate exclusive-OR (XOR) logic operations are demonstrated in passivated chemically assembled SETs. The passivation layer is a hybrid bilayer of self-assembled monolayers (SAMs) and pulsed laser deposited (PLD) aluminum oxide (AlO[Formula: see text]), and top-gate electrodes were prepared on the hybrid passivation layers. Top and two-side-gated SETs showed clear Coulomb oscillation and diamonds for each of the three available gates, and three-input gate XOR logic operation was clearly demonstrated. These results show the potential of chemically assembled SETs to work as logic devices with multi-gate inputs using organic and inorganic hybrid passivation layers.

  6. Influence of bending strains on radio frequency characteristics of flexible microwave switches using single-crystal silicon nanomembranes on plastic substrate

    NASA Astrophysics Data System (ADS)

    Qin, Guoxuan; Yuan, Hao-Chih; Celler, George K.; Ma, Jianguo; Ma, Zhenqiang

    2011-10-01

    This letter presents radio frequency (RF) characterization of flexible microwave switches using single-crystal silicon nanomembranes (SiNMs) on plastic substrate under various uniaxial mechanical tensile bending strains. The flexible switches shows significant/negligible performance enhancement on strains under on/off states from dc to 10 GHz. Furthermore, an RF/microwave strain equivalent circuit model is developed and reveals the most influential factors, and un-proportional device parameters change with bending strains. The study demonstrates that flexible microwave single-crystal SiNM switches, as a simple circuit example towards the goal of flexible monolithic microwave integrated circuits, can be properly operated and modeled under mechanical bending conditions.

  7. Underdamped long Josephson junction coupled to overdamped single-flux-quantum circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y.M.; Borzenets, V.; Kaplunenko, V.K.

    1997-09-01

    We report a circuit that integrates an underdamped long Josephson junction with overdamped single-flux-quantum (SFQ) circuits. We confirm that the resonant soliton modes in the long junction are not affected by SFQ cells coupled to the junction, and demonstrate that the radiation frequency and linewidth of the soliton resonances can be measured with SFQ T-flip-flops. Our experimental results also show that a 4{pi} quantum mechanical phase leap at the end of the long junction, which is due to the reflection of a soliton, creates two single flux quanta propagating in the overdamped Josephson transmission line. {copyright} {ital 1997 American Institutemore » of Physics.}« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Jeffrey Wayne

    An RFID backscatter interrogator for transmitting data to an RFID tag, generating a carrier for the tag, and receiving data from the tag modulated onto the carrier, the interrogator including a single grounded-coplanar wave-guide circuit board and at least one surface mount integrated circuit supported by the circuit board.

  9. A method for identifying EMI critical circuits during development of a large C3

    NASA Astrophysics Data System (ADS)

    Barr, Douglas H.

    The circuit analysis methods and process Boeing Aerospace used on a large, ground-based military command, control, and communications (C3) system are described. This analysis was designed to help identify electromagnetic interference (EMI) critical circuits. The methodology used the MIL-E-6051 equipment criticality categories as the basis for defining critical circuits, relational database technology to help sort through and account for all of the approximately 5000 system signal cables, and Macintosh Plus personal computers to predict critical circuits based on safety margin analysis. The EMI circuit analysis process systematically examined all system circuits to identify which ones were likely to be EMI critical. The process used two separate, sequential safety margin analyses to identify critical circuits (conservative safety margin analysis, and detailed safety margin analysis). These analyses used field-to-wire and wire-to-wire coupling models using both worst-case and detailed circuit parameters (physical and electrical) to predict circuit safety margins. This process identified the predicted critical circuits that could then be verified by test.

  10. Teaching Electric Circuits with Multiple Batteries: A Qualitative Approach

    ERIC Educational Resources Information Center

    Smith, David P.; van Kampen, Paul

    2011-01-01

    We have investigated preservice science teachers' qualitative understanding of circuits consisting of multiple batteries in single and multiple loops using a pretest and post-test method and classroom observations. We found that most students were unable to explain the effects of adding batteries in single and multiple loops, as they tended to use…

  11. A neural model of figure-ground organization.

    PubMed

    Craft, Edward; Schütze, Hartmut; Niebur, Ernst; von der Heydt, Rüdiger

    2007-06-01

    Psychophysical studies suggest that figure-ground organization is a largely autonomous process that guides--and thus precedes--allocation of attention and object recognition. The discovery of border-ownership representation in single neurons of early visual cortex has confirmed this view. Recent theoretical studies have demonstrated that border-ownership assignment can be modeled as a process of self-organization by lateral interactions within V2 cortex. However, the mechanism proposed relies on propagation of signals through horizontal fibers, which would result in increasing delays of the border-ownership signal with increasing size of the visual stimulus, in contradiction with experimental findings. It also remains unclear how the resulting border-ownership representation would interact with attention mechanisms to guide further processing. Here we present a model of border-ownership coding based on dedicated neural circuits for contour grouping that produce border-ownership assignment and also provide handles for mechanisms of selective attention. The results are consistent with neurophysiological and psychophysical findings. The model makes predictions about the hypothetical grouping circuits and the role of feedback between cortical areas.

  12. Novel electrochemical nickel metallization in silicon impedance engineering for mixed-signal system-on-chip crosstalk isolation

    NASA Astrophysics Data System (ADS)

    Zhang, Xi

    One of the major challenges for single chip radio frequency integrated circuits (RFIC's) built on Si is the RE crosstalk through the Si substrate. Noise from switching transient in digital circuits can be transmitted through Si substrate and degrades the performance of analog circuit elements. A highly conductive moat or Faraday cage type structure of through-the-wafer thickness in the Si substrate was demonstrated to be effective in shielding electromagnetic interference thereby reducing RE cross-talk in high performance mixed signal integrated circuits. Such a structure incorporated into the p- Si substrate was realized by electroless Ni metallization over selected regions with ultra-high-aspect-ratio macropores that was etched electrochemically in p- Si substrates. The metallization process was conducted by immersing the macroporous Si sample in an alkaline aqueous solution containing Ni2+ without a reducing agent. It was found that working at slightly elevated temperature, Ni 2+ was rapidly reduced and deposited in the macropores. During the wet chemical process, conformal metallization on the pore wall was achieved. The entire porous Si skeleton was gradually replaced by Ni along the extended duration of immersion. In a p-/p+ epi Si substrate used for high performance digital CMOS, the suppression of crosstalk by the arrayed metallic Ni via structure fabricated from the front p side was significant that the crosstalk went down to the noise floor of the conventional measurement instruments. The process and mechanism of forming such a Ni structure over the original Si were studied. Theoretical computation relevant to the process was carried out to show a good consistency with the experiments.

  13. Dynamic balance of excitation and inhibition rapidly modulates spike probability and precision in feed-forward hippocampal circuits

    PubMed Central

    Wahlstrom-Helgren, Sarah

    2016-01-01

    Feed-forward inhibitory (FFI) circuits are important for many information-processing functions. FFI circuit operations critically depend on the balance and timing between the excitatory and inhibitory components, which undergo rapid dynamic changes during neural activity due to short-term plasticity (STP) of both components. How dynamic changes in excitation/inhibition (E/I) balance during spike trains influence FFI circuit operations remains poorly understood. In the current study we examined the role of STP in the FFI circuit functions in the mouse hippocampus. Using a coincidence detection paradigm with simultaneous activation of two Schaffer collateral inputs, we found that the spiking probability in the target CA1 neuron was increased while spike precision concomitantly decreased during high-frequency bursts compared with a single spike. Blocking inhibitory synaptic transmission revealed that dynamics of inhibition predominately modulates the spike precision but not the changes in spiking probability, whereas the latter is modulated by the dynamics of excitation. Further analyses combining whole cell recordings and simulations of the FFI circuit suggested that dynamics of the inhibitory circuit component may influence spiking behavior during bursts by broadening the width of excitatory postsynaptic responses and that the strength of this modulation depends on the basal E/I ratio. We verified these predictions using a mouse model of fragile X syndrome, which has an elevated E/I ratio, and found a strongly reduced modulation of postsynaptic response width during bursts. Our results suggest that changes in the dynamics of excitatory and inhibitory circuit components due to STP play important yet distinct roles in modulating the properties of FFI circuits. PMID:27605532

  14. Audio distribution and Monitoring Circuit

    NASA Technical Reports Server (NTRS)

    Kirkland, J. M.

    1983-01-01

    Versatile circuit accepts and distributes TV audio signals. Three-meter audio distribution and monitoring circuit provides flexibility in monitoring, mixing, and distributing audio inputs and outputs at various signal and impedance levels. Program material is simultaneously monitored on three channels, or single-channel version built to monitor transmitted or received signal levels, drive speakers, interface to building communications, and drive long-line circuits.

  15. Fully chip-embedded automation of a multi-step lab-on-a-chip process using a modularized timer circuit.

    PubMed

    Kang, Junsu; Lee, Donghyeon; Heo, Young Jin; Chung, Wan Kyun

    2017-11-07

    For highly-integrated microfluidic systems, an actuation system is necessary to control the flow; however, the bulk of actuation devices including pumps or valves has impeded the broad application of integrated microfluidic systems. Here, we suggest a microfluidic process control method based on built-in microfluidic circuits. The circuit is composed of a fluidic timer circuit and a pneumatic logic circuit. The fluidic timer circuit is a serial connection of modularized timer units, which sequentially pass high pressure to the pneumatic logic circuit. The pneumatic logic circuit is a NOR gate array designed to control the liquid-controlling process. By using the timer circuit as a built-in signal generator, multi-step processes could be done totally inside the microchip without any external controller. The timer circuit uses only two valves per unit, and the number of process steps can be extended without limitation by adding timer units. As a demonstration, an automation chip has been designed for a six-step droplet treatment, which entails 1) loading, 2) separation, 3) reagent injection, 4) incubation, 5) clearing and 6) unloading. Each process was successfully performed for a pre-defined step-time without any external control device.

  16. Educational Support System for Experiments Involving Construction of Sound Processing Circuits

    ERIC Educational Resources Information Center

    Takemura, Atsushi

    2012-01-01

    This paper proposes a novel educational support system for technical experiments involving the production of practical electronic circuits for sound processing. To support circuit design and production, each student uses a computer during the experiments, and can learn circuit design, virtual circuit making, and real circuit making. In the…

  17. Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit

    NASA Astrophysics Data System (ADS)

    Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu

    Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.

  18. Unfolding an electronic integrate-and-fire circuit.

    PubMed

    Carrillo, Humberto; Hoppensteadt, Frank

    2010-01-01

    Many physical and biological phenomena involve accumulation and discharge processes that can occur on significantly different time scales. Models of these processes have contributed to understand excitability self-sustained oscillations and synchronization in arrays of oscillators. Integrate-and-fire (I+F) models are popular minimal fill-and-flush mathematical models. They are used in neuroscience to study spiking and phase locking in single neuron membranes, large scale neural networks, and in a variety of applications in physics and electrical engineering. We show here how the classical first-order I+F model fits into the theory of nonlinear oscillators of van der Pol type by demonstrating that a particular second-order oscillator having small parameters converges in a singular perturbation limit to the I+F model. In this sense, our study provides a novel unfolding of such models and it identifies a constructible electronic circuit that is closely related to I+F.

  19. Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping

    2014-04-01

    Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.

  20. Control of DNA strand displacement kinetics using toehold exchange.

    PubMed

    Zhang, David Yu; Winfree, Erik

    2009-12-02

    DNA is increasingly being used as the engineering material of choice for the construction of nanoscale circuits, structures, and motors. Many of these enzyme-free constructions function by DNA strand displacement reactions. The kinetics of strand displacement can be modulated by toeholds, short single-stranded segments of DNA that colocalize reactant DNA molecules. Recently, the toehold exchange process was introduced as a method for designing fast and reversible strand displacement reactions. Here, we characterize the kinetics of DNA toehold exchange and model it as a three-step process. This model is simple and quantitatively predicts the kinetics of 85 different strand displacement reactions from the DNA sequences. Furthermore, we use toehold exchange to construct a simple catalytic reaction. This work improves the understanding of the kinetics of nucleic acid reactions and will be useful in the rational design of dynamic DNA and RNA circuits and nanodevices.

  1. Synaptic plasticity functions in an organic electrochemical transistor

    NASA Astrophysics Data System (ADS)

    Gkoupidenis, Paschalis; Schaefer, Nathan; Strakosas, Xenofon; Fairfield, Jessamyn A.; Malliaras, George G.

    2015-12-01

    Synaptic plasticity functions play a crucial role in the transmission of neural signals in the brain. Short-term plasticity is required for the transmission, encoding, and filtering of the neural signal, whereas long-term plasticity establishes more permanent changes in neural microcircuitry and thus underlies memory and learning. The realization of bioinspired circuits that can actually mimic signal processing in the brain demands the reproduction of both short- and long-term aspects of synaptic plasticity in a single device. Here, we demonstrate the implementation of neuromorphic functions similar to biological memory, such as short- to long-term memory transition, in non-volatile organic electrochemical transistors (OECTs). Depending on the training of the OECT, the device displays either short- or long-term plasticity, therefore, exhibiting non von Neumann characteristics with merged processing and storing functionalities. These results are a first step towards the implementation of organic-based neuromorphic circuits.

  2. Minimal Power Latch for Single-Slope ADCs

    NASA Technical Reports Server (NTRS)

    Hancock, Bruce R. (Inventor)

    2015-01-01

    A latch circuit that uses two interoperating latches. The latch circuit has the beneficial feature that it switches only a single time during a measurement that uses a stair step or ramp function as an input signal in an analog to digital converter. This feature minimizes the amount of power that is consumed in the latch and also minimizes the amount of high frequency noise that is generated by the latch. An application using a plurality of such latch circuits in a parallel decoding ADC for use in an image sensor is given as an example.

  3. Signatures of Hong-Ou-Mandel interference at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Woolley, M. J.; Lang, C.; Eichler, C.; Wallraff, A.; Blais, A.

    2013-10-01

    Two-photon quantum interference at a beam splitter, commonly known as Hong-Ou-Mandel interference, is a fundamental demonstration of the quantum mechanical nature of electromagnetic fields and a key component of various quantum information processing protocols. The phenomenon was recently demonstrated with microwave-frequency photons by Lang et al (2013 Nature Phys. 9 345-8). This experiment employed circuit QED systems as sources of microwave photons, and was based on the measurement of second-order cross-correlation and auto-correlation functions of the microwave fields at the outputs of the beam splitter using linear detectors. Here we present the calculation of these correlation functions for the cases of inputs corresponding to: (i) trains of pulsed Gaussian or Lorentzian single microwave photons and (ii) resonant fluorescent microwave fields from continuously driven circuit QED systems. In both cases, the signature of two-photon quantum interference is a suppression of the second-order cross-correlation function for small delays. The experiment described in Lang et al (2013) was performed with trains of Lorentzian single photons, and very good agreement with experimental data is obtained. The results are relevant not only to interference experiments using circuit QED systems, but any such setup with highly controllable sources and time-resolved detection.

  4. Development of an X-Band 50 MW Multiple Beam Klystron

    NASA Astrophysics Data System (ADS)

    Song, Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max

    2003-12-01

    Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam — wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust — high efficient — long life high power amplifier.

  5. VAV-1 acts in a single interneuron to inhibit motor circuit activity in Caenorhabditis elegans.

    PubMed

    Fry, Amanda L; Laboy, Jocelyn T; Norman, Kenneth R

    2014-11-21

    The complex molecular and cellular mechanisms underlying neuronal control of animal movement are not well understood. Locomotion of Caenorhabditis elegans is mediated by a neuronal circuit that produces coordinated sinusoidal movement. Here we utilize this simple, yet elegant, behaviour to show that VAV-1, a conserved guanine nucleotide exchange factor for Rho-family GTPases, negatively regulates motor circuit activity and the rate of locomotion. While vav-1 is expressed in a small subset of neurons, we find that VAV-1 function is required in a single interneuron, ALA, to regulate motor neuron circuit activity. Furthermore, we show by genetic and optogenetic manipulation of ALA that VAV-1 is required for the excitation and activation of this neuron. We find that ALA signalling inhibits command interneuron activity by abrogating excitatory signalling in the command interneurons, which is responsible for promoting motor neuron circuit activity. Together, our data describe a novel neuromodulatory role for VAV-1-dependent signalling in the regulation of motor circuit activity and locomotion.

  6. Broadband enhancement of single photon emission and polarization dependent coupling in silicon nitride waveguides.

    PubMed

    Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard

    2015-06-01

    Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.

  7. Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy

    PubMed Central

    Young, Jonathan W; Locke, James C W; Altinok, Alphan; Rosenfeld, Nitzan; Bacarian, Tigran; Swain, Peter S; Mjolsness, Eric; Elowitz, Michael B

    2014-01-01

    Quantitative single-cell time-lapse microscopy is a powerful method for analyzing gene circuit dynamics and heterogeneous cell behavior. We describe the application of this method to imaging bacteria by using an automated microscopy system. This protocol has been used to analyze sporulation and competence differentiation in Bacillus subtilis, and to quantify gene regulation and its fluctuations in individual Escherichia coli cells. The protocol involves seeding and growing bacteria on small agarose pads and imaging the resulting microcolonies. Images are then reviewed and analyzed using our laboratory's custom MATLAB analysis code, which segments and tracks cells in a frame-to-frame method. This process yields quantitative expression data on cell lineages, which can illustrate dynamic expression profiles and facilitate mathematical models of gene circuits. With fast-growing bacteria, such as E. coli or B. subtilis, image acquisition can be completed in 1 d, with an additional 1–2 d for progressing through the analysis procedure. PMID:22179594

  8. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  9. Multijunction high voltage concentrator solar cells

    NASA Technical Reports Server (NTRS)

    Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.

    1981-01-01

    The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.

  10. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging.

    PubMed

    Schultz, Simon R; Copeland, Caroline S; Foust, Amanda J; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.

  11. High speed preamplifier circuit, detection electronics, and radiation detection systems therefrom

    DOEpatents

    Riedel, Richard A [Knoxville, TN; Wintenberg, Alan L [Knoxville, TN; Clonts, Lloyd G [Knoxville, TN; Cooper, Ronald G [Oak Ridge, TN

    2010-09-21

    A preamplifier circuit for processing a signal provided by a radiation detector includes a transimpedance amplifier coupled to receive a current signal from a detector and generate a voltage signal at its output. A second amplification stage has an input coupled to an output of the transimpedance amplifier for providing an amplified voltage signal. Detector electronics include a preamplifier circuit having a first and second transimpedance amplifier coupled to receive a current signal from a first and second location on a detector, respectively, and generate a first and second voltage signal at respective outputs. A second amplification stage has an input coupled to an output of the transimpedance amplifiers for amplifying the first and said second voltage signals to provide first and second amplified voltage signals. A differential output stage is coupled to the second amplification stage for receiving the first and second amplified voltage signals and providing a pair of outputs from each of the first and second amplified voltage signals. Read out circuitry has an input coupled to receive both of the pair of outputs, the read out circuitry having structure for processing each of the pair of outputs, and providing a single digital output having a time-stamp therefrom.

  12. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging

    PubMed Central

    Schultz, Simon R.; Copeland, Caroline S.; Foust, Amanda J.; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size. PMID:28757657

  13. Development of Integrated Preamplifier for High-Frequency Ultrasonic Transducers and Low-Power Handheld Receiver

    PubMed Central

    Choi, Hojong; Li, Xiang; Lau, Sien-Ting; Hu, ChangHong; Zhou, Qifa; Shung, K. Kirk

    2012-01-01

    This paper describes the design of a front-end circuit consisting of an integrated preamplifier with a Sallen-Key Butterworth filter for very-high-frequency ultrasonic transducers and a low-power handheld receiver. This preamplifier was fabricated using a 0.18-μm 7WL SiGe bi-polar complementary metal oxide semiconductor (BiCMOS) process. The Sallen-Key filter is used to increase the voltage gain of the front-end circuit for high-frequency transducers which are generally low in sensitivity. The measured peak voltage gain of the frontend circuits for the BiCMOS preamplifier with the Sallen-Key filter was 41.28 dB at 100 MHz with a −6-dB bandwidth of 91%, and the dc power consumption of the BiCMOS preamplifier was 49.53 mW. The peak voltage gain of the front-end circuits for the CMOS preamplifier with the Sallen-Key filter was 39.52 dB at 100 MHz with a −6-dB bandwidth of 108%, and the dc power consumption of the CMOS preamplifier was 43.57 mW. Pulse-echo responses and wire phantom images with a single-element ultrasonic transducer have been acquired to demonstrate the performance of the front-end circuit. PMID:23443700

  14. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  15. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  16. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  17. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  18. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  19. Solid-state single-photon emitters

    NASA Astrophysics Data System (ADS)

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  20. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., single-break, signal control circuits using a grounded common, and alternating current power distribution...) Alternating current power distribution circuits that are grounded in the interest of safety. ...

  1. Laser Scanner Tests For Single-Event Upsets

    NASA Technical Reports Server (NTRS)

    Kim, Quiesup; Soli, George A.; Schwartz, Harvey R.

    1992-01-01

    Microelectronic advanced laser scanner (MEALS) is opto/electro/mechanical apparatus for nondestructive testing of integrated memory circuits, logic circuits, and other microelectronic devices. Multipurpose diagnostic system used to determine ultrafast time response, leakage, latchup, and electrical overstress. Used to simulate some of effects of heavy ions accelerated to high energies to determine susceptibility of digital device to single-event upsets.

  2. Neural Circuits via Which Single Prolonged Stress Exposure Leads to Fear Extinction Retention Deficits

    ERIC Educational Resources Information Center

    Knox, Dayan; Stanfield, Briana R.; Staib, Jennifer M.; David, Nina P.; Keller, Samantha M.; DePietro, Thomas

    2016-01-01

    Single prolonged stress (SPS) has been used to examine mechanisms via which stress exposure leads to post-traumatic stress disorder symptoms. SPS induces fear extinction retention deficits, but neural circuits critical for mediating these deficits are unknown. To address this gap, we examined the effect of SPS on neural activity in brain regions…

  3. Digital optical processing of optical communications: towards an Optical Turing Machine

    NASA Astrophysics Data System (ADS)

    Touch, Joe; Cao, Yinwen; Ziyadi, Morteza; Almaiman, Ahmed; Mohajerin-Ariaei, Amirhossein; Willner, Alan E.

    2017-01-01

    Optical computing is needed to support Tb/s in-network processing in a way that unifies communication and computation using a single data representation that supports in-transit network packet processing, security, and big data filtering. Support for optical computation of this sort requires leveraging the native properties of optical wave mixing to enable computation and switching for programmability. As a consequence, data must be encoded digitally as phase (M-PSK), semantics-preserving regeneration is the key to high-order computation, and data processing at Tb/s rates requires mixing. Experiments have demonstrated viable approaches to phase squeezing and power restoration. This work led our team to develop the first serial, optical Internet hop-count decrement, and to design and simulate optical circuits for calculating the Internet checksum and multiplexing Internet packets. The current exploration focuses on limited-lookback computational models to reduce the need for permanent storage and hybrid nanophotonic circuits that combine phase-aligned comb sources, non-linear mixing, and switching on the same substrate to avoid the macroscopic effects that hamper benchtop prototypes.

  4. Graphene/Si CMOS Hybrid Hall Integrated Circuits

    PubMed Central

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-01-01

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process. PMID:24998222

  5. Graphene/Si CMOS hybrid hall integrated circuits.

    PubMed

    Huang, Le; Xu, Huilong; Zhang, Zhiyong; Chen, Chengying; Jiang, Jianhua; Ma, Xiaomeng; Chen, Bingyan; Li, Zishen; Zhong, Hua; Peng, Lian-Mao

    2014-07-07

    Graphene/silicon CMOS hybrid integrated circuits (ICs) should provide powerful functions which combines the ultra-high carrier mobility of graphene and the sophisticated functions of silicon CMOS ICs. But it is difficult to integrate these two kinds of heterogeneous devices on a single chip. In this work a low temperature process is developed for integrating graphene devices onto silicon CMOS ICs for the first time, and a high performance graphene/CMOS hybrid Hall IC is demonstrated. Signal amplifying/process ICs are manufactured via commercial 0.18 um silicon CMOS technology, and graphene Hall elements (GHEs) are fabricated on top of the passivation layer of the CMOS chip via a low-temperature micro-fabrication process. The sensitivity of the GHE on CMOS chip is further improved by integrating the GHE with the CMOS amplifier on the Si chip. This work not only paves the way to fabricate graphene/Si CMOS Hall ICs with much higher performance than that of conventional Hall ICs, but also provides a general method for scalable integration of graphene devices with silicon CMOS ICs via a low-temperature process.

  6. Catalysts for Lightweight Solar Fuels Generation

    DTIC Science & Technology

    2017-03-10

    single bandgap solar cells to OER catalysts could lead to very high solar -to-fuel efficiencies. Figure 3 illustrates a PV -EC utilizing a PV , an...3- or 4 -single junction c-Si solar cells connected in series. Considering a PV -EC device based on commercially available single junction-Si solar ...30.8%) with open circuit voltage and short circuit current density ; total plot area is scaled to incident solar power (100 mW cm–2). The PV -EC

  7. Nonvolatile GaAs Random-Access Memory

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.; Stadler, Henry L.; Wu, Jiin-Chuan

    1994-01-01

    Proposed random-access integrated-circuit electronic memory offers nonvolatile magnetic storage. Bits stored magnetically and read out with Hall-effect sensors. Advantages include short reading and writing times and high degree of immunity to both single-event upsets and permanent damage by ionizing radiation. Use of same basic material for both transistors and sensors simplifies fabrication process, with consequent benefits in increased yield and reduced cost.

  8. Multijunction high-voltage solar cell

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Goradia, C.; Chai, A. T.

    1981-01-01

    Multijunction cell allows for fabrication of high-voltage solar cell on single semiconductor wafer. Photovoltaic energy source using cell is combined on wafer with circuit it is to power. Cell consists of many voltage-generating regions internally or externally interconnected to give desired voltage and current combination. For computer applications, module is built on silicon wafer with energy for internal information processing and readouts derived from external light source.

  9. 30 CFR 57.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...

  10. 30 CFR 57.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...

  11. 30 CFR 57.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... which is initiated by a safety fuse. Blasting circuit means the electrical circuit used to fire one or... enclosure through which an electric circuit is carried to one or more cables from a single incoming feed... organization which hires one or more persons to work for wages or salary. Emulsion means an explosive material...

  12. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  13. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    PubMed

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  14. PCB Fault Detection Using Image Processing

    NASA Astrophysics Data System (ADS)

    Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.

    2017-08-01

    The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images

  15. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    PubMed

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  16. CMOS image sensor with contour enhancement

    NASA Astrophysics Data System (ADS)

    Meng, Liya; Lai, Xiaofeng; Chen, Kun; Yuan, Xianghui

    2010-10-01

    Imitating the signal acquisition and processing of vertebrate retina, a CMOS image sensor with bionic pre-processing circuit is designed. Integration of signal-process circuit on-chip can reduce the requirement of bandwidth and precision of the subsequent interface circuit, and simplify the design of the computer-vision system. This signal pre-processing circuit consists of adaptive photoreceptor, spatial filtering resistive network and Op-Amp calculation circuit. The adaptive photoreceptor unit with a dynamic range of approximately 100 dB has a good self-adaptability for the transient changes in light intensity instead of intensity level itself. Spatial low-pass filtering resistive network used to mimic the function of horizontal cell, is composed of the horizontal resistor (HRES) circuit and OTA (Operational Transconductance Amplifier) circuit. HRES circuit, imitating dendrite of the neuron cell, comprises of two series MOS transistors operated in weak inversion region. Appending two diode-connected n-channel transistors to a simple transconductance amplifier forms the OTA Op-Amp circuit, which provides stable bias voltage for the gate of MOS transistors in HRES circuit, while serves as an OTA voltage follower to provide input voltage for the network nodes. The Op-Amp calculation circuit with a simple two-stage Op-Amp achieves the image contour enhancing. By adjusting the bias voltage of the resistive network, the smoothing effect can be tuned to change the effect of image's contour enhancement. Simulations of cell circuit and 16×16 2D circuit array are implemented using CSMC 0.5μm DPTM CMOS process.

  17. One Photon Can Simultaneously Excite Two or More Atoms.

    PubMed

    Garziano, Luigi; Macrì, Vincenzo; Stassi, Roberto; Di Stefano, Omar; Nori, Franco; Savasta, Salvatore

    2016-07-22

    We consider two separate atoms interacting with a single-mode optical or microwave resonator. When the frequency of the resonator field is twice the atomic transition frequency, we show that there exists a resonant coupling between one photon and two atoms, via intermediate virtual states connected by counterrotating processes. If the resonator is prepared in its one-photon state, the photon can be jointly absorbed by the two atoms in their ground state which will both reach their excited state with a probability close to one. Like ordinary quantum Rabi oscillations, this process is coherent and reversible, so that two atoms in their excited state will undergo a downward transition jointly emitting a single cavity photon. This joint absorption and emission process can also occur with three atoms. The parameters used to investigate this process correspond to experimentally demonstrated values in circuit quantum electrodynamics systems.

  18. Measurement and control of quasiparticle dynamics in a superconducting qubit.

    PubMed

    Wang, C; Gao, Y Y; Pop, I M; Vool, U; Axline, C; Brecht, T; Heeres, R W; Frunzio, L; Devoret, M H; Catelani, G; Glazman, L I; Schoelkopf, R J

    2014-12-18

    Superconducting circuits have attracted growing interest in recent years as a promising candidate for fault-tolerant quantum information processing. Extensive efforts have always been taken to completely shield these circuits from external magnetic fields to protect the integrity of the superconductivity. Here we show vortices can improve the performance of superconducting qubits by reducing the lifetimes of detrimental single-electron-like excitations known as quasiparticles. Using a contactless injection technique with unprecedented dynamic range, we quantitatively distinguish between recombination and trapping mechanisms in controlling the dynamics of residual quasiparticle, and show quantized changes in quasiparticle trapping rate because of individual vortices. These results highlight the prominent role of quasiparticle trapping in future development of superconducting qubits, and provide a powerful characterization tool along the way.

  19. System on a Chip (SoC) Overview

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2010-01-01

    System-on-a-chip or system on chip (SoC or SOC) refers to integrating all components of a computer or other electronic system into a single integrated circuit (chip). It may contain digital, analog, mixed-signal, and often radio-frequency functions all on a single chip substrate. Complexity drives it all: Radiation tolerance and testability are challenges for fault isolation, propagation, and validation. Bigger single silicon die than flown before and technology is scaling below 90nm (new qual methods). Packages have changed and are bigger and more difficult to inspect, test, and understand. Add in embedded passives. Material interfaces are more complex (underfills, processing). New rules for board layouts. Mechanical and thermal designs, etc.

  20. Superconducting Qubit with Integrated Single Flux Quantum Controller Part I: Theory and Fabrication

    NASA Astrophysics Data System (ADS)

    Beck, Matthew; Leonard, Edward, Jr.; Thorbeck, Ted; Zhu, Shaojiang; Howington, Caleb; Nelson, Jj; Plourde, Britton; McDermott, Robert

    As the size of quantum processors grow, so do the classical control requirements. The single flux quantum (SFQ) Josephson digital logic family offers an attractive route to proximal classical control of multi-qubit processors. Here we describe coherent control of qubits via trains of SFQ pulses. We discuss the fabrication of an SFQ-based pulse generator and a superconducting transmon qubit on a single chip. Sources of excess microwave loss stemming from the complex multilayer fabrication of the SFQ circuit are discussed. We show how to mitigate this loss through judicious choice of process workflow and appropriate use of sacrificial protection layers. Present address: IBM T.J. Watson Research Center.

  1. CMOS single-stage input-powered bridge rectifier with boost switch and duty cycle control

    NASA Astrophysics Data System (ADS)

    Radzuan, Roskhatijah; Mohd Salleh, Mohd Khairul; Hamzah, Mustafar Kamal; Ab Wahab, Norfishah

    2017-06-01

    This paper presents a single-stage input-powered bridge rectifier with boost switch for wireless-powered devices such as biomedical implants and wireless sensor nodes. Realised using CMOS process technology, it employs a duty cycle switch control to achieve high output voltage using boost technique, leading to a high output power conversion. It has only six external connections with the boost inductance. The input frequency of the bridge rectifier is set at 50 Hz, while the switching frequency is 100 kHz. The proposed circuit is fabricated on a single 0.18-micron CMOS die with a space area of 0.024 mm2. The simulated and measured results show good agreement.

  2. Modeling from Local to Subsystem Level Effects in Analog and Digital Circuits Due to Space Induced Single Event Transients

    NASA Technical Reports Server (NTRS)

    Perez, Reinaldo J.

    2011-01-01

    Single Event Transients in analog and digital electronics from space generated high energetic nuclear particles can disrupt either temporarily and sometimes permanently the functionality and performance of electronics in space vehicles. This work first provides some insights into the modeling of SET in electronic circuits that can be used in SPICE-like simulators. The work is then directed to present methodologies, one of which was developed by this author, for the assessment of SET at different levels of integration in electronics, from the circuit level to the subsystem level.

  3. Single-server blind quantum computation with quantum circuit model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  4. General technique for the integration of MIC/MMIC'S with waveguides

    NASA Technical Reports Server (NTRS)

    Geller, Bernard D. (Inventor); Zaghloul, Amir I. (Inventor)

    1987-01-01

    A technique for packaging and integrating of a microwave integrated circuit (MIC) or monolithic microwave integrated circuit (MMIC) with a waveguide uses a printed conductive circuit pattern on a dielectric substrate to transform impedance and mode of propagation between the MIC/MMIC and the waveguide. The virtually coplanar circuit pattern lies on an equipotential surface within the waveguide and therefore makes possible single or dual polarized mode structures.

  5. Transnational migration of Mexican scientists: A circuit between Mexico and the EEUU

    NASA Astrophysics Data System (ADS)

    Tinoco Herrera, Mario Luis

    The experience and meaning of migration for a group of Mexican scientists participating in the construction of a migratory circuit between Mexico and US within the field of agricultural sciences is the object of this study. I define this migratory circuit of scientists as a social, historical and cultural process, and draw from transnational migration theories to analyze it. From this perspective, I view the migratory circuit of Mexican scientists to be a field of social relationships extended across Mexico and the US. In studying the migratory experience and its significance, I draw upon the methods of historical reconstruction of the circuit of scientists between Mexico and the US, participatory observation, informal narratives, testimonies and their analysis. This study focuses on three crucial moments of their migratory experience: (1) the moment prior to their trip to the US; (2) their academic training at a research center in the US; and (3) their return to a research center in Mexico. At the same time, this study highlights three key factors that determine and ascribe different meanings to the experiences of this migratory circuit: gender, academic trajectory, and the belonging to a migratory circuit. The findings from this study have shown that the experiences of migration and their multiple meanings are complex, heterogeneous and paradoxical. The complexity lies in the challenges of academic responsibilities and their near total integration and transformation of the participants' social life, as well as family life. These migratory experiences are further differentiated and problematic because of the various perceptions and sense of value that are mediated by gender, academic trajectory, and belonging to a circuit of migration; and, they are paradoxical because even though the experiences, perceptions and meanings are different and, at times, challenging, every single participant has described their experience as positive.

  6. Development of analog watch with minute repeater

    NASA Astrophysics Data System (ADS)

    Okigami, Tomio; Aoyama, Shigeru; Osa, Takashi; Igarashi, Kiyotaka; Ikegami, Tomomi

    A complementary metal oxide semiconductor with large scale integration was developed for an electronic minute repeater. It is equipped with the synthetic struck sound circuit to generate natural struck sound necessary for the minute repeater. This circuit consists of an envelope curve drawing circuit, frequency mixer, polyphonic mixer, and booster circuit made by using analog circuit technology. This large scale integration is a single chip microcomputer with motor drivers and input ports in addition to the synthetic struck sound circuit, and it is possible to make an electronic system of minute repeater at a very low cost in comparison with the conventional type.

  7. A CMOS Imager with Focal Plane Compression using Predictive Coding

    NASA Technical Reports Server (NTRS)

    Leon-Salas, Walter D.; Balkir, Sina; Sayood, Khalid; Schemm, Nathan; Hoffman, Michael W.

    2007-01-01

    This paper presents a CMOS image sensor with focal-plane compression. The design has a column-level architecture and it is based on predictive coding techniques for image decorrelation. The prediction operations are performed in the analog domain to avoid quantization noise and to decrease the area complexity of the circuit, The prediction residuals are quantized and encoded by a joint quantizer/coder circuit. To save area resources, the joint quantizerlcoder circuit exploits common circuitry between a single-slope analog-to-digital converter (ADC) and a Golomb-Rice entropy coder. This combination of ADC and encoder allows the integration of the entropy coder at the column level. A prototype chip was fabricated in a 0.35 pm CMOS process. The output of the chip is a compressed bit stream. The test chip occupies a silicon area of 2.60 mm x 5.96 mm which includes an 80 X 44 APS array. Tests of the fabricated chip demonstrate the validity of the design.

  8. Pattern classification by memristive crossbar circuits using ex situ and in situ training.

    PubMed

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B

    2013-01-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  9. Pattern classification by memristive crossbar circuits using ex situ and in situ training

    NASA Astrophysics Data System (ADS)

    Alibart, Fabien; Zamanidoost, Elham; Strukov, Dmitri B.

    2013-06-01

    Memristors are memory resistors that promise the efficient implementation of synaptic weights in artificial neural networks. Whereas demonstrations of the synaptic operation of memristors already exist, the implementation of even simple networks is more challenging and has yet to be reported. Here we demonstrate pattern classification using a single-layer perceptron network implemented with a memrisitive crossbar circuit and trained using the perceptron learning rule by ex situ and in situ methods. In the first case, synaptic weights, which are realized as conductances of titanium dioxide memristors, are calculated on a precursor software-based network and then imported sequentially into the crossbar circuit. In the second case, training is implemented in situ, so the weights are adjusted in parallel. Both methods work satisfactorily despite significant variations in the switching behaviour of the memristors. These results give hope for the anticipated efficient implementation of artificial neuromorphic networks and pave the way for dense, high-performance information processing systems.

  10. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer

    NASA Astrophysics Data System (ADS)

    Sitnikov, A.; Kalabukhova, E.; Oliynyk, V.; Kolisnichenko, M.

    2017-05-01

    We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.

  11. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.

    PubMed

    Sitnikov, A; Kalabukhova, E; Oliynyk, V; Kolisnichenko, M

    2017-05-01

    We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.

  12. Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila.

    PubMed

    Plaçais, Pierre-Yves; Trannoy, Séverine; Friedrich, Anja B; Tanimoto, Hiromu; Preat, Thomas

    2013-11-14

    One of the challenges facing memory research is to combine network- and cellular-level descriptions of memory encoding. In this context, Drosophila offers the opportunity to decipher, down to single-cell resolution, memory-relevant circuits in connection with the mushroom bodies (MBs), prominent structures for olfactory learning and memory. Although the MB-afferent circuits involved in appetitive learning were recently described, the circuits underlying appetitive memory retrieval remain unknown. We identified two pairs of cholinergic neurons efferent from the MB α vertical lobes, named MB-V3, that are necessary for the retrieval of appetitive long-term memory (LTM). Furthermore, LTM retrieval was correlated to an enhanced response to the rewarded odor in these neurons. Strikingly, though, silencing the MB-V3 neurons did not affect short-term memory (STM) retrieval. This finding supports a scheme of parallel appetitive STM and LTM processing. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Microwave Photon Detector in Circuit QED

    NASA Astrophysics Data System (ADS)

    Garcia-Ripoll, Juan Jose; Romero, Guillermo; Solano, Enrique

    2009-03-01

    In this work we propose a design for a microwave photodetector based on elements from circuit QED such as the ones used in qubit designs. Our proposal consists on a microwave guide in which we embed circuital elements that can absorb photons and irreversibly change state. These incoherent absorption processes constitute the measurement itself. We first model this design using a general master equation for the propagating photons and the absorbing elements. We find that the detection efficiency for a single absorber is limited to 50%, and that this efficiency can be quickly increased by adding more elements with a moderate separation, obtaining 80% and 90% for two and three absorbers. Our abstract design has at least one possible implementation in which the absorbers are current biased Josephson junction. We demonstrate that the coupling between the guide and the junctions is strong enough, irrespectively of the microwave guide size, and derivate realistic parameters for high fidelity operation with current experiments. Patent pending No. 200802933, Oficina Espanola de Patentes y Marcas, 17/10/2008.

  14. Neural organization and visual processing in the anterior optic tubercle of the honeybee brain.

    PubMed

    Mota, Theo; Yamagata, Nobuhiro; Giurfa, Martin; Gronenberg, Wulfila; Sandoz, Jean-Christophe

    2011-08-10

    The honeybee Apis mellifera represents a valuable model for studying the neural segregation and integration of visual information. Vision in honeybees has been extensively studied at the behavioral level and, to a lesser degree, at the physiological level using intracellular electrophysiological recordings of single neurons. However, our knowledge of visual processing in honeybees is still limited by the lack of functional studies of visual processing at the circuit level. Here we contribute to filling this gap by providing a neuroanatomical and neurophysiological characterization at the circuit level of a practically unstudied visual area of the bee brain, the anterior optic tubercle (AOTu). First, we analyzed the internal organization and neuronal connections of the AOTu. Second, we established a novel protocol for performing optophysiological recordings of visual circuit activity in the honeybee brain and studied the responses of AOTu interneurons during stimulation of distinct eye regions. Our neuroanatomical data show an intricate compartmentalization and connectivity of the AOTu, revealing a dorsoventral segregation of the visual input to the AOTu. Light stimuli presented in different parts of the visual field (dorsal, lateral, or ventral) induce distinct patterns of activation in AOTu output interneurons, retaining to some extent the dorsoventral input segregation revealed by our neuroanatomical data. In particular, activity patterns evoked by dorsal and ventral eye stimulation are clearly segregated into distinct AOTu subunits. Our results therefore suggest an involvement of the AOTu in the processing of dorsoventrally segregated visual information in the honeybee brain.

  15. Electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and graphical user interface platform for aviation industries training purposes

    NASA Astrophysics Data System (ADS)

    Burhan, I.; Azman, A. A.; Othman, R.

    2016-10-01

    An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.

  16. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals

    PubMed Central

    Wang, Baojun; Barahona, Mauricio; Buck, Martin

    2013-01-01

    Cells perceive a wide variety of cellular and environmental signals, which are often processed combinatorially to generate particular phenotypic responses. Here, we employ both single and mixed cell type populations, pre-programmed with engineered modular cell signalling and sensing circuits, as processing units to detect and integrate multiple environmental signals. Based on an engineered modular genetic AND logic gate, we report the construction of a set of scalable synthetic microbe-based biosensors comprising exchangeable sensory, signal processing and actuation modules. These cellular biosensors were engineered using distinct signalling sensory modules to precisely identify various chemical signals, and combinations thereof, with a quantitative fluorescent output. The genetic logic gate used can function as a biological filter and an amplifier to enhance the sensing selectivity and sensitivity of cell-based biosensors. In particular, an Escherichia coli consortium-based biosensor has been constructed that can detect and integrate three environmental signals (arsenic, mercury and copper ion levels) via either its native two-component signal transduction pathways or synthetic signalling sensors derived from other bacteria in combination with a cell-cell communication module. We demonstrate how a modular cell-based biosensor can be engineered predictably using exchangeable synthetic gene circuit modules to sense and integrate multiple-input signals. This study illustrates some of the key practical design principles required for the future application of these biosensors in broad environmental and healthcare areas. PMID:22981411

  17. A supramolecular gel electrolyte formed from amide based co-gelator for quasi-solid-state dye-sensitized solar cell with boosted electron kinetic processes

    NASA Astrophysics Data System (ADS)

    Huo, Zhipeng; Wang, Lu; Tao, Li; Ding, Yong; Yi, Jinxin; Alsaedi, Ahmed; Hayat, Tasawar; Dai, Songyuan

    2017-08-01

    A supramolecular gel electrolyte (Tgel > 100 °C) is formed from N,N‧-1,8-octanediylbis-dodecanamide and iodoacetamide as two-component co-gelator, and introduced into the quasi-solid-state dye-sensitized solar cells (QS-DSSCs). The different morphologies of microscopic network between two-component and single-component gel electrolytes have influence on the diffusion of redox couple in gel electrolytes and further affect the electron kinetic processes in QS-DSSCs. Compared with the single-component gel electrolyte, the two-component gel electrolyte has less compact gel network and weaker steric hindrance effect, which provides more effective charge transport channel for the diffusion of I3/I- redox couple. Meanwhile, the sbnd NH2 groups of iodoacetamide molecules interact with Li+ and I3-, which also accelerate the transport of I3-/I- and decrease in the I3- concentration in the TiO2/electrolyte interface. As a result, nearly a 12% improvement in short-circuit photocurrent density (Jsc) and much higher open circuit potential (Voc) are found in the two-component gel electrolyte based QS-DSSC. Consequently, the QS-DSSC based on the supramolecular gel electrolyte obtains a 17% enhancement in the photoelectric conversion efficiency (7.32%) in comparison with the QS-DSSC based on the single-component gel electrolyte (6.24%). Furthermore, the degradations of these QS-DSSCs are negligible after one sun light soaking with UV cutoff filter at 50 °C for 1000 h.

  18. 30 CFR 56.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... circuit used to fire one or more electric blasting caps. Blasting switch means a switch used to connect a... circuit is carried to one or more cables from a single incoming feed line, each cable circuit being... or salary in the service of an employer. Employer means a person or organization which hires one or...

  19. 30 CFR 56.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... circuit used to fire one or more electric blasting caps. Blasting switch means a switch used to connect a... circuit is carried to one or more cables from a single incoming feed line, each cable circuit being... or salary in the service of an employer. Employer means a person or organization which hires one or...

  20. 30 CFR 56.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... circuit used to fire one or more electric blasting caps. Blasting switch means a switch used to connect a... circuit is carried to one or more cables from a single incoming feed line, each cable circuit being... or salary in the service of an employer. Employer means a person or organization which hires one or...

  1. Engineering dynamical control of cell fate switching using synthetic phospho-regulons

    PubMed Central

    Gordley, Russell M.; Williams, Reid E.; Bashor, Caleb J.; Toettcher, Jared E.; Yan, Shude; Lim, Wendell A.

    2016-01-01

    Many cells can sense and respond to time-varying stimuli, selectively triggering changes in cell fate only in response to inputs of a particular duration or frequency. A common motif in dynamically controlled cells is a dual-timescale regulatory network: although long-term fate decisions are ultimately controlled by a slow-timescale switch (e.g., gene expression), input signals are first processed by a fast-timescale signaling layer, which is hypothesized to filter what dynamic information is efficiently relayed downstream. Directly testing the design principles of how dual-timescale circuits control dynamic sensing, however, has been challenging, because most synthetic biology methods have focused solely on rewiring transcriptional circuits, which operate at a single slow timescale. Here, we report the development of a modular approach for flexibly engineering phosphorylation circuits using designed phospho-regulon motifs. By then linking rapid phospho-feedback with slower downstream transcription-based bistable switches, we can construct synthetic dual-timescale circuits in yeast in which the triggering dynamics and the end-state properties of the ON state can be selectively tuned. These phospho-regulon tools thus open up the possibility to engineer cells with customized dynamical control. PMID:27821768

  2. Near-optimal quantum circuit for Grover's unstructured search using a transverse field

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Rieffel, Eleanor G.; Wang, Zhihui

    2017-06-01

    Inspired by a class of algorithms proposed by Farhi et al. (arXiv:1411.4028), namely, the quantum approximate optimization algorithm (QAOA), we present a circuit-based quantum algorithm to search for a needle in a haystack, obtaining the same quadratic speedup achieved by Grover's original algorithm. In our algorithm, the problem Hamiltonian (oracle) and a transverse field are applied alternately to the system in a periodic manner. We introduce a technique, based on spin-coherent states, to analyze the composite unitary in a single period. This composite unitary drives a closed transition between two states that have high degrees of overlap with the initial state and the target state, respectively. The transition rate in our algorithm is of order Θ (1 /√{N }) , and the overlaps are of order Θ (1 ) , yielding a nearly optimal query complexity of T ≃√{N }(π /2 √{2 }) . Our algorithm is a QAOA circuit that demonstrates a quantum advantage with a large number of iterations that is not derived from Trotterization of an adiabatic quantum optimization (AQO) algorithm. It also suggests that the analysis required to understand QAOA circuits involves a very different process from estimating the energy gap of a Hamiltonian in AQO.

  3. Encapsulate-and-peel: fabricating carbon nanotube CMOS integrated circuits in a flexible ultra-thin plastic film.

    PubMed

    Gao, Pingqi; Zhang, Qing

    2014-02-14

    Fabrication of single-walled carbon nanotube thin film (SWNT-TF) based integrated circuits (ICs) on soft substrates has been challenging due to several processing-related obstacles, such as printed/transferred SWNT-TF pattern and electrode alignment, electrical pad/channel material/dielectric layer flatness, adherence of the circuits onto the soft substrates etc. Here, we report a new approach that circumvents these challenges by encapsulating pre-formed SWNT-TF-ICs on hard substrates into polyimide (PI) and peeling them off to form flexible ICs on a large scale. The flexible SWNT-TF-ICs show promising performance comparable to those circuits formed on hard substrates. The flexible p- and n-type SWNT-TF transistors have an average mobility of around 60 cm(2) V(-1) s(-1), a subthreshold slope as low as 150 mV dec(-1), operating gate voltages less than 2 V, on/off ratios larger than 10(4) and a switching speed of several kilohertz. The post-transfer technique described here is not only a simple and cost-effective pathway to realize scalable flexible ICs, but also a feasible method to fabricate flexible displays, sensors and solar cells etc.

  4. Electrically driven monolithic subwavelength plasmonic interconnect circuits

    PubMed Central

    Liu, Yang; Zhang, Jiasen; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2017-01-01

    In the post-Moore era, an electrically driven monolithic optoelectronic integrated circuit (OEIC) fabricated from a single material is pursued globally to enable the construction of wafer-scale compact computing systems with powerful processing capabilities and low-power consumption. We report a monolithic plasmonic interconnect circuit (PIC) consisting of a photovoltaic (PV) cascading detector, Au-strip waveguides, and electrically driven surface plasmon polariton (SPP) sources. These components are fabricated from carbon nanotubes (CNTs) via a CMOS (complementary metal-oxide semiconductor)–compatible doping-free technique in the same feature size, which can be reduced to deep-subwavelength scale (~λ/7 to λ/95, λ = 1340 nm) compared with the 14-nm technique node. An OEIC could potentially be configured as a repeater for data transport because of its “photovoltaic” operation mode to transform SPP energy directly into electricity to drive subsequent electronic circuits. Moreover, chip-scale throughput capability has also been demonstrated by fabricating a 20 × 20 PIC array on a 10 mm × 10 mm wafer. Tailoring photonics for monolithic integration with electronics beyond the diffraction limit opens a new era of chip-level nanoscale electronic-photonic systems, introducing a new path to innovate toward much faster, smaller, and cheaper computing frameworks. PMID:29062890

  5. Functional connectivity decreases in autism in emotion, self, and face circuits identified by Knowledge-based Enrichment Analysis.

    PubMed

    Cheng, Wei; Rolls, Edmund T; Zhang, Jie; Sheng, Wenbo; Ma, Liang; Wan, Lin; Luo, Qiang; Feng, Jianfeng

    2017-03-01

    A powerful new method is described called Knowledge based functional connectivity Enrichment Analysis (KEA) for interpreting resting state functional connectivity, using circuits that are functionally identified using search terms with the Neurosynth database. The method derives its power by focusing on neural circuits, sets of brain regions that share a common biological function, instead of trying to interpret single functional connectivity links. This provides a novel way of investigating how task- or function-related networks have resting state functional connectivity differences in different psychiatric states, provides a new way to bridge the gap between task and resting-state functional networks, and potentially helps to identify brain networks that might be treated. The method was applied to interpreting functional connectivity differences in autism. Functional connectivity decreases at the network circuit level in 394 patients with autism compared with 473 controls were found in networks involving the orbitofrontal cortex, anterior cingulate cortex, middle temporal gyrus cortex, and the precuneus, in networks that are implicated in the sense of self, face processing, and theory of mind. The decreases were correlated with symptom severity. Copyright © 2017. Published by Elsevier Inc.

  6. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  7. A learnable parallel processing architecture towards unity of memory and computing

    NASA Astrophysics Data System (ADS)

    Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J.

    2015-08-01

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  8. A learnable parallel processing architecture towards unity of memory and computing.

    PubMed

    Li, H; Gao, B; Chen, Z; Zhao, Y; Huang, P; Ye, H; Liu, L; Liu, X; Kang, J

    2015-08-14

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named "iMemComp", where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped "iMemComp" with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on "iMemComp" can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  9. Circuit-Detour Design and Implementation - Enhancing the Southern California's Seismic Network Reliability through Redundant Network Paths

    NASA Astrophysics Data System (ADS)

    Watkins, M.; Busby, R.; Rico, H.; Johnson, M.; Hauksson, E.

    2003-12-01

    We provide enhanced network robustness by apportioning redundant data communications paths for seismic stations in the field. By providing for more than one telemetry route, either physical or logical, network operators can improve availability of seismic data while experiencing occasional network outages, and also during the loss of key gateway interfaces such as a router or central processor. This is especially important for seismic stations in sparsely populated regions where a loss of a single site may result in a significant gap in the network's monitoring capability. A number of challenges arise in the application of a circuit-detour mechanism. One requirement is that it fits well within the existing framework of our real-time system processing. It is also necessary to craft a system that is not needlessly complex to maintain or implement, particularly during a crisis. The method that we use for circuit-detours does not require the reconfiguration of dataloggers or communications equipment in the field. Remote network configurations remain static, changes are only required at the central site. We have implemented standardized procedures to detour circuits on similar transport mediums, such as virtual circuits on the same leased line; as well as physically different communications pathways, such as a microwave link backed up by a leased line. The lessons learned from these improvements in reliability, and optimization efforts could be applied to other real-time seismic networks. A fundamental tenant of most seismic networks is that they are reliable and have a high percentage of real-time data availability. A reasonable way to achieve these expectations is to provide alternate means of delivering data to the central processing sites, with a simple method for utilizing these alternate paths.

  10. A closed-loop compressive-sensing-based neural recording system.

    PubMed

    Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S; Hsiao, Steven; Tran, Trac D; Yazicioglu, Firat; Etienne-Cummings, Ralph

    2015-06-01

    This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm(2)/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.

  11. Advanced metal lift-off process using electron-beam flood exposure of single-layer photoresist

    NASA Astrophysics Data System (ADS)

    Minter, Jason P.; Ross, Matthew F.; Livesay, William R.; Wong, Selmer S.; Narcy, Mark E.; Marlowe, Trey

    1999-06-01

    In the manufacture of many types of integrated circuit and thin film devices, it is desirable to use a lift-of process for the metallization step to avoid manufacturing problems encountered when creating metal interconnect structures using plasma etch. These problems include both metal adhesion and plasma etch difficulties. Key to the success of the lift-off process is the creation of a retrograde or undercut profile in the photoresists before the metal deposition step. Until now, lift-off processing has relied on costly multi-layer photoresists schemes, image reversal, and non-repeatable photoresist processes to obtain the desired lift-off profiles in patterned photoresist. This paper present a simple, repeatable process for creating robust, user-defined lift-off profiles in single layer photoresist using a non-thermal electron beam flood exposure. For this investigation, lift-off profiles created using electron beam flood exposure of many popular photoresists were evaluated. Results of lift-off profiles created in positive tone AZ7209 and ip3250 are presented here.

  12. The high accuracy data processing system of laser interferometry signals based on MSP430

    NASA Astrophysics Data System (ADS)

    Qi, Yong-yue; Lin, Yu-chi; Zhao, Mei-rong

    2009-07-01

    Generally speaking there are two orthogonal signals used in single-frequency laser interferometer for differentiating direction and electronic subdivision. However there usually exist three errors with the interferential signals: zero offsets error, unequal amplitude error and quadrature phase shift error. These three errors have a serious impact on subdivision precision. Based on Heydemann error compensation algorithm, it is proposed to achieve compensation of the three errors. Due to complicated operation of the Heydemann mode, a improved arithmetic is advanced to decrease the calculating time effectively in accordance with the special characteristic that only one item of data will be changed in each fitting algorithm operation. Then a real-time and dynamic compensatory circuit is designed. Taking microchip MSP430 as the core of hardware system, two input signals with the three errors are turned into digital quantity by the AD7862. After data processing in line with improved arithmetic, two ideal signals without errors are output by the AD7225. At the same time two original signals are turned into relevant square wave and imported to the differentiating direction circuit. The impulse exported from the distinguishing direction circuit is counted by the timer of the microchip. According to the number of the pulse and the soft subdivision the final result is showed by LED. The arithmetic and the circuit are adopted to test the capability of a laser interferometer with 8 times optical path difference and the measuring accuracy of 12-14nm is achieved.

  13. Asymmetric Memory Circuit Would Resist Soft Errors

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Perlman, Marvin

    1990-01-01

    Some nonlinear error-correcting codes more efficient in presence of asymmetry. Combination of circuit-design and coding concepts expected to make integrated-circuit random-access memories more resistant to "soft" errors (temporary bit errors, also called "single-event upsets" due to ionizing radiation). Integrated circuit of new type made deliberately more susceptible to one kind of bit error than to other, and associated error-correcting code adapted to exploit this asymmetry in error probabilities.

  14. Development of beam leaded low power logic circuits

    NASA Technical Reports Server (NTRS)

    Smith, B. W.; Malone, F.

    1972-01-01

    The technologies of low power TTL and beam lead processing were merged into a single product family. This family offers the power and thermal advantages of low power(54L), while providing the additional reliability advantages of beam leads. The reduction in the power and heat levels also allows the system designer to take advantage, through beam lead, multichip assemblies, of increased package density to reduce system size and weight.

  15. Application specific serial arithmetic arrays

    NASA Technical Reports Server (NTRS)

    Winters, K.; Mathews, D.; Thompson, T.

    1990-01-01

    High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.

  16. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  17. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  18. Hybrid stretchable circuits on silicone substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, A., E-mail: adam.1.robinson@nokia.com; Aziz, A., E-mail: a.aziz1@lancaster.ac.uk; Liu, Q.

    When rigid and stretchable components are integrated onto a single elastic carrier substrate, large strain heterogeneities appear in the vicinity of the deformable-non-deformable interfaces. In this paper, we report on a generic approach to manufacture hybrid stretchable circuits where commercial electronic components can be mounted on a stretchable circuit board. Similar to printed circuit board development, the components are electrically bonded on the elastic substrate and interconnected with stretchable electrical traces. The substrate—a silicone matrix carrying concentric rigid disks—ensures both the circuit elasticity and the mechanical integrity of the most fragile materials.

  19. Single Circuit Board Implementation of a Digitally Compensated SAW Oscillator (DCSO).

    DTIC Science & Technology

    1983-12-01

    Through this project a design for a Digitally Compensated SAW Oscillator (DCSO) was developed and implemented on a single circuit board. The AFIT IC, which...is the heart of the design , did not function properly. Therefore, my work was halted after testing several of the subcircuits and assembling the...o.... -7 Standards ........ o..o....... -8 Approach-9 Sequence of Presentation .................. -10 II, Design

  20. Application of RADSAFE to Model Single Event Upset Response of a 0.25 micron CMOS SRAM

    NASA Technical Reports Server (NTRS)

    Warren, Kevin M.; Weller, Robert A.; Sierawski, Brian; Reed, Robert A.; Mendenhall, Marcus H.; Schrimpf, Ronald D.; Massengill, Lloyd; Porter, Mark; Wilkerson, Jeff; LaBel, Kenneth A.; hide

    2006-01-01

    The RADSAFE simulation framework is described and applied to model Single Event Upsets (SEU) in a 0.25 micron CMOS 4Mbit Static Random Access Memory (SRAM). For this circuit, the RADSAFE approach produces trends similar to those expected from classical models, but more closely represents the physical mechanisms responsible for SEU in the SRAM circuit.

  1. Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering

    PubMed Central

    Choi, Yongki; Olsen, Tivoli J.; Sims, Patrick C.; Moody, Issa S.; Corso, Brad L.; Dang, Mytrang N.; Weiss, Gregory A.; Collins, Philip G.

    2013-01-01

    Single molecule experimental methods have provided new insights into biomolecular function, dynamic disorder, and transient states that are all invisible to conventional measurements. A novel, non-fluorescent single molecule technique involves attaching single molecules to single-walled carbon nanotube field-effective transistors (SWNT FETs). These ultrasensitive electronic devices provide long-duration, label-free monitoring of biomolecules and their dynamic motions. However, generalization of the SWNT FET technique first requires design rules that can predict the success and applicability of these devices. Here, we report on the transduction mechanism linking enzymatic processivity to electrical signal generation by a SWNT FET. The interaction between SWNT FETs and the enzyme lysozyme was systematically dissected using eight different lysozyme variants synthesized by protein engineering. The data prove that effective signal generation can be accomplished using a single charged amino acid, when appropriately located, providing a foundation to widely apply SWNT FET sensitivity to other biomolecular systems. PMID:23323846

  2. Comparative analysis of single-walled and multi-walled carbon nanotubes for electrochemical sensing of glucose on gold printed circuit boards.

    PubMed

    Alhans, Ruby; Singh, Anukriti; Singhal, Chaitali; Narang, Jagriti; Wadhwa, Shikha; Mathur, Ashish

    2018-09-01

    In the present work, a comparative study was performed between single-walled carbon nanotubes and multi-walled carbon nanotubes coated gold printed circuit board electrodes for glucose detection. Various characterization techniques were demonstrated in order to compare the modified electrodes viz. cyclic voltammetry, electrochemical impedance spectroscopy and chrono-amperometry. Results revealed that single-walled carbon nanotubes outperformed multi-walled carbon nanotubes and proved to be a better sensing interface for glucose detection. The single-walled carbon nanotubes coated gold printed circuit board electrodes showed a wide linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s while multi-walled carbon nanotubes coated printed circuit board gold electrodes showed linear sensing range (1 mM to 100 mM) with detection limit of 0.1 mM with response time of 5 s. This work provided low cost sensors with enhanced sensitivity, fast response time and reliable results for glucose detection which increased the affordability of such tests in remote areas. In addition, the comparative results confirmed that single-walled carbon nanotubes modified electrodes can be exploited for better amplification signal as compared to multi-walled carbon nanotubes. Copyright © 2018. Published by Elsevier B.V.

  3. Design of a Low-Power, Small-Area AEC-Q100-Compliant SENT Transmitter in Signal Conditioning IC for Automotive Pressure and Temperature Complex Sensors in 180 Nm CMOS Technology.

    PubMed

    Ali, Imran; Rikhan, Behnam Samadpoor; Kim, Dong-Gyu; Lee, Dong-Soo; Rehman, Muhammad Riaz Ur; Abbasizadeh, Hamed; Asif, Muhammad; Lee, Minjae; Hwang, Keum Cheol; Yang, Youngoo; Lee, Kang-Yoon

    2018-05-14

    In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT) transmitter design is proposed for automotive pressure and temperature complex sensor applications. To reduce the cost and size of the hardware, the pressure and temperature information is processed with a single integrated circuit (IC) and transmitted at the same time to the electronic control unit (ECU) through SENT. Due to its digital nature, it is immune to noise, has reduced sensitivity to electromagnetic interference (EMI), and generates low EMI. It requires only one PAD for its connectivity with ECU, and thus reduces the pin requirements, simplifies the connectivity, and minimizes the printed circuit board (PCB) complexity. The design is fully synthesizable, and independent of technology. The finite state machine-based approach is employed for area efficient implementation, and to translate the proposed architecture into hardware. The IC is fabricated in 1P6M 180 nm CMOS process with an area of (116 μm × 116 μm) and 4.314 K gates. The current consumption is 50 μA from a 1.8 V supply with a total 90 μW power. For compliance with AEC-Q100 for automotive reliability, a reverse and over voltage protection circuit is also implemented with human body model (HBM) electro-static discharge (ESD) of +6 kV, reverse voltage of -16 V to 0 V, over voltage of 8.2 V to 16 V, and fabricated area of 330 μm × 680 μm. The extensive testing, measurement, and simulation results prove that the design is fully compliant with SAE J2716 standard.

  4. Design of a Low-Power, Small-Area AEC-Q100-Compliant SENT Transmitter in Signal Conditioning IC for Automotive Pressure and Temperature Complex Sensors in 180 Nm CMOS Technology

    PubMed Central

    Rikhan, Behnam Samadpoor; Kim, Dong-Gyu; Lee, Dong-Soo; Rehman, Muhammad Riaz Ur; Abbasizadeh, Hamed; Asif, Muhammad; Lee, Minjae; Yang, Youngoo; Lee, Kang-Yoon

    2018-01-01

    In this paper, a low-power and small-area Single Edge Nibble Transmission (SENT) transmitter design is proposed for automotive pressure and temperature complex sensor applications. To reduce the cost and size of the hardware, the pressure and temperature information is processed with a single integrated circuit (IC) and transmitted at the same time to the electronic control unit (ECU) through SENT. Due to its digital nature, it is immune to noise, has reduced sensitivity to electromagnetic interference (EMI), and generates low EMI. It requires only one PAD for its connectivity with ECU, and thus reduces the pin requirements, simplifies the connectivity, and minimizes the printed circuit board (PCB) complexity. The design is fully synthesizable, and independent of technology. The finite state machine-based approach is employed for area efficient implementation, and to translate the proposed architecture into hardware. The IC is fabricated in 1P6M 180 nm CMOS process with an area of (116 μm × 116 μm) and 4.314 K gates. The current consumption is 50 μA from a 1.8 V supply with a total 90 μW power. For compliance with AEC-Q100 for automotive reliability, a reverse and over voltage protection circuit is also implemented with human body model (HBM) electro-static discharge (ESD) of +6 kV, reverse voltage of −16 V to 0 V, over voltage of 8.2 V to 16 V, and fabricated area of 330 μm × 680 μm. The extensive testing, measurement, and simulation results prove that the design is fully compliant with SAE J2716 standard. PMID:29757996

  5. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.

    PubMed

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-03-15

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.

  6. Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease

    PubMed Central

    Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A

    2006-01-01

    The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285

  7. Generating single microwave photons in a circuit.

    PubMed

    Houck, A A; Schuster, D I; Gambetta, J M; Schreier, J A; Johnson, B R; Chow, J M; Frunzio, L; Majer, J; Devoret, M H; Girvin, S M; Schoelkopf, R J

    2007-09-20

    Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.

  8. FPGA-Based, Self-Checking, Fault-Tolerant Computers

    NASA Technical Reports Server (NTRS)

    Some, Raphael; Rennels, David

    2004-01-01

    A proposed computer architecture would exploit the capabilities of commercially available field-programmable gate arrays (FPGAs) to enable computers to detect and recover from bit errors. The main purpose of the proposed architecture is to enable fault-tolerant computing in the presence of single-event upsets (SEUs). [An SEU is a spurious bit flip (also called a soft error) caused by a single impact of ionizing radiation.] The architecture would also enable recovery from some soft errors caused by electrical transients and, to some extent, from intermittent and permanent (hard) errors caused by aging of electronic components. A typical FPGA of the current generation contains one or more complete processor cores, memories, and highspeed serial input/output (I/O) channels, making it possible to shrink a board-level processor node to a single integrated-circuit chip. Custom, highly efficient microcontrollers, general-purpose computers, custom I/O processors, and signal processors can be rapidly and efficiently implemented by use of FPGAs. Unfortunately, FPGAs are susceptible to SEUs. Prior efforts to mitigate the effects of SEUs have yielded solutions that degrade performance of the system and require support from external hardware and software. In comparison with other fault-tolerant- computing architectures (e.g., triple modular redundancy), the proposed architecture could be implemented with less circuitry and lower power demand. Moreover, the fault-tolerant computing functions would require only minimal support from circuitry outside the central processing units (CPUs) of computers, would not require any software support, and would be largely transparent to software and to other computer hardware. There would be two types of modules: a self-checking processor module and a memory system (see figure). The self-checking processor module would be implemented on a single FPGA and would be capable of detecting its own internal errors. It would contain two CPUs executing identical programs in lock step, with comparison of their outputs to detect errors. It would also contain various cache local memory circuits, communication circuits, and configurable special-purpose processors that would use self-checking checkers. (The basic principle of the self-checking checker method is to utilize logic circuitry that generates error signals whenever there is an error in either the checker or the circuit being checked.) The memory system would comprise a main memory and a hardware-controlled check-pointing system (CPS) based on a buffer memory denoted the recovery cache. The main memory would contain random-access memory (RAM) chips and FPGAs that would, in addition to everything else, implement double-error-detecting and single-error-correcting memory functions to enable recovery from single-bit errors.

  9. Superconductive Microwave Single-Flux-Quantum Digital Circuits and Corresponding Opto-Electronic Interfaces: On-Going Studies and First Experimental Results

    DTIC Science & Technology

    2005-07-13

    UHLMANN University of Technology Ilmenau– PO Box 105565 – D-98684 Ilmenau - Germany RESUME : Les circuits numériques supraconducteurs micro-ondes...circuits RSFQ. Ce banc de mesure comporte deux types d’interfaces opto-RSFQ, basées sur des matériaux semiconducteurs et supraconducteurs , respectivement

  10. Single-Event Upset (SEU) model verification and threshold determination using heavy ions in a bipolar static RAM

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Thieberger, P.; Wegner, H. E.

    1985-01-01

    Single-Event Upset (SEU) response of a bipolar low-power Schottky-diode-clamped TTL static RAM has been observed using Br ions in the 100-240 MeV energy range and O ions in the 20-100 MeV range. These data complete the experimental verification of circuit-simulation SEU modeling for this device. The threshold for onset of SEU has been observed by the variation of energy, ion species and angle of incidence. The results obtained from the computer circuit-simulation modeling and experimental model verification demonstrate a viable methodology for modeling SEU in bipolar integrated circuits.

  11. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    PubMed Central

    Nässel, Dick R.

    2018-01-01

    It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for colocalized neuroactive compounds in further neurons in anatomically defined circuits is of interest for the near future. PMID:29651236

  12. ELECTROMAGNETIC AND ELECTROSTATIC GENERATORS: ANNOTATED BIBLIOGRAPHY.

    DTIC Science & Technology

    generator with split poles, ultrasonic-frequency generator, unipolar generator, single-phase micromotors , synchronous motor, asynchronous motor...asymmetrical rotor, magnetic circuit, dc micromotors , circuit for the automatic control of synchronized induction motors, induction torque micromotors , electric

  13. Stereo Imaging Miniature Endoscope with Single Imaging Chip and Conjugated Multi-Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Shahinian, Hrayr Karnig (Inventor); Bae, Youngsam (Inventor); White, Victor E. (Inventor); Shcheglov, Kirill V. (Inventor); Manohara, Harish M. (Inventor); Kowalczyk, Robert S. (Inventor)

    2018-01-01

    A dual objective endoscope for insertion into a cavity of a body for providing a stereoscopic image of a region of interest inside of the body including an imaging device at the distal end for obtaining optical images of the region of interest (ROI), and processing the optical images for forming video signals for wired and/or wireless transmission and display of 3D images on a rendering device. The imaging device includes a focal plane detector array (FPA) for obtaining the optical images of the ROI, and processing circuits behind the FPA. The processing circuits convert the optical images into the video signals. The imaging device includes right and left pupil for receiving a right and left images through a right and left conjugated multi-band pass filters. Illuminators illuminate the ROI through a multi-band pass filter having three right and three left pass bands that are matched to the right and left conjugated multi-band pass filters. A full color image is collected after three or six sequential illuminations with the red, green and blue lights.

  14. Computer-Aided Engineering Of Cabling

    NASA Technical Reports Server (NTRS)

    Billitti, Joseph W.

    1989-01-01

    Program generates data sheets, drawings, and other information on electrical connections. DFACS program, centered around single data base, has built-in menus providing easy input of, and access to, data for all personnel involved in system, subsystem, and cabling. Enables parallel design of circuit-data sheets and drawings of harnesses. Also recombines raw information to generate automatically various project documents and drawings, including index of circuit-data sheets, list of electrical-interface circuits, lists of assemblies and equipment, cabling trees, and drawings of cabling electrical interfaces and harnesses. Purpose of program to provide engineering community with centralized data base for putting in, and gaining access to, functional definition of system as specified in terms of details of pin connections of end circuits of subsystems and instruments and data on harnessing. Primary objective to provide instantaneous single point of interchange of information, thus avoiding

  15. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    NASA Astrophysics Data System (ADS)

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-09-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1>. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  16. Experimental investigation of a four-qubit linear-optical quantum logic circuit.

    PubMed

    Stárek, R; Mičuda, M; Miková, M; Straka, I; Dušek, M; Ježek, M; Fiurášek, J

    2016-09-20

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C(3)Z gate and several two-qubit and single-qubit gates. The C(3)Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses.

  17. Cost optimization in low volume VLSI circuits

    NASA Technical Reports Server (NTRS)

    Cook, K. B., Jr.; Kerns, D. V., Jr.

    1982-01-01

    The relationship of integrated circuit (IC) cost to electronic system cost is developed using models for integrated circuit cost which are based on design/fabrication approach. Emphasis is on understanding the relationship between cost and volume for custom circuits suitable for NASA applications. In this report, reliability is a major consideration in the models developed. Results are given for several typical IC designs using off the shelf, full custom, and semicustom IC's with single and double level metallization.

  18. Issues of nanoelectronics: a possible roadmap.

    PubMed

    Wang, Kang L

    2002-01-01

    In this review, we will discuss a possible roadmap in scaling a nanoelectronic device from today's CMOS technology to the ultimate limit when the device fails. In other words, at the limit, CMOS will have a severe short channel effect, significant power dissipation in its quiescent (standby) state, and problems related to other essential characteristics. Efforts to use structures such as the double gate, vertical surround gate, and SOI to improve the gate control have continually been made. Other types of structures using SiGe source/drain, asymmetric Schottky source/drain, and the like will be investigated as viable structures to achieve ultimate CMOS. In reaching its scaling limit, tunneling will be an issue for CMOS. The tunneling current through the gate oxide and between the source and drain will limit the device operation. When tunneling becomes significant, circuits may incorporate tunneling devices with CMOS to further increase the functionality per device count. We will discuss both the top-down and bottom-up approaches in attaining the nanometer scale and eventually the atomic scale. Self-assembly is used as a bottom-up approach. The state of the art is reviewed, and the challenges of the multiple-step processing in using the self-assembly approach are outlined. Another facet of the scaling trend is to decrease the number of electrons in devices, ultimately leading to single electrons. If the size of a single-electron device is scaled in such a way that the Coulomb self-energy is higher than the thermal energy (at room temperature), a single-electron device will be able to operate at room temperature. In principle, the speed of the device will be fast as long as the capacitance of the load is also scaled accordingly. The single-electron device will have a small drive current, and thus the load capacitance, including those of interconnects and fanouts, must be small to achieve a reasonable speed. However, because the increase in the density (and/or functionality) of integrated circuits is the principal driver, the wiring or interconnects will increase and become the bottleneck for the design of future high-density and high-functionality circuits, particularly for single-electron devices. Furthermore, the massive interconnects needed in the architecture used today will result in an increase in load capacitance. Thus for single-electron device circuits, it is critical to have minimal interconnect loads. And new types of architectures with minimal numbers of global interconnects will be needed. Cellular automata, which need only nearest-neighbor interconnects, are discussed as a plausible example. Other architectures such as neural networks are also possible. Examples of signal processing using cellular automata are discussed. Quantum computing and information processing are based on quantum mechanical descriptions of individual particles correlated among each other. A quantum bit or qubit is described as a linear superposition of the wave functions of a two-state system, for example, the spin of a particle. With the interaction of two qubits, they are connected in a "wireless fashion" using wave functions via quantum mechanical interaction, referred to as entanglement. The interconnection by the nonlocality of wave functions affords a massive parallel nature for computing or so-called quantum parallelism. We will describe the potential and solid-state implementations of quantum computing and information, using electron spin and/or nuclear spin in Si and Ge. Group IV elements have a long coherent time and other advantages. The example of using SiGe for g factor engineering will be described.

  19. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  20. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    PubMed

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  1. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors.

    PubMed

    Baeg, Kang-Jun; Caironi, Mario; Noh, Yong-Young

    2013-08-21

    For at least the past ten years printed electronics has promised to revolutionize our daily life by making cost-effective electronic circuits and sensors available through mass production techniques, for their ubiquitous applications in wearable components, rollable and conformable devices, and point-of-care applications. While passive components, such as conductors, resistors and capacitors, had already been fabricated by printing techniques at industrial scale, printing processes have been struggling to meet the requirements for mass-produced electronics and optoelectronics applications despite their great potential. In the case of logic integrated circuits (ICs), which constitute the focus of this Progress Report, the main limitations have been represented by the need of suitable functional inks, mainly high-mobility printable semiconductors and low sintering temperature conducting inks, and evoluted printing tools capable of higher resolution, registration and uniformity than needed in the conventional graphic arts printing sector. Solution-processable polymeric semiconductors are the best candidates to fulfill the requirements for printed logic ICs on flexible substrates, due to their superior processability, ease of tuning of their rheology parameters, and mechanical properties. One of the strongest limitations has been mainly represented by the low charge carrier mobility (μ) achievable with polymeric, organic field-effect transistors (OFETs). However, recently unprecedented values of μ ∼ 10 cm(2) /Vs have been achieved with solution-processed polymer based OFETs, a value competing with mobilities reported in organic single-crystals and exceeding the performances enabled by amorphous silicon (a-Si). Interestingly these values were achieved thanks to the design and synthesis of donor-acceptor copolymers, showing limited degree of order when processed in thin films and therefore fostering further studies on the reason leading to such improved charge transport properties. Among this class of materials, various polymers can show well balanced electrons and holes mobility, therefore being indicated as ambipolar semiconductors, good environmental stability, and a small band-gap, which simplifies the tuning of charge injection. This opened up the possibility of taking advantage of the superior performances offered by complementary "CMOS-like" logic for the design of digital ICs, easing the scaling down of critical geometrical features, and achieving higher complexity from robust single gates (e.g., inverters) and test circuits (e.g., ring oscillators) to more complete circuits. Here, we review the recent progress in the development of printed ICs based on polymeric semiconductors suitable for large-volume micro- and nano-electronics applications. Particular attention is paid to the strategies proposed in the literature to design and synthesize high mobility polymers and to develop suitable printing tools and techniques to allow for improved patterning capability required for the down-scaling of devices in order to achieve the operation frequencies needed for applications, such as flexible radio-frequency identification (RFID) tags, near-field communication (NFC) devices, ambient electronics, and portable flexible displays. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Single-crystal silicon trench etching for fabrication of highly integrated circuits

    NASA Astrophysics Data System (ADS)

    Engelhardt, Manfred

    1991-03-01

    The development of single crystal silicon trench etching for fabrication of memory cells in 4 16 and 64Mbit DRAMs is reviewed in this paper. A variety of both etch tools and process gases used for the process development is discussed since both equipment and etch chemistry had to be improved and changed respectively to meet the increasing requirements for high fidelity pattern transfer with increasing degree of integration. In additon to DRAM cell structures etch results for deep trench isolation in advanced bipolar ICs and ASICs are presented for these applications grooves were etched into silicon through a highly doped buried layer and at the borderline of adjacent p- and n-well areas respectively. Shallow trench etching of large and small exposed areas with identical etch rates is presented as an approach to replace standard LOCOS isolation by an advanced isolation technique. The etch profiles were investigated with SEM TEM and AES to get information on contathination and damage levels and on the mechanism leading to anisotropy in the dry etch process. Thermal wave measurements were performed on processed single crystal silicon substrates for a fast evaluation of the process with respect to plasma-induced substrate degradation. This useful technique allows an optimization ofthe etch process regarding high electrical performance of the fully processed memory chip. The benefits of the use of magnetic fields for the development of innovative single crystal silicon dry

  3. [Anesthesia ventilators].

    PubMed

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand-alone mechanical ventilators modified to allow the administration of inhalational anaesthetic agents.

  4. Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities

    PubMed Central

    Okamoto, Ryo; O’Brien, Jeremy L.; Hofmann, Holger F.; Takeuchi, Shigeki

    2011-01-01

    Quantum information science addresses how uniquely quantum mechanical phenomena such as superposition and entanglement can enhance communication, information processing, and precision measurement. Photons are appealing for their low-noise, light-speed transmission and ease of manipulation using conventional optical components. However, the lack of highly efficient optical Kerr nonlinearities at the single photon level was a major obstacle. In a breakthrough, Knill, Laflamme, and Milburn (KLM) showed that such an efficient nonlinearity can be achieved using only linear optical elements, auxiliary photons, and measurement [Knill E, Laflamme R, Milburn GJ (2001) Nature 409:46–52]. KLM proposed a heralded controlled-NOT (CNOT) gate for scalable quantum computation using a photonic quantum circuit to combine two such nonlinear elements. Here we experimentally demonstrate a KLM CNOT gate. We developed a stable architecture to realize the required four-photon network of nested multiple interferometers based on a displaced-Sagnac interferometer and several partially polarizing beamsplitters. This result confirms the first step in the original KLM “recipe” for all-optical quantum computation, and should be useful for on-demand entanglement generation and purification. Optical quantum circuits combining giant optical nonlinearities may find wide applications in quantum information processing, communication, and sensing. PMID:21646543

  5. Measurement and Analysis of Multiple Output Transient Propagation in BJT Analog Circuits

    NASA Astrophysics Data System (ADS)

    Roche, Nicolas J.-H.; Khachatrian, A.; Warner, J. H.; Buchner, S. P.; McMorrow, D.; Clymer, D. A.

    2016-08-01

    The propagation of Analog Single Event Transients (ASETs) to multiple outputs of Bipolar Junction Transistor (BJTs) Integrated Circuits (ICs) is reported for the first time. The results demonstrate that ASETs can appear at several outputs of a BJT amplifier or comparator as a result of a single ion or single laser pulse strike at a single physical location on the chip of a large-scale integrated BJT analog circuit. This is independent of interconnect cross-talk or charge-sharing effects. Laser experiments, together with SPICE simulations and analysis of the ASET's propagation in the s-domain are used to explain how multiple-output transients (MOTs) are generated and propagate in the device. This study demonstrates that both the charge collection associated with an ASET and the ASET's shape, commonly used to characterize the propagation of SETs in devices and systems, are unable to explain quantitatively how MOTs propagate through an integrated analog circuit. The analysis methodology adopted here involves combining the Fourier transform of the propagating signal and the current-source transfer function in the s-domain. This approach reveals the mechanisms involved in the transient signal propagation from its point of generation to one or more outputs without the signal following a continuous interconnect path.

  6. Wireless neural recording with single low-power integrated circuit.

    PubMed

    Harrison, Reid R; Kier, Ryan J; Chestek, Cynthia A; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V

    2009-08-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.

  7. Universality in the Evolution of Orientation Columns in the Visual Cortex

    PubMed Central

    Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred

    2011-01-01

    The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599

  8. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  9. Circulation and Directional Amplification in the Josephson Parametric Converter

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  10. Process development of beam-lead silicon-gate COS/MOS integrated circuits

    NASA Technical Reports Server (NTRS)

    Baptiste, B.; Boesenberg, W.

    1974-01-01

    Two processes for the fabrication of beam-leaded COS/MOS integrated circuits are described. The first process utilizes a composite gate dielectric of 800 A of silicon dioxide and 450 A of pyrolytically deposited A12O3 as an impurity barrier. The second process utilizes polysilicon gate metallization over which a sealing layer of 1000 A of pyrolytic Si3N4 is deposited. Three beam-lead integrated circuits have been implemented with the first process: (1) CD4000BL - three-input NOR gate; (2) CD4007BL - triple inverter; and (3) CD4013BL - dual D flip flop. An arithmetic and logic unit (ALU) integrated circuit was designed and implemented with the second process. The ALU chip allows addition with four bit accuracy. Processing details, device design and device characterization, circuit performance and life data are presented.

  11. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    PubMed

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  12. Open Source Radiation Hardened by Design Technology

    NASA Technical Reports Server (NTRS)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  13. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  14. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  15. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  16. Flexible printed circuit board actuators

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Cha, Youngsu

    2017-12-01

    Out-of-plane actuators are made possible by the breaking of planar symmetry. In this paper, we present a thin-film out-of-plane electrostatic actuator for a flexible printed circuit board (FPCB) that can be fabricated with a single step of the conventional manufacturing process. No other components are required for actuation except a single sheet of the FPCB, and it works based on the planar asymmetry resulting from asymmetrically patterned top and bottom electrodes on each side of the polyimide film. With the structural asymmetry, the application of a high voltage in the order of kilovolts results in the asymmetry of the electric fields and the body force density, which generates the bending moment that leads to macroscopic deformations. We applied the finite element method to examine the asymmetry induced by the difference in the electrodes. In the experiment, the displacement responses to step input and square wave input of various frequencies were analyzed. It was found that our actuator constitutes an underdamped system, exhibiting resonance characteristics. The maximum oscillatory amplitude was determined at resonance, and the relationship between the displacement and the applied voltage was investigated.

  17. Multi-physics modelling contributions to investigate the atmospheric cosmic rays on the single event upset sensitivity along the scaling trend of CMOS technologies.

    PubMed

    Hubert, G; Regis, D; Cheminet, A; Gatti, M; Lacoste, V

    2014-10-01

    Particles originating from primary cosmic radiation, which hit the Earth's atmosphere give rise to a complex field of secondary particles. These particles include neutrons, protons, muons, pions, etc. Since the 1980s it has been known that terrestrial cosmic rays can penetrate the natural shielding of buildings, equipment and circuit package and induce soft errors in integrated circuits. Recently, research has shown that commercial static random access memories are now so small and sufficiently sensitive that single event upsets (SEUs) may be induced from the electronic stopping of a proton. With continued advancements in process size, this downward trend in sensitivity is expected to continue. Then, muon soft errors have been predicted for nano-electronics. This paper describes the effects in the specific cases such as neutron-, proton- and muon-induced SEU observed in complementary metal-oxide semiconductor. The results will allow investigating the technology node sensitivity along the scaling trend. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    NASA Astrophysics Data System (ADS)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data-processing complex. An example of the multilevel calculation of the heat-hydraulic modes of main heat networks and those connected to them through central heat point distribution networks in Petropavlovsk-Kamchatskii is examined.

  19. Programmable Direct-Memory-Access Controller

    NASA Technical Reports Server (NTRS)

    Hendry, David F.

    1990-01-01

    Proposed programmable direct-memory-access controller (DMAC) operates with computer systems of 32000 series, which have 32-bit data buses and use addresses of 24 (or potentially 32) bits. Controller functions with or without help of central processing unit (CPU) and starts itself. Includes such advanced features as ability to compare two blocks of memory for equality and to search block of memory for specific value. Made as single very-large-scale integrated-circuit chip.

  20. European Conference on Advanced Materials and Processes Held in Aachen, Federal Republic of Germany on November 22-24 1989. Abstracts

    DTIC Science & Technology

    1989-11-24

    However, the combination of increasing circuit complexity, customization, size, speed and heat flux is leading to a crisis in packaging technology(1...material properties and tooling restrictions, * production by an economic single-step sintering technique with subsequent heat treatment, * achievement of...programme, page 16. Numerical Mlodelling of Heat Transfer at Interfaces: Finite Element Approaches, Testing and Examples I W. Schafer, MAGM

  1. EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.

    1960-03-24

    A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)

  2. Maximum Acceleration Recording Circuit

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  3. Procedures for Instructional Systems Development

    DTIC Science & Technology

    1981-09-18

    single faults to the circuit and components level. (JTI Task No. TCB-01). Figure III-ll.--Example of a Module Page of a Curriculum Outline. 3 - 80...semiconductor trapezoidal wave generator circuit , multimeter, and oscilloscope measure the output amplitude, rise time, and jump voltage within +/- 10...accuracy. Given a trainer having a semiconductor trapezoidal wave generator circuit , multimeter, and oscilloscope - CONDITION (C) . measure the output

  4. Design and Development of an Engineering Prototype Compact X-Ray Scanner (FMS 5000)

    DTIC Science & Technology

    1989-03-31

    machined by "wire-EDM" (electro discharge machining ). Three different slice thicknesses can be selected from the scan menu. The set of slice thicknesses...circuit. This type of circuit is used whenever more than ten kilowatts of power are needed by a machine . For example, lathes and milling machines in a... machine shop usually use this type of input power. A three- phase circuit delivers power more efficiently than a single-phase circuit because three

  5. Less severe processing improves carbon nanotube photovoltaic performance

    NASA Astrophysics Data System (ADS)

    Shea, Matthew J.; Wang, Jialiang; Flach, Jessica T.; Zanni, Martin T.; Arnold, Michael S.

    2018-05-01

    Thin film semiconducting single walled carbon nanotube (s-SWCNT) photovoltaics suffer losses due to trapping and quenching of excitons by defects induced when dispersing s-SWCNTs into solution. We study these aspects by preparing photovoltaic devices from (6,5) carbon nanotubes isolated by different processes: extended ultrasonication, brief ultrasonication, and shear force mixing. Peak quantum efficiency increases from 28% to 38% to 49% as the processing harshness decreases and is attributed to both increasing s-SWCNT length and reducing sidewall defects. Fill-factor and open-circuit voltage also improve with shear force mixing, highlighting the importance of obtaining long, defect-free s-SWCNTs for efficient photoconversion devices.

  6. Four-terminal circuit element with photonic core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampayan, Stephen

    A four-terminal circuit element is described that includes a photonic core inside of the circuit element that uses a wide bandgap semiconductor material that exhibits photoconductivity and allows current flow through the material in response to the light that is incident on the wide bandgap material. The four-terminal circuit element can be configured based on various hardware structures using a single piece or multiple pieces or layers of a wide bandgap semiconductor material to achieve various designed electrical properties such as high switching voltages by using the photoconductive feature beyond the breakdown voltages of semiconductor devices or circuits operated basedmore » on electrical bias or control designs. The photonic core aspect of the four-terminal circuit element provides unique features that enable versatile circuit applications to either replace the semiconductor transistor-based circuit elements or semiconductor diode-based circuit elements.« less

  7. A behavioral-level HDL description of SFQ logic circuits for quantitative performance analysis of large-scale SFQ digital systems

    NASA Astrophysics Data System (ADS)

    Matsuzaki, F.; Yoshikawa, N.; Tanaka, M.; Fujimaki, A.; Takai, Y.

    2003-10-01

    Recently many single flux quantum (SFQ) logic circuits containing several thousands of Josephson junctions have been designed successfully by using digital domain simulation based on the hard ware description language (HDL). In the present HDL-based design of SFQ circuits, a structure-level HDL description has been used, where circuits are made up of basic gate cells. However, in order to analyze large-scale SFQ digital systems, such as a microprocessor, more higher-level circuit abstraction is necessary to reduce the circuit simulation time. In this paper we have investigated the way to describe functionality of the large-scale SFQ digital circuits by a behavior-level HDL description. In this method, the functionality and the timing of the circuit block is defined directly by describing their behavior by the HDL. Using this method, we can dramatically reduce the simulation time of large-scale SFQ digital circuits.

  8. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process.

    PubMed

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-12

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke - . Readout noise under the highest pixel gain condition is 1 e - with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7", 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach.

  9. An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 μm Triple-Gain Pixel Fabricated in a Standard BSI Process †

    PubMed Central

    Takayanagi, Isao; Yoshimura, Norio; Mori, Kazuya; Matsuo, Shinichiro; Tanaka, Shunsuke; Abe, Hirofumi; Yasuda, Naoto; Ishikawa, Kenichiro; Okura, Shunsuke; Ohsawa, Shinji; Otaka, Toshinori

    2018-01-01

    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 μm pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 ke−. Readout noise under the highest pixel gain condition is 1 e− with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7”, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach. PMID:29329210

  10. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  11. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  12. PAM4 silicon photonic microring resonator-based transceiver circuits

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Yu, Kunzhi; Roshan-Zamir, Ashkan; Wang, Binhao; Li, Cheng; Seyedi, M. Ashkan; Fiorentino, Marco; Beausoleil, Raymond

    2017-02-01

    Increased data rates have motivated the investigation of advanced modulation schemes, such as four-level pulseamplitude modulation (PAM4), in optical interconnect systems in order to enable longer transmission distances and operation with reduced circuit bandwidth relative to non-return-to-zero (NRZ) modulation. Employing this modulation scheme in interconnect architectures based on high-Q silicon photonic microring resonator devices, which occupy small area and allow for inherent wavelength-division multiplexing (WDM), offers a promising solution to address the dramatic increase in datacenter and high-performance computing system I/O bandwidth demands. Two ring modulator device structures are proposed for PAM4 modulation, including a single phase shifter segment device driven with a multi-level PAM4 transmitter and a two-segment device driven by two simple NRZ (MSB/LSB) transmitters. Transmitter circuits which utilize segmented pulsed-cascode high swing output stages are presented for both device structures. Output stage segmentation is utilized in the single-segment device design for PAM4 voltage level control, while in the two-segment design it is used for both independent MSB/LSB voltage levels and impedance control for output eye skew compensation. The 65nm CMOS transmitters supply a 4.4Vppd output swing for 40Gb/s operation when driving depletion-mode microring modulators implemented in a 130nm SOI process, with the single- and two-segment designs achieving 3.04 and 4.38mW/Gb/s, respectively. A PAM4 optical receiver front-end is also described which employs a large input-stage feedback resistor transimpedance amplifier (TIA) cascaded with an adaptively-tuned continuous-time linear equalizer (CTLE) for improved sensitivity. Receiver linearity, critical in PAM4 systems, is achieved with a peak-detector-based automatic gain control (AGC) loop.

  13. A fiber optic multi-stress monitoring system for power transformer

    NASA Astrophysics Data System (ADS)

    Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho

    2017-04-01

    A fiber-optic multi-stress monitoring system which uses 4 FBG sensors and a fiber-optic mandrel acoustic emission sensor is proposed. FBG sensors and a mandrel sensor measure different types of stresses occurring in electrical power transformer, such as temperature and acoustic signals. The sensor system uses single broadband light source to address the outputs of both sensors using single fiber-optic circuitry. An athermal-packaged FBG is used to supply quasi-coherent light for the Sagnac interferometer demodulation which processes the mandrel sensor output. The proposed sensor system could simplify the optical circuit for the multi-stress measurements and enhance the cost-effectiveness of the sensor system.

  14. Genetic Circuit Performance under Conditions Relevant for Industrial Bioreactors

    PubMed Central

    Moser, Felix; Broers, Nicolette J.; Hartmans, Sybe; Tamsir, Alvin; Kerkman, Richard; Roubos, Johannes A.; Bovenberg, Roel; Voigt, Christopher A.

    2014-01-01

    Synthetic genetic programs promise to enable novel applications in industrial processes. For such applications, the genetic circuits that compose programs will require fidelity in varying and complex environments. In this work, we report the performance of two synthetic circuits in Escherichia coli under industrially relevant conditions, including the selection of media, strain, and growth rate. We test and compare two transcriptional circuits: an AND and a NOR gate. In E. coli DH10B, the AND gate is inactive in minimal media; activity can be rescued by supplementing the media and transferring the gate into the industrial strain E. coli DS68637 where normal function is observed in minimal media. In contrast, the NOR gate is robust to media composition and functions similarly in both strains. The AND gate is evaluated at three stages of early scale-up: 100 ml shake-flask experiments, a 1 ml MTP microreactor, and a 10 L bioreactor. A reference plasmid that constitutively produces a GFP reporter is used to make comparisons of circuit performance across conditions. The AND gate function is quantitatively different at each scale. The output deteriorates late in fermentation after the shift from exponential to constant feed rates, which induces rapid resource depletion and changes in growth rate. In addition, one of the output states of the AND gate failed in the bioreactor, effectively making it only responsive to a single input. Finally, cells carrying the AND gate show considerably less accumulation of biomass. Overall, these results highlight challenges and suggest modified strategies for developing and characterizing genetic circuits that function reliably during fermentation. PMID:23656232

  15. Experimental investigation of a four-qubit linear-optical quantum logic circuit

    PubMed Central

    Stárek, R.; Mičuda, M.; Miková, M.; Straka, I.; Dušek, M.; Ježek, M.; Fiurášek, J.

    2016-01-01

    We experimentally demonstrate and characterize a four-qubit linear-optical quantum logic circuit. Our robust and versatile scheme exploits encoding of two qubits into polarization and path degrees of single photons and involves two crossed inherently stable interferometers. This approach allows us to design a complex quantum logic circuit that combines a genuine four-qubit C3Z gate and several two-qubit and single-qubit gates. The C3Z gate introduces a sign flip if and only if all four qubits are in the computational state |1〉. We verify high-fidelity performance of this central four-qubit gate using Hofmann bounds on quantum gate fidelity and Monte Carlo fidelity sampling. We also experimentally demonstrate that the quantum logic circuit can generate genuine multipartite entanglement and we certify the entanglement with the use of suitably tailored entanglement witnesses. PMID:27647176

  16. 32-channel single photon counting module for ultrasensitive detection of DNA sequences

    NASA Astrophysics Data System (ADS)

    Gudkov, Georgiy; Dhulla, Vinit; Borodin, Anatoly; Gavrilov, Dmitri; Stepukhovich, Andrey; Tsupryk, Andrey; Gorbovitski, Boris; Gorfinkel, Vera

    2006-10-01

    We continue our work on the design and implementation of multi-channel single photon detection systems for highly sensitive detection of ultra-weak fluorescence signals, for high-performance, multi-lane DNA sequencing instruments. A fiberized, 32-channel single photon detection (SPD) module based on single photon avalanche diode (SPAD), model C30902S-DTC, from Perkin Elmer Optoelectronics (PKI) has been designed and implemented. Unavailability of high performance, large area SPAD arrays and our desire to design high performance photon counting systems drives us to use individual diodes. Slight modifications in our quenching circuit has doubled the linear range of our system from 1MHz to 2MHz, which is the upper limit for these devices and the maximum saturation count rate has increased to 14 MHz. The detector module comprises of a single board computer PC-104 that enables data visualization, recording, processing, and transfer. Very low dark count (300-1000 counts/s), robust, efficient, simple data collection and processing, ease of connectivity to any other application demanding similar requirements and similar performance results to the best commercially available single photon counting module (SPCM from PKI) are some of the features of this system.

  17. Optimal ancilla-free Pauli+V circuits for axial rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blass, Andreas; Bocharov, Alex; Gurevich, Yuri

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometrymore » is almost elementary.« less

  18. MULTICHANNEL ANALYZER

    DOEpatents

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  19. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    PubMed

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  20. Architecture design of resistor/FET-logic demultiplexer for hybrid CMOS/nanodevice circuit interconnect.

    PubMed

    Li, Shu; Zhang, Tong

    2008-05-07

    Hybrid nanoelectronics consisting of nanodevice crossbars on top of CMOS backplane circuits is emerging as one viable option to sustain Moore's law after the CMOS scaling limit is reached. One main design challenge in such hybrid nanoelectronics is the interface between the highly dense nanowires in nanodevice crossbars and relatively coarse microwires in the CMOS domain. Such an interface can be realized through a logic circuit called a demultiplexer (demux). In this context, all the prior work on demux design uses a single type of device, such as resistor, diode or field effect transistor (FET), to realize the demultiplexing function. However, different types of devices have their own advantages and disadvantages in terms of functionality, manufacturability, speed and power consumption. This makes none of them provide a satisfactory solution. To tackle this challenge, this work proposes to combine resistor with FET to implement the demux, leading to the hybrid resistor/FET-logic demux. Such hybrid demux architecture can make these two types of devices complement each other well to improve the overall demux design effectiveness. Furthermore, due to the inevitable fabrication process variations at the nanoscale, the effects of resistor conductance and FET threshold voltage variability are analyzed and evaluated based on computer simulations. The simulation results provide the requirement on the fabrication process to ensure a high demux reliability, and promise the hybrid resistor/FET-logic demux an improved addressability and process variance tolerance.

  1. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb.

    PubMed

    Suzuki, Yoshinori; Kiyokage, Emi; Sohn, Jaerin; Hioki, Hiroyuki; Toida, Kazunori

    2015-02-01

    Olfactory processing is well known to be regulated by centrifugal afferents from other brain regions, such as noradrenergic, acetylcholinergic, and serotonergic neurons. Serotonergic neurons widely innervate and regulate the functions of various brain regions. In the present study, we focused on serotonergic regulation of the olfactory bulb (OB), one of the most structurally and functionally well-defined brain regions. Visualization of a single neuron among abundant and dense fibers is essential to characterize and understand neuronal circuits. We accomplished this visualization by successfully labeling and reconstructing serotonin (5-hydroxytryptamine: 5-HT) neurons by infection with sindbis and adeno-associated virus into dorsal raphe nuclei (DRN) of mice. 5-HT synapses were analyzed by correlative confocal laser microscopy and serial-electron microscopy (EM) study. To further characterize 5-HT neuronal and network function, we analyzed whether glutamate was released from 5-HT synaptic terminals using immuno-EM. Our results are the first visualizations of complete 5-HT neurons and fibers projecting from DRN to the OB with bifurcations. We found that a single 5-HT axon can form synaptic contacts to both type 1 and 2 periglomerular cells within a single glomerulus. Through immunolabeling, we also identified vesicular glutamate transporter 3 in 5-HT neurons terminals, indicating possible glutamatergic transmission. Our present study strongly implicates the involvement of brain regions such as the DRN in regulation of the elaborate mechanisms of olfactory processing. We further provide a structure basis of the network for coordinating or linking olfactory encoding with other neural systems, with special attention to serotonergic regulation. © 2014 Wiley Periodicals, Inc.

  2. A new high dynamic range ROIC with smart light intensity control unit

    NASA Astrophysics Data System (ADS)

    Yazici, Melik; Ceylan, Omer; Shafique, Atia; Abbasi, Shahbaz; Galioglu, Arman; Gurbuz, Yasar

    2017-05-01

    This journal presents a new high dynamic range ROIC with smart pixel which consists of two pre-amplifiers that are controlled by a circuit inside the pixel. Each pixel automatically decides which pre-amplifier is used according to the incoming illumination level. Instead of using single pre-amplifier, two input pre-amplifiers, which are optimized for different signal levels, are placed inside each pixel. The smart circuit mechanism, which decides the best input circuit according to the incoming light level, is also designed for each pixel. In short, an individual pixel has the ability to select the best input amplifier circuit that performs the best/highest SNR for the incoming signal level. A 32 × 32 ROIC prototype chip is designed to demonstrate the concept in 0.18 μ m CMOS technology. The prototype is optimized for NIR and SWIR bands. Instead of a detector, process variation optimized current sources are placed inside the ROIC. The chip achieves minimum 8.6 e- input referred noise and 98.9 dB dynamic range. It has the highest dynamic range in the literature in terms of analog ROICs for SWIR band. It is operating in room temperature and power consumption is 2.8 μ W per pixel.

  3. Dimension scaling effects on the yield sensitivity of HEMT digital circuits

    NASA Technical Reports Server (NTRS)

    Sarker, Jogendra C.; Purviance, John E.

    1992-01-01

    In our previous works, using a graphical tool, yield factor histograms, we studied the yield sensitivity of High Electron Mobility Transistors (HEMT) and HEMT circuit performance with the variation of process parameters. This work studies the scaling effects of process parameters on yield sensitivity of HEMT digital circuits. The results from two HEMT circuits are presented.

  4. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  5. Phased-Array Antenna With Optoelectronic Control Circuits

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Shalkhauser, Kurt A.; Martzaklis, Konstantinos; Lee, Richard Q.; Downey, Alan N.; Simons, Rainee N.

    1995-01-01

    Prototype phased-array antenna features control of amplitude and phase at each radiating element. Amplitude- and phase-control signals transmitted on optical fiber to optoelectronic interface circuit (OEIC), then to monolithic microwave integrated circuit (MMIC) at each element. Offers advantages of flexible, rapid electronic steering and shaping of beams. Furthermore, greater number of elements, less overall performance of antenna degraded by malfunction in single element.

  6. Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2001-01-01

    An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

  7. Simple constant-current-regulated power supply

    NASA Technical Reports Server (NTRS)

    Priebe, D. H. E.; Sturman, J. C.

    1977-01-01

    Supply incorporates soft-start circuit that slowly ramps current up to set point at turn-on. Supply consists of full-wave rectifier, regulating pass transistor, current feedback circuit, and quad single-supply operational-amplifier circuit providing control. Technique is applicable to any system requiring constant dc current, such as vacuum tube equipment, heaters, or battery charges; it has been used to supply constant current for instrument calibration.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.

    Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.

  9. Monolithic FET structures for high-power control component applications

    NASA Astrophysics Data System (ADS)

    Shifrin, Mitchell B.; Katzin, Peter J.; Ayasli, Yalcin

    1989-12-01

    A monolithic FET switch is described that can be integrated with other monolithic functions or used as a discrete component in a microwave integrated circuit structure. This device increases the power-handling capability of the conventional single FET switch by an order of magnitude. It does this by overcoming the breakdown voltage limitation of the FET device. The design, fabrication, and performance of two high-power control components using these circuits are described as examples of the implementation of this technology. They are an L-band terminated single-pole, single-throw (SPST) switch and an L-band limiter).

  10. Effects of Temperature and Supply Voltage on SEU- and SET-Induced Errors in Bulk 40-nm Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Chen, R. M.; Diggins, Z. J.; Mahatme, N. N.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Zhang, H.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.

    2017-08-01

    The single-event sensitivity of bulk 40-nm sequential circuits is investigated as a function of temperature and supply voltage. An overall increase in SEU cross section versus temperature is observed at relatively high supply voltages. However, at low supply voltages, there is a threshold temperature beyond which the SEU cross section decreases with further increases in temperature. Single-event transient induced errors in flip-flops also increase versus temperature at relatively high supply voltages and are more sensitive to temperature variation than those caused by single-event upsets.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Nan; Tong, Yanhong; Tang, Qingxin, E-mail: tangqx@nenu.edu.cn, E-mail: ycliu@nenu.edu.cn

    We showed the advantages of flexible rubrene organic single-crystal microbelts in high-performance devices and circuits towards conformal electronics. The anisotropic transport based on the only one organic microbelt was studied by a “cross-channel” method, and the rubrene microbelt showed the highest mobility up to 26 cm{sup 2}/V s in the length direction. Based on an individual rubrene microbelt, the organic single-crystal circuit with good adherence on a pearl ball and the gain as high as 18 was realized. These results present great potential for applications of organic single-crystal belts in the next-generation conformal electronics.

  12. Majority-voted logic fail-sense circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, W. T.

    1977-01-01

    Fail-sense circuit has majority-voted logic component which receives three error voltage signals that are sensed at single point by three error amplifiers. If transistor shorts, only one signal is required to operate; if transistor opens, two signals are required.

  13. KIM-1 interface adapter to 3-wire teletype systems

    NASA Technical Reports Server (NTRS)

    Burhans, R. W.

    1976-01-01

    The KIM-1 circuit designed for use with a full duplex isolated 4 terminal system is described. Operation of the circuit with a 3 wire system in conjunction with a single +5v supply interface is discussed.

  14. 2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range

    NASA Astrophysics Data System (ADS)

    Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun

    2017-12-01

    An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.

  15. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.

    PubMed

    Jaitin, Diego Adhemar; Weiner, Assaf; Yofe, Ido; Lara-Astiaso, David; Keren-Shaul, Hadas; David, Eyal; Salame, Tomer Meir; Tanay, Amos; van Oudenaarden, Alexander; Amit, Ido

    2016-12-15

    In multicellular organisms, dedicated regulatory circuits control cell type diversity and responses. The crosstalk and redundancies within these circuits and substantial cellular heterogeneity pose a major research challenge. Here, we present CRISP-seq, an integrated method for massively parallel single-cell RNA sequencing (RNA-seq) and clustered regularly interspaced short palindromic repeats (CRISPR)-pooled screens. We show that profiling the genomic perturbation and transcriptome in the same cell enables us to simultaneously elucidate the function of multiple factors and their interactions. We applied CRISP-seq to probe regulatory circuits of innate immunity. By sampling tens of thousands of perturbed cells in vitro and in mice, we identified interactions and redundancies between developmental and signaling-dependent factors. These include opposing effects of Cebpb and Irf8 in regulating the monocyte/macrophage versus dendritic cell lineages and differential functions for Rela and Stat1/2 in monocyte versus dendritic cell responses to pathogens. This study establishes CRISP-seq as a broadly applicable, comprehensive, and unbiased approach for elucidating mammalian regulatory circuits. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Radiation-Hard Complementary Integrated Circuits Based on Semiconducting Single-Walled Carbon Nanotubes.

    PubMed

    McMorrow, Julian J; Cress, Cory D; Gaviria Rojas, William A; Geier, Michael L; Marks, Tobin J; Hersam, Mark C

    2017-03-28

    Increasingly complex demonstrations of integrated circuit elements based on semiconducting single-walled carbon nanotubes (SWCNTs) mark the maturation of this technology for use in next-generation electronics. In particular, organic materials have recently been leveraged as dopant and encapsulation layers to enable stable SWCNT-based rail-to-rail, low-power complementary metal-oxide-semiconductor (CMOS) logic circuits. To explore the limits of this technology in extreme environments, here we study total ionizing dose (TID) effects in enhancement-mode SWCNT-CMOS inverters that employ organic doping and encapsulation layers. Details of the evolution of the device transport properties are revealed by in situ and in operando measurements, identifying n-type transistors as the more TID-sensitive component of the CMOS system with over an order of magnitude larger degradation of the static power dissipation. To further improve device stability, radiation-hardening approaches are explored, resulting in the observation that SWNCT-CMOS circuits are TID-hard under dynamic bias operation. Overall, this work reveals conditions under which SWCNTs can be employed for radiation-hard integrated circuits, thus presenting significant potential for next-generation satellite and space applications.

  17. HMSIW-based switchable units using super compact loaded shunt stubs and its applications on SIW/HMSIW switches

    NASA Astrophysics Data System (ADS)

    Chen, Haidong; Che, Wenquan; Zhang, Tianyu; Cao, Yue; Feng, Wenjie

    2018-06-01

    Half-mode substrate integrated waveguide (HMSIW) switchable unit, built by HMSIW section with loaded single or multi-microstrip shunt stub(s), was proposed in this work. Both shorted and opened stubs were studied, investigated and compared, bandwidth enhancement method for proposed switchable units was proposed and demonstrated. Based on these switchable units, narrowband and broadband HMSIW single-pole-single-through (SPST) switches, SIW SPST switch and SIW/HMSIW-based single-pole-double-through (SPDT) switch were designed, fabricated and measured. Good performances were observed experimentally for these proposed circuits, showing the advantages of proposed concept and an excellent candidate for switchable or reconfigurable SIW/HMSIW circuits or systems.

  18. Simulation of SEU Cross-sections using MRED under Conditions of Limited Device Information

    NASA Technical Reports Server (NTRS)

    Lauenstein, J. M.; Reed, R. A.; Weller, R. A.; Mendenhall, M. H.; Warren, K. M.; Pellish, J. A.; Schrimpf, R. D.; Sierawski, B. D.; Massengill, L. W.; Dodd, P. E.; hide

    2007-01-01

    This viewgraph presentation reviews the simulation of Single Event Upset (SEU) cross sections using the membrane electrode assembly (MEA) resistance and electrode diffusion (MRED) tool using "Best guess" assumptions about the process and geometry, and direct ionization, low-energy beam test results. This work will also simulate SEU cross-sections including angular and high energy responses and compare the simulated results with beam test data for the validation of the model. Using MRED, we produced a reasonably accurate upset response model of a low-critical charge SRAM without detailed information about the circuit, device geometry, or fabrication process

  19. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  20. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  1. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  2. 30 CFR 77.905 - Connection of single-phase loads.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COAL MINES Low- and Medium-Voltage Alternating Current Circuits § 77.905 Connection of single-phase loads. Single-phase loads shall be connected phase-to-phase in resistance grounded systems. ...

  3. Compact Receiver Front Ends for Submillimeter-Wave Applications

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Chattopadhyay, Goutam; Schlecht, Erich T.; Lin, Robert H.; Sin, Seth; Peralta, Alejandro; Lee, Choonsup; Gill, John J.; Gulkis, Samuel; Thomas, Bertrand C.

    2012-01-01

    The current generation of submillimeter-wave instruments is relatively mass and power-hungry. The receiver front ends (RFEs) of a submillimeter instrument form the heart of the instrument, and any mass reduction achieved in this subsystem is propagated through the instrument. In the current implementation, the RFE consists of different blocks for the mixer and LO circuits. The motivation for this work is to reduce the mass of the RFE by integrating the mixer and LO circuits in one waveguide block. The mixer and its associated LO chips will all be packaged in a single waveguide package. This will reduce the mass of the RFE and also provide a number of other advantages. By bringing the mixer and LO circuits close together, losses in the waveguide will be reduced. Moreover, the compact nature of the block will allow for better thermal control of the block, which is important in order to reduce gain fluctuations. A single waveguide block with a 600- GHz RFE functionality (based on a subharmonically pumped Schottky diode pair) has been demonstrated. The block is about 3x3x3 cubic centimeters. The block combines the mixer and multiplier chip in a single package. 3D electromagnetic simulations were carried out to design the waveguide circuit around the mixer and multiplier chip. The circuit is optimized to provide maximum output power and maximum bandwidth. An integrated submillimeter front end featuring a 520-600-GHz sub-harmonic mixer and a 260-300-GHz frequency tripler in a single cavity was tested. Both devices used GaAs MMIC membrane planar Schottky diode technology. The sub-harmonic mixer/tripler circuit has been tested using conventional metal-machined blocks. Measurement results on the metal block give best DSB (double sideband) mixer noise temperature of 2,360 K and conversion losses of 7.7 dB at 520 GHz. The LO input power required to pump the integrated tripler/sub-harmonic mixer is between 30 and 50 mW.

  4. Recycling of WEEE: characterization of spent printed circuit boards from mobile phones and computers.

    PubMed

    Yamane, Luciana Harue; de Moraes, Viviane Tavares; Espinosa, Denise Crocce Romano; Tenório, Jorge Alberto Soares

    2011-12-01

    This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Computer modeling of batteries from nonlinear circuit elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waaben, S.; Dyer, C.K.; Federico, J.

    1985-06-01

    Circuit analogs for a single battery cell have previously been composed of resistors, capacitors, and inductors. This work introduces a nonlinear circuit model for cell behavior. The circuit is configured around the PIN junction diode, whose charge-storage behavior has features similar to those of electrochemical cells. A user-friendly integrated circuit simulation computer program has reproduced a variety of complex cell responses including electrica isolation effects causing capacity loss, as well as potentiodynamic peaks and discharge phenomena hitherto thought to be thermodynamic in origin. However, in this work, they are shown to be simply due to spatial distribution of stored chargemore » within a practical electrode.« less

  6. High performance protection circuit for power electronics applications

    NASA Astrophysics Data System (ADS)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  7. Gallium Nitride Monolithic Microwave Integrated Circuit Designs Using 0.25-micro m Qorvo Process

    DTIC Science & Technology

    2017-07-27

    and sensor systems of interest to US Defense Department applications, particularly for next-generation radar systems. Broadband, efficient, high...A simple GaN high-electron-mobility-transistor (HEMT) TR single-pull double- throw (SPDT) switch consists of at least 2 series- and 2 shunt... simple TR switch that works well up to 6 GHz is shown in Figs. 4 (layout) and 5 (simulation). Complementary DC-bias voltages are applied at inputs A

  8. Integrated coherent matter wave circuits

    DOE PAGES

    Ryu, C.; Boshier, M. G.

    2015-09-21

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

  9. Simulation Approach for Timing Analysis of Genetic Logic Circuits.

    PubMed

    Baig, Hasan; Madsen, Jan

    2017-07-21

    Constructing genetic logic circuits is an application of synthetic biology in which parts of the DNA of a living cell are engineered to perform a dedicated Boolean function triggered by an appropriate concentration of certain proteins or by different genetic components. These logic circuits work in a manner similar to electronic logic circuits, but they are much more stochastic and hence much harder to characterize. In this article, we introduce an approach to analyze the threshold value and timing of genetic logic circuits. We show how this approach can be used to analyze the timing behavior of single and cascaded genetic logic circuits. We further analyze the timing sensitivity of circuits by varying the degradation rates and concentrations. Our approach can be used not only to characterize the timing behavior but also to analyze the timing constraints of cascaded genetic logic circuits, a capability that we believe will be important for design automation in synthetic biology.

  10. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  11. JavaGenes: Evolving Graphs with Crossover

    NASA Technical Reports Server (NTRS)

    Globus, Al; Atsatt, Sean; Lawton, John; Wipke, Todd

    2000-01-01

    Genetic algorithms usually use string or tree representations. We have developed a novel crossover operator for a directed and undirected graph representation, and used this operator to evolve molecules and circuits. Unlike strings or trees, a single point in the representation cannot divide every possible graph into two parts, because graphs may contain cycles. Thus, the crossover operator is non-trivial. A steady-state, tournament selection genetic algorithm code (JavaGenes) was written to implement and test the graph crossover operator. All runs were executed by cycle-scavagging on networked workstations using the Condor batch processing system. The JavaGenes code has evolved pharmaceutical drug molecules and simple digital circuits. Results to date suggest that JavaGenes can evolve moderate sized drug molecules and very small circuits in reasonable time. The algorithm has greater difficulty with somewhat larger circuits, suggesting that directed graphs (circuits) are more difficult to evolve than undirected graphs (molecules), although necessary differences in the crossover operator may also explain the results. In principle, JavaGenes should be able to evolve other graph-representable systems, such as transportation networks, metabolic pathways, and computer networks. However, large graphs evolve significantly slower than smaller graphs, presumably because the space-of-all-graphs explodes combinatorially with graph size. Since the representation strongly affects genetic algorithm performance, adding graphs to the evolutionary programmer's bag-of-tricks should be beneficial. Also, since graph evolution operates directly on the phenotype, the genotype-phenotype translation step, common in genetic algorithm work, is eliminated.

  12. An efficient quantum circuit analyser on qubits and qudits

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2011-10-01

    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.

  13. 49 CFR 236.2 - Grounds.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., single-break, signal control circuits using a grounded common, and alternating current power distribution... TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION, INSPECTION, MAINTENANCE, AND REPAIR... General § 236.2 Grounds. Each circuit, the functioning of which affects the safety of train operations...

  14. Wireless Neural Recording With Single Low-Power Integrated Circuit

    PubMed Central

    Harrison, Reid R.; Kier, Ryan J.; Chestek, Cynthia A.; Gilja, Vikash; Nuyujukian, Paul; Ryu, Stephen; Greger, Bradley; Solzbacher, Florian; Shenoy, Krishna V.

    2010-01-01

    We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902–928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor. PMID:19497825

  15. Benchmarks of a III-V TFET technology platform against the 10-nm CMOS FinFET technology node considering basic arithmetic circuits

    NASA Astrophysics Data System (ADS)

    Strangio, S.; Palestri, P.; Lanuzza, M.; Esseni, D.; Crupi, F.; Selmi, L.

    2017-02-01

    In this work, a benchmark for low-power digital applications of a III-V TFET technology platform against a conventional CMOS FinFET technology node is proposed. The analysis focuses on full-adder circuits, which are commonly identified as representative of the digital logic environment. 28T and 24T topologies, implemented in complementary-logic and transmission-gate logic, respectively, are investigated. Transient simulations are performed with a purpose-built test-bench on each single-bit full adder solution. The extracted delays and energy characteristics are post-processed and translated into figures-of-merit for multi-bit ripple-carry-adders. Trends related to the different full-adder implementations (for the same device technology platform) and to the different technology platforms (for the same full-adder topology) are presented and discussed.

  16. Evolutionary Technique for Automated Synthesis of Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian (Inventor); Salazar-Lazaro, Carlos Harold (Inventor)

    2003-01-01

    A method for evolving a circuit comprising configuring a plurality of transistors using a plurality of reconfigurable switches so that each of the plurality of transistors has a terminal coupled to a terminal of another of the plurality of transistors that is controllable by a single reconfigurable switch. The plurality of reconfigurable switches being controlled in response to a chromosome pattern. The plurality of reconfigurable switches may be controlled using an annealing function. As such, the plurality of reconfigurable switches may be controlled by selecting qualitative values for the plurality of reconfigurable switches in response to the chromosomal pattern, selecting initial quantitative values for the selected qualitative values, and morphing the initial quantitative values. Typically, subsequent quantitative values will be selected more divergent than the initial quantitative values. The morphing process may continue to partially or to completely polarize the quantitative values.

  17. Nanogap Electrodes towards Solid State Single-Molecule Transistors.

    PubMed

    Cui, Ajuan; Dong, Huanli; Hu, Wenping

    2015-12-01

    With the establishment of complementary metal-oxide-semiconductor (CMOS)-based integrated circuit technology, it has become more difficult to follow Moore's law to further downscale the size of electronic components. Devices based on various nanostructures were constructed to continue the trend in the minimization of electronics, and molecular devices are among the most promising candidates. Compared with other candidates, molecular devices show unique superiorities, and intensive studies on molecular devices have been carried out both experimentally and theoretically at the present time. Compared to two-terminal molecular devices, three-terminal devices, namely single-molecule transistors, show unique advantages both in fundamental research and application and are considered to be an essential part of integrated circuits based on molecular devices. However, it is very difficult to construct them using the traditional microfabrication techniques directly, thus new fabrication strategies are developed. This review aims to provide an exclusive way of manufacturing solid state gated nanogap electrodes, the foundation of constructing transistors of single or a few molecules. Such single-molecule transistors have the potential to be used to build integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Neurobiological bases of reading comprehension: Insights from neuroimaging studies of word level and text level processing in skilled and impaired readers

    PubMed Central

    Landi, Nicole; Frost, Stephen J.; Menc, W. Einar; Sandak, Rebecca; Pugh, Kenneth R.

    2012-01-01

    For accurate reading comprehension, readers must first learn to map letters to their corresponding speech sounds and meaning and then they must string the meanings of many words together to form a representation of the text. Furthermore, readers must master the complexities involved in parsing the relevant syntactic and pragmatic information necessary for accurate interpretation. Failure in this process can occur at multiple levels and cognitive neuroscience has been helpful in identifying the underlying causes of success and failure in reading single words and in reading comprehension. In general, neurobiological studies of skilled reading comprehension indicate a highly overlapping language circuit for single word reading, reading comprehension and listening comprehension with largely quantitative differences in a number of reading and language related areas. This paper reviews relevant research from studies employing neuroimaging techniques to study reading with a focus on the relationship between reading skill, single word reading, and text comprehension. PMID:23662034

  19. Impact of Temporal Masking of Flip-Flop Upsets on Soft Error Rates of Sequential Circuits

    NASA Astrophysics Data System (ADS)

    Chen, R. M.; Mahatme, N. N.; Diggins, Z. J.; Wang, L.; Zhang, E. X.; Chen, Y. P.; Liu, Y. N.; Narasimham, B.; Witulski, A. F.; Bhuva, B. L.; Fleetwood, D. M.

    2017-08-01

    Reductions in single-event (SE) upset (SEU) rates for sequential circuits due to temporal masking effects are evaluated. The impacts of supply voltage, combinational-logic delay, flip-flop (FF) SEU performance, and particle linear energy transfer (LET) values are analyzed for SE cross sections of sequential circuits. Alpha particles and heavy ions with different LET values are used to characterize the circuits fabricated at the 40-nm bulk CMOS technology node. Experimental results show that increasing the delay of the logic circuit present between FFs and decreasing the supply voltage are two effective ways of reducing SE error rates for sequential circuits for particles with low LET values due to temporal masking. SEU-hardened FFs benefit less from temporal masking than conventional FFs. Circuit hardening implications for SEU-hardened and unhardened FFs are discussed.

  20. Determining distance to lightning strokes from a single station

    NASA Technical Reports Server (NTRS)

    Ruhnke, L. H. (Inventor)

    1973-01-01

    Apparatus is described for determining the distance to lightning strokes from a single station. The apparatus includes a first loop antenna system for sensing the magnetic field produced by the lightning which is filtered, square rooted, and fed into a peak voltage holding circuit. A second antenna is provided for sensing the electric field produced by the lightning which is fed into a filter, an absolute value meter, and to a peak voltage holding circuit. A multivibrator gates the magnetic and electric signals through the peak holding circuits to a ratio meter which produces a signal corresponding to the ratio between the magnetic component and the electric component. The amplitude of this signal is proportional to the distance from the apparatus to the lightning stroke.

  1. Basic study of entire whole-body PET scanners based on the OpenPET geometry

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Yamaya, Taiga; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo

    2010-09-01

    A conventional PET scanner has a 15-25 cm axial field-of-view (FOV) and images a whole body using about six bed positions. An OpenPET geometry can extend the axial FOV with a limited number of detectors. The entire whole-body PET scanner must be able to process a large amount of data effectively. In this work, we study feasibility of the fully 3D entire whole-body PET scanner using the GATE simulation. The OpenPET has 12 block detector rings with the ring diameter of 840 mm and each block detector ring consists of 48 depth-of-interaction (DOI) detectors. The OpenPET has the axial length of 895.95 mm with five parts of 58.95 mm open gaps. The OpenPET has higher single data loss than a conventional PET scanner at grouping circuits. NECR of the OpenPET decreases by single data loss. But single data loss is mitigated by separating the axially arranged detector into two parts. Also, multiple coincidences are found to be important for the entire whole-body PET scanner. The entire whole-body PET scanner with the OpenPET geometry promises to provide a large axial FOV with the open space and to have sufficient performance values. But single data loss at the grouping circuits and multiple coincidences are limited to the peak noise equivalent count rate (NECR) for the entire whole-body PET scanner.

  2. Position sensor for a fuel injection element in an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulkerson, D.E.; Geske, M.L.

    1987-08-18

    This patent describes an electronic circuit for dynamically sensing and processing signals representative of changes in a magnet field, the circuit comprising: means for sensing a change in a magnetic field external to the circuit and providing an output representative of the change; circuit means electronically coupled with the output of the sensing means for providing an output indicating the presence of the magnetic field change; and a nulling circuit coupled with the output of the sensing means and across the indicating circuit means for nulling the electronic circuit responsive to the sensing means output, to thereby avoid ambient magneticmore » fields temperature and process variations, and wherein the nulling circuit comprises a capacitor coupled to the output of the nulling circuit, means for charging and discharging the capacitor responsive to any imbalance in the input to the nulling circuit, and circuit means coupling the capacitor with the output of the sensing means for nulling any imbalance during the charging or discharging of the capacitor.« less

  3. On-Chip Waveguide Coupling of a Layered Semiconductor Single-Photon Source.

    PubMed

    Tonndorf, Philipp; Del Pozo-Zamudio, Osvaldo; Gruhler, Nico; Kern, Johannes; Schmidt, Robert; Dmitriev, Alexander I; Bakhtinov, Anatoly P; Tartakovskii, Alexander I; Pernice, Wolfram; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2017-09-13

    Fully integrated quantum technology based on photons is in the focus of current research, because of its immense potential concerning performance and scalability. Ideally, the single-photon sources, the processing units, and the photon detectors are all combined on a single chip. Impressive progress has been made for on-chip quantum circuits and on-chip single-photon detection. In contrast, nonclassical light is commonly coupled onto the photonic chip from the outside, because presently only few integrated single-photon sources exist. Here, we present waveguide-coupled single-photon emitters in the layered semiconductor gallium selenide as promising on-chip sources. GaSe crystals with a thickness below 100 nm are placed on Si 3 N 4 rib or slot waveguides, resulting in a modified mode structure efficient for light coupling. Using optical excitation from within the Si 3 N 4 waveguide, we find nonclassicality of generated photons routed on the photonic chip. Thus, our work provides an easy-to-implement and robust light source for integrated quantum technology.

  4. Implementation of Basic and Universal Gates In a single Circuit Based On Quantum-dot Cellular Automata Using Multi-Layer Crossbar Wire

    NASA Astrophysics Data System (ADS)

    Bhowmik, Dhrubajyoti; Saha, Apu Kr; Dutta, Paramartha; Nandi, Supratim

    2017-08-01

    Quantum-dot Cellular Automata (QCA) is one of the most substitutes developing nanotechnologies for electronic circuits, as a result of lower force utilization, higher speed and smaller size in correlation with CMOS innovation. The essential devices, a Quantum-dot cell can be utilized to logic gates and wires. As it is the key building block on nanotechnology circuits. By applying simple gates, the hardware requirements for a QCA circuit can be decreased and circuits can be less complex as far as level, delay and cell check. This article exhibits an unobtrusive methodology for actualizing novel upgraded simple and universal gates, which can be connected to outline numerous variations of complex QCA circuits. Proposed gates are straightforward in structure and capable as far as implementing any digital circuits. The main aim is to build all basic and universal gates in a simple circuit with and without crossbar-wire. Simulation results and physical relations affirm its handiness in actualizing each advanced circuit.

  5. Intelligent structures technology

    NASA Astrophysics Data System (ADS)

    Crawley, Edward F.

    1991-07-01

    Viewgraphs on intelligent structures technology are presented. Topics covered include: embedding electronics; electrical and mechanical compatibility; integrated circuit chip packaged for embedding; embedding devices within composite structures; test of embedded circuit in G/E coupon; temperature/humidity/bias test; single-chip microcomputer control experiment; and structural shape determination.

  6. Intelligent structures technology

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.

    1991-01-01

    Viewgraphs on intelligent structures technology are presented. Topics covered include: embedding electronics; electrical and mechanical compatibility; integrated circuit chip packaged for embedding; embedding devices within composite structures; test of embedded circuit in G/E coupon; temperature/humidity/bias test; single-chip microcomputer control experiment; and structural shape determination.

  7. Remotely-actuated biomedical switch

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1969-01-01

    Remotely-actuated biomedical switching circuit using transistors consumes no power in the off position and can be actuated by a single-frequency telemetry pulse to control implanted instrumentation. Silicon controlled rectifiers permit the circuit design which imposes zero drain on supply batteries when not in use.

  8. Optoelectronic Integrated Circuits For Neural Networks

    NASA Technical Reports Server (NTRS)

    Psaltis, D.; Katz, J.; Kim, Jae-Hoon; Lin, S. H.; Nouhi, A.

    1990-01-01

    Many threshold devices placed on single substrate. Integrated circuits containing optoelectronic threshold elements developed for use as planar arrays of artificial neurons in research on neural-network computers. Mounted with volume holograms recorded in photorefractive crystals serving as dense arrays of variable interconnections between neurons.

  9. Cognitive Consilience: Primate Non-Primary Neuroanatomical Circuits Underlying Cognition

    PubMed Central

    Solari, Soren Van Hout; Stoner, Rich

    2011-01-01

    Interactions between the cerebral cortex, thalamus, and basal ganglia form the basis of cognitive information processing in the mammalian brain. Understanding the principles of neuroanatomical organization in these structures is critical to understanding the functions they perform and ultimately how the human brain works. We have manually distilled and synthesized hundreds of primate neuroanatomy facts into a single interactive visualization. The resulting picture represents the fundamental neuroanatomical blueprint upon which cognitive functions must be implemented. Within this framework we hypothesize and detail 7 functional circuits corresponding to psychological perspectives on the brain: consolidated long-term declarative memory, short-term declarative memory, working memory/information processing, behavioral memory selection, behavioral memory output, cognitive control, and cortical information flow regulation. Each circuit is described in terms of distinguishable neuronal groups including the cerebral isocortex (9 pyramidal neuronal groups), parahippocampal gyrus and hippocampus, thalamus (4 neuronal groups), basal ganglia (7 neuronal groups), metencephalon, basal forebrain, and other subcortical nuclei. We focus on neuroanatomy related to primate non-primary cortical systems to elucidate the basis underlying the distinct homotypical cognitive architecture. To display the breadth of this review, we introduce a novel method of integrating and presenting data in multiple independent visualizations: an interactive website (http://www.frontiersin.org/files/cognitiveconsilience/index.html) and standalone iPhone and iPad applications. With these tools we present a unique, annotated view of neuroanatomical consilience (integration of knowledge). PMID:22194717

  10. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamane, Luciana Harue, E-mail: lucianayamane@uol.com.br; Tavares de Moraes, Viviane, E-mail: tavares.vivi@gmail.com; Crocce Romano Espinosa, Denise, E-mail: espinosa@usp.br

    Highlights: > This paper presents new and important data on characterization of wastes of electric and electronic equipments. > Copper concentration is increasing in mobile phones and remaining constant in personal computers. > Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineralmore » processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results of this paper show that copper concentration is increasing in mobile phones and remaining constant in personal computers.« less

  11. Magnetomicrofluidics Circuits for Organizing Bioparticle Arrays

    NASA Astrophysics Data System (ADS)

    Abedini-Nassab, Roozbeh

    Single-cell analysis (SCA) tools have important applications in the analysis of phenotypic heterogeneity, which is difficult or impossible to analyze in bulk cell culture or patient samples. SCA tools thus have a myriad of applications ranging from better credentialing of drug therapies to the analysis of rare latent cells harboring HIV infection or in Cancer. However, existing SCA systems usually lack the required combination of programmability, flexibility, and scalability necessary to enable the study of cell behaviors and cell-cell interactions at the scales sufficient to analyze extremely rare events. To advance the field, I have developed a novel, programmable, and massively-parallel SCA tool which is based on the principles of computer circuits. By integrating these magnetic circuits with microfluidics channels, I developed a platform that can organize a large number of single particles into an array in a controlled manner. My magnetophoretic circuits use passive elements constructed in patterned magnetic thin films to move cells along programmed tracks with an external rotating magnetic field. Cell motion along these tracks is analogous to the motion of charges in an electrical conductor, following a rule similar to Ohm's law. I have also developed asymmetric conductors, similar to electrical diodes, and storage sites for cells that behave similarly to electrical capacitors. I have also developed magnetophoretic circuits which use an overlaid pattern of microwires to switch single cells between different tracks. This switching mechanism, analogous to the operation of electronic transistors, is achieved by establishing a semiconducting gap in the magnetic pattern which can be changed from an insulating state to a conducting state by application of electrical current to an overlaid electrode. I performed an extensive study on the operation of transistors to optimize their geometry and minimize the required gate currents. By combining these elements into integrated circuits, I have built devices which are capable of organizing a precise number of cells into individually addressable array sites, similar to how a random access memory (RAM) stores electronic data. My programmable magnetic circuits allow for the organization of both cells and single-cell pairs into large arrays. Single cells can also potentially be retrieved for downstream high-throughput genomic analysis. In order to enhance the efficiency of the tool and to increase the delivery speed of the particles, I have also developed microfluidics systems that are combined with the magnetophoretic circuits. This hybrid system, called magnetomicrofluidics, is capable of rapidly organizing an array of particles and cells with the high precision and control. I have also shown that cells can be grown inside these chips for multiple days, enabling the long-term phenotypic analysis of rare cellular events. These types of studies can reveal important insights about the intercellular signaling networks and answer crucial questions in biology and immunology.

  12. Ag2S atomic switch-based `tug of war' for decision making

    NASA Astrophysics Data System (ADS)

    Lutz, C.; Hasegawa, T.; Chikyow, T.

    2016-07-01

    For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture.For a computing process such as making a decision, a software controlled chip of several transistors is necessary. Inspired by how a single cell amoeba decides its movements, the theoretical `tug of war' computing model was proposed but not yet implemented in an analogue device suitable for integrated circuits. Based on this model, we now developed a new electronic element for decision making processes, which will have no need for prior programming. The devices are based on the growth and shrinkage of Ag filaments in α-Ag2+δS gap-type atomic switches. Here we present the adapted device design and the new materials. We demonstrate the basic `tug of war' operation by IV-measurements and Scanning Electron Microscopy (SEM) observation. These devices could be the base for a CMOS-free new computer architecture. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00690f

  13. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  14. Multiplexing of Radio-Frequency Single Electron Transistors

    NASA Technical Reports Server (NTRS)

    Stevenson, Thomas R.; Pellerano, F. A.; Stahle, C. M.; Aidala, K.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We present results on wavelength division multiplexing of radio-frequency single electron transistors. We use a network of resonant impedance matching circuits to direct applied rf carrier waves to different transistors depending on carrier frequency. A two-channel demonstration of this concept using discrete components successfully reconstructed input signals with small levels of cross coupling. A lithographic version of the rf circuits had measured parameters in agreement with electromagnetic modeling, with reduced cross capacitance and inductance, and should allow 20 to 50 channels to be multiplexed.

  15. Single-Event Transient Testing of Low Dropout PNP Series Linear Voltage Regulators

    NASA Technical Reports Server (NTRS)

    Adell, Philippe; Allen, Gregory

    2013-01-01

    As demand for high-speed, on-board, digital-processing integrated circuits on spacecraft increases (field-programmable gate arrays and digital signal processors in particular), the need for the next generation point-of-load (POL) regulator becomes a prominent design issue. Shrinking process nodes have resulted in core rails dropping to values close to 1.0 V, drastically reducing margin to standard switching converters or regulators that power digital ICs. The goal of this task is to perform SET characterization of several commercial POL converters, and provide a discussion of the impact of these results to state-of-the-art digital processing IC through laser and heavy ion testing

  16. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takano, H.; Hosogi, K.; Kato, T.

    1995-05-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier withmore » an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.« less

  17. Single transmission line interrogated multiple channel data acquisition system

    DOEpatents

    Fasching, George E.; Keech, Jr., Thomas W.

    1980-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensor circuits each monitors a specific process variable and each transmits measurement values over a single transmission line to a master interrogating station when addressed by said master interrogating station. Typically, as many as 330 remote stations may be parallel connected to the transmission line which may exceed 7,000 feet. The interrogation rate is typically 330 stations/second. The master interrogating station samples each station according to a shared, charging transmit-receive cycle. All remote station address signals, all data signals from the remote stations/sensors and all power for all of the remote station/sensors are transmitted via a single continuous terminated coaxial cable. A means is provided for periodically and remotely calibrating all remote sensors for zero and span. A provision is available to remotely disconnect any selected sensor station from the main transmission line.

  18. Unitary Shaft-Angle and Shaft-Speed Sensor Assemblies

    NASA Technical Reports Server (NTRS)

    Alhorn, Dean C.; Howard, David E.; Smith, Dennis A.

    2006-01-01

    The figure depicts a unit that contains a rotary-position or a rotary-speed sensor, plus electronic circuitry necessary for its operation, all enclosed in a single housing with a shaft for coupling to an external rotary machine. This rotation sensor unit is complete: when its shaft is mechanically connected to that of the rotary machine and it is supplied with electric power, it generates an output signal directly indicative of the rotary position or speed, without need for additional processing by other circuitry. The incorporation of all of the necessary excitatory and readout circuitry into the housing (in contradistinction to using externally located excitatory and/or readout circuitry) in a compact arrangement is the major difference between this unit and prior rotation-sensor units. The sensor assembly inside the housing includes excitatory and readout integrated circuits mounted on a circular printed-circuit board. In a typical case in which the angle or speed transducer(s) utilize electromagnetic induction, the assembly also includes another circular printed-circuit board on which the transducer windings are mounted. A sheet of high-magnetic permeability metal ("mu metal") is placed between the winding board and the electronic-circuit board to prevent spurious coupling of excitatory signals from the transducer windings to the readout circuits. The housing and most of the other mechanical hardware can be common to a variety of different sensor designs. Hence, the unit can be configured to generate any of variety of outputs by changing the interior sensor assembly. For example, the sensor assembly could contain an analog tachometer circuit that generates an output proportional (in both magnitude and sign or in magnitude only) to the speed of rotation.

  19. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  20. Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors

    NASA Astrophysics Data System (ADS)

    Naquin, Clint Alan

    Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background. A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility of scalable CMOS circuits that exploit explicit quantum transport. Ongoing quantum transport simulations based off of the spatial dopant distribution suggests a quasi-parabolic potential profile. Energy spacings between resonant transmission states are not consistent with experimental data, suggesting that either the assumed transport model is incomplete, or scattering mechanisms significantly mix the quasi-bound states and broaden the energy spacings.

  1. Investigation into the common mode rejection ratio of the physiological signal conditioner circuit

    NASA Technical Reports Server (NTRS)

    Obrien, Edward M.

    1992-01-01

    The common mode rejection ratio (CMRR) of the single operational amplifier (op amp) differential amplifier and of the three operational amplifier differential amplifier was investigated. The three op amp differential amplifier circuit is used in the signal conditioner circuit which amplifies signals such as the electromyograph or electrocardiogram. The investigation confirmed via SPICE modeling what has been observed by others in the recent literature that the CMRR for the circuit can be maximized without precision resistor values or precisely matched op amps. This can be done if one resistor in the final stage can be adjusted either by a potentiometer or by laser trimming in the case of hybrid circuit fabrication.

  2. High performance protection circuit for power electronics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as anmore » external, independent protection circuit.« less

  3. Processing circuit with asymmetry corrector and convolutional encoder for digital data

    NASA Technical Reports Server (NTRS)

    Pfiffner, Harold J. (Inventor)

    1987-01-01

    A processing circuit is provided for correcting for input parameter variations, such as data and clock signal symmetry, phase offset and jitter, noise and signal amplitude, in incoming data signals. An asymmetry corrector circuit performs the correcting function and furnishes the corrected data signals to a convolutional encoder circuit. The corrector circuit further forms a regenerated clock signal from clock pulses in the incoming data signals and another clock signal at a multiple of the incoming clock signal. These clock signals are furnished to the encoder circuit so that encoded data may be furnished to a modulator at a high data rate for transmission.

  4. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.

    PubMed

    Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech

    2017-12-15

    Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.

  5. Coding for Single-Line Transmission

    NASA Technical Reports Server (NTRS)

    Madison, L. G.

    1983-01-01

    Digital transmission code combines data and clock signals into single waveform. MADCODE needs four standard integrated circuits in generator and converter plus five small discrete components. MADCODE allows simple coding and decoding for transmission of digital signals over single line.

  6. UWB transmitter

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-01-15

    An ultra-wideband (UWB) dual impulse transmitter is made up of a trigger edge selection circuit actuated by a single trigger input pulse; a first step recovery diode (SRD) based pulser connected to the trigger edge selection circuit to generate a first impulse output; and a second step recovery diode (SRD) based pulser connected to the trigger edge selection circuit in parallel to the first pulser to generate a second impulse output having a selected delay from the first impulse output.

  7. High-Speed Integrated Circuits for Military Applications.

    DTIC Science & Technology

    1979-11-01

    1.5 pm circuits at the present time. " Market economics do not justify these circuits in the time frame of the VHSI program." See also Ref. 9. 7 per...on microprocessors currently in production, but the huge commercial market that is thought to exist for these devices when they can at last be...Subsection I, below). The single-chip microprocessor dominates the commercial market and those military applications for which their through- put is

  8. Integrated circuit with dissipative layer for photogenerated carriers

    DOEpatents

    Myers, David R.

    1989-01-01

    The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissi The U.S. Government has rights in this invention pursuant to Contract No. DE-ACO4-76DP00789 between the Department of Energy and AT&T Technologies, Inc.

  9. Integrated circuit with dissipative layer for photogenerated carriers

    DOEpatents

    Myers, D.R.

    1989-09-12

    The sensitivity of an integrated circuit to single-event upsets is decreased by providing a dissi The U.S. Government has rights in this invention pursuant to Contract No. DE-ACO4-76DP00789 between the Department of Energy and AT&T Technologies, Inc.

  10. Reward signal in a recurrent circuit drives appetitive long-term memory formation.

    PubMed

    Ichinose, Toshiharu; Aso, Yoshinori; Yamagata, Nobuhiro; Abe, Ayako; Rubin, Gerald M; Tanimoto, Hiromu

    2015-11-17

    Dopamine signals reward in animal brains. A single presentation of a sugar reward to Drosophila activates distinct subsets of dopamine neurons that independently induce short- and long-term olfactory memories (STM and LTM, respectively). In this study, we show that a recurrent reward circuit underlies the formation and consolidation of LTM. This feedback circuit is composed of a single class of reward-signaling dopamine neurons (PAM-α1) projecting to a restricted region of the mushroom body (MB), and a specific MB output cell type, MBON-α1, whose dendrites arborize that same MB compartment. Both MBON-α1 and PAM-α1 neurons are required during the acquisition and consolidation of appetitive LTM. MBON-α1 additionally mediates the retrieval of LTM, which is dependent on the dopamine receptor signaling in the MB α/β neurons. Our results suggest that a reward signal transforms a nascent memory trace into a stable LTM using a feedback circuit at the cost of memory specificity.

  11. Design of surface acoustic wave filters for the multiplex transmission system of multilevel inverter circuits

    NASA Astrophysics Data System (ADS)

    Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2017-07-01

    We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.

  12. Towards a DNA Nanoprocessor: Reusable Tile-Integrated DNA Circuits.

    PubMed

    Gerasimova, Yulia V; Kolpashchikov, Dmitry M

    2016-08-22

    Modern electronic microprocessors use semiconductor logic gates organized on a silicon chip to enable efficient inter-gate communication. Here, arrays of communicating DNA logic gates integrated on a single DNA tile were designed and used to process nucleic acid inputs in a reusable format. Our results lay the foundation for the development of a DNA nanoprocessor, a small and biocompatible device capable of performing complex analyses of DNA and RNA inputs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Experimental evidence for a new single-event upset (SEU) mode in a CMOS SRAM obtained from model verification

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Smith, L. S.; Soli, G. A.; Lo, R. Y.

    1987-01-01

    Modeling of SEU has been done in a CMOS static RAM containing 1-micron-channel-length transistors fabricated from a p-well epilayer process using both circuit-simulation and numerical-simulation techniques. The modeling results have been experimentally verified with the aid of heavy-ion beams obtained from a three-stage tandem van de Graaff accelerator. Experimental evidence for a novel SEU mode in an ON n-channel device is presented.

  14. Dynamically re-configurable CMOS imagers for an active vision system

    NASA Technical Reports Server (NTRS)

    Yang, Guang (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    A vision system is disclosed. The system includes a pixel array, at least one multi-resolution window operation circuit, and a pixel averaging circuit. The pixel array has an array of pixels configured to receive light signals from an image having at least one tracking target. The multi-resolution window operation circuits are configured to process the image. Each of the multi-resolution window operation circuits processes each tracking target within a particular multi-resolution window. The pixel averaging circuit is configured to sample and average pixels within the particular multi-resolution window.

  15. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  16. New Circuit QED system based on Triple-leg Stripline Resonator.

    NASA Astrophysics Data System (ADS)

    Kim, Dongmin; Moon, Kyungsun

    Conventional circuit QED system consists of a qubit located inside a linear stripline resonator, which has successfully demonstrated a strong coupling between a single photon and a qubit. Here we present a new circuit QED system, where the qubit is coupled to triple-leg stripline resonator (TSR). We have shown that TSR supports two-fold degenerate photon modes among others. By coupling them to a single qubit, we have obtained the dressed states of a coupled system of a single qubit and two-fold degenerate photon modes. By locating two qubits at two legs of TSR, we have studied a potential two-bit gate operation (e.g., CNOT gate) of the system. We will discuss the main advantage of utilizing two-fold degenerate photon modes This work is partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B01013756).

  17. Single-stage three-phase boost power factor correction circuit for AC-DC converter

    NASA Astrophysics Data System (ADS)

    Azazi, Haitham Z.; Ahmed, Sayed M.; Lashine, Azza E.

    2018-01-01

    This article presents a single-stage three-phase power factor correction (PFC) circuit for AC-to-DC converter using a single-switch boost regulator, leading to improve the input power factor (PF), reducing the input current harmonics and decreasing the number of required active switches. A novel PFC control strategy which is characterised as a simple and low-cost control circuit was adopted, for achieving a good dynamic performance, unity input PF, and minimising the harmonic contents of the input current, at which it can be applied to low/medium power converters. A detailed analytical, simulation and experimental studies were therefore conducted. The effectiveness of the proposed controller algorithm is validated by the simulation results, which were carried out using MATLAB/SIMULINK environment. The proposed system is built and tested in the laboratory using DSP-DS1104 digital control board for an inductive load. The results revealed that the total harmonic distortion in the supply current was very low. Finally, a good agreement between simulation and experimental results was achieved.

  18. A single-layer platform for Boolean logic and arithmetic through DNA excision in mammalian cells

    PubMed Central

    Weinberg, Benjamin H.; Hang Pham, N. T.; Caraballo, Leidy D.; Lozanoski, Thomas; Engel, Adrien; Bhatia, Swapnil; Wong, Wilson W.

    2017-01-01

    Genetic circuits engineered for mammalian cells often require extensive fine-tuning to perform their intended functions. To overcome this problem, we present a generalizable biocomputing platform that can engineer genetic circuits which function in human cells with minimal optimization. We used our Boolean Logic and Arithmetic through DNA Excision (BLADE) platform to build more than 100 multi-input-multi-output circuits. We devised a quantitative metric to evaluate the performance of the circuits in human embryonic kidney and Jurkat T cells. Of 113 circuits analysed, 109 functioned (96.5%) with the correct specified behavior without any optimization. We used our platform to build a three-input, two-output Full Adder and six-input, one-output Boolean Logic Look Up Table. We also used BLADE to design circuits with temporal small molecule-mediated inducible control and circuits that incorporate CRISPR/Cas9 to regulate endogenous mammalian genes. PMID:28346402

  19. A Secure Content Delivery System Based on a Partially Reconfigurable FPGA

    NASA Astrophysics Data System (ADS)

    Hori, Yohei; Yokoyama, Hiroyuki; Sakane, Hirofumi; Toda, Kenji

    We developed a content delivery system using a partially reconfigurable FPGA to securely distribute digital content on the Internet. With partial reconfigurability of a Xilinx Virtex-II Pro FPGA, the system provides an innovative single-chip solution for protecting digital content. In the system, a partial circuit must be downloaded from a server to the client terminal to play content. Content will be played only when the downloaded circuit is correctly combined (=interlocked) with the circuit built in the terminal. Since each circuit has a unique I/O configuration, the downloaded circuit interlocks with the corresponding built-in circuit designed for a particular terminal. Thus, the interface of the circuit itself provides a novel authentication mechanism. This paper describes the detailed architecture of the system and clarify the feasibility and effectiveness of the system. In addition, we discuss a fail-safe mechanism and future work necessary for the practical application of the system.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, C.; Boshier, M. G.

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less

Top