Science.gov

Sample records for single protein revealed

  1. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs.

    PubMed

    Smits, Arne H; Lindeboom, Rik G H; Perino, Matteo; van Heeringen, Simon J; Veenstra, Gert Jan C; Vermeulen, Michiel

    2014-09-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs.

  2. Global absolute quantification reveals tight regulation of protein expression in single Xenopus eggs

    PubMed Central

    Smits, Arne H.; Lindeboom, Rik G.H.; Perino, Matteo; van Heeringen, Simon J.; Veenstra, Gert Jan C.; Vermeulen, Michiel

    2014-01-01

    While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs. PMID:25056316

  3. Single-molecule chemo-mechanical unfolding reveals multiple transition state barriers in a small single-domain protein

    NASA Astrophysics Data System (ADS)

    Guinn, Emily J.; Jagannathan, Bharat; Marqusee, Susan

    2015-04-01

    A fundamental question in protein folding is whether proteins fold through one or multiple trajectories. While most experiments indicate a single pathway, simulations suggest proteins can fold through many parallel pathways. Here, we use a combination of chemical denaturant, mechanical force and site-directed mutations to demonstrate the presence of multiple unfolding pathways in a simple, two-state folding protein. We show that these multiple pathways have structurally different transition states, and that seemingly small changes in protein sequence and environment can strongly modulate the flux between the pathways. These results suggest that in vivo, the crowded cellular environment could strongly influence the mechanisms of protein folding and unfolding. Our study resolves the apparent dichotomy between experimental and theoretical studies, and highlights the advantage of using a multipronged approach to reveal the complexities of a protein's free-energy landscape.

  4. Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins

    PubMed Central

    Gallardo, Ignacio F.; Zhou, Yi; Gong, Fade; Yang, Soo-Hyun; Wold, Marc S.; Miller, Kyle M.; Paull, Tanya T.

    2016-01-01

    Exonuclease 1 (Exo1) is a 5′→3′ exonuclease and 5′-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we use single-molecule fluorescence imaging and quantitative cell biology approaches to reveal the interplay between Exo1 and SSBs. Both human and yeast Exo1 are processive nucleases on their own. RPA rapidly strips Exo1 from DNA, and this activity is dependent on at least three RPA-encoded single-stranded DNA binding domains. Furthermore, we show that ablation of RPA in human cells increases Exo1 recruitment to damage sites. In contrast, the sensor of single-stranded DNA complex 1—a recently identified human SSB that promotes DNA resection during homologous recombination—supports processive resection by Exo1. Although RPA rapidly turns over Exo1, multiple cycles of nuclease rebinding at the same DNA site can still support limited DNA processing. These results reveal the role of single-stranded DNA binding proteins in controlling Exo1-catalyzed resection with implications for how Exo1 is regulated during DNA repair in eukaryotic cells. PMID:26884156

  5. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein.

    PubMed

    Horejs, Christine; Ristl, Robin; Tscheliessnig, Rupert; Sleytr, Uwe B; Pum, Dietmar

    2011-08-05

    Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.

  6. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    PubMed Central

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-01-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction. PMID:27641076

  7. Single-Molecule FRET Reveals Hidden Complexity in a Protein Energy Landscape

    PubMed Central

    Tsytlonok, Maksym; Ibrahim, Shehu M.; Rowling, Pamela J.E.; Xu, Wenshu; Ruedas-Rama, Maria J.; Orte, Angel; Klenerman, David; Itzhaki, Laura S.

    2015-01-01

    Summary Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured “safety pin” or “staple” from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated. PMID:25565106

  8. Single-molecule FRET reveals hidden complexity in a protein energy landscape.

    PubMed

    Tsytlonok, Maksym; Ibrahim, Shehu M; Rowling, Pamela J E; Xu, Wenshu; Ruedas-Rama, Maria J; Orte, Angel; Klenerman, David; Itzhaki, Laura S

    2015-01-06

    Here, using single-molecule FRET, we reveal previously hidden conformations of the ankyrin-repeat domain of AnkyrinR, a giant adaptor molecule that anchors integral membrane proteins to the spectrin-actin cytoskeleton through simultaneous binding of multiple partner proteins. We show that the ankyrin repeats switch between high-FRET and low-FRET states, controlled by an unstructured "safety pin" or "staple" from the adjacent domain of AnkyrinR. Opening of the safety pin leads to unravelling of the ankyrin repeat stack, a process that will dramatically affect the relative orientations of AnkyrinR binding partners and, hence, the anchoring of the spectrin-actin cytoskeleton to the membrane. Ankyrin repeats are one of the most ubiquitous molecular recognition platforms in nature, and it is therefore important to understand how their structures are adapted for function. Our results point to a striking mechanism by which the order-disorder transition and, thereby, the activity of repeat proteins can be regulated.

  9. Quantum dot single molecule tracking reveals a wide range of diffusive motions of membrane transport proteins

    NASA Astrophysics Data System (ADS)

    Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.

    2009-02-01

    Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.

  10. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yang, Yong; He, Kangmin; Zhang, Fayun; Zhao, Libo; Zhou, Wei; Yuan, Jinghe; Liang, Wei; Fang, Xiaohong

    2016-09-01

    Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.

  11. Nonlinearly Additive Forces in Multivalent Ligand Binding to a Single Protein Revealed with Force Spectroscopy

    SciTech Connect

    Ratto, T V; Rudd, R E; Langry, K C; Balhorn, R L; McElfresh, M W

    2005-07-15

    We present evidence of multivalent interactions between a single protein molecule and multiple carbohydrates at a pH where the protein can bind four ligands. The evidence is based not only on measurements of the force required to rupture the bonds formed between ConcanavalinA (ConA) and {alpha}-D-mannose, but also on an analysis of the polymer-extension force curves to infer the polymer architecture that binds the protein to the cantilever and the ligands to the substrate. We find that although the rupture forces for multiple carbohydrate connections to a single protein are larger than the rupture force for a single connection, they do not scale additively with increasing number. Specifically, the most common rupture forces are approximately 46, 66, and 85 pN, which we argue corresponds to 1, 2, and 3 ligands being pulled simultaneously from a single protein as corroborated by an analysis of the linkage architecture. As in our previous work polymer tethers allow us to discriminate between specific and non-specific binding. We analyze the binding configuration (i.e. serial versus parallel connections) through fitting the polymer stretching data with modified Worm-Like Chain (WLC) models that predict how the effective stiffness of the tethers is affected by multiple connections. This analysis establishes that the forces we measure are due to single proteins interacting with multiple ligands, the first force spectroscopy study that establishes single-molecule multivalent binding unambiguously.

  12. Nanoscale organization of synaptic adhesion proteins revealed by single-molecule localization microscopy.

    PubMed

    Chamma, Ingrid; Levet, Florian; Sibarita, Jean-Baptiste; Sainlos, Matthieu; Thoumine, Olivier

    2016-10-01

    The advent of superresolution imaging has created a strong need for both optimized labeling strategies and analysis methods to probe the nanoscale organization of complex biological structures. We present a thorough description of the distribution of synaptic adhesion proteins at the nanoscopic scale, namely presynaptic neurexin-[Formula: see text] ([Formula: see text]), and its two postsynaptic binding partners neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2). We monitored these proteins in the membrane of neurons by direct stochastic optical reconstruction microscopy, after live surface labeling with Alexa647-conjugated monomeric streptavidin. The small probe ([Formula: see text]) efficiently penetrates into crowded synaptic junctions and reduces the distance to target. We quantified the organization of the single-molecule localization data using a tesselation-based analysis technique. We show that Nlg1 exhibits a fairly disperse organization within dendritic spines, while LRRTM2 is organized in compact domains, and [Formula: see text] in presynaptic terminals displays a dual-organization pattern intermediate between that of Nlg1 and LRRTM2. These results suggest that part of [Formula: see text] interacts transsynaptically with Nlg1 and the other part with LRRTM2.

  13. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins

    PubMed Central

    Borgia, Madeleine B.; Borgia, Alessandro; Best, Robert B.; Steward, Annette; Nettels, Daniel; Wunderlich, Bengt; Schuler, Benjamin; Clarke, Jane

    2011-01-01

    A large range of debilitating medical conditions1 are linked to protein misfolding, which may compete with productive folding particularly in proteins containing multiple domains2. With 75% of the eukaryotic proteome consisting of multidomain proteins, how is inter-domain misfolding avoided? It has been proposed that maintaining low sequence identity between covalently linked domains is a mechanism to avoid misfolding3. Here we use single-molecule Förster Resonance Energy Transfer (FRET) experiments4,5 to detect and quantify rare misfolding events in tandem Ig domains from the I-band of titin under native conditions. About 5.5% of molecules with identical domains misfold during refolding in vitro and form a surprisingly stable state with an unfolding half time of several days. Tandem arrays of immunoglobulin-like (Ig-like) domains in humans exhibit significantly lower sequence identity between neighbouring domains than between non-adjacent domains3. In particular, the sequence identity of neighbouring domains has been found to be preferentially below 40%3. Interestingly we observe no misfolding for a tandem of naturally neighbouring domains with low sequence identity (24%), whereas misfolding occurs between domains which are 42% identical. Coarse-grained molecular simulations predict the formation of domain-swapped structures, which are in excellent agreement with the observed transfer efficiency of the misfolded species. We infer that the interactions underlying misfolding are very specific and result in a sequence-specific domain swapping mechanism. Diversifying the sequence between neighbouring domains appears to be a successful evolutionary strategy to avoid misfolding in multidomain proteins. PMID:21623368

  14. Single-molecule fluorescence reveals sequence-specific misfolding in multidomain proteins.

    PubMed

    Borgia, Madeleine B; Borgia, Alessandro; Best, Robert B; Steward, Annette; Nettels, Daniel; Wunderlich, Bengt; Schuler, Benjamin; Clarke, Jane

    2011-05-29

    A large range of debilitating medical conditions is linked to protein misfolding, which may compete with productive folding particularly in proteins containing multiple domains. Seventy-five per cent of the eukaryotic proteome consists of multidomain proteins, yet it is not understood how interdomain misfolding is avoided. It has been proposed that maintaining low sequence identity between covalently linked domains is a mechanism to avoid misfolding. Here we use single-molecule Förster resonance energy transfer to detect and quantify rare misfolding events in tandem immunoglobulin domains from the I band of titin under native conditions. About 5.5 per cent of molecules with identical domains misfold during refolding in vitro and form an unexpectedly stable state with an unfolding half-time of several days. Tandem arrays of immunoglobulin-like domains in humans show significantly lower sequence identity between neighbouring domains than between non-adjacent domains. In particular, the sequence identity of neighbouring domains has been found to be preferentially below 40 per cent. We observe no misfolding for a tandem of naturally neighbouring domains with low sequence identity (24 per cent), whereas misfolding occurs between domains that are 42 per cent identical. Coarse-grained molecular simulations predict the formation of domain-swapped structures that are in excellent agreement with the observed transfer efficiency of the misfolded species. We infer that the interactions underlying misfolding are very specific and result in a sequence-specific domain-swapping mechanism. Diversifying the sequence between neighbouring domains seems to be a successful evolutionary strategy to avoid misfolding in multidomain proteins.

  15. Single molecule compression reveals intra-protein forces drive cytotoxin pore formation

    PubMed Central

    Czajkowsky, Daniel M; Sun, Jielin; Shen, Yi; Shao, Zhifeng

    2015-01-01

    Perfringolysin O (PFO) is a prototypical member of a large family of pore-forming proteins that undergo a significant reduction in height during the transition from the membrane-assembled prepore to the membrane-inserted pore. Here, we show that targeted application of compressive forces can catalyze this conformational change in individual PFO complexes trapped at the prepore stage, recapitulating this critical step of the spontaneous process. The free energy landscape determined from these measurements is in good agreement with that obtained from molecular dynamics simulations showing that an equivalent internal force is generated by the interaction of the exposed hydrophobic residues with the membrane. This hydrophobic force is transmitted across the entire structure to produce a compressive stress across a distant, otherwise stable domain, catalyzing its transition from an extended to compact conformation. Single molecule compression is likely to become an important tool to investigate conformational transitions in membrane proteins. DOI: http://dx.doi.org/10.7554/eLife.08421.001 PMID:26652734

  16. Single-Molecule Dynamics Reveals Cooperative Binding-Folding in Protein Recognition

    SciTech Connect

    Wang, Jin; Lu, Qiang N.; Lu, H PETER.

    2006-07-01

    The study of associations between two biomolecules is the key to understand molecular recognition and function. Molecular function is often thought to be determined by the underlying structures. Here, combining single molecule study of protein binding with an energy landscape inspired microscopic model, we found strong evidences that bio-molecular recognition is determined by flexibilities in addition to structures. Our model is based on coarse grained molecular dynamics performed on the residue level with the energy function biased towards the native binding structure (Go model). With our model, the underlying free energy landscape of the binding can be explored. Two distinct conformational states as free energy minimum, one with partially folding of CBD and significant binding of CBD to CDC42, and another with native folding of CBD and native binding of CBD to CDC42, are clearly seen. This shows the binding process proceeds with significant interface binding of CBD with CDC42 first without complete folding of CBD. Finally binding and folding are coupled with each other cooperatively to reach the native binding state. The single molecule experimental finding of the dynamic fluctuations between the loosely bound and closely bound conformational states can be identified with theoretically calculated free energy minimum and quantitatively explained in our model as a result of binding associated with large conformational changes. Theoretical predictions have identified certain key residues for binding which are consistent with mutational experiments. The combined study provides a test ground for fundamental mechanisms as well as insights into design and further explorations on biomolecular recognition with large conformational changes.

  17. Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay.

    PubMed

    De Cecco, Marco; Jeyapalan, Jessie; Zhao, Xiaoai; Tamamori-Adachi, Mimi; Sedivy, John M

    2011-10-01

    Replicative cellular senescence was discovered some 50 years ago. The phenotypes of senescent cells have been investigated extensively in cell culture, and found to affect essentially all aspects of cellular physiology. The relevance of cellular senescence in the context of age-associated pathologies as well as normal aging is a topic of active and ongoing interest. Considerable effort has been devoted to biomarker discovery to enable the microscopic detection of single senescent cells in tissues. One characteristic of senescent cells documented very early in cell culture studies was an increase in cell size and total protein content, but whether this occurs in vivo is not known. A limiting factor for studies of protein content and localization has been the lack of suitable fluorescence microscopy tools. We have developed an easy and flexible method, based on the merocyanine dye known as NanoOrange, to visualize and quantitatively measure total protein levels by high resolution fluorescence microscopy. NanoOrange staining can be combined with antibody-based immunofluorescence, thus providing both specific target and total protein information in the same specimen. These methods are optimally combined with automated image analysis platforms for high throughput analysis. We document here increasing protein content and density in nuclei of senescent human and mouse fibroblasts in vitro, and in liver nuclei of aged mice in vivo. Additionally, in aged liver nuclei NanoOrange revealed protein-dense foci that colocalize with centromeric heterochromatin.

  18. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein.

    PubMed

    Hopkins, Max; Kailasan, Shweta; Cohen, Allison; Roux, Simon; Tucker, Kimberly Pause; Shevenell, Amelia; Agbandje-McKenna, Mavis; Breitbart, Mya

    2014-10-01

    The small single-stranded DNA (ssDNA) bacteriophages of the subfamily Gokushovirinae were traditionally perceived as narrowly targeted, niche-specific viruses infecting obligate parasitic bacteria, such as Chlamydia. The advent of metagenomics revealed gokushoviruses to be widespread in global environmental samples. This study expands knowledge of gokushovirus diversity in the environment by developing a degenerate PCR assay to amplify a portion of the major capsid protein (MCP) gene of gokushoviruses. Over 500 amplicons were sequenced from 10 environmental samples (sediments, sewage, seawater and freshwater), revealing the ubiquity and high diversity of this understudied phage group. Residue-level conservation data generated from multiple alignments was combined with a predicted 3D structure, revealing a tendency for structurally internal residues to be more highly conserved than surface-presenting protein-protein or viral-host interaction domains. Aggregating this data set into a phylogenetic framework, many gokushovirus MCP clades contained samples from multiple environments, although distinct clades dominated the different samples. Antarctic sediment samples contained the most diverse gokushovirus communities, whereas freshwater springs from Florida were the least diverse. Whether the observed diversity is being driven by environmental factors or host-binding interactions remains an open question. The high environmental diversity of this previously overlooked ssDNA viral group necessitates further research elucidating their natural hosts and exploring their ecological roles.

  19. Diversity of environmental single-stranded DNA phages revealed by PCR amplification of the partial major capsid protein

    PubMed Central

    Hopkins, Max; Kailasan, Shweta; Cohen, Allison; Roux, Simon; Tucker, Kimberly Pause; Shevenell, Amelia; Agbandje-McKenna, Mavis; Breitbart, Mya

    2014-01-01

    The small single-stranded DNA (ssDNA) bacteriophages of the subfamily Gokushovirinae were traditionally perceived as narrowly targeted, niche-specific viruses infecting obligate parasitic bacteria, such as Chlamydia. The advent of metagenomics revealed gokushoviruses to be widespread in global environmental samples. This study expands knowledge of gokushovirus diversity in the environment by developing a degenerate PCR assay to amplify a portion of the major capsid protein (MCP) gene of gokushoviruses. Over 500 amplicons were sequenced from 10 environmental samples (sediments, sewage, seawater and freshwater), revealing the ubiquity and high diversity of this understudied phage group. Residue-level conservation data generated from multiple alignments was combined with a predicted 3D structure, revealing a tendency for structurally internal residues to be more highly conserved than surface-presenting protein–protein or viral–host interaction domains. Aggregating this data set into a phylogenetic framework, many gokushovirus MCP clades contained samples from multiple environments, although distinct clades dominated the different samples. Antarctic sediment samples contained the most diverse gokushovirus communities, whereas freshwater springs from Florida were the least diverse. Whether the observed diversity is being driven by environmental factors or host-binding interactions remains an open question. The high environmental diversity of this previously overlooked ssDNA viral group necessitates further research elucidating their natural hosts and exploring their ecological roles. PMID:24694711

  20. Single molecule analysis of a red fluorescent RecA protein reveals a defect in nucleoprotein filament nucleation that relates to its reduced biological functions.

    PubMed

    Handa, Naofumi; Amitani, Ichiro; Gumlaw, Nathan; Sandler, Steven J; Kowalczykowski, Stephen C

    2009-07-10

    Fluorescent fusion proteins are exceedingly useful for monitoring protein localization in situ or visualizing protein behavior at the single molecule level. Unfortunately, some proteins are rendered inactive by the fusion. To circumvent this problem, we fused a hyperactive RecA protein (RecA803 protein) to monomeric red fluorescent protein (mRFP1) to produce a functional protein (RecA-RFP) that is suitable for in vivo and in vitro analysis. In vivo, the RecA-RFP partially restores UV resistance, conjugational recombination, and SOS induction to recA(-) cells. In vitro, the purified RecA-RFP protein forms a nucleoprotein filament whose k(cat) for single-stranded DNA-dependent ATPase activity is reduced approximately 3-fold relative to wild-type protein, and which is largely inhibited by single-stranded DNA-binding protein. However, RecA protein is also a dATPase; dATP supports RecA-RFP nucleoprotein filament formation in the presence of single-stranded DNA-binding protein. Furthermore, as for the wild-type protein, the activities of RecA-RFP are further enhanced by shifting the pH to 6.2. As a consequence, RecA-RFP is proficient for DNA strand exchange with dATP or at lower pH. Finally, using single molecule visualization, RecA-RFP was seen to assemble into a continuous filament on duplex DNA, and to extend the DNA approximately 1.7-fold. Consistent with its attenuated activities, RecA-RFP nucleates onto double-stranded DNA approximately 3-fold more slowly than the wild-type protein, but still requires approximately 3 monomers to form the rate-limited nucleus needed for filament assembly. Thus, RecA-RFP reveals that its attenuated biological functions correlate with a reduced frequency of nucleoprotein filament nucleation at the single molecule level.

  1. Top-down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment

    PubMed Central

    Konijnenberg, Albert; Bannwarth, Ludovic; Yilmaz, Duygu; Koçer, Armağan; Venien-Bryan, Catherine; Sobott, Frank

    2015-01-01

    Here we study the intact stoichiometry and top-down fragmentation behavior of three integral membrane proteins which were natively reconstituted into detergent micelles: the mechano-sensitive ion channel of large conductance (MscL), the Kirbac potassium channel and the p7 viroporin from the hepatitis C virus. By releasing the proteins under nondenaturing conditions inside the mass spectrometer, we obtained their oligomeric sizes. Increasing the ion activation (collision energy) causes unfolding and subsequent ejection of a highly charged monomer from the membrane protein complexes. Further increase of the ion activation then causes collision-induced dissociation (CID) of the ejected monomers, with fragments observed which were predominantly found to stem from membrane-embedded regions. These experiments show how in a single experiment, we can probe the relation between higher-order structure and protein sequence, by combining the native MS data with fragmentation obtained from top-down MS. PMID:25970171

  2. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity

    PubMed Central

    Gefen, Orit; Fridman, Ofer; Ronin, Irine; Balaban, Nathalie Q.

    2014-01-01

    Exponentially growing bacteria are rarely found in the wild, as microorganisms tend to spend most of their lifetime at stationary phase. Despite this general prevalence of stationary-phase bacteria, they are as yet poorly characterized. Our goal was to quantitatively study this phase by direct observation of single bacteria as they enter into stationary phase and by monitoring their activity over several days during growth arrest. For this purpose, we devised an experimental procedure for starving single Escherichia coli bacteria in microfluidic devices and measured their activity by monitoring the production rate of fluorescent proteins. When amino acids were the sole carbon source, the production rate decreased by an order of magnitude upon entry into stationary phase. We found that, even while growth-arrested, bacteria continued to produce proteins at a surprisingly constant rate over several days. Our identification of this newly observed period of constant activity in nongrowing cells, designated as constant activity stationary phase, makes possible the conduction of assays that require constant protein expression over time, and are therefore difficult to perform under exponential growth conditions. Moreover, we show that exogenous protein expression bears no fitness cost on the regrowth of the population when starvation ends. Further characterization of constant activity stationary phase—a phase where nongrowing bacteria can be quantitatively studied over several days in a reproducible manner—should contribute to a better understanding of this ubiquitous but overlooked physiological state of bacteria in nature. PMID:24344288

  3. Single molecule force spectroscopy reveals critical roles of hydrophobic core packing in determining the mechanical stability of protein GB1.

    PubMed

    Bu, Tianjia; Wang, Hui-Chuan Eileen; Li, Hongbin

    2012-08-21

    Understanding molecular determinants of protein mechanical stability is important not only for elucidating how elastomeric proteins are designed and functioning in biological systems but also for designing protein building blocks with defined nanomechanical properties for constructing novel biomaterials. GB1 is a small α/β protein and exhibits significant mechanical stability. It is thought that the shear topology of GB1 plays an important role in determining its mechanical stability. Here, we combine single molecule atomic force microscopy and protein engineering techniques to investigate the effect of side chain reduction and hydrophobic core packing on the mechanical stability of GB1. We engineered seven point mutants and carried out mechanical φ-value analysis of the mechanical unfolding of GB1. We found that three mutations, which are across the surfaces of two subdomains that are to be sheared by the applied stretching force, in the hydrophobic core (F30L, Y45L, and F52L) result in significant decrease in mechanical unfolding force of GB1. The mechanical unfolding force of these mutants drop by 50-90 pN compared with wild-type GB1, which unfolds at around 180 pN at a pulling speed of 400 nm/s. These results indicate that hydrophobic core packing plays an important role in determining the mechanical stability of GB1 and suggest that optimizing hydrophobic interactions across the surfaces that are to be sheared will likely be an efficient method to enhance the mechanical stability of GB1 and GB1 homologues.

  4. Confined Diffusion Without Fences of a G-Protein-Coupled Receptor as Revealed by Single Particle Tracking

    PubMed Central

    Daumas, Frédéric; Destainville, Nicolas; Millot, Claire; Lopez, André; Dean, David; Salomé, Laurence

    2003-01-01

    Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the μ-opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients. PMID:12524289

  5. Single fiber analyses of glycogen-related proteins reveal their differential association with glycogen in rat skeletal muscle.

    PubMed

    Murphy, Robyn M; Xu, Hongyang; Latchman, Heidy; Larkins, Noni T; Gooley, Paul R; Stapleton, David I

    2012-12-01

    To understand how glycogen affects skeletal muscle physiology, we examined enzymes essential for muscle glycogen synthesis and degradation using single fibers from quiescent and stimulated rat skeletal muscle. Presenting a shift in paradigm, we show these proteins are differentially associated with glycogen granules. Protein diffusibility and/or abundance of glycogenin, glycogen branching enzyme (GBE), debranching enzyme (GDE), phosphorylase (GP), and synthase (GS) were examined in fibers isolated from rat fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus (SOL) muscle. GDE and GP proteins were more abundant (~10- to 100-fold) in fibers from EDL compared with SOL muscle. GS and glycogenin proteins were similar between muscles while GBE had an approximately fourfold greater abundance in SOL muscle. Mechanically skinned fibers exposed to physiological buffer for 10 min showed ~70% total pools of GBE and GP were diffusible (nonbound), whereas GDE and GS were considerably less diffusible. Intense in vitro stimulation, sufficient to elicit a ~50% decrease in intracellular glycogen, increased diffusibility of GDE, GP, and GS (~15-60%) and decreased GBE diffusibility (~20%). Amylase treatment, which breaks α-1,4 linkages of glycogen, indicated differential diffusibilities and hence glycogen associations of GDE and GS. Membrane solubilization (1% Triton-X-100) allowed a small additional amount of GDE and GS to diffuse from fibers, suggesting the majority of nonglycogen-associated GDE/GS is associated with myofibrillar/contractile network of muscle rather than membranes. Given differences in enzymes required for glycogen metabolism, the current findings suggest glycogen particles have fiber-type-dependent structures. The greater catabolic potential of glycogen breakdown in fast-twitch fibers may account for different contraction induced rates of glycogen utilization.

  6. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins

    PubMed Central

    Rosario, Karyna; Schenck, Ryan O.; Harbeitner, Rachel C.; Lawler, Stephanie N.; Breitbart, Mya

    2015-01-01

    Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses. PMID:26217327

  7. Novel circular single-stranded DNA viruses identified in marine invertebrates reveal high sequence diversity and consistent predicted intrinsic disorder patterns within putative structural proteins.

    PubMed

    Rosario, Karyna; Schenck, Ryan O; Harbeitner, Rachel C; Lawler, Stephanie N; Breitbart, Mya

    2015-01-01

    Viral metagenomics has recently revealed the ubiquitous and diverse nature of single-stranded DNA (ssDNA) viruses that encode a conserved replication initiator protein (Rep) in the marine environment. Although eukaryotic circular Rep-encoding ssDNA (CRESS-DNA) viruses were originally thought to only infect plants and vertebrates, recent studies have identified these viruses in a number of invertebrates. To further explore CRESS-DNA viruses in the marine environment, this study surveyed CRESS-DNA viruses in various marine invertebrate species. A total of 27 novel CRESS-DNA genomes, with Reps that share less than 60.1% identity with previously reported viruses, were recovered from 21 invertebrate species, mainly crustaceans. Phylogenetic analysis based on the Rep revealed a novel clade of CRESS-DNA viruses that included approximately one third of the marine invertebrate associated viruses identified here and whose members may represent a novel family. Investigation of putative capsid proteins (Cap) encoded within the eukaryotic CRESS-DNA viral genomes from this study and those in GenBank demonstrated conserved patterns of predicted intrinsically disordered regions (IDRs), which can be used to complement similarity-based searches to identify divergent structural proteins within novel genomes. Overall, this study expands our knowledge of CRESS-DNA viruses associated with invertebrates and explores a new tool to evaluate divergent structural proteins encoded by these viruses.

  8. Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ

    PubMed Central

    Gorzelnik, Karl V.; Cui, Zhicheng; Reed, Catrina A.; Jakana, Joanita; Young, Ry; Zhang, Junjie

    2016-01-01

    Single-stranded (ss) RNA viruses infect all domains of life. To date, for most ssRNA virions, only the structures of the capsids and their associated protein components have been resolved to high resolution. Qβ, an ssRNA phage specific for the conjugative F-pilus, has a T = 3 icosahedral lattice of coat proteins assembled around its 4,217 nucleotides of genomic RNA (gRNA). In the mature virion, the maturation protein, A2, binds to the gRNA and is required for adsorption to the F-pilus. Here, we report the cryo-electron microscopy (cryo-EM) structures of Qβ with and without symmetry applied. The icosahedral structure, at 3.7-Å resolution, resolves loops not previously seen in the published X-ray structure, whereas the asymmetric structure, at 7-Å resolution, reveals A2 and the gRNA. A2 contains a bundle of α-helices and replaces one dimer of coat proteins at a twofold axis. The helix bundle binds gRNA, causing denser packing of RNA in its proximity, which asymmetrically expands the surrounding coat protein shell to potentially facilitate RNA release during infection. We observe a fixed pattern of gRNA organization among all viral particles, with the major and minor grooves of RNA helices clearly visible. A single layer of RNA directly contacts every copy of the coat protein, with one-third of the interactions occurring at operator-like RNA hairpins. These RNA–coat interactions stabilize the tertiary structure of gRNA within the virion, which could further provide a roadmap for capsid assembly. PMID:27671640

  9. Single-Protein Tracking Reveals That NADPH Mediates the Insertion of Cytochrome P450 Reductase into a Biomimetic of the Endoplasmic Reticulum.

    PubMed

    Barnaba, Carlo; Martinez, Michael J; Taylor, Evan; Barden, Adam O; Brozik, James A

    2017-04-06

    Cytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater. All experiments were performed in a solid-supported cushioned lipid bilayer that closely matched the chemical composition of the human endoplasmic reticulum and served as an ER biomimetic. The phase characteristics and fluidity of the ER biomimetic was characterized with fluorescence micrographs and temperature-dependent fluorescence recovery after photobleaching. The interactions of CPR with the ER biomimetic were directly observed by tracking single CPR molecules using time-lapse single-molecule fluorescence imaging and subsequent analysis of tracks. These studies revealed dramatic changes in diffusion coefficient and the degree of partitioning of CPR as a function of NADPH concentration.

  10. Apelin receptor homodimer-oligomers revealed by single-molecule imaging and novel G protein-dependent signaling

    PubMed Central

    Cai, Xin; Bai, Bo; Zhang, Rumin; Wang, Chunmei; Chen, Jing

    2017-01-01

    The apelin receptor (APJ) belongs to family A of the G protein-coupled receptors (GPCRs) and is a potential pharmacotherapeutic target for heart failure, hypertension, and other cardiovascular diseases. There is evidence APJ heterodimerizes with other GPCRs; however, the existence of APJ homodimers and oligomers remains to be investigated. Here, we measured APJ monomer-homodimer-oligomer interconversion by monitoring APJ dynamically on cells and compared their proportions, spatial arrangement, and mobility using total internal reflection fluorescence microscopy, resonance energy transfer, and proximity biotinylation. In cells with <0.3 receptor particles/μm2, approximately 60% of APJ molecules were present as dimers or oligomers. APJ dimers were present on the cell surface in a dynamic equilibrium with constant formation and dissociation of receptor complexes. Furthermore, we applied interference peptides and MALDI-TOF mass spectrometry to confirm APJ homo-dimer and explore the dimer-interfaces. Peptides corresponding to transmembrane domain (TMD)1, 2, 3, and 4, but not TMD5, 6, and 7, disrupted APJ dimerization. APJ mutants in TMD1 and TMD2 also decreased bioluminescence resonance energy transfer of APJ dimer. APJ dimerization resulted in novel functional characteristics, such as a distinct G-protein binding profile and cell responses after agonist stimulation. Thus, dimerization may serve as a unique mechanism for fine-tuning APJ-mediated functions. PMID:28091541

  11. Single-Nucleotide Mutations in FMR1 Reveal Novel Functions and Regulatory Mechanisms of the Fragile X Syndrome Protein FMRP

    PubMed Central

    Suhl, Joshua A.; Warren, Stephen T.

    2015-01-01

    Fragile X syndrome is a monogenic disorder and a common cause of intellectual disability. Despite nearly 25 years of research on FMR1, the gene underlying the syndrome, very few pathological mutations other than the typical CGG-repeat expansion have been reported. This is in contrast to other X-linked, monogenic, intellectual disability disorders, such as Rett syndrome, where many point mutations have been validated as causative of the disorder. As technology has improved and significantly driven down the cost of sequencing, allowing for whole genes to be sequenced with relative ease, in-depth sequencing studies on FMR1 have recently been performed. These studies have led to the identification of novel variants in FMR1, where some of which have been functionally evaluated and are likely pathogenic. In this review, we discuss recently identified FMR1 variants, the ways these novel variants cause dysfunction, and how they reveal new regulatory mechanisms and functionalities of the gene. PMID:26819560

  12. Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates.

    PubMed

    Ghodke, Harshad; Wang, Hong; Hsieh, Ching L; Woldemeskel, Selamawit; Watkins, Simon C; Rapić-Otrin, Vesna; Van Houten, Bennett

    2014-05-06

    How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage. Analysis of the rates of dissociation for the transient binding molecules on both undamaged and damaged DNA show multiple dwell times over three orders of magnitude: 0.3-0.8, 8.1, and 113-126 s. These intermediate states are believed to represent discrete UV-DDB conformers on the trajectory to stable damage detection. DNA damage promoted the formation of highly stable dimers lasting for at least 15 min. The xeroderma pigmentosum group E (XP-E) causing K244E mutant of DDB2 found in patient XP82TO, supported UV-DDB dimerization but was found to slide on DNA and failed to stably engage lesions. These findings provide molecular insight into the loss of damage discrimination observed in this XP-E patient. This study proposes that UV-DDB recognizes lesions via multiple kinetic intermediates, through a conformational proofreading mechanism.

  13. Functional Complementation Analyses Reveal that the Single PRAT Family Protein of Trypanosoma brucei Is a Divergent Homolog of Tim17 in Saccharomyces cerevisiae

    PubMed Central

    Weems, Ebony; Singha, Ujjal K.; Hamilton, VaNae; Smith, Joseph T.; Waegemann, Karin; Mokranjac, Dejana

    2015-01-01

    Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis, possesses a single member of the presequence and amino acid transporter (PRAT) protein family, which is referred to as TbTim17. In contrast, three homologous proteins, ScTim23, ScTim17, and ScTim22, are found in Saccharomyces cerevisiae and higher eukaryotes. Here, we show that TbTim17 cannot rescue Tim17, Tim23, or Tim22 mutants of S. cerevisiae. We expressed S. cerevisiae Tim23, Tim17, and Tim22 in T. brucei. These heterologous proteins were properly imported into mitochondria in the parasite. Further analysis revealed that although ScTim23 and ScTim17 were integrated into the mitochondrial inner membrane and assembled into a protein complex similar in size to TbTim17, only ScTim17 was stably associated with TbTim17. In contrast, ScTim22 existed as a protease-sensitive soluble protein in the T. brucei mitochondrion. In addition, the growth defect caused by TbTim17 knockdown in T. brucei was partially restored by the expression of ScTim17 but not by the expression of either ScTim23 or ScTim22, whereas the expression of TbTim17 fully complemented the growth defect caused by TbTim17 knockdown, as anticipated. Similar to the findings for cell growth, the defect in the import of mitochondrial proteins due to depletion of TbTim17 was in part restored by the expression of ScTim17 but was not complemented by the expression of either ScTim23 or ScTim22. Together, these results suggest that TbTim17 is divergent compared to ScTim23 but that its function is closer to that of ScTim17. In addition, ScTim22 could not be sorted properly in the T. brucei mitochondrion and thus failed to complement the function of TbTim17. PMID:25576485

  14. Single-molecule analysis reveals human UV-damaged DNA-binding protein (UV-DDB) dimerizes on DNA via multiple kinetic intermediates

    PubMed Central

    Ghodke, Harshad; Wang, Hong; Hsieh, Ching L.; Woldemeskel, Selamawit; Watkins, Simon C.; Rapić-Otrin, Vesna; Van Houten, Bennett

    2014-01-01

    How human DNA repair proteins survey the genome for UV-induced photoproducts remains a poorly understood aspect of the initial damage recognition step in nucleotide excision repair (NER). To understand this process, we performed single-molecule experiments, which revealed that the human UV-damaged DNA-binding protein (UV-DDB) performs a 3D search mechanism and displays a remarkable heterogeneity in the kinetics of damage recognition. Our results indicate that UV-DDB examines sites on DNA in discrete steps before forming long-lived, nonmotile UV-DDB dimers (DDB1-DDB2)2 at sites of damage. Analysis of the rates of dissociation for the transient binding molecules on both undamaged and damaged DNA show multiple dwell times over three orders of magnitude: 0.3–0.8, 8.1, and 113–126 s. These intermediate states are believed to represent discrete UV-DDB conformers on the trajectory to stable damage detection. DNA damage promoted the formation of highly stable dimers lasting for at least 15 min. The xeroderma pigmentosum group E (XP-E) causing K244E mutant of DDB2 found in patient XP82TO, supported UV-DDB dimerization but was found to slide on DNA and failed to stably engage lesions. These findings provide molecular insight into the loss of damage discrimination observed in this XP-E patient. This study proposes that UV-DDB recognizes lesions via multiple kinetic intermediates, through a conformational proofreading mechanism. PMID:24760829

  15. Single-molecule analyses of fully functional fluorescent protein-tagged follitropin receptor reveal homodimerization and specific heterodimerization with lutropin receptor.

    PubMed

    Mazurkiewicz, Joseph E; Herrick-Davis, Katharine; Barroso, Margarida; Ulloa-Aguirre, Alfredo; Lindau-Shepard, Barbara; Thomas, Richard M; Dias, James A

    2015-04-01

    We have previously shown that the carboxyl terminus (cT) of human follicle-stimulating hormone (FSH, follitropin) receptor (FSHR) is clipped before insertion into the plasma membrane. Surprisingly, several different constructs of FSHR fluorescent fusion proteins (FSHR-FPs) failed to traffic to the plasma membrane. Subsequently, we discovered that substituting the extreme cT of luteinizing hormone (LH) receptor (LHR) to create an FSHR-LHRcT chimera has no effect on FSHR functionality. Therefore, we used this approach to create an FSHR-LHRcT-FP fusion. We found this chimeric FSHR-LHRcT-FP was expressed in HEK293 cells at levels similar to reported values for FSHR in human granulosa cells, bound FSH with high affinity, and transduced FSH binding to produce cAMP. Quantitative fluorescence resonance energy transfer (FRET) analysis of FSHR-LHRcT-YFP/FSHR-LHRcT-mCherry pairs revealed an average FRET efficiency of 12.9 ± 5.7. Advanced methods in single-molecule analyses were applied in order to ascertain the oligomerization state of the FSHR-LHRcT. Fluorescence correlation spectroscopy coupled with photon-counting histogram analyses demonstrated that the FSHR-LHRcT-FP fusion protein exists as a freely diffusing homodimer in the plasma membrane. A central question is whether LHR could oligomerize with FSHR, because both receptors are coexpressed in differentiated granulosa cells. Indeed, FRET analysis revealed an average FRET efficiency of 14.4 ± 7.5 when the FSHR-LHR cT-mCherry was coexpressed with LHR-YFP. In contrast, coexpression of a 5-HT2cVSV-YFP with FSHR-LHR cT-mCherry showed only 5.6 ± 3.2 average FRET efficiency, a value indistinguishable from the detection limit using intensity-based FRET methods. These data demonstrate that coexpression of FSHR and LHR can lead to heterodimerization, and we hypothesize that it is possible for this to occur during granulosa cell differentiation. © 2015 by the Society for the Study of Reproduction, Inc.

  16. Room temperature spectrally resolved single-molecule spectroscopy reveals new spectral forms and photophysical versatility of aequorea green fluorescent protein variants.

    PubMed

    Blum, Christian; Meixner, Alfred J; Subramaniam, Vinod

    2004-12-01

    It is known from ensemble spectroscopy at cryogenic temperatures that variants of the Aequorea green fluorescent protein (GFP) occur in interconvertible spectroscopically distinct forms which are obscured in ensemble room temperature spectroscopy. By analyzing the fluorescence of the GFP variants EYFP and EGFP by spectrally resolved single-molecule spectroscopy we were able to observe spectroscopically different forms of the proteins and to dynamically monitor transitions between these forms at room temperature. In addition to the predominant EYFP B-form we have observed the blue-shifted I-form thus far only seen at cryogenic temperatures and have followed transitions between these forms. Further we have identified for EYFP and for EGFP three more, so far unknown, forms with red-shifted fluorescence. Transitions between the predominant forms and the red-shifted forms show a dark time which indicates the existence of a nonfluorescent intermediate. The spectral position of the newly-identified red-shifted forms and their formation via a nonfluorescent intermediate hint that these states may account for the possible photoactivation observed in bulk experiments. The comparison of the single-protein spectra of the red-shifted EYFP and EGFP forms with single-molecule fluorescence spectra of DsRed suggest that these new forms possibly originate from an extended chromophoric pi-system analogous to the DsRed chromophore.

  17. 2D DIGE Does Not Reveal all: A Scotopic Report Suggests Differential Expression of a Single "Calponin Family Member" Protein for Tetany of Sphincters!

    PubMed

    Chaudhury, Arun

    2015-01-01

    Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of "sphincter proteome." Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled "idiopathic" and facilitating practice of precision medicine.

  18. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy.

    PubMed

    Banerjee, S; Rakshit, T; Sett, S; Mukhopadhyay, R

    2015-10-22

    One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.

  19. Kinetics of the initial steps of G protein-coupled receptor-mediated cellular signaling revealed by single-molecule imaging.

    PubMed

    Lill, Yoriko; Martinez, Karen L; Lill, Markus A; Meyer, Bruno H; Vogel, Horst; Hecht, Bert

    2005-08-12

    We report on an in vivo single-molecule study of the signaling kinetics of G protein-coupled receptors (GPCR) performed using the neurokinin 1 receptor (NK1R) as a representative member. The NK1R signaling cascade is triggered by the specific binding of a fluorescently labeled agonist, substance P (SP). The diffusion of single receptor-ligand complexes in plasma membrane of living HEK 293 cells is imaged using fast single-molecule wide-field fluorescence microscopy at 100 ms time resolution. Diffusion trajectories are obtained which show intra- and intertrace heterogeneity in the diffusion mode. To investigate universal patterns in the diffusion trajectories we take the ligand-binding event as the common starting point. This synchronization allows us to observe changes in the character of the ligand-receptor-complex diffusion. Specifically, we find that the diffusion of ligand-receptor complexes is slowed down significantly and becomes more constrained as a function of time during the first 1000 ms. The decelerated and more constrained diffusion is attributed to an increasing interaction of the GPCR with cellular structures after the ligand-receptor complex is formed.

  20. A Selection for Assembly Reveals That a Single Amino Acid Mutant of the Bacteriophage MS2 Coat Protein Forms a Smaller Virus-like Particle.

    PubMed

    Asensio, Michael A; Morella, Norma M; Jakobson, Christopher M; Hartman, Emily C; Glasgow, Jeff E; Sankaran, Banumathi; Zwart, Peter H; Tullman-Ercek, Danielle

    2016-09-14

    Virus-like particles are used to encapsulate drugs, imaging agents, enzymes, and other biologically active molecules in order to enhance their function. However, the size of most virus-like particles is inflexible, precluding the design of appropriately sized containers for different applications. Here, we describe a chromatographic selection for virus-like particle assembly. Using this selection, we identified a single amino acid substitution to the coat protein of bacteriophage MS2 that mediates a uniform switch in particle geometry from T = 3 to T = 1 icosahedral symmetry. The resulting smaller particle retains the ability to be disassembled and reassembled in vitro and to be chemically modified to load cargo into its interior cavity. The pair of 27 and 17 nm MS2 particles will allow direct examination of the effect of size on function in established applications of virus-like particles, including drug delivery and imaging.

  1. Single-Molecule Imaging Reveals that Small Amyloid-β1–42 Oligomers Interact with the Cellular Prion Protein (PrPC)

    PubMed Central

    Ganzinger, Kristina A; Narayan, Priyanka; Qamar, Seema S; Weimann, Laura; Ranasinghe, Rohan T; Aguzzi, Adriano; Dobson, Christopher M; McColl, James; St George-Hyslop, Peter; Klenerman, David

    2014-01-01

    Oligomers of the amyloid-β peptide (Aβ) play a central role in the pathogenesis of Alzheimer’s disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrPC) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrPC and that the species bound to PrPC are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAβ-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways. PMID:25294384

  2. Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling.

    PubMed

    Tulin, Amanda; McClerklin, Sheri; Huang, Yue; Dixit, Ram

    2012-02-22

    Bundling of microtubules (MTs) is critical for the formation of complex MT arrays. In land plants, the interphase cortical MTs form bundles specifically following shallow-angle encounters between them. To investigate how cells select particular MT contact angles for bundling, we used an in vitro reconstitution approach consisting of dynamic MTs and the MT-cross-linking protein MAP65-1. We found that MAP65-1 binds to MTs as monomers and inherently targets antiparallel MTs for bundling. Dwell-time analysis showed that the affinity of MAP65-1 for antiparallel overlapping MTs is about three times higher than its affinity for single MTs and parallel overlapping MTs. We also found that purified MAP65-1 exclusively selects shallow-angle MT encounters for bundling, indicating that this activity is an intrinsic property of MAP65-1. Reconstitution experiments with mutant MAP65-1 proteins with different numbers of spectrin repeats within the N-terminal rod domain showed that the length of the rod domain is a major determinant of the range of MT bundling angles. The length of the rod domain also determined the distance between MTs within a bundle. Together, our data show that the rod domain of MAP65-1 acts both as a spacer and as a structural element that specifies the MT encounter angles that are conducive for bundling.

  3. Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases.

    PubMed

    Handa, P; Acharya, N; Varshney, U

    2001-05-18

    Uracil, a promutagenic base in DNA can arise by spontaneous deamination of cytosine or incorporation of dUMP by DNA polymerase. Uracil is removed from DNA by uracil DNA glycosylase (UDG), the first enzyme in the uracil excision repair pathway. We recently reported that the Escherichia coli single-stranded DNA binding protein (SSB) facilitated uracil excision from certain structured substrates by E. coli UDG (EcoUDG) and suggested the existence of interaction between SSB and UDG. In this study, we have made use of the chimeric proteins obtained by fusion of N- and C-terminal domains of SSBs from E. coli and Mycobacterium tuberculosis to investigate interactions between SSBs and UDGs. The EcoSSB or a chimera containing its C-terminal domain interacts with EcoUDG in a binary (SSB-UDG) or a ternary (DNA-SSB-UDG) complex. However, the chimera containing the N-terminal domain from EcoSSB showed no interactions with EcoUDG. Thus, the C-terminal domain (48 amino acids) of EcoSSB is necessary and sufficient for interaction with EcoUDG. The data also suggest that the C-terminal domain (34 amino acids) of MtuSSB is a predominant determinant for mediating its interaction with MtuUDG. The mechanism of how the interactions between SSB and UDG could be important in uracil excision repair pathway has been discussed.

  4. Tracking single proteins within cells.

    PubMed

    Goulian, M; Simon, S M

    2000-10-01

    We present experiments in which single proteins were imaged and tracked within mammalian cells. Single proteins of R-phycoerythrin (RPE) were imaged by epifluorescence microscopy in the nucleoplasm and cytoplasm at 71 frames/s. We acquired two-dimensional trajectories of proteins (corresponding to the projection of three-dimensional trajectories onto the plane of focus) for an average of 17 frames in the cytoplasm and 16 frames in the nucleus. Diffusion constants were determined from linear fits to the mean square displacement and from the mean displacement squared per frame. We find that the distribution of diffusion constants for RPE within cells is broader than the distributions obtained from RPE in a glycerol solution, from a Monte Carlo simulation, and from the theoretical distribution for simple diffusion. This suggests that on the time scales of our measurements, the motion of single RPE proteins in the cytoplasm and nucleoplasm cannot be modeled by simple diffusion with a unique diffusion constant. Our results demonstrate that it is possible to follow the motion of single proteins within cells and that the technique of single molecule tracking can be used to probe the dynamics of intracellular macromolecules.

  5. Bioengineering a Single-Protein Junction.

    PubMed

    Ruiz, Marta P; Aragones, Albert C; Camarero, Nuria; Vilhena, J G; Ortega, Maria; Zotti, Linda Angela; Perez, Ruben; Cuevas, Juan Carlos; Gorostiza, Pau; Díez-Pérez, Ismael

    2017-10-05

    Bioelectronics moves towards designing nanoscale electronic platforms that allow in vivo determinations. Such devices require interfacing complex biomolecular moieties as the sensing units to an electronic platform for signal transduction. Inevitably, a systematic design goes through a bottom-up understanding of the structurally related electrical signatures of the biomolecular circuit, which will ultimately lead us to tailor its electrical properties. Toward this aim, we show here the first example of bioengineered charge transport in a single-protein electrical contact. The results reveal that a single point-site mutation at the docking hydrophobic patch of a Cu-Azurin causes minor structural distortion of the protein blue Cu site and a dramatic change in the charge transport regime of the single-protein contact, which goes from the classical Cu-mediated 2-step transport in this system to a direct coherent tunneling. Our extensive spectroscopic studies and molecular-dynamics simulations show that the proteins' folding structures are preserved in the single-protein junction. The DFT-computed frontier orbital of the relevant protein segments suggests that the Cu center participation in each protein variant accounts for the different observed charge transport behavior. This work is a direct evidence of charge transport control in a protein backbone through external mutagenesis and a unique nanoscale platform to study structurally related biological electron transfer.

  6. Watching single proteins using engineered nanopores.

    PubMed

    Movileanu, Liviu

    2014-03-01

    Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnostics.

  7. Watching Single Proteins Using Engineered Nanopores

    PubMed Central

    Movileanu, Liviu

    2014-01-01

    Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnosis. PMID:24370252

  8. Single-cell analysis reveals differential regulation of the alveolar macrophage actin cytoskeleton by surfactant proteins A1 and A2: implications of sex and aging.

    PubMed

    Tsotakos, Nikolaos; Phelps, David S; Yengo, Christopher M; Chinchilli, Vernon M; Floros, Joanna

    2016-01-01

    Surfactant protein A (SP-A) contributes to lung immunity by regulating inflammation and responses to microorganisms invading the lung. The huge genetic variability of SP-A in humans implies that this protein is highly important in tightly regulating the lung immune response. Proteomic studies have demonstrated that there are differential responses of the macrophages to SP-A1 and SP-A2 and that there are sex differences implicated in these responses. Purified SP-A variants were used for administration to alveolar macrophages from SP-A knockout (KO) mice for in vitro studies, and alveolar macrophages from humanized SP-A transgenic mice were isolated for ex vivo studies. The actin cytoskeleton was examined by fluorescence and confocal microscopy, and the macrophages were categorized according to the distribution of polymerized actin. In accordance with previous data, we report that there are sex differences in the response of alveolar macrophages to SP-A1 and SP-A2. The cell size and F-actin content of the alveolar macrophages are sex- and age-dependent. Importantly, there are different subpopulations of cells with differential distribution of polymerized actin. In vitro, SP-A2 destabilizes actin in female, but not male, mice, and the same tendency is observed by SP-A1 in cells from male mice. Similarly, there are differences in the distribution of AM subpopulations isolated from SP-A transgenic mice depending on sex and age. There are marked sex- and age-related differences in the alveolar macrophage phenotype as illustrated by F-actin staining between SP-A1 and SP-A2. Importantly, the phenotypic switch caused by the different SP-A variants is subtle, and pertains to the frequency of the observed subpopulations, demonstrating the need for single-cell analysis approaches. The differential responses of alveolar macrophages to SP-A1 and SP-A2 highlight the importance of genotype in immune regulation and the susceptibility to lung disease and the need for development of

  9. Revealing Ligand Binding Sites and Quantifying Subunit Variants of Noncovalent Protein Complexes in a Single Native Top-Down FTICR MS Experiment

    NASA Astrophysics Data System (ADS)

    Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Ogorzalek Loo, Rachel R.; Loo, Joseph A.

    2014-12-01

    "Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.

  10. Prions: Beyond a Single Protein

    PubMed Central

    Das, Alvin S.

    2016-01-01

    SUMMARY Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a “prion.” Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins—not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  11. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues.

    PubMed

    D'Ovidio, R; Roberti, S; Di Giovanni, M; Capodicasa, C; Melaragni, M; Sella, L; Tosi, P; Favaron, F

    2006-08-01

    Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins that inhibit fungal endopolygalacturonases (PGs). They are encoded by multigene families whose members show functional redundancy and subfunctionalization for recognition of fungal PGs. In order to expand the information on the structure and functional features of legume PGIP, we have isolated and characterized four members of the soybean Pgip gene family and determined the properties of the encoded protein products. Sequence analysis showed that these genes form two clusters: one cluster of about 5 kbp containing Gmpgip1 and Gmpgip2, and the other containing Gmpgip3 and Gmpgip4 within a 60 kb fragment of a separate BAC clone. Sequence diversification of the four members resides mainly in the xxLxLxx region that includes residues forming the beta-sheet B1. When compared with other legume Pgip genes, Gmpgip3 groups with the bean genes Pvpgip1 and Pvpgip2, suggesting that these genes are closer to the ancestral gene. At the protein level, only GmPGIP3 shows the capability to inhibit fungal PGs. The spectrum of inhibition of GmPGIP3 against eight different fungal PGs mirrors that of the PGIP purified from soybean tissues and is similar to that of the bean PvPGIP2, one of the most efficient inhibitors so far characterized. We also report that the four Gmpgip genes are differentially regulated after wounding or during infection with the fungal pathogen Sclerotinia sclerotiorum. Following fungal infection Gmpgip3 is up regulated promptly, while Gmpgip2 is delayed.

  12. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  13. Single-Molecule Protein Conformational Dynamics in Cell Signaling

    SciTech Connect

    Lu, H PETER.

    2004-08-22

    We have demonstrated the application of single-molecule imaging and ultrafast spectroscopy to probe protein conformational dynamics in solution and in lipid bilayers. Dynamic protein-protein interactions involve significant conformational motions that initiate chain reactions leading to specific cellular responses. We have carried out a single molecule study of dynamic protein-protein interactions in a GTPase intracellular signaling protein Cdc42 in complex with a downstream effector protein, WASP. We were able to probe hydrophobic interactions significant to Cdc42/WASP recognition. Single molecule fluorescence intensity and polarization measurements have revealed the dynamic and inhomogeneous nature of protein-protein interactions within the Cdc42/WASP complex that is characterized by structured distributions of conformational fluctuation rates. Conducting a single-molecule fluorescence anisotropy study of calmodulin (CaM), a regulatory protein for calcium-dependent cell signaling, we were able to probe CaM conformational dynamics at a wide time scale. In this study, CaM contains a site-specifically inserted tetra-cysteine motif that reacted with FlAsH, a biarsenic fluorescein derivative that can be rotationally locked to the host protein. The study provided direct characterization of the nanosecond motions of CaM tethered to a biologically compatible surface under physiological buffer solution. The unique technical approaches are applicable of studying single-molecule dynamics of protein conformational motions and protein-protein interactions at a wide time range without the signal convolution of probe-dye molecule motions

  14. Protein vivisection reveals elusive intermediates in folding

    PubMed Central

    Zheng, Zhongzhou; Sosnick, Tobin R.

    2010-01-01

    Although most folding intermediates escape detection, their characterization is crucial to the elucidation of folding mechanisms. Here we outline a powerful strategy to populate partially unfolded intermediates: A buried aliphatic residue is substituted with a charged residue (e.g., Leu→Glu−) to destabilize and unfold a specific region of the protein. We apply this strategy to Ubiquitin, reversibly trapping a folding intermediate in which the β5 strand is unfolded. The intermediate refolds to a native-like structure upon charge neutralization under mildly acidic conditions. Characterization of the trapped intermediate using NMR and hydrogen exchange methods identifies a second folding intermediate and reveals the order and free energies of the two major folding events on the native side of the rate-limiting step. This general strategy may be combined with other methods and have broad applications in the study of protein folding and other reactions that require trapping of high energy states. PMID:20144618

  15. Single-molecule choreography between telomere proteins and G quadruplexes.

    PubMed

    Hopfner, Karl-Peter

    2014-06-10

    Telomeric DNA binds proteins to protect chromosome ends, but it also adopts G quadruplex (GQ) structures. Two new studies by Hwang and colleagues (in this issue of Structure) and Ray and colleagues (published elsewhere) use single molecule imaging to reveal how GQs affect the binding of different telomere associated proteins. The data suggest that GQs play important roles in regulating accessibility of telomeres.

  16. Single molecule studies reveal new mechanisms for microtubule severing

    NASA Astrophysics Data System (ADS)

    Ross, Jennifer; Diaz-Valencia, Juan Daniel; Morelli, Margaret; Zhang, Dong; Sharp, David

    2011-03-01

    Microtubule-severing enzymes are hexameric complexes made from monomeric enzyme subunits that remove tubulin dimers from the microtubule lattice. Severing proteins are known to remodel the cytoskeleton during interphase and mitosis, and are required in proper axon morphology and mammalian bone and cartilage development. We have performed the first single molecule imaging to determine where and how severing enzymes act to cut microtubules. We have focused on the original member of the group, katanin, and the newest member, fidgetin to compare their biophysical activities in vitro. We find that, as expected, severing proteins localize to areas of activity. Interestingly, the association is very brief: they do not stay bound nor do they bind cooperatively at active sites. The association duration changes with the nucleotide content, implying that the state in the catalytic cycle dictates binding affinity with the microtubule. We also discovered that, at lower concentrations, both katanin and fidgetin can depolymerize taxol-stabilized microtubules by removing terminal dimers. These studies reveal the physical regulation schemes to control severing activity in cells, and ultimately regulate cytoskeletal architecture. This work is supported by the March of Dimes Grant #5-FY09-46.

  17. New technology for single-cell protein

    SciTech Connect

    Not Available

    1983-08-31

    New technology used by three companies for the production of single cell protein is described. Phillips petroleum is reported to be ready to license a new process that uses methanol or ethanol as feedstock yielding a product called Provesteen which contains 60% protein. Envirocon (Vancouver) uses pulp-mill sludge for protein production while Imperial Chemical Industries uses methanol. ICI targets its Pruteen, which contains 72% protein, as a substitute for fish meal and milk in animal feed, while Phillips is putting special stress as premium markets. Both Phillips and ICI are examining single cell protein as a human food source.

  18. Protein folding at single-molecule resolution

    PubMed Central

    Ferreon, Allan Chris M.; Deniz, Ashok A.

    2011-01-01

    The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. PMID:21303706

  19. Single-molecule imaging of protein adsorption mechanisms to surfaces.

    PubMed

    Zareh, Shannon Kian; Wang, Yan Mei

    2011-07-01

    Protein-surface interactions cause the desirable effect of controlled protein adsorption onto biodevices as well as the undesirable effect of protein fouling. The key to controlling protein-surface adsorptions is to identify and quantify the main adsorption mechanisms: adsorptions that occur (1) while depositing a protein solution onto dry surfaces and (2) after the deposition onto wet surfaces. Bulk measurements cannot reveal the dynamic protein adsorption pathways and thus cannot differentiate between the two adsorption mechanisms. We imaged the interactions of single streptavidin molecules with hydrophobic fused-silica surfaces in real-time. We observed both adsorbed proteins on surfaces and diffusing proteins near surfaces and analyzed their adsorption kinetics. Our analysis shows that the protein solution deposition process is the primary mechanism of streptavidin adsorption onto surfaces at the subnanomolar to nanomolar protein concentrations. Furthermore, we found that hydrophilic fused-silica surfaces can prevent the adsorption of streptavidin molecules. Copyright © 2010 Wiley-Liss, Inc.

  20. Protein mechanics: from single molecules to functional biomaterials.

    PubMed

    Li, Hongbin; Cao, Yi

    2010-10-19

    Elastomeric proteins act as the essential functional units in a wide variety of biomechanical machinery and serve as the basic building blocks for biological materials that exhibit superb mechanical properties. These proteins provide the desired elasticity, mechanical strength, resilience, and toughness within these materials. Understanding the mechanical properties of elastomeric protein-based biomaterials is a multiscale problem spanning from the atomistic/molecular level to the macroscopic level. Uncovering the design principles of individual elastomeric building blocks is critical both for the scientific understanding of multiscale mechanics of biomaterials and for the rational engineering of novel biomaterials with desirable mechanical properties. The development of single-molecule force spectroscopy techniques has provided methods for characterizing mechanical properties of elastomeric proteins one molecule at a time. Single-molecule atomic force microscopy (AFM) is uniquely suited to this purpose. Molecular dynamic simulations, protein engineering techniques, and single-molecule AFM study have collectively revealed tremendous insights into the molecular design of single elastomeric proteins, which can guide the design and engineering of elastomeric proteins with tailored mechanical properties. Researchers are focusing experimental efforts toward engineering artificial elastomeric proteins with mechanical properties that mimic or even surpass those of natural elastomeric proteins. In this Account, we summarize our recent experimental efforts to engineer novel artificial elastomeric proteins and develop general and rational methodologies to tune the nanomechanical properties of elastomeric proteins at the single-molecule level. We focus on general design principles used for enhancing the mechanical stability of proteins. These principles include the development of metal-chelation-based general methodology, strategies to control the unfolding hierarchy of

  1. Single-Molecule Study of Protein-Protein Interaction Dynamics in a Cell Signaling System

    SciTech Connect

    Tan, Xin; Nalbant, Perihan; Toutchkine, Alexei; Hu, Dehong; Vorpagel, Erich R.; Hahn, Klaus M.; Lu, H PETER.

    2004-01-15

    We report a combined single-molecule fluorescence and molecular dynamics (MD) simulation study of protein-protein interactions in a GTP-binding intracellular signaling protein Cdc42 in complex with a downstream effector protein WASP. A 13- kDa WASP fragment which binds only the activated GTP-loaded Cdc42 was labeled with a novel solvatochromic dye and used to probe hydrophobic interactions significant to Cdc42/WASP recognition. Our single-molecule fluorescence measurements have shown conformational fluctuations of the protein complex and suggested multiple conformational states at a wide range of time scales might be involved in protein interaction dynamics. Single-molecule experiments have revealed the dynamic disorder or protein-protein interactions within the Cdc42/WASP complex, which may be important for regulating downstream signaling events.

  2. Protein Structures Revealed at Record Pace

    ScienceCinema

    Greg Hura

    2016-07-12

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  3. Protein Structures Revealed at Record Pace

    SciTech Connect

    Greg Hura

    2009-07-09

    The structure of a protein in days -- not months or years -- ushers in a new era in genomics research. Berkeley Lab scientists have developed a high-throughput protein pipeline that could expedite the development of biofuels and elucidate how proteins carry out lifes vital functions.

  4. Growth of shaped single crystals of proteins

    NASA Astrophysics Data System (ADS)

    Moreno, Abel; Rondón, Deyanira; García-Ruiz, Juan Ma.

    1996-09-01

    We present a procedure for obtaining protein single crystals that fill the capillary tubes in which they grow. The implementation was typical of the gel acupuncture method and the four different proteins are used as examples: lysozyme (HEW), thaumatin I, ferritin and insulin. Rod- and prismatic-shaped protein single crystals of these four proteins were grown inside capillary tubes of 0.2, 0.3, 0.5 mm in diameter and, for the case of lysozyme, up to 1.2 mm in diameter. The maximum length measured along the long axes of the rod crystals was 1.6 mm again for lysozyme crystals. It was observed that, once the capillary tube was filled, the crystal continues to grow by diffusion of the precipitating agent throughout the porous network formed by the protein crystal structure. We also discuss the possibility of growing these cylinders of crystalline proteins by the addition of protein solution to the mother liquor through the upper end of the glass capillary while the precipitating agent diffuses through the protein crystal itself. X-ray diffraction patterns confirm the single crystal character of the protein rods.

  5. Imaging proteins at the single-molecule level

    PubMed Central

    Longchamp, Jean-Nicolas; Rauschenbach, Stephan; Abb, Sabine; Escher, Conrad; Latychevskaia, Tatiana; Kern, Klaus; Fink, Hans-Werner

    2017-01-01

    Imaging single proteins has been a long-standing ambition for advancing various fields in natural science, as for instance structural biology, biophysics, and molecular nanotechnology. In particular, revealing the distinct conformations of an individual protein is of utmost importance. Here, we show the imaging of individual proteins and protein complexes by low-energy electron holography. Samples of individual proteins and protein complexes on ultraclean freestanding graphene were prepared by soft-landing electrospray ion beam deposition, which allows chemical- and conformational-specific selection and gentle deposition. Low-energy electrons do not induce radiation damage, which enables acquiring subnanometer resolution images of individual proteins (cytochrome C and BSA) as well as of protein complexes (hemoglobin), which are not the result of an averaging process. PMID:28087691

  6. Protein imaging. Single-protein spin resonance spectroscopy under ambient conditions.

    PubMed

    Shi, Fazhan; Zhang, Qi; Wang, Pengfei; Sun, Hongbin; Wang, Jiarong; Rong, Xing; Chen, Ming; Ju, Chenyong; Reinhard, Friedemann; Chen, Hongwei; Wrachtrup, Jörg; Wang, Junfeng; Du, Jiangfeng

    2015-03-06

    Magnetic resonance is essential in revealing the structure and dynamics of biomolecules. However, measuring the magnetic resonance spectrum of single biomolecules has remained an elusive goal. We demonstrate the detection of the electron spin resonance signal from a single spin-labeled protein under ambient conditions. As a sensor, we use a single nitrogen vacancy center in bulk diamond in close proximity to the protein. We measure the orientation of the spin label at the protein and detect the impact of protein motion on the spin label dynamics. In addition, we coherently drive the spin at the protein, which is a prerequisite for studies involving polarization of nuclear spins of the protein or detailed structure analysis of the protein itself.

  7. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  8. Revealing protein-lncRNA interaction.

    PubMed

    Ferrè, Fabrizio; Colantoni, Alessio; Helmer-Citterich, Manuela

    2016-01-01

    Long non-coding RNAs (lncRNAs) are associated to a plethora of cellular functions, most of which require the interaction with one or more RNA-binding proteins (RBPs); similarly, RBPs are often able to bind a large number of different RNAs. The currently available knowledge is already drawing an intricate network of interactions, whose deregulation is frequently associated to pathological states. Several different techniques were developed in the past years to obtain protein-RNA binding data in a high-throughput fashion. In parallel, in silico inference methods were developed for the accurate computational prediction of the interaction of RBP-lncRNA pairs. The field is growing rapidly, and it is foreseeable that in the near future, the protein-lncRNA interaction network will rise, offering essential clues for a better understanding of lncRNA cellular mechanisms and their disease-associated perturbations. © The Author 2015. Published by Oxford University Press.

  9. Single-particle study of protein assembly

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa

    2001-10-01

    A study of protein assembly in solution with single-particle imaging and reconstruction techniques using cryoelectron microscopy is reported. The human glutamine synthetase enzyme, important in brain metabolism, and previously assumed to be assembled into a homogeneous quaternary structure, is found to be heterogeneous, with three oligomeric states that co-exist at room temperature. This result corrects an old structural and kinetic model determined by ensemble averaging techniques that assumed a homogeneous system. Unexpectedly fast protein dissociation kinetics results from a stabilized transition state.

  10. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.

  11. Photocurrent of a single photosynthetic protein

    NASA Astrophysics Data System (ADS)

    Gerster, Daniel; Reichert, Joachim; Bi, Hai; Barth, Johannes V.; Kaniber, Simone M.; Holleitner, Alexander W.; Visoly-Fisher, Iris; Sergani, Shlomi; Carmeli, Itai

    2012-10-01

    Photosynthesis is used by plants, algae and bacteria to convert solar energy into stable chemical energy. The initial stages of this process--where light is absorbed and energy and electrons are transferred--are mediated by reaction centres composed of chlorophyll and carotenoid complexes. It has been previously shown that single small molecules can be used as functional components in electric and optoelectronic circuits, but it has proved difficult to control and probe individual molecules for photovoltaic and photoelectrochemical applications. Here, we show that the photocurrent generated by a single photosynthetic protein--photosystem I--can be measured using a scanning near-field optical microscope set-up. One side of the protein is anchored to a gold surface that acts as an electrode, and the other is contacted by a gold-covered glass tip. The tip functions as both counter electrode and light source. A photocurrent of ~10 pA is recorded from the covalently bound single-protein junctions, which is in agreement with the internal electron transfer times of photosystem I.

  12. Molecular Force Modulation Spectroscopy Revealing the Dynamic Response of Single Bacteriorhodopsins

    PubMed Central

    Janovjak, Harald; Müller, Daniel J.; Humphris, Andrew D. L.

    2005-01-01

    Recent advances in atomic force microscopy allowed globular and membrane proteins to be mechanically unfolded on a single-molecule level. Presented is an extension to the existing force spectroscopy experiments. While unfolding single bacteriorhodopsins from native purple membranes, small oscillation amplitudes (6–9 nm) were supplied to the vertical displacement of the cantilever at a frequency of 3 kHz. The phase and amplitude response of the cantilever-protein system was converted to reveal the elastic (conservative) and viscous (dissipative) contributions to the unfolding process. The elastic response (stiffness) of the extended parts of the protein were in the range of a few tens pN/nm and could be well described by the derivative of the wormlike chain model. Discrete events in the viscous response coincided with the unfolding of single secondary structure elements and were in the range of 1 μNs/m. In addition, these force modulation spectroscopy experiments revealed novel mechanical unfolding intermediates of bacteriorhodopsin. We found that kinks result in a loss of unfolding cooperativity in transmembrane helices. Reconstructing force-distance spectra by the integration of amplitude-distance spectra verified their position, offering a novel approach to detect intermediates during the forced unfolding of single proteins. PMID:15574708

  13. Real-time Redox Measurements during Endoplasmic Reticulum Stress Reveal Interlinked Protein Folding Functions

    PubMed Central

    Merksamer, Philip I.; Trusina, Ala; Papa, Feroz R.

    2008-01-01

    SUMMARY Disruption of protein folding in the endoplasmic reticulum (ER) causes unfolded proteins to accumulate, triggering the unfolded protein response (UPR). UPR outputs in turn decrease ER unfolded proteins to close a negative feedback loop. However, because it is infeasible to directly measure the concentration of unfolded proteins in vivo, cells are generically described as experiencing “ER stress” whenever the UPR is active. Because ER redox potential is optimized for oxidative protein folding, we reasoned that measureable redox changes should accompany unfolded protein accumulation. To test this concept, we employed fluorescent protein reporters to dynamically measure ER redox status and UPR activity in single cells. Using these tools, we show that diverse stressors, both experimental and physiological, compromise ER protein oxidation when UPR-imposed homeostatic control is lost. Using genetic analysis we uncovered redox heterogeneities in isogenic cell populations, and revealed functional interlinks between ER protein folding, modification, and quality control systems. PMID:19026441

  14. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2017-09-11

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Single-Molecule Study of Protein-Protein and Protein-DNA Interaction Dynamics

    SciTech Connect

    Lu, H. PETER

    2005-03-01

    Protein-protein and protein-DNA interactions play critical roles in biological functions of living cells, such as cell signaling, receptor-ligand activation, cellular metabolism, DNA damage recognition and repair, gene expression, replication, etc. These protein interactions often involve complex mechanisms and inhomogeneous dynamics with significant conformational changes. Protein-protein, protein-ligand, and protein-DNA interactions are often intrinsically single-molecule processes at an induction stage associated with the initiation of crucial early eents in living cells. For example, cell-signaling processes are often initiated through a few copies of protein-interaction complexes, being amplified along the signaling pathway.

  16. Single-cell protein from waste cellulose

    NASA Technical Reports Server (NTRS)

    Dunlap, C. E.; Callihan, C. D.

    1973-01-01

    The recycle, reuse, or reclamation of single cell protein from liquid and solid agricultural waste fibers by a fermentation process is reported. It is shown that cellulose comprises the bulk of the fibers at 50% to 55% of the dry weight of the refuse and that its biodegradability is of prime importance in the choice of a substrate. The application of sodium hydroxide followed by heat and pressure serves to de-polymerize and disrupt lignin structure while swelling the cellulose to increase water uptake and pore volume. Some of the lignin, hemi-celluloses, ash, and cellulose of the material is hydrolized and solubilized. Introduction of microorganisms to the substrate fibers mixed with nutrients produces continuous fermentation of cellulose for further protein extraction and purification.

  17. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  18. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  19. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity.

    PubMed

    Chen, Renchao; Wu, Xiaoji; Jiang, Lan; Zhang, Yi

    2017-03-28

    The hypothalamus is one of the most complex brain structures involved in homeostatic regulation. Defining cell composition and identifying cell-type-specific transcriptional features of the hypothalamus is essential for understanding its functions and related disorders. Here, we report single-cell RNA sequencing results of adult mouse hypothalamus, which defines 11 non-neuronal and 34 neuronal cell clusters with distinct transcriptional signatures. Analyses of cell-type-specific transcriptomes reveal gene expression dynamics underlying oligodendrocyte differentiation and tanycyte subtypes. Additionally, data analysis provides a comprehensive view of neuropeptide expression across hypothalamic neuronal subtypes and uncover Crabp1(+) and Pax6(+) neuronal populations in specific hypothalamic sub-regions. Furthermore, we found food deprivation exhibited differential transcriptional effects among the different neuronal subtypes, suggesting functional specification of various neuronal subtypes. Thus, the work provides a comprehensive transcriptional perspective of adult hypothalamus, which serves as a valuable resource for dissecting cell-type-specific functions of this complex brain region.

  20. Channels of oxygen diffusion in single crystal rubrene revealed.

    PubMed

    Thompson, Robert J; Bennett, Thomas; Fearn, Sarah; Kamaludin, Muhammad; Kloc, Christian; McPhail, David S; Mitrofanov, Oleg; Curson, Neil J

    2016-11-30

    Electronic devices made from organic materials have the potential to support a more ecologically friendly and affordable future. However, the ability to fabricate devices with well-defined and reproducible electrical and optical properties is hindered by the sensitivity to the presence of chemical impurities. Oxygen in particular is an impurity that can trap electrons and modify conductive properties of some organic materials. Until now the 3-dimensional profiling of oxygen species in organic semiconductors has been elusive and the effect of oxygen remains disputed. In this study we map out high-spatial resolution 3-dimensional distributions of oxygen inclusions near the surface of single crystal rubrene, using Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS). Channels of diffused oxygen are found extending from uniform oxygen inclusion layers at the surface. These channels extend to depths in excess of 1.8 μm and act as an entry point for oxygen to diffuse along the ab-plane of the crystal with at least some of the diffused oxygen molecularly binding to rubrene. Our investigation of surfaces at different stages of evolution reveals the extent of oxygen inclusion, which affects rubrene's optical and transport properties, and is consequently of importance for the reliability and longevity of devices.

  1. High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.

    PubMed

    Levy, Emmanuel D; Kowarzyk, Jacqueline; Michnick, Stephen W

    2014-05-22

    A single yeast cell contains a hundred million protein molecules. How these proteins are organized to orchestrate living processes is a central question in biology. To probe this organization in vivo, we measured the local concentration of proteins based on the strength of their nonspecific interactions with a neutral reporter protein. We first used a cytosolic reporter and measured local concentrations for ~2,000 proteins in S. cerevisiae, with accuracy comparable to that of mass spectrometry. Localizing the reporter to membranes specifically increased the local concentration measured for membrane proteins. Comparing the concentrations measured by both reporters revealed that encounter frequencies between proteins are primarily dictated by their abundances. However, to change these encounter frequencies and restructure the proteome, as in adaptation, we find that changes in localization have more impact than changes in abundance. These results highlight how protein abundance and localization contribute to proteome organization and reorganization.

  2. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis.

    PubMed

    Shin, Jaehoon; Berg, Daniel A; Zhu, Yunhua; Shin, Joseph Y; Song, Juan; Bonaguidi, Michael A; Enikolopov, Grigori; Nauen, David W; Christian, Kimberly M; Ming, Guo-li; Song, Hongjun

    2015-09-03

    Somatic stem cells contribute to tissue ontogenesis, homeostasis, and regeneration through sequential processes. Systematic molecular analysis of stem cell behavior is challenging because classic approaches cannot resolve cellular heterogeneity or capture developmental dynamics. Here we provide a comprehensive resource of single-cell transcriptomes of adult hippocampal quiescent neural stem cells (qNSCs) and their immediate progeny. We further developed Waterfall, a bioinformatic pipeline, to statistically quantify singe-cell gene expression along a de novo reconstructed continuous developmental trajectory. Our study reveals molecular signatures of adult qNSCs, characterized by active niche signaling integration and low protein translation capacity. Our analyses further delineate molecular cascades underlying qNSC activation and neurogenesis initiation, exemplified by decreased extrinsic signaling capacity, primed translational machinery, and regulatory switches in transcription factors, metabolism, and energy sources. Our study reveals the molecular continuum underlying adult neurogenesis and illustrates how Waterfall can be used for single-cell omics analyses of various continuous biological processes.

  3. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist.

    PubMed

    Törnroth-Horsefield, Susanna; Gourdon, Pontus; Horsefield, Rob; Brive, Lars; Yamamoto, Natsuko; Mori, Hirotada; Snijder, Arjan; Neutze, Richard

    2007-12-01

    Bacterial drug resistance is a serious concern for human health. Multidrug efflux pumps export a broad variety of substrates out of the cell and thereby convey resistance to the host. In Escherichia coli, the AcrB:AcrA:TolC efflux complex forms a principal transporter for which structures of the individual component proteins have been determined in isolation. Here, we present the X-ray structure of AcrB in complex with a single transmembrane protein, assigned by mass spectrometry as YajC. A specific rotation of the periplasmic porter domain of AcrB is also revealed, consistent with the hypothesized "twist-to-open" mechanism for TolC activation. Growth experiments with yajc-deleted E. coli reveal a modest increase in the organism's susceptibility to beta-lactam antibiotics, but this effect could not conclusively be attributed to the loss of interactions between YajC and AcrB.

  4. Force spectroscopy studies on protein-ligand interactions: a single protein mechanics perspective.

    PubMed

    Hu, Xiaotang; Li, Hongbin

    2014-10-01

    Protein-ligand interactions are ubiquitous and play important roles in almost every biological process. The direct elucidation of the thermodynamic, structural and functional consequences of protein-ligand interactions is thus of critical importance to decipher the mechanism underlying these biological processes. A toolbox containing a variety of powerful techniques has been developed to quantitatively study protein-ligand interactions in vitro as well as in living systems. The development of atomic force microscopy-based single molecule force spectroscopy techniques has expanded this toolbox and made it possible to directly probe the mechanical consequence of ligand binding on proteins. Many recent experiments have revealed how ligand binding affects the mechanical stability and mechanical unfolding dynamics of proteins, and provided mechanistic understanding on these effects. The enhancement effect of mechanical stability by ligand binding has been used to help tune the mechanical stability of proteins in a rational manner and develop novel functional binding assays for protein-ligand interactions. Single molecule force spectroscopy studies have started to shed new lights on the structural and functional consequence of ligand binding on proteins that bear force under their biological settings.

  5. Single-molecule mechanics of protein-labelled DNA handles.

    PubMed

    Jadhav, Vivek S; Brüggemann, Dorothea; Wruck, Florian; Hegner, Martin

    2016-01-01

    DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA-protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot-streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein-DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition in time

  6. Single-molecule approaches to prion protein misfolding.

    PubMed

    Yu, Hao; Dee, Derek R; Woodside, Michael T

    2013-01-01

    The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.

  7. Protein-RNA networks revealed through covalent RNA marks

    PubMed Central

    Lapointe, Christopher P.; Wilinski, Daniel; Saunders, Harriet A. J.; Wickens, Marvin

    2015-01-01

    Protein-RNA networks are ubiquitous and central in biological control. We present an approach, termed “RNA Tagging,” that identifies protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or crosslinking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA using high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The method revealed that while RNA-binding proteins productively bind specific RNAs to control their function, they also “sample” RNAs without exerting a regulatory effect. We exploited the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. The RNA Tagging approach is well-suited to detect and analyze protein-RNA networks in vivo. PMID:26524240

  8. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  9. Single-molecule mechanics of protein-labelled DNA handles

    PubMed Central

    Wruck, Florian

    2016-01-01

    Summary DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical end-modifications are readily and reliably synthesized en masse, enabling force spectroscopic measurements with well-defined and long-lasting mechanical characteristics under physiological conditions over a large range of applied forces. Although these chemically tagged DNA handles are widely used, their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics under varying physiological conditions are lacking in literature. Here, optical tweezers are used to investigate different protein-labelled DNA handles in a microfluidic environment under different physiological conditions. Digoxigenin (DIG)-dsDNA-biotin handles of varying sizes (1000, 3034 and 4056 bp) were conjugated with streptavidin or neutravidin proteins. The DIG-modified ends of these hybrids were bound to surface-modified polystyrene (anti-DIG) beads. Using different physiological buffers, optical force measurements showed consistent mechanical characteristics with long dissociation times. These protein-modified DNA hybrids were also interconnected in situ with other tethered biotinylated DNA molecules. Electron-multiplying CCD (EMCCD) imaging control experiments revealed that quantum dot–streptavidin conjugates at the end of DNA handles remain freely accessible. The experiments presented here demonstrate that handles produced with our protein–DNA labelling procedure are excellent candidates for grasping single molecules exposing tags suitable for molecular recognition

  10. Stochastic single-molecule dynamics of synaptic membrane protein domains

    NASA Astrophysics Data System (ADS)

    Kahraman, Osman; Li, Yiwei; Haselwandter, Christoph A.

    2016-09-01

    Motivated by single-molecule experiments on synaptic membrane protein domains, we use a stochastic lattice model to study protein reaction and diffusion processes in crowded membranes. We find that the stochastic reaction-diffusion dynamics of synaptic proteins provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the single-molecule trajectories observed for synaptic proteins, and spatially inhomogeneous protein lifetimes at the cell membrane. Our results suggest that central aspects of the single-molecule and collective dynamics observed for membrane protein domains can be understood in terms of stochastic reaction-diffusion processes at the cell membrane.

  11. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content

    PubMed Central

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit; Saari, Heikki; Ibañez, Elisa Lazaro; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2015-01-01

    Current analysis of exosomes focuses primarily on bulk analysis, where exosome-to-exosome variability cannot be assessed. In this study, we used Raman spectroscopy to study the chemical composition of single exosomes. We measured spectra of individual exosomes from 8 cell lines. Cell-line-averaged spectra varied considerably, reflecting the variation in total exosomal protein, lipid, genetic, and cytosolic content. Unexpectedly, single exosomes isolated from the same cell type also exhibited high spectral variability. Subsequent spectral analysis revealed clustering of single exosomes into 4 distinct groups that were not cell-line specific. Each group contained exosomes from multiple cell lines, and most cell lines had exosomes in multiple groups. The differences between these groups are related to chemical differences primarily due to differing membrane composition. Through a principal components analysis, we identified that the major sources of spectral variation among the exosomes were in cholesterol content, relative expression of phospholipids to cholesterol, and surface protein expression. For example, exosomes derived from cancerous versus non-cancerous cell lines can be largely separated based on their relative expression of cholesterol and phospholipids. We are the first to indicate that exosome subpopulations are shared among cell types, suggesting distributed exosome functionality. The origins of these differences are likely related to the specific role of extracellular vesicle subpopulations in both normal cell function and carcinogenesis, and they may provide diagnostic potential at the single exosome level. PMID:26649679

  12. Proteomics Reveals Novel Drosophila Seminal Fluid Proteins Transferred at Mating

    PubMed Central

    Findlay, Geoffrey D; Yi, Xianhua; MacCoss, Michael J; Swanson, Willie J

    2008-01-01

    Across diverse taxa, seminal fluid proteins (Sfps) transferred at mating affect the reproductive success of both sexes. Such reproductive proteins often evolve under positive selection between species; because of this rapid divergence, Sfps are hypothesized to play a role in speciation by contributing to reproductive isolation between populations. In Drosophila, individual Sfps have been characterized and are known to alter male sperm competitive ability and female post-mating behavior, but a proteomic-scale view of the transferred Sfps has been missing. Here we describe a novel proteomic method that uses whole-organism isotopic labeling to detect transferred Sfps in mated female D. melanogaster. We identified 63 proteins, which were previously unknown to function in reproduction, and confirmed the transfer of dozens of predicted Sfps. Relative quantification of protein abundance revealed that several of these novel Sfps are abundant in seminal fluid. Positive selection and tandem gene duplication are the prevailing forces of Sfp evolution, and comparative proteomics with additional species revealed lineage-specific changes in seminal fluid content. We also report a proteomic-based gene discovery method that uncovered 19 previously unannotated genes in D. melanogaster. Our results demonstrate an experimental method to identify transferred proteins in any system that is amenable to isotopic labeling, and they underscore the power of combining proteomic and evolutionary analyses to shed light on the complex process of Drosophila reproduction. PMID:18666829

  13. Protein tagging reveals new insights into signaling in flagella.

    PubMed

    Ishikawa, Takashi

    2014-03-03

    In this issue, Oda et al. (2014. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201312014) use mutant analysis, protein tagging, and cryoelectron tomography to determine the detailed location of components in flagellar radial spokes-a complex of proteins that connect the peripheral microtubule doublets to the central pair. Remarkably, this approach revealed an interaction between radial spokes and the central pair based on geometry rather than a specific signaling mechanism, highlighting the importance of studying a system in three dimensions.

  14. Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations.

    PubMed

    He, Chengzhi; Genchev, Georgi Z; Lu, Hui; Li, Hongbin

    2012-06-27

    Protein structure is highly diverse when considering a wide range of protein types, helping to give rise to the multitude of functions that proteins perform. In particular, certain proteins are known to adopt a knotted or slipknotted fold. How such proteins undergo mechanical unfolding was investigated utilizing a combination of single molecule atomic force microscopy (AFM), protein engineering, and steered molecular dynamics (SMD) simulations to show the mechanical unfolding mechanism of the slipknotted protein AFV3-109. Our results reveal that the mechanical unfolding of AFV3-109 can proceed via multiple parallel unfolding pathways that all cause the protein slipknot to untie and the polypeptide chain to completely extend. These distinct unfolding pathways proceed via either a two- or three-state unfolding process involving the formation of a well-defined, stable intermediate state. SMD simulations predict the same contour length increments for different unfolding pathways as single molecule AFM results, thus providing a plausible molecular mechanism for the mechanical unfolding of AFV3-109. These SMD simulations also reveal that two-state unfolding is initiated from both the N- and C-termini, while three-state unfolding is initiated only from the C-terminus. In both pathways, the protein slipknot was untied during unfolding, and no tightened slipknot conformation was observed. Detailed analysis revealed that interactions between key structural elements lock the knotting loop in place, preventing it from shrinking and the formation of a tightened slipknot conformation. Our results demonstrate the bifurcation of the mechanical unfolding pathway of AFV3-109 and point to the generality of a kinetic partitioning mechanism for protein folding/unfolding.

  15. Mechanically Untying a Protein Slipknot: Multiple Pathways Revealed by Force Spectroscopy and Steered Molecular Dynamics Simulations

    PubMed Central

    He, Chengzhi; Genchev, Georgi Z.; Lu, Hui; Li, Hongbin

    2013-01-01

    Protein structure is highly diverse when considering a wide range of protein types, helping to give rise to the multitude of functions that proteins perform. In particular, certain proteins are known to adopt a knotted or slipknotted fold. How such proteins undergo mechanical unfolding was investigated utilizing a combination of single molecule atomic force microscopy (AFM), protein engineering and steered molecular dynamics (SMD) simulations to show the mechanical unfolding mechanism of the slipknotted protein AFV3-109. Our results reveal that the mechancial unfolding of AFV3-109 can proceed via multiple parallel unfolding pathways that all cause the protein slipknot to untie, and the polypeptide chain to completely extend. These distinct unfolding pathways proceed either via a two-state or three-state unfolding process involving the formation of a well-defined, stable intermediate state. SMD simulations predict the same contour length increments for different unfolding pathways as single molecule AFM results, thus provding a plausible molecular mechanism for the mechanical unfolding of AFV3-109. These SMD simulations also reveal that two-state unfolding is initiated from both the N- and C-termini, while three-state unfolding is initiated only from the C-terminus. In both pathways, the protein slipknot was untied during unfolding, and no tightened slipknot conformation observed. Detailed analysis revealed that interactions between key structural elements lock the knotting loop in place, preventing it from shrinking and the formation of a tightened slipknot conformation. Our results demonstrate the bifurcation of the mechancial unfolding pathway of AFV3-109, and point to the generality of a kinetic partitioning mechanism for protein folding/unfolding. PMID:22626004

  16. Single-Molecule Covalent Chemistry in a Protein Nanoreactor

    NASA Astrophysics Data System (ADS)

    Bayley, Hagan; Luchian, Tudor; Shin, Seong-Ho; Steffensen, Mackay B.

    Covalent chemistry can be observed at the single-molecule level by using engineered protein pores as "nanoreactors". By recording the ionic current driven through single engineered alpha-hemolysin (αHL) pores in a transmembrane potential, individual bond-making and bond-breaking steps that occur within the pore and perturb the current are monitored with sub-millisecond time-resolution. Recently, a variety of covalent reactions of small molecules have been observed by this approach including irreversible light-activated chemistry, multiple turnovers of reversible reactions, the turnover of normally irreversible reactions in a twocompartment system and a step-by- step polymerization. These single-molecule experiments are revealing information about fundamental chemical processes that cannot be extracted from ensemble measurements. Further, the approach can be used to examine the effects of the local environment on chemistry and catalysis, and to construct sensors for reactive molecules based on covalent chemistry rather than non-covalent binding interactions. Alternative approaches to small molecule covalent chemistry at the single-molecule level are described in the review, as well as the problems and present limitations of the nanoreactor approach.

  17. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins.

    PubMed

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-08-12

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future.

  18. Super-resolution Microscopy Reveals Compartmentalization of Peroxisomal Membrane Proteins*

    PubMed Central

    Galiani, Silvia; Waithe, Dominic; Reglinski, Katharina; Cruz-Zaragoza, Luis Daniel; Garcia, Esther; Clausen, Mathias P.; Schliebs, Wolfgang; Erdmann, Ralf; Eggeling, Christian

    2016-01-01

    Membrane-associated events during peroxisomal protein import processes play an essential role in peroxisome functionality. Many details of these processes are not known due to missing spatial resolution of technologies capable of investigating peroxisomes directly in the cell. Here, we present the use of super-resolution optical stimulated emission depletion microscopy to investigate with sub-60-nm resolution the heterogeneous spatial organization of the peroxisomal proteins PEX5, PEX14, and PEX11 around actively importing peroxisomes, showing distinct differences between these peroxins. Moreover, imported protein sterol carrier protein 2 (SCP2) occupies only a subregion of larger peroxisomes, highlighting the heterogeneous distribution of proteins even within the peroxisome. Finally, our data reveal subpopulations of peroxisomes showing only weak colocalization between PEX14 and PEX5 or PEX11 but at the same time a clear compartmentalized organization. This compartmentalization, which was less evident in cases of strong colocalization, indicates dynamic protein reorganization linked to changes occurring in the peroxisomes. Through the use of multicolor stimulated emission depletion microscopy, we have been able to characterize peroxisomes and their constituents to a yet unseen level of detail while maintaining a highly statistical approach, paving the way for equally complex biological studies in the future. PMID:27311714

  19. Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae

    PubMed Central

    Krishnamoorthy, Archana

    2015-01-01

    Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases. PMID:26162874

  20. Dual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae.

    PubMed

    Krishnamoorthy, Archana; Robertson, J Brian

    2015-09-01

    Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases.

  1. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  2. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    PubMed

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Designed protein reveals structural determinants of extreme kinetic stability

    PubMed Central

    Broom, Aron; Ma, S. Martha; Xia, Ke; Rafalia, Hitesh; Trainor, Kyle; Colón, Wilfredo; Gosavi, Shachi; Meiering, Elizabeth M.

    2015-01-01

    The design of stable, functional proteins is difficult. Improved design requires a deeper knowledge of the molecular basis for design outcomes and properties. We previously used a bioinformatics and energy function method to design a symmetric superfold protein composed of repeating structural elements with multivalent carbohydrate-binding function, called ThreeFoil. This and similar methods have produced a notably high yield of stable proteins. Using a battery of experimental and computational analyses we show that despite its small size and lack of disulfide bonds, ThreeFoil has remarkably high kinetic stability and its folding is specifically chaperoned by carbohydrate binding. It is also extremely stable against thermal and chemical denaturation and proteolytic degradation. We demonstrate that the kinetic stability can be predicted and modeled using absolute contact order (ACO) and long-range order (LRO), as well as coarse-grained simulations; the stability arises from a topology that includes many long-range contacts which create a large and highly cooperative energy barrier for unfolding and folding. Extensive data from proteomic screens and other experiments reveal that a high ACO/LRO is a general feature of proteins with strong resistances to denaturation and degradation. These results provide tractable approaches for predicting resistance and designing proteins with sufficient topological complexity and long-range interactions to accommodate destabilizing functional features as well as withstand chemical and proteolytic challenge. PMID:26554002

  4. Designed protein reveals structural determinants of extreme kinetic stability.

    PubMed

    Broom, Aron; Ma, S Martha; Xia, Ke; Rafalia, Hitesh; Trainor, Kyle; Colón, Wilfredo; Gosavi, Shachi; Meiering, Elizabeth M

    2015-11-24

    The design of stable, functional proteins is difficult. Improved design requires a deeper knowledge of the molecular basis for design outcomes and properties. We previously used a bioinformatics and energy function method to design a symmetric superfold protein composed of repeating structural elements with multivalent carbohydrate-binding function, called ThreeFoil. This and similar methods have produced a notably high yield of stable proteins. Using a battery of experimental and computational analyses we show that despite its small size and lack of disulfide bonds, ThreeFoil has remarkably high kinetic stability and its folding is specifically chaperoned by carbohydrate binding. It is also extremely stable against thermal and chemical denaturation and proteolytic degradation. We demonstrate that the kinetic stability can be predicted and modeled using absolute contact order (ACO) and long-range order (LRO), as well as coarse-grained simulations; the stability arises from a topology that includes many long-range contacts which create a large and highly cooperative energy barrier for unfolding and folding. Extensive data from proteomic screens and other experiments reveal that a high ACO/LRO is a general feature of proteins with strong resistances to denaturation and degradation. These results provide tractable approaches for predicting resistance and designing proteins with sufficient topological complexity and long-range interactions to accommodate destabilizing functional features as well as withstand chemical and proteolytic challenge.

  5. RNA-protein distance patterns in ribosomes reveal the mechanism of translational attenuation.

    PubMed

    Yu, DongMei; Zhang, Chao; Qin, PeiWu; Cornish, Peter V; Xu, Dong

    2014-11-01

    Elucidating protein translational regulation is crucial for understanding cellular function and drug development. A key molecule in protein translation is ribosome, which is a super-molecular complex extensively studied for more than a half century. The structure and dynamics of ribosome complexes were resolved recently thanks to the development of X-ray crystallography, Cryo-EM, and single molecule biophysics. Current studies of the ribosome have shown multiple functional states, each with a unique conformation. In this study, we analyzed the RNA-protein distances of ribosome (2.5 MDa) complexes and compared these changes among different ribosome complexes. We found that the RNA-protein distance is significantly correlated with the ribosomal functional state. Thus, the analysis of RNA-protein binding distances at important functional sites can distinguish ribosomal functional states and help understand ribosome functions. In particular, the mechanism of translational attenuation by nascent peptides and antibiotics was revealed by the conformational changes of local functional sites.

  6. Profiling of urinary proteins in Karan Fries cows reveals more than 1550 proteins.

    PubMed

    Bathla, Shveta; Rawat, Preeti; Baithalu, Rubina; Yadav, Munna Lal; Naru, Jasmine; Tiwari, Anurag; Kumar, Sudarshan; Balhara, Ashok K; Singh, Surender; Chaudhary, Suman; Kumar, Rajesh; Lotfan, Masoud; Behare, Pradip; Phulia, Sushil K; Mohanty, Tushar K; Kaushik, Jai K; Nallapeta, Shivramaiah; Singh, Inderjeet; Ambatipudi, Srinivas K; Mohanty, Ashok K

    2015-09-08

    Urine is a non-invasive source of biological fluid, which reflects the physiological status of the mammals. We have profiled the cow urinary proteome and analyzed its functional significance. The urine collected from three healthy cows was concentrated by diafiltration (DF) followed by protein extraction using three methods, namely methanol, acetone, and ammonium sulphate (AS) precipitation and Proteo Spin urine concentration kit (PS). The quality of the protein was assessed by two-dimensional gel electrophoresis (2DE). In-gel digestion method revealed more proteins (1191) in comparison to in-solution digestion method (541). Collectively, 938, 606 and 444 proteins were identified in LC-MS/MS after in-gel and in-solution tryptic digestion of proteins prepared by AS, PS and DF methods, respectively resulting in identification of a total of 1564 proteins. Gene ontology (GO) using Panther7.0 grouped the majority of the proteins into cytoplasmic (location), catalytic activity (function), and metabolism (biological processes), while Cytoscape grouped proteins into complement and coagulation cascades; protease inhibitor activity and wound healing. Functional significance of few selected proteins seems to play important role in their physiology. Comparative analysis with human urine revealed 315 overlapping proteins. This study reports for the first time evidence of more than 1550 proteins in urine of healthy cow donors. This article is part of a Special Issue entitled: Proteomics in India.

  7. Single-virus genomics reveals hidden cosmopolitan and abundant viruses

    PubMed Central

    Martinez-Hernandez, Francisco; Fornas, Oscar; Lluesma Gomez, Monica; Bolduc, Benjamin; de la Cruz Peña, Maria Jose; Martínez, Joaquín Martínez; Anton, Josefa; Gasol, Josep M.; Rosselli, Riccardo; Rodriguez-Valera, Francisco; Sullivan, Matthew B.; Acinas, Silvia G.; Martinez-Garcia, Manuel

    2017-01-01

    Microbes drive ecosystems under constraints imposed by viruses. However, a lack of virus genome information hinders our ability to answer fundamental, biological questions concerning microbial communities. Here we apply single-virus genomics (SVGs) to assess whether portions of marine viral communities are missed by current techniques. The majority of the here-identified 44 viral single-amplified genomes (vSAGs) are more abundant in global ocean virome data sets than published metagenome-assembled viral genomes or isolates. This indicates that vSAGs likely best represent the dsDNA viral populations dominating the oceans. Species-specific recruitment patterns and virome simulation data suggest that vSAGs are highly microdiverse and that microdiversity hinders the metagenomic assembly, which could explain why their genomes have not been identified before. Altogether, SVGs enable the discovery of some of the likely most abundant and ecologically relevant marine viral species, such as vSAG 37-F6, which were overlooked by other methodologies. PMID:28643787

  8. Neurobiological Signatures of Alcohol Dependence Revealed by Protein Profiling

    PubMed Central

    Gorini, Giorgio; Roberts, Amanda J.; Mayfield, R. Dayne

    2013-01-01

    Alcohol abuse causes dramatic neuroadaptations in the brain, which contribute to tolerance, dependence, and behavioral modifications. Previous proteomic studies in human alcoholics and animal models have identified candidate alcoholism-related proteins. However, recent evidences suggest that alcohol dependence is caused by changes in co-regulation that are invisible to single protein-based analysis. Here, we analyze global proteomics data to integrate differential expression, co-expression networks, and gene annotations to unveil key neurobiological rearrangements associated with the transition to alcohol dependence modeled by a Chronic Intermittent Ethanol (CIE), two-bottle choice (2BC) paradigm. We analyzed cerebral cortices (CTX) and midbrains (MB) from male C57BL/6J mice subjected to a CIE, 2BC paradigm, which induces heavy drinking and represents one of the best available animal models for alcohol dependence and relapse drinking. CIE induced significant changes in protein levels in dependent mice compared with their non-dependent controls. Multiple protein isoforms showed region-specific differential regulation as a result of post-translational modifications. Our integrative analysis identified modules of co-expressed proteins that were highly correlated with CIE treatment. We found that modules most related to the effects of CIE treatment coordinate molecular imbalances in endocytic- and energy-related pathways, with specific proteins involved, such as dynamin-1. The qRT-PCR experiments validated both differential and co-expression analyses, and the correspondence among our data and previous genomic and proteomic studies in humans and rodents substantiates our findings. The changes identified above may play a key role in the escalation of ethanol consumption associated with dependence. Our approach to alcohol addiction will advance knowledge of brain remodeling mechanisms and adaptive changes in response to drug abuse, contribute to understanding of

  9. Metal-enhanced fluorescence of single green fluorescent protein (GFP).

    PubMed

    Fu, Yi; Zhang, Jian; Lakowicz, Joseph R

    2008-11-28

    The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.

  10. Metal-enhanced fluorescence of single green fluorescent protein (GFP)

    SciTech Connect

    Fu Yi; Zhang Jian; Lakowicz, Joseph R.

    2008-11-28

    The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer duration time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.

  11. Structure of mega-hemocyanin reveals protein origami in snails.

    PubMed

    Gatsogiannis, Christos; Hofnagel, Oliver; Markl, Jürgen; Raunser, Stefan

    2015-01-06

    Mega-hemocyanin is a 13.5 MDa oxygen transporter found in the hemolymph of some snails. Similar to typical gastropod hemocyanins, it is composed of 400 kDa building blocks but has additional 550 kDa subunits. Together, they form a large, completely filled cylinder. The structural basis for this highly complex protein packing is not known so far. Here, we report the electron cryomicroscopy (cryo-EM) structure of mega-hemocyanin complexes from two different snail species. The structures reveal that mega-hemocyanin is composed of flexible building blocks that differ in their conformation, but not in their primary structure. Like a protein origami, these flexible blocks are optimally packed, implementing different local symmetries and pseudosymmetries. A comparison between the two structures suggests a surprisingly simple evolutionary mechanism leading to these large oxygen transporters.

  12. Rational Design of Dual Active Sites in a Single Protein Scaffold: A Case Study of Heme Protein in Myoglobin.

    PubMed

    Shu, Xiao-Gang; Su, Ji-Hu; Du, Ke-Jie; You, Yong; Gao, Shu-Qin; Wen, Ge-Bo; Tan, Xiangshi; Lin, Ying-Wu

    2016-06-01

    Rational protein design has been proven to be a powerful tool for creating functional artificial proteins. Although many artificial metalloproteins with a single active site have been successfully created, those with dual active sites in a single protein scaffold are still relatively rare. In this study, we rationally designed dual active sites in a single heme protein scaffold, myoglobin (Mb), by retaining the native heme site and creating a copper-binding site remotely through a single mutation of Arg118 to His or Met. Isothermal titration calorimetry (ITC) and electron paramagnetic resonance (EPR) studies confirmed that a copper-binding site of [3-His] or [2-His-1-Met] motif was successfully created in the single mutant of R118H Mb and R118M Mb, respectively. UV/Vis kinetic spectroscopy and EPR studies further revealed that both the heme site and the designed copper site exhibited nitrite reductase activity. This study presents a new example for rational protein design with multiple active sites in a single protein scaffold, which also lays the groundwork for further investigation of the structure and function relationship of heme/non-heme proteins.

  13. Structure determination of archaea-specific ribosomal protein L46a reveals a novel protein fold

    SciTech Connect

    Feng, Yingang; Song, Xiaxia; Lin, Jinzhong; Xuan, Jinsong; Cui, Qiu; Wang, Jinfeng

    2014-07-18

    Highlights: • The archaea-specific ribosomal protein L46a has no homology to known proteins. • Three dimensional structure and backbone dynamics of L46a were determined by NMR. • The structure of L46a represents a novel protein fold. • A potential rRNA-binding surface on L46a was identified. • The potential position of L46a on the ribosome was proposed. - Abstract: Three archaea-specific ribosomal proteins recently identified show no sequence homology with other known proteins. Here we determined the structure of L46a, the most conserved one among the three proteins, from Sulfolobus solfataricus P2 using NMR spectroscopy. The structure presents a twisted β-sheet formed by the N-terminal part and two helices at the C-terminus. The L46a structure has a positively charged surface which is conserved in the L46a protein family and is the potential rRNA-binding site. Searching homologous structures in Protein Data Bank revealed that the structure of L46a represents a novel protein fold. The backbone dynamics identified by NMR relaxation experiments reveal significant flexibility at the rRNA binding surface. The potential position of L46a on the ribosome was proposed by fitting the structure into a previous electron microscopy map of the ribosomal 50S subunit, which indicated that L46a contacts to domain I of 23S rRNA near a multifunctional ribosomal protein L7ae.

  14. Alternative Spliceosome Assembly Pathways Revealed by Single Molecule Fluorescence Microscopy

    PubMed Central

    Shcherbakova, Inna; Hoskins, Aaron A.; Friedman, Larry J.; Serebrov, Victor; Corrêa, Ivan R.; Xu, Ming-Qun; Gelles, Jeff; Moore, Melissa J.

    2014-01-01

    SUMMARY Removal of introns from nascent transcripts (pre-mRNAs) by the spliceosome is an essential step in eukaryotic gene expression. Previous studies have suggested that the earliest steps in spliceosome assembly in yeast are highly ordered, with stable recruitment of U1 snRNP to the 5' splice site necessarilypreceding recruitment of U2 snRNP to the branch site to form the “pre-spliceosome”. Using Colocalization Single Molecule Spectroscopy (CoSMoS) to follow initial spliceosome assembly on eight different S. cerevisiae pre-mRNAs, we here demonstrate that active yeast spliceosomes can form by both U1-first and U2-first pathways. Both assembly pathways yield prespliceosomes functionally equivalent for subsequent U5•U4/U6 tri-snRNP recruitment and for intron excision. Although fractional flux through the two pathways varies on different introns, both are operational on all introns studied. Thus, multiple pathways exist toassemble functional spliceosomes. These observations provide new insight into the mechanisms of cross-intron coordination of initial spliceosome assembly. PMID:24075986

  15. Mechanical Properties of Single Collagen Fibrils Revealed by Force Spectroscopy

    NASA Astrophysics Data System (ADS)

    Graham, John; Phillips, Charlotte; Grandbois, Michel

    2004-03-01

    In the field of biomechanics, collagen fibrils are believed to be robust mechanical structures characterized by a low extensibility. Until very recently, information on the mechanical properties of collagen fibrils could only be derived from ensemble measurements performed on complete tissues such as bone, skin and tendon. Here we measure force-elongation/relaxation profiles of single collagen fibrils using atomic force microscopy-based force spectroscopy. The elongation profiles indicate that in vitro assembled heterotrimeric type I collagen fibrils are characterized by a large extensibility. Numerous discontinuities and a plateau in the force profile indicate major reorganization occurs within the fibrils in the 1.5 -- 4.5 nN range. Our study demonstrates that newly assembled collagen fibrils are robust structures with a significant reserve of elasticity that could play a determinant role in cellular motion in the context of tissue growth and morphogenesis. In contrast, homotrimeric collagen fibrils corresponding to osteogenesis imperfecta pathology exhibit a marked difference in their elasticity profile.

  16. Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

    PubMed Central

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-01-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  17. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  18. Single-molecule Studies of Origin Licensing Reveal Mechanisms Ensuring Bidirectional Helicase Loading

    PubMed Central

    Ticau, Simina; Friedman, Larry J.; Ivica, Nikola A.; Gelles, Jeff; Bell, Stephen P.

    2015-01-01

    SUMMARY Loading of the ring-shaped Mcm2-7 replicative helicase around DNA licenses eukaryotic origins of replication. During loading, Cdc6, Cdt1 and the origin-recognition complex (ORC) assemble two heterohexameric Mcm2-7 complexes into a head-to-head double hexamer that facilitates bidirectional replication initiation. Using multi-wavelength single-molecule fluorescence to monitor the events of helicase loading, we demonstrate that double-hexamer formation is the result of sequential loading of individual Mcm2-7 complexes. Loading of each Mcm2-7 molecule involves the ordered association and dissociation of distinct Cdc6 and Cdt1 proteins. In contrast, one ORC molecule directs loading of both helicases in each double hexamer. Based on single-molecule FRET, arrival of the second Mcm2-7 results in rapid double-hexamer formation that anticipates Cdc6 and Cdt1 release, suggesting Mcm-Mcm interactions recruit the second helicase. Our findings reveal the complex protein dynamics that coordinate helicase loading and indicate that distinct mechanisms load the oppositely oriented helicases that are central to bidirectional replication initiation. PMID:25892223

  19. Single-Virus Fusion Experiments Reveal Proton Influx into Vaccinia Virions and Hemifusion Lag Times

    PubMed Central

    Schmidt, Florian I.; Kuhn, Phillip; Robinson, Tom; Mercer, Jason; Dittrich, Petra S.

    2013-01-01

    Recent studies have revealed new insights into the endocytosis of vaccinia virus (VACV). However, the mechanism of fusion between viral and cellular membranes remains unknown. We developed a microfluidic device with a cell-trap array for immobilization of individual cells, with which we analyzed the acid-dependent fusion of single virions. VACV particles incorporating enhanced green fluorescent protein (EGFP) and labeled with self-quenching concentrations of R18 membrane dye were used in combination with total internal reflection fluorescence microscopy to measure the kinetics of R18 dequenching and thus single hemifusion events initiated by a fast low-pH trigger. These studies revealed unexpectedly long lag phases between pH change and hemifusion. In addition, we found that EGFP fluorescence in the virus was quenched upon acidification, indicating that protons could access the virus core, possibly through a proton channel. In a fraction of virus particles, EGFP fluorescence was recovered, presumably after fusion-pore formation and exposure of the core to the physiological pH of the host-cell cytosol. Given that virus-encoded cation channels play a crucial role in the life cycle of many viruses and can serve as antiviral drug targets, further investigations into a potential VACV viroporin are justified. Our findings indicate that the microfluidic device described may be highly beneficial to similar studies requiring fast kinetic measurements. PMID:23870263

  20. Revealing nonclassicality beyond Gaussian states via a single marginal distribution

    NASA Astrophysics Data System (ADS)

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-01

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis-independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement.

  1. Revealing nonclassicality beyond Gaussian states via a single marginal distribution

    PubMed Central

    Park, Jiyong; Lu, Yao; Lee, Jaehak; Shen, Yangchao; Zhang, Kuan; Zhang, Shuaining; Zubairy, Muhammad Suhail; Kim, Kihwan; Nha, Hyunchul

    2017-01-01

    A standard method to obtain information on a quantum state is to measure marginal distributions along many different axes in phase space, which forms a basis of quantum-state tomography. We theoretically propose and experimentally demonstrate a general framework to manifest nonclassicality by observing a single marginal distribution only, which provides a unique insight into nonclassicality and a practical applicability to various quantum systems. Our approach maps the 1D marginal distribution into a factorized 2D distribution by multiplying the measured distribution or the vacuum-state distribution along an orthogonal axis. The resulting fictitious Wigner function becomes unphysical only for a nonclassical state; thus the negativity of the corresponding density operator provides evidence of nonclassicality. Furthermore, the negativity measured this way yields a lower bound for entanglement potential—a measure of entanglement generated using a nonclassical state with a beam-splitter setting that is a prototypical model to produce continuous-variable (CV) entangled states. Our approach detects both Gaussian and non-Gaussian nonclassical states in a reliable and efficient manner. Remarkably, it works regardless of measurement axis for all non-Gaussian states in finite-dimensional Fock space of any size, also extending to infinite-dimensional states of experimental relevance for CV quantum informatics. We experimentally illustrate the power of our criterion for motional states of a trapped ion, confirming their nonclassicality in a measurement-axis–independent manner. We also address an extension of our approach combined with phase-shift operations, which leads to a stronger test of nonclassicality, that is, detection of genuine non-Gaussianity under a CV measurement. PMID:28077456

  2. Silk protein aggregation kinetics revealed by Rheo-IR.

    PubMed

    Boulet-Audet, Maxime; Terry, Ann E; Vollrath, Fritz; Holland, Chris

    2014-02-01

    The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Protein Laboratories in Single Location | Poster

    Cancer.gov

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  4. Protein Laboratories in Single Location | Poster

    Cancer.gov

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  5. Homebuilt single-molecule scanning confocal fluorescence microscope studies of single DNA/protein interactions

    PubMed Central

    Zheng, Haocheng; Goldner, Lori S.; Leuba, Sanford H.

    2007-01-01

    Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM. PMID:17309845

  6. Homebuilt single-molecule scanning confocal fluorescence microscope studies of single DNA/protein interactions.

    PubMed

    Zheng, Haocheng; Goldner, Lori S; Leuba, Sanford H

    2007-03-01

    Many technical improvements in fluorescence microscopy over the years have focused on decreasing background and increasing the signal to noise ratio (SNR). The scanning confocal fluorescence microscope (SCFM) represented a major improvement in these efforts. The SCFM acquires signal from a thin layer of a thick sample, rejecting light whose origin is not in the focal plane thereby dramatically decreasing the background signal. A second major innovation was the advent of high quantum-yield, low noise, single-photon counting detectors. The superior background rejection of SCFM combined with low-noise, high-yield detectors makes it possible to detect the fluorescence from single-dye molecules. By labeling a DNA molecule or a DNA/protein complex with a donor/acceptor dye pair, fluorescence resonance energy transfer (FRET) can be used to track conformational changes in the molecule/complex itself, on a single molecule/complex basis. In this methods paper, we describe the core concepts of SCFM in the context of a study that uses FRET to reveal conformational fluctuations in individual Holliday junction DNA molecules and nucleosomal particles. We also discuss data processing methods for SCFM.

  7. Scanning tunneling microscopy reveals single-molecule insights into the self-assembly of amyloid fibrils.

    PubMed

    Kalashnyk, Nataliya; Nielsen, Jakob T; Nielsen, Erik H; Skrydstrup, Troels; Otzen, Daniel E; Lægsgaard, Erik; Wang, Chen; Besenbacher, Flemming; Nielsen, Niels Chr; Linderoth, Trolle R

    2012-08-28

    Many severe diseases are associated with amyloid fibril deposits in the body caused by protein misfolding. Structural information on amyloid fibrils is accumulating rapidly, but little is known about the assembly of peptides into fibrils at the level of individual molecules. Here we investigate self-assembly of the fibril-forming tetrapeptides KFFE and KVVE on a gold surface under ultraclean vacuum conditions using scanning tunneling microscopy. Combined with restrained molecular dynamics modeling, we identify peptide arrangements with interesting similarities to fibril structures. By resolving individual peptide residues and revealing conformational heterogeneities and dynamics, we demonstrate how conformational correlations may be involved in cooperative fibril growth. Most interestingly, intermolecular interactions prevail over intramolecular interactions, and assembly of the phenyl-rich KFFE peptide appears not to be dominated by π-π interactions. This study offers interesting perspectives for obtaining fundamental single-molecule insights into fibril formation using a surface science approach to study idealized model systems.

  8. Single-Molecule Imaging Reveals a Collapsed Conformational State for DNA-Bound Cohesin.

    PubMed

    Stigler, Johannes; Çamdere, Gamze Ö; Koshland, Douglas E; Greene, Eric C

    2016-05-03

    Cohesin is essential for the hierarchical organization of the eukaryotic genome and plays key roles in many aspects of chromosome biology. The conformation of cohesin bound to DNA remains poorly defined, leaving crucial gaps in our understanding of how cohesin fulfills its biological functions. Here, we use single-molecule microscopy to directly observe the dynamic and functional characteristics of cohesin bound to DNA. We show that cohesin can undergo rapid one-dimensional (1D) diffusion along DNA, but individual nucleosomes, nucleosome arrays, and other protein obstacles significantly restrict its mobility. Furthermore, we demonstrate that DNA motor proteins can readily push cohesin along DNA, but they cannot pass through the interior of the cohesin ring. Together, our results reveal that DNA-bound cohesin has a central pore that is substantially smaller than anticipated. These findings have direct implications for understanding how cohesin and other SMC proteins interact with and distribute along chromatin. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling.

    PubMed

    Bischofberger, Mirko; Iacovache, Ioan; Boss, Daniel; Naef, Felix; van der Goot, F Gisou; Molina, Nacho

    2016-04-12

    Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Single-molecule peptide-lipid affinity assay reveals interplay between solution structure and partitioning.

    PubMed

    Matin, Tina R; Sigdel, Krishna P; Utjesanovic, Milica; Marsh, Brendan P; Gallazzi, Fabio; Smith, Virginia F; Kosztin, Ioan; King, Gavin M

    2017-03-27

    Interactions between short protein segments and phospholipid bilayers dictate fundamental aspects of cellular activity and have important applications in biotechnology. Yet, a lack of suitable methodology for directly probing these interactions has hindered mechanistic understanding. We developed a precision atomic force microscope (AFM)-based single-molecule force spectroscopy assay and probed partitioning into lipid bilayers by measuring the mechanical force experienced by a peptide. Protein segments were constructed from the peripheral membrane protein SecA, a key ATPase in bacterial secretion. We focused on the first 10 amino-terminal residues of SecA (SecA2-11) which are known to be lipophilic. In addition to the core SecA2-11 sequence, constructs with nearly identical chemical composition but with differing geometry were used: two copies of SecA2-11 linked in series, and two copies in parallel. Lipid bilayer partitioning interactions of peptides with differing structures were distinguished. To model the energetic landscape, a theory of diffusive barrier crossing was extended to incorporate a superposition of potential barriers with variable weights. Analysis revealed two dissociation pathways for the core SecA2-11 sequence with well-separated intrinsic dissociation rates. Molecular dynamics simulations showed that the three peptides had significant conformational differences in solution that correlated well with measured variations in the propensity to partition into the bilayer. The methodology is generalizable and can be applied to other peptide and lipid species.

  11. Single-Molecule Microscopy and Force Spectroscopy of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Engel, Andreas; Janovjak, Harald; Fotiadis, Dimtrios; Kedrov, Alexej; Cisneros, David; Müller, Daniel J.

    Single-molecule atomic force microscopy (AFM) provides novel ways to characterize the structure-function relationship of native membrane proteins. High-resolution AFM topographs allow observing the structure of single proteins at sub-nanometer resolution as well as their conformational changes, oligomeric state, molecular dynamics and assembly. We will review these feasibilities illustrating examples of membrane proteins in native and reconstituted membranes. Classification of individual topographs of single proteins allows understanding the principles of motions of their extrinsic domains, to learn about their local structural flexibilities and to find the entropy minima of certain conformations. Combined with the visualization of functionally related conformational changes these insights allow understanding why certain flexibilities are required for the protein to function and how structurally flexible regions allow certain conformational changes. Complementary to AFM imaging, single-molecule force spectroscopy (SMFS) experiments detect molecular interactions established within and between membrane proteins. The sensitivity of this method makes it possible to measure interactions that stabilize secondary structures such as transmembrane α-helices, polypeptide loops and segments within. Changes in temperature or protein-protein assembly do not change the locations of stable structural segments, but influence their stability established by collective molecular interactions. Such changes alter the probability of proteins to choose a certain unfolding pathway. Recent examples have elucidated unfolding and refolding pathways of membrane proteins as well as their energy landscapes.

  12. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity.

    PubMed

    Love, Kerry Routenberg; Politano, Timothy J; Panagiotou, Vasiliki; Jiang, Bo; Stadheim, Terrance A; Love, J Christopher

    2012-01-01

    Biopharmaceuticals represent the fastest growing sector of the global pharmaceutical industry. Cost-efficient production of these biologic drugs requires a robust host organism for generating high titers of protein during fermentation. Understanding key cellular processes that limit protein production and secretion is, therefore, essential for rational strain engineering. Here, with single-cell resolution, we systematically analysed the productivity of a series of Pichia pastoris strains that produce different proteins both constitutively and inducibly. We characterized each strain by qPCR, RT-qPCR, microengraving, and imaging cytometry. We then developed a simple mathematical model describing the flux of folded protein through the ER. This combination of single-cell measurements and computational modelling shows that protein trafficking through the secretory machinery is often the rate-limiting step in single-cell production, and strategies to enhance the overall capacity of protein secretion within hosts for the production of heterologous proteins may improve productivity.

  13. Single-Molecule Nanocatalysis Reveals Catalytic Activation Energy of Single Nanocatalysts.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-28

    By monitoring the temperature-dependent catalytic activity of single Au nanocatalysts for a fluorogenic reaction, we derive the activation energies via multiple methods for two sequential catalytic steps (product formation and dissociation) on single nanocatalysts. The wide distributions of activation energies across multiple individual nanocatalysts indicate a huge static heterogeneity among the individual nanocatalysts. The compensation effect and isokinetic relationship of catalytic reactions are observed at the single particle level. This study exemplifies another function of single-molecule nanocatalysis and improves our understanding of heterogeneous catalysis.

  14. Single-domain protein folding: a multi-faceted problem

    NASA Astrophysics Data System (ADS)

    Junier, Ivan; Ritort, Felix

    2006-08-01

    We review theoretical approaches, experiments and numerical simulations that have been recently proposed to investigate the folding problem in single-domain proteins. From a theoretical point of view, we emphasize the energy landscape approach. As far as experiments are concerned, we focus on the recent development of single-molecule techniques. In particular, we compare the results obtained with two main techniques: single protein force measurements with optical tweezers and single-molecule fluorescence in studies on the same protein (RNase H). This allows us to point out some controversial issues such as the nature of the denatured and intermediate states and possible folding pathways. After reviewing the various numerical simulation techniques, we show that on-lattice protein-like models can help to understand many controversial issues.

  15. Prying open single GroES ring complexes by force reveals cooperativity across domains.

    PubMed

    Ikeda-Kobayashi, Akiko; Taniguchi, Yukinori; Brockwell, David J; Paci, Emanuele; Kawakami, Masaru

    2012-04-18

    Understanding how the mechanical properties of a protein complex emerge from the interplay of intra- and interchain interactions is vital at both fundamental and applied levels. To investigate whether interdomain cooperativity affects protein mechanical strength, we employed single-molecule force spectroscopy to probe the mechanical stability of GroES, a homoheptamer with a domelike quaternary stucture stabilized by intersubunit interactions between the first and last β-strands of adjacent domains. A GroES variant was constructed in which each subunit of the GroES heptamer is covalently linked to adjacent subunits by tripeptide linkers and folded domains of protein L are introduced to the heptamer's termini as handle molecules. The force-distance profiles for GroES unfolding showed, for the first time that we know of, a mechanical phenotype whereby seven distinct force peaks, with alternating behavior of unfolding force and contour length (ΔL(c)), were observed with increasing unfolding-event number. Unfolding of (GroES)(7) is initiated by breakage of the interface between domains 1 and 7 at low force, which imparts a polarity to (GroES)(7) that results in two distinct mechanical phenotypes of these otherwise identical protein domains. Unfolding then proceeds by peeling domains off the domelike native structure by sequential repetition of the denaturation of mechanically weak (unfoldon 1) and strong (unfoldon 2) units. These results indicate that domain-domain interactions help to determine the overall mechanical strength and unfolding pathway of the oligomeric structure. These data reveal an unexpected richness in the mechanical behavior of this homopolyprotein, yielding a complex with greater mechanical strength and properties distinct from those that would be apparent for GroES domains in isolation. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  17. Bacterial proteins pinpoint a single eukaryotic root

    PubMed Central

    Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek

    2015-01-01

    The large phylogenetic distance separating eukaryotic genes and their archaeal orthologs has prevented identification of the position of the eukaryotic root in phylogenomic studies. Recently, an innovative approach has been proposed to circumvent this issue: the use as phylogenetic markers of proteins that have been transferred from bacterial donor sources to eukaryotes, after their emergence from Archaea. Using this approach, two recent independent studies have built phylogenomic datasets based on bacterial sequences, leading to different predictions of the eukaryotic root. Taking advantage of additional genome sequences from the jakobid Andalucia godoyi and the two known malawimonad species (Malawimonas jakobiformis and Malawimonas californiana), we reanalyzed these two phylogenomic datasets. We show that both datasets pinpoint the same phylogenetic position of the eukaryotic root that is between “Unikonta” and “Bikonta,” with malawimonad and collodictyonid lineages on the Unikonta side of the root. Our results firmly indicate that (i) the supergroup Excavata is not monophyletic and (ii) the last common ancestor of eukaryotes was a biflagellate organism. Based on our results, we propose to rename the two major eukaryotic groups Unikonta and Bikonta as Opimoda and Diphoda, respectively. PMID:25646484

  18. A novel hybrid single molecule approach reveals spontaneous DNA motion in the nucleosome

    PubMed Central

    Wei, Sijie; Falk, Samantha J.; Black, Ben E.; Lee, Tae-Hee

    2015-01-01

    Structural dynamics of nucleic acid and protein is an important physical basis of their functions. These motions are often very difficult to synchronize and too fast to be clearly resolved with the currently available single molecule methods. Here we demonstrate a novel hybrid single molecule approach combining stochastic data analysis with fluorescence correlation that enables investigations of sub-ms unsynchronized structural dynamics of macromolecules. Based on the method, we report the first direct evidence of spontaneous DNA motions at the nucleosome termini. The nucleosome, comprising DNA and a histone core, is the fundamental packing unit of eukaryotic genes that must be accessed during various genome transactions. Spontaneous DNA opening at the nucleosome termini has long been hypothesized to enable gene access in the nucleosome, but has yet to be directly observed. Our approach reveals that DNA termini in the nucleosome open and close repeatedly at 0.1–1 ms−1. The kinetics depends on salt concentration and DNA–histone interactions but not much on DNA sequence, suggesting that this dynamics is universal and imposes the kinetic limit to gene access. These results clearly demonstrate that our method provides an efficient and robust means to investigate unsynchronized structural changes of DNA at a sub-ms time resolution. PMID:26013809

  19. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.

    PubMed

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J P; de Pablo, Pedro J; Mateu, Mauricio G

    2012-06-06

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Mechanical Disassembly of Single Virus Particles Reveals Kinetic Intermediates Predicted by Theory

    PubMed Central

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J.P.; de Pablo, Pedro J.; Mateu, Mauricio G.

    2012-01-01

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T = 1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly. PMID:22713577

  1. Tracking single Kv2.1 channels in live cells reveals anomalous subdiffusion and ergodicity breaking

    NASA Astrophysics Data System (ADS)

    Weigel, Aubrey; Simon, Blair; Tamkun, Michael; Krapf, Diego

    2011-03-01

    The dynamic organization of the plasma membrane is responsible for essential cellular processes, such as receptor trafficking and signaling. By studying the dynamics of transmembrane proteins a greater understanding of these processes as a whole can be achieved. It is broadly observed that the diffusion pattern of membrane protein displays anomalous subdiffusion. However, the mechanisms responsible for this behavior are not yet established. We explore the dynamics of the voltage gated potassium channel Kv2.1 by using single-particle tracking. We analyze Kv2.1 channel trajectories in terms of the time and ensemble distributions of square displacements. Our results reveal that all Kv2.1 channels experience anomalous subdiffusion and we observe that the Kv2.1 diffusion pattern is non-ergodic. We further investigated the role of the actin cytoskeleton in these channel dynamics by applying actin depolymerizing drugs. It is seen that with the breakdown of the actin cytoskeleton the Kv2.1 channel trajectories recover ergodicity.

  2. Structure of a PEGylated protein reveals a highly porous double-helical assembly

    NASA Astrophysics Data System (ADS)

    Cattani, Giada; Vogeley, Lutz; Crowley, Peter B.

    2015-10-01

    PEGylated proteins are a mainstay of the biopharmaceutical industry. Although the use of poly(ethylene glycol) (PEG) to increase particle size, stability and solubility is well-established, questions remain as to the structure of PEG-protein conjugates. Here we report the structural characterization of a model β-sheet protein (plastocyanin, 11.5 kDa) modified with a single PEG 5,000. An NMR spectroscopy study of the PEGylated conjugate indicated that the protein and PEG behaved as independent domains. A crystal structure revealed an extraordinary double-helical assembly of the conjugate, with the helices arranged orthogonally to yield a highly porous architecture. Electron density was not observed for the PEG chain, which indicates that it was disordered. The volume available per PEG chain in the crystal was within 10% of the calculated random coil volume. Together, these data support a minimal interaction between the protein and the synthetic polymer. Our work provides new possibilities for understanding this important class of protein-polymer hybrids and suggests a novel approach to engineering protein assemblies.

  3. Probing Protein Fluctuations, Folding and Misfolding at Single-molecule Resolution

    NASA Astrophysics Data System (ADS)

    Deniz, Ashok

    2010-03-01

    The conformational fluctuations and folding of proteins are key for their function in cells and organisms. Conversely, misfolding and aggregation can cause disease, although amyloids with functional significance are also being identified. To better understand these aspects of protein biophysics, we utilize single-molecule fluorescence and complementary methods to directly study complex protein dynamics, structural distributions, and conformational transitions. In one example, we used these methods to investigate disorder and disorder-to-order transitions in intrinsically disordered proteins (IDPs). IDPs are an interesting class of proteins which are relatively unstructured in isolation, but can often fold by interacting with binding partners. These complex systems are increasingly found to play major roles in biology and disease. In one case, we used a combination of single-molecule FRET (smFRET), coincidence and correlation analyses to probe the native structural features of a yeast protein Sup35, whose amyloid state is believed to be used in a beneficial context in yeast. We find that the monomeric protein populates a compact and rapidly fluctuating ensemble of conformations. In another case, we studied the binding-coupled folding of the IDP alpha-synuclein, whose misfolding and aggregation have been linked to Parkinson's disease. Single-molecule measurements directly revealed a complex multi-state folding landscape for this protein. Observations of a transient folding intermediate using microfluidic mixing, and links to misfolding and aggregation will also be discussed. Our results highlight single-molecule methodology that is broadly applicable to map protein folding and misfolding landscapes.

  4. Direct observation of disulfide isomerization in a single protein

    NASA Astrophysics Data System (ADS)

    Alegre-Cebollada, Jorge; Kosuri, Pallav; Rivas-Pardo, Jaime Andrés; Fernández, Julio M.

    2011-11-01

    Photochemical uncaging techniques use light to release active molecules from otherwise inert compounds. Here we expand this class of techniques by demonstrating the mechanical uncaging of a reactive species within a single protein. We proved this novel technique by capturing the regiospecific reaction between a thiol and a vicinal disulfide bond. We designed a protein that includes a caged cysteine and a buried disulfide. The mechanical unfolding of this protein in the presence of an external nucleophile frees the single reactive cysteine residue, which now can cleave the target disulfide via a nucleophilic attack on either one of its two sulfur atoms. This produces two different and competing reaction pathways. We used single-molecule force spectroscopy to monitor the cleavage of the disulfides, which extends the polypeptide by a magnitude unambiguously associated with each reaction pathway. This allowed us to measure, for the first time, the kinetics of disulfide-bond isomerization in a protein.

  5. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity.

    PubMed

    Bobrovsky, Pavel; Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-07-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection.

  6. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity

    PubMed Central

    Manuvera, Valentin; Polina, Nadezhda; Podgorny, Oleg; Prusakov, Kirill; Govorun, Vadim; Lazarev, Vassili

    2016-01-01

    Peptidoglycan recognition proteins (PGLYRPs) are innate immune components that recognize the peptidoglycan and lipopolysaccharides of bacteria and exhibit antibacterial activity. Recently, the obligate intracellular parasite Chlamydia trachomatis was shown to have peptidoglycan. However, the antichlamydial activity of PGLYRPs has not yet been demonstrated. The aim of our study was to test whether PGLYRPs exhibit antibacterial activity against C. trachomatis. Thus, we cloned the regions containing the human Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 genes for subsequent expression in human cell lines. We obtained stable HeLa cell lines that secrete recombinant human PGLYRPs into culture medium. We also generated purified recombinant PGLYRP1, -2, and -4 and confirmed their activities against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. Furthermore, we examined the activities of recombinant PGLYRPs against C. trachomatis and determined their MICs. We also observed a decrease in the infectious ability of chlamydial elementary bodies in the next generation after a single exposure to PGLYRPs. Finally, we demonstrated that PGLYRPs attach to C. trachomatis elementary bodies and activate the expression of the chlamydial two-component stress response system. Thus, PGLYRPs inhibit the development of chlamydial infection. PMID:27160295

  7. Impaired protein conformational landscapes as revealed in anomalous Arrhenius prefactors.

    PubMed

    Nagel, Zachary D; Dong, Ming; Bahnson, Brian J; Klinman, Judith P

    2011-06-28

    A growing body of data supports a role for protein motion in enzyme catalysis. In particular, the ability of enzymes to sample catalytically relevant conformational substates has been invoked to model kinetic and spectroscopic data. However, direct experimental links between rapidly interconverting conformations and the chemical steps of catalysis remain rare. We report here on the kinetic analysis and characterization of the hydride transfer step catalyzed by a series of mutant thermophilic alcohol dehydrogenases (ht-ADH), presenting evidence for Arrhenius prefactor values that become enormously elevated above an expected value of approximately 10(13) s(-1) when the enzyme operates below its optimal temperature range. Restoration of normal Arrhenius behavior in the ht-ADH reaction occurs at elevated temperatures. A simple model, in which reduced temperature alters the ability of the ht-ADH variants to sample the catalytically relevant region of conformational space, can reproduce the available data. These findings indicate an impaired landscape that has been generated by the combined condition of reduced temperature and mutation at a single, active-site hydrophobic side chain. The broader implication is that optimal enzyme function requires the maintenance of a relatively smooth landscape that minimizes low energy traps.

  8. Impaired protein conformational landscapes as revealed in anomalous Arrhenius prefactors

    PubMed Central

    Nagel, Zachary D.; Dong, Ming; Bahnson, Brian J.; Klinman, Judith P.

    2011-01-01

    A growing body of data supports a role for protein motion in enzyme catalysis. In particular, the ability of enzymes to sample catalytically relevant conformational substates has been invoked to model kinetic and spectroscopic data. However, direct experimental links between rapidly interconverting conformations and the chemical steps of catalysis remain rare. We report here on the kinetic analysis and characterization of the hydride transfer step catalyzed by a series of mutant thermophilic alcohol dehydrogenases (ht-ADH), presenting evidence for Arrhenius prefactor values that become enormously elevated above an expected value of approximately 1013 s-1 when the enzyme operates below its optimal temperature range. Restoration of normal Arrhenius behavior in the ht-ADH reaction occurs at elevated temperatures. A simple model, in which reduced temperature alters the ability of the ht-ADH variants to sample the catalytically relevant region of conformational space, can reproduce the available data. These findings indicate an impaired landscape that has been generated by the combined condition of reduced temperature and mutation at a single, active-site hydrophobic side chain. The broader implication is that optimal enzyme function requires the maintenance of a relatively smooth landscape that minimizes low energy traps. PMID:21670258

  9. Probing Single Membrane Proteins by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Scheuring, S.; Sapra, K. Tanuj; Müller, Daniel J.

    In this book chapter, we describe the working principle of the atomic force microscope (AFM), followed by the applications of AFM in high-resolution imaging and single-molecule force spectroscopy of membrane proteins. In the imaging mode, AFM allows observing the assembly of membrane proteins directly in native membranes approaching a resolution of ~0.5 nm with an outstanding signal-to-noise ratio. Conformational deviations of individual membrane proteins can be observed and their functional states directly imaged. Time-lapse AFM can image membrane proteins at work. In conjunction with high- resolution imaging, the use of the AFM as a single-molecule force spectroscope (SMFS) has gained tremendous importance in recent years. This combination allows to locate the inter- and intramolecular interactions of single membrane proteins. SMFS allows characterization of interactions that guide the folding of proteins and describe the parameters that lead to their destabilization, malfunction and misfolding. Moreover, it enables to measure the interactions established by ligand- and inhibitor-binding and in membrane protein assemblies. Because of its practical use in characterizing various parameters of membrane proteins in their native environment, AFM can be aptly described as a `lab on a tip' device.

  10. A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function

    PubMed Central

    Araya, Carlos L.; Fowler, Douglas M.; Chen, Wentao; Muniez, Ike; Kelly, Jeffery W.; Fields, Stanley

    2012-01-01

    The ability of a protein to carry out a given function results from fundamental physicochemical properties that include the protein’s structure, mechanism of action, and thermodynamic stability. Traditional approaches to study these properties have typically required the direct measurement of the property of interest, oftentimes a laborious undertaking. Although protein properties can be probed by mutagenesis, this approach has been limited by its low throughput. Recent technological developments have enabled the rapid quantification of a protein’s function, such as binding to a ligand, for numerous variants of that protein. Here, we measure the ability of 47,000 variants of a WW domain to bind to a peptide ligand and use these functional measurements to identify stabilizing mutations without directly assaying stability. Our approach is rooted in the well-established concept that protein function is closely related to stability. Protein function is generally reduced by destabilizing mutations, but this decrease can be rescued by stabilizing mutations. Based on this observation, we introduce partner potentiation, a metric that uses this rescue ability to identify stabilizing mutations, and identify 15 candidate stabilizing mutations in the WW domain. We tested six candidates by thermal denaturation and found two highly stabilizing mutations, one more stabilizing than any previously known mutation. Thus, physicochemical properties such as stability are latent within these large-scale protein functional data and can be revealed by systematic analysis. This approach should allow other protein properties to be discovered. PMID:23035249

  11. Probing protein flexibility reveals a mechanism for selective promiscuity

    PubMed Central

    Pabon, Nicolas A; Camacho, Carlos J

    2017-01-01

    Many eukaryotic regulatory proteins adopt distinct bound and unbound conformations, and use this structural flexibility to bind specifically to multiple partners. However, we lack an understanding of how an interface can select some ligands, but not others. Here, we present a molecular dynamics approach to identify and quantitatively evaluate the interactions responsible for this selective promiscuity. We apply this approach to the anticancer target PD-1 and its ligands PD-L1 and PD-L2. We discover that while unbound PD-1 exhibits a hard-to-drug hydrophilic interface, conserved specific triggers encoded in the cognate ligands activate a promiscuous binding pathway that reveals a flexible hydrophobic binding cavity. Specificity is then established by additional contacts that stabilize the PD-1 cavity into distinct bound-like modes. Collectively, our studies provide insight into the structural basis and evolution of multiple binding partners, and also suggest a biophysical approach to exploit innate binding pathways to drug seemingly undruggable targets. DOI: http://dx.doi.org/10.7554/eLife.22889.001 PMID:28432789

  12. The integrated analysis of metabolic and protein interaction networks reveals novel molecular organizing principles.

    PubMed

    Durek, Pawel; Walther, Dirk

    2008-11-25

    The study of biological interaction networks is a central theme of systems biology. Here, we investigate the relationships between two distinct types of interaction networks: the metabolic pathway map and the protein-protein interaction network (PIN). It has long been established that successive enzymatic steps are often catalyzed by physically interacting proteins forming permanent or transient multi-enzymes complexes. Inspecting high-throughput PIN data, it was shown recently that, indeed, enzymes involved in successive reactions are generally more likely to interact than other protein pairs. In our study, we expanded this line of research to include comparisons of the underlying respective network topologies as well as to investigate whether the spatial organization of enzyme interactions correlates with metabolic efficiency. Analyzing yeast data, we detected long-range correlations between shortest paths between proteins in both network types suggesting a mutual correspondence of both network architectures. We discovered that the organizing principles of physical interactions between metabolic enzymes differ from the general PIN of all proteins. While physical interactions between proteins are generally dissortative, enzyme interactions were observed to be assortative. Thus, enzymes frequently interact with other enzymes of similar rather than different degree. Enzymes carrying high flux loads are more likely to physically interact than enzymes with lower metabolic throughput. In particular, enzymes associated with catabolic pathways as well as enzymes involved in the biosynthesis of complex molecules were found to exhibit high degrees of physical clustering. Single proteins were identified that connect major components of the cellular metabolism and may thus be essential for the structural integrity of several biosynthetic systems. Our results reveal topological equivalences between the protein interaction network and the metabolic pathway network. Evolved

  13. Site-Specific Phosphorylation of PSD-95 PDZ Domains Reveals Fine-Tuned Regulation of Protein-Protein Interactions.

    PubMed

    Pedersen, Søren W; Albertsen, Louise; Moran, Griffin E; Levesque, Brié; Pedersen, Stine B; Bartels, Lina; Wapenaar, Hannah; Ye, Fei; Zhang, Mingjie; Bowen, Mark E; Strømgaard, Kristian

    2017-09-15

    The postsynaptic density protein of 95 kDa (PSD-95) is a key scaffolding protein that controls signaling at synapses in the brain through interactions of its PDZ domains with the C-termini of receptors, ion channels, and enzymes. PSD-95 is highly regulated by phosphorylation. To explore the effect of phosphorylation on PSD-95, we used semisynthetic strategies to introduce phosphorylated amino acids at four positions within the PDZ domains and examined the effects on interactions with a large set of binding partners. We observed complex effects on affinity. Most notably, phosphorylation at Y397 induced a significant increase in affinity for stargazin, as confirmed by NMR and single molecule FRET. Additionally, we compared the effects of phosphorylation to phosphomimetic mutations, which revealed that phosphomimetics are ineffective substitutes for tyrosine phosphorylation. Our strategy to generate site-specifically phosphorylated PDZ domains provides a detailed understanding of the role of phosphorylation in the regulation of PSD-95 interactions.

  14. Single-Molecule Imaging of an in Vitro-Evolved RNA Aptamer Reveals Homogeneous Ligand Binding Kinetics

    PubMed Central

    2009-01-01

    Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753

  15. Postprandial protein metabolism but not a fecal test reveals protein malabsorption in patients with pancreatic exocrine insufficiency.

    PubMed

    Airinei, Gheorghe; Gaudichon, Claire; Bos, Cecile; Bon, Cyriaque; Kapel, Nathalie; Bejou, Bakhtiar; Raynaud, Jean Jacques; Luengo, Catherine; Aparicio, Thomas; Levy, Philippe; Tome, Daniel; Benamouzig, Robert

    2011-12-01

    Pancreatic exocrine insufficiency (PEI) impairs fat absorption, but few data are available on protein absorption. We investigated this question in patients with chronic pancreatitis, both in the absence and presence of enzyme therapy, using a stable isotope sensitive method. Eleven patients with sustained PEI and regular enzyme substitution were investigated at hospital, after a washout period without enzyme substitution, and later after reintroduction of substitution. The digestibility and postprandial metabolism of dietary protein were characterized after the ingestion of a semi-synthetic single meal containing 20 g (15)N-labeled casein. At baseline, 20 ± 8% of dietary nitrogen was transferred to the metabolic pools vs. 24.5 ± 7% under enzyme treatment (P = 0.04). After treatment, the transfer of dietary nitrogen tended to increase in plasma amino acids, and increased significantly in plasma proteins and the deamination pool. In contrast, the fecal excretion of dietary nitrogen did not demonstrate any treatment effect. In patients not receiving insulin for diabetes, the treatment stimulated insulin secretion. Protein malabsorption was mostly undetectable using standard fecal tests. The study of the postprandial fate of dietary protein revealed a moderate increase of its transfer to metabolic pools after enzyme substitution. 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  16. Single-molecule studies of high-mobility group B architectural DNA bending proteins.

    PubMed

    Murugesapillai, Divakaran; McCauley, Micah J; Maher, L James; Williams, Mark C

    2017-02-01

    Protein-DNA interactions can be characterized and quantified using single molecule methods such as optical tweezers, magnetic tweezers, atomic force microscopy, and fluorescence imaging. In this review, we discuss studies that characterize the binding of high-mobility group B (HMGB) architectural proteins to single DNA molecules. We show how these studies are able to extract quantitative information regarding equilibrium binding as well as non-equilibrium binding kinetics. HMGB proteins play critical but poorly understood roles in cellular function. These roles vary from the maintenance of chromatin structure and facilitation of ribosomal RNA transcription (yeast high-mobility group 1 protein) to regulatory and packaging roles (human mitochondrial transcription factor A). We describe how these HMGB proteins bind, bend, bridge, loop and compact DNA to perform these functions. We also describe how single molecule experiments observe multiple rates for dissociation of HMGB proteins from DNA, while only one rate is observed in bulk experiments. The measured single-molecule kinetics reveals a local, microscopic mechanism by which HMGB proteins alter DNA flexibility, along with a second, much slower macroscopic rate that describes the complete dissociation of the protein from DNA.

  17. Multiplex single-molecule interaction profiling of DNA barcoded proteins

    PubMed Central

    Gu, Liangcai; Li, Chao; Aach, John; Hill, David E.; Vidal, Marc; Church, George M.

    2014-01-01

    In contrast with advances in massively parallel DNA sequencing1, high-throughput protein analyses2-4 are often limited by ensemble measurements, individual analyte purification and hence compromised quality and cost-effectiveness. Single-molecule (SM) protein detection achieved using optical methods5 is limited by the number of spectrally nonoverlapping chromophores. Here, we introduce a single molecular interaction-sequencing (SMI-Seq) technology for parallel protein interaction profiling leveraging SM advantages. DNA barcodes are attached to proteins collectively via ribosome display6 or individually via enzymatic conjugation. Barcoded proteins are assayed en masse in aqueous solution and subsequently immobilized in a polyacrylamide (PAA) thin film to construct a random SM array, where barcoding DNAs are amplified into in situ polymerase colonies (polonies)7 and analyzed by DNA sequencing. This method allows precise quantification of various proteins with a theoretical maximum array density of over one million polonies per square millimeter. Furthermore, protein interactions can be measured based on the statistics of colocalized polonies arising from barcoding DNAs of interacting proteins. Two demanding applications, G-protein coupled receptor (GPCR) and antibody binding profiling, were demonstrated. SMI-Seq enables “library vs. library” screening in a one-pot assay, simultaneously interrogating molecular binding affinity and specificity. PMID:25252978

  18. Major coat protein and single-stranded DNA-binding protein of filamentous virus Pf3.

    PubMed Central

    Putterman, D G; Casadevall, A; Boyle, P D; Yang, H L; Frangione, B; Day, L A

    1984-01-01

    The region of the Pf3 virus genome encoding its major coat protein and its single-stranded DNA-binding protein is organized somewhat like the corresponding region of the fd (M13, f1) genome. Nevertheless, the major coat protein is unique among the major coat proteins of fd and the other filamentous phages studied in that it lacks a signal sequence and appears to be a direct translation product and in that it has fewer basic amino acid residues than its equivalent of DNA phosphates in the virion. These features are relevant to considerations of both protein insertion into membranes and DNA structure in filamentous viruses. The single-stranded DNA-binding protein also has a sequence that is different from the sequences of single-stranded DNA-binding proteins from other filamentous viruses. Images PMID:6422463

  19. Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces

    PubMed Central

    Luchini, Alessandra; Espina, Virginia; Liotta, Lance A.

    2014-01-01

    Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of protein–protein complexes. The molecular paints, which block trypsin cleavage sites, are excluded from the binding interface. Following mass spectrometry, only peptides hidden in the interface emerge as positive hits, revealing the functional contact regions that are drug targets. We use protein painting to discover contact regions between the three-way interaction of IL1β ligand, the receptor IL1RI and the accessory protein IL1RAcP. We then use this information to create peptides and monoclonal antibodies that block the interaction and abolish IL1β cell signalling. The technology is broadly applicable to discover protein interaction drug targets. PMID:25048602

  20. Dynamic Coupling among Protein Binding, Sliding, and DNA Bending Revealed by Molecular Dynamics.

    PubMed

    Tan, Cheng; Terakawa, Tsuyoshi; Takada, Shoji

    2016-07-13

    Protein binding to DNA changes the DNA's structure, and altered DNA structure can, in turn, modulate the dynamics of protein binding. This mutual dependency is poorly understood. Here we investigated dynamic couplings among protein binding to DNA, protein sliding on DNA, and DNA bending by applying a coarse-grained simulation method to the bacterial architectural protein HU and 14 other DNA-binding proteins. First, we verified our method by showing that the simulated HU exhibits a weak preference for A/T-rich regions of DNA and a much higher affinity for gapped and nicked DNA, consistent with biochemical experiments. The high affinity was attributed to a local DNA bend, but not the specific chemical moiety of the gap/nick. The long-time dynamic analysis revealed that HU sliding is associated with the movement of the local DNA bending site. Deciphering single sliding steps, we found the coupling between HU sliding and DNA bending is akin to neither induced-fit nor population-shift; instead they moved concomitantly. This is reminiscent of a cation transfer on DNA and can be viewed as a protein version of polaron-like sliding. Interestingly, on shorter time scales, HU paused when the DNA was highly bent at the bound position and escaped from pauses once the DNA spontaneously returned to a less bent structure. The HU sliding is largely regulated by DNA bending dynamics. With 14 other proteins, we explored the generality and versatility of the dynamic coupling and found that 6 of the 15 assayed proteins exhibit the polaron-like sliding.

  1. Plasmon-enhanced emission from single fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Donehue, Jessica E.; Haas, Beth L.; Wertz, Esther; Talicska, Courtney N.; Biteen, Julie S.

    2013-02-01

    In this work, we use evaporated gold nanoparticle films (GNPFs) as substrates for plasmon-enhanced imaging of two fluorescent proteins (FPs): mCherry and YFP. Through single-molecule epifluorescence microscopy, we show enhancement of single FP emission in the presence of GNPFs. The gold-coupled FPs demonstrate emission up to four times brighter and seven times longer lived, yielding order-of-magnitude enhancements in total photons detected. Ultimately, this results in increased localization accuracies for single-molecule imaging. Furthermore, we introduce preliminary results for enhancement of mCherry-labeled TcpP membrane proteins inside live Vibrio cholerae cells coupled to GNPFs. Our work indicates that plasmonic substrates are uniquely advantageous for super-resolution imaging and that plasmon-enhanced imaging is a promising technique for improving live cell single-molecule microscopy.

  2. Kinetic Measurements Reveal Enhanced Protein-Protein Interactions at Intercellular Junctions

    PubMed Central

    Shashikanth, Nitesh; Kisting, Meridith A.; Leckband, Deborah E.

    2016-01-01

    The binding properties of adhesion proteins are typically quantified from measurements with soluble fragments, under conditions that differ radically from the confined microenvironment of membrane bound proteins in adhesion zones. Using classical cadherin as a model adhesion protein, we tested the postulate that confinement within quasi two-dimensional intercellular gaps exposes weak protein interactions that are not detected in solution binding assays. Micropipette-based measurements of cadherin-mediated, cell-cell binding kinetics identified a unique kinetic signature that reflects both adhesive (trans) bonds between cadherins on opposing cells and lateral (cis) interactions between cadherins on the same cell. In solution, proposed lateral interactions were not detected, even at high cadherin concentrations. Mutations postulated to disrupt lateral cadherin association altered the kinetic signatures, but did not affect the adhesive (trans) binding affinity. Perturbed kinetics further coincided with altered cadherin distributions at junctions, wound healing dynamics, and paracellular permeability. Intercellular binding kinetics thus revealed cadherin interactions that occur within confined, intermembrane gaps but not in solution. Findings further demonstrate the impact of these revealed interactions on the organization and function of intercellular junctions. PMID:27009566

  3. Plant SAM-Domain Proteins Start to Reveal Their Roles.

    PubMed

    Denay, Grégoire; Vachon, Gilles; Dumas, Renaud; Zubieta, Chloe; Parcy, François

    2017-08-01

    Proteins often act in complexes assembled via protein-protein interaction domains. The sterile alpha motif (SAM) domain is one of the most prominent interaction domains in animals and is present in proteins of diverse functions. This domain allows head-to-tail closed oligomerisation or polymer formation resulting in homo- and/or heterocomplexes that have been shown to be important for proper protein localisation and function. In plants this domain is also present but has been poorly studied except for recent studies on the LEAFY floral regulator and the tRNA import component (TRIC)1/2 proteins. Here we catalogue SAM domain-containing proteins from arabidopsis (Arabidopsis thaliana), compare plant and other eukaryotic SAM domains, and perform homology modelling to probe plant SAM domain interaction capabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sensitive single-molecule protein quantification and protein complex detection in a microarray format

    PubMed Central

    Tessler, Lee A.; Mitra, Robi D.

    2012-01-01

    Single-molecule protein analysis provides sensitive protein quantitation with a digital read-out and is promising for studying biological systems and detecting biomarkers clinically. However, current single-molecule platforms rely on the quantification of one protein at a time. Conventional antibody microarrays are scalable to detect many proteins simultaneously, but they rely on less-sensitive and less quantitative quantification by the ensemble averaging of fluorescent molecules. Here we demonstrate a single-molecule protein assay in a microarray format enabled by an ultra-low background surface and single-molecule imaging. The digital read-out provides a highly sensitive, low femtomolar limit of detection and 4 orders of magnitude of dynamic range through the use of hybrid digital-analog quantification. From crude cell lysate, we measured levels of p53 and MDM2 in parallel, proving the concept of a digital antibody microarray for use in proteomic profiling. We also applied the single-molecule microarray to detect the p53-MDM2 protein complex in cell lysate. Our study is promising for development and application of single-molecule protein methods because it represents a technological bridge between single-plex and highly multiplex studies. PMID:22038904

  5. Real-time single-molecule observations of proteins at the solid-liquid interface

    NASA Astrophysics Data System (ADS)

    Langdon, Blake Brianna

    Non-specific protein adsorption to solid surfaces is pervasive and observed across a broad spectrum of applications including biomaterials, separations, pharmaceuticals, and biosensing. Despite great interest in and considerable literature dedicated to the phenomena, a mechanistic understanding of this complex phenomena is lacking and remains controversial, partially due to the limits of ensemble-averaging techniques used to study it. Single-molecule tracking (SMT) methods allow us to study distinct protein dynamics (e.g. adsorption, desorption, diffusion, and intermolecular associations) on a molecule-by-molecule basis revealing the protein population and spatial heterogeneity inherent in protein interfacial behavior. By employing single-molecule total internal reflection fluorescence microscopy (SM-TIRFM), we have developed SMT methods to directly observe protein interfacial dynamics at the solid-liquid interface to build a better mechanistic understanding of protein adsorption. First, we examined the effects of surface chemistry (e.g. hydrophobicity, hydrogen-bonding capacity), temperature, and electrostatics on isolated protein desorption and interfacial diffusion for fibrinogen (Fg) and bovine serum albumin (BSA). Next, we directly and indirectly probed the effects of protein-protein interactions on interfacial desorption, diffusion, aggregation, and surface spatial heterogeneity on model and polymeric thin films. These studies provided many useful insights into interfacial protein dynamics including the following observations. First, protein adsorption was reversible, with the majority of proteins desorbing from all surface chemistries within seconds. Isolated protein-surface interactions were relatively weak on both hydrophobic and hydrophilic surfaces (apparent desorption activation energies of only a few kBT). However, proteins could dynamically and reversibly associate at the interface, and these interfacial associations led to proteins remaining on the

  6. Single molecule analysis reveals reversible and irreversible steps during spliceosome activation

    PubMed Central

    Hoskins, Aaron A; Rodgers, Margaret L; Friedman, Larry J; Gelles, Jeff; Moore, Melissa J

    2016-01-01

    The spliceosome is a complex machine composed of small nuclear ribonucleoproteins (snRNPs) and accessory proteins that excises introns from pre-mRNAs. After assembly the spliceosome is activated for catalysis by rearrangement of subunits to form an active site. How this rearrangement is coordinated is not well-understood. During activation, U4 must be released to allow U6 conformational change, while Prp19 complex (NTC) recruitment is essential for stabilizing the active site. We used multi-wavelength colocalization single molecule spectroscopy to directly observe the key events in Saccharomyces cerevisiae spliceosome activation. Following binding of the U4/U6.U5 tri-snRNP, the spliceosome either reverses assembly by discarding tri-snRNP or proceeds to activation by irreversible U4 loss. The major pathway for NTC recruitment occurs after U4 release. ATP stimulates both the competing U4 release and tri-snRNP discard processes. The data reveal the activation mechanism and show that overall splicing efficiency may be maintained through repeated rounds of disassembly and tri-snRNP reassociation. DOI: http://dx.doi.org/10.7554/eLife.14166.001 PMID:27244240

  7. Single-Molecule Imaging Reveals that Rad4 Employs a Dynamic DNA Damage Recognition Process.

    PubMed

    Kong, Muwen; Liu, Lili; Chen, Xuejing; Driscoll, Katherine I; Mao, Peng; Böhm, Stefanie; Kad, Neil M; Watkins, Simon C; Bernstein, Kara A; Wyrick, John J; Min, Jung-Hyun; Van Houten, Bennett

    2016-10-20

    Nucleotide excision repair (NER) is an evolutionarily conserved mechanism that processes helix-destabilizing and/or -distorting DNA lesions, such as UV-induced photoproducts. Here, we investigate the dynamic protein-DNA interactions during the damage recognition step using single-molecule fluorescence microscopy. Quantum dot-labeled Rad4-Rad23 (yeast XPC-RAD23B ortholog) forms non-motile complexes or conducts a one-dimensional search via either random diffusion or constrained motion. Atomic force microcopy analysis of Rad4 with the β-hairpin domain 3 (BHD3) deleted reveals that this motif is non-essential for damage-specific binding and DNA bending. Furthermore, we find that deletion of seven residues in the tip of β-hairpin in BHD3 increases Rad4-Rad23 constrained motion at the expense of stable binding at sites of DNA lesions, without diminishing cellular UV resistance or photoproduct repair in vivo. These results suggest a distinct intermediate in the damage recognition process during NER, allowing dynamic DNA damage detection at a distance. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus

    PubMed Central

    Zhang, Zhonghua; Ivanov, Sergey; Saunders, Diane G. O.; Mu, Desheng; Pang, Erli; Cao, Huifen; Cha, Hwangho; Lin, Tao; Zhou, Qian; Shang, Yi; Li, Ying; Sharma, Trupti; van Velzen, Robin; de Ruijter, Norbert; Aanen, Duur K.; Win, Joe; Kamoun, Sophien; Bisseling, Ton; Geurts, René; Huang, Sanwen

    2014-01-01

    Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya. PMID:24415955

  9. Single-molecule FRET-Rosetta reveals RNA structural rearrangements during human telomerase catalysis.

    PubMed

    Parks, Joseph W; Kappel, Kalli; Das, Rhiju; Stone, Michael D

    2017-02-01

    Maintenance of telomeres by telomerase permits continuous proliferation of rapidly dividing cells, including the majority of human cancers. Despite its direct biomedical significance, the architecture of the human telomerase complex remains unknown. Generating homogeneous telomerase samples has presented a significant barrier to developing improved structural models. Here we pair single-molecule Förster resonance energy transfer (smFRET) measurements with Rosetta modeling to map the conformations of the essential telomerase RNA core domain within the active ribonucleoprotein. FRET-guided modeling places the essential pseudoknot fold distal to the active site on a protein surface comprising the C-terminal element, a domain that shares structural homology with canonical polymerase thumb domains. An independently solved medium-resolution structure of Tetrahymena telomerase provides a blind test of our modeling methodology and sheds light on the structural homology of this domain across diverse organisms. Our smFRET-Rosetta models reveal nanometer-scale rearrangements within the RNA core domain during catalysis. Taken together, our FRET data and pseudoatomic molecular models permit us to propose a possible mechanism for how RNA core domain rearrangement is coupled to template hybrid elongation. © 2017 Parks et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  10. Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition

    PubMed Central

    Visnapuu, Mari-Liis; Greene, Eric C.

    2009-01-01

    Here we use single-molecule imaging to determine coarse-grained intrinsic energy landscapes for nucleosome deposition on model DNA substrates. Our results reveal distributions that are correlated with recent in silico predictions, reinforcing the hypothesis that DNA contains some intrinsic positioning information. We also show that cis-regulatory sequences in human DNA coincide with peaks in the intrinsic landscape, whereas valleys correspond to non-regulatory regions, and we present evidence arguing that nucleosome deposition in vertebrates is influenced by factors not accounted for by current theory. Finally, we demonstrate that intrinsic landscapes of nucleosomes containing the centromere-specific variant CenH3 are correlated with patterns observed for canonical nucleosomes, arguing that CenH3 does not alter sequence preferences of centromeric nucleosomes. However, the non-histone protein Scm3 alters the intrinsic landscape of CenH3-containing nucleosomes, enabling them to overcome the otherwise exclusionary effects of poly(dA–dT) tracts, which are enriched in centromeric DNA. PMID:19734899

  11. Reveal protein dynamics by combining computer simulation and neutron scattering

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Smith, Jeremy; CenterMolecular Biophysics Team

    2014-03-01

    Protein carries out most functions in living things on the earth through characteristic modulation of its three-dimensional structure over time. Understanding the microscopic nature of the protein internal motion and its connection to the function and structure of the biomolecule is a central topic in biophysics, and of great practical importance for drug design, study of diseases, and the development of renewable energy, etc. Under physiological conditions, protein exhibits a complex dynamics landscape, i.e., a variety of diffusive and conformational motions occur on similar time and length scales. This variety renders difficult the derivation of a simplified description of protein internal motions in terms of a small number of distinct, additive components. This difficulty is overcome by our work using a combined approach of Molecular Dynamics (MD) simulations and the Neutron Scattering experiments. Our approach enables distinct protein motions to be characterized separately, furnishing an in-depth understanding of the connection between protein structure, dynamics and function.

  12. Probing protein disorder and complexity at single-molecule resolution.

    PubMed

    Lee, Taehyung; Moran-Gutierrez, Crystal R; Deniz, Ashok A

    2015-01-01

    A substantial fraction of the human proteome encodes disordered proteins. Protein disorder is associated with a variety of cellular functions and misfunction, and is therefore of clear import to biological systems. However, disorder lends itself to conformational flexibility and heterogeneity, rendering proteins which feature prominent disorder difficult to study using conventional structural biology methods. Here we discuss a few examples of how single-molecule methods are providing new insight into the biophysics and complexity of these proteins by avoiding ensemble averaging, thereby providing direct information about the complex distributions and dynamics of this important class of proteins. Examples of note include characterization of isolated IDPs in solution as collapsed and dynamic species, detailed insight into complex IDP folding landscapes, and new information about how tunable regulation of structure-mediated binding cooperativity and consequent function can be achieved through protein disorder. With these exciting advances in view, we conclude with a discussion of a few complementary and emerging single-molecule efforts of particular promise, including complementary and enhanced methodologies for studying disorder in proteins, and experiments to investigate the potential role for IDP-induced phase separation as a critical functional element in biological systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity.

    PubMed

    Watson, Eleanor; Sherry, Aileen; Inglis, Neil F; Lainson, Alex; Jyothi, Dushyanth; Yaga, Raja; Manson, Erin; Imrie, Lisa; Everest, Paul; Smith, David G E

    2014-09-01

    Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  14. Single Molecule Tracking and Localization of Mitochondrial Protein Complexes in Live Cells.

    PubMed

    Appelhans, Timo; Busch, Karin

    2017-01-01

    Mitochondria are the power plant of most non-green eukaryotic cells. An understanding of their function and regulation is only possible with the knowledge of the spatiotemporal dynamics of their proteins. Mitochondrial membrane proteins involved in diverse functions like protein import, cell respiration, metabolite transport, and mitochondrial morphology are mobile within membranes. Here, we provide a protocol for a superresolution fluorescence microscopy technique named tracking and localization microscopy (TALM) that allows for localization and diffusion analysis of single mitochondrial membrane proteins in situ in cell cultures. This noninvasive imaging technique is a useful tool to reveal the spatiotemporal organization of proteins in diverse mitochondrial membrane compartments in living cells. Proteins of interest are tagged with the HaloTag(®) and specifically labeled with functionalized rhodamine dyes. The method profits from low abundance of proteins and therefore works better with substoichiometric labeling of HaloTag®-tagged proteins. In particular, the use of photostable bright rhodamine dyes enables the specific tagging and localization of single molecules with a calculated precision below 20 nm and the recording of single trajectories.

  15. Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network

    PubMed Central

    Fang, Yi; Benjamin, William; Sun, Mengtian; Ramani, Karthik

    2011-01-01

    Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries. PMID:21559288

  16. Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts.

    PubMed

    Dudkina, Natalya V; Kouril, Roman; Bultema, Jelle B; Boekema, Egbert J

    2010-06-18

    Ongoing progress in electron microscopy (EM) offers now an opening to visualize cells at the nanoscale by cryo-electron tomography (ET). Large protein complexes can be resolved at near-atomic resolution by single particle averaging. Some examples from mitochondria and chloroplasts illustrate the possibilities with an emphasis on the membrane organization. Cryo-ET performed on non-chemically fixed, unstained, ice-embedded material can visualize specific large membrane protein complexes. In combination with averaging methods, 3D structures were calculated of mitochondrial ATP synthase at 6 nm resolution and of chloroplast photosystem II at 3.5 nm. Copyright 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Revealing Higher Order Protein Structure Using Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chait, Brian T.; Cadene, Martine; Olinares, Paul Dominic; Rout, Michael P.; Shi, Yi

    2016-06-01

    The development of rapid, sensitive, and accurate mass spectrometric methods for measuring peptides, proteins, and even intact protein assemblies has made mass spectrometry (MS) an extraordinarily enabling tool for structural biology. Here, we provide a personal perspective of the increasingly useful role that mass spectrometric techniques are exerting during the elucidation of higher order protein structures. Areas covered in this brief perspective include MS as an enabling tool for the high resolution structural biologist, for compositional analysis of endogenous protein complexes, for stoichiometry determination, as well as for integrated approaches for the structural elucidation of protein complexes. We conclude with a vision for the future role of MS-based techniques in the development of a multi-scale molecular microscope.

  18. Principles of assembly reveal a periodic table of protein complexes.

    PubMed

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  19. Molecular weight characterization of single globular proteins using optical nanotweezers.

    PubMed

    Wheaton, Skyler; Gordon, Reuven

    2015-07-21

    We trap a set of molecular weight standard globular proteins using a double nanohole optical trap. The root mean squared variation of the trapping laser transmission intensity gives a linear dependence with the molecular weight, showing the potential for analysis of globular proteins. The characteristic time of the autocorrelation of the trapping laser intensity variations scales with a -2/3 power dependence with the volume of the particle. A hydrodynamic laser tweezer model is used to explain these dependencies. Since this is a single particle technique that operates in solution and can be used to isolate an individual particle, we believe that it provides an interesting alternative to existing analysis methods and shows promise to expand the capabilities of protein related studies to the single particle level.

  20. The Single-Molecule Approach to Membrane Protein Stoichiometry.

    PubMed

    Nichols, Michael G; Hallworth, Richard

    2016-01-01

    The advent of techniques for imaging solitary fluorescent molecules has made possible many new kinds of biological experiments. Here, we describe the application of single-molecule imaging to the problem of subunit stoichiometry in membrane proteins. A membrane protein of unknown stoichiometry, prestin, is coupled to the fluorescent enhanced green fluorescent protein (eGFP) and synthesized in the human embryonic kidney (HEK) cell line. We prepare adherent membrane fragments containing prestin-eGFP by osmotic lysis. The molecules are then exposed to continuous low-level excitation until their fluorescence reaches background levels. Their fluorescence decreases in discrete equal-amplitude steps, consistent with the photobleaching of single fluorophores. We count the number of steps required to photobleach each molecule. The molecular stoichiometry is then deduced using a binomial model.

  1. Ribosomal History Reveals Origins of Modern Protein Synthesis

    PubMed Central

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world. PMID:22427882

  2. Ribosomal history reveals origins of modern protein synthesis.

    PubMed

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.

  3. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  4. Common fluorescent proteins for single-molecule localization microscopy

    NASA Astrophysics Data System (ADS)

    Klementieva, Natalia V.; Bozhanova, Nina G.; Mishina, Natalie M.; Zagaynova, Elena V.; Lukyanov, Konstantin A.; Mishin, Alexander S.

    2015-07-01

    Super-resolution techniques for breaking the diffraction barrier are spread out over multiple studies nowadays. Single-molecule localization microscopy such as PALM, STORM, GSDIM, etc allow to get super-resolved images of cell ultrastructure by precise localization of individual fluorescent molecules via their temporal isolation. However, these methods are supposed the use of fluorescent dyes and proteins with special characteristics (photoactivation/photoconversion). At the same time, there is a need for retaining high photostability of fluorophores during long-term acquisition. Here, we first showed the potential of common red fluorescent protein for single-molecule localization microscopy based on spontaneous intrinsic blinking. Also, we assessed the effect of different imaging media on photobleaching of these fluorescent proteins. Monomeric orange and red fluorescent proteins were examined for stochastic switching from a dark state to a bright fluorescent state. We studied fusions with cytoskeletal proteins in NIH/3T3 and HeLa cells. Imaging was performed on the Nikon N-STORM system equipped with EMCCD camera. To define the optimal imaging conditions we tested several types of cell culture media and buffers. As a result, high-resolution images of cytoskeleton structure were obtained. Essentially, low-intensity light was sufficient to initiate the switching of tested red fluorescent protein reducing phototoxicity and provide long-term live-cell imaging.

  5. Eliminating zebrafish pbx proteins reveals a hindbrain ground state.

    PubMed

    Waskiewicz, Andrew Jan; Rikhof, Holly A; Moens, Cecilia B

    2002-11-01

    The vertebrate hindbrain is divided into serially homologous segments, the rhombomeres (r). Pbx and Hox proteins are hypothesized to form heterodimeric, DNA binding transcription complexes which specify rhombomere identities. Here, we show that eliminating zebrafish Lzr/Pbx4 and Pbx2 function prevents hindbrain segmentation and causes a wholesale anterior homeotic transformation of r2-r6, to r1 identity. We demonstrate that Pbx proteins interact with Hox paralog group 1 proteins to specify segment identities broadly within the hindbrain, and that this process involves the Pbx:Hox-1-dependent induction of Fgf signals in r4. We propose that in the absence of Pbx function, r2-r6 acquire a homogeneous ground state identity, that of r1, and that Pbx proteins, functioning primarily with their Hox partners, function to modify this ground state identity during normal hindbrain development.

  6. Alternate states of proteins revealed by detailed energy landscape mapping.

    PubMed

    Tyka, Michael D; Keedy, Daniel A; André, Ingemar; Dimaio, Frank; Song, Yifan; Richardson, David C; Richardson, Jane S; Baker, David

    2011-01-14

    What conformations do protein molecules populate in solution? Crystallography provides a high-resolution description of protein structure in the crystal environment, while NMR describes structure in solution but using less data. NMR structures display more variability, but is this because crystal contacts are absent or because of fewer data constraints? Here we report unexpected insight into this issue obtained through analysis of detailed protein energy landscapes generated by large-scale, native-enhanced sampling of conformational space with Rosetta@home for 111 protein domains. In the absence of tightly associating binding partners or ligands, the lowest-energy Rosetta models were nearly all <2.5 Å C(α)RMSD from the experimental structure; this result demonstrates that structure prediction accuracy for globular proteins is limited mainly by the ability to sample close to the native structure. While the lowest-energy models are similar to deposited structures, they are not identical; the largest deviations are most often in regions involved in ligand, quaternary, or crystal contacts. For ligand binding proteins, the low energy models may resemble the apo structures, and for oligomeric proteins, the monomeric assembly intermediates. The deviations between the low energy models and crystal structures largely disappear when landscapes are computed in the context of the crystal lattice or multimer. The computed low-energy ensembles, with tight crystal-structure-like packing in the core, but more NMR-structure-like variability in loops, may in some cases resemble the native state ensembles of proteins better than individual crystal or NMR structures, and can suggest experimentally testable hypotheses relating alternative states and structural heterogeneity to function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria

    PubMed Central

    Gonzalez-Calero, Laura; Martínez, Paula J.; Martin-Lorenzo, Marta; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; de la Cuesta, Fernando; Calvo, Eva; Segura, Julian; Lopez, Juan Antonio; Vázquez, Jesús; Barderas, Maria G.; Ruilope, Luis M.; Vivanco, Fernando; Alvarez-Llamas, Gloria

    2017-01-01

    Albuminuria is an indicator of cardiovascular risk and renal damage in hypertensive individuals. Chronic renin–angiotensin system (RAS) suppression facilitates blood pressure control and prevents development of new-onset-albuminuria. A significant number of patients, however, develop albuminuria despite chronic RAS blockade, and the physiopathological mechanisms are underexplored. Urinary exosomes reflect pathological changes taking place in the kidney. The objective of this work was to examine exosomal protein alterations in hypertensive patients with albuminuria in the presence of chronic RAS suppression, to find novel clues underlying its development. Patients were followed-up for three years and were classified as: a) patients with persistent normoalbuminuria; b) patients developing de novo albuminuria; and c) patients with maintained albuminuria. Exosomal protein alterations between groups were identified by isobaric tag quantitation (iTRAQ). Confirmation was approached by target analysis (SRM). In total, 487 proteins were identified with high confidence. Specifically, 48 proteins showed an altered pattern in response to hypertension and/or albuminuria. Out of them, 21 proteins interact together in three main functional clusters: glycosaminoglycan degradation, coagulation and complement system, and oxidative stress. The identified proteins constitute potential targets for drug development and may help to define therapeutic strategies to evade albuminuria progression in hypertensive patients chronically treated. PMID:28562335

  8. Single-file diffusion of protein drugs through cylindrical nanochannels.

    PubMed

    Yang, Seung Yun; Yang, Jeong-A; Kim, Eung-Sam; Jeon, Gumhye; Oh, Eun Ju; Choi, Kwan Yong; Hahn, Sei Kwang; Kim, Jin Kon

    2010-07-27

    A new drug delivery device using cylindrical block copolymer nanochannels was successfully developed for controlled protein drug delivery applications. Depending on the hydrodynamic diameter of the protein drugs, the pore size in cylindrical nanochannels could be controlled precisely down to 6 nm by Au deposition. Zero-order release of bovine serum albumin (BSA) and human growth hormone (hGH) by single-file diffusion, which has been observed for gas diffusion through zeolite pores, was realized up to 2 months without protein denaturation. Furthermore, a nearly constant in vivo release of hGH from the drug delivery nanodevice implanted to Sprague-Dawley (SD) rats was continued up to 3 weeks, demonstrating the feasibility for long-term controlled delivery of therapeutic protein drugs.

  9. Membrane Protein Profiling of Human Colon Reveals Distinct Regional Differences *

    PubMed Central

    van der Post, Sjoerd; Hansson, Gunnar C.

    2014-01-01

    The colonic epithelium is a highly dynamic system important for the regulation of ion and water homeostasis via absorption and secretion and for the maintenance of a protective barrier between the outer milieu and the inside of the body. These processes are known to gradually change along the length of the colon, although a complete characterization at the protein level is lacking. We therefore analyzed the membrane proteome of isolated human (n = 4) colonic epithelial cells from biopsies obtained via routine colonoscopy for four segments along the large intestine: ascending, transverse, descending, and sigmoid colon. Label-free quantitative proteomic analyses using high-resolution mass spectrometry were performed on enriched membrane proteins. The results showed a stable level for the majority of membrane proteins but a distinct decrease in proteins associated with bacterial sensing, cation transport, and O-glycosylation in the proximal to distal regions. In contrast, proteins involved in microbial defense and anion transport showed an opposing gradient and increased toward the distal end. The gradient of ion-transporter proteins could be directly related to previously observed ion transport activities. All individual glycosyltransferases required for the O-glycosylation of the major colonic mucin MUC2 were observed and correlated with the known glycosylation variation along the colon axis. This is the first comprehensive quantitative dataset of membrane protein abundance along the human colon and will add to the knowledge of the physiological function of the different regions of the colonic mucosa. Mass spectrometry data have been deposited to the ProteomeXchange with the identifier PXD000987. PMID:24889196

  10. Single-Molecule Study of Protein-Protein Interaction Dynamics in a Cell Signaling System

    SciTech Connect

    Tan, Xin; Nalbant, Perihan; Toutchkine, Alexei; Hu, Dehong; Vorpagel, Erich R.; Hahn, Klaus M.; Lu, H. Peter

    2004-01-01

    We report a study on protein-protein noncovalent interactions in an intracellular signaling protein complex, using single-molecule spectroscopy and molecular dynamics (MD) simulations. A Wiskott-Aldrich Syndrome Protein (WASP) fragment that binds only the activated intracellular signaling protein Cdc42 was labeled with a novel solvatochromic dye and used to probe hydrophobic interactions significant to Cdc42/WASP recognition. The study shows static and dynamic inhomogeneous conformational fluctuations of the protein complex that involve bound and loosely bound states. A two-coupled, two-state Markovian kinetic model is proposed for the conformational dynamics. Finally, the MD simulations explore the origin of these conformational states and associated conformational fluctuations in this protein-protein interaction system.

  11. Quantifying Protein-mRNA Interactions in Single Live Cells.

    PubMed

    Wu, Bin; Buxbaum, Adina R; Katz, Zachary B; Yoon, Young J; Singer, Robert H

    2015-07-02

    Specific binding proteins are crucial for the correct spatiotemporal expression of mRNA. To understand this process, a method is required to characterize RNA-protein interactions in single living cells with subcellular resolution. We combined endogenous single RNA and protein detection with two-photon fluorescence fluctuation analysis to measure the average number of proteins bound to mRNA at specific locations within live cells. We applied this to quantify the known binding of zipcode binding protein 1 (ZBP1) and ribosomes to β-actin mRNA within subcellular compartments of primary fibroblasts and neurons. ZBP1-mRNA binding did not occur in nuclei, contrary to previous conclusions. ZBP1 interaction with β-actin mRNA was enhanced perinuclearly in neurons compared to fibroblasts. Cytoplasmic ZBP1 and ribosome binding to the mRNA were anti-correlated depending on their location in the cell. These measurements support a mechanism whereby ZBP1 inhibits translation of localizing mRNA until its release from the mRNA peripherally, allowing ribosome binding. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Single molecule imaging of protein molecules in nanopores.

    PubMed

    Ma, Changbei; Yeung, Edward S

    2010-01-15

    The interactions between single protein molecules and nanoporous polycarbonate membranes were investigated at the single molecule level. Entrapment of proteins was shown to be size selective and was dependent on the membrane pore diameter. A pore size that is only slightly larger than the maximum dimension of the proteins was inadequate for intrusion into the pores. For a given protein, the number of molecules found at a given depth decreased as the pore size decreased. In addition, as the depth increased, for a given size pore, the number of molecules decreased rapidly. The depth-dependent histograms nicely fit a one-dimensional diffusion model. However, a highly restricted motion was observed even when the pore diameter was 10 times the size of the protein, resulting in anomalously small diffusion coefficients. We also demonstrated the subtle differences in depth distribution among BSA and hemoglobin that have nearly the same molecular weight but slightly different molecular shapes. These results give unique insights into the detailed mechanism of size-exclusion chromatography and membrane filtration.

  13. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships.

    PubMed

    Jin, Ke; Musso, Gabriel; Vlasblom, James; Jessulat, Matthew; Deineko, Viktor; Negroni, Jacopo; Mosca, Roberto; Malty, Ramy; Nguyen-Tran, Diem-Hang; Aoki, Hiroyuki; Minic, Zoran; Freywald, Tanya; Phanse, Sadhna; Xiang, Qian; Freywald, Andrew; Aloy, Patrick; Zhang, Zhaolei; Babu, Mohan

    2015-02-06

    Although detailed, focused, and mechanistic analyses of associations among mitochondrial proteins (MPs) have identified their importance in varied biological processes, a systematic understanding of how MPs function in concert both with one another and with extra-mitochondrial proteins remains incomplete. Consequently, many questions regarding the role of mitochondrial dysfunction in the development of human disease remain unanswered. To address this, we compiled all existing mitochondrial physical interaction data for over 1200 experimentally defined yeast MPs and, through bioinformatic analysis, identified hundreds of heteromeric MP complexes having extensive associations both within and outside the mitochondria. We provide support for these complexes through structure prediction analysis, morphological comparisons of deletion strains, and protein co-immunoprecipitation. The integration of these MP complexes with reported genetic interaction data reveals substantial crosstalk between MPs and non-MPs and identifies novel factors in endoplasmic reticulum-mitochondrial organization, membrane structure, and mitochondrial lipid homeostasis. More than one-third of these MP complexes are conserved in humans, with many containing members linked to clinical pathologies, enabling us to identify genes with putative disease function through guilt-by-association. Although still remaining incomplete, existing mitochondrial interaction data suggests that the relevant molecular machinery is modular, yet highly integrated with non-mitochondrial processes.

  14. Rational engineering of single-chain polypeptides into protein-only, BBB-targeted nanoparticles.

    PubMed

    Serna, Naroa; Céspedes, María Virtudes; Saccardo, Paolo; Xu, Zhikun; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Sánchez-Chardi, Alejandro; Roldán, Mónica; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2016-07-01

    A single chain polypeptide containing the low density lipoprotein receptor (LDLR) ligand Seq-1 with blood-brain barrier (BBB) crossing activity has been successfully modified by conventional genetic engineering to self-assemble into stable protein-only nanoparticles of 30nm. The nanoparticulate presentation dramatically enhances in vitro, LDLR-dependent cell penetrability compared to the parental monomeric version, but the assembled protein does not show any enhanced brain targeting upon systemic administration. While the presentation of protein drugs in form of nanoparticles is in general advantageous regarding correct biodistribution, this principle might not apply to brain targeting that is hampered by particular bio-physical barriers. Irrespective of this fact, which is highly relevant to the nanomedicine of central nervous system, engineering the cationic character of defined protein stretches is revealed here as a promising and generic approach to promote the controlled oligomerization of biologically active protein species as still functional, regular nanoparticles.

  15. Revealing divergent evolution, identifying circular permutations and detecting active-sites by protein structure comparison.

    PubMed

    Chen, Luonan; Wu, Ling-Yun; Wang, Yong; Zhang, Shihua; Zhang, Xiang-Sun

    2006-09-02

    Protein structure comparison is one of the most important problems in computational biology and plays a key role in protein structure prediction, fold family classification, motif finding, phylogenetic tree reconstruction and protein docking. We propose a novel method to compare the protein structures in an accurate and efficient manner. Such a method can be used to not only reveal divergent evolution, but also identify circular permutations and further detect active-sites. Specifically, we define the structure alignment as a multi-objective optimization problem, i.e., maximizing the number of aligned atoms and minimizing their root mean square distance. By controlling a single distance-related parameter, theoretically we can obtain a variety of optimal alignments corresponding to different optimal matching patterns, i.e., from a large matching portion to a small matching portion. The number of variables in our algorithm increases with the number of atoms of protein pairs in almost a linear manner. In addition to solid theoretical background, numerical experiments demonstrated significant improvement of our approach over the existing methods in terms of quality and efficiency. In particular, we show that divergent evolution, circular permutations and active-sites (or structural motifs) can be identified by our method. The software SAMO is available upon request from the authors, or from http://zhangroup.aporc.org/bioinfo/samo/ and http://intelligent.eic.osaka-sandai.ac.jp/chenen/samo.htm. A novel formulation is proposed to accurately align protein structures in the framework of multi-objective optimization, based on a sequence order-independent strategy. A fast and accurate algorithm based on the bipartite matching algorithm is developed by exploiting the special features. Convergence of computation is shown in experiments and is also theoretically proven.

  16. The structure of HasB reveals a new class of TonB protein fold.

    PubMed

    de Amorim, Gisele Cardoso; Prochnicka-Chalufour, Ada; Delepelaire, Philippe; Lefèvre, Julien; Simenel, Catherine; Wandersman, Cécile; Delepierre, Muriel; Izadi-Pruneyre, Nadia

    2013-01-01

    TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.

  17. The Structure of HasB Reveals a New Class of TonB Protein Fold

    PubMed Central

    Delepelaire, Philippe; Lefèvre, Julien; Simenel, Catherine; Wandersman, Cécile; Delepierre, Muriel; Izadi-Pruneyre, Nadia

    2013-01-01

    TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor. PMID:23527057

  18. Spectroscopy reveals that ethyl esters interact with proteins in wine.

    PubMed

    Di Gaspero, Mattia; Ruzza, Paolo; Hussain, Rohanah; Vincenzi, Simone; Biondi, Barbara; Gazzola, Diana; Siligardi, Giuliano; Curioni, Andrea

    2017-02-15

    Impairment of wine aroma after vinification is frequently associated to bentonite treatments and this can be the result of protein removal, as recently demonstrated for ethyl esters. To evaluate the existence of an interaction between wine proteins and ethyl esters, the effects induced by these fermentative aroma compounds on the secondary structure and stability of VVTL1, a Thaumatin-like protein purified from wine, was analyzed by Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy. The secondary structure of wine VVTL1 was not strongly affected by the presence of selected ethyl esters. In contrast, VVTL1 stability was slightly increased by the addition of ethyl-octanoate, -decanoate and -dodecanoate, but decreased by ethyl-hexanoate. This indicates the existence of an interaction between VVTL1 and at least some aroma compounds produced during fermentation. The data suggest that proteins removal from wine by bentonite can result in indirect removal of at least some aroma compounds associated with them. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Protein Logic: A Statistical Mechanical Study of Signal Integration at the Single-Molecule Level

    PubMed Central

    de Ronde, Wiet; Rein ten Wolde, Pieter; Mugler, Andrew

    2012-01-01

    Information processing and decision-making is based upon logic operations, which in cellular networks has been well characterized at the level of transcription. In recent years, however, both experimentalists and theorists have begun to appreciate that cellular decision-making can also be performed at the level of a single protein, giving rise to the notion of protein logic. Here we systematically explore protein logic using a well-known statistical mechanical model. As an example system, we focus on receptors that bind either one or two ligands, and their associated dimers. Notably, we find that a single heterodimer can realize any of the 16 possible logic gates, including the XOR gate, by variation of biochemical parameters. We then introduce what to our knowledge is a novel idea: that a set of receptors with fixed parameters can encode functionally unique logic gates simply by forming different dimeric combinations. An exhaustive search reveals that the simplest set of receptors (two single-ligand receptors and one double-ligand receptor) can realize several different groups of three unique gates, a result for which the parametric analysis of single receptors and dimers provides a clear interpretation. Both results underscore the surprising functional freedom readily available to cells at the single-protein level. PMID:23009860

  20. Protein logic: a statistical mechanical study of signal integration at the single-molecule level.

    PubMed

    de Ronde, Wiet; Rein ten Wolde, Pieter; Mugler, Andrew

    2012-09-05

    Information processing and decision-making is based upon logic operations, which in cellular networks has been well characterized at the level of transcription. In recent years, however, both experimentalists and theorists have begun to appreciate that cellular decision-making can also be performed at the level of a single protein, giving rise to the notion of protein logic. Here we systematically explore protein logic using a well-known statistical mechanical model. As an example system, we focus on receptors that bind either one or two ligands, and their associated dimers. Notably, we find that a single heterodimer can realize any of the 16 possible logic gates, including the XOR gate, by variation of biochemical parameters. We then introduce what to our knowledge is a novel idea: that a set of receptors with fixed parameters can encode functionally unique logic gates simply by forming different dimeric combinations. An exhaustive search reveals that the simplest set of receptors (two single-ligand receptors and one double-ligand receptor) can realize several different groups of three unique gates, a result for which the parametric analysis of single receptors and dimers provides a clear interpretation. Both results underscore the surprising functional freedom readily available to cells at the single-protein level. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Flow Cytometric Single-Cell Analysis for Quantitative in Vivo Detection of Protein-Protein Interactions via Relative Reporter Protein Expression Measurement.

    PubMed

    Wu, Lina; Wang, Xu; Zhang, Jianqiang; Luan, Tian; Bouveret, Emmanuelle; Yan, Xiaomei

    2017-03-07

    Cell-based two-hybrid assays have been key players in identifying pairwise interactions, yet quantitative measurement of protein-protein interactions in vivo remains challenging. Here, we show that by using relative reporter protein expression (RRPE), defined as the level of reporter expression normalized to that of the interacting protein, quantitative analysis of protein interactions in a bacterial adenylate cyclase two-hybrid (BACTH) system can be achieved. A multicolor flow cytometer was used to measure simultaneously the expression levels of one of the two putative interacting proteins and the β-galactosidase (β-gal) reporter protein upon dual immunofluorescence staining. Single-cell analysis revealed that there exists bistability in the BACTH system and the RRPE is an intrinsic characteristic associated with the binding strength between the two interacting proteins. The RRPE-BACTH method provides an efficient tool to confirm interacting pairs of proteins, investigate determinant residues in protein-protein interaction, and compare interaction strength of different pairs.

  2. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    PubMed Central

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  3. Single-cell genomics reveal low recombination frequencies in freshwater bacteria of the SAR11 clade

    PubMed Central

    2013-01-01

    Background The SAR11 group of Alphaproteobacteria is highly abundant in the oceans. It contains a recently diverged freshwater clade, which offers the opportunity to compare adaptations to salt- and freshwaters in a monophyletic bacterial group. However, there are no cultivated members of the freshwater SAR11 group and no genomes have been sequenced yet. Results We isolated ten single SAR11 cells from three freshwater lakes and sequenced and assembled their genomes. A phylogeny based on 57 proteins indicates that the cells are organized into distinct microclusters. We show that the freshwater genomes have evolved primarily by the accumulation of nucleotide substitutions and that they have among the lowest ratio of recombination to mutation estimated for bacteria. In contrast, members of the marine SAR11 clade have one of the highest ratios. Additional metagenome reads from six lakes confirm low recombination frequencies for the genome overall and reveal lake-specific variations in microcluster abundances. We identify hypervariable regions with gene contents broadly similar to those in the hypervariable regions of the marine isolates, containing genes putatively coding for cell surface molecules. Conclusions We conclude that recombination rates differ dramatically in phylogenetic sister groups of the SAR11 clade adapted to freshwater and marine ecosystems. The results suggest that the transition from marine to freshwater systems has purged diversity and resulted in reduced opportunities for recombination with divergent members of the clade. The low recombination frequencies of the LD12 clade resemble the low genetic divergence of host-restricted pathogens that have recently shifted to a new host. PMID:24286338

  4. Charged single alpha-helices in proteomes revealed by a consensus prediction approach.

    PubMed

    Gáspári, Zoltán; Süveges, Dániel; Perczel, András; Nyitray, László; Tóth, Gábor

    2012-04-01

    Charged single α-helices (CSAHs) constitute a recently recognized protein structural motif. Its presence and role is characterized in only a few proteins. To explore its general features, a comprehensive study is necessary. We have set up a consensus prediction method available as a web service (at http://csahserver.chem.elte.hu) and downloadable scripts capable of predicting CSAHs from protein sequences. Using our method, we have performed a comprehensive search on the UniProt database. We found that the motif is very rare but seems abundant in proteins involved in symbiosis and RNA binding/processing. Although there are related proteins with CSAH segments, the motif shows no deep conservation in protein families. We conclude that CSAH-containing proteins, although rare, are involved in many key biological processes. Their conservation pattern and prevalence in symbiosis-associated proteins suggest that they might be subjects of relatively rapid molecular evolution and thus can contribute to the emergence of novel functions.

  5. Nonequilibrium single molecule protein folding in a coaxial mixer.

    PubMed

    Hamadani, Kambiz M; Weiss, Shimon

    2008-07-01

    We have developed a continuous-flow mixing device suitable for monitoring bioconformational reactions at the single-molecule level with a response time of approximately 10 ms under single-molecule flow conditions. Its coaxial geometry allows three-dimensional hydrodynamic focusing of sample fluids to diffraction-limited dimensions where diffusional mixing is rapid and efficient. The capillary-based design enables rapid in-lab construction of mixers without the need for expensive lithography-based microfabrication facilities. In-line filtering of sample fluids using granulated silica particles virtually eliminates clogging and extends the lifetime of each device to many months. In this article, to determine both the distance-to-time transfer function and the instrument response function of the device we characterize its fluid flow and mixing properties using both fluorescence cross-correlation spectroscopy velocimetry and finite element fluid dynamics simulations. We then apply the mixer to single molecule FRET protein folding studies of Chymotrypsin Inhibitor protein 2. By transiently populating the unfolded state of Chymotrypsin Inhibitor Protein 2 (CI2) under nonequilibrium in vitro refolding conditions, we spatially and temporally resolve the denaturant-dependent nonspecific collapse of the unfolded state from the barrier-limited folding transition of CI2. Our results are consistent with previous CI2 mixing results that found evidence for a heterogeneous unfolded state consisting of cis- and trans-proline conformers.

  6. Single honeybee silk protein mimics properties of multi-protein silk.

    PubMed

    Sutherland, Tara D; Church, Jeffrey S; Hu, Xiao; Huson, Mickey G; Kaplan, David L; Weisman, Sarah

    2011-02-02

    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk.

  7. Fully Quantified Spectral Imaging Reveals in Vivo Membrane Protein Interactions

    PubMed Central

    King, Christopher; Stoneman, Michael; Raicu, Valerica; Hristova, Kalina

    2016-01-01

    Here we introduce the Fully Quantified Spectral Imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling. PMID:26787445

  8. Fluctuation analysis of motor protein movement and single enzyme kinetics.

    PubMed Central

    Svoboda, K; Mitra, P P; Block, S M

    1994-01-01

    We studied fluctuations in the displacement of silica beads driven by single molecules of the motor protein kinesin, moving under low mechanical loads at saturating ATP concentrations. The variance in position was significantly smaller than expected for the case of stepwise movement along a regular lattice of positions with exponentially distributed intervals. The small variance suggests that two or more sequential processes with comparable reaction rates dominate the biochemical cycle. The low value is inconsistent with certain recently proposed thermal ratchet models for motor movement as well as with scenarios where the hydrolysis of a single ATP molecule leads to a cluster of several steps. Fluctuation analysis is a potential powerful tool for studying kinetic behavior whenever the output of a single enzyme can be monitored. PMID:7991536

  9. Diffusion of human Replication Protein A along single stranded DNA

    PubMed Central

    Nguyen, Binh; Sokoloski, Joshua; Galletto, Roberto; Elson, Elliot L.; Wold, Marc S.; Lohman, Timothy M.

    2014-01-01

    Replication Protein A (RPA) is a eukaryotic single stranded (ss) DNA binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA-DNA interactions, we combined ensemble and single molecule fluorescence approaches to examine human RPA diffusion along ssDNA and find that an hRPA hetero-trimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1 ~5000 nucleotide2s−1 at 37°C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA. PMID:25058683

  10. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions

    PubMed Central

    Zhang, Qi; Ma, Cheng; Oberli, Alexander; Zinz, Astrid; Engels, Sonja; Przyborski, Jude M.

    2017-01-01

    Malaria parasites modify their human host cell, the mature erythrocyte. This modification is mediated by a large number of parasite proteins that are exported to the host cell, and is also the underlying cause for the pathology caused by malaria infection. Amongst these proteins are many Hsp40 co-chaperones, and a single Hsp70. These proteins have been implicated in several processes in the host cell, including a potential role in protein transport, however the further molecular players in this process remain obscure. To address this, we have utilized chemical cross-linking followed by mass spectrometry and immunoblotting to isolate and characterize proteins complexes containing an exported Hsp40 (PFE55), and the only known exported Hsp70 (PfHsp70x). Our data reveal that both of these proteins are contained in high molecular weight protein complexes. These complexes are found both in the infected erythrocyte, and within the parasite-derived compartment referred to as the parasitophorous vacuole. Surprisingly, our data also reveal an association of PfHsp70x with components of PTEX, a putative protein translocon within the membrane of the parasitophorous vacuole. Our results suggest that the P. falciparum- infected human erythrocyte contains numerous high molecular weight protein complexes, which may potentially be involved in host cell modification. PMID:28218284

  11. Single-cell protein: current status and future prospects.

    PubMed

    Tusé, D

    1984-01-01

    The consumption of microorganisms by man and animals is not a revolutionary new idea. For thousands of years man has consumed, either intentionally or unintentionally, such products as alcoholic beverages, cheeses, yogurt, and soya sauce and, along with these products, the microbial biomass responsible for their production. The rapid growth rate and high protein content of microbes and their ability to utilize inexpensive feedstocks as sources of carbon and energy for growth have made microorganisms prime candidates for use as human food and animal feed protein supplements. Yet, in spite of their promise, only a limited number of commercial-scale, single-cell protein (SCP) processes have been seen. Recently, with the advent of recombinant DNA technology a rebirth of interest in SCP has resulted. This review analyzes the answers to two questions: (1) how far have we come?; and (2) what impact, if any, will the new biotechnologies have in this field?

  12. Quantification of protein copy number in single mitochondria: The Bcl-2 family proteins.

    PubMed

    Chen, Chaoxiang; Zhang, Xiang; Zhang, Shuyue; Zhu, Shaobin; Xu, Jingyi; Zheng, Yan; Han, Jinyan; Zeng, Jin-Zhang; Yan, Xiaomei

    2015-12-15

    Bcl-2 family proteins, represented by antiapoptotic protein Bcl-2 and proapoptotic protein Bax, are key regulators of mitochondria-mediated apoptosis pathway. To build a quantitative model of how Bcl-2 family protein interactions control mitochondrial outer membrane permeabilization and subsequent cytochrome c release, it is essential to know the number of proteins in individual mitochondria. Here, we report an effective method to quantify the copy number and distribution of proteins in single mitochondria via immunofluorescent labeling and sensitive detection by a laboratory-built high sensitivity flow cytometer (HSFCM). Mitochondria isolated from HeLa cells were stained with Alexa Fluor 488 (AF488)-labeled monoclonal antibodies specifically targeting Bcl-2 or Bax and with nucleic acid dye. A series of fluorescent nanospheres with fluorescence intensity calibrated in the unit of molecules of equivalent soluble fluorochrome (MESF)-AF488 were used to construct a calibration curve for converting the immunofluorescence of a single mitochondrion to the number of antibodies bound to it and then to the number of proteins per mitochondrion. Under the normal condition, the measured mean copy numbers were 1300 and 220 per mitochondrion for Bcl-2 and Bax, respectively. A significant variation in protein copy number was identified, which ranged from 130 to 6000 (2.5-97.5%) for Bcl-2 and from 65 to 700 (2.5-97.5%) for Bax, respectively. We observed an approximately 4.4 fold increase of Bax copy number per mitochondrion upon 9h of apoptosis stimulation while the abundance of Bcl-2 remained almost unchanged. To the best of our knowledge, this is the first report of Bcl-2 family protein copy number and variance in single mitochondria. Collectively, we demonstrate that the HSFCM-based immunoassay provides a rapid and sensitive method for determining protein copy number distribution in single mitochondria.

  13. Protein-detergent interactions in single crystals of membrane proteins studied by neutron crystallography

    SciTech Connect

    Timmins, P.A.; Pebay-Peyroula, E.

    1994-12-31

    The detergent micelles surrounding membrane protein molecules in single crystals can be investigated using neutron crystallography combined with H{sub 2}O/D{sub 2}O contrast variation. If the protein structure is known then the contrast variation method allows phases to be determined at a contrast where the detergent dominates the scattering. The application of various constraints allows the resulting scattering length density map to be realistically modeled. The method has been applied to two different forms of the membrane protein porin. In one case both hydrogenated and partially deuterated protein were used, allowing the head group and tail to be distinguished.

  14. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state

    PubMed Central

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A.; Goren, Alon; Weitz, David A.; Bernstein, Bradley E.

    2015-01-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells, and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell is sparse, comprising on the order of 1000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of sub-populations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone. PMID:26458175

  15. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state.

    PubMed

    Rotem, Assaf; Ram, Oren; Shoresh, Noam; Sperling, Ralph A; Goren, Alon; Weitz, David A; Bernstein, Bradley E

    2015-11-01

    Chromatin profiling provides a versatile means to investigate functional genomic elements and their regulation. However, current methods yield ensemble profiles that are insensitive to cell-to-cell variation. Here we combine microfluidics, DNA barcoding and sequencing to collect chromatin data at single-cell resolution. We demonstrate the utility of the technology by assaying thousands of individual cells and using the data to deconvolute a mixture of ES cells, fibroblasts and hematopoietic progenitors into high-quality chromatin state maps for each cell type. The data from each single cell are sparse, comprising on the order of 1,000 unique reads. However, by assaying thousands of ES cells, we identify a spectrum of subpopulations defined by differences in chromatin signatures of pluripotency and differentiation priming. We corroborate these findings by comparison to orthogonal single-cell gene expression data. Our method for single-cell analysis reveals aspects of epigenetic heterogeneity not captured by transcriptional analysis alone.

  16. Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy.

    PubMed

    Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2011-03-22

    We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

  17. Asymmetric configurations in a reengineered homodimer reveal multiple subunit communication pathways in protein allostery

    PubMed Central

    Lanfranco, Maria Fe; Gárate, Fernanda; Engdahl, Ashton J.; Maillard, Rodrigo A.

    2017-01-01

    Many allosteric proteins form homo-oligomeric complexes to regulate a biological function. In homo-oligomers, subunits establish communication pathways that are modulated by external stimuli like ligand binding. A challenge for dissecting the communication mechanisms in homo-oligomers is identifying intermediate liganded states, which are typically transiently populated. However, their identities provide the most mechanistic information on how ligand-induced signals propagate from bound to empty subunits. Here, we dissected the directionality and magnitude of subunit communication in a reengineered single-chain version of the homodimeric transcription factor cAMP receptor protein. By combining wild-type and mutant subunits in various asymmetric configurations, we revealed a linear relationship between the magnitude of cooperative effects and the number of mutant subunits. We found that a single mutation is sufficient to change the global allosteric behavior of the dimer even when one subunit was wild type. Dimers harboring two mutations with opposite cooperative effects had different allosteric properties depending on the arrangement of the mutations. When the two mutations were placed in the same subunit, the resulting cooperativity was neutral. In contrast, when placed in different subunits, the observed cooperativity was dominated by the mutation with strongest effects over cAMP affinity relative to wild type. These results highlight the distinct roles of intrasubunit interactions and intersubunit communication in allostery. Finally, dimers bound to either one or two cAMP molecules had similar DNA affinities, indicating that both asymmetric and symmetric liganded states activate DNA interactions. These studies have revealed the multiple communication pathways that homo-oligomers employ to transduce signals. PMID:28188293

  18. Recent coselection in human populations revealed by protein-protein interaction network.

    PubMed

    Qian, Wei; Zhou, Hang; Tang, Kun

    2014-12-21

    Genome-wide scans for signals of natural selection in human populations have identified a large number of candidate loci that underlie local adaptations. This is surprising given the relatively short evolutionary time since the divergence of the human population. One hypothesis that has not been formally examined is whether and how the recent human evolution may have been shaped by coselection in the context of complex molecular interactome. In this study, genome-wide signals of selection were scanned in East Asians, Europeans, and Africans using 1000 Genome data, and subsequently mapped onto the protein-protein interaction (PPI) network. We found that the candidate genes of recent positive selection localized significantly closer to each other on the PPI network than expected, revealing substantial clustering of selected genes. Furthermore, gene pairs of shorter PPI network distances showed higher similarities of their recent evolutionary paths than those further apart. Last, subnetworks enriched with recent coselection signals were identified, which are substantially overrepresented in biological pathways related to signal transduction, neurogenesis, and immune function. These results provide the first genome-wide evidence for association of recent selection signals with the PPI network, shedding light on the potential mechanisms of recent coselection in the human genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Single-point single-molecule FRAP distinguishes inner and outer nuclear membrane protein distribution

    PubMed Central

    Mudumbi, Krishna C; Schirmer, Eric C; Yang, Weidong

    2016-01-01

    The normal distribution of nuclear envelope transmembrane proteins (NETs) is disrupted in several human diseases. NETs are synthesized on the endoplasmic reticulum and then transported from the outer nuclear membrane (ONM) to the inner nuclear membrane (INM). Quantitative determination of the distribution of NETs on the ONM and INM is limited in available approaches, which moreover provide no information about translocation rates in the two membranes. Here we demonstrate a single-point single-molecule FRAP microscopy technique that enables determination of distribution and translocation rates for NETs in vivo. PMID:27558844

  20. Conformational kinetics reveals affinities of protein conformational states.

    PubMed

    Daniels, Kyle G; Suo, Yang; Oas, Terrence G

    2015-07-28

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein's affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states.

  1. Protein homology reveals new targets for bioactive small molecules.

    PubMed

    Gfeller, David; Zoete, Vincent

    2015-08-15

    The functional impact of small molecules is increasingly being assessed in different eukaryotic species through large-scale phenotypic screening initiatives. Identifying the targets of these molecules is crucial to mechanistically understand their function and uncover new therapeutically relevant modes of action. However, despite extensive work carried out in model organisms and human, it is still unclear to what extent one can use information obtained in one species to make predictions in other species. Here, for the first time, we explore and validate at a large scale the use of protein homology relationships to predict the targets of small molecules across different species. Our results show that exploiting target homology can significantly improve the predictions, especially for molecules experimentally tested in other species. Interestingly, when considering separately orthology and paralogy relationships, we observe that mapping small molecule interactions among orthologs improves prediction accuracy, while including paralogs does not improve and even sometimes worsens the prediction accuracy. Overall, our results provide a novel approach to integrate chemical screening results across multiple species and highlight the promises and remaining challenges of using protein homology for small molecule target identification. Homology-based predictions can be tested on our website http://www.swisstargetprediction.ch. david.gfeller@unil.ch or vincent.zoete@isb-sib.ch. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Quantitative Analysis of Single-Molecule RNA-Protein Interaction

    PubMed Central

    Fuhrmann, Alexander; Schoening, Jan C.; Anselmetti, Dario; Staiger, Dorothee; Ros, Robert

    2009-01-01

    Abstract RNA-binding proteins impact gene expression at the posttranscriptional level by interacting with cognate cis elements within the transcripts. Here, we apply dynamic single-molecule force spectroscopy to study the interaction of the Arabidopsis glycine-rich RNA-binding protein AtGRP8 with its RNA target. A dwell-time-dependent analysis of the single-molecule data in combination with competition assays and site-directed mutagenesis of both the RNA target and the RNA-binding domain of the protein allowed us to distinguish and quantify two different binding modes. For dwell times <0.21 s an unspecific complex with a lifetime of 0.56 s is observed, whereas dwell times >0.33 s result in a specific interaction with a lifetime of 208 s. The corresponding reaction lengths are 0.28 nm for the unspecific and 0.55 nm for the specific AtGRP8-RNA interactions, indicating formation of a tighter complex with increasing dwell time. These two binding modes cannot be dissected in ensemble experiments. Quantitative titration in RNA bandshift experiments yields an ensemble-averaged equilibrium constant of dissociation of KD = 2 × 10−7 M. Assuming comparable on-rates for the specific and nonspecific binding modes allows us to estimate their free energies as ΔG0 = −42 kJ/mol and ΔG0 = −28 kJ/mol for the specific and nonspecific binding modes, respectively. Thus, we show that single-molecule force spectroscopy with a refined statistical analysis is a potent tool for the analysis of protein-RNA interactions without the drawback of ensemble averaging. This makes it possible to discriminate between different binding modes or sites and to analyze them quantitatively. We propose that this method could be applied to complex interactions of biomolecules in general, and be of particular interest for the investigation of multivalent binding reactions. PMID:19527663

  3. The dark energy of proteins comes to light: Conformational entropy and its role in protein function revealed by NMR relaxation

    PubMed Central

    Wand, A. Joshua

    2012-01-01

    Historically it has been virtually impossible to experimentally determine the contribution of residual protein entropy to fundamental protein activities such as the binding of ligands. Recent progress has illuminated the possibility of employing NMR relaxation methods to quantitatively determine the role of changes in conformational entropy in molecular recognition by proteins. The method rests on using fast internal protein dynamics as a proxy. Initial results reveal a large and variable role for conformational entropy in the binding of ligands by proteins. Such a role for conformational entropy in molecular recognition has significant implications for enzymology, signal transduction, allosteric regulation and the development of protein-directed pharmaceuticals. PMID:23246280

  4. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia.

    PubMed

    Rout, Samuel; Zumthor, Jon Paulin; Schraner, Elisabeth M; Faso, Carmen; Hehl, Adrian B

    2016-12-01

    Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30-40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation

  5. An Interactome-Centered Protein Discovery Approach Reveals Novel Components Involved in Mitosome Function and Homeostasis in Giardia lamblia

    PubMed Central

    Rout, Samuel; Zumthor, Jon Paulin; Schraner, Elisabeth M.

    2016-01-01

    Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide range of vertebrate hosts including humans, with proliferation and pathology restricted to the small intestine. This narrow ecological specialization entailed extensive structural and functional adaptations during host-parasite co-evolution. An example is the streamlined mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway clearly associated with this organelle. Here, we applied techniques in microscopy and protein biochemistry to investigate the mitosomal membrane proteome in association to mitosome homeostasis. Live cell imaging revealed a highly immobilized array of 30–40 physically distinct mitosome organelles in trophozoites. We provide direct evidence for the single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and homeostasis. To overcome inherent limitations that have hitherto severely hampered the characterization of these unique organelles we applied a novel interaction-based proteome discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed generation of organelle proteome data strictly in a protein-protein interaction context. We built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation experiments, identifying small GTPases, factors with dual mitosome and endoplasmic reticulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this protein-protein interaction network, we were able to i) significantly extend this interaction-based mitosomal proteome to include other membrane-associated proteins with possible roles in mitosome morphogenesis and connection to other subcellular compartments, and ii) identify novel matrix proteins which may shed light on mitosome-associated metabolic functions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual conservation of protein translocation

  6. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  7. Single molecule imaging reveals a major role for diffusion in the exploration of ciliary space by signaling receptors.

    PubMed

    Ye, Fan; Breslow, David K; Koslover, Elena F; Spakowitz, Andrew J; Nelson, W James; Nachury, Maxence V

    2013-08-06

    The dynamic organization of signaling cascades inside primary cilia is key to signal propagation. Yet little is known about the dynamics of ciliary membrane proteins besides a possible role for motor-driven Intraflagellar Transport (IFT). To characterize these dynamics, we imaged single molecules of Somatostatin Receptor 3 (SSTR3, a GPCR) and Smoothened (Smo, a Hedgehog signal transducer) in the ciliary membrane. While IFT trains moved processively from one end of the cilium to the other, single SSTR3 and Smo underwent mostly diffusive behavior interspersed with short periods of directional movements. Statistical subtraction of instant velocities revealed that SSTR3 and Smo spent less than a third of their time undergoing active transport. Finally, SSTR3 and IFT movements could be uncoupled by perturbing either membrane protein diffusion or active transport. Thus ciliary membrane proteins move predominantly by diffusion, and attachment to IFT trains is transient and stochastic rather than processive or spatially determined. DOI:http://dx.doi.org/10.7554/eLife.00654.001.

  8. High efficiency of HIV-1 genomic RNA packaging and heterozygote formation revealed by single virion analysis.

    PubMed

    Chen, Jianbo; Nikolaitchik, Olga; Singh, Jatinder; Wright, Andrew; Bencsics, Craig E; Coffin, John M; Ni, Na; Lockett, Stephen; Pathak, Vinay K; Hu, Wei-Shau

    2009-08-11

    A long-standing question in retrovirus biology is how RNA genomes are distributed among virions. In the studies presented in this report, we addressed this issue by directly examining HIV-1 RNAs in virions using a modified HIV-1 genome that contained recognition sites for BglG, an antitermination protein in the Escherichia coli bgl operon, which was coexpressed with a fragment of BglG RNA binding protein fused to a fluorescent protein. Our results demonstrate that the majority of virions (>90%) contain viral RNAs. We also coexpressed HIV-1 genomes containing binding sites for BglG or the bacteriophage MS2 coat protein along with 2 fluorescent protein-tagged RNA binding proteins. This method allows simultaneously labeling and discrimination of 2 different RNAs at single-RNA-detection sensitivity. Using this strategy, we obtained physical evidence that virions contain RNAs derived from different parental viruses (heterozygous virion) at ratios expected from a random distribution, and we found that this ratio can be altered by changing the dimerization sequences. Our studies of heterozygous virions also support a generally accepted but unproven assumption that most particles contain 1 dimer. This study provides answers to long-standing questions in HIV-1 biology and illustrates the power and sensitivity of the 2-RNA labeling method, which can also be adapted to analyze various issues of RNA biogenesis including the detection of different RNAs in live cell imaging.

  9. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy.

    PubMed

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P; Gaucher, Eric A; Gaucher, Eric; Sanchez-Ruiz, Jose M; Berne, Bruce J; Fernandez, Julio M

    2009-08-01

    Thioredoxins (Trxs) are oxidoreductase enzymes, present in all organisms, that catalyze the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single-molecule level. Here we use single-molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different Trx enzymes. All Trxs show a characteristic Michaelis-Menten mechanism that is detected when the disulfide bond is stretched at low forces, but at high forces, two different chemical behaviors distinguish bacterial-origin from eukaryotic-origin Trxs. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET), whereas bacterial-origin Trxs show both nucleophilic substitution (S(N)2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis.

  10. Diversity of Chemical Mechanisms in Thioredoxin Catalysis Revealed by Single-Molecule Force Spectroscopy

    PubMed Central

    Perez-Jimenez, Raul; Li, Jingyuan; Kosuri, Pallav; Sanchez-Romero, Inmaculada; Wiita, Arun P.; Rodriguez-Larrea, David; Chueca, Ana; Holmgren, Arne; Miranda-Vizuete, Antonio; Becker, Katja; Cho, Seung-Hyun; Beckwith, Jon; Gelhaye, Eric; Jacquot, Jean P.; Gaucher, Eric; Sanchez-Ruiz, Jose M.; Berne, Bruce J.; Fernandez, Julio M.

    2009-01-01

    Thioredoxins are oxido-reductase enzymes present in all organisms, catalyzing the reduction of disulfide bonds in proteins. By applying a calibrated force to a substrate disulfide, the chemical mechanisms of Trx catalysis can be examined in detail at the single molecule level. Here we use single molecule force-clamp spectroscopy to explore the chemical evolution of Trx catalysis by probing the chemistry of eight different thioredoxin enzymes. While all Trxs show a characteristic Michaelis-Menten mechanism detected when the disulfide bond is stretched at low forces, two different chemical behaviors distinguish bacterial from eukaryotic-origin Trxs at high forces. Eukaryotic-origin Trxs reduce disulfide bonds through a single-electron transfer reaction (SET) whereas bacterial-origin Trxs exhibit both nucleophilic substitution (SN2) and SET reactions. A computational analysis of Trx structures identifies the evolution of the binding groove as an important factor controlling the chemistry of Trx catalysis. PMID:19597482

  11. Solubility and supersaturation-dependent protein misfolding revealed by ultrasonication.

    PubMed

    Lin, Yuxi; Lee, Young-Ho; Yoshimura, Yuichi; Yagi, Hisashi; Goto, Yuji

    2014-02-25

    Although alcohols are useful cosolvents for producing amyloid fibrils, the underlying mechanism of alcohol-dependent fibrillation is unclear. We studied the alcohol-induced fibrillation of hen egg-white lysozyme at various concentrations of ethanol, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Under the conditions where the alcohol-denatured lysozyme retained metastability, ultrasonication effectively triggered fibrillation. The optimal alcohol concentration depended on the alcohol species. HFIP showed a sharp maximum at 12-16%. For TFE, a broad maximum at 40-80% was observed. Ethanol exhibited only an increase in fibrillation above 60%. These profiles were opposite to the equilibrium solubility of lysozyme in water/alcohol mixtures. The results indicate that although fibrillation is determined by solubility, supersaturation prevents conformational transitions and ultrasonication is highly effective in minimizing an effect of supersaturation. We propose an alcohol-dependent protein misfolding funnel useful for examining amyloidogenicity. This misfolding funnel will apply to fibrillation under physiological conditions where biological environments play important roles in decreasing the solubility.

  12. Conformational kinetics reveals affinities of protein conformational states

    PubMed Central

    Daniels, Kyle G.; Suo, Yang; Oas, Terrence G.

    2015-01-01

    Most biological reactions rely on interplay between binding and changes in both macromolecular structure and dynamics. Practical understanding of this interplay requires detection of critical intermediates and determination of their binding and conformational characteristics. However, many of these species are only transiently present and they have often been overlooked in mechanistic studies of reactions that couple binding to conformational change. We monitored the kinetics of ligand-induced conformational changes in a small protein using six different ligands. We analyzed the kinetic data to simultaneously determine both binding affinities for the conformational states and the rate constants of conformational change. The approach we used is sufficiently robust to determine the affinities of three conformational states and detect even modest differences in the protein’s affinities for relatively similar ligands. Ligand binding favors higher-affinity conformational states by increasing forward conformational rate constants and/or decreasing reverse conformational rate constants. The amounts by which forward rate constants increase and reverse rate constants decrease are proportional to the ratio of affinities of the conformational states. We also show that both the affinity ratio and another parameter, which quantifies the changes in conformational rate constants upon ligand binding, are strong determinants of the mechanism (conformational selection and/or induced fit) of molecular recognition. Our results highlight the utility of analyzing the kinetics of conformational changes to determine affinities that cannot be determined from equilibrium experiments. Most importantly, they demonstrate an inextricable link between conformational dynamics and the binding affinities of conformational states. PMID:26162682

  13. Translational Profiling of Clock Cells Reveals Circadianly Synchronized Protein Synthesis

    PubMed Central

    Huang, Yanmei; Ainsley, Joshua A.; Reijmers, Leon G.; Jackson, F. Rob

    2013-01-01

    Abstract Genome-wide studies of circadian transcription or mRNA translation have been hindered by the presence of heterogeneous cell populations in complex tissues such as the nervous system. We describe here the use of a Drosophila cell-specific translational profiling approach to document the rhythmic “translatome” of neural clock cells for the first time in any organism. Unexpectedly, translation of most clock-regulated transcripts—as assayed by mRNA ribosome association—occurs at one of two predominant circadian phases, midday or mid-night, times of behavioral quiescence; mRNAs encoding similar cellular functions are translated at the same time of day. Our analysis also indicates that fundamental cellular processes—metabolism, energy production, redox state (e.g., the thioredoxin system), cell growth, signaling and others—are rhythmically modulated within clock cells via synchronized protein synthesis. Our approach is validated by the identification of mRNAs known to exhibit circadian changes in abundance and the discovery of hundreds of novel mRNAs that show translational rhythms. This includes Tdc2, encoding a neurotransmitter synthetic enzyme, which we demonstrate is required within clock neurons for normal circadian locomotor activity. PMID:24348200

  14. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    PubMed

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  15. Interaction of DNA and Proteins with Single Nanopores

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    2006-03-01

    The bacterial toxins Staphylococcus aureus alpha-hemolysin and Bacillus anthracis protective antigen kill cells in part by forming ion channels in target membranes. We are using electrophysiology, molecular biology/protein biochemistry and computer modeling to study how biopolymers (e.g., single-stranded DNA and proteins) bind to and transport through these nanometer-scale pores. The results provide insight into the mechanism by which these toxins work and are the basis for several potential nanobiotechnology applications including ultra-rapid DNA sequencing, the sensitive and selective detection of a wide range of analytes and high throughput screening of therapeutic agents against several anthrax toxins. In collaboration with V.M. Stanford, M. Misakian, B. Nablo, S.E. Henrickson, NIST, EEEL, Gaithersburg, MD; T. Nguyen, R. Gussio, NCI, Ft. Detrick, MD; and K.M. Halverson, S. Bavari, R.G. Panchal, USAMRIID, Ft. Detrick, MD.

  16. Production and feeding of single-cell protein

    SciTech Connect

    Ferranti, M.P.; Fiechter, A.

    1983-01-01

    This book addresses the technical and economic factors which must be considered when evaluating plans for the production of animal feed proteins from agricultural and forestry wastes. The work is divided into three parts, the first focusing on pretreatment and hydrolysis of lignocellulostic materials, the second on upgrading of whey and the third on nutrition and toxicology. The presentation concludes with a Round Table discussion including evaluations and recommendations for submission to the Commission of the European Communities. CONTENTS: Special Section: Pretreatment and Degradation of Lignocellulosic Materials. Subject Area 1: Production of SCP Enriched Substrate from Cellulosic Materials. Lignin and Lignocellulose. Process Development. Carbohydrates. Subject Area 2: Single Cell Protein from Whey. Subject Area 3: Nutrition and Toxicology. Round Table Discussion: Evaluation and Recommendations. List of Participants. Index of Authors.

  17. Effect of Single-Site Mutations on HP Lattice Proteins

    SciTech Connect

    Shi, Guangjie; Vogel, Thomas; Wuest, Thomas; Li, Ying Wai; Landau, David P

    2014-01-01

    We developed a heuristic method for determining the ground-state degeneracy of hydrophobic-polar (HP) lattice proteins, based on Wang-Landau and multicanonical sampling. It is applied during comprehensive studies of single-site mutations in specific HP proteins with different sequences. The effects in which we are interested include structural changes in ground-states, changes of ground-state energy, degeneracy, and thermodynamic properties of the system. With respect to mutations, both extremely sensitive and insensitive positions in the HP sequence have been found. That is, ground state energies and degeneracies, as well as other thermodynamic and structural quantities may be either largely unaffected or may change significantly due to mutation.

  18. Single-protein study of photoresistance of pigment-protein complex in lipid bilayer

    NASA Astrophysics Data System (ADS)

    Uchiyama, Daisuke; Hoshino, Hajime; Otomo, Kohei; Kato, Taro; Onda, Ken-ichi; Watanabe, Akira; Oikawa, Hiroyuki; Fujiyoshi, Satoru; Matsushita, Michio; Nango, Mamoru; Watanabe, Natsuko; Sumino, Ayumi; Dewa, Takehisa

    2011-07-01

    Photoresistance of a pigment-binding membrane protein, light-harvesting 2 (LH2) complex from the photosynthetic bacterium, Rhodopseudomonas acidophila, was investigated by fluorescence of single LH2 complexes at a temperature of 296 K. Before irreversibly stopping fluorescence, a single LH2 complex in phospholipid bilayer of dimyristoylphosphatidylcholine (DMPC) emitted on average 4 times more fluorescence photons than a complex in detergent micelle of octylglucopyranoside (OG). Fluorescence-excitation spectrum of single LH2 complexes taken at 5 K showed that the LH2 complex is structurally less perturbed in DMPC bilayer than in OG micelle, suggesting that structural instability reduces photoresistance of LH2.

  19. Multiple structure single parameter: analysis of a single protein nano environment descriptor characterizing a shared loci on structurally aligned proteins.

    PubMed

    Salim, José Augusto; Borro, Luiz; Mazoni, Ivan; Yano, Inácio; Jardine, José G; Neshich, Goran

    2016-06-15

    A graphical representation of physicochemical and structural descriptors attributed to amino acid residues occupying the same topological position in different, structurally aligned proteins can provide a more intuitive way to associate possible functional implications to identified variations in structural characteristics. This could be achieved by observing selected characteristics of amino acids and of their corresponding nano environments, described by the numerical value of matching descriptor. For this purpose, a web-based tool called multiple structure single parameter (MSSP) was developed and here presented. MSSP produces a two-dimensional plot of a single protein descriptor for a number of structurally aligned protein chains. From a total of 150 protein descriptors available in MSSP, selected of >1500 parameters stored in the STING database, it is possible to create easily readable and highly informative XY-plots, where X-axis contains the amino acid position in the multiple structural alignment, and Y-axis contains the descriptor's numerical values for each aligned structure. To illustrate one of possible MSSP contributions to the investigation of changes in physicochemical and structural properties of mutants, comparing them with the cognate wild-type structure, the oncogenic mutation of M918T in RET kinase is presented. The comparative analysis of wild-type and mutant structures shows great changes in their electrostatic potential. These variations are easily depicted at the MSSP-generated XY-plot. The web server is freely available at http://www.cbi.cnptia.embrapa.br/SMS/STINGm/MPA/index.html Web server implemented in Perl, Java and JavaScript and JMol or Protein Viewer as structure visualizers. goran.neshich@embrapa.br or gneshich@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Correlation Analysis of Enzymatic Reaction of a Single Protein Molecule.

    PubMed

    Du, Chao; Kou, S C

    2012-09-01

    New advances in nano sciences open the door for scientists to study biological processes on a microscopic molecule-by-molecule basis. Recent single-molecule biophysical experiments on enzyme systems, in particular, reveal that enzyme molecules behave fundamentally differently from what classical model predicts. A stochastic network model was previously proposed to explain the experimental discovery. This paper conducts detailed theoretical and data analyses of the stochastic network model, focusing on the correlation structure of the successive reaction times of a single enzyme molecule. We investigate the correlation of experimental fluorescence intensity and the correlation of enzymatic reaction times, and examine the role of substrate concentration in enzymatic reactions. Our study shows that the stochastic network model is capable of explaining the experimental data in depth.

  1. Sequence similarity network reveals common ancestry of multidomain proteins.

    PubMed

    Song, Nan; Joseph, Jacob M; Davis, George B; Durand, Dannie

    2008-05-16

    We address the problem of homology identification in complex multidomain families with varied domain architectures. The challenge is to distinguish sequence pairs that share common ancestry from pairs that share an inserted domain but are otherwise unrelated. This distinction is essential for accuracy in gene annotation, function prediction, and comparative genomics. There are two major obstacles to multidomain homology identification: lack of a formal definition and lack of curated benchmarks for evaluating the performance of new methods. We offer preliminary solutions to both problems: 1) an extension of the traditional model of homology to include domain insertions; and 2) a manually curated benchmark of well-studied families in mouse and human. We further present Neighborhood Correlation, a novel method that exploits the local structure of the sequence similarity network to identify homologs with great accuracy based on the observation that gene duplication and domain shuffling leave distinct patterns in the sequence similarity network. In a rigorous, empirical comparison using our curated data, Neighborhood Correlation outperforms sequence similarity, alignment length, and domain architecture comparison. Neighborhood Correlation is well suited for automated, genome-scale analyses. It is easy to compute, does not require explicit knowledge of domain architecture, and classifies both single and multidomain homologs with high accuracy. Homolog predictions obtained with our method, as well as our manually curated benchmark and a web-based visualization tool for exploratory analysis of the network neighborhood structure, are available at http://www.neighborhoodcorrelation.org. Our work represents a departure from the prevailing view that the concept of homology cannot be applied to genes that have undergone domain shuffling. In contrast to current approaches that either focus on the homology of individual domains or consider only families with identical domain

  2. DNA replication catalyzed by herpes simplex virus type 1 proteins reveals trombone loops at the fork.

    PubMed

    Bermek, Oya; Willcox, Smaranda; Griffith, Jack D

    2015-01-30

    Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.

  3. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    PubMed

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  4. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting.

    PubMed

    Herbert, Kristina M; Sarkar, Susanta K; Mills, Maria; Delgado De la Herran, Hilda C; Neuman, Keir C; Steitz, Joan A

    2016-02-01

    During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins.

  5. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive.

    PubMed

    Burley, Stephen K; Berman, Helen M; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer

    2017-01-01

    The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences. The PDB archive currently houses ~130,000 entries (May 2017). It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdb.org), which includes the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu). The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (deposit.wwpdb.org). The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates. wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources. At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM). wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc.) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.

  6. Single molecule microscopy reveals mechanistic insight into RNA polymerase II preinitiation complex assembly and transcriptional activity.

    PubMed

    Horn, Abigail E; Kugel, Jennifer F; Goodrich, James A

    2016-09-06

    Transcription by RNA polymerase II (Pol II) is a complex process that requires general transcription factors and Pol II to assemble on DNA into preinitiation complexes that can begin RNA synthesis upon binding of NTPs (nucleoside triphosphate). The pathways by which preinitiation complexes form, and how this impacts transcriptional activity are not completely clear. To address these issues, we developed a single molecule system using TIRF (total internal reflection fluorescence) microscopy and purified human transcription factors, which allows us to visualize transcriptional activity at individual template molecules. We see that stable interactions between polymerase II (Pol II) and a heteroduplex DNA template do not depend on general transcription factors; however, transcriptional activity is highly dependent upon TATA-binding protein, TFIIB and TFIIF. We also found that subsets of general transcription factors and Pol II can form stable complexes that are precursors for functional transcription complexes upon addition of the remaining factors and DNA. Ultimately we found that Pol II, TATA-binding protein, TFIIB and TFIIF can form a quaternary complex in the absence of promoter DNA, indicating that a stable network of interactions exists between these proteins independent of promoter DNA. Single molecule studies can be used to learn how different modes of preinitiation complex assembly impact transcriptional activity. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Network simulation reveals significant contribution of network motifs to the age-dependency of yeast protein-protein interaction networks.

    PubMed

    Liang, Cheng; Luo, Jiawei; Song, Dan

    2014-07-29

    Advances in proteomic technologies combined with sophisticated computing and modeling methods have generated an unprecedented amount of high-throughput data for system-scale analysis. As a result, the study of protein-protein interaction (PPI) networks has garnered much attention in recent years. One of the most fundamental problems in studying PPI networks is to understand how their architecture originated and evolved to their current state. By investigating how proteins of different ages are connected in the yeast PPI networks, one can deduce their expansion procedure in evolution and how the ancient primitive network expanded and evolved. Studies have shown that proteins are often connected to other proteins of a similar age, suggesting a high degree of age preference between interacting proteins. Though several theories have been proposed to explain this phenomenon, none of them considered protein-clusters as a contributing factor. Here we first investigate the age-dependency of the proteins from the perspective of network motifs. Our analysis confirms that proteins of the same age groups tend to form interacting network motifs; furthermore, those proteins within motifs tend to be within protein complexes and the interactions among them largely contribute to the observed age preference in the yeast PPI networks. In light of these results, we describe a new modeling approach, based on "network motifs", whereby topologically connected protein clusters in the network are treated as single evolutionary units. Instead of modeling single proteins, our approach models the connections and evolutionary relationships of multiple related protein clusters or "network motifs" that are collectively integrated into an existing PPI network. Through simulation studies, we found that the "network motif" modeling approach can capture yeast PPI network properties better than if individual proteins were considered to be the simplest evolutionary units. Our approach provides a fresh

  8. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  9. Nuclear RNA-seq of single neurons reveals molecular signatures of activation

    PubMed Central

    Lacar, Benjamin; Linker, Sara B.; Jaeger, Baptiste N.; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y.; Husband, David; McConnell, Michael J.; Lasken, Roger; Gage, Fred H.

    2016-01-01

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo. PMID:27090946

  10. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development

    PubMed Central

    Chen, Jinmiao; Schlitzer, Andreas; Chakarov, Svetoslav; Ginhoux, Florent; Poidinger, Michael

    2016-01-01

    Single-cell RNA-sequencing offers unprecedented resolution of the continuum of state transition during cell differentiation and development. However, tools for constructing multi-branching cell lineages from single-cell data are limited. Here we present Mpath, an algorithm that derives multi-branching developmental trajectories using neighborhood-based cell state transitions. Applied to mouse conventional dendritic cell (cDC) progenitors, Mpath constructs multi-branching trajectories spanning from macrophage/DC progenitors through common DC progenitor to pre-dendritic cells (preDC). The Mpath-generated trajectories detect a branching event at the preDC stage revealing preDC subsets that are exclusively committed to cDC1 or cDC2 lineages. Reordering cells along cDC development reveals sequential waves of gene regulation and temporal coupling between cell cycle and cDC differentiation. Applied to human myoblasts, Mpath recapitulates the time course of myoblast differentiation and isolates a branch of non-muscle cells involved in the differentiation. Our study shows that Mpath is a useful tool for constructing cell lineages from single-cell data. PMID:27356503

  11. Nuclear RNA-seq of single neurons reveals molecular signatures of activation.

    PubMed

    Lacar, Benjamin; Linker, Sara B; Jaeger, Baptiste N; Krishnaswami, Suguna; Barron, Jerika; Kelder, Martijn; Parylak, Sarah; Paquola, Apuã; Venepally, Pratap; Novotny, Mark; O'Connor, Carolyn; Fitzpatrick, Conor; Erwin, Jennifer; Hsu, Jonathan Y; Husband, David; McConnell, Michael J; Lasken, Roger; Gage, Fred H

    2016-04-19

    Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully recapitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes. In addition, we observe a continuum of activation states, revealing a pseudotemporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs, allowing for novel insights into neuronal activation patterns in vivo.

  12. Analysis and Interpretation of Single Molecule Protein Unfolding Kinetics

    NASA Astrophysics Data System (ADS)

    Lannon, Herbert; Brujic, Jasna

    2012-02-01

    The kinetics of protein unfolding under a stretching force has been extensively studied by atomic force microscopy (AFM) over the past decade [1]. Experimental artifacts at the single molecule level introduce uncertainties in the data analysis that have led to several competing physical models for the unfolding process. For example, the unfolding dynamics of the protein ubiquitin under constant force has been described by probability distributions as diverse as exponential [2,3], a sum of exponentials, log-normal [4], and more recently a function describing static disorder in the Arrhenius model [5]. A new method for data analysis is presented that utilizes maximum likelihood estimation (MLE) combined with other traditional statistical tests to unambiguously rank the consistency of these and other models with the experimental data. These techniques applied to the ubiquitin unfolding data shows that the probability of unfolding is best fit with a stretched exponential distribution, with important implications on the complexity of the mechanism of protein unfolding. [4pt] [1] Carrion-Vazquez, et. al. Springer Series in Biophys. 2006 [0pt] [2] Fernandez et. al. Science 2004 [0pt] [3] Brujic et. al. Nat. Phys 2006 [0pt] [4] Garcia-Manyes et. al. Biophys. J. 2007 [0pt] [5] Kuo et. al. PNAS 2010

  13. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis

    PubMed Central

    Zhang, Zhengjian; English, Brian P.; Grimm, Jonathan B.; Kazane, Stephanie A.; Hu, Wenxin; Tsai, Albert; Inouye, Carla; You, Changjiang; Piehler, Jacob; Schultz, Peter G.; Lavis, Luke D.; Revyakin, Andrey; Tjian, Robert

    2016-01-01

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions. PMID:27798851

  14. Single-virus tracking approach to reveal the interaction of Dengue virus with autophagy during the early stage of infection

    NASA Astrophysics Data System (ADS)

    Chu, Li-Wei; Huang, Yi-Lung; Lee, Jin-Hui; Huang, Long-Ying; Chen, Wei-Jun; Lin, Ya-Hsuan; Chen, Jyun-Yu; Xiang, Rui; Lee, Chau-Hwang; Ping, Yueh-Hsin

    2014-01-01

    Dengue virus (DENV) is one of the major infectious pathogens worldwide. DENV infection is a highly dynamic process. Currently, no antiviral drug is available for treating DENV-induced diseases since little is known regarding how the virus interacts with host cells during infection. Advanced molecular imaging technologies are powerful tools to understand the dynamics of intracellular interactions and molecular trafficking. This study exploited a single-virus particle tracking technology to address whether DENV interacts with autophagy machinery during the early stage of infection. Using confocal microscopy and three-dimensional image analysis, we showed that DENV triggered the formation of green fluorescence protein-fused microtubule-associated protein 1A/1B-light chain 3 (GFP-LC3) puncta, and DENV-induced autophagosomes engulfed DENV particles within 15-min postinfection. Moreover, single-virus particle tracking revealed that both DENV particles and autophagosomes traveled together during the viral infection. Finally, in the presence of autophagy suppressor 3-methyladenine, the replication of DENV was inhibited and the location of DENV particles spread in cytoplasma. In contrast, the numbers of newly synthesized DENV were elevated and the co-localization of DENV particles and autophagosomes was detected while the cells were treated with autophagy inducer rapamycin. Taken together, we propose that DENV particles interact with autophagosomes at the early stage of viral infection, which promotes the replication of DENV.

  15. Genome-wide Analysis Reveals SR Protein Cooperation and Competition in Regulated Splicing

    PubMed Central

    Pandit, Shatakshi; Zhou, Yu; Shiue, Lily; Coutinho-Mansfield, Gabriela; Li, Hairi; Qiu, Jinsong; Huang, Jie; Yeo, Gene W.; Ares, Manuel; Fu, Xiang-Dong

    2013-01-01

    Summary SR proteins are well-characterized RNA binding proteins that promote exon inclusion by binding to exonic splicing enhancers (ESEs). However, it has been unclear whether regulatory rules deduced on model genes apply generally to activities of SR proteins in the cell. Here, we report global analyses of two prototypical SR proteins SRSF1 (SF2/ASF) and SRSF2 (SC35) using splicing-sensitive arrays and CLIP-seq on mouse embryo fibroblasts (MEFs). Unexpectedly, we find that these SR proteins promote both inclusion and skipping of exons in vivo, but their binding patterns do not explain such opposite responses. Further analyses reveal that loss of one SR protein is accompanied by coordinated loss or compensatory gain in the interaction of other SR proteins at the affected exons. Therefore, specific effects on regulated splicing by one SR protein actually depend on a complex set of relationships with multiple other SR proteins in mammalian genomes. PMID:23562324

  16. Single-molecule mRNA decay measurements reveal promoter regulated mRNA stability in yeast

    PubMed Central

    Trcek, Tatjana; Larson, Daniel R.; Moldón, Alberto; Query, Charles C.; Singer, Robert H.

    2012-01-01

    SUMMARY Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short time scales. To address this deficiency, we measured cell cycle regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2 exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis when a precipitous decay eliminates the mRNA complement, preventing carry-over into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein, Dbf2p binds to SWI5 and CLB2 mRNAs co-transcriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a novel regulatory mechanism that could be employed by a variety of mRNAs and organisms. PMID:22196726

  17. Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria.

    PubMed

    Ovunc, Bugsu; Otto, Edgar A; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H; Yilmaz, Engin; Hildebrandt, Friedhelm

    2011-10-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B(12) deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B(12)-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy.

  18. Exome Sequencing Reveals Cubilin Mutation as a Single-Gene Cause of Proteinuria

    PubMed Central

    Ovunc, Bugsu; Otto, Edgar A.; Vega-Warner, Virginia; Saisawat, Pawaree; Ashraf, Shazia; Ramaswami, Gokul; Fathy, Hanan M.; Schoeb, Dominik; Chernin, Gil; Lyons, Robert H.; Yilmaz, Engin

    2011-01-01

    In two siblings of consanguineous parents with intermittent nephrotic-range proteinuria, we identified a homozygous deleterious frameshift mutation in the gene CUBN, which encodes cubulin, using exome capture and massively parallel re-sequencing. The mutation segregated with affected members of this family and was absent from 92 healthy individuals, thereby identifying a recessive mutation in CUBN as the single-gene cause of proteinuria in this sibship. Cubulin mutations cause a hereditary form of megaloblastic anemia secondary to vitamin B12 deficiency, and proteinuria occurs in 50% of cases since cubilin is coreceptor for both the intestinal vitamin B12-intrinsic factor complex and the tubular reabsorption of protein in the proximal tubule. In summary, we report successful use of exome capture and massively parallel re-sequencing to identify a rare, single-gene cause of nephropathy. PMID:21903995

  19. Finding Order in Randomness: Single-Molecule Studies Reveal Stochastic RNA Processing | Center for Cancer Research

    Cancer.gov

    Producing a functional eukaryotic messenger RNA (mRNA) requires the coordinated activity of several large protein complexes to initiate transcription, elongate nascent transcripts, splice together exons, and cleave and polyadenylate the 3’ end. Kinetic competition between these various processes has been proposed to regulate mRNA maturation, but this model could lead to multiple, randomly determined, or stochastic, pathways or outcomes. Regulatory checkpoints have been suggested as a means of ensuring quality control. However, current methods have been unable to tease apart the contributions of these processes at a single gene or on a time scale that could provide mechanistic insight. To begin to investigate the kinetic relationship between transcription and splicing, Daniel Larson, Ph.D., of CCR’s Laboratory of Receptor Biology and Gene Expression, and his colleagues employed a single-molecule RNA imaging approach to monitor production and processing of a human β-globin reporter gene in living cells.

  20. Conformational selection of protein kinase A revealed by flexible-ligand flexible-protein docking.

    PubMed

    Huang, Zunnan; Wong, Chung F

    2009-03-01

    Protein kinases have high structural plasticity: their structure can change significantly, depending on what ligands are bound to them. Rigid-protein docking methods are not capable of describing such effects. Here, we present a new flexible-ligand flexible-protein docking model in which the protein can adopt conformations between two extremes observed experimentally. The model utilized a molecular dynamics-based simulated annealing cycling protocol and a distance-dependent dielectric model to perform docking. By testing this model on docking four diverse ligands to protein kinase A, we found that the ligands were able to dock successfully to the protein with the proper conformations of the protein induced. By imposing relatively soft conformational restraints to the protein during docking, this model reduced computational costs yet permitted essential conformational changes that were essential for these inhibitors to dock properly to the protein. For example, without adequate movement of the glycine-rich loop, it was difficult for the ligands to move from the surface of the protein to the binding site. In addition, these simulations called for better ways to compare simulation results with experiment other than using the popular root-mean-square deviation between the structure of a ligand in a docking pose and that in experiment because the structure of the protein also changed. In this work, we also calculated the correlation coefficient between protein-ligand/protein-protein distances in the docking structure and those in the crystal structure to check how well a ligand docked into the binding site of the protein and whether the proper conformation of the protein was induced.

  1. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  2. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    SciTech Connect

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differences can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.

  3. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    SciTech Connect

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differences can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.

  4. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins

    PubMed Central

    Shen, Cuicui; Zhang, Delin; Guan, Zeyuan; Liu, Yexing; Yang, Zhao; Yang, Yan; Wang, Xiang; Wang, Qiang; Zhang, QunXia; Fan, Shilong; Zou, Tingting; Yin, Ping

    2016-01-01

    As a large family of RNA-binding proteins, pentatricopeptide repeat (PPR) proteins mediate multiple aspects of RNA metabolism in eukaryotes. Binding to their target single-stranded RNAs (ssRNAs) in a modular and base-specific fashion, PPR proteins can serve as designable modules for gene manipulation. However, the structural basis for nucleotide-specific recognition by designer PPR (dPPR) proteins remains to be elucidated. Here, we report four crystal structures of dPPR proteins in complex with their respective ssRNA targets. The dPPR repeats are assembled into a right-handed superhelical spiral shell that embraces the ssRNA. Interactions between different PPR codes and RNA bases are observed at the atomic level, revealing the molecular basis for the modular and specific recognition patterns of the RNA bases U, C, A and G. These structures not only provide insights into the functional study of PPR proteins but also open a path towards the potential design of synthetic sequence-specific RNA-binding proteins. PMID:27088764

  5. Single-molecule spectroscopy reveals how calmodulin activates NO synthase by controlling its conformational fluctuation dynamics

    PubMed Central

    He, Yufan; Haque, Mohammad Mahfuzul; Stuehr, Dennis J.; Lu, H. Peter

    2015-01-01

    Mechanisms that regulate the nitric oxide synthase enzymes (NOS) are of interest in biology and medicine. Although NOS catalysis relies on domain motions, and is activated by calmodulin binding, the relationships are unclear. We used single-molecule fluorescence resonance energy transfer (FRET) spectroscopy to elucidate the conformational states distribution and associated conformational fluctuation dynamics of the two electron transfer domains in a FRET dye-labeled neuronal NOS reductase domain, and to understand how calmodulin affects the dynamics to regulate catalysis. We found that calmodulin alters NOS conformational behaviors in several ways: It changes the distance distribution between the NOS domains, shortens the lifetimes of the individual conformational states, and instills conformational discipline by greatly narrowing the distributions of the conformational states and fluctuation rates. This information was specifically obtainable only by single-molecule spectroscopic measurements, and reveals how calmodulin promotes catalysis by shaping the physical and temporal conformational behaviors of NOS. PMID:26311846

  6. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain

    PubMed Central

    Lake, Blue B.; Ai, Rizi; Kaeser, Gwendolyn E.; Salathia, Neeraj S.; Yung, Yun C.; Liu, Rui; Wildberg, Andre; Gao, Derek; Fung, Ho-Lim; Chen, Song; Vijayaraghavan, Raakhee; Wong, Julian; Chen, Allison; Sheng, Xiaoyan; Kaper, Fiona; Shen, Richard; Ronaghi, Mostafa; Fan, Jian-Bing; Wang, Wei; Chun, Jerold; Zhang, Kun

    2016-01-01

    The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from post-mortem brain, generating 3,227 sets of single neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish novel and orthologous neuronal subtypes as well as regional identity within the human brain. PMID:27339989

  7. Single-molecule analysis of myocyte differentiation reveals bimodal lineage commitment.

    PubMed

    Gibson, Tyler M; Gersbach, Charles A

    2015-06-01

    Cell differentiation is the foundation for tissue development and regeneration, disease modeling, and cell-based therapies. Although the differentiation of cell populations has been extensively studied in many systems, much less is known about the distribution of decision making of single cells within these populations. To characterize the differentiation of single skeletal muscle cells, we used single-molecule mRNA fluorescence in situ hybridization (smFISH) to precisely quantify the expression levels of the master myogenic regulatory factors MyoD and myogenin in individual myoblasts. We identified distinct cell states characterized by the number of myogenin transcripts expressed by a cell, with myoblasts stochastically transitioning to a myogenin-high state during differentiation. We also used MyoD overexpression to force the transdifferentiation of C3H10T1/2 cells into an induced myoblast phenotype. These reprogrammed cells revealed the presence of a critical threshold of MyoD expression required to initiate myogenin expression. These results provide quantitative single-molecule data to support the model of switch-like cell decision making and lineage specification.

  8. Single-Molecule Analysis of Myocyte Differentiation Reveals Bimodal Lineage Commitment

    PubMed Central

    Gibson, Tyler M.; Gersbach, Charles A.

    2015-01-01

    Cell differentiation is the foundation for tissue development and regeneration, disease modeling, and cell-based therapies. Although the differentiation of cell populations has been extensively studied in many systems, much less is known about the distribution of decision making of single cells within these populations. To characterize the differentiation of single skeletal muscle cells, we used single-molecule mRNA fluorescence in situ hybridization (smFISH) to precisely quantify the expression levels of the master myogenic regulatory factors MyoD and myogenin in individual myoblasts. We identified distinct cell states characterized by the number of myogenin transcripts expressed by a cell, with myoblasts stochastically transitioning to a myogenin-high state during differentiation. We also used MyoD overexpression to force the transdifferentiation of C3H10T1/2 cells into an induced myoblast phenotype. These reprogrammed cells revealed the presence of a critical threshold of MyoD expression required to initiate myogenin expression. These results provide quantitative single-molecule data to support the model of switch-like cell decision making and lineage specification. PMID:25953198

  9. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation.

    PubMed

    Orfield, Noah J; McBride, James R; Wang, Feng; Buck, Matthew R; Keene, Joseph D; Reid, Kemar R; Htoon, Han; Hollingsworth, Jennifer A; Rosenthal, Sandra J

    2016-02-23

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.

  10. Quantum Yield Heterogeneity among Single Nonblinking Quantum Dots Revealed by Atomic Structure-Quantum Optics Correlation

    DOE PAGES

    Rosenthal, Sandra

    2016-02-01

    Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather thanmore » from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.« less

  11. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging

    PubMed Central

    Yan, Jing; Sharo, Andrew G.; Stone, Howard A.; Wingreen, Ned S.; Bassler, Bonnie L.

    2016-01-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA. Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  12. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.

    PubMed

    Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M

    2000-01-01

    Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).

  13. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study

    SciTech Connect

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349 kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the 'leg' of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70 pN. These findings strongly support the idea that Gli349 is the 'leg' protein of M. mobile, responsible for binding and also most probably force generation during gliding motility.

  14. Molecular shape and binding force of Mycoplasma mobile's leg protein Gli349 revealed by an AFM study.

    PubMed

    Lesoil, Charles; Nonaka, Takahiro; Sekiguchi, Hiroshi; Osada, Toshiya; Miyata, Makoto; Afrin, Rehana; Ikai, Atsushi

    2010-01-15

    Recent studies of the gliding bacteria Mycoplasma mobile have identified a family of proteins called the Gli family which was considered to be involved in this novel and yet fairly unknown motility system. The 349kDa protein called Gli349 was successfully isolated and purified from the bacteria, and electron microscopy imaging and antibody experiments led to the hypothesis that it acts as the "leg" of M. mobile, responsible for attachment to the substrate as well as for gliding motility. However, more precise evidence of the molecular shape and function of this protein was required to asses this theory any further. In this study, an atomic force microscope (AFM) was used both as an imaging and a force measurement device to provide new information about Gli349 and its role in gliding motility. AFM images of the protein were obtained revealing a complex structure with both rigid and flexible parts, consistent with previous electron micrographs of the protein. Single-molecular force spectroscopy experiments were also performed, revealing that Gli349 is able to specifically bind to sialyllactose molecules and withstand unbinding forces around 70pN. These findings strongly support the idea that Gli349 is the "leg" protein of M. mobile, responsible for binding and also most probably force generation during gliding motility. Copyright 2009 Elsevier Inc. All rights reserved.

  15. A Model of Threshold Behavior Reveals Rescue Mechanisms of Bystander Proteins in Conformational Diseases

    PubMed Central

    Sandefur, Conner I.; Schnell, Santiago

    2011-01-01

    Conformational diseases result from the failure of a specific protein to fold into its correct functional state. The misfolded proteins can lead to the toxic aggregation of proteins. Protein misfolding in conformational diseases often displays a threshold behavior characterized by a sudden shift between nontoxic to toxic levels of misfolded proteins. In some conformational diseases, evidence suggests that misfolded proteins interact with bystander proteins (unfolded and native folded proteins), eliciting a misfolded phenotype. These bystander isomers would follow their normal physiological pathways in absence of misfolded proteins. In this article, we present a general mechanism of bystander and misfolded protein interaction which we have used to investigate how the threshold behavior in protein misfolding is triggered in conformational diseases. Using a continuous flow reactor model of the endoplasmic reticulum, we found that slight changes in the bystander protein residence time in the endoplasmic reticulum or the ratio of basal misfolded to bystander protein inflow rates can trigger the threshold behavior in protein misfolding. Our analysis reveals three mechanisms to rescue bystander proteins in conformational diseases. The results of our model can now help direct experiments to understand the threshold behavior and develop therapeutic strategies targeting the modulation of conformational diseases. PMID:21504722

  16. Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos.

    PubMed

    Wen, Jing; Zeng, Yanwu; Fang, Zhuoqing; Gu, Junjie; Ge, Laixiang; Tang, Fan; Qu, Zepeng; Hu, Jing; Cui, Yaru; Zhang, Kunshan; Wang, Junbang; Li, Siguang; Sun, Yi; Jin, Ying

    2017-03-15

    The mammalian post-implantation embryo has been extensively investigated at the tissue level. However, to unravel the molecular basis for the cell-fate plasticity and determination, it is essential to study the characteristics of individual cells. Especially, the individual definitive endoderm (DE) cells have not been characterized in vivo. Here, we report gene expression patterns in single cells freshly isolated from mouse embryos on days 5.5 and 6.5. Initial transcriptome data from 124 single cells yielded signature genes for the epiblast, visceral endoderm, and extra-embryonic ectoderm and revealed a unique distribution pattern of fibroblast growth factor (Fgf) ligands and receptors. Further analysis indicated that early-stage epiblast cells do not segregate into lineages of the major germ layers. Instead, some cells began to diverge from epiblast cells, displaying molecular features of the pre-mesendoderm by expressing higher levels of mesendoderm markers and lower levels of Sox3 transcripts. Analysis of single-cell high-throughput quantitative RT-PCR data from 441 cells identified a late stage of the day 6.5 embryo in which mesoderm and DE cells emerge, with many of them coexpressing Oct4 and Gata6. Analysis of single-cell RNA-seq data from 112 cells of the late-stage day 6.5 embryos revealed differentially expressed signaling genes and networks of transcription factors that might underlie the segregation of the mesoderm and DE lineages. Moreover, we discovered a subpopulation of mesoderm cells that possess molecular features of the extraembryonic mesoderm. This study provides fundamental insight into the molecular basis for lineage segregation in post-implantation mouse embryos.

  17. Quantitative proteomic reveals the dynamic of protein profile during final oocyte maturation in zebrafish.

    PubMed

    Ge, Chunmei; Lu, Weiqun; Chen, Aqin

    2017-08-26

    The molecular mechanisms underlying final oocyte maturation in zebrafish (Danio rerio) remain poorly understood. The present study aimed to employ iTRAQ approach for a comprehensive characterization of during zebrafish oocyte maturation proteome and for comparison between fully-grow immature and mature oocytes prior to ovulation. A total of 1568 proteins were identified, which was representing the largest zebrafish isolated oocytes proteome dataset to date. Differential expression analysis revealed 190 proteins significantly changes between immature and mature oocytes, which 136 proteins were up-regulated and 54 proteins were down-regulated in mature oocytes comparison with immature oocytes. Functional analysis revealed that these differential proteins were mostly involved in cellular response to estrogen stimulus, cellular components, extracellular region, and enzyme regulator activity, etc. The revealed differentially changes in protein expression patterns associated with oocyte maturation suggest that several of the examined proteins, such as vitellogenin(Vtg3), protein S100(S100A10), 17-beta hydroxysteroid dehydrogenase(HSD17B1), pentaxin, zona pellucida (ZP3.2), elongation factor1-alpha, caluemnin B, and 14-3-3 protein may play a specific role during zebrafish final oocyte maturation. These data will provide powerful information for understanding the molecular mechanism underlying zebrafish oocyte maturation, and these proteins may potentially act as markers to predict control oocyte maturation of zebrafish oocytes. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-05

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions.

  19. Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain.

    PubMed

    Tai, Li-Jung; McFall, Sally M; Huang, Kai; Demeler, Borries; Fox, Sue G; Brubaker, Kurt; Radhakrishnan, Ishwar; Morimoto, Richard I

    2002-01-04

    Heat shock factor-binding protein (HSBP) 1 is a small, evolutionarily conserved protein originally identified in a yeast two-hybrid screen using the trimerization domain of heat shock factor (HSF) 1 as the bait. Similar in size to HSF1 trimerization domain, human HSBP1 contains two arrays of hydrophobic heptad repeats (designated HR-N and HR-C) characteristic of coiled-coil proteins. Proteins of the HSBP family are relatively small (<100 residues), comprising solely a putative coiled-coil oligomerization domain without any other readily recognizable structural or functional motif. Our biophysical and biochemical characterization of human HSBP1 reveals a cooperatively folded protein with high alpha-helical content and moderate stability. NMR analyses reveal a single continuous helix encompassing both HR-N and HR-C in the highly conserved central region, whereas the less conserved carboxyl terminus is unstructured and accessible to proteases. Unlike previously characterized coiled-coils, backbone 15N relaxation measurements implicate motional processes on the millisecond time scale in the coiled-coil region. Analytical ultracentrifugation and native PAGE studies indicate that HSBP1 is predominantly trimeric over a wide concentration range. NMR analyses suggest a rotationally symmetric trimer. Because the highly conserved hydrophobic heptad repeats extend over 60% of HSBP1, we propose that HSBP most likely regulates the function of other proteins through coiled-coil interactions.

  20. Molecular Mechanics of Single Protein Molecules Measured with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Hansma, Paul K.

    2000-03-01

    After a short history of AFM development in our lab, including recent developments with small cantilevers, this talk will focus on 1) pulling single protein molecules to explore the forces involved in unfolding and 2) watching single protein molecules in action to learn how they function mechanically. 1) Pulling experiments on proteins used as marine adhesives in abalone shells and other biological composite materials reveal modules bound together by sacrificial bonds that are weaker than the backbone bonds in the polypeptide chain.1 These self-healing modules provide effective energy absorption and appear to be a real key to understanding the impressive fracture resistance of biological composite materials. For example, the abalone shell is 3000 times more fracture resistant than a single crystal of calcium carbonate, despite the fact that 97% of the mass of the shell is crystalline calcium carbonate. 2) It is becoming possible, again with AFMs, to learn how some enzymes, nature's nanomachines, do their exquisite materials synthesis and processing. The talk will focus on the chaperonin system of GroEL and GroES that processes incorrectly folded proteins and assists them in refolding correctly. It is becoming possible not only to see single molecule events such as the association and disassociation of the GroEL-Gro-ES complex, but also to measure potential energy functions for the molecules in various conformational states. These new measurements, together with detailed structural measurements from other techniques, give new clues about how these proteins use the energy of ATP to do their work. Since the AFMs of today are very far from fundamental limits, this is only the beginning. 1. B. L. Smith, T. E. Schaffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G. D. Stucky, D. E. Morse and P. K. Hansma, Nature 399, 761 (1999)

  1. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence

    PubMed Central

    Sierecki, Emma; Giles, Nichole; Bowden, Quill; Polinkovsky, Mark E.; Steinbeck, Janina; Arrioti, Nicholas; Rahman, Diya; Bhumkar, Akshay; Nicovich, Philip R.; Ross, Ian; Parton, Robert G.; Böcking, Till; Gambin, Yann

    2016-01-01

    Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer’s and Parkinson’s disease. Parkinson’s disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson’s disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils. PMID:27892477

  2. Nanomolar oligomerization and selective co-aggregation of α-synuclein pathogenic mutants revealed by single-molecule fluorescence.

    PubMed

    Sierecki, Emma; Giles, Nichole; Bowden, Quill; Polinkovsky, Mark E; Steinbeck, Janina; Arrioti, Nicholas; Rahman, Diya; Bhumkar, Akshay; Nicovich, Philip R; Ross, Ian; Parton, Robert G; Böcking, Till; Gambin, Yann

    2016-11-28

    Protein aggregation is a hallmark of many neurodegenerative diseases, notably Alzheimer's and Parkinson's disease. Parkinson's disease is characterized by the presence of Lewy bodies, abnormal aggregates mainly composed of α-synuclein. Moreover, cases of familial Parkinson's disease have been linked to mutations in α-synuclein. In this study, we compared the behavior of wild-type (WT) α-synuclein and five of its pathological mutants (A30P, E46K, H50Q, G51D and A53T). To this end, single-molecule fluorescence detection was coupled to cell-free protein expression to measure precisely the oligomerization of proteins without purification, denaturation or labelling steps. In these conditions, we could detect the formation of oligomeric and pre-fibrillar species at very short time scale and low micromolar concentrations. The pathogenic mutants surprisingly segregated into two classes: one group forming large aggregates and fibrils while the other tending to form mostly oligomers. Strikingly, co-expression experiments reveal that members from the different groups do not generally interact with each other, both at the fibril and monomer levels. Together, this data paints a completely different picture of α-synuclein aggregation, with two possible pathways leading to the development of fibrils.

  3. Characterization of protein-protein interaction interfaces from a single species.

    PubMed

    Talavera, David; Robertson, David L; Lovell, Simon C

    2011-01-01

    Most proteins attain their biological functions through specific interactions with other proteins. Thus, the study of protein-protein interactions and the interfaces that mediate these interactions is of prime importance for the understanding of biological function. In particular the precise determinants of binding specificity and their contributions to binding energy within protein interfaces are not well understood. In order to better understand these determinants an appropriate description of the interaction surface is needed. Available data from the yeast Saccharomyces cerevisiae allow us to focus on a single species and to use all the available structures, correcting for redundancy, instead of using structural representatives. This allows us to control for potentially confounding factors that may affect sequence propensities. We find a significant contribution of main-chain atoms to protein-protein interactions. These include interactions both with other main-chain and side-chain atoms on the interacting chain. We find that the type of interaction depends on both amino acid and secondary structure type involved in the contact. For example, residues in α-helices and large amino acids are the most likely to be involved in interactions through their side-chain atoms. We find an intriguing homogeneity when calculating the average solvation energy of different areas of the protein surface. Unexpectedly, homo- and hetero-complexes have quite similar results for all analyses. Our findings demonstrate that the manner in which protein-protein interactions are formed is determined by the residue type and the secondary structure found in the interface. However the homogeneity of the desolvation energy despite heterogeneity of interface properties suggests a complex relationship between interface composition and binding energy.

  4. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover.

    PubMed

    Cambridge, Sidney B; Gnad, Florian; Nguyen, Chuong; Bermejo, Justo Lorenzo; Krüger, Marcus; Mann, Matthias

    2011-12-02

    The turnover of each protein in the mammalian proteome is a functionally important characteristic. Here, we employed high-resolution mass spectrometry to quantify protein dynamics in nondividing mammalian cells. The ratio of externally supplied versus endogenous amino acids to de novo protein synthesis was about 17:1. Using subsaturating SILAC labeling, we obtained accurate turnover rates of 4106 proteins in HeLa and 3528 proteins in C2C12 cells. Comparison of these human and mouse cell lines revealed a highly significant turnover correlation of protein orthologs and thus high species conservation. Functionally, we observed statistically significant trends for the turnover of phosphoproteins and gene ontology categories that showed extensive covariation between mouse and human. Likewise, the members of some protein complexes, such as the proteasome, have highly similar turnover rates. The high species conservation and the low complex variances thus imply great regulatory fine-tuning of protein turnover.

  5. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine.

    PubMed

    Aubin-Tam, Marie-Eve; Olivares, Adrian O; Sauer, Robert T; Baker, Tania A; Lang, Matthew J

    2011-04-15

    All cells employ ATP-powered proteases for protein-quality control and regulation. In the ClpXP protease, ClpX is a AAA+ machine that recognizes specific protein substrates, unfolds these molecules, and then translocates the denatured polypeptide through a central pore and into ClpP for degradation. Here, we use optical-trapping nanometry to probe the mechanics of enzymatic unfolding and translocation of single molecules of a multidomain substrate. Our experiments demonstrate the capacity of ClpXP and ClpX to perform mechanical work under load, reveal very fast and highly cooperative unfolding of individual substrate domains, suggest a translocation step size of 5-8 amino acids, and support a power-stroke model of denaturation in which successful enzyme-mediated unfolding of stable domains requires coincidence between mechanical pulling by the enzyme and a transient stochastic reduction in protein stability. We anticipate that single-molecule studies of the mechanical properties of other AAA+ proteolytic machines will reveal many shared features with ClpXP.

  6. Electronic transport in single-helical protein molecules: Effects of multiple charge conduction pathways and helical symmetry

    NASA Astrophysics Data System (ADS)

    Kundu, Sourav; Karmakar, S. N.

    2016-07-01

    We propose a tight-binding model to investigate electronic transport properties of single helical protein molecules incorporating both the helical symmetry and the possibility of multiple charge transfer pathways. Our study reveals that due to existence of both the multiple charge transfer pathways and helical symmetry, the transport properties are quite rigid under influence of environmental fluctuations which indicates that these biomolecules can serve as better alternatives in nanoelectronic devices than its other biological counterparts e.g., single-stranded DNA.

  7. Structure and mechanics of proteins from single molecules to cells

    NASA Astrophysics Data System (ADS)

    Brown, Andre E.

    2009-07-01

    Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and "feel" various mechanical features of their surroundings and respond to externally applied forces. This mechanosensitivity requires a substrate for cells to adhere to and a mechanism for cells to apply force, followed by a cellular response to the mechanical properties of the substrate. We have taken an outside-in approach to characterize several aspects of cellular mechanosensitivity. First, we used single molecule force spectroscopy to measure how fibrinogen, an extracellular matrix protein that forms the scaffold of blood clots, responds to applied force and found that it rapidly unfolds in 23 nm steps at forces around 100 pN. Second, we used tensile testing to measure the force-extension behavior of fibrin gels and found that they behave almost linearly to strains of over 100%, have extensibilities of 170 +/- 15%, and undergo a large volume decrease that corresponds to a large and negative peak in compressibility at low strain, which indicates a structural transition. Using electron microscopy and X-ray scattering we concluded that these properties are likely due to coiled-coil unfolding, as observed at the single molecule level in fibrinogen. Moving inside cells, we used total internal reflection fluorescence and atomic force microscopy to image self-assembled myosin filaments. These filaments of motor proteins that are responsible for cell and muscle contractility were found to be asymmetric, with an average of 32% more force generating heads on one half than the other. This could imply a force imbalance, so that rather than being simply contractile, myosin filaments may also be motile in cells.

  8. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin

    DOE PAGES

    Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.; ...

    2016-07-15

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here,more » we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.« less

  9. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin

    SciTech Connect

    Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.; van der Meulen, Annelot I.; Borden, Sean V.; van Steensel, Bas; Bindra, Ranjit S.; LaRocque, Jeannine R.; Karpen, Gary H.

    2016-07-15

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here, we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio-temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains.

  10. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation.

    PubMed

    Wang, Maojun; Wang, Pengcheng; Tu, Lili; Zhu, Sitao; Zhang, Lin; Li, Zhonghua; Zhang, Qinghua; Yuan, Daojun; Zhang, Xianlong

    2016-05-19

    Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Revealing nonergodic dynamics in living cells from a single particle trajectory

    NASA Astrophysics Data System (ADS)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  12. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin

    PubMed Central

    Janssen, Aniek; Breuer, Gregory A.; Brinkman, Eva K.; van der Meulen, Annelot I.; Borden, Sean V.; van Steensel, Bas; Bindra, Ranjit S.; LaRocque, Jeannine R.; Karpen, Gary H.

    2016-01-01

    Repair of DNA double-strand breaks (DSBs) must be properly orchestrated in diverse chromatin regions to maintain genome stability. The choice between two main DSB repair pathways, nonhomologous end-joining (NHEJ) and homologous recombination (HR), is regulated by the cell cycle as well as chromatin context. Pericentromeric heterochromatin forms a distinct nuclear domain that is enriched for repetitive DNA sequences that pose significant challenges for genome stability. Heterochromatic DSBs display specialized temporal and spatial dynamics that differ from euchromatic DSBs. Although HR is thought to be the main pathway used to repair heterochromatic DSBs, direct tests of this hypothesis are lacking. Here, we developed an in vivo single DSB system for both heterochromatic and euchromatic loci in Drosophila melanogaster. Live imaging of single DSBs in larval imaginal discs recapitulates the spatio–temporal dynamics observed for irradiation (IR)-induced breaks in cell culture. Importantly, live imaging and sequence analysis of repair products reveal that DSBs in euchromatin and heterochromatin are repaired with similar kinetics, employ both NHEJ and HR, and can use homologous chromosomes as an HR template. This direct analysis reveals important insights into heterochromatin DSB repair in animal tissues and provides a foundation for further explorations of repair mechanisms in different chromatin domains. PMID:27474442

  13. Terbutaline causes immobilization of single β2-adrenergic receptor-ligand complexes in the plasma membrane of living A549 cells as revealed by single-molecule microscopy

    NASA Astrophysics Data System (ADS)

    Sieben, Anne; Kaminski, Tim; Kubitscheck, Ulrich; Häberlein, Hanns

    2011-02-01

    G-protein-coupled receptors are important targets for various drugs. After signal transduction, regulatory processes, such as receptor desensitization and internalization, change the lateral receptor mobility. In order to study the lateral diffusion of β2-adrenergic receptors (β2AR) complexed with fluorescently labeled noradrenaline (Alexa-NA) in plasma membranes of A549 cells, trajectories of single receptor-ligand complexes were monitored using single-particle tracking. We found that a fraction of 18% of all β2ARs are constitutively immobile. About 2/3 of the β2ARs moved with a diffusion constant of D2 = 0.03+/-0.001 μm2/s and about 17% were diffusing five-fold faster (D3 = 0.15+/-0.02 μm2/s). The mobile receptors moved within restricted domains and also showed a discontinuous diffusion behavior. Analysis of the trajectory lengths revealed two different binding durations with τ1 = 77+/-1 ms and τ2 = 388+/-11 ms. Agonistic stimulation of the β2AR-Alexa-NA complexes with 1 μM terbutaline caused immobilization of almost 50% of the receptors within 35 min. Simultaneously, the mean area covered by the mobile receptors decreased significantly. Thus, we demonstrated that agonistic stimulation followed by cell regulatory processes results in a change in β2AR mobility suggesting that different receptor dynamics characterize different receptor states.

  14. Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants.

    PubMed

    Robertson, D; Mitchell, G P; Gilroy, J S; Gerrish, C; Bolwell, G P; Slabas, A R

    1997-06-20

    The proteins of the primary cell walls of suspension cultured cells of five plant species, Arabidopsis, carrot, French bean, tomato, and tobacco, have been compared. The approach that has been adopted is differential extraction followed by SDS-polyacrylamide gel electrophoresis (PAGE), rather than two-dimensional gel analysis, to facilitate protein sequencing. Whole cells were washed sequentially with the following aqueous solutions, CaCl2, CDTA (cyclohexane diaminotetraacetic acid, DTT (dithiothreitol), NaCl, and borate. SDS-PAGE analysis showed consistent differences between species. From the 233 proteins that were selected for sequencing, 63% gave N-terminal data. This analysis shows that (i) patterns of proteins revealed by SDS-PAGE are strikingly different for all five species, (ii) a large number of these proteins cannot be identified by data base searches indicating that a significant proportion of wall proteins have not been previously described, (iii) the major proteins that can be identified belong to very different classes of proteins, (iv) the majority of proteins found in the extracellular growth media are absent from their respective cell wall extracts, and (v) the results of the extraction process are indicative of higher order structure. It appears that aspects of speciation reside in the complement of extracellular wall proteins. The data represent a protein resource for cell wall studies complementary to EST (expressed sequence tag) and DNA sequencing strategies.

  15. The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation.

    PubMed

    Wand, A Joshua

    2013-02-01

    Historically it has been virtually impossible to experimentally determine the contribution of residual protein entropy to fundamental protein activities such as the binding of ligands. Recent progress has illuminated the possibility of employing NMR relaxation methods to quantitatively determine the role of changes in conformational entropy in molecular recognition by proteins. The method rests on using fast internal protein dynamics as a proxy. Initial results reveal a large and variable role for conformational entropy in the binding of ligands by proteins. Such a role for conformational entropy in molecular recognition has significant implications for enzymology, signal transduction, allosteric regulation and the development of protein-directed pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Design principles of natural light-harvesting as revealed by single molecule spectroscopy

    NASA Astrophysics Data System (ADS)

    Krüger, T. P. J.; van Grondelle, R.

    2016-01-01

    Biology offers a boundless source of adaptation, innovation, and inspiration. A wide range of photosynthetic organisms exist that are capable of harvesting solar light in an exceptionally efficient way, using abundant and low-cost materials. These natural light-harvesting complexes consist of proteins that strongly bind a high density of chromophores to capture solar photons and rapidly transfer the excitation energy to the photochemical reaction centre. The amount of harvested light is also delicately tuned to the level of solar radiation to maintain a constant energy throughput at the reaction centre and avoid the accumulation of the products of charge separation. In this Review, recent developments in the understanding of light-harvesting by plants will be discussed, based on results obtained from single molecule spectroscopy studies. Three design principles of the main light-harvesting antenna of plants will be highlighted: (a) fine, photoactive control over the intrinsic protein disorder to efficiently use intrinsically available thermal energy dissipation mechanisms; (b) the design of the protein microenvironment of a low-energy chromophore dimer to control the amount of shade absorption; (c) the design of the exciton manifold to ensure efficient funneling of the harvested light to the terminal emitter cluster.

  17. Single-particle EM reveals extensive conformational variability of the Ltn1 E3 ligase.

    PubMed

    Lyumkis, Dmitry; Doamekpor, Selom K; Bengtson, Mario H; Lee, Joong-Won; Toro, Tasha B; Petroski, Matthew D; Lima, Christopher D; Potter, Clinton S; Carragher, Bridget; Joazeiro, Claudio A P

    2013-01-29

    Ltn1 is a 180-kDa E3 ubiquitin ligase that associates with ribosomes and marks certain aberrant, translationally arrested nascent polypeptide chains for proteasomal degradation. In addition to its evolutionarily conserved large size, Ltn1 is characterized by the presence of a conserved N terminus, HEAT/ARM repeats predicted to comprise the majority of the protein, and a C-terminal catalytic RING domain, although the protein's exact structure is unknown. We used numerous single-particle EM strategies to characterize Ltn1's structure based on negative stain and vitreous ice data. Two-dimensional classifications and subsequent 3D reconstructions of electron density maps show that Ltn1 has an elongated form and presents a continuum of conformational states about two flexible hinge regions, whereas its overall architecture is reminiscent of multisubunit cullin-RING ubiquitin ligase complexes. We propose a model of Ltn1 function based on its conformational variability and flexibility that describes how these features may play a role in cotranslational protein quality control.

  18. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    SciTech Connect

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  19. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill.

    PubMed

    Mason, Olivia U; Hazen, Terry C; Borglin, Sharon; Chain, Patrick S G; Dubinsky, Eric A; Fortney, Julian L; Han, James; Holman, Hoi-Ying N; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M; Tringe, Susannah G; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M; Jansson, Janet K

    2012-09-01

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  20. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill

    PubMed Central

    Mason, Olivia U; Hazen, Terry C; Borglin, Sharon; Chain, Patrick S G; Dubinsky, Eric A; Fortney, Julian L; Han, James; Holman, Hoi-Ying N; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M; Tringe, Susannah G; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M; Jansson, Janet K

    2012-01-01

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea. PMID:22717885

  1. Comparative Subcellular Localization Analysis of Magnetosome Proteins Reveals a Unique Localization Behavior of Mms6 Protein onto Magnetite Crystals.

    PubMed

    Arakaki, Atsushi; Kikuchi, Daiki; Tanaka, Masayoshi; Yamagishi, Ayana; Yoda, Takuto; Matsunaga, Tadashi

    2016-10-15

    The magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria. Magnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial

  2. Comparative Subcellular Localization Analysis of Magnetosome Proteins Reveals a Unique Localization Behavior of Mms6 Protein onto Magnetite Crystals

    PubMed Central

    Arakaki, Atsushi; Kikuchi, Daiki; Tanaka, Masayoshi; Yamagishi, Ayana; Yoda, Takuto

    2016-01-01

    ABSTRACT The magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria. IMPORTANCE Magnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the

  3. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis.

    PubMed

    Malmstrom, Rex R; Rodrigue, Sébastien; Huang, Katherine H; Kelly, Libusha; Kern, Suzanne E; Thompson, Anne; Roggensack, Sara; Berube, Paul M; Henn, Matthew R; Chisholm, Sallie W

    2013-01-01

    Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome--that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome.

  4. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis

    PubMed Central

    Malmstrom, Rex R; Rodrigue, Sébastien; Huang, Katherine H; Kelly, Libusha; Kern, Suzanne E; Thompson, Anne; Roggensack, Sara; Berube, Paul M; Henn, Matthew R; Chisholm, Sallie W

    2013-01-01

    Prochlorococcus is the numerically dominant photosynthetic organism throughout much of the world's oceans, yet little is known about the ecology and genetic diversity of populations inhabiting tropical waters. To help close this gap, we examined natural Prochlorococcus communities in the tropical Pacific Ocean using a single-cell whole-genome amplification and sequencing. Analysis of the gene content of just 10 single cells from these waters added 394 new genes to the Prochlorococcus pan-genome—that is, genes never before seen in a Prochlorococcus cell. Analysis of marker genes, including the ribosomal internal transcribed sequence, from dozens of individual cells revealed several representatives from two uncultivated clades of Prochlorococcus previously identified as HNLC1 and HNLC2. While the HNLC clades can dominate Prochlorococcus communities under certain conditions, their overall geographic distribution was highly restricted compared with other clades of Prochlorococcus. In the Atlantic and Pacific oceans, these clades were only found in warm waters with low Fe and high inorganic P levels. Genomic analysis suggests that at least one of these clades thrives in low Fe environments by scavenging organic-bound Fe, a process previously unknown in Prochlorococcus. Furthermore, the capacity to utilize organic-bound Fe appears to have been acquired horizontally and may be exchanged among other clades of Prochlorococcus. Finally, one of the single Prochlorococcus cells sequenced contained a partial genome of what appears to be a prophage integrated into the genome. PMID:22895163

  5. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.

    PubMed

    Trapnell, Cole; Cacchiarelli, Davide; Grimsby, Jonna; Pokharel, Prapti; Li, Shuqiang; Morse, Michael; Lennon, Niall J; Livak, Kenneth J; Mikkelsen, Tarjei S; Rinn, John L

    2014-04-01

    Defining the transcriptional dynamics of a temporal process such as cell differentiation is challenging owing to the high variability in gene expression between individual cells. Time-series gene expression analyses of bulk cells have difficulty distinguishing early and late phases of a transcriptional cascade or identifying rare subpopulations of cells, and single-cell proteomic methods rely on a priori knowledge of key distinguishing markers. Here we describe Monocle, an unsupervised algorithm that increases the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points. Applied to the differentiation of primary human myoblasts, Monocle revealed switch-like changes in expression of key regulatory factors, sequential waves of gene regulation, and expression of regulators that were not known to act in differentiation. We validated some of these predicted regulators in a loss-of function screen. Monocle can in principle be used to recover single-cell gene expression kinetics from a wide array of cellular processes, including differentiation, proliferation and oncogenic transformation.

  6. Conformational characterization of human eukaryotic initiation factor 2alpha: a single tryptophan protein.

    PubMed

    Sreejith, R K; Yadav, Viveka Nand; Varshney, Nishant K; Berwal, Sunil K; Suresh, C G; Gaikwad, Sushama M; Pal, Jayanta K

    2009-12-11

    The alpha-subunit of the human eukaryotic initiation factor 2 (heIF2alpha), a GTP binding protein, plays a major role in the initiation of protein synthesis. During various cytoplasmic stresses, eIF2alpha gets phosphorylated by eIF2alpha-specific kinases resulting in inhibition of protein synthesis. The cloned and over expressed heIF2alpha, a protein with a single tryptophan (trp) residue was examined for its conformational characteristics using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The steady-state fluorescence spectrum, fluorescence lifetimes (tau(1)=1.13ns and tau(2)=4.74ns) and solute quenching studies revealed the presence of trp conformers in hydrophobic and differential polar environment at any given time. Estimation of the alpha-helix and beta-sheet content showed: (i) more compact structure at pH 2.0, (ii) distorted alpha-helix and rearranged beta-sheet in presence of 4M guanidine hydrochloride and (iii) retention of more than 50% ordered structure at 95 degrees C. Hydrophobic dye binding to the protein with loosened tertiary structure was observed at pH 2.0 indicating the existence of a molten globule-like structure. These observations indicate the inherent structural stability of the protein under various denaturing conditions.

  7. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    PubMed Central

    Klopffleisch, Karsten; Phan, Nguyen; Augustin, Kelsey; Bayne, Robert S; Booker, Katherine S; Botella, Jose R; Carpita, Nicholas C; Carr, Tyrell; Chen, Jin-Gui; Cooke, Thomas Ryan; Frick-Cheng, Arwen; Friedman, Erin J; Fulk, Brandon; Hahn, Michael G; Jiang, Kun; Jorda, Lucia; Kruppe, Lydia; Liu, Chenggang; Lorek, Justine; McCann, Maureen C; Molina, Antonio; Moriyama, Etsuko N; Mukhtar, M Shahid; Mudgil, Yashwanti; Pattathil, Sivakumar; Schwarz, John; Seta, Steven; Tan, Matthew; Temp, Ulrike; Trusov, Yuri; Urano, Daisuke; Welter, Bastian; Yang, Jing; Panstruga, Ralph; Uhrig, Joachim F; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of Gα, Gβ, and Gγ subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. PMID:21952135

  8. Proteomics analysis revealed changes in rat bronchoalveolar lavage fluid proteins associated with oil mist exposure.

    PubMed

    Lee, Yung-Shan; Chen, Pang-Wei; Tsai, Perng-Jy; Su, Shu-Hui; Liao, Pao-Chi

    2006-04-01

    Exposure to oil mist has been associated with a variety of acute and chronic respiratory effects. Using proteomics approaches to investigate exposure-associated proteins may provide useful information to understand the mechanisms of associated respiratory effects. The aim of this study was to investigate changes in rat bronchoalveolar lavage fluid proteins associated with oil mist exposure using nano-HPLC-ESI-MS/MS. The results revealed that 29 proteins exhibited significant changes after exposure. These proteins included surfactant-associated proteins (SP-A and SP-D), inflammatory proteins (complement component 3, immunoglobulins, lysozyme, etc.), growth factors (e.g., transforming growth factor alpha (TGF-alpha)), calcium-binding proteins (calcyclin, calgranulin A, calreticulin, and calvasculin), and other proteins (e.g., cathepsin D, saposin, and intestinal trefoil factor). To further evaluate changes in protein levels, a simple quantitative strategy was developed in this study. A large decrease in protein levels of SP-A and SP-D (0.24- and 0.38-fold, respectively) following exposure was observed. In contrast, protein levels of TGF-alpha and calcium-binding proteins were significantly increased (4.46- and 1.4-1.8-fold, respectively). Due to the diverse functions of these proteins, the results might contribute to understand the mechanisms involved in lung disorders induced by oil mist exposure.

  9. Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis

    SciTech Connect

    Klopffleisch, Karsten; Phan, Nguyen; Chen, Jay; Panstruga, Ralph; Uhrig, Joachim; Jones, Alan M

    2011-01-01

    The heterotrimeric G-protein complex is minimally composed of G{alpha}, G{beta}, and G{gamma} subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification.

  10. Integrating protein-protein interaction networks with phenotypes reveals signs of interactions

    PubMed Central

    Vinayagam, Arunachalam; Zirin, Jonathan; Roesel, Charles; Hu, Yanhui; Yilmazel, Bahar; Samsonova, Anastasia A.; Neumüller, Ralph A.; Mohr, Stephanie E.; Perrimon, Norbert

    2013-01-01

    A major objective of systems biology is to organize molecular interactions as networks and to characterize information-flow within networks. We describe a computational framework to integrate protein-protein interaction (PPI) networks and genetic screens to predict the “signs” of interactions (i.e. activation/inhibition relationships). We constructed a Drosophila melanogaster signed PPI network, consisting of 6,125 signed PPIs connecting 3,352 proteins that can be used to identify positive and negative regulators of signaling pathways and protein complexes. We identified an unexpected role for the metabolic enzymes Enolase and Aldo-keto reductase as positive and negative regulators of proteolysis, respectively. Characterization of the activation/inhibition relationships between physically interacting proteins within signaling pathways will impact our understanding of many biological functions, including signal transduction and mechanisms of disease. PMID:24240319

  11. Sub-synaptic, multiplexed analysis of proteins reveals Fragile X related protein 2 is mislocalized in Fmr1 KO synapses

    PubMed Central

    Wang, Gordon X; Smith, Stephen J; Mourrain, Philippe

    2016-01-01

    The distribution of proteins within sub-synaptic compartments is an essential aspect of their neurological function. Current methodologies, such as electron microscopy (EM) and super-resolution imaging techniques, can provide the precise localization of proteins, but are often limited to a small number of one-time observations with narrow spatial and molecular coverage. The diversity of synaptic proteins and synapse types demands synapse analysis on a scale that is prohibitive with current methods. Here, we demonstrate SubSynMAP, a fast, multiplexed sub-synaptic protein analysis method using wide-field data from deconvolution array tomography (ATD). SubSynMAP generates probability distributions for that reveal the functional range of proteins within the averaged synapse of a particular class. This enables the differentiation of closely juxtaposed proteins. Using this method, we analyzed 15 synaptic proteins in normal and Fragile X mental retardation syndrome (FXS) model mouse cortex, and revealed disease-specific modifications of sub-synaptic protein distributions across synapse classes and cortical layers. DOI: http://dx.doi.org/10.7554/eLife.20560.001 PMID:27770568

  12. Phylogenetic analyses in cornus substantiate ancestry of xylem supercooling freezing behavior and reveal lineage of desiccation related proteins.

    PubMed

    Karlson, Dale T; Xiang, Qiu-Yun; Stirm, Vicki E; Shirazi, A M; Ashworth, Edward N

    2004-07-01

    The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance.

  13. Phylogenetic Analyses in Cornus Substantiate Ancestry of Xylem Supercooling Freezing Behavior and Reveal Lineage of Desiccation Related Proteins

    PubMed Central

    Karlson, Dale T.; Xiang, (Jenny) Qiu-Yun; Stirm, Vicki E.; Shirazi, A.M.; Ashworth, Edward N.

    2004-01-01

    The response of woody plant tissues to freezing temperature has evolved into two distinct behaviors: an avoidance strategy, in which intracellular water supercools, and a freeze-tolerance strategy, where cells tolerate the loss of water to extracellular ice. Although both strategies involve extracellular ice formation, supercooling cells are thought to resist freeze-induced dehydration. Dehydrin proteins, which accumulate during cold acclimation in numerous herbaceous and woody plants, have been speculated to provide, among other things, protection from desiccative extracellular ice formation. Here we use Cornus as a model system to provide the first phylogenetic characterization of xylem freezing behavior and dehydrin-like proteins. Our data suggest that both freezing behavior and the accumulation of dehydrin-like proteins in Cornus are lineage related; supercooling and nonaccumulation of dehydrin-like proteins are ancestral within the genus. The nonsupercooling strategy evolved within the blue- or white-fruited subgroup where representative species exhibit high levels of freeze tolerance. Within the blue- or white-fruited lineage, a single origin of dehydrin-like proteins was documented and displayed a trend for size increase in molecular mass. Phylogenetic analyses revealed that an early divergent group of red-fruited supercooling dogwoods lack a similar protein. Dehydrin-like proteins were limited to neither nonsupercooling species nor to those that possess extreme freeze tolerance. PMID:15247394

  14. Single and binary adsorption of proteins on ion-exchange adsorbent: The effectiveness of isothermal models.

    PubMed

    Liang, Juan; Fieg, Georg; Shi, Qing-Hong; Sun, Yan

    2012-09-01

    Simultaneous and sequential adsorption equilibria of single and binary adsorption of bovine serum albumin and bovine hemoglobin on Q Sepharose FF were investigated in different buffer constituents and initial conditions. The results in simultaneous adsorption showed that both proteins underwent competitive adsorption onto the adsorbent following greatly by protein-surface interaction. Preferentially adsorbed albumin complied with the universal rule of ion-exchange adsorption whereas buffer had no marked influence on hemoglobin adsorption. Moreover, an increase in initial ratios of proteins was benefit to a growth of adsorption density. In sequential adsorption, hemoglobin had the same adsorption densities as single-component adsorption. It was attributed to the displacement of preadsorbed albumin and multiple layer adsorption of hemoglobin. Three isothermal models (i.e. extended Langmuir, steric mass-action, and statistical thermodynamic (ST) models) were introduced to describe the ion-exchange adsorption of albumin and hemoglobin mixtures. The results suggested that extended Langmuir model gave the lowest deviation in describing preferential adsorption of albumin at a given salt concentration while steric mass-action model could very well describe the salt effect in albumin adsorption. For weaker adsorbed hemoglobin, ST model was the preferred choice. In concert with breakthrough data, the research further revealed the complexity in ion-exchange adsorption of proteins.

  15. Protein Profiling Reveals Novel Proteins in Pollen and Pistil of W22 (ga1; Ga1) in Maize

    PubMed Central

    Yu, Jin; Roy, Swapan Kumar; Kamal, Abu Hena Mostafa; Cho, Kun; Kwon, Soo-Jeong; Cho, Seong-Woo; So, Yoon-Sup; Holland, James B.; Woo, Sun Hee

    2014-01-01

    Gametophytic factors mediate pollen-pistil interactions in maize (Zea mays L.) and play active roles in limiting gene flow among maize populations and between maize and teosinte. This study was carried out to identify proteins and investigate the mechanism of gametophytic factors using protein analysis. W22 (ga1); which did not carry a gametophytic factor and W22 (Ga1), a near iso-genic line, were used for the proteome investigation. SDS-PAGE was executed to investigate proteins in the pollen and pistil of W22 (ga1) and W22 (Ga1). A total of 44 differentially expressed proteins were identified in the pollen and pistil on SDS-PAGE using LTQ-FTICR MS. Among the 44 proteins, a total of 24 proteins were identified in the pollen of W22 (ga1) and W22 (Ga1) whereas 20 differentially expressed proteins were identified from the pistil of W22 (ga1) and W22 (Ga1). However, in pollen, 2 proteins were identified only in the W22 (ga1) and 12 proteins only in the W22 (Ga1) whereas 10 proteins were confirmed from the both of W22 (ga1) and W22 (Ga1). In contrary, 10 proteins were appeared only in the pistil of W22 (ga1) and 7 proteins from W22 (Ga1) while 3 proteins confirmed in the both of W22 (ga1) and W22 (Ga1). Moreover, the identified proteins were generally involved in hydrolase activity, nucleic acid binding and nucleotide binding. These results help to reveal the mechanism of gametophytic factors and provide a valuable clue for the pollen and pistil research in maize. PMID:28250381

  16. CSAR scoring challenge reveals the need for new concepts in estimating protein-ligand binding affinity.

    PubMed

    Novikov, Fedor N; Zeifman, Alexey A; Stroganov, Oleg V; Stroylov, Viktor S; Kulkov, Val; Chilov, Ghermes G

    2011-09-26

    The dG prediction accuracy by the Lead Finder docking software on the CSAR test set was characterized by R(2)=0.62 and rmsd=1.93 kcal/mol, and the method of preparation of the full-atom structures of the test set did not significantly affect the resulting accuracy of predictions. The primary factors determining the correlation between the predicted and experimental values were the van der Waals interactions and solvation effects. Those two factors alone accounted for R(2)=0.50. The other factors that affected the accuracy of predictions, listed in the order of decreasing importance, were the change of ligand's internal energy upon binding with protein, the electrostatic interactions, and the hydrogen bonds. It appears that those latter factors contributed to the independence of the prediction results from the method of full-atom structure preparation. Then, we turned our attention to the other factors that could potentially improve the scoring function in order to raise the accuracy of the dG prediction. It turned out that the ligand-centric factors, including Mw, cLogP, PSA, etc. or protein-centric factors, such as the functional class of protein, did not improve the prediction accuracy. Following that, we explored if the weak molecular interactions such as X-H...Ar, X-H...Hal, CO...Hal, C-H...X, stacking and π-cationic interactions (where X is N or O), that are generally of interest to the medicinal chemists despite their lack of proper molecular mechanical parametrization, could improve dG prediction. Our analysis revealed that out of these new interactions only CO...Hal is statistically significant for dG predictions using Lead FInder scoring function. Accounting for the CO...Hal interaction resulted in the reduction of the rmsd from 2.19 to 0.69 kcal/mol for the corresponding structures. The other weak interaction factors were not statistically significant and therefore irrelevant to the accuracy of dG prediction. On the basis of our findings from our

  17. Energy Landscape of All-Atom Protein-Protein Interactions Revealed by Multiscale Enhanced Sampling

    PubMed Central

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2014-01-01

    Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape. PMID:25340714

  18. Energy landscape of all-atom protein-protein interactions revealed by multiscale enhanced sampling.

    PubMed

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2014-10-01

    Protein-protein interactions are regulated by a subtle balance of complicated atomic interactions and solvation at the interface. To understand such an elusive phenomenon, it is necessary to thoroughly survey the large configurational space from the stable complex structure to the dissociated states using the all-atom model in explicit solvent and to delineate the energy landscape of protein-protein interactions. In this study, we carried out a multiscale enhanced sampling (MSES) simulation of the formation of a barnase-barstar complex, which is a protein complex characterized by an extraordinary tight and fast binding, to determine the energy landscape of atomistic protein-protein interactions. The MSES adopts a multicopy and multiscale scheme to enable for the enhanced sampling of the all-atom model of large proteins including explicit solvent. During the 100-ns MSES simulation of the barnase-barstar system, we observed the association-dissociation processes of the atomistic protein complex in solution several times, which contained not only the native complex structure but also fully non-native configurations. The sampled distributions suggest that a large variety of non-native states went downhill to the stable complex structure, like a fast folding on a funnel-like potential. This funnel landscape is attributed to dominant configurations in the early stage of the association process characterized by near-native orientations, which will accelerate the native inter-molecular interactions. These configurations are guided mostly by the shape complementarity between barnase and barstar, and lead to the fast formation of the final complex structure along the downhill energy landscape.

  19. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function

    PubMed Central

    Bowen, Alicia M; Musalgaonkar, Sharmishtha; Moomau, Christine A; Gulay, Suna P; Mirvis, Mary; Dinman, Jonathan D

    2015-01-01

    Prior studies identified allosteric information pathways connecting functional centers in the large ribosomal subunit to the decoding center in the small subunit through the B1a and B1b/c intersubunit bridges in yeast. In prokaryotes a single SSU protein, uS13, partners with H38 (the A-site finger) and uL5 to form the B1a and B1b/c bridges respectively. In eukaryotes, the SSU component was split into 2 separate proteins during the course of evolution. One, also known as uS13, participates in B1b/c bridge with uL5 in eukaryotes. The other, called uS19 is the SSU partner in the B1a bridge with H38. Here, polyalanine mutants of uS19 involved in the uS19/uS13 and the uS19/H38 interfaces were used to elucidate the important amino acid residues involved in these intersubunit communication pathways. Two key clusters of amino acids were identified: one located at the junction between uS19 and uS13, and a second that appears to interact with the distal tip of H38. Biochemical analyses reveal that these mutations shift the ribosomal rotational equilibrium toward the unrotated state, increasing ribosomal affinity for tRNAs in the P-site and for ternary complex in the A-site, and inhibit binding of the translocase, eEF2. These defects in turn affect specific aspects of translational fidelity. These findings suggest that uS19 plays a critical role as a conduit of information exchange between the large and small ribosomal subunits directly through the B1a, and indirectly through the B1b/c bridges. PMID:26824029

  20. Short LOV Proteins in Methylocystis Reveal Insight into LOV Domain Photocycle Mechanisms

    PubMed Central

    El-Arab, Kaley K.; Pudasaini, Ashutosh; Zoltowski, Brian D.

    2015-01-01

    Light Oxygen Voltage (LOV) proteins are widely used in optogenetic devices, however universal signal transduction pathways and photocycle mechanisms remain elusive. In particular, short-LOV (sLOV) proteins have been discovered in bacteria and fungi, containing only the photoresponsive LOV element without any obvious signal transduction domains. These sLOV proteins may be ideal models for LOV domain function due to their ease of study as full-length proteins. Unfortunately, characterization of such proteins remains limited to select systems. Herein, we identify a family of bacterial sLOV proteins present in Methylocystis. Sequence analysis of Methylocystis LOV proteins (McLOV) demonstrates conservation with sLOV proteins from fungal systems that employ competitive dimerization as a signaling mechanism. Cloning and characterization of McLOV proteins confirms functional dimer formation and reveal unexpected photocycle mechanisms. Specifically, some McLOV photocycles are insensitive to external bases such as imidazole, in contrast to previously characterized LOV proteins. Mutational analysis identifies a key residue that imparts insensitivity to imidazole in two McLOV homologs and affects adduct decay by two orders of magnitude. The resultant data identifies a new family of LOV proteins that indicate a universal photocycle mechanism may not be present in LOV proteins. PMID:25933162

  1. Reducing multi-sensor data to a single time course that reveals experimental effects

    PubMed Central

    2013-01-01

    Background Multi-sensor technologies such as EEG, MEG, and ECoG result in high-dimensional data sets. Given the high temporal resolution of such techniques, scientific questions very often focus on the time-course of an experimental effect. In many studies, researchers focus on a single sensor or the average over a subset of sensors covering a “region of interest” (ROI). However, single-sensor or ROI analyses ignore the fact that the spatial focus of activity is constantly changing, and fail to make full use of the information distributed over the sensor array. Methods We describe a technique that exploits the optimality and simplicity of matched spatial filters in order to reduce experimental effects in multivariate time series data to a single time course. Each (multi-sensor) time sample of each trial is replaced with its projection onto a spatial filter that is matched to an observed experimental effect, estimated from the remaining trials (Effect-Matched Spatial filtering, or EMS filtering). The resulting set of time courses (one per trial) can be used to reveal the temporal evolution of an experimental effect, which distinguishes this approach from techniques that reveal the temporal evolution of an anatomical source or region of interest. Results We illustrate the technique with data from a dual-task experiment and use it to track the temporal evolution of brain activity during the psychological refractory period. We demonstrate its effectiveness in separating the means of two experimental conditions, and in significantly improving the signal-to-noise ratio at the single-trial level. It is fast to compute and results in readily-interpretable time courses and topographies. The technique can be applied to any data-analysis question that can be posed independently at each sensor, and we provide one example, using linear regression, that highlights the versatility of the technique. Conclusion The approach described here combines established techniques in a

  2. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  3. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; ...

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  4. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; ...

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  5. Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins.

    PubMed

    Narumi, Ryohei; Shimizu, Yoshihiro; Ukai-Tadenuma, Maki; Ode, Koji L; Kanda, Genki N; Shinohara, Yuta; Sato, Aya; Matsumoto, Katsuhiko; Ueda, Hiroki R

    2016-06-14

    Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)-mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of internal standards is advantageous for the analyses of multiple target proteins, which will allow systems-level studies. Here we describe a method, termed MS-based Quantification By isotope-labeled Cell-free products (MS-QBiC), which provides the simple and high-throughput preparation of internal standards by using a reconstituted cell-free protein synthesis system, and thereby facilitates both multiplexed and sensitive quantification of absolute amounts of target proteins. This method was applied to a systems-level dynamic analysis of mammalian circadian clock proteins, which consist of transcription factors and protein kinases that govern central and peripheral circadian clocks in mammals. Sixteen proteins from 20 selected circadian clock proteins were successfully quantified from mouse liver over a 24-h time series, and 14 proteins had circadian variations. Quantified values were applied to detect internal body time using a previously developed molecular timetable method. The analyses showed that single time-point data from wild-type mice can predict the endogenous state of the circadian clock, whereas data from clock mutant mice are not applicable because of the disappearance of circadian variation.

  6. Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins

    PubMed Central

    Shimizu, Yoshihiro; Ukai-Tadenuma, Maki; Ode, Koji L.; Kanda, Genki N.; Shinohara, Yuta; Sato, Aya; Matsumoto, Katsuhiko; Ueda, Hiroki R.

    2016-01-01

    Absolute values of protein expression levels in cells are crucial information for understanding cellular biological systems. Precise quantification of proteins can be achieved by liquid chromatography (LC)–mass spectrometry (MS) analysis of enzymatic digests of proteins in the presence of isotope-labeled internal standards. Thus, development of a simple and easy way for the preparation of internal standards is advantageous for the analyses of multiple target proteins, which will allow systems-level studies. Here we describe a method, termed MS-based Quantification By isotope-labeled Cell-free products (MS-QBiC), which provides the simple and high-throughput preparation of internal standards by using a reconstituted cell-free protein synthesis system, and thereby facilitates both multiplexed and sensitive quantification of absolute amounts of target proteins. This method was applied to a systems-level dynamic analysis of mammalian circadian clock proteins, which consist of transcription factors and protein kinases that govern central and peripheral circadian clocks in mammals. Sixteen proteins from 20 selected circadian clock proteins were successfully quantified from mouse liver over a 24-h time series, and 14 proteins had circadian variations. Quantified values were applied to detect internal body time using a previously developed molecular timetable method. The analyses showed that single time-point data from wild-type mice can predict the endogenous state of the circadian clock, whereas data from clock mutant mice are not applicable because of the disappearance of circadian variation. PMID:27247408

  7. Single-cell RNA-seq reveals distinct injury responses in different types of DRG sensory neurons

    PubMed Central

    Hu, Ganlu; Huang, Kevin; Hu, Youjin; Du, Guizhen; Xue, Zhigang; Zhu, Xianmin; Fan, Guoping

    2016-01-01

    Peripheral nerve injury leads to various injury-induced responses in sensory neurons including physiological pain, neuronal cell death, and nerve regeneration. In this study, we performed single-cell RNA-sequencing (scRNA-seq) analysis of mouse nonpeptidergic nociceptors (NP), peptidergic nociceptors (PEP), and large myelinated sensory neurons (LM) under both control and injury conditions at 3 days after sciatic nerve transection (SNT). After performing principle component and weighted gene co-expression network analysis, we categorized dorsal root ganglion (DRG) neurons into different subtypes and discovered co-regulated injury-response genes including novel regeneration associated genes (RAGs) in association with neuronal development, protein translation and cytoplasm transportation. In addition, we found significant up-regulation of the genes associated with cell death such as Pdcd2 in a subset of NP neurons after axotomy, implicating their actions in neuronal cell death upon nerve injury. Our study revealed the distinctive and sustained heterogeneity of transcriptomic responses to injury at single neuron level, implicating the involvement of different gene regulatory networks in nerve regeneration, neuronal cell death and neuropathy in different population of DRG neurons. PMID:27558660

  8. Single-cell analysis reveals heterogeneity in onset of transgene expression from synthetic tetracycline-dependent promoters.

    PubMed

    Rand, Ulfert; Riedel, Jan; Hillebrand, Upneet; Shin, Danim; Willenberg, Steffi; Behme, Sara; Klawonn, Frank; Köster, Mario; Hauser, Hansjörg; Wirth, Dagmar

    2015-02-01

    Synthetic promoters have been designed for mammalian cells to achieve both temporal and quantitative control over transgene expression without interfering with the endogenous cellular network. Routine applications of synthetic expression systems are based on steady-state measurements of gene expression while the mechanism by which these steady-states are realised at the single-cell level has not been investigated. We focused on the elucidation of the kinetics of doxycycline-controlled synthetic modules as a paradigm. Following gene expression in single cells, we observed a gradual increase of transgene expression within the first 48 h after activation, as determined by flow cytometry. Time-lapse microscopy revealed that the onset of transgene expression was highly variable in individual cells. Interestingly, a bidirectional cassette design showed significantly reduced cell-to-cell heterogeneity in expression. Of note, the influence of the cell cycle seems to be negligible, since the onset of expression correlates with cell division in only a minor fraction of the cell population. In contrast, rapid and synchronous transgene expression could be realized using a posttranslational regulation system that relies on ligand-induced stabilization of a tagged protein. Thus, the inherent temporal variability of transcriptionally regulated synthetic transgene expression systems has to be considered for kinetic and correlative experimental applications. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    PubMed

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation.

  10. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment

    PubMed Central

    van Wolfswinkel, Josien C.; Wagner, Daniel E.; Reddien, Peter W.

    2014-01-01

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings present a new view of planarian neoblasts, in which the population is comprised of two major and functionally distinct cellular compartments. PMID:25017721

  11. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq.

    PubMed

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R

    2016-07-26

    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  12. Revealing crystalline domains in a mollusc shell single-crystalline prism

    NASA Astrophysics Data System (ADS)

    Mastropietro, F.; Godard, P.; Burghammer, M.; Chevallard, C.; Daillant, J.; Duboisset, J.; Allain, M.; Guenoun, P.; Nouet, J.; Chamard, V.

    2017-09-01

    Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the `single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

  13. Revealing crystalline domains in a mollusc shell single-crystalline prism.

    PubMed

    Mastropietro, F; Godard, P; Burghammer, M; Chevallard, C; Daillant, J; Duboisset, J; Allain, M; Guenoun, P; Nouet, J; Chamard, V

    2017-09-01

    Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the 'single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.

  14. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment.

    PubMed

    van Wolfswinkel, Josien C; Wagner, Daniel E; Reddien, Peter W

    2014-09-04

    Planarians are flatworms capable of regenerating any missing body region. This capacity is mediated by neoblasts, a proliferative cell population that contains pluripotent stem cells. Although population-based studies have revealed many neoblast characteristics, whether functionally distinct classes exist within this population is unclear. Here, we used high-dimensional single-cell transcriptional profiling from over a thousand individual neoblasts to directly compare gene expression fingerprints during homeostasis and regeneration. We identified two prominent neoblast classes that we named ζ (zeta) and σ (sigma). Zeta-neoblasts encompass specified cells that give rise to an abundant postmitotic lineage, including epidermal cells, and are not required for regeneration. By contrast, sigma-neoblasts proliferate in response to injury, possess broad lineage capacity, and can give rise to zeta-neoblasts. These findings indicate that planarian neoblasts comprise two major and functionally distinct cellular compartments. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Nanomechanical Behavior of Single Crystalline SiC Nanotubes Revealed by Molecular Dynamics Simulations

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2008-11-01

    Molecular dynamics simulations with Tersoff potentials were used to study the response of single crystalline SiC nanotubes under tensile, compressive, torsional, combined tension-torsional and combined compression-torsional strains. The simulation results reveal that the nanotubes deform through bond-stretching and breaking and exhibit brittle properties under uniaxial tensile strain, except for the thinnest nanotube at high temperatures, which fails in a ductile manner. Under uniaxial compressive strain, the SiC nanotubes buckle with two modes, i.e. shell buckling and column buckling, depending on the length of the nanotubes. Under torsional strain, the nanotubes buckle either collapse in the middle region into a dumbbell-like structure for thinner wall thicknesses or fail by bond breakage for the largest wall thickness. Both the tensile failure stress and buckling stress decrease under combined tension-torsional and combined compression-torsional strain, and they decrease with increasing torsional rate under combined loading.

  16. Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq.

    PubMed

    Chan, Sunny Sun-Kin; Chan, Howe H W; Kyba, Michael

    2016-06-03

    Mesp1 is a transcription factor that promotes differentiation of pluripotent cells into different mesoderm lineages including hematopoietic, cardiac and skeletal myogenic. This occurs via at least two transient cell populations: a common hematopoietic/cardiac progenitor population and a common cardiac/skeletal myogenic progenitor population. It is not established whether Mesp1-induced mesoderm cells are intrinsically heterogeneous, or are simply capable of multiple lineage decisions. In the current study, we applied single-cell RNA-seq to analyze Mesp1+ mesoderm. Initial whole transcriptome analysis showed a surprising homogeneity among Mesp1-induced mesoderm cells. However, this apparent global homogeneity masked an intrinsic heterogeneity revealed by interrogating a panel of early mesoderm patterning factors. This approach enabled discovery of subpopulations primed for hematopoietic or cardiac development. These studies demonstrate the heterogeneic nature of Mesp1+ mesoderm.

  17. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-09-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings.

  18. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    PubMed Central

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-01-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. PMID:27687249

  19. Encapsulating a Single G-Quadruplex Aptamer in a Protein Nanocavity

    PubMed Central

    Shim, Ji Wook; Gu, Li-Qun

    2009-01-01

    The α-hemolysin (αHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to non-covalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with tag-TBA, we localized the G-quadruplex near the entry of the β-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics. PMID:18563930

  20. Single Muscle Fiber Proteomics Reveals Fiber-Type-Specific Features of Human Muscle Aging.

    PubMed

    Murgia, Marta; Toniolo, Luana; Nagaraj, Nagarjuna; Ciciliot, Stefano; Vindigni, Vincenzo; Schiaffino, Stefano; Reggiani, Carlo; Mann, Matthias

    2017-06-13

    Skeletal muscle is a key tissue in human aging, which affects different muscle fiber types unequally. We developed a highly sensitive single muscle fiber proteomics workflow to study human aging and show that the senescence of slow and fast muscle fibers is characterized by diverging metabolic and protein quality control adaptations. Whereas mitochondrial content declines with aging in both fiber types, glycolysis and glycogen metabolism are upregulated in slow but downregulated in fast muscle fibers. Aging mitochondria decrease expression of the redox enzyme monoamine oxidase A. Slow fibers upregulate a subset of actin and myosin chaperones, whereas an opposite change happens in fast fibers. These changes in metabolism and sarcomere quality control may be related to the ability of slow, but not fast, muscle fibers to maintain their mass during aging. We conclude that single muscle fiber analysis by proteomics can elucidate pathophysiology in a sub-type-specific manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Axial Rotation of Sliding Actin Filaments Revealed by Single-Fluorophore Imaging

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Miyata, Hidetake; Ishiwata, Shin'ichi; Kinosita, Kazuhiko

    1997-05-01

    In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of ≈ 72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of ≈ 1 μ m, which is much greater than the 72 nm pitch. Thus, myosin does not ``walk'' on the helical array of actin protomers; rather it ``runs,'' skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each ``kick'' of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions.

  2. Methanethiosulfonate ethylammonium block of amine currents through the ryanodine receptor reveals single pore architecture.

    PubMed

    Anyatonwu, Georgia I; Buck, Edmond D; Ehrlich, Barbara E

    2003-11-14

    The homotetrameric structure of the ryanodine-sensitive intracellular calcium (Ca2+) release channel (ryanodine receptor (RyR)) suggests that the four RyR subunits either combine to form a single pore or that each RyR subunit is an independently conducting pathway. Previously we showed that methanethiosulfonate ethylammonium (MTSEA+) covalently modifies the RyR to reduce current amplitudes in a time-dependent and stepwise manner. To ascertain the number of functionally conducting pores in the RyR, two approaches were combined: modification of the receptor by MTSEA+ and the use of different sized current carriers. Previous reports (Tinker, A., and Williams, A. J. (1993) J. Gen. Physiol. 102, 1107-1129) have shown that the organic cations methylamine, dimethylamine, ethylamine, and trimethylamine are permeant through the RyR but with reduced current amplitude depending upon the diameter of the respective amine. Experiments using the thiol reagent MTSEA+ to modify the channel protein showed that the current amplitudes decrease in steps leading to complete block of the channel when cesium (Cs+) is the current carrier. MTSEA+ modification decreased the number of channel substates as the diameter of the current carrier increased. Comparison of the degree of inhibition of MTSEA+-modified currents allows for differentiation between the two models for channel architecture. These results demonstrate that the conduction pathway for the RyR is comprised of a single central pore.

  3. Real-Time Imaging of a Single Gene Reveals Transcription-Initiated Local Confinement.

    PubMed

    Germier, Thomas; Kocanova, Silvia; Walther, Nike; Bancaud, Aurélien; Shaban, Haitham Ahmed; Sellou, Hafida; Politi, Antonio Zaccaria; Ellenberg, Jan; Gallardo, Franck; Bystricky, Kerstin

    2017-10-03

    Genome dynamics are intimately linked to the regulation of gene expression, the most fundamental mechanism in biology, yet we still do not know whether the very process of transcription drives spatial organization at specific gene loci. Here, we have optimized the ANCHOR/ParB DNA-labeling system for real-time imaging of a single-copy, estrogen-inducible transgene in human cells. Motion of an ANCHOR3-tagged DNA locus was recorded in the same cell before and during the appearance of nascent MS2-labeled mRNA. We found that transcription initiation by RNA polymerase 2 resulted in confinement of the mRNA-producing gene domain within minutes. Transcription-induced confinement occurred in each single cell independently of initial, highly heterogeneous mobility. Constrained mobility was maintained even when inhibiting polymerase elongation. Chromatin motion at constant step size within a largely confined area hence leads to increased collisions that are compatible with the formation of gene-specific chromatin domains, and reflect the assembly of functional protein hubs and DNA processing during the rate-limiting steps of transcription. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Axial rotation of sliding actin filaments revealed by single-fluorophore imaging

    PubMed Central

    Sase, Ichiro; Miyata, Hidetake; Ishiwata, Shin’ichi; Kinosita, Kazuhiko

    1997-01-01

    In the actomyosin motor, myosin slides along an actin filament that has a helical structure with a pitch of ≈72 nm. Whether myosin precisely follows this helical track is an unanswered question bearing directly on the motor mechanism. Here, axial rotation of actin filaments sliding over myosin molecules fixed on a glass surface was visualized through fluorescence polarization imaging of individual tetramethylrhodamine fluorophores sparsely bound to the filaments. The filaments underwent one revolution per sliding distance of ≈1 μm, which is much greater than the 72 nm pitch. Thus, myosin does not “walk” on the helical array of actin protomers; rather it “runs,” skipping many protomers. Possible mechanisms involving sequential interaction of myosin with successive actin protomers are ruled out at least for the preparation described here in which the actin filaments ran rather slowly compared with other in vitro systems. The result also indicates that each “kick” of myosin is primarily along the axis of the actin filament. The successful, real-time observation of the changes in the orientation of a single fluorophore opens the possibility of detecting a conformational change(s) of a single protein molecule at the moment it functions. PMID:9159126

  5. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  6. Structural and dynamic changes associated with beneficial engineered single-amino-acid deletion mutations in enhanced green fluorescent protein

    SciTech Connect

    Arpino, James A. J.; Rizkallah, Pierre J.; Jones, D. Dafydd

    2014-08-01

    The beneficial engineered single-amino-acid deletion variants EGFP{sup D190Δ} and EGFP{sup A227Δ} have been studied. Single-amino-acid deletions are a common part of the natural evolutionary landscape but are rarely sampled during protein engineering owing to limited and prejudiced molecular understanding of mutations that shorten the protein backbone. Single-amino-acid deletion variants of enhanced green fluorescent protein (EGFP) have been identified by directed evolution with the beneficial effect of imparting increased cellular fluorescence. Biophysical characterization revealed that increased functional protein production and not changes to the fluorescence parameters was the mechanism that was likely to be responsible. The structure EGFP{sup D190Δ} containing a deletion within a loop revealed propagated changes only after the deleted residue. The structure of EGFP{sup A227Δ} revealed that a ‘flipping’ mechanism was used to adjust for residue deletion at the end of a β-strand, with amino acids C-terminal to the deletion site repositioning to take the place of the deleted amino acid. In both variants new networks of short-range and long-range interactions are generated while maintaining the integrity of the hydrophobic core. Both deletion variants also displayed significant local and long-range changes in dynamics, as evident by changes in B factors compared with EGFP. Rather than being detrimental, deletion mutations can introduce beneficial structural effects through altering core protein properties, folding and dynamics, as well as function.

  7. Raman spectroscopy of single extracellular vesicles reveals subpopulations with varying membrane content (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.; Lee, Changwon; Rojalin, Tatu; Carney, Randy P.; Hazari, Sidhartha; Knudson, Alisha; Lam, Kit S.; Saari, Heikki; Lazaro Ibañez, Elisa; Viitala, Tapani; Laaksonen, Timo; Yliperttula, Marjo; Wachsmann-Hogiu, Sebastian

    2016-03-01

    Exosomes are small (~100nm) membrane bound vesicles excreted by cells as part of their normal biological processes. These extracellular vesicles are currently an area of intense research, since they were recently found to carry functional mRNA that allows transfer of proteins and other cellular instructions between cells. Exosomes have been implicated in a wide range of diseases, including cancer. Cancer cells are known to have increased exosome production, and may use those exosomes to prepare remote environments for metastasis. Therefore, there is a strong need to develop characterization methods to help understand the structure and function of these vesicles. However, current techniques, such as proteomics and genomics technologies, rely on aggregating a large amount of exosome material and reporting on chemical content that is averaged over many millions of exosomes. Here we report on the use of laser-tweezers Raman spectroscopy (LTRS) to probe individual vesicles, discovering distinct heterogeneity among exosomes both within a cell line, as well as between different cell lines. Through principal components analysis followed by hierarchical clustering, we have identified four "subpopulations" of exosomes shared across seven cell lines. The key chemical differences between these subpopulations, as determined by spectral analysis of the principal component loadings, are primarily related to membrane composition. Specifically, the differences can be ascribed to cholesterol content, cholesterol to phospholipid ratio, and surface protein expression. Thus, we have shown LTRS to be a powerful method to probe the chemical content of single extracellular vesicles.

  8. Counting Vesicular Release Events Reveals Binomial Release Statistics at Single Glutamatergic Synapses.

    PubMed

    Malagon, Gerardo; Miki, Takafumi; Llano, Isabel; Neher, Erwin; Marty, Alain

    2016-04-06

    receptors (62%), revealing a larger component of postsynaptic saturation than anticipated. Conversely, we also find that the number of released synaptic vesicles is limited at each active zone. Altogether, our results argue for both presynaptic and postsynaptic contributions to signal saturation at single glutamatergic synapses. Copyright © 2016 the authors 0270-6474/16/364010-16$15.00/0.

  9. Dynamic regulation on energy landscape evolution of single-molecule protein by conformational fluctuation.

    PubMed

    Lin, Chien Y; Huang, Jung Y; Lo, Leu-Wei

    2012-08-01

    We formalize a theory to help explore the effect of conformational fluctuation on the energy landscape evolution of single-molecule protein. Using this formalization, we investigate the photon emission from single photoactivated fluorescent protein. A bimodal regulation on the energy landscape evolution was discovered, and its origin was attributed to slow conformational fluctuations of the protein matrix.

  10. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins

    PubMed Central

    Dallas, David C.; Citerne, Florine; Tian, Tian; Silva, Vitor L. M.; Kalanetra, Karen M.; Frese, Steven A.; Robinson, Randall C.; Mills, David A.; Barile, Daniela

    2015-01-01

    Scope The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Methods and results Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1,500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. Conclusion The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. PMID:26616950

  11. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins.

    PubMed

    Dallas, David C; Citerne, Florine; Tian, Tian; Silva, Vitor L M; Kalanetra, Karen M; Frese, Steven A; Robinson, Randall C; Mills, David A; Barile, Daniela

    2016-04-15

    The microorganisms that make up kefir grains are well known for lactose fermentation, but the extent to which they hydrolyze and consume milk proteins remains poorly understood. Peptidomics technologies were used to examine the proteolytic activity of kefir grains on bovine milk proteins. Gel electrophoresis revealed substantial digestion of milk proteins by kefir grains, with mass spectrometric analysis showing the release of 609 protein fragments and alteration of the abundance of >1500 peptides that derived from 27 milk proteins. Kefir contained 25 peptides identified from the literature as having biological activity, including those with antihypertensive, antimicrobial, immunomodulatory, opioid and anti-oxidative functions. 16S rRNA and shotgun metagenomic sequencing identified the principle taxa in the culture as Lactobacillus species. The model kefir sample contained thousands of protein fragments released in part by kefir microorganisms and in part by native milk proteases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Genetic manipulation of single neurons in vivo reveals specific roles of flamingo in neuronal morphogenesis.

    PubMed

    Sweeney, Neal T; Li, Wenjun; Gao, Fen-Biao

    2002-07-01

    To study the roles of intracellular factors in neuronal morphogenesis, we used the mosaic analysis with a repressible cell marker (MARCM) technique to visualize identifiable single multiple dendritic (MD) neurons in living Drosophila larvae. We found that individual neurons in the peripheral nervous system (PNS) developed clear morphological polarity and diverse dendritic branching patterns in larval stages. Each MD neuron in the same dorsal cluster developed a unique dendritic field, suggesting that they have specific physiological functions. Single-neuron analysis revealed that Flamingo did not affect the general dendritic branching patterns in postmitotic neurons. Instead, Flamingo limited the extension of one or more dorsal dendrites without grossly affecting lateral branches. The dendritic overextension phenotype was partially conferred by the precocious initiation of dorsal dendrites in flamingo mutant embryos. In addition, Flamingo is required cell autonomously to promote axonal growth and to prevent premature axonal branching of PNS neurons. Our molecular analysis also indicated that the amino acid sequence near the first EGF motif is important for the proper localization and function of Flamingo. These results demonstrate that Flamingo plays a role in early neuronal differentiation and exerts specific effects on dendrites and axons.

  13. Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.

    PubMed

    Zdravkovic, Tamara; Nazor, Kristopher L; Larocque, Nicholas; Gormley, Matthew; Donne, Matthew; Hunkapillar, Nathan; Giritharan, Gnanaratnam; Bernstein, Harold S; Wei, Grace; Hebrok, Matthias; Zeng, Xianmin; Genbacev, Olga; Mattis, Aras; McMaster, Michael T; Krtolica, Ana; Valbuena, Diana; Simón, Carlos; Laurent, Louise C; Loring, Jeanne F; Fisher, Susan J

    2015-12-01

    Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin revealed differential expression among blastomeres of 8- to 10-cell human embryos. The UCSFB lines formed derivatives of the three germ layers and CDX2-positive progeny, from which we derived the first human trophoblast stem cell line. Our data suggest heterogeneity among early-stage blastomeres and that the UCSFB lines have unique properties, indicative of a more immature state than conventional lines. © 2015. Published by The Company of Biologists Ltd.

  14. Global Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles Upon Inhalation of Single Walled Carbon Nanotubes

    PubMed Central

    Tyurina, Yulia Y.; Kisin, Elena R.; Murray, Ashley; Tyurin, Vladimir A.; Kapralova, Valentina I.; Sparvero, Louis J.; Amoscato, Andrew A.; Samhan-Arias, Alejandro K.; Swedin, Linda; Lahesmaa, Riitta; Fadeel, Bengt; Shvedova, Anna A.; Kagan, Valerian E.

    2011-01-01

    It is commonly believed that nanomaterials cause non-specific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in two most abundant phospholipid classes – phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine and phosphatidylinositol whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This non-random peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H2O2/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung. PMID:21800898

  15. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation.

    PubMed

    Shalek, Alex K; Satija, Rahul; Shuga, Joe; Trombetta, John J; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S; Gaublomme, Jellert T; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P; Regev, Aviv

    2014-06-19

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a 'core' module of antiviral genes is expressed very early by a few 'precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced 'peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

  16. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    SciTech Connect

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  17. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation

    NASA Astrophysics Data System (ADS)

    Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv

    2014-06-01

    High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis and function of gene expression variation between seemingly identical cells. Here we sequence single-cell RNA-seq libraries prepared from over 1,700 primary mouse bone-marrow-derived dendritic cells spanning several experimental conditions. We find substantial variation between identically stimulated dendritic cells, in both the fraction of cells detectably expressing a given messenger RNA and the transcript's level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a `core' module of antiviral genes is expressed very early by a few `precocious' cells in response to uniform stimulation with a pathogenic component, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analysing dendritic cells from knockout mice, and modulating secretion and extracellular signalling, we show that this response is coordinated by interferon-mediated paracrine signalling from these precocious cells. Notably, preventing cell-to-cell communication also substantially reduces variability between cells in the expression of an early-induced `peaked' inflammatory module, suggesting that paracrine signalling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations can use to establish complex dynamic responses.

  18. Single-stranded DNA-binding proteins: multiple domains for multiple functions.

    PubMed

    Dickey, Thayne H; Altschuler, Sarah E; Wuttke, Deborah S

    2013-07-02

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.

  19. Single-cell gene expression analysis reveals diversity among human spermatogonia.

    PubMed

    Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R

    2017-02-10

    Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human

  20. Oxidant Signaling in Cells Revealed by Single Rare-Earth Based Nanoparticle Imaging

    NASA Astrophysics Data System (ADS)

    Bouzigues, Cedric; Abdesselem, Mouna; Ramodiharilafy, Rivo; Gacoin, Thierry; Tharaux, Pierre-Louis; Alexandrou, Antigoni

    The spatio-temporal organization of signaling pathways controls the cell response. Reactive oxygen species (ROS) are second messengers involved in the control of numerous normal and pathological processes and their local concentration is thus tightly regulated. However, the dynamics of ROS production and organization is mostly unknown, due to the lack of efficient probes. We developed single ROS sensitive Eu3+-doped nanoparticle imaging to quantitatively probed the intracellular ROS response. We revealed specific temporal patterns of ROS production under different types of stimulation (PDGF and ET-1) and quantitatively identified mechanisms of transactivation, which notably control the dynamics of the cell response. By using a microfluidic system, we apply spatially controlled stimulations and displayed the maintenance of asymmetric ROS concentration in the cell under a PDGF gradient. We then developed a ratiometric method using a nanoparticle mix, to quantitatively detect ROS with a 500 ms temporal resolution. We thus elucidate molecular mechanisms responsible for the control of the oxidant production kinetics. Altogether, our results reveal regulation mechanisms controlling ROS spatio-temporal organization, which can be crucial for the buildup of the cell response.

  1. Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells

    PubMed Central

    Tan, David W. M.; Jensen, Kim B.; Trotter, Matthew W. B.; Connelly, John T.; Broad, Simon; Watt, Fiona M.

    2013-01-01

    Human epidermal stem cells express high levels of β1 integrins, delta-like 1 (DLL1) and the EGFR antagonist LRIG1. However, there is cell-to-cell variation in the relative abundance of DLL1 and LRIG1 mRNA transcripts. Single-cell global gene expression profiling showed that undifferentiated cells fell into two clusters delineated by expression of DLL1 and its binding partner syntenin. The DLL1+ cluster had elevated expression of genes associated with endocytosis, integrin-mediated adhesion and receptor tyrosine kinase signalling. Differentially expressed genes were not independently regulated, as overexpression of DLL1 alone or together with LRIG1 led to the upregulation of other genes in the DLL1+ cluster. Overexpression of DLL1 and LRIG1 resulted in enhanced extracellular matrix adhesion and increased caveolin-dependent EGFR endocytosis. Further characterisation of CD46, one of the genes upregulated in the DLL1+ cluster, revealed it to be a novel cell surface marker of human epidermal stem cells. Cells with high endogenous levels of CD46 expressed high levels of β1 integrin and DLL1 and were highly adhesive and clonogenic. Knockdown of CD46 decreased proliferative potential and β1 integrin-mediated adhesion. Thus, the previously unknown heterogeneity revealed by our studies results in differences in the interaction of undifferentiated basal keratinocytes with their environment. PMID:23482486

  2. A Papillary Thyroid Microcarcinoma Revealed by a Single Bone Lesion with No Poor Prognostic Factors

    PubMed Central

    Godbert, Yann; Henriques-Figueiredo, Benedicte; Cazeau, Anne-Laure; Carrat, Xavier; Stegen, Marc; Soubeyran, Isabelle; Bonichon, Francoise

    2013-01-01

    Objectives. Thyroid carcinomas incidence, in particular papillary variants, is increasing. These cancers are generally considered to have excellent prognosis, and papillary microcarcinomas are usually noninvasive. Many prognostic histopathology factors have been described to guide therapeutic decisions. Most patients are treated with total thyroidectomy without radioiodine treatment or partial surgery. Case Summary. A 65-year-old man with no significant medical history presented with pain in the left chest wall that had been present for several months. A computed tomography (CT) found a large tissue mass of 4 cm responsible for lysis of the middle arch of the 4th rib on the left. It was a single lesion, highly hypermetabolic on the 18-FDG PET/CT. The histology analysis of the biopsy and surgical specimen favored an adenocarcinoma with immunostaining positive for TTF1 and thyroglobulin (Tg). The total thyroidectomy carried out subsequently revealed a 4 mm papillary microcarcinoma with vesicular architecture of the right lobe, well delimited and distant from the capsule without vascular embolisms. After two radioiodine treatments, the patient is in complete clinical, biological, and radiological remission. Conclusion. This extremely rare case of a singular bone metastasis revealing a papillary thyroid microcarcinoma illustrates the necessity of further research to better characterize the forms of papillary thyroid microcarcinomas with potentially poor prognosis. PMID:23509641

  3. Structure of AP205 Coat Protein Reveals Circular Permutation in ssRNA Bacteriophages.

    PubMed

    Shishovs, Mihails; Rumnieks, Janis; Diebolder, Christoph; Jaudzems, Kristaps; Andreas, Loren B; Stanek, Jan; Kazaks, Andris; Kotelovica, Svetlana; Akopjana, Inara; Pintacuda, Guido; Koning, Roman I; Tars, Kaspars

    2016-10-23

    AP205 is a single-stranded RNA bacteriophage that has a coat protein sequence not similar to any other known single-stranded RNA phage. Here, we report an atomic-resolution model of the AP205 virus-like particle based on a crystal structure of an unassembled coat protein dimer and a cryo-electron microscopy reconstruction of the assembled particle, together with secondary structure information from site-specific solid-state NMR data. The AP205 coat protein dimer adopts the conserved Leviviridae coat protein fold except for the N-terminal region, which forms a beta-hairpin in the other known single-stranded RNA phages. AP205 has a similar structure at the same location formed by N- and C-terminal beta-strands, making it a circular permutant compared to the other coat proteins. The permutation moves the coat protein termini to the most surface-exposed part of the assembled particle, which explains its increased tolerance to long N- and C-terminal fusions.

  4. Fusion protein analysis reveals the precise regulation between Hsp70 and Hsp100 during protein disaggregation.

    PubMed

    Hayashi, Sayaka; Nakazaki, Yosuke; Kagii, Kei; Imamura, Hiromi; Watanabe, Yo-Hei

    2017-08-17

    ClpB, a bacterial Hsp100, is a ring-shaped AAA+ chaperone that can reactivate aggregated proteins in cooperation with DnaK, a bacterial Hsp70, and its co-factors. ClpB subunits comprise two AAA+ modules with an interstitial rod-shaped M-domain. The M-domain regulates ClpB ATPase activity and interacts directly with the DnaK nucleotide-binding domain (NBD). Here, to clarify how these functions contribute to the disaggregation process, we constructed ClpB, DnaK, and aggregated YFP fusion proteins in various combinations. Notably, i) DnaK activates ClpB only when the DnaK substrate-binding domain (SBD) is in the closed conformation, affording high DnaK-peptide affinity; ii) although NBD alone can activate ClpB, SBD is required for disaggregation; and iii) tethering aggregated proteins to the activated ClpB obviates SBD requirements. These results indicate that DnaK activates ClpB only when the SBD tightly holds aggregated proteins adjacent to ClpB for effective disaggregation.

  5. Single-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts.

    PubMed

    Stierum, R H; Dianov, G L; Bohr, V A

    1999-09-15

    Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.

  6. Integration and oligomerization of Bax protein in lipid bilayers characterized by single molecule fluorescence study.

    PubMed

    Luo, Lu; Yang, Jun; Liu, Dongxiang

    2014-11-14

    Bax is a pro-apoptotic Bcl-2 family protein. The activated Bax translocates to mitochondria, where it forms pore and permeabilizes the mitochondrial outer membrane. This process requires the BH3-only activator protein (i.e. tBid) and can be inhibited by anti-apoptotic Bcl-2 family proteins such as Bcl-xL. Here by using single molecule fluorescence techniques, we studied the integration and oligomerization of Bax in lipid bilayers. Our study revealed that Bax can bind to lipid membrane spontaneously in the absence of tBid. The Bax pore formation undergoes at least two steps: pre-pore formation and membrane insertion. The activated Bax triggered by tBid or BH3 domain peptide integrates on bilayers and tends to form tetramers, which are termed as pre-pore. Subsequent insertion of the pre-pore into membrane is highly dependent on the composition of cardiolipin in lipid bilayers. Bcl-xL can translocate Bax from membrane to solution and inhibit the pore formation. The study of Bax integration and oligomerization at the single molecule level provides new evidences that may help elucidate the pore formation of Bax and its regulatory mechanism in apoptosis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Integration and Oligomerization of Bax Protein in Lipid Bilayers Characterized by Single Molecule Fluorescence Study

    PubMed Central

    Luo, Lu; Yang, Jun; Liu, Dongxiang

    2014-01-01

    Bax is a pro-apoptotic Bcl-2 family protein. The activated Bax translocates to mitochondria, where it forms pore and permeabilizes the mitochondrial outer membrane. This process requires the BH3-only activator protein (i.e. tBid) and can be inhibited by anti-apoptotic Bcl-2 family proteins such as Bcl-xL. Here by using single molecule fluorescence techniques, we studied the integration and oligomerization of Bax in lipid bilayers. Our study revealed that Bax can bind to lipid membrane spontaneously in the absence of tBid. The Bax pore formation undergoes at least two steps: pre-pore formation and membrane insertion. The activated Bax triggered by tBid or BH3 domain peptide integrates on bilayers and tends to form tetramers, which are termed as pre-pore. Subsequent insertion of the pre-pore into membrane is highly dependent on the composition of cardiolipin in lipid bilayers. Bcl-xL can translocate Bax from membrane to solution and inhibit the pore formation. The study of Bax integration and oligomerization at the single molecule level provides new evidences that may help elucidate the pore formation of Bax and its regulatory mechanism in apoptosis. PMID:25288797

  8. Proteomic Profiling of Cereal Aphid Saliva Reveals Both Ubiquitous and Adaptive Secreted Proteins

    PubMed Central

    Wilkinson, Tom L.

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113. PMID:23460852

  9. Proteomic profiling of cereal aphid saliva reveals both ubiquitous and adaptive secreted proteins.

    PubMed

    Rao, Sohail A K; Carolan, James C; Wilkinson, Tom L

    2013-01-01

    The secreted salivary proteins from two cereal aphid species, Sitobion avenae and Metopolophium dirhodum, were collected from artificial diets and analysed by tandem mass spectrometry. Protein identification was performed by searching MS data against the official protein set from the current pea aphid (Acyrthosiphon pisum) genome assembly and revealed 12 and 7 proteins in the saliva of S. avenae and M. dirhodum, respectively. When combined with a comparable dataset from A. pisum, only three individual proteins were common to all the aphid species; two paralogues of the GMC oxidoreductase family (glucose dehydrogenase; GLD) and ACYPI009881, an aphid specific protein previously identified as a putative component of the salivary sheath. Antibodies were designed from translated protein sequences obtained from partial cDNA sequences for ACYPI009881 and both saliva associated GLDs. The antibodies detected all parent proteins in secreted saliva from the three aphid species, but could only detect ACYPI009881, and not saliva associated GLDs, in protein extractions from the salivary glands. This result was confirmed by immunohistochemistry using whole and sectioned salivary glands, and in addition, localised ACYPI009881 to specific cell types within the principal salivary gland. The implications of these findings for the origin of salivary components and the putative role of the proteins identified are discussed in the context of our limited understanding of the functional relationship between aphid saliva and the plants they feed on. The mass spectrometry data have been deposited to the ProteomeXchange and can be accessed under the identifier PXD000113.

  10. Differential Interaction Kinetics of a Bipolar Structure-Specific Endonuclease with DNA Flaps Revealed by Single-Molecule Imaging

    PubMed Central

    Rezgui, Rachid; Lestini, Roxane; Kühn, Joëlle; Fave, Xenia; McLeod, Lauren; Myllykallio, Hannu; Alexandrou, Antigoni; Bouzigues, Cedric

    2014-01-01

    As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5′ and 3′-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5′ or 3′ extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases. PMID:25412080

  11. Differential interaction kinetics of a bipolar structure-specific endonuclease with DNA flaps revealed by single-molecule imaging.

    PubMed

    Rezgui, Rachid; Lestini, Roxane; Kühn, Joëlle; Fave, Xenia; McLeod, Lauren; Myllykallio, Hannu; Alexandrou, Antigoni; Bouzigues, Cedric

    2014-01-01

    As DNA repair enzymes are essential for preserving genome integrity, understanding their substrate interaction dynamics and the regulation of their catalytic mechanisms is crucial. Using single-molecule imaging, we investigated the association and dissociation kinetics of the bipolar endonuclease NucS from Pyrococcus abyssi (Pab) on 5' and 3'-flap structures under various experimental conditions. We show that association of the PabNucS with ssDNA flaps is largely controlled by diffusion in the NucS-DNA energy landscape and does not require a free 5' or 3' extremity. On the other hand, NucS dissociation is independent of the flap length and thus independent of sliding on the single-stranded portion of the flapped DNA substrates. Our kinetic measurements have revealed previously unnoticed asymmetry in dissociation kinetics from these substrates that is markedly modulated by the replication clamp PCNA. We propose that the replication clamp PCNA enhances the cleavage specificity of NucS proteins by accelerating NucS loading at the ssDNA/dsDNA junctions and by minimizing the nuclease interaction time with its DNA substrate. Our data are also consistent with marked reorganization of ssDNA and nuclease domains occurring during NucS catalysis, and indicate that NucS binds its substrate directly at the ssDNA-dsDNA junction and then threads the ssDNA extremity into the catalytic site. The powerful techniques used here for probing the dynamics of DNA-enzyme binding at the single-molecule have provided new insight regarding substrate specificity of NucS nucleases.

  12. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn

    PubMed Central

    Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize. PMID:26587848

  13. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.

    PubMed

    Kalescky, Robert; Zhou, Hongyu; Liu, Jin; Tao, Peng

    2016-04-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier's principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery.

  14. Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery

    PubMed Central

    Liu, Jin

    2016-01-01

    Intra-protein information is transmitted over distances via allosteric processes. This ubiquitous protein process allows for protein function changes due to ligand binding events. Understanding protein allostery is essential to understanding protein functions. In this study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined as model system to advance a recently developed rigid residue scan method combining with configurational entropy calculation and principal component analysis. The contributions from individual residues to whole-protein dynamics and allostery were systematically assessed via rigid body simulations of both unbound and ligand-bound states of the protein. The entropic contributions of individual residues to whole-protein dynamics were evaluated based on covariance-based correlation analysis of all simulations. The changes of overall protein entropy when individual residues being held rigid support that the rigidity/flexibility equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equilibrium. Key residues of PDZ2 allostery were identified with good agreement with NMR studies of the same protein bound to the same peptide. On the other hand, the change of entropic contribution from each residue upon perturbation revealed intrinsic differences among all the residues. The quasi-harmonic and principal component analyses of simulations without rigid residue perturbation showed a coherent allosteric mode from unbound and bound states, respectively. The projection of simulations with rigid residue perturbation onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions supporting the population-shift theory of protein allostery. Overall, the study presented here provides a robust and systematic approach to estimate the contribution of individual residue internal motion to overall protein dynamics and allostery. PMID:27115535

  15. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition.

    PubMed

    Melero, Cristina; Ollikainen, Noah; Harwood, Ian; Karpiak, Joel; Kortemme, Tanja

    2014-10-28

    Reengineering protein-protein recognition is an important route to dissecting and controlling complex interaction networks. Experimental approaches have used the strategy of "second-site suppressors," where a functional interaction is inferred between two proteins if a mutation in one protein can be compensated by a mutation in the second. Mimicking this strategy, computational design has been applied successfully to change protein recognition specificity by predicting such sets of compensatory mutations in protein-protein interfaces. To extend this approach, it would be advantageous to be able to "transplant" existing engineered and experimentally validated specificity changes to other homologous protein-protein complexes. Here, we test this strategy by designing a pair of mutations that modulates peptide recognition specificity in the Syntrophin PDZ domain, confirming the designed interaction biochemically and structurally, and then transplanting the mutations into the context of five related PDZ domain-peptide complexes. We find a wide range of energetic effects of identical mutations in structurally similar positions, revealing a dramatic context dependence (epistasis) of designed mutations in homologous protein-protein interactions. To better understand the structural basis of this context dependence, we apply a structure-based computational model that recapitulates these energetic effects and we use this model to make and validate forward predictions. Although the context dependence of these mutations is captured by computational predictions, our results both highlight the considerable difficulties in designing protein-protein interactions and provide challenging benchmark cases for the development of improved protein modeling and design methods that accurately account for the context.

  16. Dynamic Proteomic Characteristics and Network Integration Revealing Key Proteins for Two Kernel Tissue Developments in Popcorn.

    PubMed

    Dong, Yongbin; Wang, Qilei; Zhang, Long; Du, Chunguang; Xiong, Wenwei; Chen, Xinjian; Deng, Fei; Ma, Zhiyan; Qiao, Dahe; Hu, Chunhui; Ren, Yangliu; Li, Yuling

    2015-01-01

    The formation and development of maize kernel is a complex dynamic physiological and biochemical process that involves the temporal and spatial expression of many proteins and the regulation of metabolic pathways. In this study, the protein profiles of the endosperm and pericarp at three important developmental stages were analyzed by isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with LC-MS/MS in popcorn inbred N04. Comparative quantitative proteomic analyses among developmental stages and between tissues were performed, and the protein networks were integrated. A total of 6,876 proteins were identified, of which 1,396 were nonredundant. Specific proteins and different expression patterns were observed across developmental stages and tissues. The functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the development of the tissues. The whole, endosperm-specific and pericarp-specific protein networks integrated 125, 9 and 77 proteins, respectively, which were involved in 54 KEGG pathways and reflected their complex metabolic interactions. Confirmation for the iTRAQ endosperm proteins by two-dimensional gel electrophoresis showed that 44.44% proteins were commonly found. However, the concordance between mRNA level and the protein abundance varied across different proteins, stages, tissues and inbred lines, according to the gene cloning and expression analyses of four relevant proteins with important functions and different expression levels. But the result by western blot showed their same expression tendency for the four proteins as by iTRAQ. These results could provide new insights into the developmental mechanisms of endosperm and pericarp, and grain formation in maize.

  17. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers.

    PubMed

    Jiao, Junyi; Rebane, Aleksander A; Ma, Lu; Zhang, Yongli

    2017-01-01

    How proteins fold from linear chains of amino acids to delicate three-dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including sample preparation, DNA-protein conjugation and methods of data analysis to extract folding energies and rates from the single-molecule measurements.

  18. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated

    DOE PAGES

    Chung, Daehwan; Young, Jenna; Bomble, Yannick J.; ...

    2015-03-23

    Members of the bacterial genus Caldicellulosiruptor are the most thermophilic cellulolytic microbes described with ability to digest lignocellulosic biomass without conventional pretreatment. The cellulolytic ability of different species varies dramatically and correlates with the presence of the multimodular cellulase CelA, which contains both a glycoside hydrolase family 9 endoglucanase and a glycoside hydrolase family 48 exoglucanase known to be synergistic in their activity, connected by three cellulose-binding domains via linker peptides. This architecture exploits the cellulose surface ablation driven by its general cellulase processivity as well as excavates cavities into the surface of the substrate, revealing a novel paradigm formore » cellulase activity. We recently reported that a deletion of celA in C. bescii had a significant effect on its ability to utilize complex biomass. To analyze the structure and function of CelA and its role in biomass deconstruction, we constructed a new expression vector for C. bescii and were able, for the first time, to express significant quantities of full-length protein in vivo in the native host. The protein, which contains a Histidine tag, was active and excreted from the cell. Expression of CelA protein with and without its signal sequence allowed comparison of protein retained intracellularly to protein transported extracellularly. Analysis of protein in culture supernatants revealed that the extracellular CelA protein is glycosylated whereas the intracellular CelA is not, suggesting that either protein transport is required for this post-translational modification or that glycosylation is required for protein export. The mechanism and role of protein glycosylation in bacteria is poorly understood and the ability to express CelA in vivo in C. bescii will allow the study of the mechanism of protein glycosylation in this thermophile. Finally, it will also allow the study of glycosylation of CelA itself and its role

  19. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    PubMed Central

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  20. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    PubMed Central

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-01-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871

  1. Direct observation of TALE protein dynamics reveals a two-state search mechanism

    NASA Astrophysics Data System (ADS)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2015-06-01

    Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process--a search state and a recognition state--facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.

  2. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  3. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation.

    PubMed

    Apostol, Marcin I; Perry, Kay; Surewicz, Witold K

    2013-07-17

    The structural transition of the prion protein from α-helical- to β-sheet-rich underlies its conversion into infectious and disease-associated isoforms. Here we describe the crystal structure of a fragment from human prion protein consisting of the disulfide-bond-linked portions of helices 2 and 3. Instead of forming a pair-of-sheets steric zipper structure characteristic of amyloid fibers, this fragment crystallized into a β-sheet-rich assembly of hexameric oligomers. This study reveals a never before observed structural motif for ordered protein aggregates and suggests a possible mechanism for self-propagation of misfolded conformations by such nonamyloid oligomers.

  4. Conserved evolutionary units in the heme-copper oxidase superfamily revealed by novel homologous protein families

    PubMed Central

    Pei, Jimin; Li, Wenlin; Kinch, Lisa N; Grishin, Nick V

    2014-01-01

    The heme-copper oxidase (HCO) superfamily includes HCOs in aerobic respiratory chains and nitric oxide reductases (NORs) in the denitrification pathway. The HCO/NOR catalytic subunit has a core structure consisting of 12 transmembrane helices (TMHs) arranged in three-fold rotational pseudosymmetry, with six conserved histidines for heme and metal binding. Using sensitive sequence similarity searches, we detected a number of novel HCO/NOR homologs and named them HCO Homology (HCOH) proteins. Several HCOH families possess only four TMHs that exhibit the most pronounced similarity to the last four TMHs (TMHs 9–12) of HCOs/NORs. Encoded by independent genes, four-TMH HCOH proteins represent a single evolutionary unit (EU) that relates to each of the three homologous EUs of HCOs/NORs comprising TMHs 1–4, TMHs 5–8, and TMHs 9–12. Single-EU HCOH proteins could form homotrimers or heterotrimers to maintain the general structure and ligand-binding sites defined by the HCO/NOR catalytic subunit fold. The remaining HCOH families, including NnrS, have 12-TMHs and three EUs. Most three-EU HCOH proteins possess two conserved histidines and could bind a single heme. Limited experimental studies and genomic context analysis suggest that many HCOH proteins could function in the denitrification pathway and in detoxification of reactive molecules such as nitric oxide. HCO/NOR catalytic subunits exhibit remarkable structural similarity to the homotrimers of MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) proteins. Gene duplication, fusion, and fission likely play important roles in the evolution of HCOs/NORs and HCOH proteins. PMID:24931479

  5. Fluorescence labeling, purification, and immobilization of a double cysteine mutant calmodulin fusion protein for single-molecule experiments.

    PubMed

    Allen, Michael W; Urbauer, Ramona J Bieber; Zaidi, Asma; Williams, Todd D; Urbauer, Jeffrey L; Johnson, Carey K

    2004-02-15

    We present a method of labeling and immobilizing a low-molecular-weight protein, calmodulin (CaM), by fusion to a larger protein, maltose binding protein (MBP), for single-molecule fluorescence experiments. Immobilization in an agarose gel matrix eliminates potential interactions of the protein and the fluorophore(s) with a glass surface and allows prolonged monitoring of protein dynamics. The small size of CaM hinders its immobilization in low-weight-percentage agarose gels; however, fusion of CaM to MBP via a flexible linker provides sufficient restriction of translational mobility in 1% agarose gels. Cysteine residues were engineered into MBP.CaM (MBP-T34C,T110C-CaM) and labeled with donor and acceptor fluorescent probes yielding a construct (MBP.CaM-DA) which can be used for single-molecule single-pair fluorescence resonance energy transfer (spFRET) experiments. Mass spectrometry was used to verify the mass of MBP.CaM-DA. Assays measuring the activity of CaM reveal minimal activity differences between wild-type CaM and MBP.CaM-DA. Single-molecule fluorescence images of the donor and acceptor dyes were fit to a two-dimensional Gaussian function to demonstrate colocalization of donor and acceptor dyes. FRET is demonstrated both in bulk fluorescence spectra and in fluorescence trajectories of single MBP.CaM-DA molecules. The extension of this method to other biomolecules is also proposed.

  6. Structural basis for the modular recognition of single-stranded RNA by PPR proteins

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Li, Quanxiu; Yan, Chuangye; Liu, Ying; Liu, Junjie; Yu, Feng; Wang, Zheng; Long, Jiafu; He, Jianhua; Wang, Hong-Wei; Wang, Jiawei; Zhu, Jian-Kang; Shi, Yigong; Yan, Nieng

    2013-12-01

    Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.

  7. recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein.

    PubMed Central

    McEntee, K; Weinstock, G M; Lehman, I R

    1980-01-01

    The single-stranded DNA-binding protein of Escherichia coli significantly alters the strand assimilation reaction catalyzed by recA protein [McEntee, K., Weinstock, G. M. & Lehman, I. R. (1979) Proc. Natl. Acad. Sci. USA 76, 2615--2619]. The binding protein (i) increases the rate and extent of strand assimilation into homologous duplex DNA, (ii) enhances the formation of a complex between recA protein and duplex DNA in the presence of homologous or heterologous single-stranded DNA, (iii) reduces the rate and extent of ATP hydrolysis catalyzed by recA protein in the presence of single-stranded DNA, (iv) reduces the high concentration of recA protein required for strand assimilation, and (v) permits detection of strand assimilation in the presence of the ATP analog, adenosine 5'-O-(O-thiotriphosphate). Single-stranded DNA-binding protein purified from a binding protein mutant (lexC) is considerably less effective than wild-type binding protein in stimulating strand assimilation, a result which suggests that single-stranded DNA-binding protein participates in general recombination in vivo. PMID:6244589

  8. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets

    PubMed Central

    Lu, Xiaowen; Kensche, Philip R.; Huynen, Martijn A.; Notebaart, Richard A.

    2013-01-01

    Genetic interactions reveal insights into cellular function and can be used to identify drug targets. Here we construct a new model to predict negative genetic interactions in protein complexes by exploiting the evolutionary history of genes in parallel converging pathways in metabolism. We evaluate our model with protein complexes of Saccharomyces cerevisiae and show that the predicted protein pairs more frequently have a negative genetic interaction than random proteins from the same complex. Furthermore, we apply our model to human protein complexes to predict novel cancer drug targets, and identify 20 candidate targets with empirical support and 10 novel targets amenable to further experimental validation. Our study illustrates that negative genetic interactions can be predicted by systematically exploring genome evolution, and that this is useful to identify novel anti-cancer drug targets. PMID:23851603

  9. Immunogenic membrane-associated proteins of Mycobacterium tuberculosis revealed by proteomics.

    PubMed

    Sinha, Sudhir; Kosalai, K; Arora, Shalini; Namane, Abdelkader; Sharma, Pawan; Gaikwad, Anil N; Brodin, Priscille; Cole, Stewart T

    2005-07-01

    Membrane-associated proteins of Mycobacterium tuberculosis offer a challenge, as well as an opportunity, in the quest for better therapeutic and prophylactic interventions against tuberculosis. The authors have previously reported that extraction with the detergent Triton X-114 (TX-114) is a useful step in proteomic analysis of mycobacterial cell membranes, and detergent-soluble membrane proteins of mycobacteria are potent stimulators of human T cells. In this study 1-D and 2-D gel electrophoresis-based protocols were used for the analysis of proteins in the TX-114 extract of M. tuberculosis membranes. Peptide mass mapping (using MALDI-TOF-MS, matrix assisted laser desorption/ionization time of flight mass spectrometry) of 116 samples led to the identification of 105 proteins, 9 of which were new to the M. tuberculosis proteome. Functional orthologues of 73 of these proteins were also present in Mycobacterium leprae, suggesting their relative importance. Bioinformatics predicted that as many as 73% of the proteins had a hydrophobic disposition. 1-D gel electrophoresis revealed more hydrophobic/transmembrane and basic proteins than 2-D gel electrophoresis. Identified proteins fell into the following major categories: protein synthesis, cell wall biogenesis/architecture and conserved hypotheticals/unknowns. To identify immunodominant proteins of the detergent phase (DP), 14 low-molecular-mass fractions prepared by continuous-elution gel electrophoresis were subjected to T cell activation assays using blood samples from BCG-vaccinated healthy donors from a tuberculosis endemic area. Analysis of the responses (cell proliferation and IFN-gamma production) showed that the immunodominance of certain DP fractions was most probably due to ribosomal proteins, which is consistent with both their specificity for mycobacteria and their abundance. Other membrane-associated proteins, including transmembrane proteins/lipoproteins and ESAT-6, did not appear to contribute

  10. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays

    NASA Astrophysics Data System (ADS)

    Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.

    2017-05-01

    A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.

  11. Controlling Protein Conformations to Explore Unprecedented Material Properties by Single-Molecule Surgery

    DTIC Science & Technology

    2012-08-17

    Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen , CO, Jan. 4-10, 2009. H. P. Lu, “Single...Donor-Acceptor: Cy3-Cy5) pair labeled HPPK molecule tethered between a glass cover-slip surface and a handle (biotin group plus streptavidin), and a...5, 2008. H. P. Lu, “Probing Single-Molecule Protein Conformational Dynamics in Enzymatic Reactions,” Single-Molecule Biophysics Meeting, Aspen

  12. Quasi-elastic neutron scattering reveals ligand-induced protein dynamics of a G-protein-coupled receptor

    DOE PAGES

    Shrestha, Utsab R.; Perera, Suchithranga M. D. C.; Bhowmik, Debsindhu; ...

    2016-09-15

    Light activation of the visual G-protein-coupled receptor (GPCR) rhodopsin leads to significant structural fluctuations of the protein embedded within the membrane yielding the activation of cognate G-protein (transducin), which initiates biological signaling. Here, we report a quasi-elastic neutron scattering study of the activation of rhodopsin as a GPCR prototype. Our results reveal a broadly distributed relaxation of hydrogen atom dynamics of rhodopsin on a picosecond–nanosecond time scale, crucial for protein function, as only observed for globular proteins previously. Interestingly, the results suggest significant differences in the intrinsic protein dynamics of the dark-state rhodopsin versus the ligand-free apoprotein, opsin. These differencesmore » can be attributed to the influence of the covalently bound retinal ligand. Moreover, an idea of the generic free-energy landscape is used to explain the GPCR dynamics of ligand-binding and ligand-free protein conformations, which can be further applied to other GPCR systems.« less

  13. Function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations

    SciTech Connect

    Nutt, David; Smith, Jeremy C

    2008-10-01

    Atomistic molecular dynamics simulations are used to investigate the mechanism by which the antifreeze protein from the spruce budworm, Choristoneura fumiferana, binds to ice. Comparison of structural and dynamic properties of the water around the three faces of the triangular prism-shaped protein in aqueous solution reveals that at low temperature the water structure is ordered and the dynamics slowed down around the ice-binding face of the protein, with a disordering effect observed around the other two faces. These results suggest a dual role for the solvation water around the protein. The preconfigured solvation shell around the ice-binding face is involved in the initial recognition and binding of the antifreeze protein to ice by lowering the barrier for binding and consolidation of the protein:ice interaction surface. Thus, the antifreeze protein can bind to the molecularly rough ice surface by becoming actively involved in the formation of its own binding site. Also, the disruption of water structure around the rest of the protein helps prevent the adsorbed protein becoming covered by further ice growth.

  14. The interactome of a PTB domain-containing adapter protein, Odin, revealed by SILAC.

    PubMed

    Zhong, Jun; Chaerkady, Raghothama; Kandasamy, Kumaran; Gucek, Marjan; Cole, Robert N; Pandey, Akhilesh

    2011-03-01

    Signal transduction pathways are tightly controlled by positive and negative regulators. We have previously identified Odin (also known as ankyrin repeat and sterile alpha motif domain-containing 1A; gene symbol ANKS1A) as a negative regulator of growth factor signaling; however, the mechanisms through which Odin regulates these pathways remain to be elucidated. To determine how Odin negatively regulates growth factor signaling, we undertook a proteomic approach to systematically identify proteins that interact with Odin using the SILAC strategy. In this study, we identified 18 molecules that were specifically associated in a protein complex with Odin. Our study established that the complete family of 14-3-3 proteins occur in a protein complex with Odin, which is also supported by earlier reports that identified a few members of the 14-3-3 family as Odin interactors. Among the novel protein interactors of Odin were CD2-associated protein, SH3 domain kinase binding protein 1 and DAB2 interacting protein. We confirmed 8 of the eighteen interactions identified in the Odin protein complex by co-immunoprecipitation experiments. Finally, a literature-based network analysis revealed that Odin interacting partners are involved in various cellular processes, some of which are key molecules in regulating receptor endocytosis. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. The interactome of a PTB domain-containing adapter protein, Odin, revealed by SILAC

    PubMed Central

    Zhong, Jun; Chaerkady, Raghothama; Kandasamy, Kumaran; Gucek, Marjan; Cole, Robert N.; Pandey, Akhilesh

    2011-01-01

    Signal transduction pathways are tightly controlled by positive and negative regulators. We have previously identified Odin (also known as ankyrin repeat and sterile alpha motif domain containing 1A; gene symbol AKNS1A) as a negative regulator of growth factor signaling; however, the mechanisms through which Odin regulates these pathways remain to be elucidated. To determine how Odin negatively regulates growth factor signaling, we undertook a proteomic approach to systematically identify proteins that interact with Odin using the SILAC strategy. In this study, we identified 18 molecules that were specifically associated in a protein complex with Odin. Our study established that the complete family of 14-3-3 proteins occur in a protein complex with Odin, which is also supported by earlier reports that identified a few members of the 14-3-3 family as Odin interactors. Among the novel protein interactors of Odin were CD2-associated protein, SH3 domain kinase binding protein 1 and DAB2 interacting protein. We confirmed 8 of the eighteen interactions identified in the Odin protein complex by co-immunoprecipitation experiments. Finally, a literature-based network analysis revealed that Odin interacting partners are involved in various cellular processes, some of which are key molecules in regulating receptor endocytosis. PMID:21081186

  16. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins.

    PubMed

    Huelga, Stephanie C; Vu, Anthony Q; Arnold, Justin D; Liang, Tiffany Y; Liu, Patrick P; Yan, Bernice Y; Donohue, John Paul; Shiue, Lily; Hoon, Shawn; Brenner, Sydney; Ares, Manuel; Yeo, Gene W

    2012-02-23

    Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here, we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq), and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and autoregulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells.

  17. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins

    PubMed Central

    Huelga, Stephanie C.; Vu, Anthony Q.; Arnold, Justin D.; Liang, Tiffany Y.; Liu, Patrick P.; Yan, Bernice Y.; Donohue, John Paul; Shiue, Lily; Hoon, Shawn; Brenner, Sydney; Ares, Manuel; Yeo, Gene W.

    2012-01-01

    SUMMARY Understanding how RNA binding proteins control the splicing code is fundamental to human biology and disease. Here we present a comprehensive study to elucidate how heterogeneous nuclear ribonucleoparticle (hnRNP) proteins, among the most abundant RNA binding proteins, coordinate to regulate alternative pre-mRNA splicing (AS) in human cells. Using splicing-sensitive microarrays, cross-linking and immunoprecipitation coupled with high-throughput sequencing, and cDNA sequencing, we find that more than half of all AS events are regulated by multiple hnRNP proteins, and that some combinations of hnRNP proteins exhibit significant synergy, whereas others act antagonistically. Our analyses reveal position-dependent RNA splicing maps, in vivo consensus binding sites, a surprising level of cross- and auto-regulation among hnRNP proteins, and the coordinated regulation by hnRNP proteins of dozens of other RNA binding proteins and genes associated with cancer. Our findings define an unprecedented degree of complexity and compensatory relationships among hnRNP proteins and their splicing targets that likely confer robustness to cells. PMID:22574288

  18. Single-Cell Tracking Reveals Antibiotic-Induced Changes in Mycobacterial Energy Metabolism

    PubMed Central

    Özdemir, Emre; McKinney, John D.

    2015-01-01

    ABSTRACT ATP is a key molecule of cell physiology, but despite its importance, there are currently no methods for monitoring single-cell ATP fluctuations in live bacteria. This is a major obstacle in studies of bacterial energy metabolism, because there is a growing awareness that bacteria respond to stressors such as antibiotics in a highly individualistic manner. Here, we present a method for long-term single-cell tracking of ATP levels in Mycobacterium smegmatis based on a combination of microfluidics, time-lapse microscopy, and Förster resonance energy transfer (FRET)-based ATP biosensors. Upon treating cells with antibiotics, we observed that individual cells undergo an abrupt and irreversible switch from high to low intracellular ATP levels. The kinetics and extent of ATP switching clearly discriminate between an inhibitor of ATP synthesis and other classes of antibiotics. Cells that resume growth after 24 h of antibiotic treatment maintain high ATP levels throughout the exposure period. In contrast, antibiotic-treated cells that switch from ATP-high to ATP-low states never resume growth after antibiotic washout. Surprisingly, only a subset of these nongrowing ATP-low cells stains with propidium iodide (PI), a widely used live/dead cell marker. These experiments also reveal a cryptic subset of cells that do not resume growth after antibiotic washout despite remaining ATP high and PI negative. We conclude that ATP tracking is a more dynamic, sensitive, reliable, and discriminating marker of cell viability than staining with PI. This method could be used in studies to evaluate antimicrobial effectiveness and mechanism of action, as well as for high-throughput screening. PMID:25691591

  19. Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics.

    PubMed

    Kim, Min-Sik; Zhong, Yi; Yachida, Shinichi; Rajeshkumar, N V; Abel, Melissa L; Marimuthu, Arivusudar; Mudgal, Keshav; Hruban, Ralph H; Poling, Justin S; Tyner, Jeffrey W; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Pandey, Akhilesh

    2014-11-01

    Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the

  20. Single-cell genomics reveals metabolic strategies for microbial growth and survival in an oligotrophic aquifer.

    PubMed

    Wilkins, Michael J; Kennedy, David W; Castelle, Cindy J; Field, Erin K; Stepanauskas, Ramunas; Fredrickson, James K; Konopka, Allan E

    2014-02-01

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site (a largely decommissioned nuclear production complex) in eastern Washington state, USA, and have been shown to change significantly in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single-cell genomics techniques to shed light on the physiological niche of these micro-organisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide range of both intra- and extracellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors, which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic micro-organisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area (in the south-eastern corner of the site) subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  1. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments

    PubMed Central

    Wichgers Schreur, Paul J.; Kortekaas, Jeroen

    2016-01-01

    The bunyavirus genome comprises a small (S), medium (M), and large (L) RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH), the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV) genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process. PMID:27548280

  2. Single Molecule Force Measurement for Protein Synthesis on the Ribosome

    NASA Astrophysics Data System (ADS)

    Uemura, Sotaro

    2008-04-01

    The ribosome is a molecular machine that translates the genetic code described on the messenger RNA (mRNA) into an amino acid sequence through repetitive cycles of transfer RNA (tRNA) selection, peptide bond formation and translocation. Although the detailed interactions between the translation components have been revealed by extensive structural and biochemical studies, it is not known how the precise regulation of macromolecular movements required at each stage of translation is achieved. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence. The removal of the SD sequence significantly reduced the rupture force, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA in a pre-peptidyl transfer state. In contrast, the post-peptidyl transfer state weakened the rupture force as compared to the complex in a pre-peptidyl transfer state and it was the same for both the SD-containing and SD-deficient mRNAs. The results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step. In this article, we discuss about the above new results including the introduction of the ribosome translation mechanism and the optical tweezer method.

  3. Experimental single-strain mobilomics reveals events that shape pathogen emergence

    DOE PAGES

    Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.; ...

    2016-07-04

    Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to themore » rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.« less

  4. Experimental single-strain mobilomics reveals events that shape pathogen emergence

    SciTech Connect

    Schoeniger, Joseph S.; Hudson, Corey M.; Bent, Zachary W.; Sinha, Anupama; Williams, Kelly P.

    2016-07-04

    Virulence and resistance genes carried on mobile DNAs such as genomic islands (GIs) and plasmids promote bacterial pathogen emergence. An early step in the mobilization of GIs is their excision, which produces both a circular form of the GI and a deletion site in the chromosome; circular forms have also been described for some bacterial insertion sequences (ISs). We demonstrate that the recombinant sequence produced at the junction of such circles, and their corresponding deletion sites, can be detected sensitively in high throughput sequencing data, using new computational methods that enable empirical discovery of new mobile DNAs. Applied to the rich mobilome of a single strain (Kpn2146) of the emerging multidrug-resistant pathogen Klebsiella pneumoniae, our approach detected circular junctions for six GIs and seven IS types (several of the latter not previously known to circularize). Our methods further revealed differential biology of multiple mobile DNAs, imprecision of integrases and transposases, and differential activity among identical IS copies for IS26, ISKpn18 and ISKpn21. Exonuclease was used to enrich for circular dsDNA molecules, and internal calibration with the native Kpn2146 plasmids showed that not all molecules bearing GI and IS circular junctions were circular dsDNAs. Transposition events were also detected, revealing replicon preference (ISKpn18 preferring a conjugative IncA/C2 plasmid), local action (IS26), regional preferences, selection (against capsule synthesis), and left-right IS end swapping. Efficient discovery and global characterization of numerous mobile elements per experiment will allow detailed accounting of bacterial evolution, explaining the new gene combinations that arise in emerging pathogens.

  5. A Nanogram Level Colloidal Gold Single Reagent Quantitative Protein Assay

    PubMed Central

    Harrison, Gerald; Haffey, Patrick; Golub, Ellis E.

    2008-01-01

    We have developed a nanogram level quantitative protein assay based on the binding of colloidal gold to proteins adhered to nitrocellulose paper. The protein-gold complex produces a purple color proportional to the amount of protein present, and the intensity of the stain is quantified by densitometry. Typical assays require minimal starting material (10 – 20 μl) containing 2 – 5 μg protein. A small volume (2 μl) of protein solution is applied to nitrocellulose paper in a grid array, and dried. The nitrocellulose is incubated in colloidal gold suspension with gentle agitation (4–16 h), rinsed with water and scanned. Densitometric analysis of the scanned images allows quantitation of the unknown sample protein concentration by comparison with protein standards placed on the same nitrocellulose grid. The assay requires significantly less sample than conventional protein assays. In this report, the Golddots assay is calibrated against weighed protein samples, and compared with the Pierce Micro BCA protein assay kit. In addition, the assay is evaluated with several known proteins with different physical properties. PMID:18539124

  6. Revealing the potential pathogenesis of glioma by utilizing a glioma associated protein-protein interaction network.

    PubMed

    Pan, Weiran; Li, Gang; Yang, Xiaoxiao; Miao, Jinming

    2015-04-01

    This study aims to explore the potential mechanism of glioma through bioinformatic approaches. The gene expression profile (GSE4290) of glioma tumor and non-tumor samples was downloaded from Gene Expression Omnibus database. A total of 180 samples were available, including 23 non-tumor and 157 tumor samples. Then the raw data were preprocessed using robust multiarray analysis, and 8,890 differentially expressed genes (DEGs) were identified by using t-test (false discovery rate < 0.0005). Furthermore, 16 known glioma related genes were abstracted from Genetic Association Database. After mapping 8,890 DEGs and 16 known glioma related genes to Human Protein Reference Database, a glioma associated protein-protein interaction network (GAPN) was constructed. In addition, 51 sub-networks in GAPN were screened out through Molecular Complex Detection (score ≥ 1), and sub-network 1 was found to have the closest interaction (score = 3). What' more, for the top 10 sub-networks, Gene Ontology (GO) enrichment analysis (p value < 0.05) was performed, and DEGs involved in sub-network 1 and 2, such as BRMS1L and CCNA1, were predicted to regulate cell growth, cell cycle, and DNA replication via interacting with known glioma related genes. Finally, the overlaps of DEGs and human essential, housekeeping, tissue-specific genes were calculated (p value = 1.0, 1.0, and 0.00014, respectively) and visualized by Venn Diagram package in R. About 61% of human tissue-specific genes were DEGs as well. This research shed new light on the pathogenesis of glioma based on DEGs and GAPN, and our findings might provide potential targets for clinical glioma treatment.

  7. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  8. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.

    PubMed

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding.

  9. Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling.

    PubMed Central

    Valentini, Sandro R; Casolari, Jason M; Oliveira, Carla C; Silver, Pamela A; McBride, Anne E

    2002-01-01

    The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIF5A may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes. PMID:11861547

  10. Mapping the energy landscape for second-stage folding of a single membrane protein

    PubMed Central

    Min, Duyoung; Jefferson, Robert E; Bowie, James U; Yoon, Tae-Young

    2016-01-01

    Membrane proteins are designed to fold and function in a lipid membrane, yet folding experiments within a native membrane environment are challenging to design. Here we show that single-molecule forced unfolding experiments can be adapted to study helical membrane protein folding under native-like bicelle conditions. Applying force using magnetic tweezers, we find that a transmembrane helix protein, Escherichia coli rhomboid protease GlpG, unfolds in a highly cooperative manner, largely unraveling as one physical unit in response to mechanical tension above 25 pN. Considerable hysteresis is observed, with refolding occurring only at forces below 5 pN. Characterizing the energy landscape reveals only modest thermodynamic stability (ΔG = 6.5 kBT) but a large unfolding barrier (21.3 kBT) that can maintain the protein in a folded state for long periods of time (t1/2 ~3.5 h). The observed energy landscape may have evolved to limit the existence of troublesome partially unfolded states and impart rigidity to the structure. PMID:26479439

  11. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers

    PubMed Central

    Jiao, Junyi; Rebane, Aleksander A.; Ma, Lu; Zhang, Yongli

    2017-01-01

    Summary How proteins fold from linear chains of amino acids to delicate three dimensional structures remains a fundamental biological problem. Single-molecule manipulation based on high-resolution optical tweezers (OT) provides a powerful approach to study protein folding with unprecedented spatiotemporal resolution. In this method, a single protein or protein complex is tethered between two beads confined in optical traps and pulled. Protein unfolding induced by the mechanical force is counteracted by the spontaneous folding of the protein, reaching a dynamic equilibrium at a characteristic force and rate. The transition is monitored by the accompanying extension change of the protein and used to derive conformations and energies of folding intermediates and their associated transition kinetics. Here, we provide general strategies and detailed protocols to study folding of proteins and protein complexes using optical tweezers, including methods of data analysis to extract folding energies and rates from the single-molecule measurements. PMID:27844436

  12. Single-molecule manipulation reveals supercoiling-dependent modulation of lac repressor-mediated DNA looping

    PubMed Central

    Normanno, Davide; Vanzi, Francesco; Pavone, Francesco Saverio

    2008-01-01

    Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between −0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI–DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes. PMID:18310101

  13. Single-Molecule Imaging Reveals How Mre11-Rad50-Nbs1 Initiates DNA Break Repair.

    PubMed

    Myler, Logan R; Gallardo, Ignacio F; Soniat, Michael M; Deshpande, Rajashree A; Gonzalez, Xenia B; Kim, Yoori; Paull, Tanya T; Finkelstein, Ilya J

    2017-09-07

    DNA double-strand break (DSB) repair is essential for maintaining our genomes. Mre11-Rad50-Nbs1 (MRN) and Ku70-Ku80 (Ku) direct distinct DSB repair pathways, but the interplay between these complexes at a DSB remains unclear. Here, we use high-throughput single-molecule microscopy to show that MRN searches for free DNA ends by one-dimensional facilitated diffusion, even on nucleosome-coated DNA. Rad50 binds homoduplex DNA and promotes facilitated diffusion, whereas Mre11 is required for DNA end recognition and nuclease activities. MRN gains access to occluded DNA ends by removing Ku or other DNA adducts via an Mre11-dependent nucleolytic reaction. Next, MRN loads exonuclease 1 (Exo1) onto the free DNA ends to initiate DNA resection. In the presence of replication protein A (RPA), MRN acts as a processivity factor for Exo1, retaining the exonuclease on DNA for long-range resection. Our results provide a mechanism for how MRN promotes homologous recombination on nucleosome-coated DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Single-molecule fluorescence reveals the unwinding stepping mechanism of replicative helicase.

    PubMed

    Syed, Salman; Pandey, Manjula; Patel, Smita S; Ha, Taekjip

    2014-03-27

    Bacteriophage T7 gp4 serves as a model protein for replicative helicases that couples deoxythymidine triphosphate (dTTP) hydrolysis to directional movement and DNA strand separation. We employed single-molecule fluorescence resonance energy transfer methods to resolve steps during DNA unwinding by T7 helicase. We confirm that the unwinding rate of T7 helicase decreases with increasing base pair stability. For duplexes containing >35% guanine-cytosine (GC) base pairs, we observed stochastic pauses every 2-3 bp during unwinding. The dwells on each pause were distributed nonexponentially, consistent with two or three rounds of dTTP hydrolysis before each unwinding step. Moreover, we observed backward movements of the enzyme on GC-rich DNAs at low dTTP concentrations. Our data suggest a coupling ratio of 1:1 between base pairs unwound and dTTP hydrolysis, and they further support the concept that nucleic acid motors can have a hierarchy of different-sized steps or can accumulate elastic energy before transitioning to a subsequent phase.

  15. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    NASA Astrophysics Data System (ADS)

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  16. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans

    PubMed Central

    Fraune, Johanna; Alsheimer, Manfred; Volff, Jean-Nicolas; Busch, Karoline; Fraune, Sebastian; Bosch, Thomas C. G.; Benavente, Ricardo

    2012-01-01

    The synaptonemal complex (SC) is a key structure of meiosis, mediating the stable pairing (synapsis) of homologous chromosomes during prophase I. Its remarkable tripartite structure is evolutionarily well conserved and can be found in almost all sexually reproducing organisms. However, comparison of the different SC protein components in the common meiosis model organisms Saccharomyces cerevisiae, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus revealed no sequence homology. This discrepancy challenged the hypothesis that the SC arose only once in evolution. To pursue this matter we focused on the evolution of SYCP1 and SYCP3, the two major structural SC proteins of mammals. Remarkably, our comparative bioinformatic and expression studies revealed that SYCP1 and SYCP3 are also components of the SC in the basal metazoan Hydra. In contrast to previous assumptions, we therefore conclude that SYCP1 and SYCP3 form monophyletic groups of orthologous proteins across metazoans. PMID:23012415

  17. A comprehensive Plasmodium falciparum protein interaction map reveals a distinct architecture of a core interactome

    PubMed Central

    Wuchty, Stefan; Adams, John H.; Ferdig, Michael T.

    2011-01-01

    We derive a map of protein interactions in the parasite P. falciparum from conserved interactions in S. cerevisiae, C. elegans, D. melanogaster and E. coli and pool them with experimental interaction data. The application of a clique-percolation algorithm allows us to find overlapping clusters, strongly correlated with yeast specific conserved protein complexes. Such clusters contain core activities that govern gene expression, largely dominated by components of protein production and degradation processes as well as RNA metabolism. A critical role of protein hubs in the interactome of P. falciparum is supported by their appearance in multiple clusters and the tendencies of their interactions to reach into many distinct protein clusters. Parasite proteins with a human ortholog tend to appear in single complexes. Annotating each protein with the stage where it is maximally expressed we observe a high level of cluster integrity in the ring stage. While we find no signal in the trophozoite phase, expression patterns are reversed in the schizont phase, implying a preponderance of parasite specific functions in this late, invasive schizont stage. As such, the inference of potential protein interactions and their analysis contributes to our understanding of the parasite, indicating basic pathways and processes as unique targets for therapeutic intervention. PMID:19333996

  18. Mitochondrial specialization revealed by single muscle fiber proteomics: focus on the Krebs cycle.

    PubMed

    Schiaffino, S; Reggiani, C; Kostrominova, T Y; Mann, M; Murgia, M

    2015-12-01

    We have developed a highly sensitive mass spectrometry-based proteomic workflow to examine the proteome of single muscle fibers. This study revealed significant differences in the mitochondrial proteome of the four major fiber types present in mouse skeletal muscle. Here, we focus on Krebs cycle enzymes and in particular on the differential distribution of the two mitochondrial isocitrate dehydrogenases, IDH2 and IDH3. Type 1/slow fibers contain high levels of IDH2 and relatively low levels of IDH3, whereas fast 2X and 2B fibers show an opposite expression pattern. The findings suggest that in skeletal muscle, IDH2 functions in the forward direction of the Krebs cycle and that substrate flux along the cycle occurs predominantly via IDH2 in type 1 fibers and via IDH3 in 2X and 2B fibers. IDH2-mediated conversion of isocitrate to α-ketoglutarate leads to the generation of NADPH, which is critical to buffering the H2O2 produced by the respiratory chain. Nicotinamide nucleotide transhydrogenase (NNT), the other major mitochondrial enzyme involved in NADPH generation, is also more abundant in type 1 fibers. We suggest that the continuously active type 1 fibers are endowed with a more efficient H2O2 scavenging capacity to cope with the higher levels of reactive oxygen species production. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging.

    PubMed

    Buechner, Claudia N; Maiti, Atanu; Drohat, Alexander C; Tessmer, Ingrid

    2015-03-11

    The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG-DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Single Cell Analysis Reveals Transcriptional Heterogeneity of Neural Progenitors in the Human Cortex

    PubMed Central

    Johnson, Matthew B.; Wang, Peter P.; Atabay, Kutay D.; Murphy, Elisabeth A.; Doan, Ryan N.; Hecht, Jonathan; Walsh, Christopher A.

    2017-01-01

    The human cerebral cortex depends for its normal development and size on a precisely controlled balance between self-renewal and differentiation of diverse neural progenitor cells. Specialized progenitors that are common in humans, but virtually absent in rodents, called ‘outer radial glia’ (ORG), have been suggested to be crucial to the evolutionary expansion of the human cortex. We combined progenitor subtype-specific sorting with transcriptome-wide RNA-sequencing to identify genes enriched in human ORG, which included targets of the transcription factor Neurogenin and previously uncharacterized, evolutionarily dynamic long noncoding RNAs. We show that activating the Neurogenin pathway in ferret progenitors promotes delamination and outward migration. Finally, single-cell transcriptional profiling in human, ferret, and mouse revealed more cells co-expressing proneural Neurogenin targets in human compared to other species, suggesting greater neuronal lineage commitment and differentiation of self-renewing progenitors. Thus, we find that the abundance of human ORG is paralleled by increased transcriptional heterogeneity of cortical progenitors. PMID:25734491

  1. Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish

    PubMed Central

    Gutierrez-Triana, Jose Arturo; Knerr, Boris

    2017-01-01

    Oxytocin regulates a diverse set of processes including stress, analgesia, metabolism, and social behavior. How such diverse functions are mediated by a single hormonal system is not well understood. Different functions of oxytocin could be mediated by distinct cell groups, yet it is currently unknown whether different oxytocinergic cell types exist that specifically mediate peripheral neuroendocrine or various central neuromodulatory processes via dedicated pathways. Using the Brainbow technique to map the morphology and projections of individual oxytocinergic cells in the larval zebrafish brain, we report here the existence of two main types of oxytocinergic cells: those that innervate the pituitary and those that innervate diverse brain regions. Similar to the situation in the adult rat and the adult midshipman, but in contrast to the situation in the adult trout, these two cell types are mutually exclusive and can be distinguished based on morphological and anatomical criteria. Further, our results reveal that complex oxytocinergic innervation patterns are already established in the larval zebrafish brain. PMID:28317020

  2. Subsurface damage mechanism of high speed grinding process in single crystal silicon revealed by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Li, Jia; Fang, Qihong; Zhang, Liangchi; Liu, Youwen

    2015-01-01

    Three-dimensional molecular dynamics (MD) simulations are performed to investigate the nanoscale grinding process of single crystal silicon using diamond tool. The effect of grinding speed on subsurface damage and grinding surface integrity by analyzing the chip, dislocation movement, and phase transformation are studied. We also establish an analytical model to calculate several important stress fields including hydrostatic stress and von Mises stress for studying subsurface damage mechanism, and obtain the dislocation density on the grinding subsurface. The results show that a higher grinding velocity in machining brittle material silicon causes a larger chip and a higher temperature, and reduces subsurface damage. However, when grinding velocity is above 180 m s-1, subsurface damage thickness slightly increases because a higher grinding speed leads to the increase in grinding force and temperature, which accelerate dislocation nucleation and motion. Subsurface damage is studied by the evolution of surface area at first time for more obvious observation on transition from ductile to brittle, that provides valuable reference for machining nanometer devices. The von Mises stress and the hydrostatic stress play an important role in the grinding process, and explain the subsurface damage though dislocation mechanism under high stress status. The dislocation nucleation and motion induced plastic deformation during grinding process can better reveal subsurface damage mechanism considering to stress and temperature acting on the dislocations.

  3. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    PubMed Central

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  4. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging

    PubMed Central

    Buechner, Claudia N.; Maiti, Atanu; Drohat, Alexander C.; Tessmer, Ingrid

    2015-01-01

    The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases. PMID:25712093

  5. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    NASA Astrophysics Data System (ADS)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2016-11-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  6. Nocturnal claroteine catfishes reveal dual colonisation but a single radiation in Lake Tanganyika.

    PubMed

    Peart, Claire R; Bills, Roger; Wilkinson, Mark; Day, Julia J

    2014-04-01

    Lake Tanganyika (LT) is a biodiversity hotspot supporting many endemic radiations that provide comparative systems in which to investigate if there are common factors leading to the build-up of its considerable diversity. Despite LT containing the highest diversity of lacustrine catfishes on Earth, the evolutionary relationships of nocturnal catfishes within the sub-family Claroteinae have not been investigated and it is unknown if its constituent genera have diversified via single or independent colonisation events. We report the first molecular phylogeny of the LT claroteine catfishes based on a multigene dataset (three nuclear markers, two mitochondrial totalling 4227 bp), including 85 samples from LT and outside of the lake basin. These data support LT claroteine monophyly, with the exclusion of the LT endemic Chrysichthys brachynema that independently colonised the lake but has not radiated. Multiple sampling localities from LT and the use of Bayesian species delimitation methods reveal additional locally restricted diversity within the LT Claroteinae clade. Fossil calibrated molecular divergence dates suggest that diversification occurred within full lake conditions as demonstrated in other LT lineages. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Sarcomere dynamics in single myocardial cells as revealed by high-resolution light diffractometry.

    PubMed

    Leung, A F

    1983-08-01

    A specially designed diffractometer with a high spatial and temporal resolution recorded the diffraction of a laser beam by single enzymatically isolated myocardial cells. The fine structures within the first-order diffraction were resolved and each structure was interpreted as the diffraction from a group of sarcomeres of nearly equal length. During activation of the cell dynamics of each discrete group of sarcomeres was uniform and independent of the other groups. However, a small nonuniform component in the sarcomere dynamics was observed and attributed to the coupling between the shortening tension and the radial stress resulting from the expansion of the myofibrillar cross-section. The time-course of the diffraction fine structures during contractile activity revealed (1) the period of the contraction-relaxation cycle, (2) the latent period, (3) the shortening and relengthening speeds and (4) the variation in the line width and intensity of the fine structure. Measurements showed that the latent period was dependent on the free Ca2+ of the cell's bathing solution while the initial shortening speed was not. The diffraction line width and intensity of the shortening cell were explained by the grating model.

  8. Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models

    PubMed Central

    2014-01-01

    We have developed a hidden Markov model and optimization procedure for photon-based single-molecule FRET data, which takes into account the trace-dependent background intensities. This analysis technique reveals an unprecedented amount of detail in the folding kinetics of the Diels–Alderase ribozyme. We find a multitude of extended (low-FRET) and compact (high-FRET) states. Five states were consistently and independently identified in two FRET constructs and at three Mg2+ concentrations. Structures generally tend to become more compact upon addition of Mg2+. Some compact structures are observed to significantly depend on Mg2+ concentration, suggesting a tertiary fold stabilized by Mg2+ ions. One compact structure was observed to be Mg2+-independent, consistent with stabilization by tertiary Watson–Crick base pairing found in the folded Diels–Alderase structure. A hierarchy of time scales was discovered, including dynamics of 10 ms or faster, likely due to tertiary structure fluctuations, and slow dynamics on the seconds time scale, presumably associated with significant changes in secondary structure. The folding pathways proceed through a series of intermediate secondary structures. There exist both compact pathways and more complex ones, which display tertiary unfolding, then secondary refolding, and, subsequently, again tertiary refolding. PMID:24568646

  9. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain

    NASA Astrophysics Data System (ADS)

    Godin, Antoine G.; Varela, Juan A.; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P.; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  10. Single molecule analysis reveals three phases of DNA degradation by an exonuclease

    PubMed Central

    Lee, Gwangrog; Yoo, Jungmin; Leslie, Benjamin J.; Ha, Taekjip

    2011-01-01

    λ exonuclease degrades one strand of duplex DNA in the 5’-3’ direction to generate a 3’ overhang required for recombination. Its ability to hydrolyze thousands of nucleotides processively is attributed to its ring structure and most studies have focused on the processive phase. Here, we use single molecule FRET to reveal three phases of λ exonuclease reactions: initiation, distributive and processive phases. The distributive phase occurs at early reactions where the 3’ overhang is too short for a stable engagement with the enzyme. A mismatched base is digested five times slower than a Watson-Crick paired base and concatenating multiple mismatches has a cooperatively negative effect, highlighting the crucial role of basepairing in aligning the 5’ end toward the active site. The rate-limiting step during processive degradation appears to be the post-cleavage melting of the terminal base pair. We also found that an escape from a known pausing sequence requires enzyme backtracking. PMID:21552271

  11. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain.

    PubMed

    Godin, Antoine G; Varela, Juan A; Gao, Zhenghong; Danné, Noémie; Dupuis, Julien P; Lounis, Brahim; Groc, Laurent; Cognet, Laurent

    2017-03-01

    The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.

  12. Phylogenomics Controlling for Base Compositional Bias Reveals a Single Origin of Eusociality in Corbiculate Bees.

    PubMed

    Romiguier, Jonathan; Cameron, Sydney A; Woodard, S Hollis; Fischman, Brielle J; Keller, Laurent; Praz, Christophe J

    2016-03-01

    As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.

  13. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.

    PubMed

    He, Jianfeng; Wang, Jiabin; Hu, Jun; Sun, Jielin; Czajkowsky, Daniel Mark; Shao, Zhifeng

    2016-04-01

    Aerolysin is the paradigmatic member of a large family of toxins that convert from a water-soluble monomer/dimer into a membrane-spanning oligomeric pore. While there is x-ray crystallographic data of its water-soluble conformation, the most recent structural model of the membrane-inserted pore is based primarily on data of water-soluble tetradecamers of mutant protein, together with computational modeling ultimately performed in vacuum. Here we examine this pore model with atomic force microscopy (AFM) of membrane-associated wild-type complexes and all-atom molecular dynamics (MD) simulations in water. In striking contrast to a disc-shaped cap region predicted by the present model, the AFM images reveal a star-shaped complex, with a central ring surrounded by seven radial projections. Further, the MD simulations suggest that the locations of the receptor-binding (D1) domains in the present model are not correct. However, a modified model in which the D1 domains, rather than localized at fixed positions, adopt a wide range of configurations through fluctuations of an intervening linker is compatible with existing data. Thus our work not only demonstrates the importance of directly resolving such complexes in their native environment but also points to a dynamic receptor binding region, which may be critical for toxin assembly on the cell surface.

  14. Clustering and Functional Coupling of Diverse Ion Channels and Signaling Proteins Revealed by Super-resolution STORM Microscopy in Neurons.

    PubMed

    Zhang, Jie; Carver, Chase M; Choveau, Frank S; Shapiro, Mark S

    2016-10-19

    The fidelity of neuronal signaling requires organization of signaling molecules into macromolecular complexes, whose components are in intimate proximity. The intrinsic diffraction limit of light makes visualization of individual signaling complexes using visible light extremely difficult. However, using super-resolution stochastic optical reconstruction microscopy (STORM), we observed intimate association of individual molecules within signaling complexes containing ion channels (M-type K(+), L-type Ca(2+), or TRPV1 channels) and G protein-coupled receptors coupled by the scaffolding protein A-kinase-anchoring protein (AKAP)79/150. Some channels assembled as multi-channel supercomplexes. Surprisingly, we identified novel layers of interplay within macromolecular complexes containing diverse channel types at the single-complex level in sensory neurons, dependent on AKAP79/150. Electrophysiological studies revealed that such ion channels are functionally coupled as well. Our findings illustrate the novel role of AKAP79/150 as a molecular coupler of different channels that conveys crosstalk between channel activities within single microdomains in tuning the physiological response of neurons.

  15. Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions.

    PubMed

    Khan, Tahsin; Douglas, Gavin M; Patel, Priyenbhai; Nguyen Ba, Alex N; Moses, Alan M

    2015-06-04

    Intrinsically disordered protein regions are abundant in eukaryotic proteins and lack stable tertiary structures and enzymatic functions. Previous studies of disordered region evolution based on interspecific alignments have revealed an increased propensity for indels and rapid rates of amino acid substitution. How disordered regions are maintained at high abundance in the proteome and across taxa, despite apparently weak evolutionary constraints, remains unclear. Here, we use single nucleotide and indel polymorphism data in yeast and human populations to survey the population variation within disordered regions. First, we show that single nucleotide polymorphisms in disordered regions are under weaker negative selection compared with more structured protein regions and have a higher proportion of neutral non-synonymous sites. We also confirm previous findings that nonframeshifting indels are much more abundant in disordered regions relative to structured regions. We find that the rate of nonframeshifting indel polymorphism in intrinsically disordered regions resembles that of noncoding DNA and pseudogenes, and that large indels segregate in disordered regions in the human population. Our survey of polymorphism confirms patterns of evolution in disordered regions inferred based on longer evolutionary comparisons.

  16. Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions

    PubMed Central

    Khan, Tahsin; Douglas, Gavin M.; Patel, Priyenbhai; Nguyen Ba, Alex N.; Moses, Alan M.

    2015-01-01

    Intrinsically disordered protein regions are abundant in eukaryotic proteins and lack stable tertiary structures and enzymatic functions. Previous studies of disordered region evolution based on interspecific alignments have revealed an increased propensity for indels and rapid rates of amino acid substitution. How disordered regions are maintained at high abundance in the proteome and across taxa, despite apparently weak evolutionary constraints, remains unclear. Here, we use single nucleotide and indel polymorphism data in yeast and human populations to survey the population variation within disordered regions. First, we show that single nucleotide polymorphisms in disordered regions are under weaker negative selection compared with more structured protein regions and have a higher proportion of neutral non-synonymous sites. We also confirm previous findings that nonframeshifting indels are much more abundant in disordered regions relative to structured regions. We find that the rate of nonframeshifting indel polymorphism in intrinsically disordered regions resembles that of noncoding DNA and pseudogenes, and that large indels segregate in disordered regions in the human population. Our survey of polymorphism confirms patterns of evolution in disordered regions inferred based on longer evolutionary comparisons. PMID:26047845

  17. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins.

    PubMed

    Morton, Kyla J; Jia, Shangang; Zhang, Chi; Holding, David R

    2016-03-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. Proteomic profiling of maize opaque endosperm mutants reveals selective accumulation of lysine-enriched proteins

    PubMed Central

    Morton, Kyla J.; Jia, Shangang; Zhang, Chi; Holding, David R.

    2016-01-01

    Reduced prolamin (zein) accumulation and defective endoplasmic reticulum (ER) body formation occurs in maize opaque endosperm mutants opaque2 (o2), floury2 (fl2), defective endosperm*B30 (DeB30), and Mucronate (Mc), whereas other opaque mutants such as opaque1 (o1) and floury1 (fl1) are normal in these regards. This suggests that other factors contribute to kernel texture. A liquid chromatography approach coupled with tandem mass spectrometry (LC-MS/MS) proteomics was used to compare non-zein proteins of nearly isogenic opaque endosperm mutants. In total, 2762 proteins were identified that were enriched for biological processes such as protein transport and folding, amino acid biosynthesis, and proteolysis. Principal component analysis and pathway enrichment suggested that the mutants partitioned into three groups: (i) Mc, DeB30, fl2 and o2; (ii) o1; and (iii) fl1. Indicator species analysis revealed mutant-specific proteins, and highlighted ER secretory pathway components that were enriched in selected groups of mutants. The most significantly changed proteins were related to stress or defense and zein partitioning into the soluble fraction for Mc, DeB30, o1, and fl1 specifically. In silico dissection of the most significantly changed proteins revealed novel qualitative changes in lysine abundance contributing to the overall lysine increase and the nutritional rebalancing of the o2 and fl2 endosperm. PMID:26712829

  19. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics.

    PubMed

    Nikolovski, Nino; Rubtsov, Denis; Segura, Marcelo P; Miles, Godfrey P; Stevens, Tim J; Dunkley, Tom P J; Munro, Sean; Lilley, Kathryn S; Dupree, Paul

    2012-10-01

    The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.

  20. Mutations in the parainfluenza virus 5 fusion protein reveal domains important for fusion triggering and metastability.

    PubMed

    Bose, Sayantan; Heath, Carissa M; Shah, Priya A; Alayyoubi, Maher; Jardetzky, Theodore S; Lamb, Robert A

    2013-12-01

    Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger.

  1. Revealing linear aggregates of light harvesting antenna proteins in photosynthetic membranes.

    PubMed

    He, Yufan; Zeng, Xiaohua; Mukherjee, Saptarshi; Rajapaksha, Suneth; Kaplan, Samuel; Lu, H Peter

    2010-01-05

    How light energy is harvested in a natural photosynthetic membrane through energy transfer is closely related to the stoichiometry and arrangement of light harvesting antenna proteins in the membrane. The specific photosynthetic architecture facilitates a rapid and efficient energy transfer among the light harvesting proteins (LH2 and LH1) and to the reaction center. Here we report the identification of linear aggregates of light harvesting proteins, LH2, in the photosynthetic membranes under ambient conditions by using atomic force microscopy (AFM) imaging and spectroscopic analysis. Our results suggest that the light harvesting protein, LH2, can exist as linear aggregates of 4 +/- 2 proteins in the photosynthetic membranes and that the protein distributions are highly heterogeneous. In the photosynthetic membranes examined in our measurements, the ratio of the aggregated to the nonaggregated LH2 proteins is about 3:1 to 5:1 depending on the intensity of the illumination used during sample incubation and on the bacterial species. AFM images further identify that the LH2 proteins in the linear aggregates are monotonically tilted at an angle 4 +/- 2 degrees from the plane of the photosynthetic membranes. The aggregates result in red-shifted absorption and emission spectra that are measured using various mutant membranes, including an LH2 knockout, LH1 knockout, and LH2 at different population densities. Measuring the fluorescence lifetimes of purified LH2 and LH2 in membranes, we have observed that the LH2 proteins in membranes exhibit biexponential lifetime decays whereas the purified LH2 proteins gave single exponential lifetime decays. We attribute that the two lifetime components originate from the existence of both aggregated and nonaggregated LH2 proteins in the photosynthetic membranes.

  2. Mutations in the Parainfluenza Virus 5 Fusion Protein Reveal Domains Important for Fusion Triggering and Metastability

    PubMed Central

    Bose, Sayantan; Heath, Carissa M.; Shah, Priya A.; Alayyoubi, Maher; Jardetzky, Theodore S.

    2013-01-01

    Paramyxovirus membrane glycoproteins F (fusion protein) and HN, H, or G (attachment protein) are critical for virus entry, which occurs through fusion of viral and cellular envelopes. The F protein folds into a homotrimeric, metastable prefusion form that can be triggered by the attachment protein to undergo a series of structural rearrangements, ultimately folding into a stable postfusion form. In paramyxovirus-infected cells, the F protein is activated in the Golgi apparatus by cleavage adjacent to a hydrophobic fusion peptide that inserts into the target membrane, eventually bringing the membranes together by F refolding. However, it is not clear how the attachment protein, known as HN in parainfluenza virus 5 (PIV5), interacts with F and triggers F to initiate fusion. To understand the roles of various F protein domains in fusion triggering and metastability, single point mutations were introduced into the PIV5 F protein. By extensive study of F protein cleavage activation, surface expression, and energetics of fusion triggering, we found a role for an immunoglobulin-like (Ig-like) domain, where multiple hydrophobic residues on the PIV5 F protein may mediate F-HN interactions. Additionally, destabilizing mutations of PIV5 F that resulted in HN trigger-independent mutant F proteins were identified in a region along the border of F trimer subunits. The positions of the potential HN-interacting region and the region important for F stability in the lower part of the PIV5 F prefusion structure provide clues to the receptor-binding initiated, HN-mediated F trigger. PMID:24089572

  3. Proteomics Reveals Plastid- and Periplastid-Targeted Proteins in the Chlorarachniophyte Alga Bigelowiella natans

    PubMed Central

    Hopkins, Julia F.; Spencer, David F.; Laboissiere, Sylvie; Neilson, Jonathan A.D.; Eveleigh, Robert J.M.; Durnford, Dion G.; Gray, Michael W.; Archibald, John M.

    2012-01-01

    Chlorarachniophytes are unicellular marine algae with plastids (chloroplasts) of secondary endosymbiotic origin. Chlorarachniophyte cells retain the remnant nucleus (nucleomorph) and cytoplasm (periplastidial compartment, PPC) of the green algal endosymbiont from which their plastid was derived. To characterize the diversity of nucleus-encoded proteins targeted to the chlorarachniophyte plastid, nucleomorph, and PPC, we isolated plastid–nucleomorph complexes from the model chlorarachniophyte Bigelowiella natans and subjected them to high-pressure liquid chromatography-tandem mass spectrometry. Our proteomic analysis, the first of its kind for a nucleomorph-bearing alga, resulted in the identification of 324 proteins with 95% confidence. Approximately 50% of these proteins have predicted bipartite leader sequences at their amino termini. Nucleus-encoded proteins make up >90% of the proteins identified. With respect to biological function, plastid-localized light-harvesting proteins were well represented, as were proteins involved in chlorophyll biosynthesis. Phylogenetic analyses revealed that many, but by no means all, of the proteins identified in our proteomic screen are of apparent green algal ancestry, consistent with the inferred evolutionary origin of the plastid and nucleomorph in chlorarachniophytes. PMID:23221610

  4. Essential Strategies for Revealing Nanoscale Protein Dynamics by Neutron Spin Echo Spectroscopy.

    PubMed

    Callaway, David J E; Bu, Zimei

    2016-01-01

    Determining the internal motions of a protein on nanosecond-to-microsecond timescales and on nanometer length scales is challenging by experimental biophysical techniques. Neutron spin echo spectroscopy (NSE) offers a unique opportunity to determine such nanoscale protein domain motions. However, the major hurdle in applying NSE to determine nanoscale protein motion is that the time and length scales of internal protein motions tend to be comparable to that of the global motions of a protein. The signals detected by NSE tend to be dominated by rigid-body translational and rotational diffusion. Using theoretical analyses, our laboratory showed that selective deuteration of a protein domain or a subunit can enhance the capability of NSE to reveal the internal motions in a protein complex. Here, we discuss the essential theoretical analysis and experimental methodology in detail. Protein nanomachines are far more complex than any molecular motors that have been artificially constructed, and their skillful utilization likely represents the future of medicine. With selective deuteration, NSE will allow us to see these nanomachines in motion. © 2016 Elsevier Inc. All rights reserved.

  5. Protein sequence conservation and stable molecular evolution reveals influenza virus nucleoprotein as a universal druggable target.

    PubMed

    Babar, Mustafeez Mujtaba; Zaidi, Najam-us-Sahar Sadaf

    2015-08-01

    The high mutation rate in influenza virus genome and appearance of drug resistance calls for a constant effort to identify alternate drug targets and develop new antiviral strategies. The internal proteins of the virus can be exploited as a potential target for therapeutic interventions. Among these, the nucleoprotein (NP) is the most abundant protein that provides structural and functional support to the viral replication machinery. The current study aims at analysis of protein sequence polymorphism patterns, degree of molecular evolution and sequence conservation as a function of potential druggability of nucleoprotein. We analyzed a universal set of amino acid sequences, (n=22,000) and, in order to identify and correlate the functionally conserved, druggable regions across different parameters, classified them on the basis of host organism, strain type and continental region of sample isolation. The results indicated that around 95% of the sequence length was conserved, with at least 7 regions conserved across the protein among various classes. Moreover, the highly variable regions, though very limited in number, were found to be positively selected indicating, thereby, the high degree of protein stability against various hosts and spatio-temporal references. Furthermore, on mapping the conserved regions on the protein, 7 drug binding pockets in the functionally important regions of the protein were